1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
ring_buffer_print_entry_header(struct trace_seq * s)33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
rb_null_event(struct ring_buffer_event * event)149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
rb_event_set_padding(struct ring_buffer_event * event)154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
rb_event_data_length(struct ring_buffer_event * event)162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
rb_event_length(struct ring_buffer_event * event)179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
ring_buffer_event_length(struct ring_buffer_event * event)230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
ring_buffer_event_data(struct ring_buffer_event * event)265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
289 };
290
291 /*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
306 };
307
308 /*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
322
rb_init_page(struct buffer_data_page * bpage)323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 local_set(&bpage->commit, 0);
326 }
327
328 /**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
ring_buffer_page_len(void * page)334 size_t ring_buffer_page_len(void *page)
335 {
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
free_buffer_page(struct buffer_page * bpage)346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
350 }
351
352 /*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
test_time_stamp(u64 delta)355 static inline int test_time_stamp(u64 delta)
356 {
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
ring_buffer_print_page_header(struct trace_seq * s)367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 struct buffer_data_page field;
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
404 };
405
406 /*
407 * Structure to hold event state and handle nested events.
408 */
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415 };
416
417 /*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432 };
433
434 /*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
470
471 struct rb_irq_work irq_work;
472 };
473
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
480
481 struct lock_class_key *reader_lock_key;
482
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
486
487 struct hlist_node node;
488 u64 (*clock)(void);
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
500 };
501
502 /*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
rb_wake_up_waiters(struct irq_work * work)508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
517 }
518
519 /**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
607
608 schedule();
609 }
610
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
615
616 return ret;
617 }
618
619 /**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635 {
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
686 })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
rb_time_stamp(struct ring_buffer * buffer)691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695 }
696
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 u64 time;
700
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_notrace();
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711 {
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
789
790
791 #define RB_FLAG_MASK 3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
795
796 /*
797 * rb_list_head - remove any bit
798 */
rb_list_head(struct list_head * list)799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807 * rb_is_head_page - test if the given page is the head page
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
814 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817 {
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826 }
827
828 /*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
rb_is_reader_page(struct buffer_page * page)835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847 {
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856 * rb_head_page_activate - sets up head page
857 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
rb_list_head_clear(struct list_head * list)872 static void rb_list_head_clear(struct list_head *list)
873 {
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892 }
893
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898 {
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915 }
916
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921 {
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924 }
925
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930 {
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933 }
934
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939 {
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942 }
943
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946 {
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988 }
989
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992 {
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002 return ret == val;
1003 }
1004
1005 /*
1006 * rb_tail_page_update - move the tail page forward
1007 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011 {
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1052 */
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 }
1066 }
1067
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070 {
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084 {
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090 }
1091
1092 /**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1103
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
1108 rb_head_page_deactivate(cpu_buffer);
1109
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1114
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1127 }
1128
1129 rb_head_page_activate(cpu_buffer);
1130
1131 return 0;
1132 }
1133
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1138
1139 /* Check if the available memory is there first */
1140 i = si_mem_available();
1141 if (i < nr_pages)
1142 return -ENOMEM;
1143
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page;
1146 /*
1147 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 * gracefully without invoking oom-killer and the system is not
1149 * destabilized.
1150 */
1151 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1153 cpu_to_node(cpu));
1154 if (!bpage)
1155 goto free_pages;
1156
1157 list_add(&bpage->list, pages);
1158
1159 page = alloc_pages_node(cpu_to_node(cpu),
1160 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1161 if (!page)
1162 goto free_pages;
1163 bpage->page = page_address(page);
1164 rb_init_page(bpage->page);
1165 }
1166
1167 return 0;
1168
1169 free_pages:
1170 list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 list_del_init(&bpage->list);
1172 free_buffer_page(bpage);
1173 }
1174
1175 return -ENOMEM;
1176 }
1177
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1178 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1179 unsigned long nr_pages)
1180 {
1181 LIST_HEAD(pages);
1182
1183 WARN_ON(!nr_pages);
1184
1185 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 return -ENOMEM;
1187
1188 /*
1189 * The ring buffer page list is a circular list that does not
1190 * start and end with a list head. All page list items point to
1191 * other pages.
1192 */
1193 cpu_buffer->pages = pages.next;
1194 list_del(&pages);
1195
1196 cpu_buffer->nr_pages = nr_pages;
1197
1198 rb_check_pages(cpu_buffer);
1199
1200 return 0;
1201 }
1202
1203 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1204 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1205 {
1206 struct ring_buffer_per_cpu *cpu_buffer;
1207 struct buffer_page *bpage;
1208 struct page *page;
1209 int ret;
1210
1211 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 GFP_KERNEL, cpu_to_node(cpu));
1213 if (!cpu_buffer)
1214 return NULL;
1215
1216 cpu_buffer->cpu = cpu;
1217 cpu_buffer->buffer = buffer;
1218 raw_spin_lock_init(&cpu_buffer->reader_lock);
1219 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1220 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1221 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1222 init_completion(&cpu_buffer->update_done);
1223 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1224 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1226
1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228 GFP_KERNEL, cpu_to_node(cpu));
1229 if (!bpage)
1230 goto fail_free_buffer;
1231
1232 rb_check_bpage(cpu_buffer, bpage);
1233
1234 cpu_buffer->reader_page = bpage;
1235 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 if (!page)
1237 goto fail_free_reader;
1238 bpage->page = page_address(page);
1239 rb_init_page(bpage->page);
1240
1241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1243
1244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1245 if (ret < 0)
1246 goto fail_free_reader;
1247
1248 cpu_buffer->head_page
1249 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1250 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1251
1252 rb_head_page_activate(cpu_buffer);
1253
1254 return cpu_buffer;
1255
1256 fail_free_reader:
1257 free_buffer_page(cpu_buffer->reader_page);
1258
1259 fail_free_buffer:
1260 kfree(cpu_buffer);
1261 return NULL;
1262 }
1263
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1264 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265 {
1266 struct list_head *head = cpu_buffer->pages;
1267 struct buffer_page *bpage, *tmp;
1268
1269 free_buffer_page(cpu_buffer->reader_page);
1270
1271 rb_head_page_deactivate(cpu_buffer);
1272
1273 if (head) {
1274 list_for_each_entry_safe(bpage, tmp, head, list) {
1275 list_del_init(&bpage->list);
1276 free_buffer_page(bpage);
1277 }
1278 bpage = list_entry(head, struct buffer_page, list);
1279 free_buffer_page(bpage);
1280 }
1281
1282 kfree(cpu_buffer);
1283 }
1284
1285 /**
1286 * __ring_buffer_alloc - allocate a new ring_buffer
1287 * @size: the size in bytes per cpu that is needed.
1288 * @flags: attributes to set for the ring buffer.
1289 *
1290 * Currently the only flag that is available is the RB_FL_OVERWRITE
1291 * flag. This flag means that the buffer will overwrite old data
1292 * when the buffer wraps. If this flag is not set, the buffer will
1293 * drop data when the tail hits the head.
1294 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1295 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 struct lock_class_key *key)
1297 {
1298 struct ring_buffer *buffer;
1299 long nr_pages;
1300 int bsize;
1301 int cpu;
1302 int ret;
1303
1304 /* keep it in its own cache line */
1305 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer)
1308 return NULL;
1309
1310 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 goto fail_free_buffer;
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 buffer->flags = flags;
1315 buffer->clock = trace_clock_local;
1316 buffer->reader_lock_key = key;
1317
1318 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 init_waitqueue_head(&buffer->irq_work.waiters);
1320
1321 /* need at least two pages */
1322 if (nr_pages < 2)
1323 nr_pages = 2;
1324
1325 buffer->cpus = nr_cpu_ids;
1326
1327 bsize = sizeof(void *) * nr_cpu_ids;
1328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 GFP_KERNEL);
1330 if (!buffer->buffers)
1331 goto fail_free_cpumask;
1332
1333 cpu = raw_smp_processor_id();
1334 cpumask_set_cpu(cpu, buffer->cpumask);
1335 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 if (!buffer->buffers[cpu])
1337 goto fail_free_buffers;
1338
1339 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 if (ret < 0)
1341 goto fail_free_buffers;
1342
1343 mutex_init(&buffer->mutex);
1344
1345 return buffer;
1346
1347 fail_free_buffers:
1348 for_each_buffer_cpu(buffer, cpu) {
1349 if (buffer->buffers[cpu])
1350 rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 }
1352 kfree(buffer->buffers);
1353
1354 fail_free_cpumask:
1355 free_cpumask_var(buffer->cpumask);
1356
1357 fail_free_buffer:
1358 kfree(buffer);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1362
1363 /**
1364 * ring_buffer_free - free a ring buffer.
1365 * @buffer: the buffer to free.
1366 */
1367 void
ring_buffer_free(struct ring_buffer * buffer)1368 ring_buffer_free(struct ring_buffer *buffer)
1369 {
1370 int cpu;
1371
1372 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1373
1374 for_each_buffer_cpu(buffer, cpu)
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376
1377 kfree(buffer->buffers);
1378 free_cpumask_var(buffer->cpumask);
1379
1380 kfree(buffer);
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_free);
1383
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1384 void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 u64 (*clock)(void))
1386 {
1387 buffer->clock = clock;
1388 }
1389
1390 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391
rb_page_entries(struct buffer_page * bpage)1392 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 }
1396
rb_page_write(struct buffer_page * bpage)1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401
1402 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1403 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1404 {
1405 struct list_head *tail_page, *to_remove, *next_page;
1406 struct buffer_page *to_remove_page, *tmp_iter_page;
1407 struct buffer_page *last_page, *first_page;
1408 unsigned long nr_removed;
1409 unsigned long head_bit;
1410 int page_entries;
1411
1412 head_bit = 0;
1413
1414 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1415 atomic_inc(&cpu_buffer->record_disabled);
1416 /*
1417 * We don't race with the readers since we have acquired the reader
1418 * lock. We also don't race with writers after disabling recording.
1419 * This makes it easy to figure out the first and the last page to be
1420 * removed from the list. We unlink all the pages in between including
1421 * the first and last pages. This is done in a busy loop so that we
1422 * lose the least number of traces.
1423 * The pages are freed after we restart recording and unlock readers.
1424 */
1425 tail_page = &cpu_buffer->tail_page->list;
1426
1427 /*
1428 * tail page might be on reader page, we remove the next page
1429 * from the ring buffer
1430 */
1431 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 tail_page = rb_list_head(tail_page->next);
1433 to_remove = tail_page;
1434
1435 /* start of pages to remove */
1436 first_page = list_entry(rb_list_head(to_remove->next),
1437 struct buffer_page, list);
1438
1439 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 to_remove = rb_list_head(to_remove)->next;
1441 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 }
1443
1444 next_page = rb_list_head(to_remove)->next;
1445
1446 /*
1447 * Now we remove all pages between tail_page and next_page.
1448 * Make sure that we have head_bit value preserved for the
1449 * next page
1450 */
1451 tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 head_bit);
1453 next_page = rb_list_head(next_page);
1454 next_page->prev = tail_page;
1455
1456 /* make sure pages points to a valid page in the ring buffer */
1457 cpu_buffer->pages = next_page;
1458
1459 /* update head page */
1460 if (head_bit)
1461 cpu_buffer->head_page = list_entry(next_page,
1462 struct buffer_page, list);
1463
1464 /*
1465 * change read pointer to make sure any read iterators reset
1466 * themselves
1467 */
1468 cpu_buffer->read = 0;
1469
1470 /* pages are removed, resume tracing and then free the pages */
1471 atomic_dec(&cpu_buffer->record_disabled);
1472 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1473
1474 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475
1476 /* last buffer page to remove */
1477 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 list);
1479 tmp_iter_page = first_page;
1480
1481 do {
1482 cond_resched();
1483
1484 to_remove_page = tmp_iter_page;
1485 rb_inc_page(cpu_buffer, &tmp_iter_page);
1486
1487 /* update the counters */
1488 page_entries = rb_page_entries(to_remove_page);
1489 if (page_entries) {
1490 /*
1491 * If something was added to this page, it was full
1492 * since it is not the tail page. So we deduct the
1493 * bytes consumed in ring buffer from here.
1494 * Increment overrun to account for the lost events.
1495 */
1496 local_add(page_entries, &cpu_buffer->overrun);
1497 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1498 }
1499
1500 /*
1501 * We have already removed references to this list item, just
1502 * free up the buffer_page and its page
1503 */
1504 free_buffer_page(to_remove_page);
1505 nr_removed--;
1506
1507 } while (to_remove_page != last_page);
1508
1509 RB_WARN_ON(cpu_buffer, nr_removed);
1510
1511 return nr_removed == 0;
1512 }
1513
1514 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1515 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1516 {
1517 struct list_head *pages = &cpu_buffer->new_pages;
1518 int retries, success;
1519
1520 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1521 /*
1522 * We are holding the reader lock, so the reader page won't be swapped
1523 * in the ring buffer. Now we are racing with the writer trying to
1524 * move head page and the tail page.
1525 * We are going to adapt the reader page update process where:
1526 * 1. We first splice the start and end of list of new pages between
1527 * the head page and its previous page.
1528 * 2. We cmpxchg the prev_page->next to point from head page to the
1529 * start of new pages list.
1530 * 3. Finally, we update the head->prev to the end of new list.
1531 *
1532 * We will try this process 10 times, to make sure that we don't keep
1533 * spinning.
1534 */
1535 retries = 10;
1536 success = 0;
1537 while (retries--) {
1538 struct list_head *head_page, *prev_page, *r;
1539 struct list_head *last_page, *first_page;
1540 struct list_head *head_page_with_bit;
1541
1542 head_page = &rb_set_head_page(cpu_buffer)->list;
1543 if (!head_page)
1544 break;
1545 prev_page = head_page->prev;
1546
1547 first_page = pages->next;
1548 last_page = pages->prev;
1549
1550 head_page_with_bit = (struct list_head *)
1551 ((unsigned long)head_page | RB_PAGE_HEAD);
1552
1553 last_page->next = head_page_with_bit;
1554 first_page->prev = prev_page;
1555
1556 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1557
1558 if (r == head_page_with_bit) {
1559 /*
1560 * yay, we replaced the page pointer to our new list,
1561 * now, we just have to update to head page's prev
1562 * pointer to point to end of list
1563 */
1564 head_page->prev = last_page;
1565 success = 1;
1566 break;
1567 }
1568 }
1569
1570 if (success)
1571 INIT_LIST_HEAD(pages);
1572 /*
1573 * If we weren't successful in adding in new pages, warn and stop
1574 * tracing
1575 */
1576 RB_WARN_ON(cpu_buffer, !success);
1577 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1578
1579 /* free pages if they weren't inserted */
1580 if (!success) {
1581 struct buffer_page *bpage, *tmp;
1582 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1583 list) {
1584 list_del_init(&bpage->list);
1585 free_buffer_page(bpage);
1586 }
1587 }
1588 return success;
1589 }
1590
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1591 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1592 {
1593 int success;
1594
1595 if (cpu_buffer->nr_pages_to_update > 0)
1596 success = rb_insert_pages(cpu_buffer);
1597 else
1598 success = rb_remove_pages(cpu_buffer,
1599 -cpu_buffer->nr_pages_to_update);
1600
1601 if (success)
1602 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1603 }
1604
update_pages_handler(struct work_struct * work)1605 static void update_pages_handler(struct work_struct *work)
1606 {
1607 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1608 struct ring_buffer_per_cpu, update_pages_work);
1609 rb_update_pages(cpu_buffer);
1610 complete(&cpu_buffer->update_done);
1611 }
1612
1613 /**
1614 * ring_buffer_resize - resize the ring buffer
1615 * @buffer: the buffer to resize.
1616 * @size: the new size.
1617 * @cpu_id: the cpu buffer to resize
1618 *
1619 * Minimum size is 2 * BUF_PAGE_SIZE.
1620 *
1621 * Returns 0 on success and < 0 on failure.
1622 */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1623 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1624 int cpu_id)
1625 {
1626 struct ring_buffer_per_cpu *cpu_buffer;
1627 unsigned long nr_pages;
1628 int cpu, err = 0;
1629
1630 /*
1631 * Always succeed at resizing a non-existent buffer:
1632 */
1633 if (!buffer)
1634 return size;
1635
1636 /* Make sure the requested buffer exists */
1637 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1638 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1639 return size;
1640
1641 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642
1643 /* we need a minimum of two pages */
1644 if (nr_pages < 2)
1645 nr_pages = 2;
1646
1647 size = nr_pages * BUF_PAGE_SIZE;
1648
1649 /*
1650 * Don't succeed if resizing is disabled, as a reader might be
1651 * manipulating the ring buffer and is expecting a sane state while
1652 * this is true.
1653 */
1654 if (atomic_read(&buffer->resize_disabled))
1655 return -EBUSY;
1656
1657 /* prevent another thread from changing buffer sizes */
1658 mutex_lock(&buffer->mutex);
1659
1660 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661 /* calculate the pages to update */
1662 for_each_buffer_cpu(buffer, cpu) {
1663 cpu_buffer = buffer->buffers[cpu];
1664
1665 cpu_buffer->nr_pages_to_update = nr_pages -
1666 cpu_buffer->nr_pages;
1667 /*
1668 * nothing more to do for removing pages or no update
1669 */
1670 if (cpu_buffer->nr_pages_to_update <= 0)
1671 continue;
1672 /*
1673 * to add pages, make sure all new pages can be
1674 * allocated without receiving ENOMEM
1675 */
1676 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1678 &cpu_buffer->new_pages, cpu)) {
1679 /* not enough memory for new pages */
1680 err = -ENOMEM;
1681 goto out_err;
1682 }
1683 }
1684
1685 get_online_cpus();
1686 /*
1687 * Fire off all the required work handlers
1688 * We can't schedule on offline CPUs, but it's not necessary
1689 * since we can change their buffer sizes without any race.
1690 */
1691 for_each_buffer_cpu(buffer, cpu) {
1692 cpu_buffer = buffer->buffers[cpu];
1693 if (!cpu_buffer->nr_pages_to_update)
1694 continue;
1695
1696 /* Can't run something on an offline CPU. */
1697 if (!cpu_online(cpu)) {
1698 rb_update_pages(cpu_buffer);
1699 cpu_buffer->nr_pages_to_update = 0;
1700 } else {
1701 schedule_work_on(cpu,
1702 &cpu_buffer->update_pages_work);
1703 }
1704 }
1705
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
1709 if (!cpu_buffer->nr_pages_to_update)
1710 continue;
1711
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
1714 cpu_buffer->nr_pages_to_update = 0;
1715 }
1716
1717 put_online_cpus();
1718 } else {
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
1723 cpu_buffer = buffer->buffers[cpu_id];
1724
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
1727
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
1738
1739 get_online_cpus();
1740
1741 /* Can't run something on an offline CPU. */
1742 if (!cpu_online(cpu_id))
1743 rb_update_pages(cpu_buffer);
1744 else {
1745 schedule_work_on(cpu_id,
1746 &cpu_buffer->update_pages_work);
1747 wait_for_completion(&cpu_buffer->update_done);
1748 }
1749
1750 cpu_buffer->nr_pages_to_update = 0;
1751 put_online_cpus();
1752 }
1753
1754 out:
1755 /*
1756 * The ring buffer resize can happen with the ring buffer
1757 * enabled, so that the update disturbs the tracing as little
1758 * as possible. But if the buffer is disabled, we do not need
1759 * to worry about that, and we can take the time to verify
1760 * that the buffer is not corrupt.
1761 */
1762 if (atomic_read(&buffer->record_disabled)) {
1763 atomic_inc(&buffer->record_disabled);
1764 /*
1765 * Even though the buffer was disabled, we must make sure
1766 * that it is truly disabled before calling rb_check_pages.
1767 * There could have been a race between checking
1768 * record_disable and incrementing it.
1769 */
1770 synchronize_sched();
1771 for_each_buffer_cpu(buffer, cpu) {
1772 cpu_buffer = buffer->buffers[cpu];
1773 rb_check_pages(cpu_buffer);
1774 }
1775 atomic_dec(&buffer->record_disabled);
1776 }
1777
1778 mutex_unlock(&buffer->mutex);
1779 return size;
1780
1781 out_err:
1782 for_each_buffer_cpu(buffer, cpu) {
1783 struct buffer_page *bpage, *tmp;
1784
1785 cpu_buffer = buffer->buffers[cpu];
1786 cpu_buffer->nr_pages_to_update = 0;
1787
1788 if (list_empty(&cpu_buffer->new_pages))
1789 continue;
1790
1791 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1792 list) {
1793 list_del_init(&bpage->list);
1794 free_buffer_page(bpage);
1795 }
1796 }
1797 mutex_unlock(&buffer->mutex);
1798 return err;
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1801
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1802 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1803 {
1804 mutex_lock(&buffer->mutex);
1805 if (val)
1806 buffer->flags |= RB_FL_OVERWRITE;
1807 else
1808 buffer->flags &= ~RB_FL_OVERWRITE;
1809 mutex_unlock(&buffer->mutex);
1810 }
1811 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1812
1813 static __always_inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1814 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1815 {
1816 return bpage->data + index;
1817 }
1818
__rb_page_index(struct buffer_page * bpage,unsigned index)1819 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1820 {
1821 return bpage->page->data + index;
1822 }
1823
1824 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1825 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1826 {
1827 return __rb_page_index(cpu_buffer->reader_page,
1828 cpu_buffer->reader_page->read);
1829 }
1830
1831 static __always_inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1832 rb_iter_head_event(struct ring_buffer_iter *iter)
1833 {
1834 return __rb_page_index(iter->head_page, iter->head);
1835 }
1836
rb_page_commit(struct buffer_page * bpage)1837 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1838 {
1839 return local_read(&bpage->page->commit);
1840 }
1841
1842 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1843 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1844 {
1845 return rb_page_commit(bpage);
1846 }
1847
1848 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1849 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1850 {
1851 return rb_page_commit(cpu_buffer->commit_page);
1852 }
1853
1854 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)1855 rb_event_index(struct ring_buffer_event *event)
1856 {
1857 unsigned long addr = (unsigned long)event;
1858
1859 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1860 }
1861
rb_inc_iter(struct ring_buffer_iter * iter)1862 static void rb_inc_iter(struct ring_buffer_iter *iter)
1863 {
1864 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1865
1866 /*
1867 * The iterator could be on the reader page (it starts there).
1868 * But the head could have moved, since the reader was
1869 * found. Check for this case and assign the iterator
1870 * to the head page instead of next.
1871 */
1872 if (iter->head_page == cpu_buffer->reader_page)
1873 iter->head_page = rb_set_head_page(cpu_buffer);
1874 else
1875 rb_inc_page(cpu_buffer, &iter->head_page);
1876
1877 iter->read_stamp = iter->head_page->page->time_stamp;
1878 iter->head = 0;
1879 }
1880
1881 /*
1882 * rb_handle_head_page - writer hit the head page
1883 *
1884 * Returns: +1 to retry page
1885 * 0 to continue
1886 * -1 on error
1887 */
1888 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1889 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1890 struct buffer_page *tail_page,
1891 struct buffer_page *next_page)
1892 {
1893 struct buffer_page *new_head;
1894 int entries;
1895 int type;
1896 int ret;
1897
1898 entries = rb_page_entries(next_page);
1899
1900 /*
1901 * The hard part is here. We need to move the head
1902 * forward, and protect against both readers on
1903 * other CPUs and writers coming in via interrupts.
1904 */
1905 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1906 RB_PAGE_HEAD);
1907
1908 /*
1909 * type can be one of four:
1910 * NORMAL - an interrupt already moved it for us
1911 * HEAD - we are the first to get here.
1912 * UPDATE - we are the interrupt interrupting
1913 * a current move.
1914 * MOVED - a reader on another CPU moved the next
1915 * pointer to its reader page. Give up
1916 * and try again.
1917 */
1918
1919 switch (type) {
1920 case RB_PAGE_HEAD:
1921 /*
1922 * We changed the head to UPDATE, thus
1923 * it is our responsibility to update
1924 * the counters.
1925 */
1926 local_add(entries, &cpu_buffer->overrun);
1927 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1928
1929 /*
1930 * The entries will be zeroed out when we move the
1931 * tail page.
1932 */
1933
1934 /* still more to do */
1935 break;
1936
1937 case RB_PAGE_UPDATE:
1938 /*
1939 * This is an interrupt that interrupt the
1940 * previous update. Still more to do.
1941 */
1942 break;
1943 case RB_PAGE_NORMAL:
1944 /*
1945 * An interrupt came in before the update
1946 * and processed this for us.
1947 * Nothing left to do.
1948 */
1949 return 1;
1950 case RB_PAGE_MOVED:
1951 /*
1952 * The reader is on another CPU and just did
1953 * a swap with our next_page.
1954 * Try again.
1955 */
1956 return 1;
1957 default:
1958 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1959 return -1;
1960 }
1961
1962 /*
1963 * Now that we are here, the old head pointer is
1964 * set to UPDATE. This will keep the reader from
1965 * swapping the head page with the reader page.
1966 * The reader (on another CPU) will spin till
1967 * we are finished.
1968 *
1969 * We just need to protect against interrupts
1970 * doing the job. We will set the next pointer
1971 * to HEAD. After that, we set the old pointer
1972 * to NORMAL, but only if it was HEAD before.
1973 * otherwise we are an interrupt, and only
1974 * want the outer most commit to reset it.
1975 */
1976 new_head = next_page;
1977 rb_inc_page(cpu_buffer, &new_head);
1978
1979 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1980 RB_PAGE_NORMAL);
1981
1982 /*
1983 * Valid returns are:
1984 * HEAD - an interrupt came in and already set it.
1985 * NORMAL - One of two things:
1986 * 1) We really set it.
1987 * 2) A bunch of interrupts came in and moved
1988 * the page forward again.
1989 */
1990 switch (ret) {
1991 case RB_PAGE_HEAD:
1992 case RB_PAGE_NORMAL:
1993 /* OK */
1994 break;
1995 default:
1996 RB_WARN_ON(cpu_buffer, 1);
1997 return -1;
1998 }
1999
2000 /*
2001 * It is possible that an interrupt came in,
2002 * set the head up, then more interrupts came in
2003 * and moved it again. When we get back here,
2004 * the page would have been set to NORMAL but we
2005 * just set it back to HEAD.
2006 *
2007 * How do you detect this? Well, if that happened
2008 * the tail page would have moved.
2009 */
2010 if (ret == RB_PAGE_NORMAL) {
2011 struct buffer_page *buffer_tail_page;
2012
2013 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2014 /*
2015 * If the tail had moved passed next, then we need
2016 * to reset the pointer.
2017 */
2018 if (buffer_tail_page != tail_page &&
2019 buffer_tail_page != next_page)
2020 rb_head_page_set_normal(cpu_buffer, new_head,
2021 next_page,
2022 RB_PAGE_HEAD);
2023 }
2024
2025 /*
2026 * If this was the outer most commit (the one that
2027 * changed the original pointer from HEAD to UPDATE),
2028 * then it is up to us to reset it to NORMAL.
2029 */
2030 if (type == RB_PAGE_HEAD) {
2031 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2032 tail_page,
2033 RB_PAGE_UPDATE);
2034 if (RB_WARN_ON(cpu_buffer,
2035 ret != RB_PAGE_UPDATE))
2036 return -1;
2037 }
2038
2039 return 0;
2040 }
2041
2042 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2043 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2044 unsigned long tail, struct rb_event_info *info)
2045 {
2046 struct buffer_page *tail_page = info->tail_page;
2047 struct ring_buffer_event *event;
2048 unsigned long length = info->length;
2049
2050 /*
2051 * Only the event that crossed the page boundary
2052 * must fill the old tail_page with padding.
2053 */
2054 if (tail >= BUF_PAGE_SIZE) {
2055 /*
2056 * If the page was filled, then we still need
2057 * to update the real_end. Reset it to zero
2058 * and the reader will ignore it.
2059 */
2060 if (tail == BUF_PAGE_SIZE)
2061 tail_page->real_end = 0;
2062
2063 local_sub(length, &tail_page->write);
2064 return;
2065 }
2066
2067 event = __rb_page_index(tail_page, tail);
2068
2069 /* account for padding bytes */
2070 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2071
2072 /*
2073 * Save the original length to the meta data.
2074 * This will be used by the reader to add lost event
2075 * counter.
2076 */
2077 tail_page->real_end = tail;
2078
2079 /*
2080 * If this event is bigger than the minimum size, then
2081 * we need to be careful that we don't subtract the
2082 * write counter enough to allow another writer to slip
2083 * in on this page.
2084 * We put in a discarded commit instead, to make sure
2085 * that this space is not used again.
2086 *
2087 * If we are less than the minimum size, we don't need to
2088 * worry about it.
2089 */
2090 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2091 /* No room for any events */
2092
2093 /* Mark the rest of the page with padding */
2094 rb_event_set_padding(event);
2095
2096 /* Set the write back to the previous setting */
2097 local_sub(length, &tail_page->write);
2098 return;
2099 }
2100
2101 /* Put in a discarded event */
2102 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2103 event->type_len = RINGBUF_TYPE_PADDING;
2104 /* time delta must be non zero */
2105 event->time_delta = 1;
2106
2107 /* Set write to end of buffer */
2108 length = (tail + length) - BUF_PAGE_SIZE;
2109 local_sub(length, &tail_page->write);
2110 }
2111
2112 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2113
2114 /*
2115 * This is the slow path, force gcc not to inline it.
2116 */
2117 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2118 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2119 unsigned long tail, struct rb_event_info *info)
2120 {
2121 struct buffer_page *tail_page = info->tail_page;
2122 struct buffer_page *commit_page = cpu_buffer->commit_page;
2123 struct ring_buffer *buffer = cpu_buffer->buffer;
2124 struct buffer_page *next_page;
2125 int ret;
2126
2127 next_page = tail_page;
2128
2129 rb_inc_page(cpu_buffer, &next_page);
2130
2131 /*
2132 * If for some reason, we had an interrupt storm that made
2133 * it all the way around the buffer, bail, and warn
2134 * about it.
2135 */
2136 if (unlikely(next_page == commit_page)) {
2137 local_inc(&cpu_buffer->commit_overrun);
2138 goto out_reset;
2139 }
2140
2141 /*
2142 * This is where the fun begins!
2143 *
2144 * We are fighting against races between a reader that
2145 * could be on another CPU trying to swap its reader
2146 * page with the buffer head.
2147 *
2148 * We are also fighting against interrupts coming in and
2149 * moving the head or tail on us as well.
2150 *
2151 * If the next page is the head page then we have filled
2152 * the buffer, unless the commit page is still on the
2153 * reader page.
2154 */
2155 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2156
2157 /*
2158 * If the commit is not on the reader page, then
2159 * move the header page.
2160 */
2161 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2162 /*
2163 * If we are not in overwrite mode,
2164 * this is easy, just stop here.
2165 */
2166 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2167 local_inc(&cpu_buffer->dropped_events);
2168 goto out_reset;
2169 }
2170
2171 ret = rb_handle_head_page(cpu_buffer,
2172 tail_page,
2173 next_page);
2174 if (ret < 0)
2175 goto out_reset;
2176 if (ret)
2177 goto out_again;
2178 } else {
2179 /*
2180 * We need to be careful here too. The
2181 * commit page could still be on the reader
2182 * page. We could have a small buffer, and
2183 * have filled up the buffer with events
2184 * from interrupts and such, and wrapped.
2185 *
2186 * Note, if the tail page is also the on the
2187 * reader_page, we let it move out.
2188 */
2189 if (unlikely((cpu_buffer->commit_page !=
2190 cpu_buffer->tail_page) &&
2191 (cpu_buffer->commit_page ==
2192 cpu_buffer->reader_page))) {
2193 local_inc(&cpu_buffer->commit_overrun);
2194 goto out_reset;
2195 }
2196 }
2197 }
2198
2199 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2200
2201 out_again:
2202
2203 rb_reset_tail(cpu_buffer, tail, info);
2204
2205 /* Commit what we have for now. */
2206 rb_end_commit(cpu_buffer);
2207 /* rb_end_commit() decs committing */
2208 local_inc(&cpu_buffer->committing);
2209
2210 /* fail and let the caller try again */
2211 return ERR_PTR(-EAGAIN);
2212
2213 out_reset:
2214 /* reset write */
2215 rb_reset_tail(cpu_buffer, tail, info);
2216
2217 return NULL;
2218 }
2219
2220 /* Slow path, do not inline */
2221 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)2222 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2223 {
2224 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2225
2226 /* Not the first event on the page? */
2227 if (rb_event_index(event)) {
2228 event->time_delta = delta & TS_MASK;
2229 event->array[0] = delta >> TS_SHIFT;
2230 } else {
2231 /* nope, just zero it */
2232 event->time_delta = 0;
2233 event->array[0] = 0;
2234 }
2235
2236 return skip_time_extend(event);
2237 }
2238
2239 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2240 struct ring_buffer_event *event);
2241
2242 /**
2243 * rb_update_event - update event type and data
2244 * @event: the event to update
2245 * @type: the type of event
2246 * @length: the size of the event field in the ring buffer
2247 *
2248 * Update the type and data fields of the event. The length
2249 * is the actual size that is written to the ring buffer,
2250 * and with this, we can determine what to place into the
2251 * data field.
2252 */
2253 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2254 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2255 struct ring_buffer_event *event,
2256 struct rb_event_info *info)
2257 {
2258 unsigned length = info->length;
2259 u64 delta = info->delta;
2260
2261 /* Only a commit updates the timestamp */
2262 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2263 delta = 0;
2264
2265 /*
2266 * If we need to add a timestamp, then we
2267 * add it to the start of the resevered space.
2268 */
2269 if (unlikely(info->add_timestamp)) {
2270 event = rb_add_time_stamp(event, delta);
2271 length -= RB_LEN_TIME_EXTEND;
2272 delta = 0;
2273 }
2274
2275 event->time_delta = delta;
2276 length -= RB_EVNT_HDR_SIZE;
2277 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2278 event->type_len = 0;
2279 event->array[0] = length;
2280 } else
2281 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2282 }
2283
rb_calculate_event_length(unsigned length)2284 static unsigned rb_calculate_event_length(unsigned length)
2285 {
2286 struct ring_buffer_event event; /* Used only for sizeof array */
2287
2288 /* zero length can cause confusions */
2289 if (!length)
2290 length++;
2291
2292 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2293 length += sizeof(event.array[0]);
2294
2295 length += RB_EVNT_HDR_SIZE;
2296 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2297
2298 /*
2299 * In case the time delta is larger than the 27 bits for it
2300 * in the header, we need to add a timestamp. If another
2301 * event comes in when trying to discard this one to increase
2302 * the length, then the timestamp will be added in the allocated
2303 * space of this event. If length is bigger than the size needed
2304 * for the TIME_EXTEND, then padding has to be used. The events
2305 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2306 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2307 * As length is a multiple of 4, we only need to worry if it
2308 * is 12 (RB_LEN_TIME_EXTEND + 4).
2309 */
2310 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2311 length += RB_ALIGNMENT;
2312
2313 return length;
2314 }
2315
2316 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2317 static inline bool sched_clock_stable(void)
2318 {
2319 return true;
2320 }
2321 #endif
2322
2323 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2324 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2325 struct ring_buffer_event *event)
2326 {
2327 unsigned long new_index, old_index;
2328 struct buffer_page *bpage;
2329 unsigned long index;
2330 unsigned long addr;
2331
2332 new_index = rb_event_index(event);
2333 old_index = new_index + rb_event_ts_length(event);
2334 addr = (unsigned long)event;
2335 addr &= PAGE_MASK;
2336
2337 bpage = READ_ONCE(cpu_buffer->tail_page);
2338
2339 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2340 unsigned long write_mask =
2341 local_read(&bpage->write) & ~RB_WRITE_MASK;
2342 unsigned long event_length = rb_event_length(event);
2343 /*
2344 * This is on the tail page. It is possible that
2345 * a write could come in and move the tail page
2346 * and write to the next page. That is fine
2347 * because we just shorten what is on this page.
2348 */
2349 old_index += write_mask;
2350 new_index += write_mask;
2351 index = local_cmpxchg(&bpage->write, old_index, new_index);
2352 if (index == old_index) {
2353 /* update counters */
2354 local_sub(event_length, &cpu_buffer->entries_bytes);
2355 return 1;
2356 }
2357 }
2358
2359 /* could not discard */
2360 return 0;
2361 }
2362
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2363 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2364 {
2365 local_inc(&cpu_buffer->committing);
2366 local_inc(&cpu_buffer->commits);
2367 }
2368
2369 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2370 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2371 {
2372 unsigned long max_count;
2373
2374 /*
2375 * We only race with interrupts and NMIs on this CPU.
2376 * If we own the commit event, then we can commit
2377 * all others that interrupted us, since the interruptions
2378 * are in stack format (they finish before they come
2379 * back to us). This allows us to do a simple loop to
2380 * assign the commit to the tail.
2381 */
2382 again:
2383 max_count = cpu_buffer->nr_pages * 100;
2384
2385 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2386 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2387 return;
2388 if (RB_WARN_ON(cpu_buffer,
2389 rb_is_reader_page(cpu_buffer->tail_page)))
2390 return;
2391 local_set(&cpu_buffer->commit_page->page->commit,
2392 rb_page_write(cpu_buffer->commit_page));
2393 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2394 /* Only update the write stamp if the page has an event */
2395 if (rb_page_write(cpu_buffer->commit_page))
2396 cpu_buffer->write_stamp =
2397 cpu_buffer->commit_page->page->time_stamp;
2398 /* add barrier to keep gcc from optimizing too much */
2399 barrier();
2400 }
2401 while (rb_commit_index(cpu_buffer) !=
2402 rb_page_write(cpu_buffer->commit_page)) {
2403
2404 local_set(&cpu_buffer->commit_page->page->commit,
2405 rb_page_write(cpu_buffer->commit_page));
2406 RB_WARN_ON(cpu_buffer,
2407 local_read(&cpu_buffer->commit_page->page->commit) &
2408 ~RB_WRITE_MASK);
2409 barrier();
2410 }
2411
2412 /* again, keep gcc from optimizing */
2413 barrier();
2414
2415 /*
2416 * If an interrupt came in just after the first while loop
2417 * and pushed the tail page forward, we will be left with
2418 * a dangling commit that will never go forward.
2419 */
2420 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2421 goto again;
2422 }
2423
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2424 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2425 {
2426 unsigned long commits;
2427
2428 if (RB_WARN_ON(cpu_buffer,
2429 !local_read(&cpu_buffer->committing)))
2430 return;
2431
2432 again:
2433 commits = local_read(&cpu_buffer->commits);
2434 /* synchronize with interrupts */
2435 barrier();
2436 if (local_read(&cpu_buffer->committing) == 1)
2437 rb_set_commit_to_write(cpu_buffer);
2438
2439 local_dec(&cpu_buffer->committing);
2440
2441 /* synchronize with interrupts */
2442 barrier();
2443
2444 /*
2445 * Need to account for interrupts coming in between the
2446 * updating of the commit page and the clearing of the
2447 * committing counter.
2448 */
2449 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2450 !local_read(&cpu_buffer->committing)) {
2451 local_inc(&cpu_buffer->committing);
2452 goto again;
2453 }
2454 }
2455
rb_event_discard(struct ring_buffer_event * event)2456 static inline void rb_event_discard(struct ring_buffer_event *event)
2457 {
2458 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2459 event = skip_time_extend(event);
2460
2461 /* array[0] holds the actual length for the discarded event */
2462 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2463 event->type_len = RINGBUF_TYPE_PADDING;
2464 /* time delta must be non zero */
2465 if (!event->time_delta)
2466 event->time_delta = 1;
2467 }
2468
2469 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2470 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2471 struct ring_buffer_event *event)
2472 {
2473 unsigned long addr = (unsigned long)event;
2474 unsigned long index;
2475
2476 index = rb_event_index(event);
2477 addr &= PAGE_MASK;
2478
2479 return cpu_buffer->commit_page->page == (void *)addr &&
2480 rb_commit_index(cpu_buffer) == index;
2481 }
2482
2483 static __always_inline void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2484 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2485 struct ring_buffer_event *event)
2486 {
2487 u64 delta;
2488
2489 /*
2490 * The event first in the commit queue updates the
2491 * time stamp.
2492 */
2493 if (rb_event_is_commit(cpu_buffer, event)) {
2494 /*
2495 * A commit event that is first on a page
2496 * updates the write timestamp with the page stamp
2497 */
2498 if (!rb_event_index(event))
2499 cpu_buffer->write_stamp =
2500 cpu_buffer->commit_page->page->time_stamp;
2501 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2502 delta = event->array[0];
2503 delta <<= TS_SHIFT;
2504 delta += event->time_delta;
2505 cpu_buffer->write_stamp += delta;
2506 } else
2507 cpu_buffer->write_stamp += event->time_delta;
2508 }
2509 }
2510
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2511 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2512 struct ring_buffer_event *event)
2513 {
2514 local_inc(&cpu_buffer->entries);
2515 rb_update_write_stamp(cpu_buffer, event);
2516 rb_end_commit(cpu_buffer);
2517 }
2518
2519 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2520 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522 bool pagebusy;
2523
2524 if (buffer->irq_work.waiters_pending) {
2525 buffer->irq_work.waiters_pending = false;
2526 /* irq_work_queue() supplies it's own memory barriers */
2527 irq_work_queue(&buffer->irq_work.work);
2528 }
2529
2530 if (cpu_buffer->irq_work.waiters_pending) {
2531 cpu_buffer->irq_work.waiters_pending = false;
2532 /* irq_work_queue() supplies it's own memory barriers */
2533 irq_work_queue(&cpu_buffer->irq_work.work);
2534 }
2535
2536 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2537
2538 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2539 cpu_buffer->irq_work.wakeup_full = true;
2540 cpu_buffer->irq_work.full_waiters_pending = false;
2541 /* irq_work_queue() supplies it's own memory barriers */
2542 irq_work_queue(&cpu_buffer->irq_work.work);
2543 }
2544 }
2545
2546 /*
2547 * The lock and unlock are done within a preempt disable section.
2548 * The current_context per_cpu variable can only be modified
2549 * by the current task between lock and unlock. But it can
2550 * be modified more than once via an interrupt. To pass this
2551 * information from the lock to the unlock without having to
2552 * access the 'in_interrupt()' functions again (which do show
2553 * a bit of overhead in something as critical as function tracing,
2554 * we use a bitmask trick.
2555 *
2556 * bit 0 = NMI context
2557 * bit 1 = IRQ context
2558 * bit 2 = SoftIRQ context
2559 * bit 3 = normal context.
2560 *
2561 * This works because this is the order of contexts that can
2562 * preempt other contexts. A SoftIRQ never preempts an IRQ
2563 * context.
2564 *
2565 * When the context is determined, the corresponding bit is
2566 * checked and set (if it was set, then a recursion of that context
2567 * happened).
2568 *
2569 * On unlock, we need to clear this bit. To do so, just subtract
2570 * 1 from the current_context and AND it to itself.
2571 *
2572 * (binary)
2573 * 101 - 1 = 100
2574 * 101 & 100 = 100 (clearing bit zero)
2575 *
2576 * 1010 - 1 = 1001
2577 * 1010 & 1001 = 1000 (clearing bit 1)
2578 *
2579 * The least significant bit can be cleared this way, and it
2580 * just so happens that it is the same bit corresponding to
2581 * the current context.
2582 */
2583
2584 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2585 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2586 {
2587 unsigned int val = cpu_buffer->current_context;
2588 int bit;
2589
2590 if (in_interrupt()) {
2591 if (in_nmi())
2592 bit = RB_CTX_NMI;
2593 else if (in_irq())
2594 bit = RB_CTX_IRQ;
2595 else
2596 bit = RB_CTX_SOFTIRQ;
2597 } else
2598 bit = RB_CTX_NORMAL;
2599
2600 if (unlikely(val & (1 << bit)))
2601 return 1;
2602
2603 val |= (1 << bit);
2604 cpu_buffer->current_context = val;
2605
2606 return 0;
2607 }
2608
2609 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2610 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2611 {
2612 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2613 }
2614
2615 /**
2616 * ring_buffer_unlock_commit - commit a reserved
2617 * @buffer: The buffer to commit to
2618 * @event: The event pointer to commit.
2619 *
2620 * This commits the data to the ring buffer, and releases any locks held.
2621 *
2622 * Must be paired with ring_buffer_lock_reserve.
2623 */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2624 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2625 struct ring_buffer_event *event)
2626 {
2627 struct ring_buffer_per_cpu *cpu_buffer;
2628 int cpu = raw_smp_processor_id();
2629
2630 cpu_buffer = buffer->buffers[cpu];
2631
2632 rb_commit(cpu_buffer, event);
2633
2634 rb_wakeups(buffer, cpu_buffer);
2635
2636 trace_recursive_unlock(cpu_buffer);
2637
2638 preempt_enable_notrace();
2639
2640 return 0;
2641 }
2642 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2643
2644 static noinline void
rb_handle_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2645 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2646 struct rb_event_info *info)
2647 {
2648 WARN_ONCE(info->delta > (1ULL << 59),
2649 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2650 (unsigned long long)info->delta,
2651 (unsigned long long)info->ts,
2652 (unsigned long long)cpu_buffer->write_stamp,
2653 sched_clock_stable() ? "" :
2654 "If you just came from a suspend/resume,\n"
2655 "please switch to the trace global clock:\n"
2656 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2657 info->add_timestamp = 1;
2658 }
2659
2660 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2661 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2662 struct rb_event_info *info)
2663 {
2664 struct ring_buffer_event *event;
2665 struct buffer_page *tail_page;
2666 unsigned long tail, write;
2667
2668 /*
2669 * If the time delta since the last event is too big to
2670 * hold in the time field of the event, then we append a
2671 * TIME EXTEND event ahead of the data event.
2672 */
2673 if (unlikely(info->add_timestamp))
2674 info->length += RB_LEN_TIME_EXTEND;
2675
2676 /* Don't let the compiler play games with cpu_buffer->tail_page */
2677 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2678 write = local_add_return(info->length, &tail_page->write);
2679
2680 /* set write to only the index of the write */
2681 write &= RB_WRITE_MASK;
2682 tail = write - info->length;
2683
2684 /*
2685 * If this is the first commit on the page, then it has the same
2686 * timestamp as the page itself.
2687 */
2688 if (!tail)
2689 info->delta = 0;
2690
2691 /* See if we shot pass the end of this buffer page */
2692 if (unlikely(write > BUF_PAGE_SIZE))
2693 return rb_move_tail(cpu_buffer, tail, info);
2694
2695 /* We reserved something on the buffer */
2696
2697 event = __rb_page_index(tail_page, tail);
2698 rb_update_event(cpu_buffer, event, info);
2699
2700 local_inc(&tail_page->entries);
2701
2702 /*
2703 * If this is the first commit on the page, then update
2704 * its timestamp.
2705 */
2706 if (!tail)
2707 tail_page->page->time_stamp = info->ts;
2708
2709 /* account for these added bytes */
2710 local_add(info->length, &cpu_buffer->entries_bytes);
2711
2712 return event;
2713 }
2714
2715 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2716 rb_reserve_next_event(struct ring_buffer *buffer,
2717 struct ring_buffer_per_cpu *cpu_buffer,
2718 unsigned long length)
2719 {
2720 struct ring_buffer_event *event;
2721 struct rb_event_info info;
2722 int nr_loops = 0;
2723 u64 diff;
2724
2725 rb_start_commit(cpu_buffer);
2726
2727 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2728 /*
2729 * Due to the ability to swap a cpu buffer from a buffer
2730 * it is possible it was swapped before we committed.
2731 * (committing stops a swap). We check for it here and
2732 * if it happened, we have to fail the write.
2733 */
2734 barrier();
2735 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2736 local_dec(&cpu_buffer->committing);
2737 local_dec(&cpu_buffer->commits);
2738 return NULL;
2739 }
2740 #endif
2741
2742 info.length = rb_calculate_event_length(length);
2743 again:
2744 info.add_timestamp = 0;
2745 info.delta = 0;
2746
2747 /*
2748 * We allow for interrupts to reenter here and do a trace.
2749 * If one does, it will cause this original code to loop
2750 * back here. Even with heavy interrupts happening, this
2751 * should only happen a few times in a row. If this happens
2752 * 1000 times in a row, there must be either an interrupt
2753 * storm or we have something buggy.
2754 * Bail!
2755 */
2756 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2757 goto out_fail;
2758
2759 info.ts = rb_time_stamp(cpu_buffer->buffer);
2760 diff = info.ts - cpu_buffer->write_stamp;
2761
2762 /* make sure this diff is calculated here */
2763 barrier();
2764
2765 /* Did the write stamp get updated already? */
2766 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2767 info.delta = diff;
2768 if (unlikely(test_time_stamp(info.delta)))
2769 rb_handle_timestamp(cpu_buffer, &info);
2770 }
2771
2772 event = __rb_reserve_next(cpu_buffer, &info);
2773
2774 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2775 if (info.add_timestamp)
2776 info.length -= RB_LEN_TIME_EXTEND;
2777 goto again;
2778 }
2779
2780 if (!event)
2781 goto out_fail;
2782
2783 return event;
2784
2785 out_fail:
2786 rb_end_commit(cpu_buffer);
2787 return NULL;
2788 }
2789
2790 /**
2791 * ring_buffer_lock_reserve - reserve a part of the buffer
2792 * @buffer: the ring buffer to reserve from
2793 * @length: the length of the data to reserve (excluding event header)
2794 *
2795 * Returns a reseverd event on the ring buffer to copy directly to.
2796 * The user of this interface will need to get the body to write into
2797 * and can use the ring_buffer_event_data() interface.
2798 *
2799 * The length is the length of the data needed, not the event length
2800 * which also includes the event header.
2801 *
2802 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2803 * If NULL is returned, then nothing has been allocated or locked.
2804 */
2805 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2806 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2807 {
2808 struct ring_buffer_per_cpu *cpu_buffer;
2809 struct ring_buffer_event *event;
2810 int cpu;
2811
2812 /* If we are tracing schedule, we don't want to recurse */
2813 preempt_disable_notrace();
2814
2815 if (unlikely(atomic_read(&buffer->record_disabled)))
2816 goto out;
2817
2818 cpu = raw_smp_processor_id();
2819
2820 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2821 goto out;
2822
2823 cpu_buffer = buffer->buffers[cpu];
2824
2825 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2826 goto out;
2827
2828 if (unlikely(length > BUF_MAX_DATA_SIZE))
2829 goto out;
2830
2831 if (unlikely(trace_recursive_lock(cpu_buffer)))
2832 goto out;
2833
2834 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2835 if (!event)
2836 goto out_unlock;
2837
2838 return event;
2839
2840 out_unlock:
2841 trace_recursive_unlock(cpu_buffer);
2842 out:
2843 preempt_enable_notrace();
2844 return NULL;
2845 }
2846 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2847
2848 /*
2849 * Decrement the entries to the page that an event is on.
2850 * The event does not even need to exist, only the pointer
2851 * to the page it is on. This may only be called before the commit
2852 * takes place.
2853 */
2854 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2855 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2856 struct ring_buffer_event *event)
2857 {
2858 unsigned long addr = (unsigned long)event;
2859 struct buffer_page *bpage = cpu_buffer->commit_page;
2860 struct buffer_page *start;
2861
2862 addr &= PAGE_MASK;
2863
2864 /* Do the likely case first */
2865 if (likely(bpage->page == (void *)addr)) {
2866 local_dec(&bpage->entries);
2867 return;
2868 }
2869
2870 /*
2871 * Because the commit page may be on the reader page we
2872 * start with the next page and check the end loop there.
2873 */
2874 rb_inc_page(cpu_buffer, &bpage);
2875 start = bpage;
2876 do {
2877 if (bpage->page == (void *)addr) {
2878 local_dec(&bpage->entries);
2879 return;
2880 }
2881 rb_inc_page(cpu_buffer, &bpage);
2882 } while (bpage != start);
2883
2884 /* commit not part of this buffer?? */
2885 RB_WARN_ON(cpu_buffer, 1);
2886 }
2887
2888 /**
2889 * ring_buffer_commit_discard - discard an event that has not been committed
2890 * @buffer: the ring buffer
2891 * @event: non committed event to discard
2892 *
2893 * Sometimes an event that is in the ring buffer needs to be ignored.
2894 * This function lets the user discard an event in the ring buffer
2895 * and then that event will not be read later.
2896 *
2897 * This function only works if it is called before the the item has been
2898 * committed. It will try to free the event from the ring buffer
2899 * if another event has not been added behind it.
2900 *
2901 * If another event has been added behind it, it will set the event
2902 * up as discarded, and perform the commit.
2903 *
2904 * If this function is called, do not call ring_buffer_unlock_commit on
2905 * the event.
2906 */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2907 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2908 struct ring_buffer_event *event)
2909 {
2910 struct ring_buffer_per_cpu *cpu_buffer;
2911 int cpu;
2912
2913 /* The event is discarded regardless */
2914 rb_event_discard(event);
2915
2916 cpu = smp_processor_id();
2917 cpu_buffer = buffer->buffers[cpu];
2918
2919 /*
2920 * This must only be called if the event has not been
2921 * committed yet. Thus we can assume that preemption
2922 * is still disabled.
2923 */
2924 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2925
2926 rb_decrement_entry(cpu_buffer, event);
2927 if (rb_try_to_discard(cpu_buffer, event))
2928 goto out;
2929
2930 /*
2931 * The commit is still visible by the reader, so we
2932 * must still update the timestamp.
2933 */
2934 rb_update_write_stamp(cpu_buffer, event);
2935 out:
2936 rb_end_commit(cpu_buffer);
2937
2938 trace_recursive_unlock(cpu_buffer);
2939
2940 preempt_enable_notrace();
2941
2942 }
2943 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2944
2945 /**
2946 * ring_buffer_write - write data to the buffer without reserving
2947 * @buffer: The ring buffer to write to.
2948 * @length: The length of the data being written (excluding the event header)
2949 * @data: The data to write to the buffer.
2950 *
2951 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2952 * one function. If you already have the data to write to the buffer, it
2953 * may be easier to simply call this function.
2954 *
2955 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2956 * and not the length of the event which would hold the header.
2957 */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2958 int ring_buffer_write(struct ring_buffer *buffer,
2959 unsigned long length,
2960 void *data)
2961 {
2962 struct ring_buffer_per_cpu *cpu_buffer;
2963 struct ring_buffer_event *event;
2964 void *body;
2965 int ret = -EBUSY;
2966 int cpu;
2967
2968 preempt_disable_notrace();
2969
2970 if (atomic_read(&buffer->record_disabled))
2971 goto out;
2972
2973 cpu = raw_smp_processor_id();
2974
2975 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2976 goto out;
2977
2978 cpu_buffer = buffer->buffers[cpu];
2979
2980 if (atomic_read(&cpu_buffer->record_disabled))
2981 goto out;
2982
2983 if (length > BUF_MAX_DATA_SIZE)
2984 goto out;
2985
2986 if (unlikely(trace_recursive_lock(cpu_buffer)))
2987 goto out;
2988
2989 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2990 if (!event)
2991 goto out_unlock;
2992
2993 body = rb_event_data(event);
2994
2995 memcpy(body, data, length);
2996
2997 rb_commit(cpu_buffer, event);
2998
2999 rb_wakeups(buffer, cpu_buffer);
3000
3001 ret = 0;
3002
3003 out_unlock:
3004 trace_recursive_unlock(cpu_buffer);
3005
3006 out:
3007 preempt_enable_notrace();
3008
3009 return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_write);
3012
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3013 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3014 {
3015 struct buffer_page *reader = cpu_buffer->reader_page;
3016 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3017 struct buffer_page *commit = cpu_buffer->commit_page;
3018
3019 /* In case of error, head will be NULL */
3020 if (unlikely(!head))
3021 return true;
3022
3023 return reader->read == rb_page_commit(reader) &&
3024 (commit == reader ||
3025 (commit == head &&
3026 head->read == rb_page_commit(commit)));
3027 }
3028
3029 /**
3030 * ring_buffer_record_disable - stop all writes into the buffer
3031 * @buffer: The ring buffer to stop writes to.
3032 *
3033 * This prevents all writes to the buffer. Any attempt to write
3034 * to the buffer after this will fail and return NULL.
3035 *
3036 * The caller should call synchronize_sched() after this.
3037 */
ring_buffer_record_disable(struct ring_buffer * buffer)3038 void ring_buffer_record_disable(struct ring_buffer *buffer)
3039 {
3040 atomic_inc(&buffer->record_disabled);
3041 }
3042 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3043
3044 /**
3045 * ring_buffer_record_enable - enable writes to the buffer
3046 * @buffer: The ring buffer to enable writes
3047 *
3048 * Note, multiple disables will need the same number of enables
3049 * to truly enable the writing (much like preempt_disable).
3050 */
ring_buffer_record_enable(struct ring_buffer * buffer)3051 void ring_buffer_record_enable(struct ring_buffer *buffer)
3052 {
3053 atomic_dec(&buffer->record_disabled);
3054 }
3055 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3056
3057 /**
3058 * ring_buffer_record_off - stop all writes into the buffer
3059 * @buffer: The ring buffer to stop writes to.
3060 *
3061 * This prevents all writes to the buffer. Any attempt to write
3062 * to the buffer after this will fail and return NULL.
3063 *
3064 * This is different than ring_buffer_record_disable() as
3065 * it works like an on/off switch, where as the disable() version
3066 * must be paired with a enable().
3067 */
ring_buffer_record_off(struct ring_buffer * buffer)3068 void ring_buffer_record_off(struct ring_buffer *buffer)
3069 {
3070 unsigned int rd;
3071 unsigned int new_rd;
3072
3073 do {
3074 rd = atomic_read(&buffer->record_disabled);
3075 new_rd = rd | RB_BUFFER_OFF;
3076 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3079
3080 /**
3081 * ring_buffer_record_on - restart writes into the buffer
3082 * @buffer: The ring buffer to start writes to.
3083 *
3084 * This enables all writes to the buffer that was disabled by
3085 * ring_buffer_record_off().
3086 *
3087 * This is different than ring_buffer_record_enable() as
3088 * it works like an on/off switch, where as the enable() version
3089 * must be paired with a disable().
3090 */
ring_buffer_record_on(struct ring_buffer * buffer)3091 void ring_buffer_record_on(struct ring_buffer *buffer)
3092 {
3093 unsigned int rd;
3094 unsigned int new_rd;
3095
3096 do {
3097 rd = atomic_read(&buffer->record_disabled);
3098 new_rd = rd & ~RB_BUFFER_OFF;
3099 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3100 }
3101 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3102
3103 /**
3104 * ring_buffer_record_is_on - return true if the ring buffer can write
3105 * @buffer: The ring buffer to see if write is enabled
3106 *
3107 * Returns true if the ring buffer is in a state that it accepts writes.
3108 */
ring_buffer_record_is_on(struct ring_buffer * buffer)3109 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3110 {
3111 return !atomic_read(&buffer->record_disabled);
3112 }
3113
3114 /**
3115 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3116 * @buffer: The ring buffer to see if write is set enabled
3117 *
3118 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3119 * Note that this does NOT mean it is in a writable state.
3120 *
3121 * It may return true when the ring buffer has been disabled by
3122 * ring_buffer_record_disable(), as that is a temporary disabling of
3123 * the ring buffer.
3124 */
ring_buffer_record_is_set_on(struct ring_buffer * buffer)3125 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3126 {
3127 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3128 }
3129
3130 /**
3131 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3132 * @buffer: The ring buffer to stop writes to.
3133 * @cpu: The CPU buffer to stop
3134 *
3135 * This prevents all writes to the buffer. Any attempt to write
3136 * to the buffer after this will fail and return NULL.
3137 *
3138 * The caller should call synchronize_sched() after this.
3139 */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3140 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3141 {
3142 struct ring_buffer_per_cpu *cpu_buffer;
3143
3144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3145 return;
3146
3147 cpu_buffer = buffer->buffers[cpu];
3148 atomic_inc(&cpu_buffer->record_disabled);
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3151
3152 /**
3153 * ring_buffer_record_enable_cpu - enable writes to the buffer
3154 * @buffer: The ring buffer to enable writes
3155 * @cpu: The CPU to enable.
3156 *
3157 * Note, multiple disables will need the same number of enables
3158 * to truly enable the writing (much like preempt_disable).
3159 */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3160 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3161 {
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163
3164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 return;
3166
3167 cpu_buffer = buffer->buffers[cpu];
3168 atomic_dec(&cpu_buffer->record_disabled);
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3171
3172 /*
3173 * The total entries in the ring buffer is the running counter
3174 * of entries entered into the ring buffer, minus the sum of
3175 * the entries read from the ring buffer and the number of
3176 * entries that were overwritten.
3177 */
3178 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 return local_read(&cpu_buffer->entries) -
3182 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3183 }
3184
3185 /**
3186 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3187 * @buffer: The ring buffer
3188 * @cpu: The per CPU buffer to read from.
3189 */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3190 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3191 {
3192 unsigned long flags;
3193 struct ring_buffer_per_cpu *cpu_buffer;
3194 struct buffer_page *bpage;
3195 u64 ret = 0;
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
3201 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3202 /*
3203 * if the tail is on reader_page, oldest time stamp is on the reader
3204 * page
3205 */
3206 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3207 bpage = cpu_buffer->reader_page;
3208 else
3209 bpage = rb_set_head_page(cpu_buffer);
3210 if (bpage)
3211 ret = bpage->page->time_stamp;
3212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3213
3214 return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3217
3218 /**
3219 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3220 * @buffer: The ring buffer
3221 * @cpu: The per CPU buffer to read from.
3222 */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3223 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3224 {
3225 struct ring_buffer_per_cpu *cpu_buffer;
3226 unsigned long ret;
3227
3228 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3229 return 0;
3230
3231 cpu_buffer = buffer->buffers[cpu];
3232 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3233
3234 return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3237
3238 /**
3239 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3240 * @buffer: The ring buffer
3241 * @cpu: The per CPU buffer to get the entries from.
3242 */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3243 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3244 {
3245 struct ring_buffer_per_cpu *cpu_buffer;
3246
3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 return 0;
3249
3250 cpu_buffer = buffer->buffers[cpu];
3251
3252 return rb_num_of_entries(cpu_buffer);
3253 }
3254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3255
3256 /**
3257 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3258 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3259 * @buffer: The ring buffer
3260 * @cpu: The per CPU buffer to get the number of overruns from
3261 */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3262 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3263 {
3264 struct ring_buffer_per_cpu *cpu_buffer;
3265 unsigned long ret;
3266
3267 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3268 return 0;
3269
3270 cpu_buffer = buffer->buffers[cpu];
3271 ret = local_read(&cpu_buffer->overrun);
3272
3273 return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3276
3277 /**
3278 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3279 * commits failing due to the buffer wrapping around while there are uncommitted
3280 * events, such as during an interrupt storm.
3281 * @buffer: The ring buffer
3282 * @cpu: The per CPU buffer to get the number of overruns from
3283 */
3284 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3285 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3286 {
3287 struct ring_buffer_per_cpu *cpu_buffer;
3288 unsigned long ret;
3289
3290 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 return 0;
3292
3293 cpu_buffer = buffer->buffers[cpu];
3294 ret = local_read(&cpu_buffer->commit_overrun);
3295
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3299
3300 /**
3301 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3302 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3303 * @buffer: The ring buffer
3304 * @cpu: The per CPU buffer to get the number of overruns from
3305 */
3306 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3307 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3308 {
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 unsigned long ret;
3311
3312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313 return 0;
3314
3315 cpu_buffer = buffer->buffers[cpu];
3316 ret = local_read(&cpu_buffer->dropped_events);
3317
3318 return ret;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3321
3322 /**
3323 * ring_buffer_read_events_cpu - get the number of events successfully read
3324 * @buffer: The ring buffer
3325 * @cpu: The per CPU buffer to get the number of events read
3326 */
3327 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3328 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3329 {
3330 struct ring_buffer_per_cpu *cpu_buffer;
3331
3332 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3333 return 0;
3334
3335 cpu_buffer = buffer->buffers[cpu];
3336 return cpu_buffer->read;
3337 }
3338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3339
3340 /**
3341 * ring_buffer_entries - get the number of entries in a buffer
3342 * @buffer: The ring buffer
3343 *
3344 * Returns the total number of entries in the ring buffer
3345 * (all CPU entries)
3346 */
ring_buffer_entries(struct ring_buffer * buffer)3347 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3348 {
3349 struct ring_buffer_per_cpu *cpu_buffer;
3350 unsigned long entries = 0;
3351 int cpu;
3352
3353 /* if you care about this being correct, lock the buffer */
3354 for_each_buffer_cpu(buffer, cpu) {
3355 cpu_buffer = buffer->buffers[cpu];
3356 entries += rb_num_of_entries(cpu_buffer);
3357 }
3358
3359 return entries;
3360 }
3361 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3362
3363 /**
3364 * ring_buffer_overruns - get the number of overruns in buffer
3365 * @buffer: The ring buffer
3366 *
3367 * Returns the total number of overruns in the ring buffer
3368 * (all CPU entries)
3369 */
ring_buffer_overruns(struct ring_buffer * buffer)3370 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3371 {
3372 struct ring_buffer_per_cpu *cpu_buffer;
3373 unsigned long overruns = 0;
3374 int cpu;
3375
3376 /* if you care about this being correct, lock the buffer */
3377 for_each_buffer_cpu(buffer, cpu) {
3378 cpu_buffer = buffer->buffers[cpu];
3379 overruns += local_read(&cpu_buffer->overrun);
3380 }
3381
3382 return overruns;
3383 }
3384 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3385
rb_iter_reset(struct ring_buffer_iter * iter)3386 static void rb_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3389
3390 /* Iterator usage is expected to have record disabled */
3391 iter->head_page = cpu_buffer->reader_page;
3392 iter->head = cpu_buffer->reader_page->read;
3393
3394 iter->cache_reader_page = iter->head_page;
3395 iter->cache_read = cpu_buffer->read;
3396
3397 if (iter->head)
3398 iter->read_stamp = cpu_buffer->read_stamp;
3399 else
3400 iter->read_stamp = iter->head_page->page->time_stamp;
3401 }
3402
3403 /**
3404 * ring_buffer_iter_reset - reset an iterator
3405 * @iter: The iterator to reset
3406 *
3407 * Resets the iterator, so that it will start from the beginning
3408 * again.
3409 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3410 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3411 {
3412 struct ring_buffer_per_cpu *cpu_buffer;
3413 unsigned long flags;
3414
3415 if (!iter)
3416 return;
3417
3418 cpu_buffer = iter->cpu_buffer;
3419
3420 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3421 rb_iter_reset(iter);
3422 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3423 }
3424 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3425
3426 /**
3427 * ring_buffer_iter_empty - check if an iterator has no more to read
3428 * @iter: The iterator to check
3429 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3430 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3431 {
3432 struct ring_buffer_per_cpu *cpu_buffer;
3433 struct buffer_page *reader;
3434 struct buffer_page *head_page;
3435 struct buffer_page *commit_page;
3436 unsigned commit;
3437
3438 cpu_buffer = iter->cpu_buffer;
3439
3440 /* Remember, trace recording is off when iterator is in use */
3441 reader = cpu_buffer->reader_page;
3442 head_page = cpu_buffer->head_page;
3443 commit_page = cpu_buffer->commit_page;
3444 commit = rb_page_commit(commit_page);
3445
3446 return ((iter->head_page == commit_page && iter->head == commit) ||
3447 (iter->head_page == reader && commit_page == head_page &&
3448 head_page->read == commit &&
3449 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3450 }
3451 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3452
3453 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3454 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3455 struct ring_buffer_event *event)
3456 {
3457 u64 delta;
3458
3459 switch (event->type_len) {
3460 case RINGBUF_TYPE_PADDING:
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_EXTEND:
3464 delta = event->array[0];
3465 delta <<= TS_SHIFT;
3466 delta += event->time_delta;
3467 cpu_buffer->read_stamp += delta;
3468 return;
3469
3470 case RINGBUF_TYPE_TIME_STAMP:
3471 /* FIXME: not implemented */
3472 return;
3473
3474 case RINGBUF_TYPE_DATA:
3475 cpu_buffer->read_stamp += event->time_delta;
3476 return;
3477
3478 default:
3479 BUG();
3480 }
3481 return;
3482 }
3483
3484 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3485 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3486 struct ring_buffer_event *event)
3487 {
3488 u64 delta;
3489
3490 switch (event->type_len) {
3491 case RINGBUF_TYPE_PADDING:
3492 return;
3493
3494 case RINGBUF_TYPE_TIME_EXTEND:
3495 delta = event->array[0];
3496 delta <<= TS_SHIFT;
3497 delta += event->time_delta;
3498 iter->read_stamp += delta;
3499 return;
3500
3501 case RINGBUF_TYPE_TIME_STAMP:
3502 /* FIXME: not implemented */
3503 return;
3504
3505 case RINGBUF_TYPE_DATA:
3506 iter->read_stamp += event->time_delta;
3507 return;
3508
3509 default:
3510 BUG();
3511 }
3512 return;
3513 }
3514
3515 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3516 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3517 {
3518 struct buffer_page *reader = NULL;
3519 unsigned long overwrite;
3520 unsigned long flags;
3521 int nr_loops = 0;
3522 int ret;
3523
3524 local_irq_save(flags);
3525 arch_spin_lock(&cpu_buffer->lock);
3526
3527 again:
3528 /*
3529 * This should normally only loop twice. But because the
3530 * start of the reader inserts an empty page, it causes
3531 * a case where we will loop three times. There should be no
3532 * reason to loop four times (that I know of).
3533 */
3534 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3535 reader = NULL;
3536 goto out;
3537 }
3538
3539 reader = cpu_buffer->reader_page;
3540
3541 /* If there's more to read, return this page */
3542 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3543 goto out;
3544
3545 /* Never should we have an index greater than the size */
3546 if (RB_WARN_ON(cpu_buffer,
3547 cpu_buffer->reader_page->read > rb_page_size(reader)))
3548 goto out;
3549
3550 /* check if we caught up to the tail */
3551 reader = NULL;
3552 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3553 goto out;
3554
3555 /* Don't bother swapping if the ring buffer is empty */
3556 if (rb_num_of_entries(cpu_buffer) == 0)
3557 goto out;
3558
3559 /*
3560 * Reset the reader page to size zero.
3561 */
3562 local_set(&cpu_buffer->reader_page->write, 0);
3563 local_set(&cpu_buffer->reader_page->entries, 0);
3564 local_set(&cpu_buffer->reader_page->page->commit, 0);
3565 cpu_buffer->reader_page->real_end = 0;
3566
3567 spin:
3568 /*
3569 * Splice the empty reader page into the list around the head.
3570 */
3571 reader = rb_set_head_page(cpu_buffer);
3572 if (!reader)
3573 goto out;
3574 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3575 cpu_buffer->reader_page->list.prev = reader->list.prev;
3576
3577 /*
3578 * cpu_buffer->pages just needs to point to the buffer, it
3579 * has no specific buffer page to point to. Lets move it out
3580 * of our way so we don't accidentally swap it.
3581 */
3582 cpu_buffer->pages = reader->list.prev;
3583
3584 /* The reader page will be pointing to the new head */
3585 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3586
3587 /*
3588 * We want to make sure we read the overruns after we set up our
3589 * pointers to the next object. The writer side does a
3590 * cmpxchg to cross pages which acts as the mb on the writer
3591 * side. Note, the reader will constantly fail the swap
3592 * while the writer is updating the pointers, so this
3593 * guarantees that the overwrite recorded here is the one we
3594 * want to compare with the last_overrun.
3595 */
3596 smp_mb();
3597 overwrite = local_read(&(cpu_buffer->overrun));
3598
3599 /*
3600 * Here's the tricky part.
3601 *
3602 * We need to move the pointer past the header page.
3603 * But we can only do that if a writer is not currently
3604 * moving it. The page before the header page has the
3605 * flag bit '1' set if it is pointing to the page we want.
3606 * but if the writer is in the process of moving it
3607 * than it will be '2' or already moved '0'.
3608 */
3609
3610 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3611
3612 /*
3613 * If we did not convert it, then we must try again.
3614 */
3615 if (!ret)
3616 goto spin;
3617
3618 /*
3619 * Yeah! We succeeded in replacing the page.
3620 *
3621 * Now make the new head point back to the reader page.
3622 */
3623 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3624 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3625
3626 /* Finally update the reader page to the new head */
3627 cpu_buffer->reader_page = reader;
3628 cpu_buffer->reader_page->read = 0;
3629
3630 if (overwrite != cpu_buffer->last_overrun) {
3631 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3632 cpu_buffer->last_overrun = overwrite;
3633 }
3634
3635 goto again;
3636
3637 out:
3638 /* Update the read_stamp on the first event */
3639 if (reader && reader->read == 0)
3640 cpu_buffer->read_stamp = reader->page->time_stamp;
3641
3642 arch_spin_unlock(&cpu_buffer->lock);
3643 local_irq_restore(flags);
3644
3645 return reader;
3646 }
3647
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3648 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3649 {
3650 struct ring_buffer_event *event;
3651 struct buffer_page *reader;
3652 unsigned length;
3653
3654 reader = rb_get_reader_page(cpu_buffer);
3655
3656 /* This function should not be called when buffer is empty */
3657 if (RB_WARN_ON(cpu_buffer, !reader))
3658 return;
3659
3660 event = rb_reader_event(cpu_buffer);
3661
3662 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3663 cpu_buffer->read++;
3664
3665 rb_update_read_stamp(cpu_buffer, event);
3666
3667 length = rb_event_length(event);
3668 cpu_buffer->reader_page->read += length;
3669 }
3670
rb_advance_iter(struct ring_buffer_iter * iter)3671 static void rb_advance_iter(struct ring_buffer_iter *iter)
3672 {
3673 struct ring_buffer_per_cpu *cpu_buffer;
3674 struct ring_buffer_event *event;
3675 unsigned length;
3676
3677 cpu_buffer = iter->cpu_buffer;
3678
3679 /*
3680 * Check if we are at the end of the buffer.
3681 */
3682 if (iter->head >= rb_page_size(iter->head_page)) {
3683 /* discarded commits can make the page empty */
3684 if (iter->head_page == cpu_buffer->commit_page)
3685 return;
3686 rb_inc_iter(iter);
3687 return;
3688 }
3689
3690 event = rb_iter_head_event(iter);
3691
3692 length = rb_event_length(event);
3693
3694 /*
3695 * This should not be called to advance the header if we are
3696 * at the tail of the buffer.
3697 */
3698 if (RB_WARN_ON(cpu_buffer,
3699 (iter->head_page == cpu_buffer->commit_page) &&
3700 (iter->head + length > rb_commit_index(cpu_buffer))))
3701 return;
3702
3703 rb_update_iter_read_stamp(iter, event);
3704
3705 iter->head += length;
3706
3707 /* check for end of page padding */
3708 if ((iter->head >= rb_page_size(iter->head_page)) &&
3709 (iter->head_page != cpu_buffer->commit_page))
3710 rb_inc_iter(iter);
3711 }
3712
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3713 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3714 {
3715 return cpu_buffer->lost_events;
3716 }
3717
3718 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3719 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3720 unsigned long *lost_events)
3721 {
3722 struct ring_buffer_event *event;
3723 struct buffer_page *reader;
3724 int nr_loops = 0;
3725
3726 again:
3727 /*
3728 * We repeat when a time extend is encountered.
3729 * Since the time extend is always attached to a data event,
3730 * we should never loop more than once.
3731 * (We never hit the following condition more than twice).
3732 */
3733 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3734 return NULL;
3735
3736 reader = rb_get_reader_page(cpu_buffer);
3737 if (!reader)
3738 return NULL;
3739
3740 event = rb_reader_event(cpu_buffer);
3741
3742 switch (event->type_len) {
3743 case RINGBUF_TYPE_PADDING:
3744 if (rb_null_event(event))
3745 RB_WARN_ON(cpu_buffer, 1);
3746 /*
3747 * Because the writer could be discarding every
3748 * event it creates (which would probably be bad)
3749 * if we were to go back to "again" then we may never
3750 * catch up, and will trigger the warn on, or lock
3751 * the box. Return the padding, and we will release
3752 * the current locks, and try again.
3753 */
3754 return event;
3755
3756 case RINGBUF_TYPE_TIME_EXTEND:
3757 /* Internal data, OK to advance */
3758 rb_advance_reader(cpu_buffer);
3759 goto again;
3760
3761 case RINGBUF_TYPE_TIME_STAMP:
3762 /* FIXME: not implemented */
3763 rb_advance_reader(cpu_buffer);
3764 goto again;
3765
3766 case RINGBUF_TYPE_DATA:
3767 if (ts) {
3768 *ts = cpu_buffer->read_stamp + event->time_delta;
3769 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3770 cpu_buffer->cpu, ts);
3771 }
3772 if (lost_events)
3773 *lost_events = rb_lost_events(cpu_buffer);
3774 return event;
3775
3776 default:
3777 BUG();
3778 }
3779
3780 return NULL;
3781 }
3782 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3783
3784 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3785 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3786 {
3787 struct ring_buffer *buffer;
3788 struct ring_buffer_per_cpu *cpu_buffer;
3789 struct ring_buffer_event *event;
3790 int nr_loops = 0;
3791
3792 cpu_buffer = iter->cpu_buffer;
3793 buffer = cpu_buffer->buffer;
3794
3795 /*
3796 * Check if someone performed a consuming read to
3797 * the buffer. A consuming read invalidates the iterator
3798 * and we need to reset the iterator in this case.
3799 */
3800 if (unlikely(iter->cache_read != cpu_buffer->read ||
3801 iter->cache_reader_page != cpu_buffer->reader_page))
3802 rb_iter_reset(iter);
3803
3804 again:
3805 if (ring_buffer_iter_empty(iter))
3806 return NULL;
3807
3808 /*
3809 * We repeat when a time extend is encountered or we hit
3810 * the end of the page. Since the time extend is always attached
3811 * to a data event, we should never loop more than three times.
3812 * Once for going to next page, once on time extend, and
3813 * finally once to get the event.
3814 * (We never hit the following condition more than thrice).
3815 */
3816 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3817 return NULL;
3818
3819 if (rb_per_cpu_empty(cpu_buffer))
3820 return NULL;
3821
3822 if (iter->head >= rb_page_size(iter->head_page)) {
3823 rb_inc_iter(iter);
3824 goto again;
3825 }
3826
3827 event = rb_iter_head_event(iter);
3828
3829 switch (event->type_len) {
3830 case RINGBUF_TYPE_PADDING:
3831 if (rb_null_event(event)) {
3832 rb_inc_iter(iter);
3833 goto again;
3834 }
3835 rb_advance_iter(iter);
3836 return event;
3837
3838 case RINGBUF_TYPE_TIME_EXTEND:
3839 /* Internal data, OK to advance */
3840 rb_advance_iter(iter);
3841 goto again;
3842
3843 case RINGBUF_TYPE_TIME_STAMP:
3844 /* FIXME: not implemented */
3845 rb_advance_iter(iter);
3846 goto again;
3847
3848 case RINGBUF_TYPE_DATA:
3849 if (ts) {
3850 *ts = iter->read_stamp + event->time_delta;
3851 ring_buffer_normalize_time_stamp(buffer,
3852 cpu_buffer->cpu, ts);
3853 }
3854 return event;
3855
3856 default:
3857 BUG();
3858 }
3859
3860 return NULL;
3861 }
3862 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3863
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)3864 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3865 {
3866 if (likely(!in_nmi())) {
3867 raw_spin_lock(&cpu_buffer->reader_lock);
3868 return true;
3869 }
3870
3871 /*
3872 * If an NMI die dumps out the content of the ring buffer
3873 * trylock must be used to prevent a deadlock if the NMI
3874 * preempted a task that holds the ring buffer locks. If
3875 * we get the lock then all is fine, if not, then continue
3876 * to do the read, but this can corrupt the ring buffer,
3877 * so it must be permanently disabled from future writes.
3878 * Reading from NMI is a oneshot deal.
3879 */
3880 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3881 return true;
3882
3883 /* Continue without locking, but disable the ring buffer */
3884 atomic_inc(&cpu_buffer->record_disabled);
3885 return false;
3886 }
3887
3888 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)3889 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3890 {
3891 if (likely(locked))
3892 raw_spin_unlock(&cpu_buffer->reader_lock);
3893 return;
3894 }
3895
3896 /**
3897 * ring_buffer_peek - peek at the next event to be read
3898 * @buffer: The ring buffer to read
3899 * @cpu: The cpu to peak at
3900 * @ts: The timestamp counter of this event.
3901 * @lost_events: a variable to store if events were lost (may be NULL)
3902 *
3903 * This will return the event that will be read next, but does
3904 * not consume the data.
3905 */
3906 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3907 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3908 unsigned long *lost_events)
3909 {
3910 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3911 struct ring_buffer_event *event;
3912 unsigned long flags;
3913 bool dolock;
3914
3915 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3916 return NULL;
3917
3918 again:
3919 local_irq_save(flags);
3920 dolock = rb_reader_lock(cpu_buffer);
3921 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3922 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3923 rb_advance_reader(cpu_buffer);
3924 rb_reader_unlock(cpu_buffer, dolock);
3925 local_irq_restore(flags);
3926
3927 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3928 goto again;
3929
3930 return event;
3931 }
3932
3933 /**
3934 * ring_buffer_iter_peek - peek at the next event to be read
3935 * @iter: The ring buffer iterator
3936 * @ts: The timestamp counter of this event.
3937 *
3938 * This will return the event that will be read next, but does
3939 * not increment the iterator.
3940 */
3941 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3942 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3943 {
3944 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3945 struct ring_buffer_event *event;
3946 unsigned long flags;
3947
3948 again:
3949 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3950 event = rb_iter_peek(iter, ts);
3951 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3952
3953 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3954 goto again;
3955
3956 return event;
3957 }
3958
3959 /**
3960 * ring_buffer_consume - return an event and consume it
3961 * @buffer: The ring buffer to get the next event from
3962 * @cpu: the cpu to read the buffer from
3963 * @ts: a variable to store the timestamp (may be NULL)
3964 * @lost_events: a variable to store if events were lost (may be NULL)
3965 *
3966 * Returns the next event in the ring buffer, and that event is consumed.
3967 * Meaning, that sequential reads will keep returning a different event,
3968 * and eventually empty the ring buffer if the producer is slower.
3969 */
3970 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3971 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3972 unsigned long *lost_events)
3973 {
3974 struct ring_buffer_per_cpu *cpu_buffer;
3975 struct ring_buffer_event *event = NULL;
3976 unsigned long flags;
3977 bool dolock;
3978
3979 again:
3980 /* might be called in atomic */
3981 preempt_disable();
3982
3983 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3984 goto out;
3985
3986 cpu_buffer = buffer->buffers[cpu];
3987 local_irq_save(flags);
3988 dolock = rb_reader_lock(cpu_buffer);
3989
3990 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3991 if (event) {
3992 cpu_buffer->lost_events = 0;
3993 rb_advance_reader(cpu_buffer);
3994 }
3995
3996 rb_reader_unlock(cpu_buffer, dolock);
3997 local_irq_restore(flags);
3998
3999 out:
4000 preempt_enable();
4001
4002 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4003 goto again;
4004
4005 return event;
4006 }
4007 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4008
4009 /**
4010 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4011 * @buffer: The ring buffer to read from
4012 * @cpu: The cpu buffer to iterate over
4013 * @flags: gfp flags to use for memory allocation
4014 *
4015 * This performs the initial preparations necessary to iterate
4016 * through the buffer. Memory is allocated, buffer recording
4017 * is disabled, and the iterator pointer is returned to the caller.
4018 *
4019 * Disabling buffer recordng prevents the reading from being
4020 * corrupted. This is not a consuming read, so a producer is not
4021 * expected.
4022 *
4023 * After a sequence of ring_buffer_read_prepare calls, the user is
4024 * expected to make at least one call to ring_buffer_read_prepare_sync.
4025 * Afterwards, ring_buffer_read_start is invoked to get things going
4026 * for real.
4027 *
4028 * This overall must be paired with ring_buffer_read_finish.
4029 */
4030 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu,gfp_t flags)4031 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4032 {
4033 struct ring_buffer_per_cpu *cpu_buffer;
4034 struct ring_buffer_iter *iter;
4035
4036 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4037 return NULL;
4038
4039 iter = kmalloc(sizeof(*iter), flags);
4040 if (!iter)
4041 return NULL;
4042
4043 cpu_buffer = buffer->buffers[cpu];
4044
4045 iter->cpu_buffer = cpu_buffer;
4046
4047 atomic_inc(&buffer->resize_disabled);
4048 atomic_inc(&cpu_buffer->record_disabled);
4049
4050 return iter;
4051 }
4052 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4053
4054 /**
4055 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4056 *
4057 * All previously invoked ring_buffer_read_prepare calls to prepare
4058 * iterators will be synchronized. Afterwards, read_buffer_read_start
4059 * calls on those iterators are allowed.
4060 */
4061 void
ring_buffer_read_prepare_sync(void)4062 ring_buffer_read_prepare_sync(void)
4063 {
4064 synchronize_sched();
4065 }
4066 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4067
4068 /**
4069 * ring_buffer_read_start - start a non consuming read of the buffer
4070 * @iter: The iterator returned by ring_buffer_read_prepare
4071 *
4072 * This finalizes the startup of an iteration through the buffer.
4073 * The iterator comes from a call to ring_buffer_read_prepare and
4074 * an intervening ring_buffer_read_prepare_sync must have been
4075 * performed.
4076 *
4077 * Must be paired with ring_buffer_read_finish.
4078 */
4079 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4080 ring_buffer_read_start(struct ring_buffer_iter *iter)
4081 {
4082 struct ring_buffer_per_cpu *cpu_buffer;
4083 unsigned long flags;
4084
4085 if (!iter)
4086 return;
4087
4088 cpu_buffer = iter->cpu_buffer;
4089
4090 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4091 arch_spin_lock(&cpu_buffer->lock);
4092 rb_iter_reset(iter);
4093 arch_spin_unlock(&cpu_buffer->lock);
4094 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095 }
4096 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4097
4098 /**
4099 * ring_buffer_read_finish - finish reading the iterator of the buffer
4100 * @iter: The iterator retrieved by ring_buffer_start
4101 *
4102 * This re-enables the recording to the buffer, and frees the
4103 * iterator.
4104 */
4105 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4106 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4107 {
4108 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4109 unsigned long flags;
4110
4111 /*
4112 * Ring buffer is disabled from recording, here's a good place
4113 * to check the integrity of the ring buffer.
4114 * Must prevent readers from trying to read, as the check
4115 * clears the HEAD page and readers require it.
4116 */
4117 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4118 rb_check_pages(cpu_buffer);
4119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120
4121 atomic_dec(&cpu_buffer->record_disabled);
4122 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4123 kfree(iter);
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4126
4127 /**
4128 * ring_buffer_read - read the next item in the ring buffer by the iterator
4129 * @iter: The ring buffer iterator
4130 * @ts: The time stamp of the event read.
4131 *
4132 * This reads the next event in the ring buffer and increments the iterator.
4133 */
4134 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4135 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4136 {
4137 struct ring_buffer_event *event;
4138 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4139 unsigned long flags;
4140
4141 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4142 again:
4143 event = rb_iter_peek(iter, ts);
4144 if (!event)
4145 goto out;
4146
4147 if (event->type_len == RINGBUF_TYPE_PADDING)
4148 goto again;
4149
4150 rb_advance_iter(iter);
4151 out:
4152 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4153
4154 return event;
4155 }
4156 EXPORT_SYMBOL_GPL(ring_buffer_read);
4157
4158 /**
4159 * ring_buffer_size - return the size of the ring buffer (in bytes)
4160 * @buffer: The ring buffer.
4161 */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4162 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4163 {
4164 /*
4165 * Earlier, this method returned
4166 * BUF_PAGE_SIZE * buffer->nr_pages
4167 * Since the nr_pages field is now removed, we have converted this to
4168 * return the per cpu buffer value.
4169 */
4170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171 return 0;
4172
4173 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4174 }
4175 EXPORT_SYMBOL_GPL(ring_buffer_size);
4176
4177 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4178 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4179 {
4180 rb_head_page_deactivate(cpu_buffer);
4181
4182 cpu_buffer->head_page
4183 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4184 local_set(&cpu_buffer->head_page->write, 0);
4185 local_set(&cpu_buffer->head_page->entries, 0);
4186 local_set(&cpu_buffer->head_page->page->commit, 0);
4187
4188 cpu_buffer->head_page->read = 0;
4189
4190 cpu_buffer->tail_page = cpu_buffer->head_page;
4191 cpu_buffer->commit_page = cpu_buffer->head_page;
4192
4193 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4194 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4195 local_set(&cpu_buffer->reader_page->write, 0);
4196 local_set(&cpu_buffer->reader_page->entries, 0);
4197 local_set(&cpu_buffer->reader_page->page->commit, 0);
4198 cpu_buffer->reader_page->read = 0;
4199
4200 local_set(&cpu_buffer->entries_bytes, 0);
4201 local_set(&cpu_buffer->overrun, 0);
4202 local_set(&cpu_buffer->commit_overrun, 0);
4203 local_set(&cpu_buffer->dropped_events, 0);
4204 local_set(&cpu_buffer->entries, 0);
4205 local_set(&cpu_buffer->committing, 0);
4206 local_set(&cpu_buffer->commits, 0);
4207 cpu_buffer->read = 0;
4208 cpu_buffer->read_bytes = 0;
4209
4210 cpu_buffer->write_stamp = 0;
4211 cpu_buffer->read_stamp = 0;
4212
4213 cpu_buffer->lost_events = 0;
4214 cpu_buffer->last_overrun = 0;
4215
4216 rb_head_page_activate(cpu_buffer);
4217 }
4218
4219 /**
4220 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4221 * @buffer: The ring buffer to reset a per cpu buffer of
4222 * @cpu: The CPU buffer to be reset
4223 */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4224 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4225 {
4226 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4227 unsigned long flags;
4228
4229 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4230 return;
4231
4232 atomic_inc(&buffer->resize_disabled);
4233 atomic_inc(&cpu_buffer->record_disabled);
4234
4235 /* Make sure all commits have finished */
4236 synchronize_sched();
4237
4238 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4239
4240 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4241 goto out;
4242
4243 arch_spin_lock(&cpu_buffer->lock);
4244
4245 rb_reset_cpu(cpu_buffer);
4246
4247 arch_spin_unlock(&cpu_buffer->lock);
4248
4249 out:
4250 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4251
4252 atomic_dec(&cpu_buffer->record_disabled);
4253 atomic_dec(&buffer->resize_disabled);
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4256
4257 /**
4258 * ring_buffer_reset - reset a ring buffer
4259 * @buffer: The ring buffer to reset all cpu buffers
4260 */
ring_buffer_reset(struct ring_buffer * buffer)4261 void ring_buffer_reset(struct ring_buffer *buffer)
4262 {
4263 int cpu;
4264
4265 for_each_buffer_cpu(buffer, cpu)
4266 ring_buffer_reset_cpu(buffer, cpu);
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4269
4270 /**
4271 * rind_buffer_empty - is the ring buffer empty?
4272 * @buffer: The ring buffer to test
4273 */
ring_buffer_empty(struct ring_buffer * buffer)4274 bool ring_buffer_empty(struct ring_buffer *buffer)
4275 {
4276 struct ring_buffer_per_cpu *cpu_buffer;
4277 unsigned long flags;
4278 bool dolock;
4279 int cpu;
4280 int ret;
4281
4282 /* yes this is racy, but if you don't like the race, lock the buffer */
4283 for_each_buffer_cpu(buffer, cpu) {
4284 cpu_buffer = buffer->buffers[cpu];
4285 local_irq_save(flags);
4286 dolock = rb_reader_lock(cpu_buffer);
4287 ret = rb_per_cpu_empty(cpu_buffer);
4288 rb_reader_unlock(cpu_buffer, dolock);
4289 local_irq_restore(flags);
4290
4291 if (!ret)
4292 return false;
4293 }
4294
4295 return true;
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4298
4299 /**
4300 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4301 * @buffer: The ring buffer
4302 * @cpu: The CPU buffer to test
4303 */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4304 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4305 {
4306 struct ring_buffer_per_cpu *cpu_buffer;
4307 unsigned long flags;
4308 bool dolock;
4309 int ret;
4310
4311 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4312 return true;
4313
4314 cpu_buffer = buffer->buffers[cpu];
4315 local_irq_save(flags);
4316 dolock = rb_reader_lock(cpu_buffer);
4317 ret = rb_per_cpu_empty(cpu_buffer);
4318 rb_reader_unlock(cpu_buffer, dolock);
4319 local_irq_restore(flags);
4320
4321 return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4324
4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4326 /**
4327 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4328 * @buffer_a: One buffer to swap with
4329 * @buffer_b: The other buffer to swap with
4330 *
4331 * This function is useful for tracers that want to take a "snapshot"
4332 * of a CPU buffer and has another back up buffer lying around.
4333 * it is expected that the tracer handles the cpu buffer not being
4334 * used at the moment.
4335 */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4336 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4337 struct ring_buffer *buffer_b, int cpu)
4338 {
4339 struct ring_buffer_per_cpu *cpu_buffer_a;
4340 struct ring_buffer_per_cpu *cpu_buffer_b;
4341 int ret = -EINVAL;
4342
4343 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4344 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4345 goto out;
4346
4347 cpu_buffer_a = buffer_a->buffers[cpu];
4348 cpu_buffer_b = buffer_b->buffers[cpu];
4349
4350 /* At least make sure the two buffers are somewhat the same */
4351 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4352 goto out;
4353
4354 ret = -EAGAIN;
4355
4356 if (atomic_read(&buffer_a->record_disabled))
4357 goto out;
4358
4359 if (atomic_read(&buffer_b->record_disabled))
4360 goto out;
4361
4362 if (atomic_read(&cpu_buffer_a->record_disabled))
4363 goto out;
4364
4365 if (atomic_read(&cpu_buffer_b->record_disabled))
4366 goto out;
4367
4368 /*
4369 * We can't do a synchronize_sched here because this
4370 * function can be called in atomic context.
4371 * Normally this will be called from the same CPU as cpu.
4372 * If not it's up to the caller to protect this.
4373 */
4374 atomic_inc(&cpu_buffer_a->record_disabled);
4375 atomic_inc(&cpu_buffer_b->record_disabled);
4376
4377 ret = -EBUSY;
4378 if (local_read(&cpu_buffer_a->committing))
4379 goto out_dec;
4380 if (local_read(&cpu_buffer_b->committing))
4381 goto out_dec;
4382
4383 buffer_a->buffers[cpu] = cpu_buffer_b;
4384 buffer_b->buffers[cpu] = cpu_buffer_a;
4385
4386 cpu_buffer_b->buffer = buffer_a;
4387 cpu_buffer_a->buffer = buffer_b;
4388
4389 ret = 0;
4390
4391 out_dec:
4392 atomic_dec(&cpu_buffer_a->record_disabled);
4393 atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395 return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399
4400 /**
4401 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402 * @buffer: the buffer to allocate for.
4403 * @cpu: the cpu buffer to allocate.
4404 *
4405 * This function is used in conjunction with ring_buffer_read_page.
4406 * When reading a full page from the ring buffer, these functions
4407 * can be used to speed up the process. The calling function should
4408 * allocate a few pages first with this function. Then when it
4409 * needs to get pages from the ring buffer, it passes the result
4410 * of this function into ring_buffer_read_page, which will swap
4411 * the page that was allocated, with the read page of the buffer.
4412 *
4413 * Returns:
4414 * The page allocated, or ERR_PTR
4415 */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418 struct ring_buffer_per_cpu *cpu_buffer;
4419 struct buffer_data_page *bpage = NULL;
4420 unsigned long flags;
4421 struct page *page;
4422
4423 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4424 return ERR_PTR(-ENODEV);
4425
4426 cpu_buffer = buffer->buffers[cpu];
4427 local_irq_save(flags);
4428 arch_spin_lock(&cpu_buffer->lock);
4429
4430 if (cpu_buffer->free_page) {
4431 bpage = cpu_buffer->free_page;
4432 cpu_buffer->free_page = NULL;
4433 }
4434
4435 arch_spin_unlock(&cpu_buffer->lock);
4436 local_irq_restore(flags);
4437
4438 if (bpage)
4439 goto out;
4440
4441 page = alloc_pages_node(cpu_to_node(cpu),
4442 GFP_KERNEL | __GFP_NORETRY, 0);
4443 if (!page)
4444 return ERR_PTR(-ENOMEM);
4445
4446 bpage = page_address(page);
4447
4448 out:
4449 rb_init_page(bpage);
4450
4451 return bpage;
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4454
4455 /**
4456 * ring_buffer_free_read_page - free an allocated read page
4457 * @buffer: the buffer the page was allocate for
4458 * @cpu: the cpu buffer the page came from
4459 * @data: the page to free
4460 *
4461 * Free a page allocated from ring_buffer_alloc_read_page.
4462 */
ring_buffer_free_read_page(struct ring_buffer * buffer,int cpu,void * data)4463 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4464 {
4465 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4466 struct buffer_data_page *bpage = data;
4467 struct page *page = virt_to_page(bpage);
4468 unsigned long flags;
4469
4470 /* If the page is still in use someplace else, we can't reuse it */
4471 if (page_ref_count(page) > 1)
4472 goto out;
4473
4474 local_irq_save(flags);
4475 arch_spin_lock(&cpu_buffer->lock);
4476
4477 if (!cpu_buffer->free_page) {
4478 cpu_buffer->free_page = bpage;
4479 bpage = NULL;
4480 }
4481
4482 arch_spin_unlock(&cpu_buffer->lock);
4483 local_irq_restore(flags);
4484
4485 out:
4486 free_page((unsigned long)bpage);
4487 }
4488 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4489
4490 /**
4491 * ring_buffer_read_page - extract a page from the ring buffer
4492 * @buffer: buffer to extract from
4493 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4494 * @len: amount to extract
4495 * @cpu: the cpu of the buffer to extract
4496 * @full: should the extraction only happen when the page is full.
4497 *
4498 * This function will pull out a page from the ring buffer and consume it.
4499 * @data_page must be the address of the variable that was returned
4500 * from ring_buffer_alloc_read_page. This is because the page might be used
4501 * to swap with a page in the ring buffer.
4502 *
4503 * for example:
4504 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4505 * if (IS_ERR(rpage))
4506 * return PTR_ERR(rpage);
4507 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4508 * if (ret >= 0)
4509 * process_page(rpage, ret);
4510 *
4511 * When @full is set, the function will not return true unless
4512 * the writer is off the reader page.
4513 *
4514 * Note: it is up to the calling functions to handle sleeps and wakeups.
4515 * The ring buffer can be used anywhere in the kernel and can not
4516 * blindly call wake_up. The layer that uses the ring buffer must be
4517 * responsible for that.
4518 *
4519 * Returns:
4520 * >=0 if data has been transferred, returns the offset of consumed data.
4521 * <0 if no data has been transferred.
4522 */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4523 int ring_buffer_read_page(struct ring_buffer *buffer,
4524 void **data_page, size_t len, int cpu, int full)
4525 {
4526 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4527 struct ring_buffer_event *event;
4528 struct buffer_data_page *bpage;
4529 struct buffer_page *reader;
4530 unsigned long missed_events;
4531 unsigned long flags;
4532 unsigned int commit;
4533 unsigned int read;
4534 u64 save_timestamp;
4535 int ret = -1;
4536
4537 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4538 goto out;
4539
4540 /*
4541 * If len is not big enough to hold the page header, then
4542 * we can not copy anything.
4543 */
4544 if (len <= BUF_PAGE_HDR_SIZE)
4545 goto out;
4546
4547 len -= BUF_PAGE_HDR_SIZE;
4548
4549 if (!data_page)
4550 goto out;
4551
4552 bpage = *data_page;
4553 if (!bpage)
4554 goto out;
4555
4556 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4557
4558 reader = rb_get_reader_page(cpu_buffer);
4559 if (!reader)
4560 goto out_unlock;
4561
4562 event = rb_reader_event(cpu_buffer);
4563
4564 read = reader->read;
4565 commit = rb_page_commit(reader);
4566
4567 /* Check if any events were dropped */
4568 missed_events = cpu_buffer->lost_events;
4569
4570 /*
4571 * If this page has been partially read or
4572 * if len is not big enough to read the rest of the page or
4573 * a writer is still on the page, then
4574 * we must copy the data from the page to the buffer.
4575 * Otherwise, we can simply swap the page with the one passed in.
4576 */
4577 if (read || (len < (commit - read)) ||
4578 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4579 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4580 unsigned int rpos = read;
4581 unsigned int pos = 0;
4582 unsigned int size;
4583
4584 if (full)
4585 goto out_unlock;
4586
4587 if (len > (commit - read))
4588 len = (commit - read);
4589
4590 /* Always keep the time extend and data together */
4591 size = rb_event_ts_length(event);
4592
4593 if (len < size)
4594 goto out_unlock;
4595
4596 /* save the current timestamp, since the user will need it */
4597 save_timestamp = cpu_buffer->read_stamp;
4598
4599 /* Need to copy one event at a time */
4600 do {
4601 /* We need the size of one event, because
4602 * rb_advance_reader only advances by one event,
4603 * whereas rb_event_ts_length may include the size of
4604 * one or two events.
4605 * We have already ensured there's enough space if this
4606 * is a time extend. */
4607 size = rb_event_length(event);
4608 memcpy(bpage->data + pos, rpage->data + rpos, size);
4609
4610 len -= size;
4611
4612 rb_advance_reader(cpu_buffer);
4613 rpos = reader->read;
4614 pos += size;
4615
4616 if (rpos >= commit)
4617 break;
4618
4619 event = rb_reader_event(cpu_buffer);
4620 /* Always keep the time extend and data together */
4621 size = rb_event_ts_length(event);
4622 } while (len >= size);
4623
4624 /* update bpage */
4625 local_set(&bpage->commit, pos);
4626 bpage->time_stamp = save_timestamp;
4627
4628 /* we copied everything to the beginning */
4629 read = 0;
4630 } else {
4631 /* update the entry counter */
4632 cpu_buffer->read += rb_page_entries(reader);
4633 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4634
4635 /* swap the pages */
4636 rb_init_page(bpage);
4637 bpage = reader->page;
4638 reader->page = *data_page;
4639 local_set(&reader->write, 0);
4640 local_set(&reader->entries, 0);
4641 reader->read = 0;
4642 *data_page = bpage;
4643
4644 /*
4645 * Use the real_end for the data size,
4646 * This gives us a chance to store the lost events
4647 * on the page.
4648 */
4649 if (reader->real_end)
4650 local_set(&bpage->commit, reader->real_end);
4651 }
4652 ret = read;
4653
4654 cpu_buffer->lost_events = 0;
4655
4656 commit = local_read(&bpage->commit);
4657 /*
4658 * Set a flag in the commit field if we lost events
4659 */
4660 if (missed_events) {
4661 /* If there is room at the end of the page to save the
4662 * missed events, then record it there.
4663 */
4664 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4665 memcpy(&bpage->data[commit], &missed_events,
4666 sizeof(missed_events));
4667 local_add(RB_MISSED_STORED, &bpage->commit);
4668 commit += sizeof(missed_events);
4669 }
4670 local_add(RB_MISSED_EVENTS, &bpage->commit);
4671 }
4672
4673 /*
4674 * This page may be off to user land. Zero it out here.
4675 */
4676 if (commit < BUF_PAGE_SIZE)
4677 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4678
4679 out_unlock:
4680 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4681
4682 out:
4683 return ret;
4684 }
4685 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4686
4687 /*
4688 * We only allocate new buffers, never free them if the CPU goes down.
4689 * If we were to free the buffer, then the user would lose any trace that was in
4690 * the buffer.
4691 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)4692 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4693 {
4694 struct ring_buffer *buffer;
4695 long nr_pages_same;
4696 int cpu_i;
4697 unsigned long nr_pages;
4698
4699 buffer = container_of(node, struct ring_buffer, node);
4700 if (cpumask_test_cpu(cpu, buffer->cpumask))
4701 return 0;
4702
4703 nr_pages = 0;
4704 nr_pages_same = 1;
4705 /* check if all cpu sizes are same */
4706 for_each_buffer_cpu(buffer, cpu_i) {
4707 /* fill in the size from first enabled cpu */
4708 if (nr_pages == 0)
4709 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4710 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4711 nr_pages_same = 0;
4712 break;
4713 }
4714 }
4715 /* allocate minimum pages, user can later expand it */
4716 if (!nr_pages_same)
4717 nr_pages = 2;
4718 buffer->buffers[cpu] =
4719 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4720 if (!buffer->buffers[cpu]) {
4721 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4722 cpu);
4723 return -ENOMEM;
4724 }
4725 smp_wmb();
4726 cpumask_set_cpu(cpu, buffer->cpumask);
4727 return 0;
4728 }
4729
4730 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4731 /*
4732 * This is a basic integrity check of the ring buffer.
4733 * Late in the boot cycle this test will run when configured in.
4734 * It will kick off a thread per CPU that will go into a loop
4735 * writing to the per cpu ring buffer various sizes of data.
4736 * Some of the data will be large items, some small.
4737 *
4738 * Another thread is created that goes into a spin, sending out
4739 * IPIs to the other CPUs to also write into the ring buffer.
4740 * this is to test the nesting ability of the buffer.
4741 *
4742 * Basic stats are recorded and reported. If something in the
4743 * ring buffer should happen that's not expected, a big warning
4744 * is displayed and all ring buffers are disabled.
4745 */
4746 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4747
4748 struct rb_test_data {
4749 struct ring_buffer *buffer;
4750 unsigned long events;
4751 unsigned long bytes_written;
4752 unsigned long bytes_alloc;
4753 unsigned long bytes_dropped;
4754 unsigned long events_nested;
4755 unsigned long bytes_written_nested;
4756 unsigned long bytes_alloc_nested;
4757 unsigned long bytes_dropped_nested;
4758 int min_size_nested;
4759 int max_size_nested;
4760 int max_size;
4761 int min_size;
4762 int cpu;
4763 int cnt;
4764 };
4765
4766 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4767
4768 /* 1 meg per cpu */
4769 #define RB_TEST_BUFFER_SIZE 1048576
4770
4771 static char rb_string[] __initdata =
4772 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4773 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4774 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4775
4776 static bool rb_test_started __initdata;
4777
4778 struct rb_item {
4779 int size;
4780 char str[];
4781 };
4782
rb_write_something(struct rb_test_data * data,bool nested)4783 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4784 {
4785 struct ring_buffer_event *event;
4786 struct rb_item *item;
4787 bool started;
4788 int event_len;
4789 int size;
4790 int len;
4791 int cnt;
4792
4793 /* Have nested writes different that what is written */
4794 cnt = data->cnt + (nested ? 27 : 0);
4795
4796 /* Multiply cnt by ~e, to make some unique increment */
4797 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4798
4799 len = size + sizeof(struct rb_item);
4800
4801 started = rb_test_started;
4802 /* read rb_test_started before checking buffer enabled */
4803 smp_rmb();
4804
4805 event = ring_buffer_lock_reserve(data->buffer, len);
4806 if (!event) {
4807 /* Ignore dropped events before test starts. */
4808 if (started) {
4809 if (nested)
4810 data->bytes_dropped += len;
4811 else
4812 data->bytes_dropped_nested += len;
4813 }
4814 return len;
4815 }
4816
4817 event_len = ring_buffer_event_length(event);
4818
4819 if (RB_WARN_ON(data->buffer, event_len < len))
4820 goto out;
4821
4822 item = ring_buffer_event_data(event);
4823 item->size = size;
4824 memcpy(item->str, rb_string, size);
4825
4826 if (nested) {
4827 data->bytes_alloc_nested += event_len;
4828 data->bytes_written_nested += len;
4829 data->events_nested++;
4830 if (!data->min_size_nested || len < data->min_size_nested)
4831 data->min_size_nested = len;
4832 if (len > data->max_size_nested)
4833 data->max_size_nested = len;
4834 } else {
4835 data->bytes_alloc += event_len;
4836 data->bytes_written += len;
4837 data->events++;
4838 if (!data->min_size || len < data->min_size)
4839 data->max_size = len;
4840 if (len > data->max_size)
4841 data->max_size = len;
4842 }
4843
4844 out:
4845 ring_buffer_unlock_commit(data->buffer, event);
4846
4847 return 0;
4848 }
4849
rb_test(void * arg)4850 static __init int rb_test(void *arg)
4851 {
4852 struct rb_test_data *data = arg;
4853
4854 while (!kthread_should_stop()) {
4855 rb_write_something(data, false);
4856 data->cnt++;
4857
4858 set_current_state(TASK_INTERRUPTIBLE);
4859 /* Now sleep between a min of 100-300us and a max of 1ms */
4860 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4861 }
4862
4863 return 0;
4864 }
4865
rb_ipi(void * ignore)4866 static __init void rb_ipi(void *ignore)
4867 {
4868 struct rb_test_data *data;
4869 int cpu = smp_processor_id();
4870
4871 data = &rb_data[cpu];
4872 rb_write_something(data, true);
4873 }
4874
rb_hammer_test(void * arg)4875 static __init int rb_hammer_test(void *arg)
4876 {
4877 while (!kthread_should_stop()) {
4878
4879 /* Send an IPI to all cpus to write data! */
4880 smp_call_function(rb_ipi, NULL, 1);
4881 /* No sleep, but for non preempt, let others run */
4882 schedule();
4883 }
4884
4885 return 0;
4886 }
4887
test_ringbuffer(void)4888 static __init int test_ringbuffer(void)
4889 {
4890 struct task_struct *rb_hammer;
4891 struct ring_buffer *buffer;
4892 int cpu;
4893 int ret = 0;
4894
4895 pr_info("Running ring buffer tests...\n");
4896
4897 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4898 if (WARN_ON(!buffer))
4899 return 0;
4900
4901 /* Disable buffer so that threads can't write to it yet */
4902 ring_buffer_record_off(buffer);
4903
4904 for_each_online_cpu(cpu) {
4905 rb_data[cpu].buffer = buffer;
4906 rb_data[cpu].cpu = cpu;
4907 rb_data[cpu].cnt = cpu;
4908 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4909 "rbtester/%d", cpu);
4910 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4911 pr_cont("FAILED\n");
4912 ret = PTR_ERR(rb_threads[cpu]);
4913 goto out_free;
4914 }
4915
4916 kthread_bind(rb_threads[cpu], cpu);
4917 wake_up_process(rb_threads[cpu]);
4918 }
4919
4920 /* Now create the rb hammer! */
4921 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4922 if (WARN_ON(IS_ERR(rb_hammer))) {
4923 pr_cont("FAILED\n");
4924 ret = PTR_ERR(rb_hammer);
4925 goto out_free;
4926 }
4927
4928 ring_buffer_record_on(buffer);
4929 /*
4930 * Show buffer is enabled before setting rb_test_started.
4931 * Yes there's a small race window where events could be
4932 * dropped and the thread wont catch it. But when a ring
4933 * buffer gets enabled, there will always be some kind of
4934 * delay before other CPUs see it. Thus, we don't care about
4935 * those dropped events. We care about events dropped after
4936 * the threads see that the buffer is active.
4937 */
4938 smp_wmb();
4939 rb_test_started = true;
4940
4941 set_current_state(TASK_INTERRUPTIBLE);
4942 /* Just run for 10 seconds */;
4943 schedule_timeout(10 * HZ);
4944
4945 kthread_stop(rb_hammer);
4946
4947 out_free:
4948 for_each_online_cpu(cpu) {
4949 if (!rb_threads[cpu])
4950 break;
4951 kthread_stop(rb_threads[cpu]);
4952 }
4953 if (ret) {
4954 ring_buffer_free(buffer);
4955 return ret;
4956 }
4957
4958 /* Report! */
4959 pr_info("finished\n");
4960 for_each_online_cpu(cpu) {
4961 struct ring_buffer_event *event;
4962 struct rb_test_data *data = &rb_data[cpu];
4963 struct rb_item *item;
4964 unsigned long total_events;
4965 unsigned long total_dropped;
4966 unsigned long total_written;
4967 unsigned long total_alloc;
4968 unsigned long total_read = 0;
4969 unsigned long total_size = 0;
4970 unsigned long total_len = 0;
4971 unsigned long total_lost = 0;
4972 unsigned long lost;
4973 int big_event_size;
4974 int small_event_size;
4975
4976 ret = -1;
4977
4978 total_events = data->events + data->events_nested;
4979 total_written = data->bytes_written + data->bytes_written_nested;
4980 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4981 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4982
4983 big_event_size = data->max_size + data->max_size_nested;
4984 small_event_size = data->min_size + data->min_size_nested;
4985
4986 pr_info("CPU %d:\n", cpu);
4987 pr_info(" events: %ld\n", total_events);
4988 pr_info(" dropped bytes: %ld\n", total_dropped);
4989 pr_info(" alloced bytes: %ld\n", total_alloc);
4990 pr_info(" written bytes: %ld\n", total_written);
4991 pr_info(" biggest event: %d\n", big_event_size);
4992 pr_info(" smallest event: %d\n", small_event_size);
4993
4994 if (RB_WARN_ON(buffer, total_dropped))
4995 break;
4996
4997 ret = 0;
4998
4999 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5000 total_lost += lost;
5001 item = ring_buffer_event_data(event);
5002 total_len += ring_buffer_event_length(event);
5003 total_size += item->size + sizeof(struct rb_item);
5004 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5005 pr_info("FAILED!\n");
5006 pr_info("buffer had: %.*s\n", item->size, item->str);
5007 pr_info("expected: %.*s\n", item->size, rb_string);
5008 RB_WARN_ON(buffer, 1);
5009 ret = -1;
5010 break;
5011 }
5012 total_read++;
5013 }
5014 if (ret)
5015 break;
5016
5017 ret = -1;
5018
5019 pr_info(" read events: %ld\n", total_read);
5020 pr_info(" lost events: %ld\n", total_lost);
5021 pr_info(" total events: %ld\n", total_lost + total_read);
5022 pr_info(" recorded len bytes: %ld\n", total_len);
5023 pr_info(" recorded size bytes: %ld\n", total_size);
5024 if (total_lost)
5025 pr_info(" With dropped events, record len and size may not match\n"
5026 " alloced and written from above\n");
5027 if (!total_lost) {
5028 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5029 total_size != total_written))
5030 break;
5031 }
5032 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5033 break;
5034
5035 ret = 0;
5036 }
5037 if (!ret)
5038 pr_info("Ring buffer PASSED!\n");
5039
5040 ring_buffer_free(buffer);
5041 return 0;
5042 }
5043
5044 late_initcall(test_ringbuffer);
5045 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5046