• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Code extracted from drivers/block/genhd.c
4  *  Copyright (C) 1991-1998  Linus Torvalds
5  *  Re-organised Feb 1998 Russell King
6  *
7  *  We now have independent partition support from the
8  *  block drivers, which allows all the partition code to
9  *  be grouped in one location, and it to be mostly self
10  *  contained.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
21 
22 #include "partitions/check.h"
23 
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
27 
28 /*
29  * disk_name() is used by partition check code and the genhd driver.
30  * It formats the devicename of the indicated disk into
31  * the supplied buffer (of size at least 32), and returns
32  * a pointer to that same buffer (for convenience).
33  */
34 
disk_name(struct gendisk * hd,int partno,char * buf)35 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 {
37 	if (!partno)
38 		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 	else
42 		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43 
44 	return buf;
45 }
46 
bdevname(struct block_device * bdev,char * buf)47 const char *bdevname(struct block_device *bdev, char *buf)
48 {
49 	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
50 }
51 
52 EXPORT_SYMBOL(bdevname);
53 
bio_devname(struct bio * bio,char * buf)54 const char *bio_devname(struct bio *bio, char *buf)
55 {
56 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
57 }
58 EXPORT_SYMBOL(bio_devname);
59 
60 /*
61  * There's very little reason to use this, you should really
62  * have a struct block_device just about everywhere and use
63  * bdevname() instead.
64  */
__bdevname(dev_t dev,char * buffer)65 const char *__bdevname(dev_t dev, char *buffer)
66 {
67 	scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68 				MAJOR(dev), MINOR(dev));
69 	return buffer;
70 }
71 
72 EXPORT_SYMBOL(__bdevname);
73 
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)74 static ssize_t part_partition_show(struct device *dev,
75 				   struct device_attribute *attr, char *buf)
76 {
77 	struct hd_struct *p = dev_to_part(dev);
78 
79 	return sprintf(buf, "%d\n", p->partno);
80 }
81 
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)82 static ssize_t part_start_show(struct device *dev,
83 			       struct device_attribute *attr, char *buf)
84 {
85 	struct hd_struct *p = dev_to_part(dev);
86 
87 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
88 }
89 
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)90 ssize_t part_size_show(struct device *dev,
91 		       struct device_attribute *attr, char *buf)
92 {
93 	struct hd_struct *p = dev_to_part(dev);
94 	return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
95 }
96 
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)97 static ssize_t part_ro_show(struct device *dev,
98 			    struct device_attribute *attr, char *buf)
99 {
100 	struct hd_struct *p = dev_to_part(dev);
101 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
102 }
103 
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)104 static ssize_t part_alignment_offset_show(struct device *dev,
105 					  struct device_attribute *attr, char *buf)
106 {
107 	struct hd_struct *p = dev_to_part(dev);
108 	return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
109 }
110 
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)111 static ssize_t part_discard_alignment_show(struct device *dev,
112 					   struct device_attribute *attr, char *buf)
113 {
114 	struct hd_struct *p = dev_to_part(dev);
115 	return sprintf(buf, "%u\n", p->discard_alignment);
116 }
117 
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)118 ssize_t part_stat_show(struct device *dev,
119 		       struct device_attribute *attr, char *buf)
120 {
121 	struct hd_struct *p = dev_to_part(dev);
122 	struct request_queue *q = part_to_disk(p)->queue;
123 	unsigned int inflight[2];
124 	int cpu;
125 
126 	cpu = part_stat_lock();
127 	part_round_stats(q, cpu, p);
128 	part_stat_unlock();
129 	part_in_flight(q, p, inflight);
130 	return sprintf(buf,
131 		"%8lu %8lu %8llu %8u "
132 		"%8lu %8lu %8llu %8u "
133 		"%8u %8u %8u"
134 		"\n",
135 		part_stat_read(p, ios[READ]),
136 		part_stat_read(p, merges[READ]),
137 		(unsigned long long)part_stat_read(p, sectors[READ]),
138 		jiffies_to_msecs(part_stat_read(p, ticks[READ])),
139 		part_stat_read(p, ios[WRITE]),
140 		part_stat_read(p, merges[WRITE]),
141 		(unsigned long long)part_stat_read(p, sectors[WRITE]),
142 		jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
143 		inflight[0],
144 		jiffies_to_msecs(part_stat_read(p, io_ticks)),
145 		jiffies_to_msecs(part_stat_read(p, time_in_queue)));
146 }
147 
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)148 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
149 			   char *buf)
150 {
151 	struct hd_struct *p = dev_to_part(dev);
152 	struct request_queue *q = part_to_disk(p)->queue;
153 	unsigned int inflight[2];
154 
155 	part_in_flight_rw(q, p, inflight);
156 	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
157 }
158 
159 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)160 ssize_t part_fail_show(struct device *dev,
161 		       struct device_attribute *attr, char *buf)
162 {
163 	struct hd_struct *p = dev_to_part(dev);
164 
165 	return sprintf(buf, "%d\n", p->make_it_fail);
166 }
167 
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)168 ssize_t part_fail_store(struct device *dev,
169 			struct device_attribute *attr,
170 			const char *buf, size_t count)
171 {
172 	struct hd_struct *p = dev_to_part(dev);
173 	int i;
174 
175 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
176 		p->make_it_fail = (i == 0) ? 0 : 1;
177 
178 	return count;
179 }
180 #endif
181 
182 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
183 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
184 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
185 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
186 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
187 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
188 		   NULL);
189 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
190 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
191 #ifdef CONFIG_FAIL_MAKE_REQUEST
192 static struct device_attribute dev_attr_fail =
193 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
194 #endif
195 
196 static struct attribute *part_attrs[] = {
197 	&dev_attr_partition.attr,
198 	&dev_attr_start.attr,
199 	&dev_attr_size.attr,
200 	&dev_attr_ro.attr,
201 	&dev_attr_alignment_offset.attr,
202 	&dev_attr_discard_alignment.attr,
203 	&dev_attr_stat.attr,
204 	&dev_attr_inflight.attr,
205 #ifdef CONFIG_FAIL_MAKE_REQUEST
206 	&dev_attr_fail.attr,
207 #endif
208 	NULL
209 };
210 
211 static struct attribute_group part_attr_group = {
212 	.attrs = part_attrs,
213 };
214 
215 static const struct attribute_group *part_attr_groups[] = {
216 	&part_attr_group,
217 #ifdef CONFIG_BLK_DEV_IO_TRACE
218 	&blk_trace_attr_group,
219 #endif
220 	NULL
221 };
222 
part_release(struct device * dev)223 static void part_release(struct device *dev)
224 {
225 	struct hd_struct *p = dev_to_part(dev);
226 	blk_free_devt(dev->devt);
227 	hd_free_part(p);
228 	kfree(p);
229 }
230 
part_uevent(struct device * dev,struct kobj_uevent_env * env)231 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
232 {
233 	struct hd_struct *part = dev_to_part(dev);
234 
235 	add_uevent_var(env, "PARTN=%u", part->partno);
236 	if (part->info && part->info->volname[0])
237 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
238 	return 0;
239 }
240 
241 struct device_type part_type = {
242 	.name		= "partition",
243 	.groups		= part_attr_groups,
244 	.release	= part_release,
245 	.uevent		= part_uevent,
246 };
247 
delete_partition_rcu_cb(struct rcu_head * head)248 static void delete_partition_rcu_cb(struct rcu_head *head)
249 {
250 	struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
251 
252 	part->start_sect = 0;
253 	part->nr_sects = 0;
254 	part_stat_set_all(part, 0);
255 	put_device(part_to_dev(part));
256 }
257 
__delete_partition(struct percpu_ref * ref)258 void __delete_partition(struct percpu_ref *ref)
259 {
260 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
261 	call_rcu(&part->rcu_head, delete_partition_rcu_cb);
262 }
263 
264 /*
265  * Must be called either with bd_mutex held, before a disk can be opened or
266  * after all disk users are gone.
267  */
delete_partition(struct gendisk * disk,int partno)268 void delete_partition(struct gendisk *disk, int partno)
269 {
270 	struct disk_part_tbl *ptbl =
271 		rcu_dereference_protected(disk->part_tbl, 1);
272 	struct hd_struct *part;
273 
274 	if (partno >= ptbl->len)
275 		return;
276 
277 	part = rcu_dereference_protected(ptbl->part[partno], 1);
278 	if (!part)
279 		return;
280 
281 	rcu_assign_pointer(ptbl->part[partno], NULL);
282 	rcu_assign_pointer(ptbl->last_lookup, NULL);
283 	kobject_put(part->holder_dir);
284 	device_del(part_to_dev(part));
285 
286 	hd_struct_kill(part);
287 }
288 
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)289 static ssize_t whole_disk_show(struct device *dev,
290 			       struct device_attribute *attr, char *buf)
291 {
292 	return 0;
293 }
294 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
295 		   whole_disk_show, NULL);
296 
297 /*
298  * Must be called either with bd_mutex held, before a disk can be opened or
299  * after all disk users are gone.
300  */
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)301 struct hd_struct *add_partition(struct gendisk *disk, int partno,
302 				sector_t start, sector_t len, int flags,
303 				struct partition_meta_info *info)
304 {
305 	struct hd_struct *p;
306 	dev_t devt = MKDEV(0, 0);
307 	struct device *ddev = disk_to_dev(disk);
308 	struct device *pdev;
309 	struct disk_part_tbl *ptbl;
310 	const char *dname;
311 	int err;
312 
313 	err = disk_expand_part_tbl(disk, partno);
314 	if (err)
315 		return ERR_PTR(err);
316 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
317 
318 	if (ptbl->part[partno])
319 		return ERR_PTR(-EBUSY);
320 
321 	p = kzalloc(sizeof(*p), GFP_KERNEL);
322 	if (!p)
323 		return ERR_PTR(-EBUSY);
324 
325 	if (!init_part_stats(p)) {
326 		err = -ENOMEM;
327 		goto out_free;
328 	}
329 
330 	seqcount_init(&p->nr_sects_seq);
331 	pdev = part_to_dev(p);
332 
333 	p->start_sect = start;
334 	p->alignment_offset =
335 		queue_limit_alignment_offset(&disk->queue->limits, start);
336 	p->discard_alignment =
337 		queue_limit_discard_alignment(&disk->queue->limits, start);
338 	p->nr_sects = len;
339 	p->partno = partno;
340 	p->policy = get_disk_ro(disk);
341 
342 	if (info) {
343 		struct partition_meta_info *pinfo = alloc_part_info(disk);
344 		if (!pinfo) {
345 			err = -ENOMEM;
346 			goto out_free_stats;
347 		}
348 		memcpy(pinfo, info, sizeof(*info));
349 		p->info = pinfo;
350 	}
351 
352 	dname = dev_name(ddev);
353 	if (isdigit(dname[strlen(dname) - 1]))
354 		dev_set_name(pdev, "%sp%d", dname, partno);
355 	else
356 		dev_set_name(pdev, "%s%d", dname, partno);
357 
358 	device_initialize(pdev);
359 	pdev->class = &block_class;
360 	pdev->type = &part_type;
361 	pdev->parent = ddev;
362 
363 	err = blk_alloc_devt(p, &devt);
364 	if (err)
365 		goto out_free_info;
366 	pdev->devt = devt;
367 
368 	/* delay uevent until 'holders' subdir is created */
369 	dev_set_uevent_suppress(pdev, 1);
370 	err = device_add(pdev);
371 	if (err)
372 		goto out_put;
373 
374 	err = -ENOMEM;
375 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
376 	if (!p->holder_dir)
377 		goto out_del;
378 
379 	dev_set_uevent_suppress(pdev, 0);
380 	if (flags & ADDPART_FLAG_WHOLEDISK) {
381 		err = device_create_file(pdev, &dev_attr_whole_disk);
382 		if (err)
383 			goto out_del;
384 	}
385 
386 	err = hd_ref_init(p);
387 	if (err) {
388 		if (flags & ADDPART_FLAG_WHOLEDISK)
389 			goto out_remove_file;
390 		goto out_del;
391 	}
392 
393 	/* everything is up and running, commence */
394 	rcu_assign_pointer(ptbl->part[partno], p);
395 
396 	/* suppress uevent if the disk suppresses it */
397 	if (!dev_get_uevent_suppress(ddev))
398 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
399 	return p;
400 
401 out_free_info:
402 	free_part_info(p);
403 out_free_stats:
404 	free_part_stats(p);
405 out_free:
406 	kfree(p);
407 	return ERR_PTR(err);
408 out_remove_file:
409 	device_remove_file(pdev, &dev_attr_whole_disk);
410 out_del:
411 	kobject_put(p->holder_dir);
412 	device_del(pdev);
413 out_put:
414 	put_device(pdev);
415 	return ERR_PTR(err);
416 }
417 
disk_unlock_native_capacity(struct gendisk * disk)418 static bool disk_unlock_native_capacity(struct gendisk *disk)
419 {
420 	const struct block_device_operations *bdops = disk->fops;
421 
422 	if (bdops->unlock_native_capacity &&
423 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
424 		printk(KERN_CONT "enabling native capacity\n");
425 		bdops->unlock_native_capacity(disk);
426 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
427 		return true;
428 	} else {
429 		printk(KERN_CONT "truncated\n");
430 		return false;
431 	}
432 }
433 
drop_partitions(struct gendisk * disk,struct block_device * bdev)434 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
435 {
436 	struct disk_part_iter piter;
437 	struct hd_struct *part;
438 	int res;
439 
440 	if (bdev->bd_part_count || bdev->bd_super)
441 		return -EBUSY;
442 	res = invalidate_partition(disk, 0);
443 	if (res)
444 		return res;
445 
446 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
447 	while ((part = disk_part_iter_next(&piter)))
448 		delete_partition(disk, part->partno);
449 	disk_part_iter_exit(&piter);
450 
451 	return 0;
452 }
453 
part_zone_aligned(struct gendisk * disk,struct block_device * bdev,sector_t from,sector_t size)454 static bool part_zone_aligned(struct gendisk *disk,
455 			      struct block_device *bdev,
456 			      sector_t from, sector_t size)
457 {
458 	unsigned int zone_sectors = bdev_zone_sectors(bdev);
459 
460 	/*
461 	 * If this function is called, then the disk is a zoned block device
462 	 * (host-aware or host-managed). This can be detected even if the
463 	 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
464 	 * set). In this case, however, only host-aware devices will be seen
465 	 * as a block device is not created for host-managed devices. Without
466 	 * zoned block device support, host-aware drives can still be used as
467 	 * regular block devices (no zone operation) and their zone size will
468 	 * be reported as 0. Allow this case.
469 	 */
470 	if (!zone_sectors)
471 		return true;
472 
473 	/*
474 	 * Check partition start and size alignement. If the drive has a
475 	 * smaller last runt zone, ignore it and allow the partition to
476 	 * use it. Check the zone size too: it should be a power of 2 number
477 	 * of sectors.
478 	 */
479 	if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
480 		u32 rem;
481 
482 		div_u64_rem(from, zone_sectors, &rem);
483 		if (rem)
484 			return false;
485 		if ((from + size) < get_capacity(disk)) {
486 			div_u64_rem(size, zone_sectors, &rem);
487 			if (rem)
488 				return false;
489 		}
490 
491 	} else {
492 
493 		if (from & (zone_sectors - 1))
494 			return false;
495 		if ((from + size) < get_capacity(disk) &&
496 		    (size & (zone_sectors - 1)))
497 			return false;
498 
499 	}
500 
501 	return true;
502 }
503 
rescan_partitions(struct gendisk * disk,struct block_device * bdev)504 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
505 {
506 	struct parsed_partitions *state = NULL;
507 	struct hd_struct *part;
508 	int p, highest, res;
509 rescan:
510 	if (state && !IS_ERR(state)) {
511 		free_partitions(state);
512 		state = NULL;
513 	}
514 
515 	res = drop_partitions(disk, bdev);
516 	if (res)
517 		return res;
518 
519 	if (disk->fops->revalidate_disk)
520 		disk->fops->revalidate_disk(disk);
521 	check_disk_size_change(disk, bdev);
522 	bdev->bd_invalidated = 0;
523 	if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
524 		return 0;
525 	if (IS_ERR(state)) {
526 		/*
527 		 * I/O error reading the partition table.  If any
528 		 * partition code tried to read beyond EOD, retry
529 		 * after unlocking native capacity.
530 		 */
531 		if (PTR_ERR(state) == -ENOSPC) {
532 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
533 			       disk->disk_name);
534 			if (disk_unlock_native_capacity(disk))
535 				goto rescan;
536 		}
537 		return -EIO;
538 	}
539 	/*
540 	 * If any partition code tried to read beyond EOD, try
541 	 * unlocking native capacity even if partition table is
542 	 * successfully read as we could be missing some partitions.
543 	 */
544 	if (state->access_beyond_eod) {
545 		printk(KERN_WARNING
546 		       "%s: partition table partially beyond EOD, ",
547 		       disk->disk_name);
548 		if (disk_unlock_native_capacity(disk))
549 			goto rescan;
550 	}
551 
552 	/* tell userspace that the media / partition table may have changed */
553 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
554 
555 	/* Detect the highest partition number and preallocate
556 	 * disk->part_tbl.  This is an optimization and not strictly
557 	 * necessary.
558 	 */
559 	for (p = 1, highest = 0; p < state->limit; p++)
560 		if (state->parts[p].size)
561 			highest = p;
562 
563 	disk_expand_part_tbl(disk, highest);
564 
565 	/* add partitions */
566 	for (p = 1; p < state->limit; p++) {
567 		sector_t size, from;
568 
569 		size = state->parts[p].size;
570 		if (!size)
571 			continue;
572 
573 		from = state->parts[p].from;
574 		if (from >= get_capacity(disk)) {
575 			printk(KERN_WARNING
576 			       "%s: p%d start %llu is beyond EOD, ",
577 			       disk->disk_name, p, (unsigned long long) from);
578 			if (disk_unlock_native_capacity(disk))
579 				goto rescan;
580 			continue;
581 		}
582 
583 		if (from + size > get_capacity(disk)) {
584 			printk(KERN_WARNING
585 			       "%s: p%d size %llu extends beyond EOD, ",
586 			       disk->disk_name, p, (unsigned long long) size);
587 
588 			if (disk_unlock_native_capacity(disk)) {
589 				/* free state and restart */
590 				goto rescan;
591 			} else {
592 				/*
593 				 * we can not ignore partitions of broken tables
594 				 * created by for example camera firmware, but
595 				 * we limit them to the end of the disk to avoid
596 				 * creating invalid block devices
597 				 */
598 				size = get_capacity(disk) - from;
599 			}
600 		}
601 
602 		/*
603 		 * On a zoned block device, partitions should be aligned on the
604 		 * device zone size (i.e. zone boundary crossing not allowed).
605 		 * Otherwise, resetting the write pointer of the last zone of
606 		 * one partition may impact the following partition.
607 		 */
608 		if (bdev_is_zoned(bdev) &&
609 		    !part_zone_aligned(disk, bdev, from, size)) {
610 			printk(KERN_WARNING
611 			       "%s: p%d start %llu+%llu is not zone aligned\n",
612 			       disk->disk_name, p, (unsigned long long) from,
613 			       (unsigned long long) size);
614 			continue;
615 		}
616 
617 		part = add_partition(disk, p, from, size,
618 				     state->parts[p].flags,
619 				     &state->parts[p].info);
620 		if (IS_ERR(part)) {
621 			printk(KERN_ERR " %s: p%d could not be added: %ld\n",
622 			       disk->disk_name, p, -PTR_ERR(part));
623 			continue;
624 		}
625 #ifdef CONFIG_BLK_DEV_MD
626 		if (state->parts[p].flags & ADDPART_FLAG_RAID)
627 			md_autodetect_dev(part_to_dev(part)->devt);
628 #endif
629 	}
630 	free_partitions(state);
631 	return 0;
632 }
633 
invalidate_partitions(struct gendisk * disk,struct block_device * bdev)634 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
635 {
636 	int res;
637 
638 	if (!bdev->bd_invalidated)
639 		return 0;
640 
641 	res = drop_partitions(disk, bdev);
642 	if (res)
643 		return res;
644 
645 	set_capacity(disk, 0);
646 	check_disk_size_change(disk, bdev);
647 	bdev->bd_invalidated = 0;
648 	/* tell userspace that the media / partition table may have changed */
649 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
650 
651 	return 0;
652 }
653 
read_dev_sector(struct block_device * bdev,sector_t n,Sector * p)654 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
655 {
656 	struct address_space *mapping = bdev->bd_inode->i_mapping;
657 	struct page *page;
658 
659 	page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
660 	if (!IS_ERR(page)) {
661 		if (PageError(page))
662 			goto fail;
663 		p->v = page;
664 		return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
665 fail:
666 		put_page(page);
667 	}
668 	p->v = NULL;
669 	return NULL;
670 }
671 
672 EXPORT_SYMBOL(read_dev_sector);
673