• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
53 
54 u64 __read_mostly hw_cache_event_ids
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 				[PERF_COUNT_HW_CACHE_MAX]
60 				[PERF_COUNT_HW_CACHE_OP_MAX]
61 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
62 
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
x86_perf_event_update(struct perf_event * event)68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 	struct hw_perf_event *hwc = &event->hw;
71 	int shift = 64 - x86_pmu.cntval_bits;
72 	u64 prev_raw_count, new_raw_count;
73 	int idx = hwc->idx;
74 	u64 delta;
75 
76 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 		/* Check if the extra msrs can be safely accessed*/
130 		if (!er->extra_msr_access)
131 			return -ENXIO;
132 
133 		reg->idx = er->idx;
134 		reg->config = event->attr.config1;
135 		reg->reg = er->msr;
136 		break;
137 	}
138 	return 0;
139 }
140 
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144 
145 #ifdef CONFIG_X86_LOCAL_APIC
146 
reserve_pmc_hardware(void)147 static bool reserve_pmc_hardware(void)
148 {
149 	int i;
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 			goto perfctr_fail;
154 	}
155 
156 	for (i = 0; i < x86_pmu.num_counters; i++) {
157 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 			goto eventsel_fail;
159 	}
160 
161 	return true;
162 
163 eventsel_fail:
164 	for (i--; i >= 0; i--)
165 		release_evntsel_nmi(x86_pmu_config_addr(i));
166 
167 	i = x86_pmu.num_counters;
168 
169 perfctr_fail:
170 	for (i--; i >= 0; i--)
171 		release_perfctr_nmi(x86_pmu_event_addr(i));
172 
173 	return false;
174 }
175 
release_pmc_hardware(void)176 static void release_pmc_hardware(void)
177 {
178 	int i;
179 
180 	for (i = 0; i < x86_pmu.num_counters; i++) {
181 		release_perfctr_nmi(x86_pmu_event_addr(i));
182 		release_evntsel_nmi(x86_pmu_config_addr(i));
183 	}
184 }
185 
186 #else
187 
reserve_pmc_hardware(void)188 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)189 static void release_pmc_hardware(void) {}
190 
191 #endif
192 
check_hw_exists(void)193 static bool check_hw_exists(void)
194 {
195 	u64 val, val_fail = -1, val_new= ~0;
196 	int i, reg, reg_fail = -1, ret = 0;
197 	int bios_fail = 0;
198 	int reg_safe = -1;
199 
200 	/*
201 	 * Check to see if the BIOS enabled any of the counters, if so
202 	 * complain and bail.
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		reg = x86_pmu_config_addr(i);
206 		ret = rdmsrl_safe(reg, &val);
207 		if (ret)
208 			goto msr_fail;
209 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 			bios_fail = 1;
211 			val_fail = val;
212 			reg_fail = reg;
213 		} else {
214 			reg_safe = i;
215 		}
216 	}
217 
218 	if (x86_pmu.num_counters_fixed) {
219 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 		ret = rdmsrl_safe(reg, &val);
221 		if (ret)
222 			goto msr_fail;
223 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 			if (val & (0x03 << i*4)) {
225 				bios_fail = 1;
226 				val_fail = val;
227 				reg_fail = reg;
228 			}
229 		}
230 	}
231 
232 	/*
233 	 * If all the counters are enabled, the below test will always
234 	 * fail.  The tools will also become useless in this scenario.
235 	 * Just fail and disable the hardware counters.
236 	 */
237 
238 	if (reg_safe == -1) {
239 		reg = reg_safe;
240 		goto msr_fail;
241 	}
242 
243 	/*
244 	 * Read the current value, change it and read it back to see if it
245 	 * matches, this is needed to detect certain hardware emulators
246 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 	 */
248 	reg = x86_pmu_event_addr(reg_safe);
249 	if (rdmsrl_safe(reg, &val))
250 		goto msr_fail;
251 	val ^= 0xffffUL;
252 	ret = wrmsrl_safe(reg, val);
253 	ret |= rdmsrl_safe(reg, &val_new);
254 	if (ret || val != val_new)
255 		goto msr_fail;
256 
257 	/*
258 	 * We still allow the PMU driver to operate:
259 	 */
260 	if (bios_fail) {
261 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 			      reg_fail, val_fail);
264 	}
265 
266 	return true;
267 
268 msr_fail:
269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 		pr_cont("PMU not available due to virtualization, using software events only.\n");
271 	} else {
272 		pr_cont("Broken PMU hardware detected, using software events only.\n");
273 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 		       reg, val_new);
275 	}
276 
277 	return false;
278 }
279 
hw_perf_event_destroy(struct perf_event * event)280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 	x86_release_hardware();
283 	atomic_dec(&active_events);
284 }
285 
hw_perf_lbr_event_destroy(struct perf_event * event)286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 	hw_perf_event_destroy(event);
289 
290 	/* undo the lbr/bts event accounting */
291 	x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293 
x86_pmu_initialized(void)294 static inline int x86_pmu_initialized(void)
295 {
296 	return x86_pmu.handle_irq != NULL;
297 }
298 
299 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	unsigned int cache_type, cache_op, cache_result;
304 	u64 config, val;
305 
306 	config = attr->config;
307 
308 	cache_type = (config >> 0) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 
313 	cache_op = (config >>  8) & 0xff;
314 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 		return -EINVAL;
316 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 
318 	cache_result = (config >> 16) & 0xff;
319 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 		return -EINVAL;
321 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 
323 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 
325 	if (val == 0)
326 		return -ENOENT;
327 
328 	if (val == -1)
329 		return -EINVAL;
330 
331 	hwc->config |= val;
332 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 	return x86_pmu_extra_regs(val, event);
334 }
335 
x86_reserve_hardware(void)336 int x86_reserve_hardware(void)
337 {
338 	int err = 0;
339 
340 	if (!atomic_inc_not_zero(&pmc_refcount)) {
341 		mutex_lock(&pmc_reserve_mutex);
342 		if (atomic_read(&pmc_refcount) == 0) {
343 			if (!reserve_pmc_hardware())
344 				err = -EBUSY;
345 			else
346 				reserve_ds_buffers();
347 		}
348 		if (!err)
349 			atomic_inc(&pmc_refcount);
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 
353 	return err;
354 }
355 
x86_release_hardware(void)356 void x86_release_hardware(void)
357 {
358 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 		release_pmc_hardware();
360 		release_ds_buffers();
361 		mutex_unlock(&pmc_reserve_mutex);
362 	}
363 }
364 
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
x86_add_exclusive(unsigned int what)369 int x86_add_exclusive(unsigned int what)
370 {
371 	int i;
372 
373 	/*
374 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 	 * LBR and BTS are still mutually exclusive.
376 	 */
377 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 		goto out;
379 
380 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 		mutex_lock(&pmc_reserve_mutex);
382 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 				goto fail_unlock;
385 		}
386 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 		mutex_unlock(&pmc_reserve_mutex);
388 	}
389 
390 out:
391 	atomic_inc(&active_events);
392 	return 0;
393 
394 fail_unlock:
395 	mutex_unlock(&pmc_reserve_mutex);
396 	return -EBUSY;
397 }
398 
x86_del_exclusive(unsigned int what)399 void x86_del_exclusive(unsigned int what)
400 {
401 	atomic_dec(&active_events);
402 
403 	/*
404 	 * See the comment in x86_add_exclusive().
405 	 */
406 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
407 		return;
408 
409 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
410 }
411 
x86_setup_perfctr(struct perf_event * event)412 int x86_setup_perfctr(struct perf_event *event)
413 {
414 	struct perf_event_attr *attr = &event->attr;
415 	struct hw_perf_event *hwc = &event->hw;
416 	u64 config;
417 
418 	if (!is_sampling_event(event)) {
419 		hwc->sample_period = x86_pmu.max_period;
420 		hwc->last_period = hwc->sample_period;
421 		local64_set(&hwc->period_left, hwc->sample_period);
422 	}
423 
424 	if (attr->type == PERF_TYPE_RAW)
425 		return x86_pmu_extra_regs(event->attr.config, event);
426 
427 	if (attr->type == PERF_TYPE_HW_CACHE)
428 		return set_ext_hw_attr(hwc, event);
429 
430 	if (attr->config >= x86_pmu.max_events)
431 		return -EINVAL;
432 
433 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
434 
435 	/*
436 	 * The generic map:
437 	 */
438 	config = x86_pmu.event_map(attr->config);
439 
440 	if (config == 0)
441 		return -ENOENT;
442 
443 	if (config == -1LL)
444 		return -EINVAL;
445 
446 	hwc->config |= config;
447 
448 	return 0;
449 }
450 
451 /*
452  * check that branch_sample_type is compatible with
453  * settings needed for precise_ip > 1 which implies
454  * using the LBR to capture ALL taken branches at the
455  * priv levels of the measurement
456  */
precise_br_compat(struct perf_event * event)457 static inline int precise_br_compat(struct perf_event *event)
458 {
459 	u64 m = event->attr.branch_sample_type;
460 	u64 b = 0;
461 
462 	/* must capture all branches */
463 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
464 		return 0;
465 
466 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
467 
468 	if (!event->attr.exclude_user)
469 		b |= PERF_SAMPLE_BRANCH_USER;
470 
471 	if (!event->attr.exclude_kernel)
472 		b |= PERF_SAMPLE_BRANCH_KERNEL;
473 
474 	/*
475 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476 	 */
477 
478 	return m == b;
479 }
480 
x86_pmu_max_precise(void)481 int x86_pmu_max_precise(void)
482 {
483 	int precise = 0;
484 
485 	/* Support for constant skid */
486 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 		precise++;
488 
489 		/* Support for IP fixup */
490 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 			precise++;
492 
493 		if (x86_pmu.pebs_prec_dist)
494 			precise++;
495 	}
496 	return precise;
497 }
498 
x86_pmu_hw_config(struct perf_event * event)499 int x86_pmu_hw_config(struct perf_event *event)
500 {
501 	if (event->attr.precise_ip) {
502 		int precise = x86_pmu_max_precise();
503 
504 		if (event->attr.precise_ip > precise)
505 			return -EOPNOTSUPP;
506 
507 		/* There's no sense in having PEBS for non sampling events: */
508 		if (!is_sampling_event(event))
509 			return -EINVAL;
510 	}
511 	/*
512 	 * check that PEBS LBR correction does not conflict with
513 	 * whatever the user is asking with attr->branch_sample_type
514 	 */
515 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516 		u64 *br_type = &event->attr.branch_sample_type;
517 
518 		if (has_branch_stack(event)) {
519 			if (!precise_br_compat(event))
520 				return -EOPNOTSUPP;
521 
522 			/* branch_sample_type is compatible */
523 
524 		} else {
525 			/*
526 			 * user did not specify  branch_sample_type
527 			 *
528 			 * For PEBS fixups, we capture all
529 			 * the branches at the priv level of the
530 			 * event.
531 			 */
532 			*br_type = PERF_SAMPLE_BRANCH_ANY;
533 
534 			if (!event->attr.exclude_user)
535 				*br_type |= PERF_SAMPLE_BRANCH_USER;
536 
537 			if (!event->attr.exclude_kernel)
538 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
539 		}
540 	}
541 
542 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543 		event->attach_state |= PERF_ATTACH_TASK_DATA;
544 
545 	/*
546 	 * Generate PMC IRQs:
547 	 * (keep 'enabled' bit clear for now)
548 	 */
549 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
550 
551 	/*
552 	 * Count user and OS events unless requested not to
553 	 */
554 	if (!event->attr.exclude_user)
555 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556 	if (!event->attr.exclude_kernel)
557 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
558 
559 	if (event->attr.type == PERF_TYPE_RAW)
560 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
561 
562 	if (event->attr.sample_period && x86_pmu.limit_period) {
563 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
564 				event->attr.sample_period)
565 			return -EINVAL;
566 	}
567 
568 	return x86_setup_perfctr(event);
569 }
570 
571 /*
572  * Setup the hardware configuration for a given attr_type
573  */
__x86_pmu_event_init(struct perf_event * event)574 static int __x86_pmu_event_init(struct perf_event *event)
575 {
576 	int err;
577 
578 	if (!x86_pmu_initialized())
579 		return -ENODEV;
580 
581 	err = x86_reserve_hardware();
582 	if (err)
583 		return err;
584 
585 	atomic_inc(&active_events);
586 	event->destroy = hw_perf_event_destroy;
587 
588 	event->hw.idx = -1;
589 	event->hw.last_cpu = -1;
590 	event->hw.last_tag = ~0ULL;
591 
592 	/* mark unused */
593 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
594 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
595 
596 	return x86_pmu.hw_config(event);
597 }
598 
x86_pmu_disable_all(void)599 void x86_pmu_disable_all(void)
600 {
601 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
602 	int idx;
603 
604 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
605 		u64 val;
606 
607 		if (!test_bit(idx, cpuc->active_mask))
608 			continue;
609 		rdmsrl(x86_pmu_config_addr(idx), val);
610 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
611 			continue;
612 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
613 		wrmsrl(x86_pmu_config_addr(idx), val);
614 	}
615 }
616 
617 /*
618  * There may be PMI landing after enabled=0. The PMI hitting could be before or
619  * after disable_all.
620  *
621  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
622  * It will not be re-enabled in the NMI handler again, because enabled=0. After
623  * handling the NMI, disable_all will be called, which will not change the
624  * state either. If PMI hits after disable_all, the PMU is already disabled
625  * before entering NMI handler. The NMI handler will not change the state
626  * either.
627  *
628  * So either situation is harmless.
629  */
x86_pmu_disable(struct pmu * pmu)630 static void x86_pmu_disable(struct pmu *pmu)
631 {
632 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
633 
634 	if (!x86_pmu_initialized())
635 		return;
636 
637 	if (!cpuc->enabled)
638 		return;
639 
640 	cpuc->n_added = 0;
641 	cpuc->enabled = 0;
642 	barrier();
643 
644 	x86_pmu.disable_all();
645 }
646 
x86_pmu_enable_all(int added)647 void x86_pmu_enable_all(int added)
648 {
649 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
650 	int idx;
651 
652 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
653 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
654 
655 		if (!test_bit(idx, cpuc->active_mask))
656 			continue;
657 
658 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
659 	}
660 }
661 
662 static struct pmu pmu;
663 
is_x86_event(struct perf_event * event)664 static inline int is_x86_event(struct perf_event *event)
665 {
666 	return event->pmu == &pmu;
667 }
668 
669 /*
670  * Event scheduler state:
671  *
672  * Assign events iterating over all events and counters, beginning
673  * with events with least weights first. Keep the current iterator
674  * state in struct sched_state.
675  */
676 struct sched_state {
677 	int	weight;
678 	int	event;		/* event index */
679 	int	counter;	/* counter index */
680 	int	unassigned;	/* number of events to be assigned left */
681 	int	nr_gp;		/* number of GP counters used */
682 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
683 };
684 
685 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
686 #define	SCHED_STATES_MAX	2
687 
688 struct perf_sched {
689 	int			max_weight;
690 	int			max_events;
691 	int			max_gp;
692 	int			saved_states;
693 	struct event_constraint	**constraints;
694 	struct sched_state	state;
695 	struct sched_state	saved[SCHED_STATES_MAX];
696 };
697 
698 /*
699  * Initialize interator that runs through all events and counters.
700  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)701 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
702 			    int num, int wmin, int wmax, int gpmax)
703 {
704 	int idx;
705 
706 	memset(sched, 0, sizeof(*sched));
707 	sched->max_events	= num;
708 	sched->max_weight	= wmax;
709 	sched->max_gp		= gpmax;
710 	sched->constraints	= constraints;
711 
712 	for (idx = 0; idx < num; idx++) {
713 		if (constraints[idx]->weight == wmin)
714 			break;
715 	}
716 
717 	sched->state.event	= idx;		/* start with min weight */
718 	sched->state.weight	= wmin;
719 	sched->state.unassigned	= num;
720 }
721 
perf_sched_save_state(struct perf_sched * sched)722 static void perf_sched_save_state(struct perf_sched *sched)
723 {
724 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
725 		return;
726 
727 	sched->saved[sched->saved_states] = sched->state;
728 	sched->saved_states++;
729 }
730 
perf_sched_restore_state(struct perf_sched * sched)731 static bool perf_sched_restore_state(struct perf_sched *sched)
732 {
733 	if (!sched->saved_states)
734 		return false;
735 
736 	sched->saved_states--;
737 	sched->state = sched->saved[sched->saved_states];
738 
739 	/* continue with next counter: */
740 	clear_bit(sched->state.counter++, sched->state.used);
741 
742 	return true;
743 }
744 
745 /*
746  * Select a counter for the current event to schedule. Return true on
747  * success.
748  */
__perf_sched_find_counter(struct perf_sched * sched)749 static bool __perf_sched_find_counter(struct perf_sched *sched)
750 {
751 	struct event_constraint *c;
752 	int idx;
753 
754 	if (!sched->state.unassigned)
755 		return false;
756 
757 	if (sched->state.event >= sched->max_events)
758 		return false;
759 
760 	c = sched->constraints[sched->state.event];
761 	/* Prefer fixed purpose counters */
762 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
763 		idx = INTEL_PMC_IDX_FIXED;
764 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
765 			if (!__test_and_set_bit(idx, sched->state.used))
766 				goto done;
767 		}
768 	}
769 
770 	/* Grab the first unused counter starting with idx */
771 	idx = sched->state.counter;
772 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
773 		if (!__test_and_set_bit(idx, sched->state.used)) {
774 			if (sched->state.nr_gp++ >= sched->max_gp)
775 				return false;
776 
777 			goto done;
778 		}
779 	}
780 
781 	return false;
782 
783 done:
784 	sched->state.counter = idx;
785 
786 	if (c->overlap)
787 		perf_sched_save_state(sched);
788 
789 	return true;
790 }
791 
perf_sched_find_counter(struct perf_sched * sched)792 static bool perf_sched_find_counter(struct perf_sched *sched)
793 {
794 	while (!__perf_sched_find_counter(sched)) {
795 		if (!perf_sched_restore_state(sched))
796 			return false;
797 	}
798 
799 	return true;
800 }
801 
802 /*
803  * Go through all unassigned events and find the next one to schedule.
804  * Take events with the least weight first. Return true on success.
805  */
perf_sched_next_event(struct perf_sched * sched)806 static bool perf_sched_next_event(struct perf_sched *sched)
807 {
808 	struct event_constraint *c;
809 
810 	if (!sched->state.unassigned || !--sched->state.unassigned)
811 		return false;
812 
813 	do {
814 		/* next event */
815 		sched->state.event++;
816 		if (sched->state.event >= sched->max_events) {
817 			/* next weight */
818 			sched->state.event = 0;
819 			sched->state.weight++;
820 			if (sched->state.weight > sched->max_weight)
821 				return false;
822 		}
823 		c = sched->constraints[sched->state.event];
824 	} while (c->weight != sched->state.weight);
825 
826 	sched->state.counter = 0;	/* start with first counter */
827 
828 	return true;
829 }
830 
831 /*
832  * Assign a counter for each event.
833  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)834 int perf_assign_events(struct event_constraint **constraints, int n,
835 			int wmin, int wmax, int gpmax, int *assign)
836 {
837 	struct perf_sched sched;
838 
839 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
840 
841 	do {
842 		if (!perf_sched_find_counter(&sched))
843 			break;	/* failed */
844 		if (assign)
845 			assign[sched.state.event] = sched.state.counter;
846 	} while (perf_sched_next_event(&sched));
847 
848 	return sched.state.unassigned;
849 }
850 EXPORT_SYMBOL_GPL(perf_assign_events);
851 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)852 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
853 {
854 	struct event_constraint *c;
855 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
856 	struct perf_event *e;
857 	int i, wmin, wmax, unsched = 0;
858 	struct hw_perf_event *hwc;
859 
860 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
861 
862 	if (x86_pmu.start_scheduling)
863 		x86_pmu.start_scheduling(cpuc);
864 
865 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
866 		cpuc->event_constraint[i] = NULL;
867 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
868 		cpuc->event_constraint[i] = c;
869 
870 		wmin = min(wmin, c->weight);
871 		wmax = max(wmax, c->weight);
872 	}
873 
874 	/*
875 	 * fastpath, try to reuse previous register
876 	 */
877 	for (i = 0; i < n; i++) {
878 		hwc = &cpuc->event_list[i]->hw;
879 		c = cpuc->event_constraint[i];
880 
881 		/* never assigned */
882 		if (hwc->idx == -1)
883 			break;
884 
885 		/* constraint still honored */
886 		if (!test_bit(hwc->idx, c->idxmsk))
887 			break;
888 
889 		/* not already used */
890 		if (test_bit(hwc->idx, used_mask))
891 			break;
892 
893 		__set_bit(hwc->idx, used_mask);
894 		if (assign)
895 			assign[i] = hwc->idx;
896 	}
897 
898 	/* slow path */
899 	if (i != n) {
900 		int gpmax = x86_pmu.num_counters;
901 
902 		/*
903 		 * Do not allow scheduling of more than half the available
904 		 * generic counters.
905 		 *
906 		 * This helps avoid counter starvation of sibling thread by
907 		 * ensuring at most half the counters cannot be in exclusive
908 		 * mode. There is no designated counters for the limits. Any
909 		 * N/2 counters can be used. This helps with events with
910 		 * specific counter constraints.
911 		 */
912 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
913 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
914 			gpmax /= 2;
915 
916 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
917 					     wmax, gpmax, assign);
918 	}
919 
920 	/*
921 	 * In case of success (unsched = 0), mark events as committed,
922 	 * so we do not put_constraint() in case new events are added
923 	 * and fail to be scheduled
924 	 *
925 	 * We invoke the lower level commit callback to lock the resource
926 	 *
927 	 * We do not need to do all of this in case we are called to
928 	 * validate an event group (assign == NULL)
929 	 */
930 	if (!unsched && assign) {
931 		for (i = 0; i < n; i++) {
932 			e = cpuc->event_list[i];
933 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
934 			if (x86_pmu.commit_scheduling)
935 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
936 		}
937 	} else {
938 		for (i = 0; i < n; i++) {
939 			e = cpuc->event_list[i];
940 			/*
941 			 * do not put_constraint() on comitted events,
942 			 * because they are good to go
943 			 */
944 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
945 				continue;
946 
947 			/*
948 			 * release events that failed scheduling
949 			 */
950 			if (x86_pmu.put_event_constraints)
951 				x86_pmu.put_event_constraints(cpuc, e);
952 		}
953 	}
954 
955 	if (x86_pmu.stop_scheduling)
956 		x86_pmu.stop_scheduling(cpuc);
957 
958 	return unsched ? -EINVAL : 0;
959 }
960 
961 /*
962  * dogrp: true if must collect siblings events (group)
963  * returns total number of events and error code
964  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)965 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
966 {
967 	struct perf_event *event;
968 	int n, max_count;
969 
970 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
971 
972 	/* current number of events already accepted */
973 	n = cpuc->n_events;
974 
975 	if (is_x86_event(leader)) {
976 		if (n >= max_count)
977 			return -EINVAL;
978 		cpuc->event_list[n] = leader;
979 		n++;
980 	}
981 	if (!dogrp)
982 		return n;
983 
984 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
985 		if (!is_x86_event(event) ||
986 		    event->state <= PERF_EVENT_STATE_OFF)
987 			continue;
988 
989 		if (n >= max_count)
990 			return -EINVAL;
991 
992 		cpuc->event_list[n] = event;
993 		n++;
994 	}
995 	return n;
996 }
997 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)998 static inline void x86_assign_hw_event(struct perf_event *event,
999 				struct cpu_hw_events *cpuc, int i)
1000 {
1001 	struct hw_perf_event *hwc = &event->hw;
1002 
1003 	hwc->idx = cpuc->assign[i];
1004 	hwc->last_cpu = smp_processor_id();
1005 	hwc->last_tag = ++cpuc->tags[i];
1006 
1007 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1008 		hwc->config_base = 0;
1009 		hwc->event_base	= 0;
1010 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1011 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1012 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1013 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1014 	} else {
1015 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1016 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1017 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1018 	}
1019 }
1020 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1021 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1022 					struct cpu_hw_events *cpuc,
1023 					int i)
1024 {
1025 	return hwc->idx == cpuc->assign[i] &&
1026 		hwc->last_cpu == smp_processor_id() &&
1027 		hwc->last_tag == cpuc->tags[i];
1028 }
1029 
1030 static void x86_pmu_start(struct perf_event *event, int flags);
1031 
x86_pmu_enable(struct pmu * pmu)1032 static void x86_pmu_enable(struct pmu *pmu)
1033 {
1034 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1035 	struct perf_event *event;
1036 	struct hw_perf_event *hwc;
1037 	int i, added = cpuc->n_added;
1038 
1039 	if (!x86_pmu_initialized())
1040 		return;
1041 
1042 	if (cpuc->enabled)
1043 		return;
1044 
1045 	if (cpuc->n_added) {
1046 		int n_running = cpuc->n_events - cpuc->n_added;
1047 		/*
1048 		 * apply assignment obtained either from
1049 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1050 		 *
1051 		 * step1: save events moving to new counters
1052 		 */
1053 		for (i = 0; i < n_running; i++) {
1054 			event = cpuc->event_list[i];
1055 			hwc = &event->hw;
1056 
1057 			/*
1058 			 * we can avoid reprogramming counter if:
1059 			 * - assigned same counter as last time
1060 			 * - running on same CPU as last time
1061 			 * - no other event has used the counter since
1062 			 */
1063 			if (hwc->idx == -1 ||
1064 			    match_prev_assignment(hwc, cpuc, i))
1065 				continue;
1066 
1067 			/*
1068 			 * Ensure we don't accidentally enable a stopped
1069 			 * counter simply because we rescheduled.
1070 			 */
1071 			if (hwc->state & PERF_HES_STOPPED)
1072 				hwc->state |= PERF_HES_ARCH;
1073 
1074 			x86_pmu_stop(event, PERF_EF_UPDATE);
1075 		}
1076 
1077 		/*
1078 		 * step2: reprogram moved events into new counters
1079 		 */
1080 		for (i = 0; i < cpuc->n_events; i++) {
1081 			event = cpuc->event_list[i];
1082 			hwc = &event->hw;
1083 
1084 			if (!match_prev_assignment(hwc, cpuc, i))
1085 				x86_assign_hw_event(event, cpuc, i);
1086 			else if (i < n_running)
1087 				continue;
1088 
1089 			if (hwc->state & PERF_HES_ARCH)
1090 				continue;
1091 
1092 			x86_pmu_start(event, PERF_EF_RELOAD);
1093 		}
1094 		cpuc->n_added = 0;
1095 		perf_events_lapic_init();
1096 	}
1097 
1098 	cpuc->enabled = 1;
1099 	barrier();
1100 
1101 	x86_pmu.enable_all(added);
1102 }
1103 
1104 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1105 
1106 /*
1107  * Set the next IRQ period, based on the hwc->period_left value.
1108  * To be called with the event disabled in hw:
1109  */
x86_perf_event_set_period(struct perf_event * event)1110 int x86_perf_event_set_period(struct perf_event *event)
1111 {
1112 	struct hw_perf_event *hwc = &event->hw;
1113 	s64 left = local64_read(&hwc->period_left);
1114 	s64 period = hwc->sample_period;
1115 	int ret = 0, idx = hwc->idx;
1116 
1117 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1118 		return 0;
1119 
1120 	/*
1121 	 * If we are way outside a reasonable range then just skip forward:
1122 	 */
1123 	if (unlikely(left <= -period)) {
1124 		left = period;
1125 		local64_set(&hwc->period_left, left);
1126 		hwc->last_period = period;
1127 		ret = 1;
1128 	}
1129 
1130 	if (unlikely(left <= 0)) {
1131 		left += period;
1132 		local64_set(&hwc->period_left, left);
1133 		hwc->last_period = period;
1134 		ret = 1;
1135 	}
1136 	/*
1137 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1138 	 */
1139 	if (unlikely(left < 2))
1140 		left = 2;
1141 
1142 	if (left > x86_pmu.max_period)
1143 		left = x86_pmu.max_period;
1144 
1145 	if (x86_pmu.limit_period)
1146 		left = x86_pmu.limit_period(event, left);
1147 
1148 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1149 
1150 	/*
1151 	 * The hw event starts counting from this event offset,
1152 	 * mark it to be able to extra future deltas:
1153 	 */
1154 	local64_set(&hwc->prev_count, (u64)-left);
1155 
1156 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1157 
1158 	/*
1159 	 * Due to erratum on certan cpu we need
1160 	 * a second write to be sure the register
1161 	 * is updated properly
1162 	 */
1163 	if (x86_pmu.perfctr_second_write) {
1164 		wrmsrl(hwc->event_base,
1165 			(u64)(-left) & x86_pmu.cntval_mask);
1166 	}
1167 
1168 	perf_event_update_userpage(event);
1169 
1170 	return ret;
1171 }
1172 
x86_pmu_enable_event(struct perf_event * event)1173 void x86_pmu_enable_event(struct perf_event *event)
1174 {
1175 	if (__this_cpu_read(cpu_hw_events.enabled))
1176 		__x86_pmu_enable_event(&event->hw,
1177 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1178 }
1179 
1180 /*
1181  * Add a single event to the PMU.
1182  *
1183  * The event is added to the group of enabled events
1184  * but only if it can be scehduled with existing events.
1185  */
x86_pmu_add(struct perf_event * event,int flags)1186 static int x86_pmu_add(struct perf_event *event, int flags)
1187 {
1188 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189 	struct hw_perf_event *hwc;
1190 	int assign[X86_PMC_IDX_MAX];
1191 	int n, n0, ret;
1192 
1193 	hwc = &event->hw;
1194 
1195 	n0 = cpuc->n_events;
1196 	ret = n = collect_events(cpuc, event, false);
1197 	if (ret < 0)
1198 		goto out;
1199 
1200 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1201 	if (!(flags & PERF_EF_START))
1202 		hwc->state |= PERF_HES_ARCH;
1203 
1204 	/*
1205 	 * If group events scheduling transaction was started,
1206 	 * skip the schedulability test here, it will be performed
1207 	 * at commit time (->commit_txn) as a whole.
1208 	 *
1209 	 * If commit fails, we'll call ->del() on all events
1210 	 * for which ->add() was called.
1211 	 */
1212 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1213 		goto done_collect;
1214 
1215 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1216 	if (ret)
1217 		goto out;
1218 	/*
1219 	 * copy new assignment, now we know it is possible
1220 	 * will be used by hw_perf_enable()
1221 	 */
1222 	memcpy(cpuc->assign, assign, n*sizeof(int));
1223 
1224 done_collect:
1225 	/*
1226 	 * Commit the collect_events() state. See x86_pmu_del() and
1227 	 * x86_pmu_*_txn().
1228 	 */
1229 	cpuc->n_events = n;
1230 	cpuc->n_added += n - n0;
1231 	cpuc->n_txn += n - n0;
1232 
1233 	if (x86_pmu.add) {
1234 		/*
1235 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1236 		 * so we enable LBRs before an event needs them etc..
1237 		 */
1238 		x86_pmu.add(event);
1239 	}
1240 
1241 	ret = 0;
1242 out:
1243 	return ret;
1244 }
1245 
x86_pmu_start(struct perf_event * event,int flags)1246 static void x86_pmu_start(struct perf_event *event, int flags)
1247 {
1248 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1249 	int idx = event->hw.idx;
1250 
1251 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1252 		return;
1253 
1254 	if (WARN_ON_ONCE(idx == -1))
1255 		return;
1256 
1257 	if (flags & PERF_EF_RELOAD) {
1258 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1259 		x86_perf_event_set_period(event);
1260 	}
1261 
1262 	event->hw.state = 0;
1263 
1264 	cpuc->events[idx] = event;
1265 	__set_bit(idx, cpuc->active_mask);
1266 	__set_bit(idx, cpuc->running);
1267 	x86_pmu.enable(event);
1268 	perf_event_update_userpage(event);
1269 }
1270 
perf_event_print_debug(void)1271 void perf_event_print_debug(void)
1272 {
1273 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1274 	u64 pebs, debugctl;
1275 	struct cpu_hw_events *cpuc;
1276 	unsigned long flags;
1277 	int cpu, idx;
1278 
1279 	if (!x86_pmu.num_counters)
1280 		return;
1281 
1282 	local_irq_save(flags);
1283 
1284 	cpu = smp_processor_id();
1285 	cpuc = &per_cpu(cpu_hw_events, cpu);
1286 
1287 	if (x86_pmu.version >= 2) {
1288 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1289 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1290 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1291 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1292 
1293 		pr_info("\n");
1294 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1295 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1296 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1297 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1298 		if (x86_pmu.pebs_constraints) {
1299 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1300 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1301 		}
1302 		if (x86_pmu.lbr_nr) {
1303 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1304 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1305 		}
1306 	}
1307 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1308 
1309 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1310 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1311 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1312 
1313 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1314 
1315 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1316 			cpu, idx, pmc_ctrl);
1317 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1318 			cpu, idx, pmc_count);
1319 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1320 			cpu, idx, prev_left);
1321 	}
1322 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1323 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1324 
1325 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1326 			cpu, idx, pmc_count);
1327 	}
1328 	local_irq_restore(flags);
1329 }
1330 
x86_pmu_stop(struct perf_event * event,int flags)1331 void x86_pmu_stop(struct perf_event *event, int flags)
1332 {
1333 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1334 	struct hw_perf_event *hwc = &event->hw;
1335 
1336 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1337 		x86_pmu.disable(event);
1338 		__clear_bit(hwc->idx, cpuc->active_mask);
1339 		cpuc->events[hwc->idx] = NULL;
1340 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1341 		hwc->state |= PERF_HES_STOPPED;
1342 	}
1343 
1344 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1345 		/*
1346 		 * Drain the remaining delta count out of a event
1347 		 * that we are disabling:
1348 		 */
1349 		x86_perf_event_update(event);
1350 		hwc->state |= PERF_HES_UPTODATE;
1351 	}
1352 }
1353 
x86_pmu_del(struct perf_event * event,int flags)1354 static void x86_pmu_del(struct perf_event *event, int flags)
1355 {
1356 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357 	int i;
1358 
1359 	/*
1360 	 * event is descheduled
1361 	 */
1362 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1363 
1364 	/*
1365 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1366 	 * The events never got scheduled and ->cancel_txn will truncate
1367 	 * the event_list.
1368 	 *
1369 	 * XXX assumes any ->del() called during a TXN will only be on
1370 	 * an event added during that same TXN.
1371 	 */
1372 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1373 		goto do_del;
1374 
1375 	/*
1376 	 * Not a TXN, therefore cleanup properly.
1377 	 */
1378 	x86_pmu_stop(event, PERF_EF_UPDATE);
1379 
1380 	for (i = 0; i < cpuc->n_events; i++) {
1381 		if (event == cpuc->event_list[i])
1382 			break;
1383 	}
1384 
1385 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1386 		return;
1387 
1388 	/* If we have a newly added event; make sure to decrease n_added. */
1389 	if (i >= cpuc->n_events - cpuc->n_added)
1390 		--cpuc->n_added;
1391 
1392 	if (x86_pmu.put_event_constraints)
1393 		x86_pmu.put_event_constraints(cpuc, event);
1394 
1395 	/* Delete the array entry. */
1396 	while (++i < cpuc->n_events) {
1397 		cpuc->event_list[i-1] = cpuc->event_list[i];
1398 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1399 	}
1400 	--cpuc->n_events;
1401 
1402 	perf_event_update_userpage(event);
1403 
1404 do_del:
1405 	if (x86_pmu.del) {
1406 		/*
1407 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1408 		 * event can need them etc..
1409 		 */
1410 		x86_pmu.del(event);
1411 	}
1412 }
1413 
x86_pmu_handle_irq(struct pt_regs * regs)1414 int x86_pmu_handle_irq(struct pt_regs *regs)
1415 {
1416 	struct perf_sample_data data;
1417 	struct cpu_hw_events *cpuc;
1418 	struct perf_event *event;
1419 	int idx, handled = 0;
1420 	u64 val;
1421 
1422 	cpuc = this_cpu_ptr(&cpu_hw_events);
1423 
1424 	/*
1425 	 * Some chipsets need to unmask the LVTPC in a particular spot
1426 	 * inside the nmi handler.  As a result, the unmasking was pushed
1427 	 * into all the nmi handlers.
1428 	 *
1429 	 * This generic handler doesn't seem to have any issues where the
1430 	 * unmasking occurs so it was left at the top.
1431 	 */
1432 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1433 
1434 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1435 		if (!test_bit(idx, cpuc->active_mask))
1436 			continue;
1437 
1438 		event = cpuc->events[idx];
1439 
1440 		val = x86_perf_event_update(event);
1441 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1442 			continue;
1443 
1444 		/*
1445 		 * event overflow
1446 		 */
1447 		handled++;
1448 		perf_sample_data_init(&data, 0, event->hw.last_period);
1449 
1450 		if (!x86_perf_event_set_period(event))
1451 			continue;
1452 
1453 		if (perf_event_overflow(event, &data, regs))
1454 			x86_pmu_stop(event, 0);
1455 	}
1456 
1457 	if (handled)
1458 		inc_irq_stat(apic_perf_irqs);
1459 
1460 	return handled;
1461 }
1462 
perf_events_lapic_init(void)1463 void perf_events_lapic_init(void)
1464 {
1465 	if (!x86_pmu.apic || !x86_pmu_initialized())
1466 		return;
1467 
1468 	/*
1469 	 * Always use NMI for PMU
1470 	 */
1471 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1472 }
1473 
1474 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1475 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1476 {
1477 	u64 start_clock;
1478 	u64 finish_clock;
1479 	int ret;
1480 
1481 	/*
1482 	 * All PMUs/events that share this PMI handler should make sure to
1483 	 * increment active_events for their events.
1484 	 */
1485 	if (!atomic_read(&active_events))
1486 		return NMI_DONE;
1487 
1488 	start_clock = sched_clock();
1489 	ret = x86_pmu.handle_irq(regs);
1490 	finish_clock = sched_clock();
1491 
1492 	perf_sample_event_took(finish_clock - start_clock);
1493 
1494 	return ret;
1495 }
1496 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1497 
1498 struct event_constraint emptyconstraint;
1499 struct event_constraint unconstrained;
1500 
x86_pmu_prepare_cpu(unsigned int cpu)1501 static int x86_pmu_prepare_cpu(unsigned int cpu)
1502 {
1503 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1504 	int i;
1505 
1506 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1507 		cpuc->kfree_on_online[i] = NULL;
1508 	if (x86_pmu.cpu_prepare)
1509 		return x86_pmu.cpu_prepare(cpu);
1510 	return 0;
1511 }
1512 
x86_pmu_dead_cpu(unsigned int cpu)1513 static int x86_pmu_dead_cpu(unsigned int cpu)
1514 {
1515 	if (x86_pmu.cpu_dead)
1516 		x86_pmu.cpu_dead(cpu);
1517 	return 0;
1518 }
1519 
x86_pmu_online_cpu(unsigned int cpu)1520 static int x86_pmu_online_cpu(unsigned int cpu)
1521 {
1522 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1523 	int i;
1524 
1525 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1526 		kfree(cpuc->kfree_on_online[i]);
1527 		cpuc->kfree_on_online[i] = NULL;
1528 	}
1529 	return 0;
1530 }
1531 
x86_pmu_starting_cpu(unsigned int cpu)1532 static int x86_pmu_starting_cpu(unsigned int cpu)
1533 {
1534 	if (x86_pmu.cpu_starting)
1535 		x86_pmu.cpu_starting(cpu);
1536 	return 0;
1537 }
1538 
x86_pmu_dying_cpu(unsigned int cpu)1539 static int x86_pmu_dying_cpu(unsigned int cpu)
1540 {
1541 	if (x86_pmu.cpu_dying)
1542 		x86_pmu.cpu_dying(cpu);
1543 	return 0;
1544 }
1545 
pmu_check_apic(void)1546 static void __init pmu_check_apic(void)
1547 {
1548 	if (boot_cpu_has(X86_FEATURE_APIC))
1549 		return;
1550 
1551 	x86_pmu.apic = 0;
1552 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1553 	pr_info("no hardware sampling interrupt available.\n");
1554 
1555 	/*
1556 	 * If we have a PMU initialized but no APIC
1557 	 * interrupts, we cannot sample hardware
1558 	 * events (user-space has to fall back and
1559 	 * sample via a hrtimer based software event):
1560 	 */
1561 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1562 
1563 }
1564 
1565 static struct attribute_group x86_pmu_format_group = {
1566 	.name = "format",
1567 	.attrs = NULL,
1568 };
1569 
1570 /*
1571  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1572  * out of events_attr attributes.
1573  */
filter_events(struct attribute ** attrs)1574 static void __init filter_events(struct attribute **attrs)
1575 {
1576 	struct device_attribute *d;
1577 	struct perf_pmu_events_attr *pmu_attr;
1578 	int offset = 0;
1579 	int i, j;
1580 
1581 	for (i = 0; attrs[i]; i++) {
1582 		d = (struct device_attribute *)attrs[i];
1583 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1584 		/* str trumps id */
1585 		if (pmu_attr->event_str)
1586 			continue;
1587 		if (x86_pmu.event_map(i + offset))
1588 			continue;
1589 
1590 		for (j = i; attrs[j]; j++)
1591 			attrs[j] = attrs[j + 1];
1592 
1593 		/* Check the shifted attr. */
1594 		i--;
1595 
1596 		/*
1597 		 * event_map() is index based, the attrs array is organized
1598 		 * by increasing event index. If we shift the events, then
1599 		 * we need to compensate for the event_map(), otherwise
1600 		 * we are looking up the wrong event in the map
1601 		 */
1602 		offset++;
1603 	}
1604 }
1605 
1606 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1607 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1608 {
1609 	struct attribute **new;
1610 	int j, i;
1611 
1612 	for (j = 0; a[j]; j++)
1613 		;
1614 	for (i = 0; b[i]; i++)
1615 		j++;
1616 	j++;
1617 
1618 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1619 	if (!new)
1620 		return NULL;
1621 
1622 	j = 0;
1623 	for (i = 0; a[i]; i++)
1624 		new[j++] = a[i];
1625 	for (i = 0; b[i]; i++)
1626 		new[j++] = b[i];
1627 	new[j] = NULL;
1628 
1629 	return new;
1630 }
1631 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1632 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1633 {
1634 	struct perf_pmu_events_attr *pmu_attr = \
1635 		container_of(attr, struct perf_pmu_events_attr, attr);
1636 	u64 config = x86_pmu.event_map(pmu_attr->id);
1637 
1638 	/* string trumps id */
1639 	if (pmu_attr->event_str)
1640 		return sprintf(page, "%s", pmu_attr->event_str);
1641 
1642 	return x86_pmu.events_sysfs_show(page, config);
1643 }
1644 EXPORT_SYMBOL_GPL(events_sysfs_show);
1645 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1646 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1647 			  char *page)
1648 {
1649 	struct perf_pmu_events_ht_attr *pmu_attr =
1650 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1651 
1652 	/*
1653 	 * Report conditional events depending on Hyper-Threading.
1654 	 *
1655 	 * This is overly conservative as usually the HT special
1656 	 * handling is not needed if the other CPU thread is idle.
1657 	 *
1658 	 * Note this does not (and cannot) handle the case when thread
1659 	 * siblings are invisible, for example with virtualization
1660 	 * if they are owned by some other guest.  The user tool
1661 	 * has to re-read when a thread sibling gets onlined later.
1662 	 */
1663 	return sprintf(page, "%s",
1664 			topology_max_smt_threads() > 1 ?
1665 			pmu_attr->event_str_ht :
1666 			pmu_attr->event_str_noht);
1667 }
1668 
1669 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1670 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1671 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1672 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1673 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1674 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1675 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1676 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1677 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1678 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1679 
1680 static struct attribute *empty_attrs;
1681 
1682 static struct attribute *events_attr[] = {
1683 	EVENT_PTR(CPU_CYCLES),
1684 	EVENT_PTR(INSTRUCTIONS),
1685 	EVENT_PTR(CACHE_REFERENCES),
1686 	EVENT_PTR(CACHE_MISSES),
1687 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1688 	EVENT_PTR(BRANCH_MISSES),
1689 	EVENT_PTR(BUS_CYCLES),
1690 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1691 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1692 	EVENT_PTR(REF_CPU_CYCLES),
1693 	NULL,
1694 };
1695 
1696 static struct attribute_group x86_pmu_events_group = {
1697 	.name = "events",
1698 	.attrs = events_attr,
1699 };
1700 
x86_event_sysfs_show(char * page,u64 config,u64 event)1701 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1702 {
1703 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1704 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1705 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1706 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1707 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1708 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1709 	ssize_t ret;
1710 
1711 	/*
1712 	* We have whole page size to spend and just little data
1713 	* to write, so we can safely use sprintf.
1714 	*/
1715 	ret = sprintf(page, "event=0x%02llx", event);
1716 
1717 	if (umask)
1718 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1719 
1720 	if (edge)
1721 		ret += sprintf(page + ret, ",edge");
1722 
1723 	if (pc)
1724 		ret += sprintf(page + ret, ",pc");
1725 
1726 	if (any)
1727 		ret += sprintf(page + ret, ",any");
1728 
1729 	if (inv)
1730 		ret += sprintf(page + ret, ",inv");
1731 
1732 	if (cmask)
1733 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1734 
1735 	ret += sprintf(page + ret, "\n");
1736 
1737 	return ret;
1738 }
1739 
1740 static struct attribute_group x86_pmu_attr_group;
1741 static struct attribute_group x86_pmu_caps_group;
1742 
init_hw_perf_events(void)1743 static int __init init_hw_perf_events(void)
1744 {
1745 	struct x86_pmu_quirk *quirk;
1746 	int err;
1747 
1748 	pr_info("Performance Events: ");
1749 
1750 	switch (boot_cpu_data.x86_vendor) {
1751 	case X86_VENDOR_INTEL:
1752 		err = intel_pmu_init();
1753 		break;
1754 	case X86_VENDOR_AMD:
1755 		err = amd_pmu_init();
1756 		break;
1757 	default:
1758 		err = -ENOTSUPP;
1759 	}
1760 	if (err != 0) {
1761 		pr_cont("no PMU driver, software events only.\n");
1762 		return 0;
1763 	}
1764 
1765 	pmu_check_apic();
1766 
1767 	/* sanity check that the hardware exists or is emulated */
1768 	if (!check_hw_exists())
1769 		return 0;
1770 
1771 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1772 
1773 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1774 
1775 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1776 		quirk->func();
1777 
1778 	if (!x86_pmu.intel_ctrl)
1779 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1780 
1781 	perf_events_lapic_init();
1782 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1783 
1784 	unconstrained = (struct event_constraint)
1785 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1786 				   0, x86_pmu.num_counters, 0, 0);
1787 
1788 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1789 
1790 	if (x86_pmu.caps_attrs) {
1791 		struct attribute **tmp;
1792 
1793 		tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1794 		if (!WARN_ON(!tmp))
1795 			x86_pmu_caps_group.attrs = tmp;
1796 	}
1797 
1798 	if (x86_pmu.event_attrs)
1799 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1800 
1801 	if (!x86_pmu.events_sysfs_show)
1802 		x86_pmu_events_group.attrs = &empty_attrs;
1803 	else
1804 		filter_events(x86_pmu_events_group.attrs);
1805 
1806 	if (x86_pmu.cpu_events) {
1807 		struct attribute **tmp;
1808 
1809 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1810 		if (!WARN_ON(!tmp))
1811 			x86_pmu_events_group.attrs = tmp;
1812 	}
1813 
1814 	if (x86_pmu.attrs) {
1815 		struct attribute **tmp;
1816 
1817 		tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1818 		if (!WARN_ON(!tmp))
1819 			x86_pmu_attr_group.attrs = tmp;
1820 	}
1821 
1822 	pr_info("... version:                %d\n",     x86_pmu.version);
1823 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1824 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1825 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1826 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1827 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1828 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1829 
1830 	/*
1831 	 * Install callbacks. Core will call them for each online
1832 	 * cpu.
1833 	 */
1834 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1835 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1836 	if (err)
1837 		return err;
1838 
1839 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1840 				"perf/x86:starting", x86_pmu_starting_cpu,
1841 				x86_pmu_dying_cpu);
1842 	if (err)
1843 		goto out;
1844 
1845 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1846 				x86_pmu_online_cpu, NULL);
1847 	if (err)
1848 		goto out1;
1849 
1850 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1851 	if (err)
1852 		goto out2;
1853 
1854 	return 0;
1855 
1856 out2:
1857 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1858 out1:
1859 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1860 out:
1861 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1862 	return err;
1863 }
1864 early_initcall(init_hw_perf_events);
1865 
x86_pmu_read(struct perf_event * event)1866 static inline void x86_pmu_read(struct perf_event *event)
1867 {
1868 	x86_perf_event_update(event);
1869 }
1870 
1871 /*
1872  * Start group events scheduling transaction
1873  * Set the flag to make pmu::enable() not perform the
1874  * schedulability test, it will be performed at commit time
1875  *
1876  * We only support PERF_PMU_TXN_ADD transactions. Save the
1877  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1878  * transactions.
1879  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1880 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1881 {
1882 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1883 
1884 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1885 
1886 	cpuc->txn_flags = txn_flags;
1887 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1888 		return;
1889 
1890 	perf_pmu_disable(pmu);
1891 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1892 }
1893 
1894 /*
1895  * Stop group events scheduling transaction
1896  * Clear the flag and pmu::enable() will perform the
1897  * schedulability test.
1898  */
x86_pmu_cancel_txn(struct pmu * pmu)1899 static void x86_pmu_cancel_txn(struct pmu *pmu)
1900 {
1901 	unsigned int txn_flags;
1902 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1903 
1904 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1905 
1906 	txn_flags = cpuc->txn_flags;
1907 	cpuc->txn_flags = 0;
1908 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1909 		return;
1910 
1911 	/*
1912 	 * Truncate collected array by the number of events added in this
1913 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1914 	 */
1915 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1916 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1917 	perf_pmu_enable(pmu);
1918 }
1919 
1920 /*
1921  * Commit group events scheduling transaction
1922  * Perform the group schedulability test as a whole
1923  * Return 0 if success
1924  *
1925  * Does not cancel the transaction on failure; expects the caller to do this.
1926  */
x86_pmu_commit_txn(struct pmu * pmu)1927 static int x86_pmu_commit_txn(struct pmu *pmu)
1928 {
1929 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1930 	int assign[X86_PMC_IDX_MAX];
1931 	int n, ret;
1932 
1933 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1934 
1935 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1936 		cpuc->txn_flags = 0;
1937 		return 0;
1938 	}
1939 
1940 	n = cpuc->n_events;
1941 
1942 	if (!x86_pmu_initialized())
1943 		return -EAGAIN;
1944 
1945 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1946 	if (ret)
1947 		return ret;
1948 
1949 	/*
1950 	 * copy new assignment, now we know it is possible
1951 	 * will be used by hw_perf_enable()
1952 	 */
1953 	memcpy(cpuc->assign, assign, n*sizeof(int));
1954 
1955 	cpuc->txn_flags = 0;
1956 	perf_pmu_enable(pmu);
1957 	return 0;
1958 }
1959 /*
1960  * a fake_cpuc is used to validate event groups. Due to
1961  * the extra reg logic, we need to also allocate a fake
1962  * per_core and per_cpu structure. Otherwise, group events
1963  * using extra reg may conflict without the kernel being
1964  * able to catch this when the last event gets added to
1965  * the group.
1966  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1967 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1968 {
1969 	intel_cpuc_finish(cpuc);
1970 	kfree(cpuc);
1971 }
1972 
allocate_fake_cpuc(void)1973 static struct cpu_hw_events *allocate_fake_cpuc(void)
1974 {
1975 	struct cpu_hw_events *cpuc;
1976 	int cpu = raw_smp_processor_id();
1977 
1978 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1979 	if (!cpuc)
1980 		return ERR_PTR(-ENOMEM);
1981 	cpuc->is_fake = 1;
1982 
1983 	if (intel_cpuc_prepare(cpuc, cpu))
1984 		goto error;
1985 
1986 	return cpuc;
1987 error:
1988 	free_fake_cpuc(cpuc);
1989 	return ERR_PTR(-ENOMEM);
1990 }
1991 
1992 /*
1993  * validate that we can schedule this event
1994  */
validate_event(struct perf_event * event)1995 static int validate_event(struct perf_event *event)
1996 {
1997 	struct cpu_hw_events *fake_cpuc;
1998 	struct event_constraint *c;
1999 	int ret = 0;
2000 
2001 	fake_cpuc = allocate_fake_cpuc();
2002 	if (IS_ERR(fake_cpuc))
2003 		return PTR_ERR(fake_cpuc);
2004 
2005 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2006 
2007 	if (!c || !c->weight)
2008 		ret = -EINVAL;
2009 
2010 	if (x86_pmu.put_event_constraints)
2011 		x86_pmu.put_event_constraints(fake_cpuc, event);
2012 
2013 	free_fake_cpuc(fake_cpuc);
2014 
2015 	return ret;
2016 }
2017 
2018 /*
2019  * validate a single event group
2020  *
2021  * validation include:
2022  *	- check events are compatible which each other
2023  *	- events do not compete for the same counter
2024  *	- number of events <= number of counters
2025  *
2026  * validation ensures the group can be loaded onto the
2027  * PMU if it was the only group available.
2028  */
validate_group(struct perf_event * event)2029 static int validate_group(struct perf_event *event)
2030 {
2031 	struct perf_event *leader = event->group_leader;
2032 	struct cpu_hw_events *fake_cpuc;
2033 	int ret = -EINVAL, n;
2034 
2035 	fake_cpuc = allocate_fake_cpuc();
2036 	if (IS_ERR(fake_cpuc))
2037 		return PTR_ERR(fake_cpuc);
2038 	/*
2039 	 * the event is not yet connected with its
2040 	 * siblings therefore we must first collect
2041 	 * existing siblings, then add the new event
2042 	 * before we can simulate the scheduling
2043 	 */
2044 	n = collect_events(fake_cpuc, leader, true);
2045 	if (n < 0)
2046 		goto out;
2047 
2048 	fake_cpuc->n_events = n;
2049 	n = collect_events(fake_cpuc, event, false);
2050 	if (n < 0)
2051 		goto out;
2052 
2053 	fake_cpuc->n_events = n;
2054 
2055 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2056 
2057 out:
2058 	free_fake_cpuc(fake_cpuc);
2059 	return ret;
2060 }
2061 
x86_pmu_event_init(struct perf_event * event)2062 static int x86_pmu_event_init(struct perf_event *event)
2063 {
2064 	struct pmu *tmp;
2065 	int err;
2066 
2067 	switch (event->attr.type) {
2068 	case PERF_TYPE_RAW:
2069 	case PERF_TYPE_HARDWARE:
2070 	case PERF_TYPE_HW_CACHE:
2071 		break;
2072 
2073 	default:
2074 		return -ENOENT;
2075 	}
2076 
2077 	err = __x86_pmu_event_init(event);
2078 	if (!err) {
2079 		/*
2080 		 * we temporarily connect event to its pmu
2081 		 * such that validate_group() can classify
2082 		 * it as an x86 event using is_x86_event()
2083 		 */
2084 		tmp = event->pmu;
2085 		event->pmu = &pmu;
2086 
2087 		if (event->group_leader != event)
2088 			err = validate_group(event);
2089 		else
2090 			err = validate_event(event);
2091 
2092 		event->pmu = tmp;
2093 	}
2094 	if (err) {
2095 		if (event->destroy)
2096 			event->destroy(event);
2097 	}
2098 
2099 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2100 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2101 
2102 	return err;
2103 }
2104 
refresh_pce(void * ignored)2105 static void refresh_pce(void *ignored)
2106 {
2107 	load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2108 }
2109 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2110 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2111 {
2112 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2113 		return;
2114 
2115 	/*
2116 	 * This function relies on not being called concurrently in two
2117 	 * tasks in the same mm.  Otherwise one task could observe
2118 	 * perf_rdpmc_allowed > 1 and return all the way back to
2119 	 * userspace with CR4.PCE clear while another task is still
2120 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2121 	 *
2122 	 * For now, this can't happen because all callers hold mmap_sem
2123 	 * for write.  If this changes, we'll need a different solution.
2124 	 */
2125 	lockdep_assert_held_exclusive(&mm->mmap_sem);
2126 
2127 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2128 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2129 }
2130 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2131 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2132 {
2133 
2134 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 		return;
2136 
2137 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2138 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2139 }
2140 
x86_pmu_event_idx(struct perf_event * event)2141 static int x86_pmu_event_idx(struct perf_event *event)
2142 {
2143 	int idx = event->hw.idx;
2144 
2145 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2146 		return 0;
2147 
2148 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2149 		idx -= INTEL_PMC_IDX_FIXED;
2150 		idx |= 1 << 30;
2151 	}
2152 
2153 	return idx + 1;
2154 }
2155 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2156 static ssize_t get_attr_rdpmc(struct device *cdev,
2157 			      struct device_attribute *attr,
2158 			      char *buf)
2159 {
2160 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2161 }
2162 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2163 static ssize_t set_attr_rdpmc(struct device *cdev,
2164 			      struct device_attribute *attr,
2165 			      const char *buf, size_t count)
2166 {
2167 	unsigned long val;
2168 	ssize_t ret;
2169 
2170 	ret = kstrtoul(buf, 0, &val);
2171 	if (ret)
2172 		return ret;
2173 
2174 	if (val > 2)
2175 		return -EINVAL;
2176 
2177 	if (x86_pmu.attr_rdpmc_broken)
2178 		return -ENOTSUPP;
2179 
2180 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2181 		/*
2182 		 * Changing into or out of always available, aka
2183 		 * perf-event-bypassing mode.  This path is extremely slow,
2184 		 * but only root can trigger it, so it's okay.
2185 		 */
2186 		if (val == 2)
2187 			static_key_slow_inc(&rdpmc_always_available);
2188 		else
2189 			static_key_slow_dec(&rdpmc_always_available);
2190 		on_each_cpu(refresh_pce, NULL, 1);
2191 	}
2192 
2193 	x86_pmu.attr_rdpmc = val;
2194 
2195 	return count;
2196 }
2197 
2198 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2199 
2200 static struct attribute *x86_pmu_attrs[] = {
2201 	&dev_attr_rdpmc.attr,
2202 	NULL,
2203 };
2204 
2205 static struct attribute_group x86_pmu_attr_group = {
2206 	.attrs = x86_pmu_attrs,
2207 };
2208 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2209 static ssize_t max_precise_show(struct device *cdev,
2210 				  struct device_attribute *attr,
2211 				  char *buf)
2212 {
2213 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2214 }
2215 
2216 static DEVICE_ATTR_RO(max_precise);
2217 
2218 static struct attribute *x86_pmu_caps_attrs[] = {
2219 	&dev_attr_max_precise.attr,
2220 	NULL
2221 };
2222 
2223 static struct attribute_group x86_pmu_caps_group = {
2224 	.name = "caps",
2225 	.attrs = x86_pmu_caps_attrs,
2226 };
2227 
2228 static const struct attribute_group *x86_pmu_attr_groups[] = {
2229 	&x86_pmu_attr_group,
2230 	&x86_pmu_format_group,
2231 	&x86_pmu_events_group,
2232 	&x86_pmu_caps_group,
2233 	NULL,
2234 };
2235 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2236 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2237 {
2238 	if (x86_pmu.sched_task)
2239 		x86_pmu.sched_task(ctx, sched_in);
2240 }
2241 
perf_check_microcode(void)2242 void perf_check_microcode(void)
2243 {
2244 	if (x86_pmu.check_microcode)
2245 		x86_pmu.check_microcode();
2246 }
2247 
x86_pmu_check_period(struct perf_event * event,u64 value)2248 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2249 {
2250 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2251 		return -EINVAL;
2252 
2253 	if (value && x86_pmu.limit_period) {
2254 		if (x86_pmu.limit_period(event, value) > value)
2255 			return -EINVAL;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 static struct pmu pmu = {
2262 	.pmu_enable		= x86_pmu_enable,
2263 	.pmu_disable		= x86_pmu_disable,
2264 
2265 	.attr_groups		= x86_pmu_attr_groups,
2266 
2267 	.event_init		= x86_pmu_event_init,
2268 
2269 	.event_mapped		= x86_pmu_event_mapped,
2270 	.event_unmapped		= x86_pmu_event_unmapped,
2271 
2272 	.add			= x86_pmu_add,
2273 	.del			= x86_pmu_del,
2274 	.start			= x86_pmu_start,
2275 	.stop			= x86_pmu_stop,
2276 	.read			= x86_pmu_read,
2277 
2278 	.start_txn		= x86_pmu_start_txn,
2279 	.cancel_txn		= x86_pmu_cancel_txn,
2280 	.commit_txn		= x86_pmu_commit_txn,
2281 
2282 	.event_idx		= x86_pmu_event_idx,
2283 	.sched_task		= x86_pmu_sched_task,
2284 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2285 	.check_period		= x86_pmu_check_period,
2286 };
2287 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2288 void arch_perf_update_userpage(struct perf_event *event,
2289 			       struct perf_event_mmap_page *userpg, u64 now)
2290 {
2291 	struct cyc2ns_data data;
2292 	u64 offset;
2293 
2294 	userpg->cap_user_time = 0;
2295 	userpg->cap_user_time_zero = 0;
2296 	userpg->cap_user_rdpmc =
2297 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2298 	userpg->pmc_width = x86_pmu.cntval_bits;
2299 
2300 	if (!using_native_sched_clock() || !sched_clock_stable())
2301 		return;
2302 
2303 	cyc2ns_read_begin(&data);
2304 
2305 	offset = data.cyc2ns_offset + __sched_clock_offset;
2306 
2307 	/*
2308 	 * Internal timekeeping for enabled/running/stopped times
2309 	 * is always in the local_clock domain.
2310 	 */
2311 	userpg->cap_user_time = 1;
2312 	userpg->time_mult = data.cyc2ns_mul;
2313 	userpg->time_shift = data.cyc2ns_shift;
2314 	userpg->time_offset = offset - now;
2315 
2316 	/*
2317 	 * cap_user_time_zero doesn't make sense when we're using a different
2318 	 * time base for the records.
2319 	 */
2320 	if (!event->attr.use_clockid) {
2321 		userpg->cap_user_time_zero = 1;
2322 		userpg->time_zero = offset;
2323 	}
2324 
2325 	cyc2ns_read_end();
2326 }
2327 
2328 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2329 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2330 {
2331 	struct unwind_state state;
2332 	unsigned long addr;
2333 
2334 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2335 		/* TODO: We don't support guest os callchain now */
2336 		return;
2337 	}
2338 
2339 	if (perf_callchain_store(entry, regs->ip))
2340 		return;
2341 
2342 	for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2343 	     unwind_next_frame(&state)) {
2344 		addr = unwind_get_return_address(&state);
2345 		if (!addr || perf_callchain_store(entry, addr))
2346 			return;
2347 	}
2348 }
2349 
2350 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2351 valid_user_frame(const void __user *fp, unsigned long size)
2352 {
2353 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2354 }
2355 
get_segment_base(unsigned int segment)2356 static unsigned long get_segment_base(unsigned int segment)
2357 {
2358 	struct desc_struct *desc;
2359 	unsigned int idx = segment >> 3;
2360 
2361 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2362 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2363 		struct ldt_struct *ldt;
2364 
2365 		/* IRQs are off, so this synchronizes with smp_store_release */
2366 		ldt = READ_ONCE(current->active_mm->context.ldt);
2367 		if (!ldt || idx >= ldt->nr_entries)
2368 			return 0;
2369 
2370 		desc = &ldt->entries[idx];
2371 #else
2372 		return 0;
2373 #endif
2374 	} else {
2375 		if (idx >= GDT_ENTRIES)
2376 			return 0;
2377 
2378 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2379 	}
2380 
2381 	return get_desc_base(desc);
2382 }
2383 
2384 #ifdef CONFIG_IA32_EMULATION
2385 
2386 #include <asm/compat.h>
2387 
2388 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2389 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2390 {
2391 	/* 32-bit process in 64-bit kernel. */
2392 	unsigned long ss_base, cs_base;
2393 	struct stack_frame_ia32 frame;
2394 	const void __user *fp;
2395 
2396 	if (!test_thread_flag(TIF_IA32))
2397 		return 0;
2398 
2399 	cs_base = get_segment_base(regs->cs);
2400 	ss_base = get_segment_base(regs->ss);
2401 
2402 	fp = compat_ptr(ss_base + regs->bp);
2403 	pagefault_disable();
2404 	while (entry->nr < entry->max_stack) {
2405 		unsigned long bytes;
2406 		frame.next_frame     = 0;
2407 		frame.return_address = 0;
2408 
2409 		if (!valid_user_frame(fp, sizeof(frame)))
2410 			break;
2411 
2412 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2413 		if (bytes != 0)
2414 			break;
2415 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2416 		if (bytes != 0)
2417 			break;
2418 
2419 		perf_callchain_store(entry, cs_base + frame.return_address);
2420 		fp = compat_ptr(ss_base + frame.next_frame);
2421 	}
2422 	pagefault_enable();
2423 	return 1;
2424 }
2425 #else
2426 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2427 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2428 {
2429     return 0;
2430 }
2431 #endif
2432 
2433 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2434 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2435 {
2436 	struct stack_frame frame;
2437 	const unsigned long __user *fp;
2438 
2439 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2440 		/* TODO: We don't support guest os callchain now */
2441 		return;
2442 	}
2443 
2444 	/*
2445 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2446 	 */
2447 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2448 		return;
2449 
2450 	fp = (unsigned long __user *)regs->bp;
2451 
2452 	perf_callchain_store(entry, regs->ip);
2453 
2454 	if (!nmi_uaccess_okay())
2455 		return;
2456 
2457 	if (perf_callchain_user32(regs, entry))
2458 		return;
2459 
2460 	pagefault_disable();
2461 	while (entry->nr < entry->max_stack) {
2462 		unsigned long bytes;
2463 
2464 		frame.next_frame	     = NULL;
2465 		frame.return_address = 0;
2466 
2467 		if (!valid_user_frame(fp, sizeof(frame)))
2468 			break;
2469 
2470 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2471 		if (bytes != 0)
2472 			break;
2473 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2474 		if (bytes != 0)
2475 			break;
2476 
2477 		perf_callchain_store(entry, frame.return_address);
2478 		fp = (void __user *)frame.next_frame;
2479 	}
2480 	pagefault_enable();
2481 }
2482 
2483 /*
2484  * Deal with code segment offsets for the various execution modes:
2485  *
2486  *   VM86 - the good olde 16 bit days, where the linear address is
2487  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2488  *
2489  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2490  *          to figure out what the 32bit base address is.
2491  *
2492  *    X32 - has TIF_X32 set, but is running in x86_64
2493  *
2494  * X86_64 - CS,DS,SS,ES are all zero based.
2495  */
code_segment_base(struct pt_regs * regs)2496 static unsigned long code_segment_base(struct pt_regs *regs)
2497 {
2498 	/*
2499 	 * For IA32 we look at the GDT/LDT segment base to convert the
2500 	 * effective IP to a linear address.
2501 	 */
2502 
2503 #ifdef CONFIG_X86_32
2504 	/*
2505 	 * If we are in VM86 mode, add the segment offset to convert to a
2506 	 * linear address.
2507 	 */
2508 	if (regs->flags & X86_VM_MASK)
2509 		return 0x10 * regs->cs;
2510 
2511 	if (user_mode(regs) && regs->cs != __USER_CS)
2512 		return get_segment_base(regs->cs);
2513 #else
2514 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2515 	    regs->cs != __USER32_CS)
2516 		return get_segment_base(regs->cs);
2517 #endif
2518 	return 0;
2519 }
2520 
perf_instruction_pointer(struct pt_regs * regs)2521 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2522 {
2523 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2524 		return perf_guest_cbs->get_guest_ip();
2525 
2526 	return regs->ip + code_segment_base(regs);
2527 }
2528 
perf_misc_flags(struct pt_regs * regs)2529 unsigned long perf_misc_flags(struct pt_regs *regs)
2530 {
2531 	int misc = 0;
2532 
2533 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2534 		if (perf_guest_cbs->is_user_mode())
2535 			misc |= PERF_RECORD_MISC_GUEST_USER;
2536 		else
2537 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2538 	} else {
2539 		if (user_mode(regs))
2540 			misc |= PERF_RECORD_MISC_USER;
2541 		else
2542 			misc |= PERF_RECORD_MISC_KERNEL;
2543 	}
2544 
2545 	if (regs->flags & PERF_EFLAGS_EXACT)
2546 		misc |= PERF_RECORD_MISC_EXACT_IP;
2547 
2548 	return misc;
2549 }
2550 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2551 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2552 {
2553 	cap->version		= x86_pmu.version;
2554 	cap->num_counters_gp	= x86_pmu.num_counters;
2555 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2556 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2557 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2558 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2559 	cap->events_mask_len	= x86_pmu.events_mask_len;
2560 }
2561 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2562