1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 struct delayed_work work;
65 int status;
66 u32 seq;
67 };
68
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70
71 static void process_req(struct work_struct *work);
72
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 .len = sizeof(struct rdma_nla_ls_gid)},
81 };
82
ib_nl_is_good_ip_resp(const struct nlmsghdr * nlh)83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 int ret;
87
88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 return false;
90
91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 if (ret)
94 return false;
95
96 return true;
97 }
98
ib_nl_process_good_ip_rsep(const struct nlmsghdr * nlh)99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 const struct nlattr *head, *curr;
102 union ib_gid gid;
103 struct addr_req *req;
104 int len, rem;
105 int found = 0;
106
107 head = (const struct nlattr *)nlmsg_data(nlh);
108 len = nlmsg_len(nlh);
109
110 nla_for_each_attr(curr, head, len, rem) {
111 if (curr->nla_type == LS_NLA_TYPE_DGID)
112 memcpy(&gid, nla_data(curr), nla_len(curr));
113 }
114
115 mutex_lock(&lock);
116 list_for_each_entry(req, &req_list, list) {
117 if (nlh->nlmsg_seq != req->seq)
118 continue;
119 /* We set the DGID part, the rest was set earlier */
120 rdma_addr_set_dgid(req->addr, &gid);
121 req->status = 0;
122 found = 1;
123 break;
124 }
125 mutex_unlock(&lock);
126
127 if (!found)
128 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 &gid);
130 }
131
ib_nl_handle_ip_res_resp(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 struct nlmsghdr *nlh,
134 struct netlink_ext_ack *extack)
135 {
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk))
138 return -EPERM;
139
140 if (ib_nl_is_good_ip_resp(nlh))
141 ib_nl_process_good_ip_rsep(nlh);
142
143 return 0;
144 }
145
ib_nl_ip_send_msg(struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 const void *daddr,
148 u32 seq, u16 family)
149 {
150 struct sk_buff *skb = NULL;
151 struct nlmsghdr *nlh;
152 struct rdma_ls_ip_resolve_header *header;
153 void *data;
154 size_t size;
155 int attrtype;
156 int len;
157
158 if (family == AF_INET) {
159 size = sizeof(struct in_addr);
160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 } else {
162 size = sizeof(struct in6_addr);
163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 }
165
166 len = nla_total_size(sizeof(size));
167 len += NLMSG_ALIGN(sizeof(*header));
168
169 skb = nlmsg_new(len, GFP_KERNEL);
170 if (!skb)
171 return -ENOMEM;
172
173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 if (!data) {
176 nlmsg_free(skb);
177 return -ENODATA;
178 }
179
180 /* Construct the family header first */
181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 header->ifindex = dev_addr->bound_dev_if;
183 nla_put(skb, attrtype, size, daddr);
184
185 /* Repair the nlmsg header length */
186 nlmsg_end(skb, nlh);
187 rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188
189 /* Make the request retry, so when we get the response from userspace
190 * we will have something.
191 */
192 return -ENODATA;
193 }
194
rdma_addr_size(struct sockaddr * addr)195 int rdma_addr_size(struct sockaddr *addr)
196 {
197 switch (addr->sa_family) {
198 case AF_INET:
199 return sizeof(struct sockaddr_in);
200 case AF_INET6:
201 return sizeof(struct sockaddr_in6);
202 case AF_IB:
203 return sizeof(struct sockaddr_ib);
204 default:
205 return 0;
206 }
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209
rdma_addr_size_in6(struct sockaddr_in6 * addr)210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 int ret = rdma_addr_size((struct sockaddr *) addr);
213
214 return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217
rdma_addr_size_kss(struct __kernel_sockaddr_storage * addr)218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 int ret = rdma_addr_size((struct sockaddr *) addr);
221
222 return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225
226 static struct rdma_addr_client self;
227
rdma_addr_register_client(struct rdma_addr_client * client)228 void rdma_addr_register_client(struct rdma_addr_client *client)
229 {
230 atomic_set(&client->refcount, 1);
231 init_completion(&client->comp);
232 }
233 EXPORT_SYMBOL(rdma_addr_register_client);
234
put_client(struct rdma_addr_client * client)235 static inline void put_client(struct rdma_addr_client *client)
236 {
237 if (atomic_dec_and_test(&client->refcount))
238 complete(&client->comp);
239 }
240
rdma_addr_unregister_client(struct rdma_addr_client * client)241 void rdma_addr_unregister_client(struct rdma_addr_client *client)
242 {
243 put_client(client);
244 wait_for_completion(&client->comp);
245 }
246 EXPORT_SYMBOL(rdma_addr_unregister_client);
247
rdma_copy_addr(struct rdma_dev_addr * dev_addr,struct net_device * dev,const unsigned char * dst_dev_addr)248 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
249 const unsigned char *dst_dev_addr)
250 {
251 dev_addr->dev_type = dev->type;
252 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
253 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
254 if (dst_dev_addr)
255 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
256 dev_addr->bound_dev_if = dev->ifindex;
257 return 0;
258 }
259 EXPORT_SYMBOL(rdma_copy_addr);
260
rdma_translate_ip(const struct sockaddr * addr,struct rdma_dev_addr * dev_addr,u16 * vlan_id)261 int rdma_translate_ip(const struct sockaddr *addr,
262 struct rdma_dev_addr *dev_addr,
263 u16 *vlan_id)
264 {
265 struct net_device *dev;
266 int ret = -EADDRNOTAVAIL;
267
268 if (dev_addr->bound_dev_if) {
269 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
270 if (!dev)
271 return -ENODEV;
272 ret = rdma_copy_addr(dev_addr, dev, NULL);
273 dev_put(dev);
274 return ret;
275 }
276
277 switch (addr->sa_family) {
278 case AF_INET:
279 dev = ip_dev_find(dev_addr->net,
280 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
281
282 if (!dev)
283 return ret;
284
285 ret = rdma_copy_addr(dev_addr, dev, NULL);
286 dev_addr->bound_dev_if = dev->ifindex;
287 if (vlan_id)
288 *vlan_id = rdma_vlan_dev_vlan_id(dev);
289 dev_put(dev);
290 break;
291 #if IS_ENABLED(CONFIG_IPV6)
292 case AF_INET6:
293 rcu_read_lock();
294 for_each_netdev_rcu(dev_addr->net, dev) {
295 if (ipv6_chk_addr(dev_addr->net,
296 &((const struct sockaddr_in6 *)addr)->sin6_addr,
297 dev, 1)) {
298 ret = rdma_copy_addr(dev_addr, dev, NULL);
299 dev_addr->bound_dev_if = dev->ifindex;
300 if (vlan_id)
301 *vlan_id = rdma_vlan_dev_vlan_id(dev);
302 break;
303 }
304 }
305 rcu_read_unlock();
306 break;
307 #endif
308 }
309 return ret;
310 }
311 EXPORT_SYMBOL(rdma_translate_ip);
312
set_timeout(struct delayed_work * delayed_work,unsigned long time)313 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
314 {
315 unsigned long delay;
316
317 delay = time - jiffies;
318 if ((long)delay < 0)
319 delay = 0;
320
321 mod_delayed_work(addr_wq, delayed_work, delay);
322 }
323
queue_req(struct addr_req * req)324 static void queue_req(struct addr_req *req)
325 {
326 struct addr_req *temp_req;
327
328 mutex_lock(&lock);
329 list_for_each_entry_reverse(temp_req, &req_list, list) {
330 if (time_after_eq(req->timeout, temp_req->timeout))
331 break;
332 }
333
334 list_add(&req->list, &temp_req->list);
335
336 set_timeout(&req->work, req->timeout);
337 mutex_unlock(&lock);
338 }
339
ib_nl_fetch_ha(struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)340 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
341 const void *daddr, u32 seq, u16 family)
342 {
343 if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
344 return -EADDRNOTAVAIL;
345
346 /* We fill in what we can, the response will fill the rest */
347 rdma_copy_addr(dev_addr, dst->dev, NULL);
348 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
349 }
350
dst_fetch_ha(struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const void * daddr)351 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
352 const void *daddr)
353 {
354 struct neighbour *n;
355 int ret;
356
357 n = dst_neigh_lookup(dst, daddr);
358
359 rcu_read_lock();
360 if (!n || !(n->nud_state & NUD_VALID)) {
361 if (n)
362 neigh_event_send(n, NULL);
363 ret = -ENODATA;
364 } else {
365 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
366 }
367 rcu_read_unlock();
368
369 if (n)
370 neigh_release(n);
371
372 return ret;
373 }
374
has_gateway(struct dst_entry * dst,sa_family_t family)375 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
376 {
377 struct rtable *rt;
378 struct rt6_info *rt6;
379
380 if (family == AF_INET) {
381 rt = container_of(dst, struct rtable, dst);
382 return rt->rt_uses_gateway;
383 }
384
385 rt6 = container_of(dst, struct rt6_info, dst);
386 return rt6->rt6i_flags & RTF_GATEWAY;
387 }
388
fetch_ha(struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const struct sockaddr * dst_in,u32 seq)389 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
390 const struct sockaddr *dst_in, u32 seq)
391 {
392 const struct sockaddr_in *dst_in4 =
393 (const struct sockaddr_in *)dst_in;
394 const struct sockaddr_in6 *dst_in6 =
395 (const struct sockaddr_in6 *)dst_in;
396 const void *daddr = (dst_in->sa_family == AF_INET) ?
397 (const void *)&dst_in4->sin_addr.s_addr :
398 (const void *)&dst_in6->sin6_addr;
399 sa_family_t family = dst_in->sa_family;
400
401 /* Gateway + ARPHRD_INFINIBAND -> IB router */
402 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
403 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
404 else
405 return dst_fetch_ha(dst, dev_addr, daddr);
406 }
407
addr4_resolve(struct sockaddr_in * src_in,const struct sockaddr_in * dst_in,struct rdma_dev_addr * addr,struct rtable ** prt)408 static int addr4_resolve(struct sockaddr_in *src_in,
409 const struct sockaddr_in *dst_in,
410 struct rdma_dev_addr *addr,
411 struct rtable **prt)
412 {
413 __be32 src_ip = src_in->sin_addr.s_addr;
414 __be32 dst_ip = dst_in->sin_addr.s_addr;
415 struct rtable *rt;
416 struct flowi4 fl4;
417 int ret;
418
419 memset(&fl4, 0, sizeof(fl4));
420 fl4.daddr = dst_ip;
421 fl4.saddr = src_ip;
422 fl4.flowi4_oif = addr->bound_dev_if;
423 rt = ip_route_output_key(addr->net, &fl4);
424 ret = PTR_ERR_OR_ZERO(rt);
425 if (ret)
426 return ret;
427
428 src_in->sin_family = AF_INET;
429 src_in->sin_addr.s_addr = fl4.saddr;
430
431 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
432 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
433 * type accordingly.
434 */
435 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
436 addr->network = RDMA_NETWORK_IPV4;
437
438 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
439
440 *prt = rt;
441 return 0;
442 }
443
444 #if IS_ENABLED(CONFIG_IPV6)
addr6_resolve(struct sockaddr_in6 * src_in,const struct sockaddr_in6 * dst_in,struct rdma_dev_addr * addr,struct dst_entry ** pdst)445 static int addr6_resolve(struct sockaddr_in6 *src_in,
446 const struct sockaddr_in6 *dst_in,
447 struct rdma_dev_addr *addr,
448 struct dst_entry **pdst)
449 {
450 struct flowi6 fl6;
451 struct dst_entry *dst;
452 struct rt6_info *rt;
453 int ret;
454
455 memset(&fl6, 0, sizeof fl6);
456 fl6.daddr = dst_in->sin6_addr;
457 fl6.saddr = src_in->sin6_addr;
458 fl6.flowi6_oif = addr->bound_dev_if;
459
460 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
461 if (ret < 0)
462 return ret;
463
464 rt = (struct rt6_info *)dst;
465 if (ipv6_addr_any(&src_in->sin6_addr)) {
466 src_in->sin6_family = AF_INET6;
467 src_in->sin6_addr = fl6.saddr;
468 }
469
470 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
471 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
472 * type accordingly.
473 */
474 if (rt->rt6i_flags & RTF_GATEWAY &&
475 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
476 addr->network = RDMA_NETWORK_IPV6;
477
478 addr->hoplimit = ip6_dst_hoplimit(dst);
479
480 *pdst = dst;
481 return 0;
482 }
483 #else
addr6_resolve(struct sockaddr_in6 * src_in,const struct sockaddr_in6 * dst_in,struct rdma_dev_addr * addr,struct dst_entry ** pdst)484 static int addr6_resolve(struct sockaddr_in6 *src_in,
485 const struct sockaddr_in6 *dst_in,
486 struct rdma_dev_addr *addr,
487 struct dst_entry **pdst)
488 {
489 return -EADDRNOTAVAIL;
490 }
491 #endif
492
addr_resolve_neigh(struct dst_entry * dst,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,u32 seq)493 static int addr_resolve_neigh(struct dst_entry *dst,
494 const struct sockaddr *dst_in,
495 struct rdma_dev_addr *addr,
496 u32 seq)
497 {
498 if (dst->dev->flags & IFF_LOOPBACK) {
499 int ret;
500
501 ret = rdma_translate_ip(dst_in, addr, NULL);
502 if (!ret)
503 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
504 MAX_ADDR_LEN);
505
506 return ret;
507 }
508
509 /* If the device doesn't do ARP internally */
510 if (!(dst->dev->flags & IFF_NOARP))
511 return fetch_ha(dst, addr, dst_in, seq);
512
513 return rdma_copy_addr(addr, dst->dev, NULL);
514 }
515
addr_resolve(struct sockaddr * src_in,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,bool resolve_neigh,u32 seq)516 static int addr_resolve(struct sockaddr *src_in,
517 const struct sockaddr *dst_in,
518 struct rdma_dev_addr *addr,
519 bool resolve_neigh,
520 u32 seq)
521 {
522 struct net_device *ndev;
523 struct dst_entry *dst;
524 int ret;
525
526 if (!addr->net) {
527 pr_warn_ratelimited("%s: missing namespace\n", __func__);
528 return -EINVAL;
529 }
530
531 if (src_in->sa_family == AF_INET) {
532 struct rtable *rt = NULL;
533 const struct sockaddr_in *dst_in4 =
534 (const struct sockaddr_in *)dst_in;
535
536 ret = addr4_resolve((struct sockaddr_in *)src_in,
537 dst_in4, addr, &rt);
538 if (ret)
539 return ret;
540
541 if (resolve_neigh)
542 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
543
544 if (addr->bound_dev_if) {
545 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
546 } else {
547 ndev = rt->dst.dev;
548 dev_hold(ndev);
549 }
550
551 ip_rt_put(rt);
552 } else {
553 const struct sockaddr_in6 *dst_in6 =
554 (const struct sockaddr_in6 *)dst_in;
555
556 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
557 dst_in6, addr,
558 &dst);
559 if (ret)
560 return ret;
561
562 if (resolve_neigh)
563 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
564
565 if (addr->bound_dev_if) {
566 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
567 } else {
568 ndev = dst->dev;
569 dev_hold(ndev);
570 }
571
572 dst_release(dst);
573 }
574
575 if (ndev->flags & IFF_LOOPBACK) {
576 ret = rdma_translate_ip(dst_in, addr, NULL);
577 /*
578 * Put the loopback device and get the translated
579 * device instead.
580 */
581 dev_put(ndev);
582 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
583 } else {
584 addr->bound_dev_if = ndev->ifindex;
585 }
586 dev_put(ndev);
587
588 return ret;
589 }
590
process_one_req(struct work_struct * _work)591 static void process_one_req(struct work_struct *_work)
592 {
593 struct addr_req *req;
594 struct sockaddr *src_in, *dst_in;
595
596 mutex_lock(&lock);
597 req = container_of(_work, struct addr_req, work.work);
598
599 if (req->status == -ENODATA) {
600 src_in = (struct sockaddr *)&req->src_addr;
601 dst_in = (struct sockaddr *)&req->dst_addr;
602 req->status = addr_resolve(src_in, dst_in, req->addr,
603 true, req->seq);
604 if (req->status && time_after_eq(jiffies, req->timeout)) {
605 req->status = -ETIMEDOUT;
606 } else if (req->status == -ENODATA) {
607 /* requeue the work for retrying again */
608 set_timeout(&req->work, req->timeout);
609 mutex_unlock(&lock);
610 return;
611 }
612 }
613 list_del(&req->list);
614 mutex_unlock(&lock);
615
616 /*
617 * Although the work will normally have been canceled by the
618 * workqueue, it can still be requeued as long as it is on the
619 * req_list, so it could have been requeued before we grabbed &lock.
620 * We need to cancel it after it is removed from req_list to really be
621 * sure it is safe to free.
622 */
623 cancel_delayed_work(&req->work);
624
625 req->callback(req->status, (struct sockaddr *)&req->src_addr,
626 req->addr, req->context);
627 put_client(req->client);
628 kfree(req);
629 }
630
process_req(struct work_struct * work)631 static void process_req(struct work_struct *work)
632 {
633 struct addr_req *req, *temp_req;
634 struct sockaddr *src_in, *dst_in;
635 struct list_head done_list;
636
637 INIT_LIST_HEAD(&done_list);
638
639 mutex_lock(&lock);
640 list_for_each_entry_safe(req, temp_req, &req_list, list) {
641 if (req->status == -ENODATA) {
642 src_in = (struct sockaddr *) &req->src_addr;
643 dst_in = (struct sockaddr *) &req->dst_addr;
644 req->status = addr_resolve(src_in, dst_in, req->addr,
645 true, req->seq);
646 if (req->status && time_after_eq(jiffies, req->timeout))
647 req->status = -ETIMEDOUT;
648 else if (req->status == -ENODATA) {
649 set_timeout(&req->work, req->timeout);
650 continue;
651 }
652 }
653 list_move_tail(&req->list, &done_list);
654 }
655
656 mutex_unlock(&lock);
657
658 list_for_each_entry_safe(req, temp_req, &done_list, list) {
659 list_del(&req->list);
660 /* It is safe to cancel other work items from this work item
661 * because at a time there can be only one work item running
662 * with this single threaded work queue.
663 */
664 cancel_delayed_work(&req->work);
665 req->callback(req->status, (struct sockaddr *) &req->src_addr,
666 req->addr, req->context);
667 put_client(req->client);
668 kfree(req);
669 }
670 }
671
rdma_resolve_ip(struct rdma_addr_client * client,struct sockaddr * src_addr,struct sockaddr * dst_addr,struct rdma_dev_addr * addr,int timeout_ms,void (* callback)(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context),void * context)672 int rdma_resolve_ip(struct rdma_addr_client *client,
673 struct sockaddr *src_addr, struct sockaddr *dst_addr,
674 struct rdma_dev_addr *addr, int timeout_ms,
675 void (*callback)(int status, struct sockaddr *src_addr,
676 struct rdma_dev_addr *addr, void *context),
677 void *context)
678 {
679 struct sockaddr *src_in, *dst_in;
680 struct addr_req *req;
681 int ret = 0;
682
683 req = kzalloc(sizeof *req, GFP_KERNEL);
684 if (!req)
685 return -ENOMEM;
686
687 src_in = (struct sockaddr *) &req->src_addr;
688 dst_in = (struct sockaddr *) &req->dst_addr;
689
690 if (src_addr) {
691 if (src_addr->sa_family != dst_addr->sa_family) {
692 ret = -EINVAL;
693 goto err;
694 }
695
696 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
697 } else {
698 src_in->sa_family = dst_addr->sa_family;
699 }
700
701 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
702 req->addr = addr;
703 req->callback = callback;
704 req->context = context;
705 req->client = client;
706 atomic_inc(&client->refcount);
707 INIT_DELAYED_WORK(&req->work, process_one_req);
708 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
709
710 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
711 switch (req->status) {
712 case 0:
713 req->timeout = jiffies;
714 queue_req(req);
715 break;
716 case -ENODATA:
717 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
718 queue_req(req);
719 break;
720 default:
721 ret = req->status;
722 atomic_dec(&client->refcount);
723 goto err;
724 }
725 return ret;
726 err:
727 kfree(req);
728 return ret;
729 }
730 EXPORT_SYMBOL(rdma_resolve_ip);
731
rdma_resolve_ip_route(struct sockaddr * src_addr,const struct sockaddr * dst_addr,struct rdma_dev_addr * addr)732 int rdma_resolve_ip_route(struct sockaddr *src_addr,
733 const struct sockaddr *dst_addr,
734 struct rdma_dev_addr *addr)
735 {
736 struct sockaddr_storage ssrc_addr = {};
737 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
738
739 if (src_addr) {
740 if (src_addr->sa_family != dst_addr->sa_family)
741 return -EINVAL;
742
743 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
744 } else {
745 src_in->sa_family = dst_addr->sa_family;
746 }
747
748 return addr_resolve(src_in, dst_addr, addr, false, 0);
749 }
750 EXPORT_SYMBOL(rdma_resolve_ip_route);
751
rdma_addr_cancel(struct rdma_dev_addr * addr)752 void rdma_addr_cancel(struct rdma_dev_addr *addr)
753 {
754 struct addr_req *req, *temp_req;
755
756 mutex_lock(&lock);
757 list_for_each_entry_safe(req, temp_req, &req_list, list) {
758 if (req->addr == addr) {
759 req->status = -ECANCELED;
760 req->timeout = jiffies;
761 list_move(&req->list, &req_list);
762 set_timeout(&req->work, req->timeout);
763 break;
764 }
765 }
766 mutex_unlock(&lock);
767 }
768 EXPORT_SYMBOL(rdma_addr_cancel);
769
770 struct resolve_cb_context {
771 struct rdma_dev_addr *addr;
772 struct completion comp;
773 int status;
774 };
775
resolve_cb(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context)776 static void resolve_cb(int status, struct sockaddr *src_addr,
777 struct rdma_dev_addr *addr, void *context)
778 {
779 if (!status)
780 memcpy(((struct resolve_cb_context *)context)->addr,
781 addr, sizeof(struct rdma_dev_addr));
782 ((struct resolve_cb_context *)context)->status = status;
783 complete(&((struct resolve_cb_context *)context)->comp);
784 }
785
rdma_addr_find_l2_eth_by_grh(const union ib_gid * sgid,const union ib_gid * dgid,u8 * dmac,u16 * vlan_id,int * if_index,int * hoplimit)786 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
787 const union ib_gid *dgid,
788 u8 *dmac, u16 *vlan_id, int *if_index,
789 int *hoplimit)
790 {
791 int ret = 0;
792 struct rdma_dev_addr dev_addr;
793 struct resolve_cb_context ctx;
794 struct net_device *dev;
795
796 union {
797 struct sockaddr_in _sockaddr_in;
798 struct sockaddr_in6 _sockaddr_in6;
799 } sgid_addr, dgid_addr;
800
801
802 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
803 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
804
805 memset(&dev_addr, 0, sizeof(dev_addr));
806 if (if_index)
807 dev_addr.bound_dev_if = *if_index;
808 dev_addr.net = &init_net;
809
810 ctx.addr = &dev_addr;
811 init_completion(&ctx.comp);
812 ret = rdma_resolve_ip(&self, (struct sockaddr *)&sgid_addr,
813 (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
814 resolve_cb, &ctx);
815 if (ret)
816 return ret;
817
818 wait_for_completion(&ctx.comp);
819
820 ret = ctx.status;
821 if (ret)
822 return ret;
823
824 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
825 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
826 if (!dev)
827 return -ENODEV;
828 if (if_index)
829 *if_index = dev_addr.bound_dev_if;
830 if (vlan_id)
831 *vlan_id = rdma_vlan_dev_vlan_id(dev);
832 if (hoplimit)
833 *hoplimit = dev_addr.hoplimit;
834 dev_put(dev);
835 return ret;
836 }
837 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
838
rdma_addr_find_smac_by_sgid(union ib_gid * sgid,u8 * smac,u16 * vlan_id)839 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
840 {
841 int ret = 0;
842 struct rdma_dev_addr dev_addr;
843 union {
844 struct sockaddr_in _sockaddr_in;
845 struct sockaddr_in6 _sockaddr_in6;
846 } gid_addr;
847
848 rdma_gid2ip((struct sockaddr *)&gid_addr, sgid);
849
850 memset(&dev_addr, 0, sizeof(dev_addr));
851 dev_addr.net = &init_net;
852 ret = rdma_translate_ip((struct sockaddr *)&gid_addr, &dev_addr, vlan_id);
853 if (ret)
854 return ret;
855
856 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
857 return ret;
858 }
859 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
860
netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)861 static int netevent_callback(struct notifier_block *self, unsigned long event,
862 void *ctx)
863 {
864 if (event == NETEVENT_NEIGH_UPDATE) {
865 struct neighbour *neigh = ctx;
866
867 if (neigh->nud_state & NUD_VALID)
868 set_timeout(&work, jiffies);
869 }
870 return 0;
871 }
872
873 static struct notifier_block nb = {
874 .notifier_call = netevent_callback
875 };
876
addr_init(void)877 int addr_init(void)
878 {
879 addr_wq = alloc_ordered_workqueue("ib_addr", 0);
880 if (!addr_wq)
881 return -ENOMEM;
882
883 register_netevent_notifier(&nb);
884 rdma_addr_register_client(&self);
885
886 return 0;
887 }
888
addr_cleanup(void)889 void addr_cleanup(void)
890 {
891 rdma_addr_unregister_client(&self);
892 unregister_netevent_notifier(&nb);
893 destroy_workqueue(addr_wq);
894 }
895