• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
ring_buffer_print_entry_header(struct trace_seq * s)33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
rb_null_event(struct ring_buffer_event * event)149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
rb_event_set_padding(struct ring_buffer_event * event)154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
rb_event_data_length(struct ring_buffer_event * event)162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
rb_event_length(struct ring_buffer_event * event)179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
ring_buffer_event_length(struct ring_buffer_event * event)230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
ring_buffer_event_data(struct ring_buffer_event * event)265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
284 
285 struct buffer_data_page {
286 	u64		 time_stamp;	/* page time stamp */
287 	local_t		 commit;	/* write committed index */
288 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
289 };
290 
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300 	struct list_head list;		/* list of buffer pages */
301 	local_t		 write;		/* index for next write */
302 	unsigned	 read;		/* index for next read */
303 	local_t		 entries;	/* entries on this page */
304 	unsigned long	 real_end;	/* real end of data */
305 	struct buffer_data_page *page;	/* Actual data page */
306 };
307 
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK		0xfffff
321 #define RB_WRITE_INTCNT		(1 << 20)
322 
rb_init_page(struct buffer_data_page * bpage)323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 	local_set(&bpage->commit, 0);
326 }
327 
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
ring_buffer_page_len(void * page)334 size_t ring_buffer_page_len(void *page)
335 {
336 	struct buffer_data_page *bpage = page;
337 
338 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 		+ BUF_PAGE_HDR_SIZE;
340 }
341 
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
free_buffer_page(struct buffer_page * bpage)346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 	free_page((unsigned long)bpage->page);
349 	kfree(bpage);
350 }
351 
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
test_time_stamp(u64 delta)355 static inline int test_time_stamp(u64 delta)
356 {
357 	if (delta & TS_DELTA_TEST)
358 		return 1;
359 	return 0;
360 }
361 
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363 
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366 
ring_buffer_print_page_header(struct trace_seq * s)367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 	struct buffer_data_page field;
370 
371 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 			 (unsigned int)sizeof(field.time_stamp),
374 			 (unsigned int)is_signed_type(u64));
375 
376 	trace_seq_printf(s, "\tfield: local_t commit;\t"
377 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 			 (unsigned int)offsetof(typeof(field), commit),
379 			 (unsigned int)sizeof(field.commit),
380 			 (unsigned int)is_signed_type(long));
381 
382 	trace_seq_printf(s, "\tfield: int overwrite;\t"
383 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 			 (unsigned int)offsetof(typeof(field), commit),
385 			 1,
386 			 (unsigned int)is_signed_type(long));
387 
388 	trace_seq_printf(s, "\tfield: char data;\t"
389 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)offsetof(typeof(field), data),
391 			 (unsigned int)BUF_PAGE_SIZE,
392 			 (unsigned int)is_signed_type(char));
393 
394 	return !trace_seq_has_overflowed(s);
395 }
396 
397 struct rb_irq_work {
398 	struct irq_work			work;
399 	wait_queue_head_t		waiters;
400 	wait_queue_head_t		full_waiters;
401 	bool				waiters_pending;
402 	bool				full_waiters_pending;
403 	bool				wakeup_full;
404 };
405 
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410 	u64			ts;
411 	u64			delta;
412 	unsigned long		length;
413 	struct buffer_page	*tail_page;
414 	int			add_timestamp;
415 };
416 
417 /*
418  * Used for which event context the event is in.
419  *  NMI     = 0
420  *  IRQ     = 1
421  *  SOFTIRQ = 2
422  *  NORMAL  = 3
423  *
424  * See trace_recursive_lock() comment below for more details.
425  */
426 enum {
427 	RB_CTX_NMI,
428 	RB_CTX_IRQ,
429 	RB_CTX_SOFTIRQ,
430 	RB_CTX_NORMAL,
431 	RB_CTX_MAX
432 };
433 
434 /*
435  * head_page == tail_page && head == tail then buffer is empty.
436  */
437 struct ring_buffer_per_cpu {
438 	int				cpu;
439 	atomic_t			record_disabled;
440 	struct ring_buffer		*buffer;
441 	raw_spinlock_t			reader_lock;	/* serialize readers */
442 	arch_spinlock_t			lock;
443 	struct lock_class_key		lock_key;
444 	struct buffer_data_page		*free_page;
445 	unsigned long			nr_pages;
446 	unsigned int			current_context;
447 	struct list_head		*pages;
448 	struct buffer_page		*head_page;	/* read from head */
449 	struct buffer_page		*tail_page;	/* write to tail */
450 	struct buffer_page		*commit_page;	/* committed pages */
451 	struct buffer_page		*reader_page;
452 	unsigned long			lost_events;
453 	unsigned long			last_overrun;
454 	local_t				entries_bytes;
455 	local_t				entries;
456 	local_t				overrun;
457 	local_t				commit_overrun;
458 	local_t				dropped_events;
459 	local_t				committing;
460 	local_t				commits;
461 	unsigned long			read;
462 	unsigned long			read_bytes;
463 	u64				write_stamp;
464 	u64				read_stamp;
465 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
466 	long				nr_pages_to_update;
467 	struct list_head		new_pages; /* new pages to add */
468 	struct work_struct		update_pages_work;
469 	struct completion		update_done;
470 
471 	struct rb_irq_work		irq_work;
472 };
473 
474 struct ring_buffer {
475 	unsigned			flags;
476 	int				cpus;
477 	atomic_t			record_disabled;
478 	atomic_t			resize_disabled;
479 	cpumask_var_t			cpumask;
480 
481 	struct lock_class_key		*reader_lock_key;
482 
483 	struct mutex			mutex;
484 
485 	struct ring_buffer_per_cpu	**buffers;
486 
487 	struct hlist_node		node;
488 	u64				(*clock)(void);
489 
490 	struct rb_irq_work		irq_work;
491 };
492 
493 struct ring_buffer_iter {
494 	struct ring_buffer_per_cpu	*cpu_buffer;
495 	unsigned long			head;
496 	struct buffer_page		*head_page;
497 	struct buffer_page		*cache_reader_page;
498 	unsigned long			cache_read;
499 	u64				read_stamp;
500 };
501 
502 /*
503  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504  *
505  * Schedules a delayed work to wake up any task that is blocked on the
506  * ring buffer waiters queue.
507  */
rb_wake_up_waiters(struct irq_work * work)508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511 
512 	wake_up_all(&rbwork->waiters);
513 	if (rbwork->wakeup_full) {
514 		rbwork->wakeup_full = false;
515 		wake_up_all(&rbwork->full_waiters);
516 	}
517 }
518 
519 /**
520  * ring_buffer_wait - wait for input to the ring buffer
521  * @buffer: buffer to wait on
522  * @cpu: the cpu buffer to wait on
523  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524  *
525  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526  * as data is added to any of the @buffer's cpu buffers. Otherwise
527  * it will wait for data to be added to a specific cpu buffer.
528  */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 	DEFINE_WAIT(wait);
533 	struct rb_irq_work *work;
534 	int ret = 0;
535 
536 	/*
537 	 * Depending on what the caller is waiting for, either any
538 	 * data in any cpu buffer, or a specific buffer, put the
539 	 * caller on the appropriate wait queue.
540 	 */
541 	if (cpu == RING_BUFFER_ALL_CPUS) {
542 		work = &buffer->irq_work;
543 		/* Full only makes sense on per cpu reads */
544 		full = false;
545 	} else {
546 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 			return -ENODEV;
548 		cpu_buffer = buffer->buffers[cpu];
549 		work = &cpu_buffer->irq_work;
550 	}
551 
552 
553 	while (true) {
554 		if (full)
555 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 		else
557 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558 
559 		/*
560 		 * The events can happen in critical sections where
561 		 * checking a work queue can cause deadlocks.
562 		 * After adding a task to the queue, this flag is set
563 		 * only to notify events to try to wake up the queue
564 		 * using irq_work.
565 		 *
566 		 * We don't clear it even if the buffer is no longer
567 		 * empty. The flag only causes the next event to run
568 		 * irq_work to do the work queue wake up. The worse
569 		 * that can happen if we race with !trace_empty() is that
570 		 * an event will cause an irq_work to try to wake up
571 		 * an empty queue.
572 		 *
573 		 * There's no reason to protect this flag either, as
574 		 * the work queue and irq_work logic will do the necessary
575 		 * synchronization for the wake ups. The only thing
576 		 * that is necessary is that the wake up happens after
577 		 * a task has been queued. It's OK for spurious wake ups.
578 		 */
579 		if (full)
580 			work->full_waiters_pending = true;
581 		else
582 			work->waiters_pending = true;
583 
584 		if (signal_pending(current)) {
585 			ret = -EINTR;
586 			break;
587 		}
588 
589 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 			break;
591 
592 		if (cpu != RING_BUFFER_ALL_CPUS &&
593 		    !ring_buffer_empty_cpu(buffer, cpu)) {
594 			unsigned long flags;
595 			bool pagebusy;
596 
597 			if (!full)
598 				break;
599 
600 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603 
604 			if (!pagebusy)
605 				break;
606 		}
607 
608 		schedule();
609 	}
610 
611 	if (full)
612 		finish_wait(&work->full_waiters, &wait);
613 	else
614 		finish_wait(&work->waiters, &wait);
615 
616 	return ret;
617 }
618 
619 /**
620  * ring_buffer_poll_wait - poll on buffer input
621  * @buffer: buffer to wait on
622  * @cpu: the cpu buffer to wait on
623  * @filp: the file descriptor
624  * @poll_table: The poll descriptor
625  *
626  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627  * as data is added to any of the @buffer's cpu buffers. Otherwise
628  * it will wait for data to be added to a specific cpu buffer.
629  *
630  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631  * zero otherwise.
632  */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 			  struct file *filp, poll_table *poll_table)
635 {
636 	struct ring_buffer_per_cpu *cpu_buffer;
637 	struct rb_irq_work *work;
638 
639 	if (cpu == RING_BUFFER_ALL_CPUS)
640 		work = &buffer->irq_work;
641 	else {
642 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 			return -EINVAL;
644 
645 		cpu_buffer = buffer->buffers[cpu];
646 		work = &cpu_buffer->irq_work;
647 	}
648 
649 	poll_wait(filp, &work->waiters, poll_table);
650 	work->waiters_pending = true;
651 	/*
652 	 * There's a tight race between setting the waiters_pending and
653 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
654 	 * is set, the next event will wake the task up, but we can get stuck
655 	 * if there's only a single event in.
656 	 *
657 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 	 * but adding a memory barrier to all events will cause too much of a
659 	 * performance hit in the fast path.  We only need a memory barrier when
660 	 * the buffer goes from empty to having content.  But as this race is
661 	 * extremely small, and it's not a problem if another event comes in, we
662 	 * will fix it later.
663 	 */
664 	smp_mb();
665 
666 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 		return POLLIN | POLLRDNORM;
669 	return 0;
670 }
671 
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond)						\
674 	({								\
675 		int _____ret = unlikely(cond);				\
676 		if (_____ret) {						\
677 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 				struct ring_buffer_per_cpu *__b =	\
679 					(void *)b;			\
680 				atomic_inc(&__b->buffer->record_disabled); \
681 			} else						\
682 				atomic_inc(&b->record_disabled);	\
683 			WARN_ON(1);					\
684 		}							\
685 		_____ret;						\
686 	})
687 
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690 
rb_time_stamp(struct ring_buffer * buffer)691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 	/* shift to debug/test normalization and TIME_EXTENTS */
694 	return buffer->clock() << DEBUG_SHIFT;
695 }
696 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 	u64 time;
700 
701 	preempt_disable_notrace();
702 	time = rb_time_stamp(buffer);
703 	preempt_enable_notrace();
704 
705 	return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 				      int cpu, u64 *ts)
711 {
712 	/* Just stupid testing the normalize function and deltas */
713 	*ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716 
717 /*
718  * Making the ring buffer lockless makes things tricky.
719  * Although writes only happen on the CPU that they are on,
720  * and they only need to worry about interrupts. Reads can
721  * happen on any CPU.
722  *
723  * The reader page is always off the ring buffer, but when the
724  * reader finishes with a page, it needs to swap its page with
725  * a new one from the buffer. The reader needs to take from
726  * the head (writes go to the tail). But if a writer is in overwrite
727  * mode and wraps, it must push the head page forward.
728  *
729  * Here lies the problem.
730  *
731  * The reader must be careful to replace only the head page, and
732  * not another one. As described at the top of the file in the
733  * ASCII art, the reader sets its old page to point to the next
734  * page after head. It then sets the page after head to point to
735  * the old reader page. But if the writer moves the head page
736  * during this operation, the reader could end up with the tail.
737  *
738  * We use cmpxchg to help prevent this race. We also do something
739  * special with the page before head. We set the LSB to 1.
740  *
741  * When the writer must push the page forward, it will clear the
742  * bit that points to the head page, move the head, and then set
743  * the bit that points to the new head page.
744  *
745  * We also don't want an interrupt coming in and moving the head
746  * page on another writer. Thus we use the second LSB to catch
747  * that too. Thus:
748  *
749  * head->list->prev->next        bit 1          bit 0
750  *                              -------        -------
751  * Normal page                     0              0
752  * Points to head page             0              1
753  * New head page                   1              0
754  *
755  * Note we can not trust the prev pointer of the head page, because:
756  *
757  * +----+       +-----+        +-----+
758  * |    |------>|  T  |---X--->|  N  |
759  * |    |<------|     |        |     |
760  * +----+       +-----+        +-----+
761  *   ^                           ^ |
762  *   |          +-----+          | |
763  *   +----------|  R  |----------+ |
764  *              |     |<-----------+
765  *              +-----+
766  *
767  * Key:  ---X-->  HEAD flag set in pointer
768  *         T      Tail page
769  *         R      Reader page
770  *         N      Next page
771  *
772  * (see __rb_reserve_next() to see where this happens)
773  *
774  *  What the above shows is that the reader just swapped out
775  *  the reader page with a page in the buffer, but before it
776  *  could make the new header point back to the new page added
777  *  it was preempted by a writer. The writer moved forward onto
778  *  the new page added by the reader and is about to move forward
779  *  again.
780  *
781  *  You can see, it is legitimate for the previous pointer of
782  *  the head (or any page) not to point back to itself. But only
783  *  temporarially.
784  */
785 
786 #define RB_PAGE_NORMAL		0UL
787 #define RB_PAGE_HEAD		1UL
788 #define RB_PAGE_UPDATE		2UL
789 
790 
791 #define RB_FLAG_MASK		3UL
792 
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED		4UL
795 
796 /*
797  * rb_list_head - remove any bit
798  */
rb_list_head(struct list_head * list)799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 	unsigned long val = (unsigned long)list;
802 
803 	return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805 
806 /*
807  * rb_is_head_page - test if the given page is the head page
808  *
809  * Because the reader may move the head_page pointer, we can
810  * not trust what the head page is (it may be pointing to
811  * the reader page). But if the next page is a header page,
812  * its flags will be non zero.
813  */
814 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 		struct buffer_page *page, struct list_head *list)
817 {
818 	unsigned long val;
819 
820 	val = (unsigned long)list->next;
821 
822 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 		return RB_PAGE_MOVED;
824 
825 	return val & RB_FLAG_MASK;
826 }
827 
828 /*
829  * rb_is_reader_page
830  *
831  * The unique thing about the reader page, is that, if the
832  * writer is ever on it, the previous pointer never points
833  * back to the reader page.
834  */
rb_is_reader_page(struct buffer_page * page)835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 	struct list_head *list = page->list.prev;
838 
839 	return rb_list_head(list->next) != &page->list;
840 }
841 
842 /*
843  * rb_set_list_to_head - set a list_head to be pointing to head.
844  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 				struct list_head *list)
847 {
848 	unsigned long *ptr;
849 
850 	ptr = (unsigned long *)&list->next;
851 	*ptr |= RB_PAGE_HEAD;
852 	*ptr &= ~RB_PAGE_UPDATE;
853 }
854 
855 /*
856  * rb_head_page_activate - sets up head page
857  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 	struct buffer_page *head;
861 
862 	head = cpu_buffer->head_page;
863 	if (!head)
864 		return;
865 
866 	/*
867 	 * Set the previous list pointer to have the HEAD flag.
868 	 */
869 	rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871 
rb_list_head_clear(struct list_head * list)872 static void rb_list_head_clear(struct list_head *list)
873 {
874 	unsigned long *ptr = (unsigned long *)&list->next;
875 
876 	*ptr &= ~RB_FLAG_MASK;
877 }
878 
879 /*
880  * rb_head_page_dactivate - clears head page ptr (for free list)
881  */
882 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 	struct list_head *hd;
886 
887 	/* Go through the whole list and clear any pointers found. */
888 	rb_list_head_clear(cpu_buffer->pages);
889 
890 	list_for_each(hd, cpu_buffer->pages)
891 		rb_list_head_clear(hd);
892 }
893 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 			    struct buffer_page *head,
896 			    struct buffer_page *prev,
897 			    int old_flag, int new_flag)
898 {
899 	struct list_head *list;
900 	unsigned long val = (unsigned long)&head->list;
901 	unsigned long ret;
902 
903 	list = &prev->list;
904 
905 	val &= ~RB_FLAG_MASK;
906 
907 	ret = cmpxchg((unsigned long *)&list->next,
908 		      val | old_flag, val | new_flag);
909 
910 	/* check if the reader took the page */
911 	if ((ret & ~RB_FLAG_MASK) != val)
912 		return RB_PAGE_MOVED;
913 
914 	return ret & RB_FLAG_MASK;
915 }
916 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 				   struct buffer_page *head,
919 				   struct buffer_page *prev,
920 				   int old_flag)
921 {
922 	return rb_head_page_set(cpu_buffer, head, prev,
923 				old_flag, RB_PAGE_UPDATE);
924 }
925 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 				 struct buffer_page *head,
928 				 struct buffer_page *prev,
929 				 int old_flag)
930 {
931 	return rb_head_page_set(cpu_buffer, head, prev,
932 				old_flag, RB_PAGE_HEAD);
933 }
934 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 				   struct buffer_page *head,
937 				   struct buffer_page *prev,
938 				   int old_flag)
939 {
940 	return rb_head_page_set(cpu_buffer, head, prev,
941 				old_flag, RB_PAGE_NORMAL);
942 }
943 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 			       struct buffer_page **bpage)
946 {
947 	struct list_head *p = rb_list_head((*bpage)->list.next);
948 
949 	*bpage = list_entry(p, struct buffer_page, list);
950 }
951 
952 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 	struct buffer_page *head;
956 	struct buffer_page *page;
957 	struct list_head *list;
958 	int i;
959 
960 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 		return NULL;
962 
963 	/* sanity check */
964 	list = cpu_buffer->pages;
965 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 		return NULL;
967 
968 	page = head = cpu_buffer->head_page;
969 	/*
970 	 * It is possible that the writer moves the header behind
971 	 * where we started, and we miss in one loop.
972 	 * A second loop should grab the header, but we'll do
973 	 * three loops just because I'm paranoid.
974 	 */
975 	for (i = 0; i < 3; i++) {
976 		do {
977 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 				cpu_buffer->head_page = page;
979 				return page;
980 			}
981 			rb_inc_page(cpu_buffer, &page);
982 		} while (page != head);
983 	}
984 
985 	RB_WARN_ON(cpu_buffer, 1);
986 
987 	return NULL;
988 }
989 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)990 static int rb_head_page_replace(struct buffer_page *old,
991 				struct buffer_page *new)
992 {
993 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 	unsigned long val;
995 	unsigned long ret;
996 
997 	val = *ptr & ~RB_FLAG_MASK;
998 	val |= RB_PAGE_HEAD;
999 
1000 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001 
1002 	return ret == val;
1003 }
1004 
1005 /*
1006  * rb_tail_page_update - move the tail page forward
1007  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 			       struct buffer_page *tail_page,
1010 			       struct buffer_page *next_page)
1011 {
1012 	unsigned long old_entries;
1013 	unsigned long old_write;
1014 
1015 	/*
1016 	 * The tail page now needs to be moved forward.
1017 	 *
1018 	 * We need to reset the tail page, but without messing
1019 	 * with possible erasing of data brought in by interrupts
1020 	 * that have moved the tail page and are currently on it.
1021 	 *
1022 	 * We add a counter to the write field to denote this.
1023 	 */
1024 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026 
1027 	/*
1028 	 * Just make sure we have seen our old_write and synchronize
1029 	 * with any interrupts that come in.
1030 	 */
1031 	barrier();
1032 
1033 	/*
1034 	 * If the tail page is still the same as what we think
1035 	 * it is, then it is up to us to update the tail
1036 	 * pointer.
1037 	 */
1038 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 		/* Zero the write counter */
1040 		unsigned long val = old_write & ~RB_WRITE_MASK;
1041 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042 
1043 		/*
1044 		 * This will only succeed if an interrupt did
1045 		 * not come in and change it. In which case, we
1046 		 * do not want to modify it.
1047 		 *
1048 		 * We add (void) to let the compiler know that we do not care
1049 		 * about the return value of these functions. We use the
1050 		 * cmpxchg to only update if an interrupt did not already
1051 		 * do it for us. If the cmpxchg fails, we don't care.
1052 		 */
1053 		(void)local_cmpxchg(&next_page->write, old_write, val);
1054 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055 
1056 		/*
1057 		 * No need to worry about races with clearing out the commit.
1058 		 * it only can increment when a commit takes place. But that
1059 		 * only happens in the outer most nested commit.
1060 		 */
1061 		local_set(&next_page->page->commit, 0);
1062 
1063 		/* Again, either we update tail_page or an interrupt does */
1064 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 	}
1066 }
1067 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 			  struct buffer_page *bpage)
1070 {
1071 	unsigned long val = (unsigned long)bpage;
1072 
1073 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 		return 1;
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  * rb_check_list - make sure a pointer to a list has the last bits zero
1081  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 			 struct list_head *list)
1084 {
1085 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 		return 1;
1087 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 		return 1;
1089 	return 0;
1090 }
1091 
1092 /**
1093  * rb_check_pages - integrity check of buffer pages
1094  * @cpu_buffer: CPU buffer with pages to test
1095  *
1096  * As a safety measure we check to make sure the data pages have not
1097  * been corrupted.
1098  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 	struct list_head *head = cpu_buffer->pages;
1102 	struct buffer_page *bpage, *tmp;
1103 
1104 	/* Reset the head page if it exists */
1105 	if (cpu_buffer->head_page)
1106 		rb_set_head_page(cpu_buffer);
1107 
1108 	rb_head_page_deactivate(cpu_buffer);
1109 
1110 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 		return -1;
1112 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 		return -1;
1114 
1115 	if (rb_check_list(cpu_buffer, head))
1116 		return -1;
1117 
1118 	list_for_each_entry_safe(bpage, tmp, head, list) {
1119 		if (RB_WARN_ON(cpu_buffer,
1120 			       bpage->list.next->prev != &bpage->list))
1121 			return -1;
1122 		if (RB_WARN_ON(cpu_buffer,
1123 			       bpage->list.prev->next != &bpage->list))
1124 			return -1;
1125 		if (rb_check_list(cpu_buffer, &bpage->list))
1126 			return -1;
1127 	}
1128 
1129 	rb_head_page_activate(cpu_buffer);
1130 
1131 	return 0;
1132 }
1133 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 	struct buffer_page *bpage, *tmp;
1137 	long i;
1138 
1139 	/* Check if the available memory is there first */
1140 	i = si_mem_available();
1141 	if (i < nr_pages)
1142 		return -ENOMEM;
1143 
1144 	for (i = 0; i < nr_pages; i++) {
1145 		struct page *page;
1146 		/*
1147 		 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 		 * gracefully without invoking oom-killer and the system is not
1149 		 * destabilized.
1150 		 */
1151 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1152 				    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1153 				    cpu_to_node(cpu));
1154 		if (!bpage)
1155 			goto free_pages;
1156 
1157 		list_add(&bpage->list, pages);
1158 
1159 		page = alloc_pages_node(cpu_to_node(cpu),
1160 					GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1161 		if (!page)
1162 			goto free_pages;
1163 		bpage->page = page_address(page);
1164 		rb_init_page(bpage->page);
1165 	}
1166 
1167 	return 0;
1168 
1169 free_pages:
1170 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 		list_del_init(&bpage->list);
1172 		free_buffer_page(bpage);
1173 	}
1174 
1175 	return -ENOMEM;
1176 }
1177 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1178 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1179 			     unsigned long nr_pages)
1180 {
1181 	LIST_HEAD(pages);
1182 
1183 	WARN_ON(!nr_pages);
1184 
1185 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 		return -ENOMEM;
1187 
1188 	/*
1189 	 * The ring buffer page list is a circular list that does not
1190 	 * start and end with a list head. All page list items point to
1191 	 * other pages.
1192 	 */
1193 	cpu_buffer->pages = pages.next;
1194 	list_del(&pages);
1195 
1196 	cpu_buffer->nr_pages = nr_pages;
1197 
1198 	rb_check_pages(cpu_buffer);
1199 
1200 	return 0;
1201 }
1202 
1203 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1204 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1205 {
1206 	struct ring_buffer_per_cpu *cpu_buffer;
1207 	struct buffer_page *bpage;
1208 	struct page *page;
1209 	int ret;
1210 
1211 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 				  GFP_KERNEL, cpu_to_node(cpu));
1213 	if (!cpu_buffer)
1214 		return NULL;
1215 
1216 	cpu_buffer->cpu = cpu;
1217 	cpu_buffer->buffer = buffer;
1218 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1219 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1220 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1221 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1222 	init_completion(&cpu_buffer->update_done);
1223 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1224 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1225 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1226 
1227 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228 			    GFP_KERNEL, cpu_to_node(cpu));
1229 	if (!bpage)
1230 		goto fail_free_buffer;
1231 
1232 	rb_check_bpage(cpu_buffer, bpage);
1233 
1234 	cpu_buffer->reader_page = bpage;
1235 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 	if (!page)
1237 		goto fail_free_reader;
1238 	bpage->page = page_address(page);
1239 	rb_init_page(bpage->page);
1240 
1241 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1242 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1243 
1244 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1245 	if (ret < 0)
1246 		goto fail_free_reader;
1247 
1248 	cpu_buffer->head_page
1249 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1250 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1251 
1252 	rb_head_page_activate(cpu_buffer);
1253 
1254 	return cpu_buffer;
1255 
1256  fail_free_reader:
1257 	free_buffer_page(cpu_buffer->reader_page);
1258 
1259  fail_free_buffer:
1260 	kfree(cpu_buffer);
1261 	return NULL;
1262 }
1263 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1264 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265 {
1266 	struct list_head *head = cpu_buffer->pages;
1267 	struct buffer_page *bpage, *tmp;
1268 
1269 	free_buffer_page(cpu_buffer->reader_page);
1270 
1271 	rb_head_page_deactivate(cpu_buffer);
1272 
1273 	if (head) {
1274 		list_for_each_entry_safe(bpage, tmp, head, list) {
1275 			list_del_init(&bpage->list);
1276 			free_buffer_page(bpage);
1277 		}
1278 		bpage = list_entry(head, struct buffer_page, list);
1279 		free_buffer_page(bpage);
1280 	}
1281 
1282 	kfree(cpu_buffer);
1283 }
1284 
1285 /**
1286  * __ring_buffer_alloc - allocate a new ring_buffer
1287  * @size: the size in bytes per cpu that is needed.
1288  * @flags: attributes to set for the ring buffer.
1289  *
1290  * Currently the only flag that is available is the RB_FL_OVERWRITE
1291  * flag. This flag means that the buffer will overwrite old data
1292  * when the buffer wraps. If this flag is not set, the buffer will
1293  * drop data when the tail hits the head.
1294  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1295 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 					struct lock_class_key *key)
1297 {
1298 	struct ring_buffer *buffer;
1299 	long nr_pages;
1300 	int bsize;
1301 	int cpu;
1302 	int ret;
1303 
1304 	/* keep it in its own cache line */
1305 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 			 GFP_KERNEL);
1307 	if (!buffer)
1308 		return NULL;
1309 
1310 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 		goto fail_free_buffer;
1312 
1313 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 	buffer->flags = flags;
1315 	buffer->clock = trace_clock_local;
1316 	buffer->reader_lock_key = key;
1317 
1318 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 	init_waitqueue_head(&buffer->irq_work.waiters);
1320 
1321 	/* need at least two pages */
1322 	if (nr_pages < 2)
1323 		nr_pages = 2;
1324 
1325 	buffer->cpus = nr_cpu_ids;
1326 
1327 	bsize = sizeof(void *) * nr_cpu_ids;
1328 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 				  GFP_KERNEL);
1330 	if (!buffer->buffers)
1331 		goto fail_free_cpumask;
1332 
1333 	cpu = raw_smp_processor_id();
1334 	cpumask_set_cpu(cpu, buffer->cpumask);
1335 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 	if (!buffer->buffers[cpu])
1337 		goto fail_free_buffers;
1338 
1339 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 	if (ret < 0)
1341 		goto fail_free_buffers;
1342 
1343 	mutex_init(&buffer->mutex);
1344 
1345 	return buffer;
1346 
1347  fail_free_buffers:
1348 	for_each_buffer_cpu(buffer, cpu) {
1349 		if (buffer->buffers[cpu])
1350 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 	}
1352 	kfree(buffer->buffers);
1353 
1354  fail_free_cpumask:
1355 	free_cpumask_var(buffer->cpumask);
1356 
1357  fail_free_buffer:
1358 	kfree(buffer);
1359 	return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1362 
1363 /**
1364  * ring_buffer_free - free a ring buffer.
1365  * @buffer: the buffer to free.
1366  */
1367 void
ring_buffer_free(struct ring_buffer * buffer)1368 ring_buffer_free(struct ring_buffer *buffer)
1369 {
1370 	int cpu;
1371 
1372 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1373 
1374 	for_each_buffer_cpu(buffer, cpu)
1375 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1376 
1377 	kfree(buffer->buffers);
1378 	free_cpumask_var(buffer->cpumask);
1379 
1380 	kfree(buffer);
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_free);
1383 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1384 void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 			   u64 (*clock)(void))
1386 {
1387 	buffer->clock = clock;
1388 }
1389 
1390 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391 
rb_page_entries(struct buffer_page * bpage)1392 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 }
1396 
rb_page_write(struct buffer_page * bpage)1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 	return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401 
1402 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1403 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1404 {
1405 	struct list_head *tail_page, *to_remove, *next_page;
1406 	struct buffer_page *to_remove_page, *tmp_iter_page;
1407 	struct buffer_page *last_page, *first_page;
1408 	unsigned long nr_removed;
1409 	unsigned long head_bit;
1410 	int page_entries;
1411 
1412 	head_bit = 0;
1413 
1414 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1415 	atomic_inc(&cpu_buffer->record_disabled);
1416 	/*
1417 	 * We don't race with the readers since we have acquired the reader
1418 	 * lock. We also don't race with writers after disabling recording.
1419 	 * This makes it easy to figure out the first and the last page to be
1420 	 * removed from the list. We unlink all the pages in between including
1421 	 * the first and last pages. This is done in a busy loop so that we
1422 	 * lose the least number of traces.
1423 	 * The pages are freed after we restart recording and unlock readers.
1424 	 */
1425 	tail_page = &cpu_buffer->tail_page->list;
1426 
1427 	/*
1428 	 * tail page might be on reader page, we remove the next page
1429 	 * from the ring buffer
1430 	 */
1431 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 		tail_page = rb_list_head(tail_page->next);
1433 	to_remove = tail_page;
1434 
1435 	/* start of pages to remove */
1436 	first_page = list_entry(rb_list_head(to_remove->next),
1437 				struct buffer_page, list);
1438 
1439 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 		to_remove = rb_list_head(to_remove)->next;
1441 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 	}
1443 
1444 	next_page = rb_list_head(to_remove)->next;
1445 
1446 	/*
1447 	 * Now we remove all pages between tail_page and next_page.
1448 	 * Make sure that we have head_bit value preserved for the
1449 	 * next page
1450 	 */
1451 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 						head_bit);
1453 	next_page = rb_list_head(next_page);
1454 	next_page->prev = tail_page;
1455 
1456 	/* make sure pages points to a valid page in the ring buffer */
1457 	cpu_buffer->pages = next_page;
1458 
1459 	/* update head page */
1460 	if (head_bit)
1461 		cpu_buffer->head_page = list_entry(next_page,
1462 						struct buffer_page, list);
1463 
1464 	/*
1465 	 * change read pointer to make sure any read iterators reset
1466 	 * themselves
1467 	 */
1468 	cpu_buffer->read = 0;
1469 
1470 	/* pages are removed, resume tracing and then free the pages */
1471 	atomic_dec(&cpu_buffer->record_disabled);
1472 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1473 
1474 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475 
1476 	/* last buffer page to remove */
1477 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 				list);
1479 	tmp_iter_page = first_page;
1480 
1481 	do {
1482 		cond_resched();
1483 
1484 		to_remove_page = tmp_iter_page;
1485 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1486 
1487 		/* update the counters */
1488 		page_entries = rb_page_entries(to_remove_page);
1489 		if (page_entries) {
1490 			/*
1491 			 * If something was added to this page, it was full
1492 			 * since it is not the tail page. So we deduct the
1493 			 * bytes consumed in ring buffer from here.
1494 			 * Increment overrun to account for the lost events.
1495 			 */
1496 			local_add(page_entries, &cpu_buffer->overrun);
1497 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1498 		}
1499 
1500 		/*
1501 		 * We have already removed references to this list item, just
1502 		 * free up the buffer_page and its page
1503 		 */
1504 		free_buffer_page(to_remove_page);
1505 		nr_removed--;
1506 
1507 	} while (to_remove_page != last_page);
1508 
1509 	RB_WARN_ON(cpu_buffer, nr_removed);
1510 
1511 	return nr_removed == 0;
1512 }
1513 
1514 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1515 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1516 {
1517 	struct list_head *pages = &cpu_buffer->new_pages;
1518 	int retries, success;
1519 
1520 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1521 	/*
1522 	 * We are holding the reader lock, so the reader page won't be swapped
1523 	 * in the ring buffer. Now we are racing with the writer trying to
1524 	 * move head page and the tail page.
1525 	 * We are going to adapt the reader page update process where:
1526 	 * 1. We first splice the start and end of list of new pages between
1527 	 *    the head page and its previous page.
1528 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1529 	 *    start of new pages list.
1530 	 * 3. Finally, we update the head->prev to the end of new list.
1531 	 *
1532 	 * We will try this process 10 times, to make sure that we don't keep
1533 	 * spinning.
1534 	 */
1535 	retries = 10;
1536 	success = 0;
1537 	while (retries--) {
1538 		struct list_head *head_page, *prev_page, *r;
1539 		struct list_head *last_page, *first_page;
1540 		struct list_head *head_page_with_bit;
1541 
1542 		head_page = &rb_set_head_page(cpu_buffer)->list;
1543 		if (!head_page)
1544 			break;
1545 		prev_page = head_page->prev;
1546 
1547 		first_page = pages->next;
1548 		last_page  = pages->prev;
1549 
1550 		head_page_with_bit = (struct list_head *)
1551 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1552 
1553 		last_page->next = head_page_with_bit;
1554 		first_page->prev = prev_page;
1555 
1556 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1557 
1558 		if (r == head_page_with_bit) {
1559 			/*
1560 			 * yay, we replaced the page pointer to our new list,
1561 			 * now, we just have to update to head page's prev
1562 			 * pointer to point to end of list
1563 			 */
1564 			head_page->prev = last_page;
1565 			success = 1;
1566 			break;
1567 		}
1568 	}
1569 
1570 	if (success)
1571 		INIT_LIST_HEAD(pages);
1572 	/*
1573 	 * If we weren't successful in adding in new pages, warn and stop
1574 	 * tracing
1575 	 */
1576 	RB_WARN_ON(cpu_buffer, !success);
1577 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1578 
1579 	/* free pages if they weren't inserted */
1580 	if (!success) {
1581 		struct buffer_page *bpage, *tmp;
1582 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1583 					 list) {
1584 			list_del_init(&bpage->list);
1585 			free_buffer_page(bpage);
1586 		}
1587 	}
1588 	return success;
1589 }
1590 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1591 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1592 {
1593 	int success;
1594 
1595 	if (cpu_buffer->nr_pages_to_update > 0)
1596 		success = rb_insert_pages(cpu_buffer);
1597 	else
1598 		success = rb_remove_pages(cpu_buffer,
1599 					-cpu_buffer->nr_pages_to_update);
1600 
1601 	if (success)
1602 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1603 }
1604 
update_pages_handler(struct work_struct * work)1605 static void update_pages_handler(struct work_struct *work)
1606 {
1607 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1608 			struct ring_buffer_per_cpu, update_pages_work);
1609 	rb_update_pages(cpu_buffer);
1610 	complete(&cpu_buffer->update_done);
1611 }
1612 
1613 /**
1614  * ring_buffer_resize - resize the ring buffer
1615  * @buffer: the buffer to resize.
1616  * @size: the new size.
1617  * @cpu_id: the cpu buffer to resize
1618  *
1619  * Minimum size is 2 * BUF_PAGE_SIZE.
1620  *
1621  * Returns 0 on success and < 0 on failure.
1622  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1623 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1624 			int cpu_id)
1625 {
1626 	struct ring_buffer_per_cpu *cpu_buffer;
1627 	unsigned long nr_pages;
1628 	int cpu, err = 0;
1629 
1630 	/*
1631 	 * Always succeed at resizing a non-existent buffer:
1632 	 */
1633 	if (!buffer)
1634 		return size;
1635 
1636 	/* Make sure the requested buffer exists */
1637 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1638 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1639 		return size;
1640 
1641 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642 
1643 	/* we need a minimum of two pages */
1644 	if (nr_pages < 2)
1645 		nr_pages = 2;
1646 
1647 	size = nr_pages * BUF_PAGE_SIZE;
1648 
1649 	/*
1650 	 * Don't succeed if resizing is disabled, as a reader might be
1651 	 * manipulating the ring buffer and is expecting a sane state while
1652 	 * this is true.
1653 	 */
1654 	if (atomic_read(&buffer->resize_disabled))
1655 		return -EBUSY;
1656 
1657 	/* prevent another thread from changing buffer sizes */
1658 	mutex_lock(&buffer->mutex);
1659 
1660 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661 		/* calculate the pages to update */
1662 		for_each_buffer_cpu(buffer, cpu) {
1663 			cpu_buffer = buffer->buffers[cpu];
1664 
1665 			cpu_buffer->nr_pages_to_update = nr_pages -
1666 							cpu_buffer->nr_pages;
1667 			/*
1668 			 * nothing more to do for removing pages or no update
1669 			 */
1670 			if (cpu_buffer->nr_pages_to_update <= 0)
1671 				continue;
1672 			/*
1673 			 * to add pages, make sure all new pages can be
1674 			 * allocated without receiving ENOMEM
1675 			 */
1676 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1678 						&cpu_buffer->new_pages, cpu)) {
1679 				/* not enough memory for new pages */
1680 				err = -ENOMEM;
1681 				goto out_err;
1682 			}
1683 		}
1684 
1685 		get_online_cpus();
1686 		/*
1687 		 * Fire off all the required work handlers
1688 		 * We can't schedule on offline CPUs, but it's not necessary
1689 		 * since we can change their buffer sizes without any race.
1690 		 */
1691 		for_each_buffer_cpu(buffer, cpu) {
1692 			cpu_buffer = buffer->buffers[cpu];
1693 			if (!cpu_buffer->nr_pages_to_update)
1694 				continue;
1695 
1696 			/* Can't run something on an offline CPU. */
1697 			if (!cpu_online(cpu)) {
1698 				rb_update_pages(cpu_buffer);
1699 				cpu_buffer->nr_pages_to_update = 0;
1700 			} else {
1701 				schedule_work_on(cpu,
1702 						&cpu_buffer->update_pages_work);
1703 			}
1704 		}
1705 
1706 		/* wait for all the updates to complete */
1707 		for_each_buffer_cpu(buffer, cpu) {
1708 			cpu_buffer = buffer->buffers[cpu];
1709 			if (!cpu_buffer->nr_pages_to_update)
1710 				continue;
1711 
1712 			if (cpu_online(cpu))
1713 				wait_for_completion(&cpu_buffer->update_done);
1714 			cpu_buffer->nr_pages_to_update = 0;
1715 		}
1716 
1717 		put_online_cpus();
1718 	} else {
1719 		/* Make sure this CPU has been intitialized */
1720 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 			goto out;
1722 
1723 		cpu_buffer = buffer->buffers[cpu_id];
1724 
1725 		if (nr_pages == cpu_buffer->nr_pages)
1726 			goto out;
1727 
1728 		cpu_buffer->nr_pages_to_update = nr_pages -
1729 						cpu_buffer->nr_pages;
1730 
1731 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 		if (cpu_buffer->nr_pages_to_update > 0 &&
1733 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 					    &cpu_buffer->new_pages, cpu_id)) {
1735 			err = -ENOMEM;
1736 			goto out_err;
1737 		}
1738 
1739 		get_online_cpus();
1740 
1741 		/* Can't run something on an offline CPU. */
1742 		if (!cpu_online(cpu_id))
1743 			rb_update_pages(cpu_buffer);
1744 		else {
1745 			schedule_work_on(cpu_id,
1746 					 &cpu_buffer->update_pages_work);
1747 			wait_for_completion(&cpu_buffer->update_done);
1748 		}
1749 
1750 		cpu_buffer->nr_pages_to_update = 0;
1751 		put_online_cpus();
1752 	}
1753 
1754  out:
1755 	/*
1756 	 * The ring buffer resize can happen with the ring buffer
1757 	 * enabled, so that the update disturbs the tracing as little
1758 	 * as possible. But if the buffer is disabled, we do not need
1759 	 * to worry about that, and we can take the time to verify
1760 	 * that the buffer is not corrupt.
1761 	 */
1762 	if (atomic_read(&buffer->record_disabled)) {
1763 		atomic_inc(&buffer->record_disabled);
1764 		/*
1765 		 * Even though the buffer was disabled, we must make sure
1766 		 * that it is truly disabled before calling rb_check_pages.
1767 		 * There could have been a race between checking
1768 		 * record_disable and incrementing it.
1769 		 */
1770 		synchronize_sched();
1771 		for_each_buffer_cpu(buffer, cpu) {
1772 			cpu_buffer = buffer->buffers[cpu];
1773 			rb_check_pages(cpu_buffer);
1774 		}
1775 		atomic_dec(&buffer->record_disabled);
1776 	}
1777 
1778 	mutex_unlock(&buffer->mutex);
1779 	return size;
1780 
1781  out_err:
1782 	for_each_buffer_cpu(buffer, cpu) {
1783 		struct buffer_page *bpage, *tmp;
1784 
1785 		cpu_buffer = buffer->buffers[cpu];
1786 		cpu_buffer->nr_pages_to_update = 0;
1787 
1788 		if (list_empty(&cpu_buffer->new_pages))
1789 			continue;
1790 
1791 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1792 					list) {
1793 			list_del_init(&bpage->list);
1794 			free_buffer_page(bpage);
1795 		}
1796 	}
1797 	mutex_unlock(&buffer->mutex);
1798 	return err;
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1801 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1802 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1803 {
1804 	mutex_lock(&buffer->mutex);
1805 	if (val)
1806 		buffer->flags |= RB_FL_OVERWRITE;
1807 	else
1808 		buffer->flags &= ~RB_FL_OVERWRITE;
1809 	mutex_unlock(&buffer->mutex);
1810 }
1811 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1812 
1813 static __always_inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1814 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1815 {
1816 	return bpage->data + index;
1817 }
1818 
__rb_page_index(struct buffer_page * bpage,unsigned index)1819 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1820 {
1821 	return bpage->page->data + index;
1822 }
1823 
1824 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1825 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1826 {
1827 	return __rb_page_index(cpu_buffer->reader_page,
1828 			       cpu_buffer->reader_page->read);
1829 }
1830 
1831 static __always_inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1832 rb_iter_head_event(struct ring_buffer_iter *iter)
1833 {
1834 	return __rb_page_index(iter->head_page, iter->head);
1835 }
1836 
rb_page_commit(struct buffer_page * bpage)1837 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1838 {
1839 	return local_read(&bpage->page->commit);
1840 }
1841 
1842 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1843 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1844 {
1845 	return rb_page_commit(bpage);
1846 }
1847 
1848 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1849 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1850 {
1851 	return rb_page_commit(cpu_buffer->commit_page);
1852 }
1853 
1854 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)1855 rb_event_index(struct ring_buffer_event *event)
1856 {
1857 	unsigned long addr = (unsigned long)event;
1858 
1859 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1860 }
1861 
rb_inc_iter(struct ring_buffer_iter * iter)1862 static void rb_inc_iter(struct ring_buffer_iter *iter)
1863 {
1864 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1865 
1866 	/*
1867 	 * The iterator could be on the reader page (it starts there).
1868 	 * But the head could have moved, since the reader was
1869 	 * found. Check for this case and assign the iterator
1870 	 * to the head page instead of next.
1871 	 */
1872 	if (iter->head_page == cpu_buffer->reader_page)
1873 		iter->head_page = rb_set_head_page(cpu_buffer);
1874 	else
1875 		rb_inc_page(cpu_buffer, &iter->head_page);
1876 
1877 	iter->read_stamp = iter->head_page->page->time_stamp;
1878 	iter->head = 0;
1879 }
1880 
1881 /*
1882  * rb_handle_head_page - writer hit the head page
1883  *
1884  * Returns: +1 to retry page
1885  *           0 to continue
1886  *          -1 on error
1887  */
1888 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1889 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1890 		    struct buffer_page *tail_page,
1891 		    struct buffer_page *next_page)
1892 {
1893 	struct buffer_page *new_head;
1894 	int entries;
1895 	int type;
1896 	int ret;
1897 
1898 	entries = rb_page_entries(next_page);
1899 
1900 	/*
1901 	 * The hard part is here. We need to move the head
1902 	 * forward, and protect against both readers on
1903 	 * other CPUs and writers coming in via interrupts.
1904 	 */
1905 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1906 				       RB_PAGE_HEAD);
1907 
1908 	/*
1909 	 * type can be one of four:
1910 	 *  NORMAL - an interrupt already moved it for us
1911 	 *  HEAD   - we are the first to get here.
1912 	 *  UPDATE - we are the interrupt interrupting
1913 	 *           a current move.
1914 	 *  MOVED  - a reader on another CPU moved the next
1915 	 *           pointer to its reader page. Give up
1916 	 *           and try again.
1917 	 */
1918 
1919 	switch (type) {
1920 	case RB_PAGE_HEAD:
1921 		/*
1922 		 * We changed the head to UPDATE, thus
1923 		 * it is our responsibility to update
1924 		 * the counters.
1925 		 */
1926 		local_add(entries, &cpu_buffer->overrun);
1927 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1928 
1929 		/*
1930 		 * The entries will be zeroed out when we move the
1931 		 * tail page.
1932 		 */
1933 
1934 		/* still more to do */
1935 		break;
1936 
1937 	case RB_PAGE_UPDATE:
1938 		/*
1939 		 * This is an interrupt that interrupt the
1940 		 * previous update. Still more to do.
1941 		 */
1942 		break;
1943 	case RB_PAGE_NORMAL:
1944 		/*
1945 		 * An interrupt came in before the update
1946 		 * and processed this for us.
1947 		 * Nothing left to do.
1948 		 */
1949 		return 1;
1950 	case RB_PAGE_MOVED:
1951 		/*
1952 		 * The reader is on another CPU and just did
1953 		 * a swap with our next_page.
1954 		 * Try again.
1955 		 */
1956 		return 1;
1957 	default:
1958 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1959 		return -1;
1960 	}
1961 
1962 	/*
1963 	 * Now that we are here, the old head pointer is
1964 	 * set to UPDATE. This will keep the reader from
1965 	 * swapping the head page with the reader page.
1966 	 * The reader (on another CPU) will spin till
1967 	 * we are finished.
1968 	 *
1969 	 * We just need to protect against interrupts
1970 	 * doing the job. We will set the next pointer
1971 	 * to HEAD. After that, we set the old pointer
1972 	 * to NORMAL, but only if it was HEAD before.
1973 	 * otherwise we are an interrupt, and only
1974 	 * want the outer most commit to reset it.
1975 	 */
1976 	new_head = next_page;
1977 	rb_inc_page(cpu_buffer, &new_head);
1978 
1979 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1980 				    RB_PAGE_NORMAL);
1981 
1982 	/*
1983 	 * Valid returns are:
1984 	 *  HEAD   - an interrupt came in and already set it.
1985 	 *  NORMAL - One of two things:
1986 	 *            1) We really set it.
1987 	 *            2) A bunch of interrupts came in and moved
1988 	 *               the page forward again.
1989 	 */
1990 	switch (ret) {
1991 	case RB_PAGE_HEAD:
1992 	case RB_PAGE_NORMAL:
1993 		/* OK */
1994 		break;
1995 	default:
1996 		RB_WARN_ON(cpu_buffer, 1);
1997 		return -1;
1998 	}
1999 
2000 	/*
2001 	 * It is possible that an interrupt came in,
2002 	 * set the head up, then more interrupts came in
2003 	 * and moved it again. When we get back here,
2004 	 * the page would have been set to NORMAL but we
2005 	 * just set it back to HEAD.
2006 	 *
2007 	 * How do you detect this? Well, if that happened
2008 	 * the tail page would have moved.
2009 	 */
2010 	if (ret == RB_PAGE_NORMAL) {
2011 		struct buffer_page *buffer_tail_page;
2012 
2013 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2014 		/*
2015 		 * If the tail had moved passed next, then we need
2016 		 * to reset the pointer.
2017 		 */
2018 		if (buffer_tail_page != tail_page &&
2019 		    buffer_tail_page != next_page)
2020 			rb_head_page_set_normal(cpu_buffer, new_head,
2021 						next_page,
2022 						RB_PAGE_HEAD);
2023 	}
2024 
2025 	/*
2026 	 * If this was the outer most commit (the one that
2027 	 * changed the original pointer from HEAD to UPDATE),
2028 	 * then it is up to us to reset it to NORMAL.
2029 	 */
2030 	if (type == RB_PAGE_HEAD) {
2031 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2032 					      tail_page,
2033 					      RB_PAGE_UPDATE);
2034 		if (RB_WARN_ON(cpu_buffer,
2035 			       ret != RB_PAGE_UPDATE))
2036 			return -1;
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2043 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2044 	      unsigned long tail, struct rb_event_info *info)
2045 {
2046 	struct buffer_page *tail_page = info->tail_page;
2047 	struct ring_buffer_event *event;
2048 	unsigned long length = info->length;
2049 
2050 	/*
2051 	 * Only the event that crossed the page boundary
2052 	 * must fill the old tail_page with padding.
2053 	 */
2054 	if (tail >= BUF_PAGE_SIZE) {
2055 		/*
2056 		 * If the page was filled, then we still need
2057 		 * to update the real_end. Reset it to zero
2058 		 * and the reader will ignore it.
2059 		 */
2060 		if (tail == BUF_PAGE_SIZE)
2061 			tail_page->real_end = 0;
2062 
2063 		local_sub(length, &tail_page->write);
2064 		return;
2065 	}
2066 
2067 	event = __rb_page_index(tail_page, tail);
2068 
2069 	/* account for padding bytes */
2070 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2071 
2072 	/*
2073 	 * Save the original length to the meta data.
2074 	 * This will be used by the reader to add lost event
2075 	 * counter.
2076 	 */
2077 	tail_page->real_end = tail;
2078 
2079 	/*
2080 	 * If this event is bigger than the minimum size, then
2081 	 * we need to be careful that we don't subtract the
2082 	 * write counter enough to allow another writer to slip
2083 	 * in on this page.
2084 	 * We put in a discarded commit instead, to make sure
2085 	 * that this space is not used again.
2086 	 *
2087 	 * If we are less than the minimum size, we don't need to
2088 	 * worry about it.
2089 	 */
2090 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2091 		/* No room for any events */
2092 
2093 		/* Mark the rest of the page with padding */
2094 		rb_event_set_padding(event);
2095 
2096 		/* Set the write back to the previous setting */
2097 		local_sub(length, &tail_page->write);
2098 		return;
2099 	}
2100 
2101 	/* Put in a discarded event */
2102 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2103 	event->type_len = RINGBUF_TYPE_PADDING;
2104 	/* time delta must be non zero */
2105 	event->time_delta = 1;
2106 
2107 	/* Set write to end of buffer */
2108 	length = (tail + length) - BUF_PAGE_SIZE;
2109 	local_sub(length, &tail_page->write);
2110 }
2111 
2112 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2113 
2114 /*
2115  * This is the slow path, force gcc not to inline it.
2116  */
2117 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2118 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2119 	     unsigned long tail, struct rb_event_info *info)
2120 {
2121 	struct buffer_page *tail_page = info->tail_page;
2122 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2123 	struct ring_buffer *buffer = cpu_buffer->buffer;
2124 	struct buffer_page *next_page;
2125 	int ret;
2126 
2127 	next_page = tail_page;
2128 
2129 	rb_inc_page(cpu_buffer, &next_page);
2130 
2131 	/*
2132 	 * If for some reason, we had an interrupt storm that made
2133 	 * it all the way around the buffer, bail, and warn
2134 	 * about it.
2135 	 */
2136 	if (unlikely(next_page == commit_page)) {
2137 		local_inc(&cpu_buffer->commit_overrun);
2138 		goto out_reset;
2139 	}
2140 
2141 	/*
2142 	 * This is where the fun begins!
2143 	 *
2144 	 * We are fighting against races between a reader that
2145 	 * could be on another CPU trying to swap its reader
2146 	 * page with the buffer head.
2147 	 *
2148 	 * We are also fighting against interrupts coming in and
2149 	 * moving the head or tail on us as well.
2150 	 *
2151 	 * If the next page is the head page then we have filled
2152 	 * the buffer, unless the commit page is still on the
2153 	 * reader page.
2154 	 */
2155 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2156 
2157 		/*
2158 		 * If the commit is not on the reader page, then
2159 		 * move the header page.
2160 		 */
2161 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2162 			/*
2163 			 * If we are not in overwrite mode,
2164 			 * this is easy, just stop here.
2165 			 */
2166 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2167 				local_inc(&cpu_buffer->dropped_events);
2168 				goto out_reset;
2169 			}
2170 
2171 			ret = rb_handle_head_page(cpu_buffer,
2172 						  tail_page,
2173 						  next_page);
2174 			if (ret < 0)
2175 				goto out_reset;
2176 			if (ret)
2177 				goto out_again;
2178 		} else {
2179 			/*
2180 			 * We need to be careful here too. The
2181 			 * commit page could still be on the reader
2182 			 * page. We could have a small buffer, and
2183 			 * have filled up the buffer with events
2184 			 * from interrupts and such, and wrapped.
2185 			 *
2186 			 * Note, if the tail page is also the on the
2187 			 * reader_page, we let it move out.
2188 			 */
2189 			if (unlikely((cpu_buffer->commit_page !=
2190 				      cpu_buffer->tail_page) &&
2191 				     (cpu_buffer->commit_page ==
2192 				      cpu_buffer->reader_page))) {
2193 				local_inc(&cpu_buffer->commit_overrun);
2194 				goto out_reset;
2195 			}
2196 		}
2197 	}
2198 
2199 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2200 
2201  out_again:
2202 
2203 	rb_reset_tail(cpu_buffer, tail, info);
2204 
2205 	/* Commit what we have for now. */
2206 	rb_end_commit(cpu_buffer);
2207 	/* rb_end_commit() decs committing */
2208 	local_inc(&cpu_buffer->committing);
2209 
2210 	/* fail and let the caller try again */
2211 	return ERR_PTR(-EAGAIN);
2212 
2213  out_reset:
2214 	/* reset write */
2215 	rb_reset_tail(cpu_buffer, tail, info);
2216 
2217 	return NULL;
2218 }
2219 
2220 /* Slow path, do not inline */
2221 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)2222 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2223 {
2224 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2225 
2226 	/* Not the first event on the page? */
2227 	if (rb_event_index(event)) {
2228 		event->time_delta = delta & TS_MASK;
2229 		event->array[0] = delta >> TS_SHIFT;
2230 	} else {
2231 		/* nope, just zero it */
2232 		event->time_delta = 0;
2233 		event->array[0] = 0;
2234 	}
2235 
2236 	return skip_time_extend(event);
2237 }
2238 
2239 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2240 				     struct ring_buffer_event *event);
2241 
2242 /**
2243  * rb_update_event - update event type and data
2244  * @event: the event to update
2245  * @type: the type of event
2246  * @length: the size of the event field in the ring buffer
2247  *
2248  * Update the type and data fields of the event. The length
2249  * is the actual size that is written to the ring buffer,
2250  * and with this, we can determine what to place into the
2251  * data field.
2252  */
2253 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2254 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2255 		struct ring_buffer_event *event,
2256 		struct rb_event_info *info)
2257 {
2258 	unsigned length = info->length;
2259 	u64 delta = info->delta;
2260 
2261 	/* Only a commit updates the timestamp */
2262 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2263 		delta = 0;
2264 
2265 	/*
2266 	 * If we need to add a timestamp, then we
2267 	 * add it to the start of the resevered space.
2268 	 */
2269 	if (unlikely(info->add_timestamp)) {
2270 		event = rb_add_time_stamp(event, delta);
2271 		length -= RB_LEN_TIME_EXTEND;
2272 		delta = 0;
2273 	}
2274 
2275 	event->time_delta = delta;
2276 	length -= RB_EVNT_HDR_SIZE;
2277 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2278 		event->type_len = 0;
2279 		event->array[0] = length;
2280 	} else
2281 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2282 }
2283 
rb_calculate_event_length(unsigned length)2284 static unsigned rb_calculate_event_length(unsigned length)
2285 {
2286 	struct ring_buffer_event event; /* Used only for sizeof array */
2287 
2288 	/* zero length can cause confusions */
2289 	if (!length)
2290 		length++;
2291 
2292 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2293 		length += sizeof(event.array[0]);
2294 
2295 	length += RB_EVNT_HDR_SIZE;
2296 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2297 
2298 	/*
2299 	 * In case the time delta is larger than the 27 bits for it
2300 	 * in the header, we need to add a timestamp. If another
2301 	 * event comes in when trying to discard this one to increase
2302 	 * the length, then the timestamp will be added in the allocated
2303 	 * space of this event. If length is bigger than the size needed
2304 	 * for the TIME_EXTEND, then padding has to be used. The events
2305 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2306 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2307 	 * As length is a multiple of 4, we only need to worry if it
2308 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2309 	 */
2310 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2311 		length += RB_ALIGNMENT;
2312 
2313 	return length;
2314 }
2315 
2316 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2317 static inline bool sched_clock_stable(void)
2318 {
2319 	return true;
2320 }
2321 #endif
2322 
2323 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2324 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2325 		  struct ring_buffer_event *event)
2326 {
2327 	unsigned long new_index, old_index;
2328 	struct buffer_page *bpage;
2329 	unsigned long index;
2330 	unsigned long addr;
2331 
2332 	new_index = rb_event_index(event);
2333 	old_index = new_index + rb_event_ts_length(event);
2334 	addr = (unsigned long)event;
2335 	addr &= PAGE_MASK;
2336 
2337 	bpage = READ_ONCE(cpu_buffer->tail_page);
2338 
2339 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2340 		unsigned long write_mask =
2341 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2342 		unsigned long event_length = rb_event_length(event);
2343 		/*
2344 		 * This is on the tail page. It is possible that
2345 		 * a write could come in and move the tail page
2346 		 * and write to the next page. That is fine
2347 		 * because we just shorten what is on this page.
2348 		 */
2349 		old_index += write_mask;
2350 		new_index += write_mask;
2351 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2352 		if (index == old_index) {
2353 			/* update counters */
2354 			local_sub(event_length, &cpu_buffer->entries_bytes);
2355 			return 1;
2356 		}
2357 	}
2358 
2359 	/* could not discard */
2360 	return 0;
2361 }
2362 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2363 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2364 {
2365 	local_inc(&cpu_buffer->committing);
2366 	local_inc(&cpu_buffer->commits);
2367 }
2368 
2369 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2370 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2371 {
2372 	unsigned long max_count;
2373 
2374 	/*
2375 	 * We only race with interrupts and NMIs on this CPU.
2376 	 * If we own the commit event, then we can commit
2377 	 * all others that interrupted us, since the interruptions
2378 	 * are in stack format (they finish before they come
2379 	 * back to us). This allows us to do a simple loop to
2380 	 * assign the commit to the tail.
2381 	 */
2382  again:
2383 	max_count = cpu_buffer->nr_pages * 100;
2384 
2385 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2386 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2387 			return;
2388 		if (RB_WARN_ON(cpu_buffer,
2389 			       rb_is_reader_page(cpu_buffer->tail_page)))
2390 			return;
2391 		local_set(&cpu_buffer->commit_page->page->commit,
2392 			  rb_page_write(cpu_buffer->commit_page));
2393 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2394 		/* Only update the write stamp if the page has an event */
2395 		if (rb_page_write(cpu_buffer->commit_page))
2396 			cpu_buffer->write_stamp =
2397 				cpu_buffer->commit_page->page->time_stamp;
2398 		/* add barrier to keep gcc from optimizing too much */
2399 		barrier();
2400 	}
2401 	while (rb_commit_index(cpu_buffer) !=
2402 	       rb_page_write(cpu_buffer->commit_page)) {
2403 
2404 		local_set(&cpu_buffer->commit_page->page->commit,
2405 			  rb_page_write(cpu_buffer->commit_page));
2406 		RB_WARN_ON(cpu_buffer,
2407 			   local_read(&cpu_buffer->commit_page->page->commit) &
2408 			   ~RB_WRITE_MASK);
2409 		barrier();
2410 	}
2411 
2412 	/* again, keep gcc from optimizing */
2413 	barrier();
2414 
2415 	/*
2416 	 * If an interrupt came in just after the first while loop
2417 	 * and pushed the tail page forward, we will be left with
2418 	 * a dangling commit that will never go forward.
2419 	 */
2420 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2421 		goto again;
2422 }
2423 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2424 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2425 {
2426 	unsigned long commits;
2427 
2428 	if (RB_WARN_ON(cpu_buffer,
2429 		       !local_read(&cpu_buffer->committing)))
2430 		return;
2431 
2432  again:
2433 	commits = local_read(&cpu_buffer->commits);
2434 	/* synchronize with interrupts */
2435 	barrier();
2436 	if (local_read(&cpu_buffer->committing) == 1)
2437 		rb_set_commit_to_write(cpu_buffer);
2438 
2439 	local_dec(&cpu_buffer->committing);
2440 
2441 	/* synchronize with interrupts */
2442 	barrier();
2443 
2444 	/*
2445 	 * Need to account for interrupts coming in between the
2446 	 * updating of the commit page and the clearing of the
2447 	 * committing counter.
2448 	 */
2449 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2450 	    !local_read(&cpu_buffer->committing)) {
2451 		local_inc(&cpu_buffer->committing);
2452 		goto again;
2453 	}
2454 }
2455 
rb_event_discard(struct ring_buffer_event * event)2456 static inline void rb_event_discard(struct ring_buffer_event *event)
2457 {
2458 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2459 		event = skip_time_extend(event);
2460 
2461 	/* array[0] holds the actual length for the discarded event */
2462 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2463 	event->type_len = RINGBUF_TYPE_PADDING;
2464 	/* time delta must be non zero */
2465 	if (!event->time_delta)
2466 		event->time_delta = 1;
2467 }
2468 
2469 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2470 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2471 		   struct ring_buffer_event *event)
2472 {
2473 	unsigned long addr = (unsigned long)event;
2474 	unsigned long index;
2475 
2476 	index = rb_event_index(event);
2477 	addr &= PAGE_MASK;
2478 
2479 	return cpu_buffer->commit_page->page == (void *)addr &&
2480 		rb_commit_index(cpu_buffer) == index;
2481 }
2482 
2483 static __always_inline void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2484 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2485 		      struct ring_buffer_event *event)
2486 {
2487 	u64 delta;
2488 
2489 	/*
2490 	 * The event first in the commit queue updates the
2491 	 * time stamp.
2492 	 */
2493 	if (rb_event_is_commit(cpu_buffer, event)) {
2494 		/*
2495 		 * A commit event that is first on a page
2496 		 * updates the write timestamp with the page stamp
2497 		 */
2498 		if (!rb_event_index(event))
2499 			cpu_buffer->write_stamp =
2500 				cpu_buffer->commit_page->page->time_stamp;
2501 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2502 			delta = event->array[0];
2503 			delta <<= TS_SHIFT;
2504 			delta += event->time_delta;
2505 			cpu_buffer->write_stamp += delta;
2506 		} else
2507 			cpu_buffer->write_stamp += event->time_delta;
2508 	}
2509 }
2510 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2511 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2512 		      struct ring_buffer_event *event)
2513 {
2514 	local_inc(&cpu_buffer->entries);
2515 	rb_update_write_stamp(cpu_buffer, event);
2516 	rb_end_commit(cpu_buffer);
2517 }
2518 
2519 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2520 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522 	bool pagebusy;
2523 
2524 	if (buffer->irq_work.waiters_pending) {
2525 		buffer->irq_work.waiters_pending = false;
2526 		/* irq_work_queue() supplies it's own memory barriers */
2527 		irq_work_queue(&buffer->irq_work.work);
2528 	}
2529 
2530 	if (cpu_buffer->irq_work.waiters_pending) {
2531 		cpu_buffer->irq_work.waiters_pending = false;
2532 		/* irq_work_queue() supplies it's own memory barriers */
2533 		irq_work_queue(&cpu_buffer->irq_work.work);
2534 	}
2535 
2536 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2537 
2538 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2539 		cpu_buffer->irq_work.wakeup_full = true;
2540 		cpu_buffer->irq_work.full_waiters_pending = false;
2541 		/* irq_work_queue() supplies it's own memory barriers */
2542 		irq_work_queue(&cpu_buffer->irq_work.work);
2543 	}
2544 }
2545 
2546 /*
2547  * The lock and unlock are done within a preempt disable section.
2548  * The current_context per_cpu variable can only be modified
2549  * by the current task between lock and unlock. But it can
2550  * be modified more than once via an interrupt. To pass this
2551  * information from the lock to the unlock without having to
2552  * access the 'in_interrupt()' functions again (which do show
2553  * a bit of overhead in something as critical as function tracing,
2554  * we use a bitmask trick.
2555  *
2556  *  bit 0 =  NMI context
2557  *  bit 1 =  IRQ context
2558  *  bit 2 =  SoftIRQ context
2559  *  bit 3 =  normal context.
2560  *
2561  * This works because this is the order of contexts that can
2562  * preempt other contexts. A SoftIRQ never preempts an IRQ
2563  * context.
2564  *
2565  * When the context is determined, the corresponding bit is
2566  * checked and set (if it was set, then a recursion of that context
2567  * happened).
2568  *
2569  * On unlock, we need to clear this bit. To do so, just subtract
2570  * 1 from the current_context and AND it to itself.
2571  *
2572  * (binary)
2573  *  101 - 1 = 100
2574  *  101 & 100 = 100 (clearing bit zero)
2575  *
2576  *  1010 - 1 = 1001
2577  *  1010 & 1001 = 1000 (clearing bit 1)
2578  *
2579  * The least significant bit can be cleared this way, and it
2580  * just so happens that it is the same bit corresponding to
2581  * the current context.
2582  */
2583 
2584 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2585 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2586 {
2587 	unsigned int val = cpu_buffer->current_context;
2588 	int bit;
2589 
2590 	if (in_interrupt()) {
2591 		if (in_nmi())
2592 			bit = RB_CTX_NMI;
2593 		else if (in_irq())
2594 			bit = RB_CTX_IRQ;
2595 		else
2596 			bit = RB_CTX_SOFTIRQ;
2597 	} else
2598 		bit = RB_CTX_NORMAL;
2599 
2600 	if (unlikely(val & (1 << bit)))
2601 		return 1;
2602 
2603 	val |= (1 << bit);
2604 	cpu_buffer->current_context = val;
2605 
2606 	return 0;
2607 }
2608 
2609 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2610 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2611 {
2612 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2613 }
2614 
2615 /**
2616  * ring_buffer_unlock_commit - commit a reserved
2617  * @buffer: The buffer to commit to
2618  * @event: The event pointer to commit.
2619  *
2620  * This commits the data to the ring buffer, and releases any locks held.
2621  *
2622  * Must be paired with ring_buffer_lock_reserve.
2623  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2624 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2625 			      struct ring_buffer_event *event)
2626 {
2627 	struct ring_buffer_per_cpu *cpu_buffer;
2628 	int cpu = raw_smp_processor_id();
2629 
2630 	cpu_buffer = buffer->buffers[cpu];
2631 
2632 	rb_commit(cpu_buffer, event);
2633 
2634 	rb_wakeups(buffer, cpu_buffer);
2635 
2636 	trace_recursive_unlock(cpu_buffer);
2637 
2638 	preempt_enable_notrace();
2639 
2640 	return 0;
2641 }
2642 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2643 
2644 static noinline void
rb_handle_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2645 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2646 		    struct rb_event_info *info)
2647 {
2648 	WARN_ONCE(info->delta > (1ULL << 59),
2649 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2650 		  (unsigned long long)info->delta,
2651 		  (unsigned long long)info->ts,
2652 		  (unsigned long long)cpu_buffer->write_stamp,
2653 		  sched_clock_stable() ? "" :
2654 		  "If you just came from a suspend/resume,\n"
2655 		  "please switch to the trace global clock:\n"
2656 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2657 	info->add_timestamp = 1;
2658 }
2659 
2660 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2661 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2662 		  struct rb_event_info *info)
2663 {
2664 	struct ring_buffer_event *event;
2665 	struct buffer_page *tail_page;
2666 	unsigned long tail, write;
2667 
2668 	/*
2669 	 * If the time delta since the last event is too big to
2670 	 * hold in the time field of the event, then we append a
2671 	 * TIME EXTEND event ahead of the data event.
2672 	 */
2673 	if (unlikely(info->add_timestamp))
2674 		info->length += RB_LEN_TIME_EXTEND;
2675 
2676 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2677 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2678 	write = local_add_return(info->length, &tail_page->write);
2679 
2680 	/* set write to only the index of the write */
2681 	write &= RB_WRITE_MASK;
2682 	tail = write - info->length;
2683 
2684 	/*
2685 	 * If this is the first commit on the page, then it has the same
2686 	 * timestamp as the page itself.
2687 	 */
2688 	if (!tail)
2689 		info->delta = 0;
2690 
2691 	/* See if we shot pass the end of this buffer page */
2692 	if (unlikely(write > BUF_PAGE_SIZE))
2693 		return rb_move_tail(cpu_buffer, tail, info);
2694 
2695 	/* We reserved something on the buffer */
2696 
2697 	event = __rb_page_index(tail_page, tail);
2698 	rb_update_event(cpu_buffer, event, info);
2699 
2700 	local_inc(&tail_page->entries);
2701 
2702 	/*
2703 	 * If this is the first commit on the page, then update
2704 	 * its timestamp.
2705 	 */
2706 	if (!tail)
2707 		tail_page->page->time_stamp = info->ts;
2708 
2709 	/* account for these added bytes */
2710 	local_add(info->length, &cpu_buffer->entries_bytes);
2711 
2712 	return event;
2713 }
2714 
2715 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2716 rb_reserve_next_event(struct ring_buffer *buffer,
2717 		      struct ring_buffer_per_cpu *cpu_buffer,
2718 		      unsigned long length)
2719 {
2720 	struct ring_buffer_event *event;
2721 	struct rb_event_info info;
2722 	int nr_loops = 0;
2723 	u64 diff;
2724 
2725 	rb_start_commit(cpu_buffer);
2726 
2727 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2728 	/*
2729 	 * Due to the ability to swap a cpu buffer from a buffer
2730 	 * it is possible it was swapped before we committed.
2731 	 * (committing stops a swap). We check for it here and
2732 	 * if it happened, we have to fail the write.
2733 	 */
2734 	barrier();
2735 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2736 		local_dec(&cpu_buffer->committing);
2737 		local_dec(&cpu_buffer->commits);
2738 		return NULL;
2739 	}
2740 #endif
2741 
2742 	info.length = rb_calculate_event_length(length);
2743  again:
2744 	info.add_timestamp = 0;
2745 	info.delta = 0;
2746 
2747 	/*
2748 	 * We allow for interrupts to reenter here and do a trace.
2749 	 * If one does, it will cause this original code to loop
2750 	 * back here. Even with heavy interrupts happening, this
2751 	 * should only happen a few times in a row. If this happens
2752 	 * 1000 times in a row, there must be either an interrupt
2753 	 * storm or we have something buggy.
2754 	 * Bail!
2755 	 */
2756 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2757 		goto out_fail;
2758 
2759 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2760 	diff = info.ts - cpu_buffer->write_stamp;
2761 
2762 	/* make sure this diff is calculated here */
2763 	barrier();
2764 
2765 	/* Did the write stamp get updated already? */
2766 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2767 		info.delta = diff;
2768 		if (unlikely(test_time_stamp(info.delta)))
2769 			rb_handle_timestamp(cpu_buffer, &info);
2770 	}
2771 
2772 	event = __rb_reserve_next(cpu_buffer, &info);
2773 
2774 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2775 		if (info.add_timestamp)
2776 			info.length -= RB_LEN_TIME_EXTEND;
2777 		goto again;
2778 	}
2779 
2780 	if (!event)
2781 		goto out_fail;
2782 
2783 	return event;
2784 
2785  out_fail:
2786 	rb_end_commit(cpu_buffer);
2787 	return NULL;
2788 }
2789 
2790 /**
2791  * ring_buffer_lock_reserve - reserve a part of the buffer
2792  * @buffer: the ring buffer to reserve from
2793  * @length: the length of the data to reserve (excluding event header)
2794  *
2795  * Returns a reseverd event on the ring buffer to copy directly to.
2796  * The user of this interface will need to get the body to write into
2797  * and can use the ring_buffer_event_data() interface.
2798  *
2799  * The length is the length of the data needed, not the event length
2800  * which also includes the event header.
2801  *
2802  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2803  * If NULL is returned, then nothing has been allocated or locked.
2804  */
2805 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2806 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2807 {
2808 	struct ring_buffer_per_cpu *cpu_buffer;
2809 	struct ring_buffer_event *event;
2810 	int cpu;
2811 
2812 	/* If we are tracing schedule, we don't want to recurse */
2813 	preempt_disable_notrace();
2814 
2815 	if (unlikely(atomic_read(&buffer->record_disabled)))
2816 		goto out;
2817 
2818 	cpu = raw_smp_processor_id();
2819 
2820 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2821 		goto out;
2822 
2823 	cpu_buffer = buffer->buffers[cpu];
2824 
2825 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2826 		goto out;
2827 
2828 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2829 		goto out;
2830 
2831 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2832 		goto out;
2833 
2834 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2835 	if (!event)
2836 		goto out_unlock;
2837 
2838 	return event;
2839 
2840  out_unlock:
2841 	trace_recursive_unlock(cpu_buffer);
2842  out:
2843 	preempt_enable_notrace();
2844 	return NULL;
2845 }
2846 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2847 
2848 /*
2849  * Decrement the entries to the page that an event is on.
2850  * The event does not even need to exist, only the pointer
2851  * to the page it is on. This may only be called before the commit
2852  * takes place.
2853  */
2854 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2855 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2856 		   struct ring_buffer_event *event)
2857 {
2858 	unsigned long addr = (unsigned long)event;
2859 	struct buffer_page *bpage = cpu_buffer->commit_page;
2860 	struct buffer_page *start;
2861 
2862 	addr &= PAGE_MASK;
2863 
2864 	/* Do the likely case first */
2865 	if (likely(bpage->page == (void *)addr)) {
2866 		local_dec(&bpage->entries);
2867 		return;
2868 	}
2869 
2870 	/*
2871 	 * Because the commit page may be on the reader page we
2872 	 * start with the next page and check the end loop there.
2873 	 */
2874 	rb_inc_page(cpu_buffer, &bpage);
2875 	start = bpage;
2876 	do {
2877 		if (bpage->page == (void *)addr) {
2878 			local_dec(&bpage->entries);
2879 			return;
2880 		}
2881 		rb_inc_page(cpu_buffer, &bpage);
2882 	} while (bpage != start);
2883 
2884 	/* commit not part of this buffer?? */
2885 	RB_WARN_ON(cpu_buffer, 1);
2886 }
2887 
2888 /**
2889  * ring_buffer_commit_discard - discard an event that has not been committed
2890  * @buffer: the ring buffer
2891  * @event: non committed event to discard
2892  *
2893  * Sometimes an event that is in the ring buffer needs to be ignored.
2894  * This function lets the user discard an event in the ring buffer
2895  * and then that event will not be read later.
2896  *
2897  * This function only works if it is called before the the item has been
2898  * committed. It will try to free the event from the ring buffer
2899  * if another event has not been added behind it.
2900  *
2901  * If another event has been added behind it, it will set the event
2902  * up as discarded, and perform the commit.
2903  *
2904  * If this function is called, do not call ring_buffer_unlock_commit on
2905  * the event.
2906  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2907 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2908 				struct ring_buffer_event *event)
2909 {
2910 	struct ring_buffer_per_cpu *cpu_buffer;
2911 	int cpu;
2912 
2913 	/* The event is discarded regardless */
2914 	rb_event_discard(event);
2915 
2916 	cpu = smp_processor_id();
2917 	cpu_buffer = buffer->buffers[cpu];
2918 
2919 	/*
2920 	 * This must only be called if the event has not been
2921 	 * committed yet. Thus we can assume that preemption
2922 	 * is still disabled.
2923 	 */
2924 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2925 
2926 	rb_decrement_entry(cpu_buffer, event);
2927 	if (rb_try_to_discard(cpu_buffer, event))
2928 		goto out;
2929 
2930 	/*
2931 	 * The commit is still visible by the reader, so we
2932 	 * must still update the timestamp.
2933 	 */
2934 	rb_update_write_stamp(cpu_buffer, event);
2935  out:
2936 	rb_end_commit(cpu_buffer);
2937 
2938 	trace_recursive_unlock(cpu_buffer);
2939 
2940 	preempt_enable_notrace();
2941 
2942 }
2943 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2944 
2945 /**
2946  * ring_buffer_write - write data to the buffer without reserving
2947  * @buffer: The ring buffer to write to.
2948  * @length: The length of the data being written (excluding the event header)
2949  * @data: The data to write to the buffer.
2950  *
2951  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2952  * one function. If you already have the data to write to the buffer, it
2953  * may be easier to simply call this function.
2954  *
2955  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2956  * and not the length of the event which would hold the header.
2957  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2958 int ring_buffer_write(struct ring_buffer *buffer,
2959 		      unsigned long length,
2960 		      void *data)
2961 {
2962 	struct ring_buffer_per_cpu *cpu_buffer;
2963 	struct ring_buffer_event *event;
2964 	void *body;
2965 	int ret = -EBUSY;
2966 	int cpu;
2967 
2968 	preempt_disable_notrace();
2969 
2970 	if (atomic_read(&buffer->record_disabled))
2971 		goto out;
2972 
2973 	cpu = raw_smp_processor_id();
2974 
2975 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2976 		goto out;
2977 
2978 	cpu_buffer = buffer->buffers[cpu];
2979 
2980 	if (atomic_read(&cpu_buffer->record_disabled))
2981 		goto out;
2982 
2983 	if (length > BUF_MAX_DATA_SIZE)
2984 		goto out;
2985 
2986 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2987 		goto out;
2988 
2989 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2990 	if (!event)
2991 		goto out_unlock;
2992 
2993 	body = rb_event_data(event);
2994 
2995 	memcpy(body, data, length);
2996 
2997 	rb_commit(cpu_buffer, event);
2998 
2999 	rb_wakeups(buffer, cpu_buffer);
3000 
3001 	ret = 0;
3002 
3003  out_unlock:
3004 	trace_recursive_unlock(cpu_buffer);
3005 
3006  out:
3007 	preempt_enable_notrace();
3008 
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_write);
3012 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3013 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3014 {
3015 	struct buffer_page *reader = cpu_buffer->reader_page;
3016 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3017 	struct buffer_page *commit = cpu_buffer->commit_page;
3018 
3019 	/* In case of error, head will be NULL */
3020 	if (unlikely(!head))
3021 		return true;
3022 
3023 	return reader->read == rb_page_commit(reader) &&
3024 		(commit == reader ||
3025 		 (commit == head &&
3026 		  head->read == rb_page_commit(commit)));
3027 }
3028 
3029 /**
3030  * ring_buffer_record_disable - stop all writes into the buffer
3031  * @buffer: The ring buffer to stop writes to.
3032  *
3033  * This prevents all writes to the buffer. Any attempt to write
3034  * to the buffer after this will fail and return NULL.
3035  *
3036  * The caller should call synchronize_sched() after this.
3037  */
ring_buffer_record_disable(struct ring_buffer * buffer)3038 void ring_buffer_record_disable(struct ring_buffer *buffer)
3039 {
3040 	atomic_inc(&buffer->record_disabled);
3041 }
3042 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3043 
3044 /**
3045  * ring_buffer_record_enable - enable writes to the buffer
3046  * @buffer: The ring buffer to enable writes
3047  *
3048  * Note, multiple disables will need the same number of enables
3049  * to truly enable the writing (much like preempt_disable).
3050  */
ring_buffer_record_enable(struct ring_buffer * buffer)3051 void ring_buffer_record_enable(struct ring_buffer *buffer)
3052 {
3053 	atomic_dec(&buffer->record_disabled);
3054 }
3055 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3056 
3057 /**
3058  * ring_buffer_record_off - stop all writes into the buffer
3059  * @buffer: The ring buffer to stop writes to.
3060  *
3061  * This prevents all writes to the buffer. Any attempt to write
3062  * to the buffer after this will fail and return NULL.
3063  *
3064  * This is different than ring_buffer_record_disable() as
3065  * it works like an on/off switch, where as the disable() version
3066  * must be paired with a enable().
3067  */
ring_buffer_record_off(struct ring_buffer * buffer)3068 void ring_buffer_record_off(struct ring_buffer *buffer)
3069 {
3070 	unsigned int rd;
3071 	unsigned int new_rd;
3072 
3073 	do {
3074 		rd = atomic_read(&buffer->record_disabled);
3075 		new_rd = rd | RB_BUFFER_OFF;
3076 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3079 
3080 /**
3081  * ring_buffer_record_on - restart writes into the buffer
3082  * @buffer: The ring buffer to start writes to.
3083  *
3084  * This enables all writes to the buffer that was disabled by
3085  * ring_buffer_record_off().
3086  *
3087  * This is different than ring_buffer_record_enable() as
3088  * it works like an on/off switch, where as the enable() version
3089  * must be paired with a disable().
3090  */
ring_buffer_record_on(struct ring_buffer * buffer)3091 void ring_buffer_record_on(struct ring_buffer *buffer)
3092 {
3093 	unsigned int rd;
3094 	unsigned int new_rd;
3095 
3096 	do {
3097 		rd = atomic_read(&buffer->record_disabled);
3098 		new_rd = rd & ~RB_BUFFER_OFF;
3099 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3100 }
3101 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3102 
3103 /**
3104  * ring_buffer_record_is_on - return true if the ring buffer can write
3105  * @buffer: The ring buffer to see if write is enabled
3106  *
3107  * Returns true if the ring buffer is in a state that it accepts writes.
3108  */
ring_buffer_record_is_on(struct ring_buffer * buffer)3109 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3110 {
3111 	return !atomic_read(&buffer->record_disabled);
3112 }
3113 
3114 /**
3115  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3116  * @buffer: The ring buffer to see if write is set enabled
3117  *
3118  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3119  * Note that this does NOT mean it is in a writable state.
3120  *
3121  * It may return true when the ring buffer has been disabled by
3122  * ring_buffer_record_disable(), as that is a temporary disabling of
3123  * the ring buffer.
3124  */
ring_buffer_record_is_set_on(struct ring_buffer * buffer)3125 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3126 {
3127 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3128 }
3129 
3130 /**
3131  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3132  * @buffer: The ring buffer to stop writes to.
3133  * @cpu: The CPU buffer to stop
3134  *
3135  * This prevents all writes to the buffer. Any attempt to write
3136  * to the buffer after this will fail and return NULL.
3137  *
3138  * The caller should call synchronize_sched() after this.
3139  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3140 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3141 {
3142 	struct ring_buffer_per_cpu *cpu_buffer;
3143 
3144 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3145 		return;
3146 
3147 	cpu_buffer = buffer->buffers[cpu];
3148 	atomic_inc(&cpu_buffer->record_disabled);
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3151 
3152 /**
3153  * ring_buffer_record_enable_cpu - enable writes to the buffer
3154  * @buffer: The ring buffer to enable writes
3155  * @cpu: The CPU to enable.
3156  *
3157  * Note, multiple disables will need the same number of enables
3158  * to truly enable the writing (much like preempt_disable).
3159  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3160 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3161 {
3162 	struct ring_buffer_per_cpu *cpu_buffer;
3163 
3164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 		return;
3166 
3167 	cpu_buffer = buffer->buffers[cpu];
3168 	atomic_dec(&cpu_buffer->record_disabled);
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3171 
3172 /*
3173  * The total entries in the ring buffer is the running counter
3174  * of entries entered into the ring buffer, minus the sum of
3175  * the entries read from the ring buffer and the number of
3176  * entries that were overwritten.
3177  */
3178 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 	return local_read(&cpu_buffer->entries) -
3182 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3183 }
3184 
3185 /**
3186  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3187  * @buffer: The ring buffer
3188  * @cpu: The per CPU buffer to read from.
3189  */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3190 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3191 {
3192 	unsigned long flags;
3193 	struct ring_buffer_per_cpu *cpu_buffer;
3194 	struct buffer_page *bpage;
3195 	u64 ret = 0;
3196 
3197 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 		return 0;
3199 
3200 	cpu_buffer = buffer->buffers[cpu];
3201 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3202 	/*
3203 	 * if the tail is on reader_page, oldest time stamp is on the reader
3204 	 * page
3205 	 */
3206 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3207 		bpage = cpu_buffer->reader_page;
3208 	else
3209 		bpage = rb_set_head_page(cpu_buffer);
3210 	if (bpage)
3211 		ret = bpage->page->time_stamp;
3212 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3213 
3214 	return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3217 
3218 /**
3219  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3220  * @buffer: The ring buffer
3221  * @cpu: The per CPU buffer to read from.
3222  */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3223 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3224 {
3225 	struct ring_buffer_per_cpu *cpu_buffer;
3226 	unsigned long ret;
3227 
3228 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3229 		return 0;
3230 
3231 	cpu_buffer = buffer->buffers[cpu];
3232 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3233 
3234 	return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3237 
3238 /**
3239  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3240  * @buffer: The ring buffer
3241  * @cpu: The per CPU buffer to get the entries from.
3242  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3243 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3244 {
3245 	struct ring_buffer_per_cpu *cpu_buffer;
3246 
3247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 		return 0;
3249 
3250 	cpu_buffer = buffer->buffers[cpu];
3251 
3252 	return rb_num_of_entries(cpu_buffer);
3253 }
3254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3255 
3256 /**
3257  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3258  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3259  * @buffer: The ring buffer
3260  * @cpu: The per CPU buffer to get the number of overruns from
3261  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3262 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3263 {
3264 	struct ring_buffer_per_cpu *cpu_buffer;
3265 	unsigned long ret;
3266 
3267 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3268 		return 0;
3269 
3270 	cpu_buffer = buffer->buffers[cpu];
3271 	ret = local_read(&cpu_buffer->overrun);
3272 
3273 	return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3276 
3277 /**
3278  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3279  * commits failing due to the buffer wrapping around while there are uncommitted
3280  * events, such as during an interrupt storm.
3281  * @buffer: The ring buffer
3282  * @cpu: The per CPU buffer to get the number of overruns from
3283  */
3284 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3285 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3286 {
3287 	struct ring_buffer_per_cpu *cpu_buffer;
3288 	unsigned long ret;
3289 
3290 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 		return 0;
3292 
3293 	cpu_buffer = buffer->buffers[cpu];
3294 	ret = local_read(&cpu_buffer->commit_overrun);
3295 
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3299 
3300 /**
3301  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3302  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3303  * @buffer: The ring buffer
3304  * @cpu: The per CPU buffer to get the number of overruns from
3305  */
3306 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3307 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3308 {
3309 	struct ring_buffer_per_cpu *cpu_buffer;
3310 	unsigned long ret;
3311 
3312 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313 		return 0;
3314 
3315 	cpu_buffer = buffer->buffers[cpu];
3316 	ret = local_read(&cpu_buffer->dropped_events);
3317 
3318 	return ret;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3321 
3322 /**
3323  * ring_buffer_read_events_cpu - get the number of events successfully read
3324  * @buffer: The ring buffer
3325  * @cpu: The per CPU buffer to get the number of events read
3326  */
3327 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3328 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3329 {
3330 	struct ring_buffer_per_cpu *cpu_buffer;
3331 
3332 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3333 		return 0;
3334 
3335 	cpu_buffer = buffer->buffers[cpu];
3336 	return cpu_buffer->read;
3337 }
3338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3339 
3340 /**
3341  * ring_buffer_entries - get the number of entries in a buffer
3342  * @buffer: The ring buffer
3343  *
3344  * Returns the total number of entries in the ring buffer
3345  * (all CPU entries)
3346  */
ring_buffer_entries(struct ring_buffer * buffer)3347 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3348 {
3349 	struct ring_buffer_per_cpu *cpu_buffer;
3350 	unsigned long entries = 0;
3351 	int cpu;
3352 
3353 	/* if you care about this being correct, lock the buffer */
3354 	for_each_buffer_cpu(buffer, cpu) {
3355 		cpu_buffer = buffer->buffers[cpu];
3356 		entries += rb_num_of_entries(cpu_buffer);
3357 	}
3358 
3359 	return entries;
3360 }
3361 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3362 
3363 /**
3364  * ring_buffer_overruns - get the number of overruns in buffer
3365  * @buffer: The ring buffer
3366  *
3367  * Returns the total number of overruns in the ring buffer
3368  * (all CPU entries)
3369  */
ring_buffer_overruns(struct ring_buffer * buffer)3370 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3371 {
3372 	struct ring_buffer_per_cpu *cpu_buffer;
3373 	unsigned long overruns = 0;
3374 	int cpu;
3375 
3376 	/* if you care about this being correct, lock the buffer */
3377 	for_each_buffer_cpu(buffer, cpu) {
3378 		cpu_buffer = buffer->buffers[cpu];
3379 		overruns += local_read(&cpu_buffer->overrun);
3380 	}
3381 
3382 	return overruns;
3383 }
3384 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3385 
rb_iter_reset(struct ring_buffer_iter * iter)3386 static void rb_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3389 
3390 	/* Iterator usage is expected to have record disabled */
3391 	iter->head_page = cpu_buffer->reader_page;
3392 	iter->head = cpu_buffer->reader_page->read;
3393 
3394 	iter->cache_reader_page = iter->head_page;
3395 	iter->cache_read = cpu_buffer->read;
3396 
3397 	if (iter->head)
3398 		iter->read_stamp = cpu_buffer->read_stamp;
3399 	else
3400 		iter->read_stamp = iter->head_page->page->time_stamp;
3401 }
3402 
3403 /**
3404  * ring_buffer_iter_reset - reset an iterator
3405  * @iter: The iterator to reset
3406  *
3407  * Resets the iterator, so that it will start from the beginning
3408  * again.
3409  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3410 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3411 {
3412 	struct ring_buffer_per_cpu *cpu_buffer;
3413 	unsigned long flags;
3414 
3415 	if (!iter)
3416 		return;
3417 
3418 	cpu_buffer = iter->cpu_buffer;
3419 
3420 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3421 	rb_iter_reset(iter);
3422 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3423 }
3424 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3425 
3426 /**
3427  * ring_buffer_iter_empty - check if an iterator has no more to read
3428  * @iter: The iterator to check
3429  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3430 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3431 {
3432 	struct ring_buffer_per_cpu *cpu_buffer;
3433 	struct buffer_page *reader;
3434 	struct buffer_page *head_page;
3435 	struct buffer_page *commit_page;
3436 	unsigned commit;
3437 
3438 	cpu_buffer = iter->cpu_buffer;
3439 
3440 	/* Remember, trace recording is off when iterator is in use */
3441 	reader = cpu_buffer->reader_page;
3442 	head_page = cpu_buffer->head_page;
3443 	commit_page = cpu_buffer->commit_page;
3444 	commit = rb_page_commit(commit_page);
3445 
3446 	return ((iter->head_page == commit_page && iter->head == commit) ||
3447 		(iter->head_page == reader && commit_page == head_page &&
3448 		 head_page->read == commit &&
3449 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3450 }
3451 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3452 
3453 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3454 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3455 		     struct ring_buffer_event *event)
3456 {
3457 	u64 delta;
3458 
3459 	switch (event->type_len) {
3460 	case RINGBUF_TYPE_PADDING:
3461 		return;
3462 
3463 	case RINGBUF_TYPE_TIME_EXTEND:
3464 		delta = event->array[0];
3465 		delta <<= TS_SHIFT;
3466 		delta += event->time_delta;
3467 		cpu_buffer->read_stamp += delta;
3468 		return;
3469 
3470 	case RINGBUF_TYPE_TIME_STAMP:
3471 		/* FIXME: not implemented */
3472 		return;
3473 
3474 	case RINGBUF_TYPE_DATA:
3475 		cpu_buffer->read_stamp += event->time_delta;
3476 		return;
3477 
3478 	default:
3479 		BUG();
3480 	}
3481 	return;
3482 }
3483 
3484 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3485 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3486 			  struct ring_buffer_event *event)
3487 {
3488 	u64 delta;
3489 
3490 	switch (event->type_len) {
3491 	case RINGBUF_TYPE_PADDING:
3492 		return;
3493 
3494 	case RINGBUF_TYPE_TIME_EXTEND:
3495 		delta = event->array[0];
3496 		delta <<= TS_SHIFT;
3497 		delta += event->time_delta;
3498 		iter->read_stamp += delta;
3499 		return;
3500 
3501 	case RINGBUF_TYPE_TIME_STAMP:
3502 		/* FIXME: not implemented */
3503 		return;
3504 
3505 	case RINGBUF_TYPE_DATA:
3506 		iter->read_stamp += event->time_delta;
3507 		return;
3508 
3509 	default:
3510 		BUG();
3511 	}
3512 	return;
3513 }
3514 
3515 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3516 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3517 {
3518 	struct buffer_page *reader = NULL;
3519 	unsigned long overwrite;
3520 	unsigned long flags;
3521 	int nr_loops = 0;
3522 	int ret;
3523 
3524 	local_irq_save(flags);
3525 	arch_spin_lock(&cpu_buffer->lock);
3526 
3527  again:
3528 	/*
3529 	 * This should normally only loop twice. But because the
3530 	 * start of the reader inserts an empty page, it causes
3531 	 * a case where we will loop three times. There should be no
3532 	 * reason to loop four times (that I know of).
3533 	 */
3534 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3535 		reader = NULL;
3536 		goto out;
3537 	}
3538 
3539 	reader = cpu_buffer->reader_page;
3540 
3541 	/* If there's more to read, return this page */
3542 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3543 		goto out;
3544 
3545 	/* Never should we have an index greater than the size */
3546 	if (RB_WARN_ON(cpu_buffer,
3547 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3548 		goto out;
3549 
3550 	/* check if we caught up to the tail */
3551 	reader = NULL;
3552 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3553 		goto out;
3554 
3555 	/* Don't bother swapping if the ring buffer is empty */
3556 	if (rb_num_of_entries(cpu_buffer) == 0)
3557 		goto out;
3558 
3559 	/*
3560 	 * Reset the reader page to size zero.
3561 	 */
3562 	local_set(&cpu_buffer->reader_page->write, 0);
3563 	local_set(&cpu_buffer->reader_page->entries, 0);
3564 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3565 	cpu_buffer->reader_page->real_end = 0;
3566 
3567  spin:
3568 	/*
3569 	 * Splice the empty reader page into the list around the head.
3570 	 */
3571 	reader = rb_set_head_page(cpu_buffer);
3572 	if (!reader)
3573 		goto out;
3574 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3575 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3576 
3577 	/*
3578 	 * cpu_buffer->pages just needs to point to the buffer, it
3579 	 *  has no specific buffer page to point to. Lets move it out
3580 	 *  of our way so we don't accidentally swap it.
3581 	 */
3582 	cpu_buffer->pages = reader->list.prev;
3583 
3584 	/* The reader page will be pointing to the new head */
3585 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3586 
3587 	/*
3588 	 * We want to make sure we read the overruns after we set up our
3589 	 * pointers to the next object. The writer side does a
3590 	 * cmpxchg to cross pages which acts as the mb on the writer
3591 	 * side. Note, the reader will constantly fail the swap
3592 	 * while the writer is updating the pointers, so this
3593 	 * guarantees that the overwrite recorded here is the one we
3594 	 * want to compare with the last_overrun.
3595 	 */
3596 	smp_mb();
3597 	overwrite = local_read(&(cpu_buffer->overrun));
3598 
3599 	/*
3600 	 * Here's the tricky part.
3601 	 *
3602 	 * We need to move the pointer past the header page.
3603 	 * But we can only do that if a writer is not currently
3604 	 * moving it. The page before the header page has the
3605 	 * flag bit '1' set if it is pointing to the page we want.
3606 	 * but if the writer is in the process of moving it
3607 	 * than it will be '2' or already moved '0'.
3608 	 */
3609 
3610 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3611 
3612 	/*
3613 	 * If we did not convert it, then we must try again.
3614 	 */
3615 	if (!ret)
3616 		goto spin;
3617 
3618 	/*
3619 	 * Yeah! We succeeded in replacing the page.
3620 	 *
3621 	 * Now make the new head point back to the reader page.
3622 	 */
3623 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3624 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3625 
3626 	/* Finally update the reader page to the new head */
3627 	cpu_buffer->reader_page = reader;
3628 	cpu_buffer->reader_page->read = 0;
3629 
3630 	if (overwrite != cpu_buffer->last_overrun) {
3631 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3632 		cpu_buffer->last_overrun = overwrite;
3633 	}
3634 
3635 	goto again;
3636 
3637  out:
3638 	/* Update the read_stamp on the first event */
3639 	if (reader && reader->read == 0)
3640 		cpu_buffer->read_stamp = reader->page->time_stamp;
3641 
3642 	arch_spin_unlock(&cpu_buffer->lock);
3643 	local_irq_restore(flags);
3644 
3645 	return reader;
3646 }
3647 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3648 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3649 {
3650 	struct ring_buffer_event *event;
3651 	struct buffer_page *reader;
3652 	unsigned length;
3653 
3654 	reader = rb_get_reader_page(cpu_buffer);
3655 
3656 	/* This function should not be called when buffer is empty */
3657 	if (RB_WARN_ON(cpu_buffer, !reader))
3658 		return;
3659 
3660 	event = rb_reader_event(cpu_buffer);
3661 
3662 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3663 		cpu_buffer->read++;
3664 
3665 	rb_update_read_stamp(cpu_buffer, event);
3666 
3667 	length = rb_event_length(event);
3668 	cpu_buffer->reader_page->read += length;
3669 }
3670 
rb_advance_iter(struct ring_buffer_iter * iter)3671 static void rb_advance_iter(struct ring_buffer_iter *iter)
3672 {
3673 	struct ring_buffer_per_cpu *cpu_buffer;
3674 	struct ring_buffer_event *event;
3675 	unsigned length;
3676 
3677 	cpu_buffer = iter->cpu_buffer;
3678 
3679 	/*
3680 	 * Check if we are at the end of the buffer.
3681 	 */
3682 	if (iter->head >= rb_page_size(iter->head_page)) {
3683 		/* discarded commits can make the page empty */
3684 		if (iter->head_page == cpu_buffer->commit_page)
3685 			return;
3686 		rb_inc_iter(iter);
3687 		return;
3688 	}
3689 
3690 	event = rb_iter_head_event(iter);
3691 
3692 	length = rb_event_length(event);
3693 
3694 	/*
3695 	 * This should not be called to advance the header if we are
3696 	 * at the tail of the buffer.
3697 	 */
3698 	if (RB_WARN_ON(cpu_buffer,
3699 		       (iter->head_page == cpu_buffer->commit_page) &&
3700 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3701 		return;
3702 
3703 	rb_update_iter_read_stamp(iter, event);
3704 
3705 	iter->head += length;
3706 
3707 	/* check for end of page padding */
3708 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3709 	    (iter->head_page != cpu_buffer->commit_page))
3710 		rb_inc_iter(iter);
3711 }
3712 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3713 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3714 {
3715 	return cpu_buffer->lost_events;
3716 }
3717 
3718 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3719 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3720 	       unsigned long *lost_events)
3721 {
3722 	struct ring_buffer_event *event;
3723 	struct buffer_page *reader;
3724 	int nr_loops = 0;
3725 
3726  again:
3727 	/*
3728 	 * We repeat when a time extend is encountered.
3729 	 * Since the time extend is always attached to a data event,
3730 	 * we should never loop more than once.
3731 	 * (We never hit the following condition more than twice).
3732 	 */
3733 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3734 		return NULL;
3735 
3736 	reader = rb_get_reader_page(cpu_buffer);
3737 	if (!reader)
3738 		return NULL;
3739 
3740 	event = rb_reader_event(cpu_buffer);
3741 
3742 	switch (event->type_len) {
3743 	case RINGBUF_TYPE_PADDING:
3744 		if (rb_null_event(event))
3745 			RB_WARN_ON(cpu_buffer, 1);
3746 		/*
3747 		 * Because the writer could be discarding every
3748 		 * event it creates (which would probably be bad)
3749 		 * if we were to go back to "again" then we may never
3750 		 * catch up, and will trigger the warn on, or lock
3751 		 * the box. Return the padding, and we will release
3752 		 * the current locks, and try again.
3753 		 */
3754 		return event;
3755 
3756 	case RINGBUF_TYPE_TIME_EXTEND:
3757 		/* Internal data, OK to advance */
3758 		rb_advance_reader(cpu_buffer);
3759 		goto again;
3760 
3761 	case RINGBUF_TYPE_TIME_STAMP:
3762 		/* FIXME: not implemented */
3763 		rb_advance_reader(cpu_buffer);
3764 		goto again;
3765 
3766 	case RINGBUF_TYPE_DATA:
3767 		if (ts) {
3768 			*ts = cpu_buffer->read_stamp + event->time_delta;
3769 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3770 							 cpu_buffer->cpu, ts);
3771 		}
3772 		if (lost_events)
3773 			*lost_events = rb_lost_events(cpu_buffer);
3774 		return event;
3775 
3776 	default:
3777 		BUG();
3778 	}
3779 
3780 	return NULL;
3781 }
3782 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3783 
3784 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3785 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3786 {
3787 	struct ring_buffer *buffer;
3788 	struct ring_buffer_per_cpu *cpu_buffer;
3789 	struct ring_buffer_event *event;
3790 	int nr_loops = 0;
3791 
3792 	cpu_buffer = iter->cpu_buffer;
3793 	buffer = cpu_buffer->buffer;
3794 
3795 	/*
3796 	 * Check if someone performed a consuming read to
3797 	 * the buffer. A consuming read invalidates the iterator
3798 	 * and we need to reset the iterator in this case.
3799 	 */
3800 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3801 		     iter->cache_reader_page != cpu_buffer->reader_page))
3802 		rb_iter_reset(iter);
3803 
3804  again:
3805 	if (ring_buffer_iter_empty(iter))
3806 		return NULL;
3807 
3808 	/*
3809 	 * We repeat when a time extend is encountered or we hit
3810 	 * the end of the page. Since the time extend is always attached
3811 	 * to a data event, we should never loop more than three times.
3812 	 * Once for going to next page, once on time extend, and
3813 	 * finally once to get the event.
3814 	 * (We never hit the following condition more than thrice).
3815 	 */
3816 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3817 		return NULL;
3818 
3819 	if (rb_per_cpu_empty(cpu_buffer))
3820 		return NULL;
3821 
3822 	if (iter->head >= rb_page_size(iter->head_page)) {
3823 		rb_inc_iter(iter);
3824 		goto again;
3825 	}
3826 
3827 	event = rb_iter_head_event(iter);
3828 
3829 	switch (event->type_len) {
3830 	case RINGBUF_TYPE_PADDING:
3831 		if (rb_null_event(event)) {
3832 			rb_inc_iter(iter);
3833 			goto again;
3834 		}
3835 		rb_advance_iter(iter);
3836 		return event;
3837 
3838 	case RINGBUF_TYPE_TIME_EXTEND:
3839 		/* Internal data, OK to advance */
3840 		rb_advance_iter(iter);
3841 		goto again;
3842 
3843 	case RINGBUF_TYPE_TIME_STAMP:
3844 		/* FIXME: not implemented */
3845 		rb_advance_iter(iter);
3846 		goto again;
3847 
3848 	case RINGBUF_TYPE_DATA:
3849 		if (ts) {
3850 			*ts = iter->read_stamp + event->time_delta;
3851 			ring_buffer_normalize_time_stamp(buffer,
3852 							 cpu_buffer->cpu, ts);
3853 		}
3854 		return event;
3855 
3856 	default:
3857 		BUG();
3858 	}
3859 
3860 	return NULL;
3861 }
3862 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3863 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)3864 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3865 {
3866 	if (likely(!in_nmi())) {
3867 		raw_spin_lock(&cpu_buffer->reader_lock);
3868 		return true;
3869 	}
3870 
3871 	/*
3872 	 * If an NMI die dumps out the content of the ring buffer
3873 	 * trylock must be used to prevent a deadlock if the NMI
3874 	 * preempted a task that holds the ring buffer locks. If
3875 	 * we get the lock then all is fine, if not, then continue
3876 	 * to do the read, but this can corrupt the ring buffer,
3877 	 * so it must be permanently disabled from future writes.
3878 	 * Reading from NMI is a oneshot deal.
3879 	 */
3880 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3881 		return true;
3882 
3883 	/* Continue without locking, but disable the ring buffer */
3884 	atomic_inc(&cpu_buffer->record_disabled);
3885 	return false;
3886 }
3887 
3888 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)3889 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3890 {
3891 	if (likely(locked))
3892 		raw_spin_unlock(&cpu_buffer->reader_lock);
3893 	return;
3894 }
3895 
3896 /**
3897  * ring_buffer_peek - peek at the next event to be read
3898  * @buffer: The ring buffer to read
3899  * @cpu: The cpu to peak at
3900  * @ts: The timestamp counter of this event.
3901  * @lost_events: a variable to store if events were lost (may be NULL)
3902  *
3903  * This will return the event that will be read next, but does
3904  * not consume the data.
3905  */
3906 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3907 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3908 		 unsigned long *lost_events)
3909 {
3910 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3911 	struct ring_buffer_event *event;
3912 	unsigned long flags;
3913 	bool dolock;
3914 
3915 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3916 		return NULL;
3917 
3918  again:
3919 	local_irq_save(flags);
3920 	dolock = rb_reader_lock(cpu_buffer);
3921 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3922 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3923 		rb_advance_reader(cpu_buffer);
3924 	rb_reader_unlock(cpu_buffer, dolock);
3925 	local_irq_restore(flags);
3926 
3927 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3928 		goto again;
3929 
3930 	return event;
3931 }
3932 
3933 /**
3934  * ring_buffer_iter_peek - peek at the next event to be read
3935  * @iter: The ring buffer iterator
3936  * @ts: The timestamp counter of this event.
3937  *
3938  * This will return the event that will be read next, but does
3939  * not increment the iterator.
3940  */
3941 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3942 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3943 {
3944 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3945 	struct ring_buffer_event *event;
3946 	unsigned long flags;
3947 
3948  again:
3949 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3950 	event = rb_iter_peek(iter, ts);
3951 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3952 
3953 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3954 		goto again;
3955 
3956 	return event;
3957 }
3958 
3959 /**
3960  * ring_buffer_consume - return an event and consume it
3961  * @buffer: The ring buffer to get the next event from
3962  * @cpu: the cpu to read the buffer from
3963  * @ts: a variable to store the timestamp (may be NULL)
3964  * @lost_events: a variable to store if events were lost (may be NULL)
3965  *
3966  * Returns the next event in the ring buffer, and that event is consumed.
3967  * Meaning, that sequential reads will keep returning a different event,
3968  * and eventually empty the ring buffer if the producer is slower.
3969  */
3970 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3971 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3972 		    unsigned long *lost_events)
3973 {
3974 	struct ring_buffer_per_cpu *cpu_buffer;
3975 	struct ring_buffer_event *event = NULL;
3976 	unsigned long flags;
3977 	bool dolock;
3978 
3979  again:
3980 	/* might be called in atomic */
3981 	preempt_disable();
3982 
3983 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3984 		goto out;
3985 
3986 	cpu_buffer = buffer->buffers[cpu];
3987 	local_irq_save(flags);
3988 	dolock = rb_reader_lock(cpu_buffer);
3989 
3990 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3991 	if (event) {
3992 		cpu_buffer->lost_events = 0;
3993 		rb_advance_reader(cpu_buffer);
3994 	}
3995 
3996 	rb_reader_unlock(cpu_buffer, dolock);
3997 	local_irq_restore(flags);
3998 
3999  out:
4000 	preempt_enable();
4001 
4002 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4003 		goto again;
4004 
4005 	return event;
4006 }
4007 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4008 
4009 /**
4010  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4011  * @buffer: The ring buffer to read from
4012  * @cpu: The cpu buffer to iterate over
4013  * @flags: gfp flags to use for memory allocation
4014  *
4015  * This performs the initial preparations necessary to iterate
4016  * through the buffer.  Memory is allocated, buffer recording
4017  * is disabled, and the iterator pointer is returned to the caller.
4018  *
4019  * Disabling buffer recordng prevents the reading from being
4020  * corrupted. This is not a consuming read, so a producer is not
4021  * expected.
4022  *
4023  * After a sequence of ring_buffer_read_prepare calls, the user is
4024  * expected to make at least one call to ring_buffer_read_prepare_sync.
4025  * Afterwards, ring_buffer_read_start is invoked to get things going
4026  * for real.
4027  *
4028  * This overall must be paired with ring_buffer_read_finish.
4029  */
4030 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu,gfp_t flags)4031 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4032 {
4033 	struct ring_buffer_per_cpu *cpu_buffer;
4034 	struct ring_buffer_iter *iter;
4035 
4036 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4037 		return NULL;
4038 
4039 	iter = kmalloc(sizeof(*iter), flags);
4040 	if (!iter)
4041 		return NULL;
4042 
4043 	cpu_buffer = buffer->buffers[cpu];
4044 
4045 	iter->cpu_buffer = cpu_buffer;
4046 
4047 	atomic_inc(&buffer->resize_disabled);
4048 	atomic_inc(&cpu_buffer->record_disabled);
4049 
4050 	return iter;
4051 }
4052 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4053 
4054 /**
4055  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4056  *
4057  * All previously invoked ring_buffer_read_prepare calls to prepare
4058  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4059  * calls on those iterators are allowed.
4060  */
4061 void
ring_buffer_read_prepare_sync(void)4062 ring_buffer_read_prepare_sync(void)
4063 {
4064 	synchronize_sched();
4065 }
4066 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4067 
4068 /**
4069  * ring_buffer_read_start - start a non consuming read of the buffer
4070  * @iter: The iterator returned by ring_buffer_read_prepare
4071  *
4072  * This finalizes the startup of an iteration through the buffer.
4073  * The iterator comes from a call to ring_buffer_read_prepare and
4074  * an intervening ring_buffer_read_prepare_sync must have been
4075  * performed.
4076  *
4077  * Must be paired with ring_buffer_read_finish.
4078  */
4079 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4080 ring_buffer_read_start(struct ring_buffer_iter *iter)
4081 {
4082 	struct ring_buffer_per_cpu *cpu_buffer;
4083 	unsigned long flags;
4084 
4085 	if (!iter)
4086 		return;
4087 
4088 	cpu_buffer = iter->cpu_buffer;
4089 
4090 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4091 	arch_spin_lock(&cpu_buffer->lock);
4092 	rb_iter_reset(iter);
4093 	arch_spin_unlock(&cpu_buffer->lock);
4094 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095 }
4096 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4097 
4098 /**
4099  * ring_buffer_read_finish - finish reading the iterator of the buffer
4100  * @iter: The iterator retrieved by ring_buffer_start
4101  *
4102  * This re-enables the recording to the buffer, and frees the
4103  * iterator.
4104  */
4105 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4106 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4107 {
4108 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4109 	unsigned long flags;
4110 
4111 	/*
4112 	 * Ring buffer is disabled from recording, here's a good place
4113 	 * to check the integrity of the ring buffer.
4114 	 * Must prevent readers from trying to read, as the check
4115 	 * clears the HEAD page and readers require it.
4116 	 */
4117 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4118 	rb_check_pages(cpu_buffer);
4119 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120 
4121 	atomic_dec(&cpu_buffer->record_disabled);
4122 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4123 	kfree(iter);
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4126 
4127 /**
4128  * ring_buffer_read - read the next item in the ring buffer by the iterator
4129  * @iter: The ring buffer iterator
4130  * @ts: The time stamp of the event read.
4131  *
4132  * This reads the next event in the ring buffer and increments the iterator.
4133  */
4134 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4135 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4136 {
4137 	struct ring_buffer_event *event;
4138 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4139 	unsigned long flags;
4140 
4141 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4142  again:
4143 	event = rb_iter_peek(iter, ts);
4144 	if (!event)
4145 		goto out;
4146 
4147 	if (event->type_len == RINGBUF_TYPE_PADDING)
4148 		goto again;
4149 
4150 	rb_advance_iter(iter);
4151  out:
4152 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4153 
4154 	return event;
4155 }
4156 EXPORT_SYMBOL_GPL(ring_buffer_read);
4157 
4158 /**
4159  * ring_buffer_size - return the size of the ring buffer (in bytes)
4160  * @buffer: The ring buffer.
4161  */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4162 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4163 {
4164 	/*
4165 	 * Earlier, this method returned
4166 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4167 	 * Since the nr_pages field is now removed, we have converted this to
4168 	 * return the per cpu buffer value.
4169 	 */
4170 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171 		return 0;
4172 
4173 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4174 }
4175 EXPORT_SYMBOL_GPL(ring_buffer_size);
4176 
4177 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4178 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4179 {
4180 	rb_head_page_deactivate(cpu_buffer);
4181 
4182 	cpu_buffer->head_page
4183 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4184 	local_set(&cpu_buffer->head_page->write, 0);
4185 	local_set(&cpu_buffer->head_page->entries, 0);
4186 	local_set(&cpu_buffer->head_page->page->commit, 0);
4187 
4188 	cpu_buffer->head_page->read = 0;
4189 
4190 	cpu_buffer->tail_page = cpu_buffer->head_page;
4191 	cpu_buffer->commit_page = cpu_buffer->head_page;
4192 
4193 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4194 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4195 	local_set(&cpu_buffer->reader_page->write, 0);
4196 	local_set(&cpu_buffer->reader_page->entries, 0);
4197 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4198 	cpu_buffer->reader_page->read = 0;
4199 
4200 	local_set(&cpu_buffer->entries_bytes, 0);
4201 	local_set(&cpu_buffer->overrun, 0);
4202 	local_set(&cpu_buffer->commit_overrun, 0);
4203 	local_set(&cpu_buffer->dropped_events, 0);
4204 	local_set(&cpu_buffer->entries, 0);
4205 	local_set(&cpu_buffer->committing, 0);
4206 	local_set(&cpu_buffer->commits, 0);
4207 	cpu_buffer->read = 0;
4208 	cpu_buffer->read_bytes = 0;
4209 
4210 	cpu_buffer->write_stamp = 0;
4211 	cpu_buffer->read_stamp = 0;
4212 
4213 	cpu_buffer->lost_events = 0;
4214 	cpu_buffer->last_overrun = 0;
4215 
4216 	rb_head_page_activate(cpu_buffer);
4217 }
4218 
4219 /**
4220  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4221  * @buffer: The ring buffer to reset a per cpu buffer of
4222  * @cpu: The CPU buffer to be reset
4223  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4224 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4225 {
4226 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4227 	unsigned long flags;
4228 
4229 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4230 		return;
4231 
4232 	atomic_inc(&buffer->resize_disabled);
4233 	atomic_inc(&cpu_buffer->record_disabled);
4234 
4235 	/* Make sure all commits have finished */
4236 	synchronize_sched();
4237 
4238 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4239 
4240 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4241 		goto out;
4242 
4243 	arch_spin_lock(&cpu_buffer->lock);
4244 
4245 	rb_reset_cpu(cpu_buffer);
4246 
4247 	arch_spin_unlock(&cpu_buffer->lock);
4248 
4249  out:
4250 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4251 
4252 	atomic_dec(&cpu_buffer->record_disabled);
4253 	atomic_dec(&buffer->resize_disabled);
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4256 
4257 /**
4258  * ring_buffer_reset - reset a ring buffer
4259  * @buffer: The ring buffer to reset all cpu buffers
4260  */
ring_buffer_reset(struct ring_buffer * buffer)4261 void ring_buffer_reset(struct ring_buffer *buffer)
4262 {
4263 	int cpu;
4264 
4265 	for_each_buffer_cpu(buffer, cpu)
4266 		ring_buffer_reset_cpu(buffer, cpu);
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4269 
4270 /**
4271  * rind_buffer_empty - is the ring buffer empty?
4272  * @buffer: The ring buffer to test
4273  */
ring_buffer_empty(struct ring_buffer * buffer)4274 bool ring_buffer_empty(struct ring_buffer *buffer)
4275 {
4276 	struct ring_buffer_per_cpu *cpu_buffer;
4277 	unsigned long flags;
4278 	bool dolock;
4279 	int cpu;
4280 	int ret;
4281 
4282 	/* yes this is racy, but if you don't like the race, lock the buffer */
4283 	for_each_buffer_cpu(buffer, cpu) {
4284 		cpu_buffer = buffer->buffers[cpu];
4285 		local_irq_save(flags);
4286 		dolock = rb_reader_lock(cpu_buffer);
4287 		ret = rb_per_cpu_empty(cpu_buffer);
4288 		rb_reader_unlock(cpu_buffer, dolock);
4289 		local_irq_restore(flags);
4290 
4291 		if (!ret)
4292 			return false;
4293 	}
4294 
4295 	return true;
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4298 
4299 /**
4300  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4301  * @buffer: The ring buffer
4302  * @cpu: The CPU buffer to test
4303  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4304 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4305 {
4306 	struct ring_buffer_per_cpu *cpu_buffer;
4307 	unsigned long flags;
4308 	bool dolock;
4309 	int ret;
4310 
4311 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4312 		return true;
4313 
4314 	cpu_buffer = buffer->buffers[cpu];
4315 	local_irq_save(flags);
4316 	dolock = rb_reader_lock(cpu_buffer);
4317 	ret = rb_per_cpu_empty(cpu_buffer);
4318 	rb_reader_unlock(cpu_buffer, dolock);
4319 	local_irq_restore(flags);
4320 
4321 	return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4324 
4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4326 /**
4327  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4328  * @buffer_a: One buffer to swap with
4329  * @buffer_b: The other buffer to swap with
4330  *
4331  * This function is useful for tracers that want to take a "snapshot"
4332  * of a CPU buffer and has another back up buffer lying around.
4333  * it is expected that the tracer handles the cpu buffer not being
4334  * used at the moment.
4335  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4336 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4337 			 struct ring_buffer *buffer_b, int cpu)
4338 {
4339 	struct ring_buffer_per_cpu *cpu_buffer_a;
4340 	struct ring_buffer_per_cpu *cpu_buffer_b;
4341 	int ret = -EINVAL;
4342 
4343 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4344 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4345 		goto out;
4346 
4347 	cpu_buffer_a = buffer_a->buffers[cpu];
4348 	cpu_buffer_b = buffer_b->buffers[cpu];
4349 
4350 	/* At least make sure the two buffers are somewhat the same */
4351 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4352 		goto out;
4353 
4354 	ret = -EAGAIN;
4355 
4356 	if (atomic_read(&buffer_a->record_disabled))
4357 		goto out;
4358 
4359 	if (atomic_read(&buffer_b->record_disabled))
4360 		goto out;
4361 
4362 	if (atomic_read(&cpu_buffer_a->record_disabled))
4363 		goto out;
4364 
4365 	if (atomic_read(&cpu_buffer_b->record_disabled))
4366 		goto out;
4367 
4368 	/*
4369 	 * We can't do a synchronize_sched here because this
4370 	 * function can be called in atomic context.
4371 	 * Normally this will be called from the same CPU as cpu.
4372 	 * If not it's up to the caller to protect this.
4373 	 */
4374 	atomic_inc(&cpu_buffer_a->record_disabled);
4375 	atomic_inc(&cpu_buffer_b->record_disabled);
4376 
4377 	ret = -EBUSY;
4378 	if (local_read(&cpu_buffer_a->committing))
4379 		goto out_dec;
4380 	if (local_read(&cpu_buffer_b->committing))
4381 		goto out_dec;
4382 
4383 	buffer_a->buffers[cpu] = cpu_buffer_b;
4384 	buffer_b->buffers[cpu] = cpu_buffer_a;
4385 
4386 	cpu_buffer_b->buffer = buffer_a;
4387 	cpu_buffer_a->buffer = buffer_b;
4388 
4389 	ret = 0;
4390 
4391 out_dec:
4392 	atomic_dec(&cpu_buffer_a->record_disabled);
4393 	atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395 	return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399 
4400 /**
4401  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402  * @buffer: the buffer to allocate for.
4403  * @cpu: the cpu buffer to allocate.
4404  *
4405  * This function is used in conjunction with ring_buffer_read_page.
4406  * When reading a full page from the ring buffer, these functions
4407  * can be used to speed up the process. The calling function should
4408  * allocate a few pages first with this function. Then when it
4409  * needs to get pages from the ring buffer, it passes the result
4410  * of this function into ring_buffer_read_page, which will swap
4411  * the page that was allocated, with the read page of the buffer.
4412  *
4413  * Returns:
4414  *  The page allocated, or ERR_PTR
4415  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418 	struct ring_buffer_per_cpu *cpu_buffer;
4419 	struct buffer_data_page *bpage = NULL;
4420 	unsigned long flags;
4421 	struct page *page;
4422 
4423 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4424 		return ERR_PTR(-ENODEV);
4425 
4426 	cpu_buffer = buffer->buffers[cpu];
4427 	local_irq_save(flags);
4428 	arch_spin_lock(&cpu_buffer->lock);
4429 
4430 	if (cpu_buffer->free_page) {
4431 		bpage = cpu_buffer->free_page;
4432 		cpu_buffer->free_page = NULL;
4433 	}
4434 
4435 	arch_spin_unlock(&cpu_buffer->lock);
4436 	local_irq_restore(flags);
4437 
4438 	if (bpage)
4439 		goto out;
4440 
4441 	page = alloc_pages_node(cpu_to_node(cpu),
4442 				GFP_KERNEL | __GFP_NORETRY, 0);
4443 	if (!page)
4444 		return ERR_PTR(-ENOMEM);
4445 
4446 	bpage = page_address(page);
4447 
4448  out:
4449 	rb_init_page(bpage);
4450 
4451 	return bpage;
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4454 
4455 /**
4456  * ring_buffer_free_read_page - free an allocated read page
4457  * @buffer: the buffer the page was allocate for
4458  * @cpu: the cpu buffer the page came from
4459  * @data: the page to free
4460  *
4461  * Free a page allocated from ring_buffer_alloc_read_page.
4462  */
ring_buffer_free_read_page(struct ring_buffer * buffer,int cpu,void * data)4463 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4464 {
4465 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4466 	struct buffer_data_page *bpage = data;
4467 	struct page *page = virt_to_page(bpage);
4468 	unsigned long flags;
4469 
4470 	/* If the page is still in use someplace else, we can't reuse it */
4471 	if (page_ref_count(page) > 1)
4472 		goto out;
4473 
4474 	local_irq_save(flags);
4475 	arch_spin_lock(&cpu_buffer->lock);
4476 
4477 	if (!cpu_buffer->free_page) {
4478 		cpu_buffer->free_page = bpage;
4479 		bpage = NULL;
4480 	}
4481 
4482 	arch_spin_unlock(&cpu_buffer->lock);
4483 	local_irq_restore(flags);
4484 
4485  out:
4486 	free_page((unsigned long)bpage);
4487 }
4488 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4489 
4490 /**
4491  * ring_buffer_read_page - extract a page from the ring buffer
4492  * @buffer: buffer to extract from
4493  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4494  * @len: amount to extract
4495  * @cpu: the cpu of the buffer to extract
4496  * @full: should the extraction only happen when the page is full.
4497  *
4498  * This function will pull out a page from the ring buffer and consume it.
4499  * @data_page must be the address of the variable that was returned
4500  * from ring_buffer_alloc_read_page. This is because the page might be used
4501  * to swap with a page in the ring buffer.
4502  *
4503  * for example:
4504  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4505  *	if (IS_ERR(rpage))
4506  *		return PTR_ERR(rpage);
4507  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4508  *	if (ret >= 0)
4509  *		process_page(rpage, ret);
4510  *
4511  * When @full is set, the function will not return true unless
4512  * the writer is off the reader page.
4513  *
4514  * Note: it is up to the calling functions to handle sleeps and wakeups.
4515  *  The ring buffer can be used anywhere in the kernel and can not
4516  *  blindly call wake_up. The layer that uses the ring buffer must be
4517  *  responsible for that.
4518  *
4519  * Returns:
4520  *  >=0 if data has been transferred, returns the offset of consumed data.
4521  *  <0 if no data has been transferred.
4522  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4523 int ring_buffer_read_page(struct ring_buffer *buffer,
4524 			  void **data_page, size_t len, int cpu, int full)
4525 {
4526 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4527 	struct ring_buffer_event *event;
4528 	struct buffer_data_page *bpage;
4529 	struct buffer_page *reader;
4530 	unsigned long missed_events;
4531 	unsigned long flags;
4532 	unsigned int commit;
4533 	unsigned int read;
4534 	u64 save_timestamp;
4535 	int ret = -1;
4536 
4537 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4538 		goto out;
4539 
4540 	/*
4541 	 * If len is not big enough to hold the page header, then
4542 	 * we can not copy anything.
4543 	 */
4544 	if (len <= BUF_PAGE_HDR_SIZE)
4545 		goto out;
4546 
4547 	len -= BUF_PAGE_HDR_SIZE;
4548 
4549 	if (!data_page)
4550 		goto out;
4551 
4552 	bpage = *data_page;
4553 	if (!bpage)
4554 		goto out;
4555 
4556 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4557 
4558 	reader = rb_get_reader_page(cpu_buffer);
4559 	if (!reader)
4560 		goto out_unlock;
4561 
4562 	event = rb_reader_event(cpu_buffer);
4563 
4564 	read = reader->read;
4565 	commit = rb_page_commit(reader);
4566 
4567 	/* Check if any events were dropped */
4568 	missed_events = cpu_buffer->lost_events;
4569 
4570 	/*
4571 	 * If this page has been partially read or
4572 	 * if len is not big enough to read the rest of the page or
4573 	 * a writer is still on the page, then
4574 	 * we must copy the data from the page to the buffer.
4575 	 * Otherwise, we can simply swap the page with the one passed in.
4576 	 */
4577 	if (read || (len < (commit - read)) ||
4578 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4579 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4580 		unsigned int rpos = read;
4581 		unsigned int pos = 0;
4582 		unsigned int size;
4583 
4584 		if (full)
4585 			goto out_unlock;
4586 
4587 		if (len > (commit - read))
4588 			len = (commit - read);
4589 
4590 		/* Always keep the time extend and data together */
4591 		size = rb_event_ts_length(event);
4592 
4593 		if (len < size)
4594 			goto out_unlock;
4595 
4596 		/* save the current timestamp, since the user will need it */
4597 		save_timestamp = cpu_buffer->read_stamp;
4598 
4599 		/* Need to copy one event at a time */
4600 		do {
4601 			/* We need the size of one event, because
4602 			 * rb_advance_reader only advances by one event,
4603 			 * whereas rb_event_ts_length may include the size of
4604 			 * one or two events.
4605 			 * We have already ensured there's enough space if this
4606 			 * is a time extend. */
4607 			size = rb_event_length(event);
4608 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4609 
4610 			len -= size;
4611 
4612 			rb_advance_reader(cpu_buffer);
4613 			rpos = reader->read;
4614 			pos += size;
4615 
4616 			if (rpos >= commit)
4617 				break;
4618 
4619 			event = rb_reader_event(cpu_buffer);
4620 			/* Always keep the time extend and data together */
4621 			size = rb_event_ts_length(event);
4622 		} while (len >= size);
4623 
4624 		/* update bpage */
4625 		local_set(&bpage->commit, pos);
4626 		bpage->time_stamp = save_timestamp;
4627 
4628 		/* we copied everything to the beginning */
4629 		read = 0;
4630 	} else {
4631 		/* update the entry counter */
4632 		cpu_buffer->read += rb_page_entries(reader);
4633 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4634 
4635 		/* swap the pages */
4636 		rb_init_page(bpage);
4637 		bpage = reader->page;
4638 		reader->page = *data_page;
4639 		local_set(&reader->write, 0);
4640 		local_set(&reader->entries, 0);
4641 		reader->read = 0;
4642 		*data_page = bpage;
4643 
4644 		/*
4645 		 * Use the real_end for the data size,
4646 		 * This gives us a chance to store the lost events
4647 		 * on the page.
4648 		 */
4649 		if (reader->real_end)
4650 			local_set(&bpage->commit, reader->real_end);
4651 	}
4652 	ret = read;
4653 
4654 	cpu_buffer->lost_events = 0;
4655 
4656 	commit = local_read(&bpage->commit);
4657 	/*
4658 	 * Set a flag in the commit field if we lost events
4659 	 */
4660 	if (missed_events) {
4661 		/* If there is room at the end of the page to save the
4662 		 * missed events, then record it there.
4663 		 */
4664 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4665 			memcpy(&bpage->data[commit], &missed_events,
4666 			       sizeof(missed_events));
4667 			local_add(RB_MISSED_STORED, &bpage->commit);
4668 			commit += sizeof(missed_events);
4669 		}
4670 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4671 	}
4672 
4673 	/*
4674 	 * This page may be off to user land. Zero it out here.
4675 	 */
4676 	if (commit < BUF_PAGE_SIZE)
4677 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4678 
4679  out_unlock:
4680 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4681 
4682  out:
4683 	return ret;
4684 }
4685 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4686 
4687 /*
4688  * We only allocate new buffers, never free them if the CPU goes down.
4689  * If we were to free the buffer, then the user would lose any trace that was in
4690  * the buffer.
4691  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)4692 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4693 {
4694 	struct ring_buffer *buffer;
4695 	long nr_pages_same;
4696 	int cpu_i;
4697 	unsigned long nr_pages;
4698 
4699 	buffer = container_of(node, struct ring_buffer, node);
4700 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4701 		return 0;
4702 
4703 	nr_pages = 0;
4704 	nr_pages_same = 1;
4705 	/* check if all cpu sizes are same */
4706 	for_each_buffer_cpu(buffer, cpu_i) {
4707 		/* fill in the size from first enabled cpu */
4708 		if (nr_pages == 0)
4709 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4710 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4711 			nr_pages_same = 0;
4712 			break;
4713 		}
4714 	}
4715 	/* allocate minimum pages, user can later expand it */
4716 	if (!nr_pages_same)
4717 		nr_pages = 2;
4718 	buffer->buffers[cpu] =
4719 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4720 	if (!buffer->buffers[cpu]) {
4721 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4722 		     cpu);
4723 		return -ENOMEM;
4724 	}
4725 	smp_wmb();
4726 	cpumask_set_cpu(cpu, buffer->cpumask);
4727 	return 0;
4728 }
4729 
4730 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4731 /*
4732  * This is a basic integrity check of the ring buffer.
4733  * Late in the boot cycle this test will run when configured in.
4734  * It will kick off a thread per CPU that will go into a loop
4735  * writing to the per cpu ring buffer various sizes of data.
4736  * Some of the data will be large items, some small.
4737  *
4738  * Another thread is created that goes into a spin, sending out
4739  * IPIs to the other CPUs to also write into the ring buffer.
4740  * this is to test the nesting ability of the buffer.
4741  *
4742  * Basic stats are recorded and reported. If something in the
4743  * ring buffer should happen that's not expected, a big warning
4744  * is displayed and all ring buffers are disabled.
4745  */
4746 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4747 
4748 struct rb_test_data {
4749 	struct ring_buffer	*buffer;
4750 	unsigned long		events;
4751 	unsigned long		bytes_written;
4752 	unsigned long		bytes_alloc;
4753 	unsigned long		bytes_dropped;
4754 	unsigned long		events_nested;
4755 	unsigned long		bytes_written_nested;
4756 	unsigned long		bytes_alloc_nested;
4757 	unsigned long		bytes_dropped_nested;
4758 	int			min_size_nested;
4759 	int			max_size_nested;
4760 	int			max_size;
4761 	int			min_size;
4762 	int			cpu;
4763 	int			cnt;
4764 };
4765 
4766 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4767 
4768 /* 1 meg per cpu */
4769 #define RB_TEST_BUFFER_SIZE	1048576
4770 
4771 static char rb_string[] __initdata =
4772 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4773 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4774 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4775 
4776 static bool rb_test_started __initdata;
4777 
4778 struct rb_item {
4779 	int size;
4780 	char str[];
4781 };
4782 
rb_write_something(struct rb_test_data * data,bool nested)4783 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4784 {
4785 	struct ring_buffer_event *event;
4786 	struct rb_item *item;
4787 	bool started;
4788 	int event_len;
4789 	int size;
4790 	int len;
4791 	int cnt;
4792 
4793 	/* Have nested writes different that what is written */
4794 	cnt = data->cnt + (nested ? 27 : 0);
4795 
4796 	/* Multiply cnt by ~e, to make some unique increment */
4797 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4798 
4799 	len = size + sizeof(struct rb_item);
4800 
4801 	started = rb_test_started;
4802 	/* read rb_test_started before checking buffer enabled */
4803 	smp_rmb();
4804 
4805 	event = ring_buffer_lock_reserve(data->buffer, len);
4806 	if (!event) {
4807 		/* Ignore dropped events before test starts. */
4808 		if (started) {
4809 			if (nested)
4810 				data->bytes_dropped += len;
4811 			else
4812 				data->bytes_dropped_nested += len;
4813 		}
4814 		return len;
4815 	}
4816 
4817 	event_len = ring_buffer_event_length(event);
4818 
4819 	if (RB_WARN_ON(data->buffer, event_len < len))
4820 		goto out;
4821 
4822 	item = ring_buffer_event_data(event);
4823 	item->size = size;
4824 	memcpy(item->str, rb_string, size);
4825 
4826 	if (nested) {
4827 		data->bytes_alloc_nested += event_len;
4828 		data->bytes_written_nested += len;
4829 		data->events_nested++;
4830 		if (!data->min_size_nested || len < data->min_size_nested)
4831 			data->min_size_nested = len;
4832 		if (len > data->max_size_nested)
4833 			data->max_size_nested = len;
4834 	} else {
4835 		data->bytes_alloc += event_len;
4836 		data->bytes_written += len;
4837 		data->events++;
4838 		if (!data->min_size || len < data->min_size)
4839 			data->max_size = len;
4840 		if (len > data->max_size)
4841 			data->max_size = len;
4842 	}
4843 
4844  out:
4845 	ring_buffer_unlock_commit(data->buffer, event);
4846 
4847 	return 0;
4848 }
4849 
rb_test(void * arg)4850 static __init int rb_test(void *arg)
4851 {
4852 	struct rb_test_data *data = arg;
4853 
4854 	while (!kthread_should_stop()) {
4855 		rb_write_something(data, false);
4856 		data->cnt++;
4857 
4858 		set_current_state(TASK_INTERRUPTIBLE);
4859 		/* Now sleep between a min of 100-300us and a max of 1ms */
4860 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4861 	}
4862 
4863 	return 0;
4864 }
4865 
rb_ipi(void * ignore)4866 static __init void rb_ipi(void *ignore)
4867 {
4868 	struct rb_test_data *data;
4869 	int cpu = smp_processor_id();
4870 
4871 	data = &rb_data[cpu];
4872 	rb_write_something(data, true);
4873 }
4874 
rb_hammer_test(void * arg)4875 static __init int rb_hammer_test(void *arg)
4876 {
4877 	while (!kthread_should_stop()) {
4878 
4879 		/* Send an IPI to all cpus to write data! */
4880 		smp_call_function(rb_ipi, NULL, 1);
4881 		/* No sleep, but for non preempt, let others run */
4882 		schedule();
4883 	}
4884 
4885 	return 0;
4886 }
4887 
test_ringbuffer(void)4888 static __init int test_ringbuffer(void)
4889 {
4890 	struct task_struct *rb_hammer;
4891 	struct ring_buffer *buffer;
4892 	int cpu;
4893 	int ret = 0;
4894 
4895 	pr_info("Running ring buffer tests...\n");
4896 
4897 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4898 	if (WARN_ON(!buffer))
4899 		return 0;
4900 
4901 	/* Disable buffer so that threads can't write to it yet */
4902 	ring_buffer_record_off(buffer);
4903 
4904 	for_each_online_cpu(cpu) {
4905 		rb_data[cpu].buffer = buffer;
4906 		rb_data[cpu].cpu = cpu;
4907 		rb_data[cpu].cnt = cpu;
4908 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4909 						 "rbtester/%d", cpu);
4910 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4911 			pr_cont("FAILED\n");
4912 			ret = PTR_ERR(rb_threads[cpu]);
4913 			goto out_free;
4914 		}
4915 
4916 		kthread_bind(rb_threads[cpu], cpu);
4917  		wake_up_process(rb_threads[cpu]);
4918 	}
4919 
4920 	/* Now create the rb hammer! */
4921 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4922 	if (WARN_ON(IS_ERR(rb_hammer))) {
4923 		pr_cont("FAILED\n");
4924 		ret = PTR_ERR(rb_hammer);
4925 		goto out_free;
4926 	}
4927 
4928 	ring_buffer_record_on(buffer);
4929 	/*
4930 	 * Show buffer is enabled before setting rb_test_started.
4931 	 * Yes there's a small race window where events could be
4932 	 * dropped and the thread wont catch it. But when a ring
4933 	 * buffer gets enabled, there will always be some kind of
4934 	 * delay before other CPUs see it. Thus, we don't care about
4935 	 * those dropped events. We care about events dropped after
4936 	 * the threads see that the buffer is active.
4937 	 */
4938 	smp_wmb();
4939 	rb_test_started = true;
4940 
4941 	set_current_state(TASK_INTERRUPTIBLE);
4942 	/* Just run for 10 seconds */;
4943 	schedule_timeout(10 * HZ);
4944 
4945 	kthread_stop(rb_hammer);
4946 
4947  out_free:
4948 	for_each_online_cpu(cpu) {
4949 		if (!rb_threads[cpu])
4950 			break;
4951 		kthread_stop(rb_threads[cpu]);
4952 	}
4953 	if (ret) {
4954 		ring_buffer_free(buffer);
4955 		return ret;
4956 	}
4957 
4958 	/* Report! */
4959 	pr_info("finished\n");
4960 	for_each_online_cpu(cpu) {
4961 		struct ring_buffer_event *event;
4962 		struct rb_test_data *data = &rb_data[cpu];
4963 		struct rb_item *item;
4964 		unsigned long total_events;
4965 		unsigned long total_dropped;
4966 		unsigned long total_written;
4967 		unsigned long total_alloc;
4968 		unsigned long total_read = 0;
4969 		unsigned long total_size = 0;
4970 		unsigned long total_len = 0;
4971 		unsigned long total_lost = 0;
4972 		unsigned long lost;
4973 		int big_event_size;
4974 		int small_event_size;
4975 
4976 		ret = -1;
4977 
4978 		total_events = data->events + data->events_nested;
4979 		total_written = data->bytes_written + data->bytes_written_nested;
4980 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4981 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4982 
4983 		big_event_size = data->max_size + data->max_size_nested;
4984 		small_event_size = data->min_size + data->min_size_nested;
4985 
4986 		pr_info("CPU %d:\n", cpu);
4987 		pr_info("              events:    %ld\n", total_events);
4988 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4989 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4990 		pr_info("       written bytes:    %ld\n", total_written);
4991 		pr_info("       biggest event:    %d\n", big_event_size);
4992 		pr_info("      smallest event:    %d\n", small_event_size);
4993 
4994 		if (RB_WARN_ON(buffer, total_dropped))
4995 			break;
4996 
4997 		ret = 0;
4998 
4999 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5000 			total_lost += lost;
5001 			item = ring_buffer_event_data(event);
5002 			total_len += ring_buffer_event_length(event);
5003 			total_size += item->size + sizeof(struct rb_item);
5004 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5005 				pr_info("FAILED!\n");
5006 				pr_info("buffer had: %.*s\n", item->size, item->str);
5007 				pr_info("expected:   %.*s\n", item->size, rb_string);
5008 				RB_WARN_ON(buffer, 1);
5009 				ret = -1;
5010 				break;
5011 			}
5012 			total_read++;
5013 		}
5014 		if (ret)
5015 			break;
5016 
5017 		ret = -1;
5018 
5019 		pr_info("         read events:   %ld\n", total_read);
5020 		pr_info("         lost events:   %ld\n", total_lost);
5021 		pr_info("        total events:   %ld\n", total_lost + total_read);
5022 		pr_info("  recorded len bytes:   %ld\n", total_len);
5023 		pr_info(" recorded size bytes:   %ld\n", total_size);
5024 		if (total_lost)
5025 			pr_info(" With dropped events, record len and size may not match\n"
5026 				" alloced and written from above\n");
5027 		if (!total_lost) {
5028 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5029 				       total_size != total_written))
5030 				break;
5031 		}
5032 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5033 			break;
5034 
5035 		ret = 0;
5036 	}
5037 	if (!ret)
5038 		pr_info("Ring buffer PASSED!\n");
5039 
5040 	ring_buffer_free(buffer);
5041 	return 0;
5042 }
5043 
5044 late_initcall(test_ringbuffer);
5045 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5046