• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 2000, 2004 Intel Corp
9  * 	Rohit Seth <rohit.seth@intel.com>
10  * 	Suresh Siddha <suresh.b.siddha@intel.com>
11  * 	Gordon Jin <gordon.jin@intel.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  *
15  * 12/26/04 S.Siddha, G.Jin, R.Seth
16  *			Add multi-threading and multi-core detection
17  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
20  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
21  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
22  * 01/07/99 S.Eranian	added the support for command line argument
23  * 06/24/99 W.Drummond	added boot_cpu_data.
24  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
25  */
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/bootmem.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/cpu.h>
34 #include <linux/kernel.h>
35 #include <linux/reboot.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/clock.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/seq_file.h>
40 #include <linux/string.h>
41 #include <linux/threads.h>
42 #include <linux/screen_info.h>
43 #include <linux/dmi.h>
44 #include <linux/serial.h>
45 #include <linux/serial_core.h>
46 #include <linux/efi.h>
47 #include <linux/initrd.h>
48 #include <linux/pm.h>
49 #include <linux/cpufreq.h>
50 #include <linux/kexec.h>
51 #include <linux/crash_dump.h>
52 
53 #include <asm/machvec.h>
54 #include <asm/mca.h>
55 #include <asm/meminit.h>
56 #include <asm/page.h>
57 #include <asm/patch.h>
58 #include <asm/pgtable.h>
59 #include <asm/processor.h>
60 #include <asm/sal.h>
61 #include <asm/sections.h>
62 #include <asm/setup.h>
63 #include <asm/smp.h>
64 #include <asm/tlbflush.h>
65 #include <asm/unistd.h>
66 #include <asm/hpsim.h>
67 
68 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
69 # error "struct cpuinfo_ia64 too big!"
70 #endif
71 
72 #ifdef CONFIG_SMP
73 unsigned long __per_cpu_offset[NR_CPUS];
74 EXPORT_SYMBOL(__per_cpu_offset);
75 #endif
76 
77 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
78 EXPORT_SYMBOL(ia64_cpu_info);
79 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
80 #ifdef CONFIG_SMP
81 EXPORT_SYMBOL(local_per_cpu_offset);
82 #endif
83 unsigned long ia64_cycles_per_usec;
84 struct ia64_boot_param *ia64_boot_param;
85 struct screen_info screen_info;
86 unsigned long vga_console_iobase;
87 unsigned long vga_console_membase;
88 
89 static struct resource data_resource = {
90 	.name	= "Kernel data",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
92 };
93 
94 static struct resource code_resource = {
95 	.name	= "Kernel code",
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98 
99 static struct resource bss_resource = {
100 	.name	= "Kernel bss",
101 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
102 };
103 
104 unsigned long ia64_max_cacheline_size;
105 
106 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
111 
112 /*
113  * "flush_icache_range()" needs to know what processor dependent stride size to use
114  * when it makes i-cache(s) coherent with d-caches.
115  */
116 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
118 /*
119  * "clflush_cache_range()" needs to know what processor dependent stride size to
120  * use when it flushes cache lines including both d-cache and i-cache.
121  */
122 /* Safest way to go: 32 bytes by 32 bytes */
123 #define	CACHE_STRIDE_SHIFT	5
124 unsigned long ia64_cache_stride_shift = ~0;
125 
126 /*
127  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
128  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
129  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
130  * address of the second buffer must be aligned to (merge_mask+1) in order to be
131  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
132  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
133  * page-size of 2^64.
134  */
135 unsigned long ia64_max_iommu_merge_mask = ~0UL;
136 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
137 
138 /*
139  * We use a special marker for the end of memory and it uses the extra (+1) slot
140  */
141 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
142 int num_rsvd_regions __initdata;
143 
144 
145 /*
146  * Filter incoming memory segments based on the primitive map created from the boot
147  * parameters. Segments contained in the map are removed from the memory ranges. A
148  * caller-specified function is called with the memory ranges that remain after filtering.
149  * This routine does not assume the incoming segments are sorted.
150  */
151 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)152 filter_rsvd_memory (u64 start, u64 end, void *arg)
153 {
154 	u64 range_start, range_end, prev_start;
155 	void (*func)(unsigned long, unsigned long, int);
156 	int i;
157 
158 #if IGNORE_PFN0
159 	if (start == PAGE_OFFSET) {
160 		printk(KERN_WARNING "warning: skipping physical page 0\n");
161 		start += PAGE_SIZE;
162 		if (start >= end) return 0;
163 	}
164 #endif
165 	/*
166 	 * lowest possible address(walker uses virtual)
167 	 */
168 	prev_start = PAGE_OFFSET;
169 	func = arg;
170 
171 	for (i = 0; i < num_rsvd_regions; ++i) {
172 		range_start = max(start, prev_start);
173 		range_end   = min(end, rsvd_region[i].start);
174 
175 		if (range_start < range_end)
176 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
177 
178 		/* nothing more available in this segment */
179 		if (range_end == end) return 0;
180 
181 		prev_start = rsvd_region[i].end;
182 	}
183 	/* end of memory marker allows full processing inside loop body */
184 	return 0;
185 }
186 
187 /*
188  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
189  * are not filtered out.
190  */
191 int __init
filter_memory(u64 start,u64 end,void * arg)192 filter_memory(u64 start, u64 end, void *arg)
193 {
194 	void (*func)(unsigned long, unsigned long, int);
195 
196 #if IGNORE_PFN0
197 	if (start == PAGE_OFFSET) {
198 		printk(KERN_WARNING "warning: skipping physical page 0\n");
199 		start += PAGE_SIZE;
200 		if (start >= end)
201 			return 0;
202 	}
203 #endif
204 	func = arg;
205 	if (start < end)
206 		call_pernode_memory(__pa(start), end - start, func);
207 	return 0;
208 }
209 
210 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)211 sort_regions (struct rsvd_region *rsvd_region, int max)
212 {
213 	int j;
214 
215 	/* simple bubble sorting */
216 	while (max--) {
217 		for (j = 0; j < max; ++j) {
218 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
219 				struct rsvd_region tmp;
220 				tmp = rsvd_region[j];
221 				rsvd_region[j] = rsvd_region[j + 1];
222 				rsvd_region[j + 1] = tmp;
223 			}
224 		}
225 	}
226 }
227 
228 /* merge overlaps */
229 static int __init
merge_regions(struct rsvd_region * rsvd_region,int max)230 merge_regions (struct rsvd_region *rsvd_region, int max)
231 {
232 	int i;
233 	for (i = 1; i < max; ++i) {
234 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
235 			continue;
236 		if (rsvd_region[i].end > rsvd_region[i-1].end)
237 			rsvd_region[i-1].end = rsvd_region[i].end;
238 		--max;
239 		memmove(&rsvd_region[i], &rsvd_region[i+1],
240 			(max - i) * sizeof(struct rsvd_region));
241 	}
242 	return max;
243 }
244 
245 /*
246  * Request address space for all standard resources
247  */
register_memory(void)248 static int __init register_memory(void)
249 {
250 	code_resource.start = ia64_tpa(_text);
251 	code_resource.end   = ia64_tpa(_etext) - 1;
252 	data_resource.start = ia64_tpa(_etext);
253 	data_resource.end   = ia64_tpa(_edata) - 1;
254 	bss_resource.start  = ia64_tpa(__bss_start);
255 	bss_resource.end    = ia64_tpa(_end) - 1;
256 	efi_initialize_iomem_resources(&code_resource, &data_resource,
257 			&bss_resource);
258 
259 	return 0;
260 }
261 
262 __initcall(register_memory);
263 
264 
265 #ifdef CONFIG_KEXEC
266 
267 /*
268  * This function checks if the reserved crashkernel is allowed on the specific
269  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
270  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
271  * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
272  * in kdump case. See the comment in sba_init() in sba_iommu.c.
273  *
274  * So, the only machvec that really supports loading the kdump kernel
275  * over 4 GB is "sn2".
276  */
check_crashkernel_memory(unsigned long pbase,size_t size)277 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
278 {
279 	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
280 		return 1;
281 	else
282 		return pbase < (1UL << 32);
283 }
284 
setup_crashkernel(unsigned long total,int * n)285 static void __init setup_crashkernel(unsigned long total, int *n)
286 {
287 	unsigned long long base = 0, size = 0;
288 	int ret;
289 
290 	ret = parse_crashkernel(boot_command_line, total,
291 			&size, &base);
292 	if (ret == 0 && size > 0) {
293 		if (!base) {
294 			sort_regions(rsvd_region, *n);
295 			*n = merge_regions(rsvd_region, *n);
296 			base = kdump_find_rsvd_region(size,
297 					rsvd_region, *n);
298 		}
299 
300 		if (!check_crashkernel_memory(base, size)) {
301 			pr_warning("crashkernel: There would be kdump memory "
302 				"at %ld GB but this is unusable because it "
303 				"must\nbe below 4 GB. Change the memory "
304 				"configuration of the machine.\n",
305 				(unsigned long)(base >> 30));
306 			return;
307 		}
308 
309 		if (base != ~0UL) {
310 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
311 					"for crashkernel (System RAM: %ldMB)\n",
312 					(unsigned long)(size >> 20),
313 					(unsigned long)(base >> 20),
314 					(unsigned long)(total >> 20));
315 			rsvd_region[*n].start =
316 				(unsigned long)__va(base);
317 			rsvd_region[*n].end =
318 				(unsigned long)__va(base + size);
319 			(*n)++;
320 			crashk_res.start = base;
321 			crashk_res.end = base + size - 1;
322 		}
323 	}
324 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
325 	efi_memmap_res.end = efi_memmap_res.start +
326 		ia64_boot_param->efi_memmap_size;
327 	boot_param_res.start = __pa(ia64_boot_param);
328 	boot_param_res.end = boot_param_res.start +
329 		sizeof(*ia64_boot_param);
330 }
331 #else
setup_crashkernel(unsigned long total,int * n)332 static inline void __init setup_crashkernel(unsigned long total, int *n)
333 {}
334 #endif
335 
336 /**
337  * reserve_memory - setup reserved memory areas
338  *
339  * Setup the reserved memory areas set aside for the boot parameters,
340  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
341  * see arch/ia64/include/asm/meminit.h if you need to define more.
342  */
343 void __init
reserve_memory(void)344 reserve_memory (void)
345 {
346 	int n = 0;
347 	unsigned long total_memory;
348 
349 	/*
350 	 * none of the entries in this table overlap
351 	 */
352 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
353 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
354 	n++;
355 
356 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
357 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
358 	n++;
359 
360 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
361 	rsvd_region[n].end   = (rsvd_region[n].start
362 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
363 	n++;
364 
365 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
366 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
367 	n++;
368 
369 #ifdef CONFIG_BLK_DEV_INITRD
370 	if (ia64_boot_param->initrd_start) {
371 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
372 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
373 		n++;
374 	}
375 #endif
376 
377 #ifdef CONFIG_CRASH_DUMP
378 	if (reserve_elfcorehdr(&rsvd_region[n].start,
379 			       &rsvd_region[n].end) == 0)
380 		n++;
381 #endif
382 
383 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
384 	n++;
385 
386 	setup_crashkernel(total_memory, &n);
387 
388 	/* end of memory marker */
389 	rsvd_region[n].start = ~0UL;
390 	rsvd_region[n].end   = ~0UL;
391 	n++;
392 
393 	num_rsvd_regions = n;
394 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
395 
396 	sort_regions(rsvd_region, num_rsvd_regions);
397 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
398 }
399 
400 
401 /**
402  * find_initrd - get initrd parameters from the boot parameter structure
403  *
404  * Grab the initrd start and end from the boot parameter struct given us by
405  * the boot loader.
406  */
407 void __init
find_initrd(void)408 find_initrd (void)
409 {
410 #ifdef CONFIG_BLK_DEV_INITRD
411 	if (ia64_boot_param->initrd_start) {
412 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
413 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
414 
415 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
416 		       initrd_start, ia64_boot_param->initrd_size);
417 	}
418 #endif
419 }
420 
421 static void __init
io_port_init(void)422 io_port_init (void)
423 {
424 	unsigned long phys_iobase;
425 
426 	/*
427 	 * Set `iobase' based on the EFI memory map or, failing that, the
428 	 * value firmware left in ar.k0.
429 	 *
430 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
431 	 * the port's virtual address, so ia32_load_state() loads it with a
432 	 * user virtual address.  But in ia64 mode, glibc uses the
433 	 * *physical* address in ar.k0 to mmap the appropriate area from
434 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
435 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
436 	 *
437 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
438 	 * any of the I/O port spaces and are done via MMIO using the
439 	 * virtual mmio_base from the appropriate io_space[].
440 	 */
441 	phys_iobase = efi_get_iobase();
442 	if (!phys_iobase) {
443 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
444 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
445 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
446 	}
447 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
448 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449 
450 	/* setup legacy IO port space */
451 	io_space[0].mmio_base = ia64_iobase;
452 	io_space[0].sparse = 1;
453 	num_io_spaces = 1;
454 }
455 
456 /**
457  * early_console_setup - setup debugging console
458  *
459  * Consoles started here require little enough setup that we can start using
460  * them very early in the boot process, either right after the machine
461  * vector initialization, or even before if the drivers can detect their hw.
462  *
463  * Returns non-zero if a console couldn't be setup.
464  */
465 static inline int __init
early_console_setup(char * cmdline)466 early_console_setup (char *cmdline)
467 {
468 	int earlycons = 0;
469 
470 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
471 	{
472 		extern int sn_serial_console_early_setup(void);
473 		if (!sn_serial_console_early_setup())
474 			earlycons++;
475 	}
476 #endif
477 #ifdef CONFIG_EFI_PCDP
478 	if (!efi_setup_pcdp_console(cmdline))
479 		earlycons++;
480 #endif
481 	if (!simcons_register())
482 		earlycons++;
483 
484 	return (earlycons) ? 0 : -1;
485 }
486 
487 static inline void
mark_bsp_online(void)488 mark_bsp_online (void)
489 {
490 #ifdef CONFIG_SMP
491 	/* If we register an early console, allow CPU 0 to printk */
492 	set_cpu_online(smp_processor_id(), true);
493 #endif
494 }
495 
496 static __initdata int nomca;
setup_nomca(char * s)497 static __init int setup_nomca(char *s)
498 {
499 	nomca = 1;
500 	return 0;
501 }
502 early_param("nomca", setup_nomca);
503 
504 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)505 int __init reserve_elfcorehdr(u64 *start, u64 *end)
506 {
507 	u64 length;
508 
509 	/* We get the address using the kernel command line,
510 	 * but the size is extracted from the EFI tables.
511 	 * Both address and size are required for reservation
512 	 * to work properly.
513 	 */
514 
515 	if (!is_vmcore_usable())
516 		return -EINVAL;
517 
518 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
519 		vmcore_unusable();
520 		return -EINVAL;
521 	}
522 
523 	*start = (unsigned long)__va(elfcorehdr_addr);
524 	*end = *start + length;
525 	return 0;
526 }
527 
528 #endif /* CONFIG_PROC_VMCORE */
529 
530 void __init
setup_arch(char ** cmdline_p)531 setup_arch (char **cmdline_p)
532 {
533 	unw_init();
534 
535 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
536 
537 	*cmdline_p = __va(ia64_boot_param->command_line);
538 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
539 
540 	efi_init();
541 	io_port_init();
542 
543 #ifdef CONFIG_IA64_GENERIC
544 	/* machvec needs to be parsed from the command line
545 	 * before parse_early_param() is called to ensure
546 	 * that ia64_mv is initialised before any command line
547 	 * settings may cause console setup to occur
548 	 */
549 	machvec_init_from_cmdline(*cmdline_p);
550 #endif
551 
552 	parse_early_param();
553 
554 	if (early_console_setup(*cmdline_p) == 0)
555 		mark_bsp_online();
556 
557 #ifdef CONFIG_ACPI
558 	/* Initialize the ACPI boot-time table parser */
559 	acpi_table_init();
560 	early_acpi_boot_init();
561 # ifdef CONFIG_ACPI_NUMA
562 	acpi_numa_init();
563 	acpi_numa_fixup();
564 #  ifdef CONFIG_ACPI_HOTPLUG_CPU
565 	prefill_possible_map();
566 #  endif
567 	per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
568 		32 : cpumask_weight(&early_cpu_possible_map)),
569 		additional_cpus > 0 ? additional_cpus : 0);
570 # endif
571 #endif /* CONFIG_APCI_BOOT */
572 
573 #ifdef CONFIG_SMP
574 	smp_build_cpu_map();
575 #endif
576 	find_memory();
577 
578 	/* process SAL system table: */
579 	ia64_sal_init(__va(efi.sal_systab));
580 
581 #ifdef CONFIG_ITANIUM
582 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
583 #else
584 	{
585 		unsigned long num_phys_stacked;
586 
587 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
588 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
589 	}
590 #endif
591 
592 #ifdef CONFIG_SMP
593 	cpu_physical_id(0) = hard_smp_processor_id();
594 #endif
595 
596 	cpu_init();	/* initialize the bootstrap CPU */
597 	mmu_context_init();	/* initialize context_id bitmap */
598 
599 #ifdef CONFIG_VT
600 	if (!conswitchp) {
601 # if defined(CONFIG_DUMMY_CONSOLE)
602 		conswitchp = &dummy_con;
603 # endif
604 # if defined(CONFIG_VGA_CONSOLE)
605 		/*
606 		 * Non-legacy systems may route legacy VGA MMIO range to system
607 		 * memory.  vga_con probes the MMIO hole, so memory looks like
608 		 * a VGA device to it.  The EFI memory map can tell us if it's
609 		 * memory so we can avoid this problem.
610 		 */
611 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
612 			conswitchp = &vga_con;
613 # endif
614 	}
615 #endif
616 
617 	/* enable IA-64 Machine Check Abort Handling unless disabled */
618 	if (!nomca)
619 		ia64_mca_init();
620 
621 	platform_setup(cmdline_p);
622 #ifndef CONFIG_IA64_HP_SIM
623 	check_sal_cache_flush();
624 #endif
625 	paging_init();
626 
627 	clear_sched_clock_stable();
628 }
629 
630 /*
631  * Display cpu info for all CPUs.
632  */
633 static int
show_cpuinfo(struct seq_file * m,void * v)634 show_cpuinfo (struct seq_file *m, void *v)
635 {
636 #ifdef CONFIG_SMP
637 #	define lpj	c->loops_per_jiffy
638 #	define cpunum	c->cpu
639 #else
640 #	define lpj	loops_per_jiffy
641 #	define cpunum	0
642 #endif
643 	static struct {
644 		unsigned long mask;
645 		const char *feature_name;
646 	} feature_bits[] = {
647 		{ 1UL << 0, "branchlong" },
648 		{ 1UL << 1, "spontaneous deferral"},
649 		{ 1UL << 2, "16-byte atomic ops" }
650 	};
651 	char features[128], *cp, *sep;
652 	struct cpuinfo_ia64 *c = v;
653 	unsigned long mask;
654 	unsigned long proc_freq;
655 	int i, size;
656 
657 	mask = c->features;
658 
659 	/* build the feature string: */
660 	memcpy(features, "standard", 9);
661 	cp = features;
662 	size = sizeof(features);
663 	sep = "";
664 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
665 		if (mask & feature_bits[i].mask) {
666 			cp += snprintf(cp, size, "%s%s", sep,
667 				       feature_bits[i].feature_name),
668 			sep = ", ";
669 			mask &= ~feature_bits[i].mask;
670 			size = sizeof(features) - (cp - features);
671 		}
672 	}
673 	if (mask && size > 1) {
674 		/* print unknown features as a hex value */
675 		snprintf(cp, size, "%s0x%lx", sep, mask);
676 	}
677 
678 	proc_freq = cpufreq_quick_get(cpunum);
679 	if (!proc_freq)
680 		proc_freq = c->proc_freq / 1000;
681 
682 	seq_printf(m,
683 		   "processor  : %d\n"
684 		   "vendor     : %s\n"
685 		   "arch       : IA-64\n"
686 		   "family     : %u\n"
687 		   "model      : %u\n"
688 		   "model name : %s\n"
689 		   "revision   : %u\n"
690 		   "archrev    : %u\n"
691 		   "features   : %s\n"
692 		   "cpu number : %lu\n"
693 		   "cpu regs   : %u\n"
694 		   "cpu MHz    : %lu.%03lu\n"
695 		   "itc MHz    : %lu.%06lu\n"
696 		   "BogoMIPS   : %lu.%02lu\n",
697 		   cpunum, c->vendor, c->family, c->model,
698 		   c->model_name, c->revision, c->archrev,
699 		   features, c->ppn, c->number,
700 		   proc_freq / 1000, proc_freq % 1000,
701 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
702 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
703 #ifdef CONFIG_SMP
704 	seq_printf(m, "siblings   : %u\n",
705 		   cpumask_weight(&cpu_core_map[cpunum]));
706 	if (c->socket_id != -1)
707 		seq_printf(m, "physical id: %u\n", c->socket_id);
708 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
709 		seq_printf(m,
710 			   "core id    : %u\n"
711 			   "thread id  : %u\n",
712 			   c->core_id, c->thread_id);
713 #endif
714 	seq_printf(m,"\n");
715 
716 	return 0;
717 }
718 
719 static void *
c_start(struct seq_file * m,loff_t * pos)720 c_start (struct seq_file *m, loff_t *pos)
721 {
722 #ifdef CONFIG_SMP
723 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
724 		++*pos;
725 #endif
726 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
727 }
728 
729 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)730 c_next (struct seq_file *m, void *v, loff_t *pos)
731 {
732 	++*pos;
733 	return c_start(m, pos);
734 }
735 
736 static void
c_stop(struct seq_file * m,void * v)737 c_stop (struct seq_file *m, void *v)
738 {
739 }
740 
741 const struct seq_operations cpuinfo_op = {
742 	.start =	c_start,
743 	.next =		c_next,
744 	.stop =		c_stop,
745 	.show =		show_cpuinfo
746 };
747 
748 #define MAX_BRANDS	8
749 static char brandname[MAX_BRANDS][128];
750 
751 static char *
get_model_name(__u8 family,__u8 model)752 get_model_name(__u8 family, __u8 model)
753 {
754 	static int overflow;
755 	char brand[128];
756 	int i;
757 
758 	memcpy(brand, "Unknown", 8);
759 	if (ia64_pal_get_brand_info(brand)) {
760 		if (family == 0x7)
761 			memcpy(brand, "Merced", 7);
762 		else if (family == 0x1f) switch (model) {
763 			case 0: memcpy(brand, "McKinley", 9); break;
764 			case 1: memcpy(brand, "Madison", 8); break;
765 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
766 		}
767 	}
768 	for (i = 0; i < MAX_BRANDS; i++)
769 		if (strcmp(brandname[i], brand) == 0)
770 			return brandname[i];
771 	for (i = 0; i < MAX_BRANDS; i++)
772 		if (brandname[i][0] == '\0')
773 			return strcpy(brandname[i], brand);
774 	if (overflow++ == 0)
775 		printk(KERN_ERR
776 		       "%s: Table overflow. Some processor model information will be missing\n",
777 		       __func__);
778 	return "Unknown";
779 }
780 
781 static void
identify_cpu(struct cpuinfo_ia64 * c)782 identify_cpu (struct cpuinfo_ia64 *c)
783 {
784 	union {
785 		unsigned long bits[5];
786 		struct {
787 			/* id 0 & 1: */
788 			char vendor[16];
789 
790 			/* id 2 */
791 			u64 ppn;		/* processor serial number */
792 
793 			/* id 3: */
794 			unsigned number		:  8;
795 			unsigned revision	:  8;
796 			unsigned model		:  8;
797 			unsigned family		:  8;
798 			unsigned archrev	:  8;
799 			unsigned reserved	: 24;
800 
801 			/* id 4: */
802 			u64 features;
803 		} field;
804 	} cpuid;
805 	pal_vm_info_1_u_t vm1;
806 	pal_vm_info_2_u_t vm2;
807 	pal_status_t status;
808 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
809 	int i;
810 	for (i = 0; i < 5; ++i)
811 		cpuid.bits[i] = ia64_get_cpuid(i);
812 
813 	memcpy(c->vendor, cpuid.field.vendor, 16);
814 #ifdef CONFIG_SMP
815 	c->cpu = smp_processor_id();
816 
817 	/* below default values will be overwritten  by identify_siblings()
818 	 * for Multi-Threading/Multi-Core capable CPUs
819 	 */
820 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
821 	c->socket_id = -1;
822 
823 	identify_siblings(c);
824 
825 	if (c->threads_per_core > smp_num_siblings)
826 		smp_num_siblings = c->threads_per_core;
827 #endif
828 	c->ppn = cpuid.field.ppn;
829 	c->number = cpuid.field.number;
830 	c->revision = cpuid.field.revision;
831 	c->model = cpuid.field.model;
832 	c->family = cpuid.field.family;
833 	c->archrev = cpuid.field.archrev;
834 	c->features = cpuid.field.features;
835 	c->model_name = get_model_name(c->family, c->model);
836 
837 	status = ia64_pal_vm_summary(&vm1, &vm2);
838 	if (status == PAL_STATUS_SUCCESS) {
839 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
840 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
841 	}
842 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
843 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
844 }
845 
846 /*
847  * Do the following calculations:
848  *
849  * 1. the max. cache line size.
850  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
851  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
852  */
853 static void
get_cache_info(void)854 get_cache_info(void)
855 {
856 	unsigned long line_size, max = 1;
857 	unsigned long l, levels, unique_caches;
858 	pal_cache_config_info_t cci;
859 	long status;
860 
861         status = ia64_pal_cache_summary(&levels, &unique_caches);
862         if (status != 0) {
863                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
864                        __func__, status);
865                 max = SMP_CACHE_BYTES;
866 		/* Safest setup for "flush_icache_range()" */
867 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
868 		/* Safest setup for "clflush_cache_range()" */
869 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
870 		goto out;
871         }
872 
873 	for (l = 0; l < levels; ++l) {
874 		/* cache_type (data_or_unified)=2 */
875 		status = ia64_pal_cache_config_info(l, 2, &cci);
876 		if (status != 0) {
877 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
878 				"(l=%lu, 2) failed (status=%ld)\n",
879 				__func__, l, status);
880 			max = SMP_CACHE_BYTES;
881 			/* The safest setup for "flush_icache_range()" */
882 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
883 			/* The safest setup for "clflush_cache_range()" */
884 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
885 			cci.pcci_unified = 1;
886 		} else {
887 			if (cci.pcci_stride < ia64_cache_stride_shift)
888 				ia64_cache_stride_shift = cci.pcci_stride;
889 
890 			line_size = 1 << cci.pcci_line_size;
891 			if (line_size > max)
892 				max = line_size;
893 		}
894 
895 		if (!cci.pcci_unified) {
896 			/* cache_type (instruction)=1*/
897 			status = ia64_pal_cache_config_info(l, 1, &cci);
898 			if (status != 0) {
899 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
900 					"(l=%lu, 1) failed (status=%ld)\n",
901 					__func__, l, status);
902 				/* The safest setup for flush_icache_range() */
903 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
904 			}
905 		}
906 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
907 			ia64_i_cache_stride_shift = cci.pcci_stride;
908 	}
909   out:
910 	if (max > ia64_max_cacheline_size)
911 		ia64_max_cacheline_size = max;
912 }
913 
914 /*
915  * cpu_init() initializes state that is per-CPU.  This function acts
916  * as a 'CPU state barrier', nothing should get across.
917  */
918 void
cpu_init(void)919 cpu_init (void)
920 {
921 	extern void ia64_mmu_init(void *);
922 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
923 	unsigned long num_phys_stacked;
924 	pal_vm_info_2_u_t vmi;
925 	unsigned int max_ctx;
926 	struct cpuinfo_ia64 *cpu_info;
927 	void *cpu_data;
928 
929 	cpu_data = per_cpu_init();
930 #ifdef CONFIG_SMP
931 	/*
932 	 * insert boot cpu into sibling and core mapes
933 	 * (must be done after per_cpu area is setup)
934 	 */
935 	if (smp_processor_id() == 0) {
936 		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
937 		cpumask_set_cpu(0, &cpu_core_map[0]);
938 	} else {
939 		/*
940 		 * Set ar.k3 so that assembly code in MCA handler can compute
941 		 * physical addresses of per cpu variables with a simple:
942 		 *   phys = ar.k3 + &per_cpu_var
943 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
944 		 * the TLB when needed. head.S already did this for cpu0.
945 		 */
946 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
947 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
948 	}
949 #endif
950 
951 	get_cache_info();
952 
953 	/*
954 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
955 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
956 	 * depends on the data returned by identify_cpu().  We break the dependency by
957 	 * accessing cpu_data() through the canonical per-CPU address.
958 	 */
959 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
960 	identify_cpu(cpu_info);
961 
962 #ifdef CONFIG_MCKINLEY
963 	{
964 #		define FEATURE_SET 16
965 		struct ia64_pal_retval iprv;
966 
967 		if (cpu_info->family == 0x1f) {
968 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
969 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
970 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
971 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
972 		}
973 	}
974 #endif
975 
976 	/* Clear the stack memory reserved for pt_regs: */
977 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
978 
979 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
980 
981 	/*
982 	 * Initialize the page-table base register to a global
983 	 * directory with all zeroes.  This ensure that we can handle
984 	 * TLB-misses to user address-space even before we created the
985 	 * first user address-space.  This may happen, e.g., due to
986 	 * aggressive use of lfetch.fault.
987 	 */
988 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
989 
990 	/*
991 	 * Initialize default control register to defer speculative faults except
992 	 * for those arising from TLB misses, which are not deferred.  The
993 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
994 	 * the kernel must have recovery code for all speculative accesses).  Turn on
995 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
996 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
997 	 * be fine).
998 	 */
999 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1000 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1001 	mmgrab(&init_mm);
1002 	current->active_mm = &init_mm;
1003 	BUG_ON(current->mm);
1004 
1005 	ia64_mmu_init(ia64_imva(cpu_data));
1006 	ia64_mca_cpu_init(ia64_imva(cpu_data));
1007 
1008 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1009 	ia64_set_itc(0);
1010 
1011 	/* disable all local interrupt sources: */
1012 	ia64_set_itv(1 << 16);
1013 	ia64_set_lrr0(1 << 16);
1014 	ia64_set_lrr1(1 << 16);
1015 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1016 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1017 
1018 	/* clear TPR & XTP to enable all interrupt classes: */
1019 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1020 
1021 	/* Clear any pending interrupts left by SAL/EFI */
1022 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1023 		ia64_eoi();
1024 
1025 #ifdef CONFIG_SMP
1026 	normal_xtp();
1027 #endif
1028 
1029 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1030 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1031 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1032 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1033 	} else {
1034 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1035 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1036 	}
1037 	while (max_ctx < ia64_ctx.max_ctx) {
1038 		unsigned int old = ia64_ctx.max_ctx;
1039 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1040 			break;
1041 	}
1042 
1043 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1044 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1045 		       "stacked regs\n");
1046 		num_phys_stacked = 96;
1047 	}
1048 	/* size of physical stacked register partition plus 8 bytes: */
1049 	if (num_phys_stacked > max_num_phys_stacked) {
1050 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1051 		max_num_phys_stacked = num_phys_stacked;
1052 	}
1053 	platform_cpu_init();
1054 }
1055 
1056 void __init
check_bugs(void)1057 check_bugs (void)
1058 {
1059 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1060 			       (unsigned long) __end___mckinley_e9_bundles);
1061 }
1062 
run_dmi_scan(void)1063 static int __init run_dmi_scan(void)
1064 {
1065 	dmi_scan_machine();
1066 	dmi_memdev_walk();
1067 	dmi_set_dump_stack_arch_desc();
1068 	return 0;
1069 }
1070 core_initcall(run_dmi_scan);
1071