1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68
69 /*
70 * Low level drivers may need that to know if they can schedule in
71 * their unblank() callback or not. So let's export it.
72 */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75
76 /*
77 * console_sem protects the console_drivers list, and also
78 * provides serialisation for access to the entire console
79 * driver system.
80 */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 .name = "console_lock"
88 };
89 #endif
90
91 enum devkmsg_log_bits {
92 __DEVKMSG_LOG_BIT_ON = 0,
93 __DEVKMSG_LOG_BIT_OFF,
94 __DEVKMSG_LOG_BIT_LOCK,
95 };
96
97 enum devkmsg_log_masks {
98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT 0
105
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107
__control_devkmsg(char * str)108 static int __control_devkmsg(char *str)
109 {
110 if (!str)
111 return -EINVAL;
112
113 if (!strncmp(str, "on", 2)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 return 2;
116 } else if (!strncmp(str, "off", 3)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 return 3;
119 } else if (!strncmp(str, "ratelimit", 9)) {
120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 return 9;
122 }
123 return -EINVAL;
124 }
125
control_devkmsg(char * str)126 static int __init control_devkmsg(char *str)
127 {
128 if (__control_devkmsg(str) < 0)
129 return 1;
130
131 /*
132 * Set sysctl string accordingly:
133 */
134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "on", 2);
137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 strncpy(devkmsg_log_str, "off", 3);
140 }
141 /* else "ratelimit" which is set by default. */
142
143 /*
144 * Sysctl cannot change it anymore. The kernel command line setting of
145 * this parameter is to force the setting to be permanent throughout the
146 * runtime of the system. This is a precation measure against userspace
147 * trying to be a smarta** and attempting to change it up on us.
148 */
149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150
151 return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 char old_str[DEVKMSG_STR_MAX_SIZE];
161 unsigned int old;
162 int err;
163
164 if (write) {
165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 return -EINVAL;
167
168 old = devkmsg_log;
169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 }
171
172 err = proc_dostring(table, write, buffer, lenp, ppos);
173 if (err)
174 return err;
175
176 if (write) {
177 err = __control_devkmsg(devkmsg_log_str);
178
179 /*
180 * Do not accept an unknown string OR a known string with
181 * trailing crap...
182 */
183 if (err < 0 || (err + 1 != *lenp)) {
184
185 /* ... and restore old setting. */
186 devkmsg_log = old;
187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188
189 return -EINVAL;
190 }
191 }
192
193 return 0;
194 }
195
196 /*
197 * Number of registered extended console drivers.
198 *
199 * If extended consoles are present, in-kernel cont reassembly is disabled
200 * and each fragment is stored as a separate log entry with proper
201 * continuation flag so that every emitted message has full metadata. This
202 * doesn't change the result for regular consoles or /proc/kmsg. For
203 * /dev/kmsg, as long as the reader concatenates messages according to
204 * consecutive continuation flags, the end result should be the same too.
205 */
206 static int nr_ext_console_drivers;
207
208 /*
209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210 * macros instead of functions so that _RET_IP_ contains useful information.
211 */
212 #define down_console_sem() do { \
213 down(&console_sem);\
214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216
__down_trylock_console_sem(unsigned long ip)217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 int lock_failed;
220 unsigned long flags;
221
222 /*
223 * Here and in __up_console_sem() we need to be in safe mode,
224 * because spindump/WARN/etc from under console ->lock will
225 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 */
227 printk_safe_enter_irqsave(flags);
228 lock_failed = down_trylock(&console_sem);
229 printk_safe_exit_irqrestore(flags);
230
231 if (lock_failed)
232 return 1;
233 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237
__up_console_sem(unsigned long ip)238 static void __up_console_sem(unsigned long ip)
239 {
240 unsigned long flags;
241
242 mutex_release(&console_lock_dep_map, 1, ip);
243
244 printk_safe_enter_irqsave(flags);
245 up(&console_sem);
246 printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249
250 /*
251 * This is used for debugging the mess that is the VT code by
252 * keeping track if we have the console semaphore held. It's
253 * definitely not the perfect debug tool (we don't know if _WE_
254 * hold it and are racing, but it helps tracking those weird code
255 * paths in the console code where we end up in places I want
256 * locked without the console sempahore held).
257 */
258 static int console_locked, console_suspended;
259
260 /*
261 * If exclusive_console is non-NULL then only this console is to be printed to.
262 */
263 static struct console *exclusive_console;
264
265 /*
266 * Array of consoles built from command line options (console=)
267 */
268
269 #define MAX_CMDLINECONSOLES 8
270
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279
280 /*
281 * The printk log buffer consists of a chain of concatenated variable
282 * length records. Every record starts with a record header, containing
283 * the overall length of the record.
284 *
285 * The heads to the first and last entry in the buffer, as well as the
286 * sequence numbers of these entries are maintained when messages are
287 * stored.
288 *
289 * If the heads indicate available messages, the length in the header
290 * tells the start next message. A length == 0 for the next message
291 * indicates a wrap-around to the beginning of the buffer.
292 *
293 * Every record carries the monotonic timestamp in microseconds, as well as
294 * the standard userspace syslog level and syslog facility. The usual
295 * kernel messages use LOG_KERN; userspace-injected messages always carry
296 * a matching syslog facility, by default LOG_USER. The origin of every
297 * message can be reliably determined that way.
298 *
299 * The human readable log message directly follows the message header. The
300 * length of the message text is stored in the header, the stored message
301 * is not terminated.
302 *
303 * Optionally, a message can carry a dictionary of properties (key/value pairs),
304 * to provide userspace with a machine-readable message context.
305 *
306 * Examples for well-defined, commonly used property names are:
307 * DEVICE=b12:8 device identifier
308 * b12:8 block dev_t
309 * c127:3 char dev_t
310 * n8 netdev ifindex
311 * +sound:card0 subsystem:devname
312 * SUBSYSTEM=pci driver-core subsystem name
313 *
314 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315 * follows directly after a '=' character. Every property is terminated by
316 * a '\0' character. The last property is not terminated.
317 *
318 * Example of a message structure:
319 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
320 * 0008 34 00 record is 52 bytes long
321 * 000a 0b 00 text is 11 bytes long
322 * 000c 1f 00 dictionary is 23 bytes long
323 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
324 * 0010 69 74 27 73 20 61 20 6c "it's a l"
325 * 69 6e 65 "ine"
326 * 001b 44 45 56 49 43 "DEVIC"
327 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
328 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
329 * 67 "g"
330 * 0032 00 00 00 padding to next message header
331 *
332 * The 'struct printk_log' buffer header must never be directly exported to
333 * userspace, it is a kernel-private implementation detail that might
334 * need to be changed in the future, when the requirements change.
335 *
336 * /dev/kmsg exports the structured data in the following line format:
337 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338 *
339 * Users of the export format should ignore possible additional values
340 * separated by ',', and find the message after the ';' character.
341 *
342 * The optional key/value pairs are attached as continuation lines starting
343 * with a space character and terminated by a newline. All possible
344 * non-prinatable characters are escaped in the "\xff" notation.
345 */
346
347 enum log_flags {
348 LOG_NOCONS = 1, /* already flushed, do not print to console */
349 LOG_NEWLINE = 2, /* text ended with a newline */
350 LOG_PREFIX = 4, /* text started with a prefix */
351 LOG_CONT = 8, /* text is a fragment of a continuation line */
352 };
353
354 struct printk_log {
355 u64 ts_nsec; /* timestamp in nanoseconds */
356 u16 len; /* length of entire record */
357 u16 text_len; /* length of text buffer */
358 u16 dict_len; /* length of dictionary buffer */
359 u8 facility; /* syslog facility */
360 u8 flags:5; /* internal record flags */
361 u8 level:3; /* syslog level */
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367
368 /*
369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
370 * within the scheduler's rq lock. It must be released before calling
371 * console_unlock() or anything else that might wake up a process.
372 */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374
375 /*
376 * Helper macros to lock/unlock logbuf_lock and switch between
377 * printk-safe/unsafe modes.
378 */
379 #define logbuf_lock_irq() \
380 do { \
381 printk_safe_enter_irq(); \
382 raw_spin_lock(&logbuf_lock); \
383 } while (0)
384
385 #define logbuf_unlock_irq() \
386 do { \
387 raw_spin_unlock(&logbuf_lock); \
388 printk_safe_exit_irq(); \
389 } while (0)
390
391 #define logbuf_lock_irqsave(flags) \
392 do { \
393 printk_safe_enter_irqsave(flags); \
394 raw_spin_lock(&logbuf_lock); \
395 } while (0)
396
397 #define logbuf_unlock_irqrestore(flags) \
398 do { \
399 raw_spin_unlock(&logbuf_lock); \
400 printk_safe_exit_irqrestore(flags); \
401 } while (0)
402
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421
422 /* the next printk record to read after the last 'clear' command */
423 static u64 clear_seq;
424 static u32 clear_idx;
425
426 #define PREFIX_MAX 32
427 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
428
429 #define LOG_LEVEL(v) ((v) & 0x07)
430 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
431
432 /* record buffer */
433 #define LOG_ALIGN __alignof__(struct printk_log)
434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
436 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
437 static char *log_buf = __log_buf;
438 static u32 log_buf_len = __LOG_BUF_LEN;
439
440 /* Return log buffer address */
log_buf_addr_get(void)441 char *log_buf_addr_get(void)
442 {
443 return log_buf;
444 }
445
446 /* Return log buffer size */
log_buf_len_get(void)447 u32 log_buf_len_get(void)
448 {
449 return log_buf_len;
450 }
451
452 /* human readable text of the record */
log_text(const struct printk_log * msg)453 static char *log_text(const struct printk_log *msg)
454 {
455 return (char *)msg + sizeof(struct printk_log);
456 }
457
458 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)459 static char *log_dict(const struct printk_log *msg)
460 {
461 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
462 }
463
464 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)465 static struct printk_log *log_from_idx(u32 idx)
466 {
467 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
468
469 /*
470 * A length == 0 record is the end of buffer marker. Wrap around and
471 * read the message at the start of the buffer.
472 */
473 if (!msg->len)
474 return (struct printk_log *)log_buf;
475 return msg;
476 }
477
478 /* get next record; idx must point to valid msg */
log_next(u32 idx)479 static u32 log_next(u32 idx)
480 {
481 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
482
483 /* length == 0 indicates the end of the buffer; wrap */
484 /*
485 * A length == 0 record is the end of buffer marker. Wrap around and
486 * read the message at the start of the buffer as *this* one, and
487 * return the one after that.
488 */
489 if (!msg->len) {
490 msg = (struct printk_log *)log_buf;
491 return msg->len;
492 }
493 return idx + msg->len;
494 }
495
496 /*
497 * Check whether there is enough free space for the given message.
498 *
499 * The same values of first_idx and next_idx mean that the buffer
500 * is either empty or full.
501 *
502 * If the buffer is empty, we must respect the position of the indexes.
503 * They cannot be reset to the beginning of the buffer.
504 */
logbuf_has_space(u32 msg_size,bool empty)505 static int logbuf_has_space(u32 msg_size, bool empty)
506 {
507 u32 free;
508
509 if (log_next_idx > log_first_idx || empty)
510 free = max(log_buf_len - log_next_idx, log_first_idx);
511 else
512 free = log_first_idx - log_next_idx;
513
514 /*
515 * We need space also for an empty header that signalizes wrapping
516 * of the buffer.
517 */
518 return free >= msg_size + sizeof(struct printk_log);
519 }
520
log_make_free_space(u32 msg_size)521 static int log_make_free_space(u32 msg_size)
522 {
523 while (log_first_seq < log_next_seq &&
524 !logbuf_has_space(msg_size, false)) {
525 /* drop old messages until we have enough contiguous space */
526 log_first_idx = log_next(log_first_idx);
527 log_first_seq++;
528 }
529
530 if (clear_seq < log_first_seq) {
531 clear_seq = log_first_seq;
532 clear_idx = log_first_idx;
533 }
534
535 /* sequence numbers are equal, so the log buffer is empty */
536 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
537 return 0;
538
539 return -ENOMEM;
540 }
541
542 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)543 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
544 {
545 u32 size;
546
547 size = sizeof(struct printk_log) + text_len + dict_len;
548 *pad_len = (-size) & (LOG_ALIGN - 1);
549 size += *pad_len;
550
551 return size;
552 }
553
554 /*
555 * Define how much of the log buffer we could take at maximum. The value
556 * must be greater than two. Note that only half of the buffer is available
557 * when the index points to the middle.
558 */
559 #define MAX_LOG_TAKE_PART 4
560 static const char trunc_msg[] = "<truncated>";
561
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)562 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
563 u16 *dict_len, u32 *pad_len)
564 {
565 /*
566 * The message should not take the whole buffer. Otherwise, it might
567 * get removed too soon.
568 */
569 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
570 if (*text_len > max_text_len)
571 *text_len = max_text_len;
572 /* enable the warning message */
573 *trunc_msg_len = strlen(trunc_msg);
574 /* disable the "dict" completely */
575 *dict_len = 0;
576 /* compute the size again, count also the warning message */
577 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
578 }
579
580 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)581 static int log_store(int facility, int level,
582 enum log_flags flags, u64 ts_nsec,
583 const char *dict, u16 dict_len,
584 const char *text, u16 text_len)
585 {
586 struct printk_log *msg;
587 u32 size, pad_len;
588 u16 trunc_msg_len = 0;
589
590 /* number of '\0' padding bytes to next message */
591 size = msg_used_size(text_len, dict_len, &pad_len);
592
593 if (log_make_free_space(size)) {
594 /* truncate the message if it is too long for empty buffer */
595 size = truncate_msg(&text_len, &trunc_msg_len,
596 &dict_len, &pad_len);
597 /* survive when the log buffer is too small for trunc_msg */
598 if (log_make_free_space(size))
599 return 0;
600 }
601
602 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
603 /*
604 * This message + an additional empty header does not fit
605 * at the end of the buffer. Add an empty header with len == 0
606 * to signify a wrap around.
607 */
608 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
609 log_next_idx = 0;
610 }
611
612 /* fill message */
613 msg = (struct printk_log *)(log_buf + log_next_idx);
614 memcpy(log_text(msg), text, text_len);
615 msg->text_len = text_len;
616 if (trunc_msg_len) {
617 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
618 msg->text_len += trunc_msg_len;
619 }
620 memcpy(log_dict(msg), dict, dict_len);
621 msg->dict_len = dict_len;
622 msg->facility = facility;
623 msg->level = level & 7;
624 msg->flags = flags & 0x1f;
625 if (ts_nsec > 0)
626 msg->ts_nsec = ts_nsec;
627 else
628 msg->ts_nsec = local_clock();
629 memset(log_dict(msg) + dict_len, 0, pad_len);
630 msg->len = size;
631
632 /* insert message */
633 log_next_idx += msg->len;
634 log_next_seq++;
635
636 return msg->text_len;
637 }
638
639 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
640
syslog_action_restricted(int type)641 static int syslog_action_restricted(int type)
642 {
643 if (dmesg_restrict)
644 return 1;
645 /*
646 * Unless restricted, we allow "read all" and "get buffer size"
647 * for everybody.
648 */
649 return type != SYSLOG_ACTION_READ_ALL &&
650 type != SYSLOG_ACTION_SIZE_BUFFER;
651 }
652
check_syslog_permissions(int type,int source)653 static int check_syslog_permissions(int type, int source)
654 {
655 /*
656 * If this is from /proc/kmsg and we've already opened it, then we've
657 * already done the capabilities checks at open time.
658 */
659 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
660 goto ok;
661
662 if (syslog_action_restricted(type)) {
663 if (capable(CAP_SYSLOG))
664 goto ok;
665 /*
666 * For historical reasons, accept CAP_SYS_ADMIN too, with
667 * a warning.
668 */
669 if (capable(CAP_SYS_ADMIN)) {
670 pr_warn_once("%s (%d): Attempt to access syslog with "
671 "CAP_SYS_ADMIN but no CAP_SYSLOG "
672 "(deprecated).\n",
673 current->comm, task_pid_nr(current));
674 goto ok;
675 }
676 return -EPERM;
677 }
678 ok:
679 return security_syslog(type);
680 }
681
append_char(char ** pp,char * e,char c)682 static void append_char(char **pp, char *e, char c)
683 {
684 if (*pp < e)
685 *(*pp)++ = c;
686 }
687
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)688 static ssize_t msg_print_ext_header(char *buf, size_t size,
689 struct printk_log *msg, u64 seq)
690 {
691 u64 ts_usec = msg->ts_nsec;
692
693 do_div(ts_usec, 1000);
694
695 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
696 (msg->facility << 3) | msg->level, seq, ts_usec,
697 msg->flags & LOG_CONT ? 'c' : '-');
698 }
699
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)700 static ssize_t msg_print_ext_body(char *buf, size_t size,
701 char *dict, size_t dict_len,
702 char *text, size_t text_len)
703 {
704 char *p = buf, *e = buf + size;
705 size_t i;
706
707 /* escape non-printable characters */
708 for (i = 0; i < text_len; i++) {
709 unsigned char c = text[i];
710
711 if (c < ' ' || c >= 127 || c == '\\')
712 p += scnprintf(p, e - p, "\\x%02x", c);
713 else
714 append_char(&p, e, c);
715 }
716 append_char(&p, e, '\n');
717
718 if (dict_len) {
719 bool line = true;
720
721 for (i = 0; i < dict_len; i++) {
722 unsigned char c = dict[i];
723
724 if (line) {
725 append_char(&p, e, ' ');
726 line = false;
727 }
728
729 if (c == '\0') {
730 append_char(&p, e, '\n');
731 line = true;
732 continue;
733 }
734
735 if (c < ' ' || c >= 127 || c == '\\') {
736 p += scnprintf(p, e - p, "\\x%02x", c);
737 continue;
738 }
739
740 append_char(&p, e, c);
741 }
742 append_char(&p, e, '\n');
743 }
744
745 return p - buf;
746 }
747
748 /* /dev/kmsg - userspace message inject/listen interface */
749 struct devkmsg_user {
750 u64 seq;
751 u32 idx;
752 struct ratelimit_state rs;
753 struct mutex lock;
754 char buf[CONSOLE_EXT_LOG_MAX];
755 };
756
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)757 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
758 {
759 char *buf, *line;
760 int level = default_message_loglevel;
761 int facility = 1; /* LOG_USER */
762 struct file *file = iocb->ki_filp;
763 struct devkmsg_user *user = file->private_data;
764 size_t len = iov_iter_count(from);
765 ssize_t ret = len;
766
767 if (!user || len > LOG_LINE_MAX)
768 return -EINVAL;
769
770 /* Ignore when user logging is disabled. */
771 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
772 return len;
773
774 /* Ratelimit when not explicitly enabled. */
775 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
776 if (!___ratelimit(&user->rs, current->comm))
777 return ret;
778 }
779
780 buf = kmalloc(len+1, GFP_KERNEL);
781 if (buf == NULL)
782 return -ENOMEM;
783
784 buf[len] = '\0';
785 if (!copy_from_iter_full(buf, len, from)) {
786 kfree(buf);
787 return -EFAULT;
788 }
789
790 /*
791 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
792 * the decimal value represents 32bit, the lower 3 bit are the log
793 * level, the rest are the log facility.
794 *
795 * If no prefix or no userspace facility is specified, we
796 * enforce LOG_USER, to be able to reliably distinguish
797 * kernel-generated messages from userspace-injected ones.
798 */
799 line = buf;
800 if (line[0] == '<') {
801 char *endp = NULL;
802 unsigned int u;
803
804 u = simple_strtoul(line + 1, &endp, 10);
805 if (endp && endp[0] == '>') {
806 level = LOG_LEVEL(u);
807 if (LOG_FACILITY(u) != 0)
808 facility = LOG_FACILITY(u);
809 endp++;
810 len -= endp - line;
811 line = endp;
812 }
813 }
814
815 printk_emit(facility, level, NULL, 0, "%s", line);
816 kfree(buf);
817 return ret;
818 }
819
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)820 static ssize_t devkmsg_read(struct file *file, char __user *buf,
821 size_t count, loff_t *ppos)
822 {
823 struct devkmsg_user *user = file->private_data;
824 struct printk_log *msg;
825 size_t len;
826 ssize_t ret;
827
828 if (!user)
829 return -EBADF;
830
831 ret = mutex_lock_interruptible(&user->lock);
832 if (ret)
833 return ret;
834
835 logbuf_lock_irq();
836 while (user->seq == log_next_seq) {
837 if (file->f_flags & O_NONBLOCK) {
838 ret = -EAGAIN;
839 logbuf_unlock_irq();
840 goto out;
841 }
842
843 logbuf_unlock_irq();
844 ret = wait_event_interruptible(log_wait,
845 user->seq != log_next_seq);
846 if (ret)
847 goto out;
848 logbuf_lock_irq();
849 }
850
851 if (user->seq < log_first_seq) {
852 /* our last seen message is gone, return error and reset */
853 user->idx = log_first_idx;
854 user->seq = log_first_seq;
855 ret = -EPIPE;
856 logbuf_unlock_irq();
857 goto out;
858 }
859
860 msg = log_from_idx(user->idx);
861 len = msg_print_ext_header(user->buf, sizeof(user->buf),
862 msg, user->seq);
863 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
864 log_dict(msg), msg->dict_len,
865 log_text(msg), msg->text_len);
866
867 user->idx = log_next(user->idx);
868 user->seq++;
869 logbuf_unlock_irq();
870
871 if (len > count) {
872 ret = -EINVAL;
873 goto out;
874 }
875
876 if (copy_to_user(buf, user->buf, len)) {
877 ret = -EFAULT;
878 goto out;
879 }
880 ret = len;
881 out:
882 mutex_unlock(&user->lock);
883 return ret;
884 }
885
devkmsg_llseek(struct file * file,loff_t offset,int whence)886 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
887 {
888 struct devkmsg_user *user = file->private_data;
889 loff_t ret = 0;
890
891 if (!user)
892 return -EBADF;
893 if (offset)
894 return -ESPIPE;
895
896 logbuf_lock_irq();
897 switch (whence) {
898 case SEEK_SET:
899 /* the first record */
900 user->idx = log_first_idx;
901 user->seq = log_first_seq;
902 break;
903 case SEEK_DATA:
904 /*
905 * The first record after the last SYSLOG_ACTION_CLEAR,
906 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
907 * changes no global state, and does not clear anything.
908 */
909 user->idx = clear_idx;
910 user->seq = clear_seq;
911 break;
912 case SEEK_END:
913 /* after the last record */
914 user->idx = log_next_idx;
915 user->seq = log_next_seq;
916 break;
917 default:
918 ret = -EINVAL;
919 }
920 logbuf_unlock_irq();
921 return ret;
922 }
923
devkmsg_poll(struct file * file,poll_table * wait)924 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
925 {
926 struct devkmsg_user *user = file->private_data;
927 int ret = 0;
928
929 if (!user)
930 return POLLERR|POLLNVAL;
931
932 poll_wait(file, &log_wait, wait);
933
934 logbuf_lock_irq();
935 if (user->seq < log_next_seq) {
936 /* return error when data has vanished underneath us */
937 if (user->seq < log_first_seq)
938 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
939 else
940 ret = POLLIN|POLLRDNORM;
941 }
942 logbuf_unlock_irq();
943
944 return ret;
945 }
946
devkmsg_open(struct inode * inode,struct file * file)947 static int devkmsg_open(struct inode *inode, struct file *file)
948 {
949 struct devkmsg_user *user;
950 int err;
951
952 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
953 return -EPERM;
954
955 /* write-only does not need any file context */
956 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
957 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
958 SYSLOG_FROM_READER);
959 if (err)
960 return err;
961 }
962
963 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
964 if (!user)
965 return -ENOMEM;
966
967 ratelimit_default_init(&user->rs);
968 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
969
970 mutex_init(&user->lock);
971
972 logbuf_lock_irq();
973 user->idx = log_first_idx;
974 user->seq = log_first_seq;
975 logbuf_unlock_irq();
976
977 file->private_data = user;
978 return 0;
979 }
980
devkmsg_release(struct inode * inode,struct file * file)981 static int devkmsg_release(struct inode *inode, struct file *file)
982 {
983 struct devkmsg_user *user = file->private_data;
984
985 if (!user)
986 return 0;
987
988 ratelimit_state_exit(&user->rs);
989
990 mutex_destroy(&user->lock);
991 kfree(user);
992 return 0;
993 }
994
995 const struct file_operations kmsg_fops = {
996 .open = devkmsg_open,
997 .read = devkmsg_read,
998 .write_iter = devkmsg_write,
999 .llseek = devkmsg_llseek,
1000 .poll = devkmsg_poll,
1001 .release = devkmsg_release,
1002 };
1003
1004 #ifdef CONFIG_CRASH_CORE
1005 /*
1006 * This appends the listed symbols to /proc/vmcore
1007 *
1008 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1009 * obtain access to symbols that are otherwise very difficult to locate. These
1010 * symbols are specifically used so that utilities can access and extract the
1011 * dmesg log from a vmcore file after a crash.
1012 */
log_buf_vmcoreinfo_setup(void)1013 void log_buf_vmcoreinfo_setup(void)
1014 {
1015 VMCOREINFO_SYMBOL(log_buf);
1016 VMCOREINFO_SYMBOL(log_buf_len);
1017 VMCOREINFO_SYMBOL(log_first_idx);
1018 VMCOREINFO_SYMBOL(clear_idx);
1019 VMCOREINFO_SYMBOL(log_next_idx);
1020 /*
1021 * Export struct printk_log size and field offsets. User space tools can
1022 * parse it and detect any changes to structure down the line.
1023 */
1024 VMCOREINFO_STRUCT_SIZE(printk_log);
1025 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1026 VMCOREINFO_OFFSET(printk_log, len);
1027 VMCOREINFO_OFFSET(printk_log, text_len);
1028 VMCOREINFO_OFFSET(printk_log, dict_len);
1029 }
1030 #endif
1031
1032 /* requested log_buf_len from kernel cmdline */
1033 static unsigned long __initdata new_log_buf_len;
1034
1035 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1036 static void __init log_buf_len_update(u64 size)
1037 {
1038 if (size > (u64)LOG_BUF_LEN_MAX) {
1039 size = (u64)LOG_BUF_LEN_MAX;
1040 pr_err("log_buf over 2G is not supported.\n");
1041 }
1042
1043 if (size)
1044 size = roundup_pow_of_two(size);
1045 if (size > log_buf_len)
1046 new_log_buf_len = (unsigned long)size;
1047 }
1048
1049 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1050 static int __init log_buf_len_setup(char *str)
1051 {
1052 u64 size;
1053
1054 if (!str)
1055 return -EINVAL;
1056
1057 size = memparse(str, &str);
1058
1059 log_buf_len_update(size);
1060
1061 return 0;
1062 }
1063 early_param("log_buf_len", log_buf_len_setup);
1064
1065 #ifdef CONFIG_SMP
1066 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1067
log_buf_add_cpu(void)1068 static void __init log_buf_add_cpu(void)
1069 {
1070 unsigned int cpu_extra;
1071
1072 /*
1073 * archs should set up cpu_possible_bits properly with
1074 * set_cpu_possible() after setup_arch() but just in
1075 * case lets ensure this is valid.
1076 */
1077 if (num_possible_cpus() == 1)
1078 return;
1079
1080 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1081
1082 /* by default this will only continue through for large > 64 CPUs */
1083 if (cpu_extra <= __LOG_BUF_LEN / 2)
1084 return;
1085
1086 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1087 __LOG_CPU_MAX_BUF_LEN);
1088 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1089 cpu_extra);
1090 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1091
1092 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1093 }
1094 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1095 static inline void log_buf_add_cpu(void) {}
1096 #endif /* CONFIG_SMP */
1097
setup_log_buf(int early)1098 void __init setup_log_buf(int early)
1099 {
1100 unsigned long flags;
1101 char *new_log_buf;
1102 unsigned int free;
1103
1104 if (log_buf != __log_buf)
1105 return;
1106
1107 if (!early && !new_log_buf_len)
1108 log_buf_add_cpu();
1109
1110 if (!new_log_buf_len)
1111 return;
1112
1113 if (early) {
1114 new_log_buf =
1115 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1116 } else {
1117 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1118 LOG_ALIGN);
1119 }
1120
1121 if (unlikely(!new_log_buf)) {
1122 pr_err("log_buf_len: %lu bytes not available\n",
1123 new_log_buf_len);
1124 return;
1125 }
1126
1127 logbuf_lock_irqsave(flags);
1128 log_buf_len = new_log_buf_len;
1129 log_buf = new_log_buf;
1130 new_log_buf_len = 0;
1131 free = __LOG_BUF_LEN - log_next_idx;
1132 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1133 logbuf_unlock_irqrestore(flags);
1134
1135 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1136 pr_info("early log buf free: %u(%u%%)\n",
1137 free, (free * 100) / __LOG_BUF_LEN);
1138 }
1139
1140 static bool __read_mostly ignore_loglevel;
1141
ignore_loglevel_setup(char * str)1142 static int __init ignore_loglevel_setup(char *str)
1143 {
1144 ignore_loglevel = true;
1145 pr_info("debug: ignoring loglevel setting.\n");
1146
1147 return 0;
1148 }
1149
1150 early_param("ignore_loglevel", ignore_loglevel_setup);
1151 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1152 MODULE_PARM_DESC(ignore_loglevel,
1153 "ignore loglevel setting (prints all kernel messages to the console)");
1154
suppress_message_printing(int level)1155 static bool suppress_message_printing(int level)
1156 {
1157 return (level >= console_loglevel && !ignore_loglevel);
1158 }
1159
1160 #ifdef CONFIG_BOOT_PRINTK_DELAY
1161
1162 static int boot_delay; /* msecs delay after each printk during bootup */
1163 static unsigned long long loops_per_msec; /* based on boot_delay */
1164
boot_delay_setup(char * str)1165 static int __init boot_delay_setup(char *str)
1166 {
1167 unsigned long lpj;
1168
1169 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1170 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1171
1172 get_option(&str, &boot_delay);
1173 if (boot_delay > 10 * 1000)
1174 boot_delay = 0;
1175
1176 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1177 "HZ: %d, loops_per_msec: %llu\n",
1178 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1179 return 0;
1180 }
1181 early_param("boot_delay", boot_delay_setup);
1182
boot_delay_msec(int level)1183 static void boot_delay_msec(int level)
1184 {
1185 unsigned long long k;
1186 unsigned long timeout;
1187
1188 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1189 || suppress_message_printing(level)) {
1190 return;
1191 }
1192
1193 k = (unsigned long long)loops_per_msec * boot_delay;
1194
1195 timeout = jiffies + msecs_to_jiffies(boot_delay);
1196 while (k) {
1197 k--;
1198 cpu_relax();
1199 /*
1200 * use (volatile) jiffies to prevent
1201 * compiler reduction; loop termination via jiffies
1202 * is secondary and may or may not happen.
1203 */
1204 if (time_after(jiffies, timeout))
1205 break;
1206 touch_nmi_watchdog();
1207 }
1208 }
1209 #else
boot_delay_msec(int level)1210 static inline void boot_delay_msec(int level)
1211 {
1212 }
1213 #endif
1214
1215 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1216 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1217
print_time(u64 ts,char * buf)1218 static size_t print_time(u64 ts, char *buf)
1219 {
1220 unsigned long rem_nsec;
1221
1222 if (!printk_time)
1223 return 0;
1224
1225 rem_nsec = do_div(ts, 1000000000);
1226
1227 if (!buf)
1228 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1229
1230 return sprintf(buf, "[%5lu.%06lu] ",
1231 (unsigned long)ts, rem_nsec / 1000);
1232 }
1233
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1234 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1235 {
1236 size_t len = 0;
1237 unsigned int prefix = (msg->facility << 3) | msg->level;
1238
1239 if (syslog) {
1240 if (buf) {
1241 len += sprintf(buf, "<%u>", prefix);
1242 } else {
1243 len += 3;
1244 if (prefix > 999)
1245 len += 3;
1246 else if (prefix > 99)
1247 len += 2;
1248 else if (prefix > 9)
1249 len++;
1250 }
1251 }
1252
1253 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1254 return len;
1255 }
1256
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)1257 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1258 {
1259 const char *text = log_text(msg);
1260 size_t text_size = msg->text_len;
1261 size_t len = 0;
1262
1263 do {
1264 const char *next = memchr(text, '\n', text_size);
1265 size_t text_len;
1266
1267 if (next) {
1268 text_len = next - text;
1269 next++;
1270 text_size -= next - text;
1271 } else {
1272 text_len = text_size;
1273 }
1274
1275 if (buf) {
1276 if (print_prefix(msg, syslog, NULL) +
1277 text_len + 1 >= size - len)
1278 break;
1279
1280 len += print_prefix(msg, syslog, buf + len);
1281 memcpy(buf + len, text, text_len);
1282 len += text_len;
1283 buf[len++] = '\n';
1284 } else {
1285 /* SYSLOG_ACTION_* buffer size only calculation */
1286 len += print_prefix(msg, syslog, NULL);
1287 len += text_len;
1288 len++;
1289 }
1290
1291 text = next;
1292 } while (text);
1293
1294 return len;
1295 }
1296
syslog_print(char __user * buf,int size)1297 static int syslog_print(char __user *buf, int size)
1298 {
1299 char *text;
1300 struct printk_log *msg;
1301 int len = 0;
1302
1303 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1304 if (!text)
1305 return -ENOMEM;
1306
1307 while (size > 0) {
1308 size_t n;
1309 size_t skip;
1310
1311 logbuf_lock_irq();
1312 if (syslog_seq < log_first_seq) {
1313 /* messages are gone, move to first one */
1314 syslog_seq = log_first_seq;
1315 syslog_idx = log_first_idx;
1316 syslog_partial = 0;
1317 }
1318 if (syslog_seq == log_next_seq) {
1319 logbuf_unlock_irq();
1320 break;
1321 }
1322
1323 skip = syslog_partial;
1324 msg = log_from_idx(syslog_idx);
1325 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1326 if (n - syslog_partial <= size) {
1327 /* message fits into buffer, move forward */
1328 syslog_idx = log_next(syslog_idx);
1329 syslog_seq++;
1330 n -= syslog_partial;
1331 syslog_partial = 0;
1332 } else if (!len){
1333 /* partial read(), remember position */
1334 n = size;
1335 syslog_partial += n;
1336 } else
1337 n = 0;
1338 logbuf_unlock_irq();
1339
1340 if (!n)
1341 break;
1342
1343 if (copy_to_user(buf, text + skip, n)) {
1344 if (!len)
1345 len = -EFAULT;
1346 break;
1347 }
1348
1349 len += n;
1350 size -= n;
1351 buf += n;
1352 }
1353
1354 kfree(text);
1355 return len;
1356 }
1357
syslog_print_all(char __user * buf,int size,bool clear)1358 static int syslog_print_all(char __user *buf, int size, bool clear)
1359 {
1360 char *text;
1361 int len = 0;
1362
1363 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1364 if (!text)
1365 return -ENOMEM;
1366
1367 logbuf_lock_irq();
1368 if (buf) {
1369 u64 next_seq;
1370 u64 seq;
1371 u32 idx;
1372
1373 /*
1374 * Find first record that fits, including all following records,
1375 * into the user-provided buffer for this dump.
1376 */
1377 seq = clear_seq;
1378 idx = clear_idx;
1379 while (seq < log_next_seq) {
1380 struct printk_log *msg = log_from_idx(idx);
1381
1382 len += msg_print_text(msg, true, NULL, 0);
1383 idx = log_next(idx);
1384 seq++;
1385 }
1386
1387 /* move first record forward until length fits into the buffer */
1388 seq = clear_seq;
1389 idx = clear_idx;
1390 while (len > size && seq < log_next_seq) {
1391 struct printk_log *msg = log_from_idx(idx);
1392
1393 len -= msg_print_text(msg, true, NULL, 0);
1394 idx = log_next(idx);
1395 seq++;
1396 }
1397
1398 /* last message fitting into this dump */
1399 next_seq = log_next_seq;
1400
1401 len = 0;
1402 while (len >= 0 && seq < next_seq) {
1403 struct printk_log *msg = log_from_idx(idx);
1404 int textlen;
1405
1406 textlen = msg_print_text(msg, true, text,
1407 LOG_LINE_MAX + PREFIX_MAX);
1408 if (textlen < 0) {
1409 len = textlen;
1410 break;
1411 }
1412 idx = log_next(idx);
1413 seq++;
1414
1415 logbuf_unlock_irq();
1416 if (copy_to_user(buf + len, text, textlen))
1417 len = -EFAULT;
1418 else
1419 len += textlen;
1420 logbuf_lock_irq();
1421
1422 if (seq < log_first_seq) {
1423 /* messages are gone, move to next one */
1424 seq = log_first_seq;
1425 idx = log_first_idx;
1426 }
1427 }
1428 }
1429
1430 if (clear) {
1431 clear_seq = log_next_seq;
1432 clear_idx = log_next_idx;
1433 }
1434 logbuf_unlock_irq();
1435
1436 kfree(text);
1437 return len;
1438 }
1439
do_syslog(int type,char __user * buf,int len,int source)1440 int do_syslog(int type, char __user *buf, int len, int source)
1441 {
1442 bool clear = false;
1443 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1444 int error;
1445
1446 error = check_syslog_permissions(type, source);
1447 if (error)
1448 return error;
1449
1450 switch (type) {
1451 case SYSLOG_ACTION_CLOSE: /* Close log */
1452 break;
1453 case SYSLOG_ACTION_OPEN: /* Open log */
1454 break;
1455 case SYSLOG_ACTION_READ: /* Read from log */
1456 if (!buf || len < 0)
1457 return -EINVAL;
1458 if (!len)
1459 return 0;
1460 if (!access_ok(VERIFY_WRITE, buf, len))
1461 return -EFAULT;
1462 error = wait_event_interruptible(log_wait,
1463 syslog_seq != log_next_seq);
1464 if (error)
1465 return error;
1466 error = syslog_print(buf, len);
1467 break;
1468 /* Read/clear last kernel messages */
1469 case SYSLOG_ACTION_READ_CLEAR:
1470 clear = true;
1471 /* FALL THRU */
1472 /* Read last kernel messages */
1473 case SYSLOG_ACTION_READ_ALL:
1474 if (!buf || len < 0)
1475 return -EINVAL;
1476 if (!len)
1477 return 0;
1478 if (!access_ok(VERIFY_WRITE, buf, len))
1479 return -EFAULT;
1480 error = syslog_print_all(buf, len, clear);
1481 break;
1482 /* Clear ring buffer */
1483 case SYSLOG_ACTION_CLEAR:
1484 syslog_print_all(NULL, 0, true);
1485 break;
1486 /* Disable logging to console */
1487 case SYSLOG_ACTION_CONSOLE_OFF:
1488 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1489 saved_console_loglevel = console_loglevel;
1490 console_loglevel = minimum_console_loglevel;
1491 break;
1492 /* Enable logging to console */
1493 case SYSLOG_ACTION_CONSOLE_ON:
1494 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1495 console_loglevel = saved_console_loglevel;
1496 saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 }
1498 break;
1499 /* Set level of messages printed to console */
1500 case SYSLOG_ACTION_CONSOLE_LEVEL:
1501 if (len < 1 || len > 8)
1502 return -EINVAL;
1503 if (len < minimum_console_loglevel)
1504 len = minimum_console_loglevel;
1505 console_loglevel = len;
1506 /* Implicitly re-enable logging to console */
1507 saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 break;
1509 /* Number of chars in the log buffer */
1510 case SYSLOG_ACTION_SIZE_UNREAD:
1511 logbuf_lock_irq();
1512 if (syslog_seq < log_first_seq) {
1513 /* messages are gone, move to first one */
1514 syslog_seq = log_first_seq;
1515 syslog_idx = log_first_idx;
1516 syslog_partial = 0;
1517 }
1518 if (source == SYSLOG_FROM_PROC) {
1519 /*
1520 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 * for pending data, not the size; return the count of
1522 * records, not the length.
1523 */
1524 error = log_next_seq - syslog_seq;
1525 } else {
1526 u64 seq = syslog_seq;
1527 u32 idx = syslog_idx;
1528
1529 while (seq < log_next_seq) {
1530 struct printk_log *msg = log_from_idx(idx);
1531
1532 error += msg_print_text(msg, true, NULL, 0);
1533 idx = log_next(idx);
1534 seq++;
1535 }
1536 error -= syslog_partial;
1537 }
1538 logbuf_unlock_irq();
1539 break;
1540 /* Size of the log buffer */
1541 case SYSLOG_ACTION_SIZE_BUFFER:
1542 error = log_buf_len;
1543 break;
1544 default:
1545 error = -EINVAL;
1546 break;
1547 }
1548
1549 return error;
1550 }
1551
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1552 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1553 {
1554 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1555 }
1556
1557 /*
1558 * Special console_lock variants that help to reduce the risk of soft-lockups.
1559 * They allow to pass console_lock to another printk() call using a busy wait.
1560 */
1561
1562 #ifdef CONFIG_LOCKDEP
1563 static struct lockdep_map console_owner_dep_map = {
1564 .name = "console_owner"
1565 };
1566 #endif
1567
1568 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1569 static struct task_struct *console_owner;
1570 static bool console_waiter;
1571
1572 /**
1573 * console_lock_spinning_enable - mark beginning of code where another
1574 * thread might safely busy wait
1575 *
1576 * This basically converts console_lock into a spinlock. This marks
1577 * the section where the console_lock owner can not sleep, because
1578 * there may be a waiter spinning (like a spinlock). Also it must be
1579 * ready to hand over the lock at the end of the section.
1580 */
console_lock_spinning_enable(void)1581 static void console_lock_spinning_enable(void)
1582 {
1583 raw_spin_lock(&console_owner_lock);
1584 console_owner = current;
1585 raw_spin_unlock(&console_owner_lock);
1586
1587 /* The waiter may spin on us after setting console_owner */
1588 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1589 }
1590
1591 /**
1592 * console_lock_spinning_disable_and_check - mark end of code where another
1593 * thread was able to busy wait and check if there is a waiter
1594 *
1595 * This is called at the end of the section where spinning is allowed.
1596 * It has two functions. First, it is a signal that it is no longer
1597 * safe to start busy waiting for the lock. Second, it checks if
1598 * there is a busy waiter and passes the lock rights to her.
1599 *
1600 * Important: Callers lose the lock if there was a busy waiter.
1601 * They must not touch items synchronized by console_lock
1602 * in this case.
1603 *
1604 * Return: 1 if the lock rights were passed, 0 otherwise.
1605 */
console_lock_spinning_disable_and_check(void)1606 static int console_lock_spinning_disable_and_check(void)
1607 {
1608 int waiter;
1609
1610 raw_spin_lock(&console_owner_lock);
1611 waiter = READ_ONCE(console_waiter);
1612 console_owner = NULL;
1613 raw_spin_unlock(&console_owner_lock);
1614
1615 if (!waiter) {
1616 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617 return 0;
1618 }
1619
1620 /* The waiter is now free to continue */
1621 WRITE_ONCE(console_waiter, false);
1622
1623 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1624
1625 /*
1626 * Hand off console_lock to waiter. The waiter will perform
1627 * the up(). After this, the waiter is the console_lock owner.
1628 */
1629 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1630 return 1;
1631 }
1632
1633 /**
1634 * console_trylock_spinning - try to get console_lock by busy waiting
1635 *
1636 * This allows to busy wait for the console_lock when the current
1637 * owner is running in specially marked sections. It means that
1638 * the current owner is running and cannot reschedule until it
1639 * is ready to lose the lock.
1640 *
1641 * Return: 1 if we got the lock, 0 othrewise
1642 */
console_trylock_spinning(void)1643 static int console_trylock_spinning(void)
1644 {
1645 struct task_struct *owner = NULL;
1646 bool waiter;
1647 bool spin = false;
1648 unsigned long flags;
1649
1650 if (console_trylock())
1651 return 1;
1652
1653 printk_safe_enter_irqsave(flags);
1654
1655 raw_spin_lock(&console_owner_lock);
1656 owner = READ_ONCE(console_owner);
1657 waiter = READ_ONCE(console_waiter);
1658 if (!waiter && owner && owner != current) {
1659 WRITE_ONCE(console_waiter, true);
1660 spin = true;
1661 }
1662 raw_spin_unlock(&console_owner_lock);
1663
1664 /*
1665 * If there is an active printk() writing to the
1666 * consoles, instead of having it write our data too,
1667 * see if we can offload that load from the active
1668 * printer, and do some printing ourselves.
1669 * Go into a spin only if there isn't already a waiter
1670 * spinning, and there is an active printer, and
1671 * that active printer isn't us (recursive printk?).
1672 */
1673 if (!spin) {
1674 printk_safe_exit_irqrestore(flags);
1675 return 0;
1676 }
1677
1678 /* We spin waiting for the owner to release us */
1679 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1680 /* Owner will clear console_waiter on hand off */
1681 while (READ_ONCE(console_waiter))
1682 cpu_relax();
1683 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1684
1685 printk_safe_exit_irqrestore(flags);
1686 /*
1687 * The owner passed the console lock to us.
1688 * Since we did not spin on console lock, annotate
1689 * this as a trylock. Otherwise lockdep will
1690 * complain.
1691 */
1692 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1693
1694 return 1;
1695 }
1696
1697 /*
1698 * Call the console drivers, asking them to write out
1699 * log_buf[start] to log_buf[end - 1].
1700 * The console_lock must be held.
1701 */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1702 static void call_console_drivers(const char *ext_text, size_t ext_len,
1703 const char *text, size_t len)
1704 {
1705 struct console *con;
1706
1707 trace_console_rcuidle(text, len);
1708
1709 if (!console_drivers)
1710 return;
1711
1712 for_each_console(con) {
1713 if (exclusive_console && con != exclusive_console)
1714 continue;
1715 if (!(con->flags & CON_ENABLED))
1716 continue;
1717 if (!con->write)
1718 continue;
1719 if (!cpu_online(smp_processor_id()) &&
1720 !(con->flags & CON_ANYTIME))
1721 continue;
1722 if (con->flags & CON_EXTENDED)
1723 con->write(con, ext_text, ext_len);
1724 else
1725 con->write(con, text, len);
1726 }
1727 }
1728
1729 int printk_delay_msec __read_mostly;
1730
printk_delay(void)1731 static inline void printk_delay(void)
1732 {
1733 if (unlikely(printk_delay_msec)) {
1734 int m = printk_delay_msec;
1735
1736 while (m--) {
1737 mdelay(1);
1738 touch_nmi_watchdog();
1739 }
1740 }
1741 }
1742
1743 /*
1744 * Continuation lines are buffered, and not committed to the record buffer
1745 * until the line is complete, or a race forces it. The line fragments
1746 * though, are printed immediately to the consoles to ensure everything has
1747 * reached the console in case of a kernel crash.
1748 */
1749 static struct cont {
1750 char buf[LOG_LINE_MAX];
1751 size_t len; /* length == 0 means unused buffer */
1752 struct task_struct *owner; /* task of first print*/
1753 u64 ts_nsec; /* time of first print */
1754 u8 level; /* log level of first message */
1755 u8 facility; /* log facility of first message */
1756 enum log_flags flags; /* prefix, newline flags */
1757 } cont;
1758
cont_flush(void)1759 static void cont_flush(void)
1760 {
1761 if (cont.len == 0)
1762 return;
1763
1764 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1765 NULL, 0, cont.buf, cont.len);
1766 cont.len = 0;
1767 }
1768
cont_add(int facility,int level,enum log_flags flags,const char * text,size_t len)1769 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1770 {
1771 /*
1772 * If ext consoles are present, flush and skip in-kernel
1773 * continuation. See nr_ext_console_drivers definition. Also, if
1774 * the line gets too long, split it up in separate records.
1775 */
1776 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1777 cont_flush();
1778 return false;
1779 }
1780
1781 if (!cont.len) {
1782 cont.facility = facility;
1783 cont.level = level;
1784 cont.owner = current;
1785 cont.ts_nsec = local_clock();
1786 cont.flags = flags;
1787 }
1788
1789 memcpy(cont.buf + cont.len, text, len);
1790 cont.len += len;
1791
1792 // The original flags come from the first line,
1793 // but later continuations can add a newline.
1794 if (flags & LOG_NEWLINE) {
1795 cont.flags |= LOG_NEWLINE;
1796 cont_flush();
1797 }
1798
1799 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1800 cont_flush();
1801
1802 return true;
1803 }
1804
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1805 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1806 {
1807 /*
1808 * If an earlier line was buffered, and we're a continuation
1809 * write from the same process, try to add it to the buffer.
1810 */
1811 if (cont.len) {
1812 if (cont.owner == current && (lflags & LOG_CONT)) {
1813 if (cont_add(facility, level, lflags, text, text_len))
1814 return text_len;
1815 }
1816 /* Otherwise, make sure it's flushed */
1817 cont_flush();
1818 }
1819
1820 /* Skip empty continuation lines that couldn't be added - they just flush */
1821 if (!text_len && (lflags & LOG_CONT))
1822 return 0;
1823
1824 /* If it doesn't end in a newline, try to buffer the current line */
1825 if (!(lflags & LOG_NEWLINE)) {
1826 if (cont_add(facility, level, lflags, text, text_len))
1827 return text_len;
1828 }
1829
1830 /* Store it in the record log */
1831 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1832 }
1833
1834 /* Must be called under logbuf_lock. */
vprintk_store(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1835 int vprintk_store(int facility, int level,
1836 const char *dict, size_t dictlen,
1837 const char *fmt, va_list args)
1838 {
1839 static char textbuf[LOG_LINE_MAX];
1840 char *text = textbuf;
1841 size_t text_len;
1842 enum log_flags lflags = 0;
1843
1844 /*
1845 * The printf needs to come first; we need the syslog
1846 * prefix which might be passed-in as a parameter.
1847 */
1848 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1849
1850 /* mark and strip a trailing newline */
1851 if (text_len && text[text_len-1] == '\n') {
1852 text_len--;
1853 lflags |= LOG_NEWLINE;
1854 }
1855
1856 /* strip kernel syslog prefix and extract log level or control flags */
1857 if (facility == 0) {
1858 int kern_level;
1859
1860 while ((kern_level = printk_get_level(text)) != 0) {
1861 switch (kern_level) {
1862 case '0' ... '7':
1863 if (level == LOGLEVEL_DEFAULT)
1864 level = kern_level - '0';
1865 /* fallthrough */
1866 case 'd': /* KERN_DEFAULT */
1867 lflags |= LOG_PREFIX;
1868 break;
1869 case 'c': /* KERN_CONT */
1870 lflags |= LOG_CONT;
1871 }
1872
1873 text_len -= 2;
1874 text += 2;
1875 }
1876 }
1877
1878 if (level == LOGLEVEL_DEFAULT)
1879 level = default_message_loglevel;
1880
1881 if (dict)
1882 lflags |= LOG_PREFIX|LOG_NEWLINE;
1883
1884 return log_output(facility, level, lflags,
1885 dict, dictlen, text, text_len);
1886 }
1887
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1888 asmlinkage int vprintk_emit(int facility, int level,
1889 const char *dict, size_t dictlen,
1890 const char *fmt, va_list args)
1891 {
1892 int printed_len;
1893 bool in_sched = false;
1894 unsigned long flags;
1895
1896 if (level == LOGLEVEL_SCHED) {
1897 level = LOGLEVEL_DEFAULT;
1898 in_sched = true;
1899 }
1900
1901 boot_delay_msec(level);
1902 printk_delay();
1903
1904 /* This stops the holder of console_sem just where we want him */
1905 logbuf_lock_irqsave(flags);
1906 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1907 logbuf_unlock_irqrestore(flags);
1908
1909 /* If called from the scheduler, we can not call up(). */
1910 if (!in_sched) {
1911 /*
1912 * Disable preemption to avoid being preempted while holding
1913 * console_sem which would prevent anyone from printing to
1914 * console
1915 */
1916 preempt_disable();
1917 /*
1918 * Try to acquire and then immediately release the console
1919 * semaphore. The release will print out buffers and wake up
1920 * /dev/kmsg and syslog() users.
1921 */
1922 if (console_trylock_spinning())
1923 console_unlock();
1924 preempt_enable();
1925 }
1926
1927 return printed_len;
1928 }
1929 EXPORT_SYMBOL(vprintk_emit);
1930
vprintk(const char * fmt,va_list args)1931 asmlinkage int vprintk(const char *fmt, va_list args)
1932 {
1933 return vprintk_func(fmt, args);
1934 }
1935 EXPORT_SYMBOL(vprintk);
1936
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1937 asmlinkage int printk_emit(int facility, int level,
1938 const char *dict, size_t dictlen,
1939 const char *fmt, ...)
1940 {
1941 va_list args;
1942 int r;
1943
1944 va_start(args, fmt);
1945 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1946 va_end(args);
1947
1948 return r;
1949 }
1950 EXPORT_SYMBOL(printk_emit);
1951
vprintk_default(const char * fmt,va_list args)1952 int vprintk_default(const char *fmt, va_list args)
1953 {
1954 int r;
1955
1956 #ifdef CONFIG_KGDB_KDB
1957 /* Allow to pass printk() to kdb but avoid a recursion. */
1958 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1959 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 return r;
1961 }
1962 #endif
1963 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964
1965 return r;
1966 }
1967 EXPORT_SYMBOL_GPL(vprintk_default);
1968
1969 /**
1970 * printk - print a kernel message
1971 * @fmt: format string
1972 *
1973 * This is printk(). It can be called from any context. We want it to work.
1974 *
1975 * We try to grab the console_lock. If we succeed, it's easy - we log the
1976 * output and call the console drivers. If we fail to get the semaphore, we
1977 * place the output into the log buffer and return. The current holder of
1978 * the console_sem will notice the new output in console_unlock(); and will
1979 * send it to the consoles before releasing the lock.
1980 *
1981 * One effect of this deferred printing is that code which calls printk() and
1982 * then changes console_loglevel may break. This is because console_loglevel
1983 * is inspected when the actual printing occurs.
1984 *
1985 * See also:
1986 * printf(3)
1987 *
1988 * See the vsnprintf() documentation for format string extensions over C99.
1989 */
printk(const char * fmt,...)1990 asmlinkage __visible int printk(const char *fmt, ...)
1991 {
1992 va_list args;
1993 int r;
1994
1995 va_start(args, fmt);
1996 r = vprintk_func(fmt, args);
1997 va_end(args);
1998
1999 return r;
2000 }
2001 EXPORT_SYMBOL(printk);
2002
2003 #else /* CONFIG_PRINTK */
2004
2005 #define LOG_LINE_MAX 0
2006 #define PREFIX_MAX 0
2007
2008 static u64 syslog_seq;
2009 static u32 syslog_idx;
2010 static u64 console_seq;
2011 static u32 console_idx;
2012 static u64 log_first_seq;
2013 static u32 log_first_idx;
2014 static u64 log_next_seq;
log_text(const struct printk_log * msg)2015 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2016 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2017 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2018 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)2019 static ssize_t msg_print_ext_header(char *buf, size_t size,
2020 struct printk_log *msg,
2021 u64 seq) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2022 static ssize_t msg_print_ext_body(char *buf, size_t size,
2023 char *dict, size_t dict_len,
2024 char *text, size_t text_len) { return 0; }
console_lock_spinning_enable(void)2025 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2026 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2027 static void call_console_drivers(const char *ext_text, size_t ext_len,
2028 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)2029 static size_t msg_print_text(const struct printk_log *msg,
2030 bool syslog, char *buf, size_t size) { return 0; }
suppress_message_printing(int level)2031 static bool suppress_message_printing(int level) { return false; }
2032
2033 #endif /* CONFIG_PRINTK */
2034
2035 #ifdef CONFIG_EARLY_PRINTK
2036 struct console *early_console;
2037
early_printk(const char * fmt,...)2038 asmlinkage __visible void early_printk(const char *fmt, ...)
2039 {
2040 va_list ap;
2041 char buf[512];
2042 int n;
2043
2044 if (!early_console)
2045 return;
2046
2047 va_start(ap, fmt);
2048 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2049 va_end(ap);
2050
2051 early_console->write(early_console, buf, n);
2052 }
2053 #endif
2054
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2055 static int __add_preferred_console(char *name, int idx, char *options,
2056 char *brl_options)
2057 {
2058 struct console_cmdline *c;
2059 int i;
2060
2061 /*
2062 * See if this tty is not yet registered, and
2063 * if we have a slot free.
2064 */
2065 for (i = 0, c = console_cmdline;
2066 i < MAX_CMDLINECONSOLES && c->name[0];
2067 i++, c++) {
2068 if (strcmp(c->name, name) == 0 && c->index == idx) {
2069 if (!brl_options)
2070 preferred_console = i;
2071 return 0;
2072 }
2073 }
2074 if (i == MAX_CMDLINECONSOLES)
2075 return -E2BIG;
2076 if (!brl_options)
2077 preferred_console = i;
2078 strlcpy(c->name, name, sizeof(c->name));
2079 c->options = options;
2080 braille_set_options(c, brl_options);
2081
2082 c->index = idx;
2083 return 0;
2084 }
2085 /*
2086 * Set up a console. Called via do_early_param() in init/main.c
2087 * for each "console=" parameter in the boot command line.
2088 */
console_setup(char * str)2089 static int __init console_setup(char *str)
2090 {
2091 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2092 char *s, *options, *brl_options = NULL;
2093 int idx;
2094
2095 if (_braille_console_setup(&str, &brl_options))
2096 return 1;
2097
2098 /*
2099 * Decode str into name, index, options.
2100 */
2101 if (str[0] >= '0' && str[0] <= '9') {
2102 strcpy(buf, "ttyS");
2103 strncpy(buf + 4, str, sizeof(buf) - 5);
2104 } else {
2105 strncpy(buf, str, sizeof(buf) - 1);
2106 }
2107 buf[sizeof(buf) - 1] = 0;
2108 options = strchr(str, ',');
2109 if (options)
2110 *(options++) = 0;
2111 #ifdef __sparc__
2112 if (!strcmp(str, "ttya"))
2113 strcpy(buf, "ttyS0");
2114 if (!strcmp(str, "ttyb"))
2115 strcpy(buf, "ttyS1");
2116 #endif
2117 for (s = buf; *s; s++)
2118 if (isdigit(*s) || *s == ',')
2119 break;
2120 idx = simple_strtoul(s, NULL, 10);
2121 *s = 0;
2122
2123 __add_preferred_console(buf, idx, options, brl_options);
2124 console_set_on_cmdline = 1;
2125 return 1;
2126 }
2127 __setup("console=", console_setup);
2128
2129 /**
2130 * add_preferred_console - add a device to the list of preferred consoles.
2131 * @name: device name
2132 * @idx: device index
2133 * @options: options for this console
2134 *
2135 * The last preferred console added will be used for kernel messages
2136 * and stdin/out/err for init. Normally this is used by console_setup
2137 * above to handle user-supplied console arguments; however it can also
2138 * be used by arch-specific code either to override the user or more
2139 * commonly to provide a default console (ie from PROM variables) when
2140 * the user has not supplied one.
2141 */
add_preferred_console(char * name,int idx,char * options)2142 int add_preferred_console(char *name, int idx, char *options)
2143 {
2144 return __add_preferred_console(name, idx, options, NULL);
2145 }
2146
2147 bool console_suspend_enabled = true;
2148 EXPORT_SYMBOL(console_suspend_enabled);
2149
console_suspend_disable(char * str)2150 static int __init console_suspend_disable(char *str)
2151 {
2152 console_suspend_enabled = false;
2153 return 1;
2154 }
2155 __setup("no_console_suspend", console_suspend_disable);
2156 module_param_named(console_suspend, console_suspend_enabled,
2157 bool, S_IRUGO | S_IWUSR);
2158 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2159 " and hibernate operations");
2160
2161 /**
2162 * suspend_console - suspend the console subsystem
2163 *
2164 * This disables printk() while we go into suspend states
2165 */
suspend_console(void)2166 void suspend_console(void)
2167 {
2168 if (!console_suspend_enabled)
2169 return;
2170 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2171 console_lock();
2172 console_suspended = 1;
2173 up_console_sem();
2174 }
2175
resume_console(void)2176 void resume_console(void)
2177 {
2178 if (!console_suspend_enabled)
2179 return;
2180 down_console_sem();
2181 console_suspended = 0;
2182 console_unlock();
2183 }
2184
2185 /**
2186 * console_cpu_notify - print deferred console messages after CPU hotplug
2187 * @cpu: unused
2188 *
2189 * If printk() is called from a CPU that is not online yet, the messages
2190 * will be printed on the console only if there are CON_ANYTIME consoles.
2191 * This function is called when a new CPU comes online (or fails to come
2192 * up) or goes offline.
2193 */
console_cpu_notify(unsigned int cpu)2194 static int console_cpu_notify(unsigned int cpu)
2195 {
2196 if (!cpuhp_tasks_frozen) {
2197 /* If trylock fails, someone else is doing the printing */
2198 if (console_trylock())
2199 console_unlock();
2200 }
2201 return 0;
2202 }
2203
2204 /**
2205 * console_lock - lock the console system for exclusive use.
2206 *
2207 * Acquires a lock which guarantees that the caller has
2208 * exclusive access to the console system and the console_drivers list.
2209 *
2210 * Can sleep, returns nothing.
2211 */
console_lock(void)2212 void console_lock(void)
2213 {
2214 might_sleep();
2215
2216 down_console_sem();
2217 if (console_suspended)
2218 return;
2219 console_locked = 1;
2220 console_may_schedule = 1;
2221 }
2222 EXPORT_SYMBOL(console_lock);
2223
2224 /**
2225 * console_trylock - try to lock the console system for exclusive use.
2226 *
2227 * Try to acquire a lock which guarantees that the caller has exclusive
2228 * access to the console system and the console_drivers list.
2229 *
2230 * returns 1 on success, and 0 on failure to acquire the lock.
2231 */
console_trylock(void)2232 int console_trylock(void)
2233 {
2234 if (down_trylock_console_sem())
2235 return 0;
2236 if (console_suspended) {
2237 up_console_sem();
2238 return 0;
2239 }
2240 console_locked = 1;
2241 console_may_schedule = 0;
2242 return 1;
2243 }
2244 EXPORT_SYMBOL(console_trylock);
2245
is_console_locked(void)2246 int is_console_locked(void)
2247 {
2248 return console_locked;
2249 }
2250
2251 /*
2252 * Check if we have any console that is capable of printing while cpu is
2253 * booting or shutting down. Requires console_sem.
2254 */
have_callable_console(void)2255 static int have_callable_console(void)
2256 {
2257 struct console *con;
2258
2259 for_each_console(con)
2260 if ((con->flags & CON_ENABLED) &&
2261 (con->flags & CON_ANYTIME))
2262 return 1;
2263
2264 return 0;
2265 }
2266
2267 /*
2268 * Can we actually use the console at this time on this cpu?
2269 *
2270 * Console drivers may assume that per-cpu resources have been allocated. So
2271 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2272 * call them until this CPU is officially up.
2273 */
can_use_console(void)2274 static inline int can_use_console(void)
2275 {
2276 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2277 }
2278
2279 /**
2280 * console_unlock - unlock the console system
2281 *
2282 * Releases the console_lock which the caller holds on the console system
2283 * and the console driver list.
2284 *
2285 * While the console_lock was held, console output may have been buffered
2286 * by printk(). If this is the case, console_unlock(); emits
2287 * the output prior to releasing the lock.
2288 *
2289 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2290 *
2291 * console_unlock(); may be called from any context.
2292 */
console_unlock(void)2293 void console_unlock(void)
2294 {
2295 static char ext_text[CONSOLE_EXT_LOG_MAX];
2296 static char text[LOG_LINE_MAX + PREFIX_MAX];
2297 static u64 seen_seq;
2298 unsigned long flags;
2299 bool wake_klogd = false;
2300 bool do_cond_resched, retry;
2301
2302 if (console_suspended) {
2303 up_console_sem();
2304 return;
2305 }
2306
2307 /*
2308 * Console drivers are called with interrupts disabled, so
2309 * @console_may_schedule should be cleared before; however, we may
2310 * end up dumping a lot of lines, for example, if called from
2311 * console registration path, and should invoke cond_resched()
2312 * between lines if allowable. Not doing so can cause a very long
2313 * scheduling stall on a slow console leading to RCU stall and
2314 * softlockup warnings which exacerbate the issue with more
2315 * messages practically incapacitating the system.
2316 *
2317 * console_trylock() is not able to detect the preemptive
2318 * context reliably. Therefore the value must be stored before
2319 * and cleared after the the "again" goto label.
2320 */
2321 do_cond_resched = console_may_schedule;
2322 again:
2323 console_may_schedule = 0;
2324
2325 /*
2326 * We released the console_sem lock, so we need to recheck if
2327 * cpu is online and (if not) is there at least one CON_ANYTIME
2328 * console.
2329 */
2330 if (!can_use_console()) {
2331 console_locked = 0;
2332 up_console_sem();
2333 return;
2334 }
2335
2336 for (;;) {
2337 struct printk_log *msg;
2338 size_t ext_len = 0;
2339 size_t len;
2340
2341 printk_safe_enter_irqsave(flags);
2342 raw_spin_lock(&logbuf_lock);
2343 if (seen_seq != log_next_seq) {
2344 wake_klogd = true;
2345 seen_seq = log_next_seq;
2346 }
2347
2348 if (console_seq < log_first_seq) {
2349 len = sprintf(text, "** %u printk messages dropped ** ",
2350 (unsigned)(log_first_seq - console_seq));
2351
2352 /* messages are gone, move to first one */
2353 console_seq = log_first_seq;
2354 console_idx = log_first_idx;
2355 } else {
2356 len = 0;
2357 }
2358 skip:
2359 if (console_seq == log_next_seq)
2360 break;
2361
2362 msg = log_from_idx(console_idx);
2363 if (suppress_message_printing(msg->level)) {
2364 /*
2365 * Skip record we have buffered and already printed
2366 * directly to the console when we received it, and
2367 * record that has level above the console loglevel.
2368 */
2369 console_idx = log_next(console_idx);
2370 console_seq++;
2371 goto skip;
2372 }
2373
2374 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2375 if (nr_ext_console_drivers) {
2376 ext_len = msg_print_ext_header(ext_text,
2377 sizeof(ext_text),
2378 msg, console_seq);
2379 ext_len += msg_print_ext_body(ext_text + ext_len,
2380 sizeof(ext_text) - ext_len,
2381 log_dict(msg), msg->dict_len,
2382 log_text(msg), msg->text_len);
2383 }
2384 console_idx = log_next(console_idx);
2385 console_seq++;
2386 raw_spin_unlock(&logbuf_lock);
2387
2388 /*
2389 * While actively printing out messages, if another printk()
2390 * were to occur on another CPU, it may wait for this one to
2391 * finish. This task can not be preempted if there is a
2392 * waiter waiting to take over.
2393 */
2394 console_lock_spinning_enable();
2395
2396 stop_critical_timings(); /* don't trace print latency */
2397 call_console_drivers(ext_text, ext_len, text, len);
2398 start_critical_timings();
2399
2400 if (console_lock_spinning_disable_and_check()) {
2401 printk_safe_exit_irqrestore(flags);
2402 goto out;
2403 }
2404
2405 printk_safe_exit_irqrestore(flags);
2406
2407 if (do_cond_resched)
2408 cond_resched();
2409 }
2410
2411 console_locked = 0;
2412
2413 /* Release the exclusive_console once it is used */
2414 if (unlikely(exclusive_console))
2415 exclusive_console = NULL;
2416
2417 raw_spin_unlock(&logbuf_lock);
2418
2419 up_console_sem();
2420
2421 /*
2422 * Someone could have filled up the buffer again, so re-check if there's
2423 * something to flush. In case we cannot trylock the console_sem again,
2424 * there's a new owner and the console_unlock() from them will do the
2425 * flush, no worries.
2426 */
2427 raw_spin_lock(&logbuf_lock);
2428 retry = console_seq != log_next_seq;
2429 raw_spin_unlock(&logbuf_lock);
2430 printk_safe_exit_irqrestore(flags);
2431
2432 if (retry && console_trylock())
2433 goto again;
2434
2435 out:
2436 if (wake_klogd)
2437 wake_up_klogd();
2438 }
2439 EXPORT_SYMBOL(console_unlock);
2440
2441 /**
2442 * console_conditional_schedule - yield the CPU if required
2443 *
2444 * If the console code is currently allowed to sleep, and
2445 * if this CPU should yield the CPU to another task, do
2446 * so here.
2447 *
2448 * Must be called within console_lock();.
2449 */
console_conditional_schedule(void)2450 void __sched console_conditional_schedule(void)
2451 {
2452 if (console_may_schedule)
2453 cond_resched();
2454 }
2455 EXPORT_SYMBOL(console_conditional_schedule);
2456
console_unblank(void)2457 void console_unblank(void)
2458 {
2459 struct console *c;
2460
2461 /*
2462 * console_unblank can no longer be called in interrupt context unless
2463 * oops_in_progress is set to 1..
2464 */
2465 if (oops_in_progress) {
2466 if (down_trylock_console_sem() != 0)
2467 return;
2468 } else
2469 console_lock();
2470
2471 console_locked = 1;
2472 console_may_schedule = 0;
2473 for_each_console(c)
2474 if ((c->flags & CON_ENABLED) && c->unblank)
2475 c->unblank();
2476 console_unlock();
2477 }
2478
2479 /**
2480 * console_flush_on_panic - flush console content on panic
2481 *
2482 * Immediately output all pending messages no matter what.
2483 */
console_flush_on_panic(void)2484 void console_flush_on_panic(void)
2485 {
2486 /*
2487 * If someone else is holding the console lock, trylock will fail
2488 * and may_schedule may be set. Ignore and proceed to unlock so
2489 * that messages are flushed out. As this can be called from any
2490 * context and we don't want to get preempted while flushing,
2491 * ensure may_schedule is cleared.
2492 */
2493 console_trylock();
2494 console_may_schedule = 0;
2495 console_unlock();
2496 }
2497
2498 /*
2499 * Return the console tty driver structure and its associated index
2500 */
console_device(int * index)2501 struct tty_driver *console_device(int *index)
2502 {
2503 struct console *c;
2504 struct tty_driver *driver = NULL;
2505
2506 console_lock();
2507 for_each_console(c) {
2508 if (!c->device)
2509 continue;
2510 driver = c->device(c, index);
2511 if (driver)
2512 break;
2513 }
2514 console_unlock();
2515 return driver;
2516 }
2517
2518 /*
2519 * Prevent further output on the passed console device so that (for example)
2520 * serial drivers can disable console output before suspending a port, and can
2521 * re-enable output afterwards.
2522 */
console_stop(struct console * console)2523 void console_stop(struct console *console)
2524 {
2525 console_lock();
2526 console->flags &= ~CON_ENABLED;
2527 console_unlock();
2528 }
2529 EXPORT_SYMBOL(console_stop);
2530
console_start(struct console * console)2531 void console_start(struct console *console)
2532 {
2533 console_lock();
2534 console->flags |= CON_ENABLED;
2535 console_unlock();
2536 }
2537 EXPORT_SYMBOL(console_start);
2538
2539 static int __read_mostly keep_bootcon;
2540
keep_bootcon_setup(char * str)2541 static int __init keep_bootcon_setup(char *str)
2542 {
2543 keep_bootcon = 1;
2544 pr_info("debug: skip boot console de-registration.\n");
2545
2546 return 0;
2547 }
2548
2549 early_param("keep_bootcon", keep_bootcon_setup);
2550
2551 /*
2552 * The console driver calls this routine during kernel initialization
2553 * to register the console printing procedure with printk() and to
2554 * print any messages that were printed by the kernel before the
2555 * console driver was initialized.
2556 *
2557 * This can happen pretty early during the boot process (because of
2558 * early_printk) - sometimes before setup_arch() completes - be careful
2559 * of what kernel features are used - they may not be initialised yet.
2560 *
2561 * There are two types of consoles - bootconsoles (early_printk) and
2562 * "real" consoles (everything which is not a bootconsole) which are
2563 * handled differently.
2564 * - Any number of bootconsoles can be registered at any time.
2565 * - As soon as a "real" console is registered, all bootconsoles
2566 * will be unregistered automatically.
2567 * - Once a "real" console is registered, any attempt to register a
2568 * bootconsoles will be rejected
2569 */
register_console(struct console * newcon)2570 void register_console(struct console *newcon)
2571 {
2572 int i;
2573 unsigned long flags;
2574 struct console *bcon = NULL;
2575 struct console_cmdline *c;
2576 static bool has_preferred;
2577
2578 if (console_drivers)
2579 for_each_console(bcon)
2580 if (WARN(bcon == newcon,
2581 "console '%s%d' already registered\n",
2582 bcon->name, bcon->index))
2583 return;
2584
2585 /*
2586 * before we register a new CON_BOOT console, make sure we don't
2587 * already have a valid console
2588 */
2589 if (console_drivers && newcon->flags & CON_BOOT) {
2590 /* find the last or real console */
2591 for_each_console(bcon) {
2592 if (!(bcon->flags & CON_BOOT)) {
2593 pr_info("Too late to register bootconsole %s%d\n",
2594 newcon->name, newcon->index);
2595 return;
2596 }
2597 }
2598 }
2599
2600 if (console_drivers && console_drivers->flags & CON_BOOT)
2601 bcon = console_drivers;
2602
2603 if (!has_preferred || bcon || !console_drivers)
2604 has_preferred = preferred_console >= 0;
2605
2606 /*
2607 * See if we want to use this console driver. If we
2608 * didn't select a console we take the first one
2609 * that registers here.
2610 */
2611 if (!has_preferred) {
2612 if (newcon->index < 0)
2613 newcon->index = 0;
2614 if (newcon->setup == NULL ||
2615 newcon->setup(newcon, NULL) == 0) {
2616 newcon->flags |= CON_ENABLED;
2617 if (newcon->device) {
2618 newcon->flags |= CON_CONSDEV;
2619 has_preferred = true;
2620 }
2621 }
2622 }
2623
2624 /*
2625 * See if this console matches one we selected on
2626 * the command line.
2627 */
2628 for (i = 0, c = console_cmdline;
2629 i < MAX_CMDLINECONSOLES && c->name[0];
2630 i++, c++) {
2631 if (!newcon->match ||
2632 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2633 /* default matching */
2634 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2635 if (strcmp(c->name, newcon->name) != 0)
2636 continue;
2637 if (newcon->index >= 0 &&
2638 newcon->index != c->index)
2639 continue;
2640 if (newcon->index < 0)
2641 newcon->index = c->index;
2642
2643 if (_braille_register_console(newcon, c))
2644 return;
2645
2646 if (newcon->setup &&
2647 newcon->setup(newcon, c->options) != 0)
2648 break;
2649 }
2650
2651 newcon->flags |= CON_ENABLED;
2652 if (i == preferred_console) {
2653 newcon->flags |= CON_CONSDEV;
2654 has_preferred = true;
2655 }
2656 break;
2657 }
2658
2659 if (!(newcon->flags & CON_ENABLED))
2660 return;
2661
2662 /*
2663 * If we have a bootconsole, and are switching to a real console,
2664 * don't print everything out again, since when the boot console, and
2665 * the real console are the same physical device, it's annoying to
2666 * see the beginning boot messages twice
2667 */
2668 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2669 newcon->flags &= ~CON_PRINTBUFFER;
2670
2671 /*
2672 * Put this console in the list - keep the
2673 * preferred driver at the head of the list.
2674 */
2675 console_lock();
2676 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2677 newcon->next = console_drivers;
2678 console_drivers = newcon;
2679 if (newcon->next)
2680 newcon->next->flags &= ~CON_CONSDEV;
2681 } else {
2682 newcon->next = console_drivers->next;
2683 console_drivers->next = newcon;
2684 }
2685
2686 if (newcon->flags & CON_EXTENDED)
2687 if (!nr_ext_console_drivers++)
2688 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2689
2690 if (newcon->flags & CON_PRINTBUFFER) {
2691 /*
2692 * console_unlock(); will print out the buffered messages
2693 * for us.
2694 */
2695 logbuf_lock_irqsave(flags);
2696 console_seq = syslog_seq;
2697 console_idx = syslog_idx;
2698 logbuf_unlock_irqrestore(flags);
2699 /*
2700 * We're about to replay the log buffer. Only do this to the
2701 * just-registered console to avoid excessive message spam to
2702 * the already-registered consoles.
2703 */
2704 exclusive_console = newcon;
2705 }
2706 console_unlock();
2707 console_sysfs_notify();
2708
2709 /*
2710 * By unregistering the bootconsoles after we enable the real console
2711 * we get the "console xxx enabled" message on all the consoles -
2712 * boot consoles, real consoles, etc - this is to ensure that end
2713 * users know there might be something in the kernel's log buffer that
2714 * went to the bootconsole (that they do not see on the real console)
2715 */
2716 pr_info("%sconsole [%s%d] enabled\n",
2717 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2718 newcon->name, newcon->index);
2719 if (bcon &&
2720 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2721 !keep_bootcon) {
2722 /* We need to iterate through all boot consoles, to make
2723 * sure we print everything out, before we unregister them.
2724 */
2725 for_each_console(bcon)
2726 if (bcon->flags & CON_BOOT)
2727 unregister_console(bcon);
2728 }
2729 }
2730 EXPORT_SYMBOL(register_console);
2731
unregister_console(struct console * console)2732 int unregister_console(struct console *console)
2733 {
2734 struct console *a, *b;
2735 int res;
2736
2737 pr_info("%sconsole [%s%d] disabled\n",
2738 (console->flags & CON_BOOT) ? "boot" : "" ,
2739 console->name, console->index);
2740
2741 res = _braille_unregister_console(console);
2742 if (res)
2743 return res;
2744
2745 res = 1;
2746 console_lock();
2747 if (console_drivers == console) {
2748 console_drivers=console->next;
2749 res = 0;
2750 } else if (console_drivers) {
2751 for (a=console_drivers->next, b=console_drivers ;
2752 a; b=a, a=b->next) {
2753 if (a == console) {
2754 b->next = a->next;
2755 res = 0;
2756 break;
2757 }
2758 }
2759 }
2760
2761 if (!res && (console->flags & CON_EXTENDED))
2762 nr_ext_console_drivers--;
2763
2764 /*
2765 * If this isn't the last console and it has CON_CONSDEV set, we
2766 * need to set it on the next preferred console.
2767 */
2768 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2769 console_drivers->flags |= CON_CONSDEV;
2770
2771 console->flags &= ~CON_ENABLED;
2772 console_unlock();
2773 console_sysfs_notify();
2774 return res;
2775 }
2776 EXPORT_SYMBOL(unregister_console);
2777
2778 /*
2779 * Initialize the console device. This is called *early*, so
2780 * we can't necessarily depend on lots of kernel help here.
2781 * Just do some early initializations, and do the complex setup
2782 * later.
2783 */
console_init(void)2784 void __init console_init(void)
2785 {
2786 initcall_t *call;
2787
2788 /* Setup the default TTY line discipline. */
2789 n_tty_init();
2790
2791 /*
2792 * set up the console device so that later boot sequences can
2793 * inform about problems etc..
2794 */
2795 call = __con_initcall_start;
2796 while (call < __con_initcall_end) {
2797 (*call)();
2798 call++;
2799 }
2800 }
2801
2802 /*
2803 * Some boot consoles access data that is in the init section and which will
2804 * be discarded after the initcalls have been run. To make sure that no code
2805 * will access this data, unregister the boot consoles in a late initcall.
2806 *
2807 * If for some reason, such as deferred probe or the driver being a loadable
2808 * module, the real console hasn't registered yet at this point, there will
2809 * be a brief interval in which no messages are logged to the console, which
2810 * makes it difficult to diagnose problems that occur during this time.
2811 *
2812 * To mitigate this problem somewhat, only unregister consoles whose memory
2813 * intersects with the init section. Note that all other boot consoles will
2814 * get unregistred when the real preferred console is registered.
2815 */
printk_late_init(void)2816 static int __init printk_late_init(void)
2817 {
2818 struct console *con;
2819 int ret;
2820
2821 for_each_console(con) {
2822 if (!(con->flags & CON_BOOT))
2823 continue;
2824
2825 /* Check addresses that might be used for enabled consoles. */
2826 if (init_section_intersects(con, sizeof(*con)) ||
2827 init_section_contains(con->write, 0) ||
2828 init_section_contains(con->read, 0) ||
2829 init_section_contains(con->device, 0) ||
2830 init_section_contains(con->unblank, 0) ||
2831 init_section_contains(con->data, 0)) {
2832 /*
2833 * Please, consider moving the reported consoles out
2834 * of the init section.
2835 */
2836 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2837 con->name, con->index);
2838 unregister_console(con);
2839 }
2840 }
2841 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2842 console_cpu_notify);
2843 WARN_ON(ret < 0);
2844 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2845 console_cpu_notify, NULL);
2846 WARN_ON(ret < 0);
2847 return 0;
2848 }
2849 late_initcall(printk_late_init);
2850
2851 #if defined CONFIG_PRINTK
2852 /*
2853 * Delayed printk version, for scheduler-internal messages:
2854 */
2855 #define PRINTK_PENDING_WAKEUP 0x01
2856 #define PRINTK_PENDING_OUTPUT 0x02
2857
2858 static DEFINE_PER_CPU(int, printk_pending);
2859
wake_up_klogd_work_func(struct irq_work * irq_work)2860 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2861 {
2862 int pending = __this_cpu_xchg(printk_pending, 0);
2863
2864 if (pending & PRINTK_PENDING_OUTPUT) {
2865 /* If trylock fails, someone else is doing the printing */
2866 if (console_trylock())
2867 console_unlock();
2868 }
2869
2870 if (pending & PRINTK_PENDING_WAKEUP)
2871 wake_up_interruptible(&log_wait);
2872 }
2873
2874 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2875 .func = wake_up_klogd_work_func,
2876 .flags = IRQ_WORK_LAZY,
2877 };
2878
wake_up_klogd(void)2879 void wake_up_klogd(void)
2880 {
2881 preempt_disable();
2882 if (waitqueue_active(&log_wait)) {
2883 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2884 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2885 }
2886 preempt_enable();
2887 }
2888
defer_console_output(void)2889 void defer_console_output(void)
2890 {
2891 preempt_disable();
2892 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2893 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2894 preempt_enable();
2895 }
2896
vprintk_deferred(const char * fmt,va_list args)2897 int vprintk_deferred(const char *fmt, va_list args)
2898 {
2899 int r;
2900
2901 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2902 defer_console_output();
2903
2904 return r;
2905 }
2906
printk_deferred(const char * fmt,...)2907 int printk_deferred(const char *fmt, ...)
2908 {
2909 va_list args;
2910 int r;
2911
2912 va_start(args, fmt);
2913 r = vprintk_deferred(fmt, args);
2914 va_end(args);
2915
2916 return r;
2917 }
2918
2919 /*
2920 * printk rate limiting, lifted from the networking subsystem.
2921 *
2922 * This enforces a rate limit: not more than 10 kernel messages
2923 * every 5s to make a denial-of-service attack impossible.
2924 */
2925 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2926
__printk_ratelimit(const char * func)2927 int __printk_ratelimit(const char *func)
2928 {
2929 return ___ratelimit(&printk_ratelimit_state, func);
2930 }
2931 EXPORT_SYMBOL(__printk_ratelimit);
2932
2933 /**
2934 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2935 * @caller_jiffies: pointer to caller's state
2936 * @interval_msecs: minimum interval between prints
2937 *
2938 * printk_timed_ratelimit() returns true if more than @interval_msecs
2939 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2940 * returned true.
2941 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2942 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2943 unsigned int interval_msecs)
2944 {
2945 unsigned long elapsed = jiffies - *caller_jiffies;
2946
2947 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2948 return false;
2949
2950 *caller_jiffies = jiffies;
2951 return true;
2952 }
2953 EXPORT_SYMBOL(printk_timed_ratelimit);
2954
2955 static DEFINE_SPINLOCK(dump_list_lock);
2956 static LIST_HEAD(dump_list);
2957
2958 /**
2959 * kmsg_dump_register - register a kernel log dumper.
2960 * @dumper: pointer to the kmsg_dumper structure
2961 *
2962 * Adds a kernel log dumper to the system. The dump callback in the
2963 * structure will be called when the kernel oopses or panics and must be
2964 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2965 */
kmsg_dump_register(struct kmsg_dumper * dumper)2966 int kmsg_dump_register(struct kmsg_dumper *dumper)
2967 {
2968 unsigned long flags;
2969 int err = -EBUSY;
2970
2971 /* The dump callback needs to be set */
2972 if (!dumper->dump)
2973 return -EINVAL;
2974
2975 spin_lock_irqsave(&dump_list_lock, flags);
2976 /* Don't allow registering multiple times */
2977 if (!dumper->registered) {
2978 dumper->registered = 1;
2979 list_add_tail_rcu(&dumper->list, &dump_list);
2980 err = 0;
2981 }
2982 spin_unlock_irqrestore(&dump_list_lock, flags);
2983
2984 return err;
2985 }
2986 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2987
2988 /**
2989 * kmsg_dump_unregister - unregister a kmsg dumper.
2990 * @dumper: pointer to the kmsg_dumper structure
2991 *
2992 * Removes a dump device from the system. Returns zero on success and
2993 * %-EINVAL otherwise.
2994 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2995 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2996 {
2997 unsigned long flags;
2998 int err = -EINVAL;
2999
3000 spin_lock_irqsave(&dump_list_lock, flags);
3001 if (dumper->registered) {
3002 dumper->registered = 0;
3003 list_del_rcu(&dumper->list);
3004 err = 0;
3005 }
3006 spin_unlock_irqrestore(&dump_list_lock, flags);
3007 synchronize_rcu();
3008
3009 return err;
3010 }
3011 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3012
3013 static bool always_kmsg_dump;
3014 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3015
3016 /**
3017 * kmsg_dump - dump kernel log to kernel message dumpers.
3018 * @reason: the reason (oops, panic etc) for dumping
3019 *
3020 * Call each of the registered dumper's dump() callback, which can
3021 * retrieve the kmsg records with kmsg_dump_get_line() or
3022 * kmsg_dump_get_buffer().
3023 */
kmsg_dump(enum kmsg_dump_reason reason)3024 void kmsg_dump(enum kmsg_dump_reason reason)
3025 {
3026 struct kmsg_dumper *dumper;
3027 unsigned long flags;
3028
3029 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3030 return;
3031
3032 rcu_read_lock();
3033 list_for_each_entry_rcu(dumper, &dump_list, list) {
3034 if (dumper->max_reason && reason > dumper->max_reason)
3035 continue;
3036
3037 /* initialize iterator with data about the stored records */
3038 dumper->active = true;
3039
3040 logbuf_lock_irqsave(flags);
3041 dumper->cur_seq = clear_seq;
3042 dumper->cur_idx = clear_idx;
3043 dumper->next_seq = log_next_seq;
3044 dumper->next_idx = log_next_idx;
3045 logbuf_unlock_irqrestore(flags);
3046
3047 /* invoke dumper which will iterate over records */
3048 dumper->dump(dumper, reason);
3049
3050 /* reset iterator */
3051 dumper->active = false;
3052 }
3053 rcu_read_unlock();
3054 }
3055
3056 /**
3057 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3058 * @dumper: registered kmsg dumper
3059 * @syslog: include the "<4>" prefixes
3060 * @line: buffer to copy the line to
3061 * @size: maximum size of the buffer
3062 * @len: length of line placed into buffer
3063 *
3064 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3065 * record, and copy one record into the provided buffer.
3066 *
3067 * Consecutive calls will return the next available record moving
3068 * towards the end of the buffer with the youngest messages.
3069 *
3070 * A return value of FALSE indicates that there are no more records to
3071 * read.
3072 *
3073 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3074 */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3075 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3076 char *line, size_t size, size_t *len)
3077 {
3078 struct printk_log *msg;
3079 size_t l = 0;
3080 bool ret = false;
3081
3082 if (!dumper->active)
3083 goto out;
3084
3085 if (dumper->cur_seq < log_first_seq) {
3086 /* messages are gone, move to first available one */
3087 dumper->cur_seq = log_first_seq;
3088 dumper->cur_idx = log_first_idx;
3089 }
3090
3091 /* last entry */
3092 if (dumper->cur_seq >= log_next_seq)
3093 goto out;
3094
3095 msg = log_from_idx(dumper->cur_idx);
3096 l = msg_print_text(msg, syslog, line, size);
3097
3098 dumper->cur_idx = log_next(dumper->cur_idx);
3099 dumper->cur_seq++;
3100 ret = true;
3101 out:
3102 if (len)
3103 *len = l;
3104 return ret;
3105 }
3106
3107 /**
3108 * kmsg_dump_get_line - retrieve one kmsg log line
3109 * @dumper: registered kmsg dumper
3110 * @syslog: include the "<4>" prefixes
3111 * @line: buffer to copy the line to
3112 * @size: maximum size of the buffer
3113 * @len: length of line placed into buffer
3114 *
3115 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3116 * record, and copy one record into the provided buffer.
3117 *
3118 * Consecutive calls will return the next available record moving
3119 * towards the end of the buffer with the youngest messages.
3120 *
3121 * A return value of FALSE indicates that there are no more records to
3122 * read.
3123 */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3124 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3125 char *line, size_t size, size_t *len)
3126 {
3127 unsigned long flags;
3128 bool ret;
3129
3130 logbuf_lock_irqsave(flags);
3131 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3132 logbuf_unlock_irqrestore(flags);
3133
3134 return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3137
3138 /**
3139 * kmsg_dump_get_buffer - copy kmsg log lines
3140 * @dumper: registered kmsg dumper
3141 * @syslog: include the "<4>" prefixes
3142 * @buf: buffer to copy the line to
3143 * @size: maximum size of the buffer
3144 * @len: length of line placed into buffer
3145 *
3146 * Start at the end of the kmsg buffer and fill the provided buffer
3147 * with as many of the the *youngest* kmsg records that fit into it.
3148 * If the buffer is large enough, all available kmsg records will be
3149 * copied with a single call.
3150 *
3151 * Consecutive calls will fill the buffer with the next block of
3152 * available older records, not including the earlier retrieved ones.
3153 *
3154 * A return value of FALSE indicates that there are no more records to
3155 * read.
3156 */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3157 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3158 char *buf, size_t size, size_t *len)
3159 {
3160 unsigned long flags;
3161 u64 seq;
3162 u32 idx;
3163 u64 next_seq;
3164 u32 next_idx;
3165 size_t l = 0;
3166 bool ret = false;
3167
3168 if (!dumper->active)
3169 goto out;
3170
3171 logbuf_lock_irqsave(flags);
3172 if (dumper->cur_seq < log_first_seq) {
3173 /* messages are gone, move to first available one */
3174 dumper->cur_seq = log_first_seq;
3175 dumper->cur_idx = log_first_idx;
3176 }
3177
3178 /* last entry */
3179 if (dumper->cur_seq >= dumper->next_seq) {
3180 logbuf_unlock_irqrestore(flags);
3181 goto out;
3182 }
3183
3184 /* calculate length of entire buffer */
3185 seq = dumper->cur_seq;
3186 idx = dumper->cur_idx;
3187 while (seq < dumper->next_seq) {
3188 struct printk_log *msg = log_from_idx(idx);
3189
3190 l += msg_print_text(msg, true, NULL, 0);
3191 idx = log_next(idx);
3192 seq++;
3193 }
3194
3195 /* move first record forward until length fits into the buffer */
3196 seq = dumper->cur_seq;
3197 idx = dumper->cur_idx;
3198 while (l >= size && seq < dumper->next_seq) {
3199 struct printk_log *msg = log_from_idx(idx);
3200
3201 l -= msg_print_text(msg, true, NULL, 0);
3202 idx = log_next(idx);
3203 seq++;
3204 }
3205
3206 /* last message in next interation */
3207 next_seq = seq;
3208 next_idx = idx;
3209
3210 l = 0;
3211 while (seq < dumper->next_seq) {
3212 struct printk_log *msg = log_from_idx(idx);
3213
3214 l += msg_print_text(msg, syslog, buf + l, size - l);
3215 idx = log_next(idx);
3216 seq++;
3217 }
3218
3219 dumper->next_seq = next_seq;
3220 dumper->next_idx = next_idx;
3221 ret = true;
3222 logbuf_unlock_irqrestore(flags);
3223 out:
3224 if (len)
3225 *len = l;
3226 return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3229
3230 /**
3231 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3232 * @dumper: registered kmsg dumper
3233 *
3234 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3235 * kmsg_dump_get_buffer() can be called again and used multiple
3236 * times within the same dumper.dump() callback.
3237 *
3238 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3239 */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3240 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3241 {
3242 dumper->cur_seq = clear_seq;
3243 dumper->cur_idx = clear_idx;
3244 dumper->next_seq = log_next_seq;
3245 dumper->next_idx = log_next_idx;
3246 }
3247
3248 /**
3249 * kmsg_dump_rewind - reset the interator
3250 * @dumper: registered kmsg dumper
3251 *
3252 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3253 * kmsg_dump_get_buffer() can be called again and used multiple
3254 * times within the same dumper.dump() callback.
3255 */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3256 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3257 {
3258 unsigned long flags;
3259
3260 logbuf_lock_irqsave(flags);
3261 kmsg_dump_rewind_nolock(dumper);
3262 logbuf_unlock_irqrestore(flags);
3263 }
3264 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3265
3266 static char dump_stack_arch_desc_str[128];
3267
3268 /**
3269 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3270 * @fmt: printf-style format string
3271 * @...: arguments for the format string
3272 *
3273 * The configured string will be printed right after utsname during task
3274 * dumps. Usually used to add arch-specific system identifiers. If an
3275 * arch wants to make use of such an ID string, it should initialize this
3276 * as soon as possible during boot.
3277 */
dump_stack_set_arch_desc(const char * fmt,...)3278 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3279 {
3280 va_list args;
3281
3282 va_start(args, fmt);
3283 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3284 fmt, args);
3285 va_end(args);
3286 }
3287
3288 /**
3289 * dump_stack_print_info - print generic debug info for dump_stack()
3290 * @log_lvl: log level
3291 *
3292 * Arch-specific dump_stack() implementations can use this function to
3293 * print out the same debug information as the generic dump_stack().
3294 */
dump_stack_print_info(const char * log_lvl)3295 void dump_stack_print_info(const char *log_lvl)
3296 {
3297 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3298 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3299 print_tainted(), init_utsname()->release,
3300 (int)strcspn(init_utsname()->version, " "),
3301 init_utsname()->version);
3302
3303 if (dump_stack_arch_desc_str[0] != '\0')
3304 printk("%sHardware name: %s\n",
3305 log_lvl, dump_stack_arch_desc_str);
3306
3307 print_worker_info(log_lvl, current);
3308 }
3309
3310 /**
3311 * show_regs_print_info - print generic debug info for show_regs()
3312 * @log_lvl: log level
3313 *
3314 * show_regs() implementations can use this function to print out generic
3315 * debug information.
3316 */
show_regs_print_info(const char * log_lvl)3317 void show_regs_print_info(const char *log_lvl)
3318 {
3319 dump_stack_print_info(log_lvl);
3320
3321 printk("%stask: %p task.stack: %p\n",
3322 log_lvl, current, task_stack_page(current));
3323 }
3324
3325 #endif
3326