• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33 
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37 
38 #include "smpboot.h"
39 
40 /**
41  * cpuhp_cpu_state - Per cpu hotplug state storage
42  * @state:	The current cpu state
43  * @target:	The target state
44  * @thread:	Pointer to the hotplug thread
45  * @should_run:	Thread should execute
46  * @rollback:	Perform a rollback
47  * @single:	Single callback invocation
48  * @bringup:	Single callback bringup or teardown selector
49  * @cb_state:	The state for a single callback (install/uninstall)
50  * @result:	Result of the operation
51  * @done_up:	Signal completion to the issuer of the task for cpu-up
52  * @done_down:	Signal completion to the issuer of the task for cpu-down
53  */
54 struct cpuhp_cpu_state {
55 	enum cpuhp_state	state;
56 	enum cpuhp_state	target;
57 	enum cpuhp_state	fail;
58 #ifdef CONFIG_SMP
59 	struct task_struct	*thread;
60 	bool			should_run;
61 	bool			rollback;
62 	bool			single;
63 	bool			bringup;
64 	bool			booted_once;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83 
84 
cpuhp_lock_acquire(bool bringup)85 static void inline cpuhp_lock_acquire(bool bringup)
86 {
87 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89 
cpuhp_lock_release(bool bringup)90 static void inline cpuhp_lock_release(bool bringup)
91 {
92 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95 
cpuhp_lock_acquire(bool bringup)96 static void inline cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)97 static void inline cpuhp_lock_release(bool bringup) { }
98 
99 #endif
100 
101 /**
102  * cpuhp_step - Hotplug state machine step
103  * @name:	Name of the step
104  * @startup:	Startup function of the step
105  * @teardown:	Teardown function of the step
106  * @skip_onerr:	Do not invoke the functions on error rollback
107  *		Will go away once the notifiers	are gone
108  * @cant_stop:	Bringup/teardown can't be stopped at this step
109  */
110 struct cpuhp_step {
111 	const char		*name;
112 	union {
113 		int		(*single)(unsigned int cpu);
114 		int		(*multi)(unsigned int cpu,
115 					 struct hlist_node *node);
116 	} startup;
117 	union {
118 		int		(*single)(unsigned int cpu);
119 		int		(*multi)(unsigned int cpu,
120 					 struct hlist_node *node);
121 	} teardown;
122 	struct hlist_head	list;
123 	bool			skip_onerr;
124 	bool			cant_stop;
125 	bool			multi_instance;
126 };
127 
128 static DEFINE_MUTEX(cpuhp_state_mutex);
129 static struct cpuhp_step cpuhp_bp_states[];
130 static struct cpuhp_step cpuhp_ap_states[];
131 
cpuhp_is_ap_state(enum cpuhp_state state)132 static bool cpuhp_is_ap_state(enum cpuhp_state state)
133 {
134 	/*
135 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
136 	 * purposes as that state is handled explicitly in cpu_down.
137 	 */
138 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
139 }
140 
cpuhp_get_step(enum cpuhp_state state)141 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
142 {
143 	struct cpuhp_step *sp;
144 
145 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
146 	return sp + state;
147 }
148 
149 /**
150  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
151  * @cpu:	The cpu for which the callback should be invoked
152  * @state:	The state to do callbacks for
153  * @bringup:	True if the bringup callback should be invoked
154  * @node:	For multi-instance, do a single entry callback for install/remove
155  * @lastp:	For multi-instance rollback, remember how far we got
156  *
157  * Called from cpu hotplug and from the state register machinery.
158  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)159 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
160 				 bool bringup, struct hlist_node *node,
161 				 struct hlist_node **lastp)
162 {
163 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
164 	struct cpuhp_step *step = cpuhp_get_step(state);
165 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
166 	int (*cb)(unsigned int cpu);
167 	int ret, cnt;
168 
169 	if (st->fail == state) {
170 		st->fail = CPUHP_INVALID;
171 
172 		if (!(bringup ? step->startup.single : step->teardown.single))
173 			return 0;
174 
175 		return -EAGAIN;
176 	}
177 
178 	if (!step->multi_instance) {
179 		WARN_ON_ONCE(lastp && *lastp);
180 		cb = bringup ? step->startup.single : step->teardown.single;
181 		if (!cb)
182 			return 0;
183 		trace_cpuhp_enter(cpu, st->target, state, cb);
184 		ret = cb(cpu);
185 		trace_cpuhp_exit(cpu, st->state, state, ret);
186 		return ret;
187 	}
188 	cbm = bringup ? step->startup.multi : step->teardown.multi;
189 	if (!cbm)
190 		return 0;
191 
192 	/* Single invocation for instance add/remove */
193 	if (node) {
194 		WARN_ON_ONCE(lastp && *lastp);
195 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 		ret = cbm(cpu, node);
197 		trace_cpuhp_exit(cpu, st->state, state, ret);
198 		return ret;
199 	}
200 
201 	/* State transition. Invoke on all instances */
202 	cnt = 0;
203 	hlist_for_each(node, &step->list) {
204 		if (lastp && node == *lastp)
205 			break;
206 
207 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
208 		ret = cbm(cpu, node);
209 		trace_cpuhp_exit(cpu, st->state, state, ret);
210 		if (ret) {
211 			if (!lastp)
212 				goto err;
213 
214 			*lastp = node;
215 			return ret;
216 		}
217 		cnt++;
218 	}
219 	if (lastp)
220 		*lastp = NULL;
221 	return 0;
222 err:
223 	/* Rollback the instances if one failed */
224 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
225 	if (!cbm)
226 		return ret;
227 
228 	hlist_for_each(node, &step->list) {
229 		if (!cnt--)
230 			break;
231 
232 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
233 		ret = cbm(cpu, node);
234 		trace_cpuhp_exit(cpu, st->state, state, ret);
235 		/*
236 		 * Rollback must not fail,
237 		 */
238 		WARN_ON_ONCE(ret);
239 	}
240 	return ret;
241 }
242 
243 #ifdef CONFIG_SMP
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)244 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	wait_for_completion(done);
248 }
249 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)250 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
251 {
252 	struct completion *done = bringup ? &st->done_up : &st->done_down;
253 	complete(done);
254 }
255 
256 /*
257  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
258  */
cpuhp_is_atomic_state(enum cpuhp_state state)259 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
260 {
261 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
262 }
263 
264 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
265 static DEFINE_MUTEX(cpu_add_remove_lock);
266 bool cpuhp_tasks_frozen;
267 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
268 
269 /*
270  * The following two APIs (cpu_maps_update_begin/done) must be used when
271  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
272  */
cpu_maps_update_begin(void)273 void cpu_maps_update_begin(void)
274 {
275 	mutex_lock(&cpu_add_remove_lock);
276 }
277 
cpu_maps_update_done(void)278 void cpu_maps_update_done(void)
279 {
280 	mutex_unlock(&cpu_add_remove_lock);
281 }
282 
283 /*
284  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
285  * Should always be manipulated under cpu_add_remove_lock
286  */
287 static int cpu_hotplug_disabled;
288 
289 #ifdef CONFIG_HOTPLUG_CPU
290 
291 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
292 
cpus_read_lock(void)293 void cpus_read_lock(void)
294 {
295 	percpu_down_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_lock);
298 
cpus_read_unlock(void)299 void cpus_read_unlock(void)
300 {
301 	percpu_up_read(&cpu_hotplug_lock);
302 }
303 EXPORT_SYMBOL_GPL(cpus_read_unlock);
304 
cpus_write_lock(void)305 void cpus_write_lock(void)
306 {
307 	percpu_down_write(&cpu_hotplug_lock);
308 }
309 
cpus_write_unlock(void)310 void cpus_write_unlock(void)
311 {
312 	percpu_up_write(&cpu_hotplug_lock);
313 }
314 
lockdep_assert_cpus_held(void)315 void lockdep_assert_cpus_held(void)
316 {
317 	/*
318 	 * We can't have hotplug operations before userspace starts running,
319 	 * and some init codepaths will knowingly not take the hotplug lock.
320 	 * This is all valid, so mute lockdep until it makes sense to report
321 	 * unheld locks.
322 	 */
323 	if (system_state < SYSTEM_RUNNING)
324 		return;
325 
326 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
327 }
328 
329 /*
330  * Wait for currently running CPU hotplug operations to complete (if any) and
331  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333  * hotplug path before performing hotplug operations. So acquiring that lock
334  * guarantees mutual exclusion from any currently running hotplug operations.
335  */
cpu_hotplug_disable(void)336 void cpu_hotplug_disable(void)
337 {
338 	cpu_maps_update_begin();
339 	cpu_hotplug_disabled++;
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
343 
__cpu_hotplug_enable(void)344 static void __cpu_hotplug_enable(void)
345 {
346 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
347 		return;
348 	cpu_hotplug_disabled--;
349 }
350 
cpu_hotplug_enable(void)351 void cpu_hotplug_enable(void)
352 {
353 	cpu_maps_update_begin();
354 	__cpu_hotplug_enable();
355 	cpu_maps_update_done();
356 }
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
358 #endif	/* CONFIG_HOTPLUG_CPU */
359 
360 /*
361  * Architectures that need SMT-specific errata handling during SMT hotplug
362  * should override this.
363  */
arch_smt_update(void)364 void __weak arch_smt_update(void) { }
365 
366 #ifdef CONFIG_HOTPLUG_SMT
367 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
368 
cpu_smt_disable(bool force)369 void __init cpu_smt_disable(bool force)
370 {
371 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
372 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
373 		return;
374 
375 	if (force) {
376 		pr_info("SMT: Force disabled\n");
377 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
378 	} else {
379 		pr_info("SMT: disabled\n");
380 		cpu_smt_control = CPU_SMT_DISABLED;
381 	}
382 }
383 
384 /*
385  * The decision whether SMT is supported can only be done after the full
386  * CPU identification. Called from architecture code.
387  */
cpu_smt_check_topology(void)388 void __init cpu_smt_check_topology(void)
389 {
390 	if (!topology_smt_supported())
391 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
392 }
393 
smt_cmdline_disable(char * str)394 static int __init smt_cmdline_disable(char *str)
395 {
396 	cpu_smt_disable(str && !strcmp(str, "force"));
397 	return 0;
398 }
399 early_param("nosmt", smt_cmdline_disable);
400 
cpu_smt_allowed(unsigned int cpu)401 static inline bool cpu_smt_allowed(unsigned int cpu)
402 {
403 	if (cpu_smt_control == CPU_SMT_ENABLED)
404 		return true;
405 
406 	if (topology_is_primary_thread(cpu))
407 		return true;
408 
409 	/*
410 	 * On x86 it's required to boot all logical CPUs at least once so
411 	 * that the init code can get a chance to set CR4.MCE on each
412 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
413 	 * core will shutdown the machine.
414 	 */
415 	return !per_cpu(cpuhp_state, cpu).booted_once;
416 }
417 #else
cpu_smt_allowed(unsigned int cpu)418 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
419 #endif
420 
421 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)422 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
423 {
424 	enum cpuhp_state prev_state = st->state;
425 
426 	st->rollback = false;
427 	st->last = NULL;
428 
429 	st->target = target;
430 	st->single = false;
431 	st->bringup = st->state < target;
432 
433 	return prev_state;
434 }
435 
436 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)437 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
438 {
439 	st->rollback = true;
440 
441 	/*
442 	 * If we have st->last we need to undo partial multi_instance of this
443 	 * state first. Otherwise start undo at the previous state.
444 	 */
445 	if (!st->last) {
446 		if (st->bringup)
447 			st->state--;
448 		else
449 			st->state++;
450 	}
451 
452 	st->target = prev_state;
453 	st->bringup = !st->bringup;
454 }
455 
456 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)457 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
458 {
459 	if (!st->single && st->state == st->target)
460 		return;
461 
462 	st->result = 0;
463 	/*
464 	 * Make sure the above stores are visible before should_run becomes
465 	 * true. Paired with the mb() above in cpuhp_thread_fun()
466 	 */
467 	smp_mb();
468 	st->should_run = true;
469 	wake_up_process(st->thread);
470 	wait_for_ap_thread(st, st->bringup);
471 }
472 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)473 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
474 {
475 	enum cpuhp_state prev_state;
476 	int ret;
477 
478 	prev_state = cpuhp_set_state(st, target);
479 	__cpuhp_kick_ap(st);
480 	if ((ret = st->result)) {
481 		cpuhp_reset_state(st, prev_state);
482 		__cpuhp_kick_ap(st);
483 	}
484 
485 	return ret;
486 }
487 
bringup_wait_for_ap(unsigned int cpu)488 static int bringup_wait_for_ap(unsigned int cpu)
489 {
490 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
491 
492 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
493 	wait_for_ap_thread(st, true);
494 	if (WARN_ON_ONCE((!cpu_online(cpu))))
495 		return -ECANCELED;
496 
497 	/* Unpark the hotplug thread of the target cpu */
498 	kthread_unpark(st->thread);
499 
500 	/*
501 	 * SMT soft disabling on X86 requires to bring the CPU out of the
502 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
503 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
504 	 * cpu_smt_allowed() check will now return false if this is not the
505 	 * primary sibling.
506 	 */
507 	if (!cpu_smt_allowed(cpu))
508 		return -ECANCELED;
509 
510 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
511 		return 0;
512 
513 	return cpuhp_kick_ap(st, st->target);
514 }
515 
bringup_cpu(unsigned int cpu)516 static int bringup_cpu(unsigned int cpu)
517 {
518 	struct task_struct *idle = idle_thread_get(cpu);
519 	int ret;
520 
521 	/*
522 	 * Some architectures have to walk the irq descriptors to
523 	 * setup the vector space for the cpu which comes online.
524 	 * Prevent irq alloc/free across the bringup.
525 	 */
526 	irq_lock_sparse();
527 
528 	/* Arch-specific enabling code. */
529 	ret = __cpu_up(cpu, idle);
530 	irq_unlock_sparse();
531 	if (ret)
532 		return ret;
533 	return bringup_wait_for_ap(cpu);
534 }
535 
536 /*
537  * Hotplug state machine related functions
538  */
539 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)540 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
541 {
542 	for (st->state--; st->state > st->target; st->state--) {
543 		struct cpuhp_step *step = cpuhp_get_step(st->state);
544 
545 		if (!step->skip_onerr)
546 			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
547 	}
548 }
549 
can_rollback_cpu(struct cpuhp_cpu_state * st)550 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
551 {
552 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
553 		return true;
554 	/*
555 	 * When CPU hotplug is disabled, then taking the CPU down is not
556 	 * possible because takedown_cpu() and the architecture and
557 	 * subsystem specific mechanisms are not available. So the CPU
558 	 * which would be completely unplugged again needs to stay around
559 	 * in the current state.
560 	 */
561 	return st->state <= CPUHP_BRINGUP_CPU;
562 }
563 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)564 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
565 			      enum cpuhp_state target)
566 {
567 	enum cpuhp_state prev_state = st->state;
568 	int ret = 0;
569 
570 	while (st->state < target) {
571 		st->state++;
572 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
573 		if (ret) {
574 			if (can_rollback_cpu(st)) {
575 				st->target = prev_state;
576 				undo_cpu_up(cpu, st);
577 			}
578 			break;
579 		}
580 	}
581 	return ret;
582 }
583 
584 /*
585  * The cpu hotplug threads manage the bringup and teardown of the cpus
586  */
cpuhp_create(unsigned int cpu)587 static void cpuhp_create(unsigned int cpu)
588 {
589 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
590 
591 	init_completion(&st->done_up);
592 	init_completion(&st->done_down);
593 }
594 
cpuhp_should_run(unsigned int cpu)595 static int cpuhp_should_run(unsigned int cpu)
596 {
597 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
598 
599 	return st->should_run;
600 }
601 
602 /*
603  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
604  * callbacks when a state gets [un]installed at runtime.
605  *
606  * Each invocation of this function by the smpboot thread does a single AP
607  * state callback.
608  *
609  * It has 3 modes of operation:
610  *  - single: runs st->cb_state
611  *  - up:     runs ++st->state, while st->state < st->target
612  *  - down:   runs st->state--, while st->state > st->target
613  *
614  * When complete or on error, should_run is cleared and the completion is fired.
615  */
cpuhp_thread_fun(unsigned int cpu)616 static void cpuhp_thread_fun(unsigned int cpu)
617 {
618 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
619 	bool bringup = st->bringup;
620 	enum cpuhp_state state;
621 
622 	if (WARN_ON_ONCE(!st->should_run))
623 		return;
624 
625 	/*
626 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
627 	 * that if we see ->should_run we also see the rest of the state.
628 	 */
629 	smp_mb();
630 
631 	cpuhp_lock_acquire(bringup);
632 
633 	if (st->single) {
634 		state = st->cb_state;
635 		st->should_run = false;
636 	} else {
637 		if (bringup) {
638 			st->state++;
639 			state = st->state;
640 			st->should_run = (st->state < st->target);
641 			WARN_ON_ONCE(st->state > st->target);
642 		} else {
643 			state = st->state;
644 			st->state--;
645 			st->should_run = (st->state > st->target);
646 			WARN_ON_ONCE(st->state < st->target);
647 		}
648 	}
649 
650 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
651 
652 	if (st->rollback) {
653 		struct cpuhp_step *step = cpuhp_get_step(state);
654 		if (step->skip_onerr)
655 			goto next;
656 	}
657 
658 	if (cpuhp_is_atomic_state(state)) {
659 		local_irq_disable();
660 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
661 		local_irq_enable();
662 
663 		/*
664 		 * STARTING/DYING must not fail!
665 		 */
666 		WARN_ON_ONCE(st->result);
667 	} else {
668 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
669 	}
670 
671 	if (st->result) {
672 		/*
673 		 * If we fail on a rollback, we're up a creek without no
674 		 * paddle, no way forward, no way back. We loose, thanks for
675 		 * playing.
676 		 */
677 		WARN_ON_ONCE(st->rollback);
678 		st->should_run = false;
679 	}
680 
681 next:
682 	cpuhp_lock_release(bringup);
683 
684 	if (!st->should_run)
685 		complete_ap_thread(st, bringup);
686 }
687 
688 /* Invoke a single callback on a remote cpu */
689 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)690 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
691 			 struct hlist_node *node)
692 {
693 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
694 	int ret;
695 
696 	if (!cpu_online(cpu))
697 		return 0;
698 
699 	cpuhp_lock_acquire(false);
700 	cpuhp_lock_release(false);
701 
702 	cpuhp_lock_acquire(true);
703 	cpuhp_lock_release(true);
704 
705 	/*
706 	 * If we are up and running, use the hotplug thread. For early calls
707 	 * we invoke the thread function directly.
708 	 */
709 	if (!st->thread)
710 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
711 
712 	st->rollback = false;
713 	st->last = NULL;
714 
715 	st->node = node;
716 	st->bringup = bringup;
717 	st->cb_state = state;
718 	st->single = true;
719 
720 	__cpuhp_kick_ap(st);
721 
722 	/*
723 	 * If we failed and did a partial, do a rollback.
724 	 */
725 	if ((ret = st->result) && st->last) {
726 		st->rollback = true;
727 		st->bringup = !bringup;
728 
729 		__cpuhp_kick_ap(st);
730 	}
731 
732 	/*
733 	 * Clean up the leftovers so the next hotplug operation wont use stale
734 	 * data.
735 	 */
736 	st->node = st->last = NULL;
737 	return ret;
738 }
739 
cpuhp_kick_ap_work(unsigned int cpu)740 static int cpuhp_kick_ap_work(unsigned int cpu)
741 {
742 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
743 	enum cpuhp_state prev_state = st->state;
744 	int ret;
745 
746 	cpuhp_lock_acquire(false);
747 	cpuhp_lock_release(false);
748 
749 	cpuhp_lock_acquire(true);
750 	cpuhp_lock_release(true);
751 
752 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
753 	ret = cpuhp_kick_ap(st, st->target);
754 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
755 
756 	return ret;
757 }
758 
759 static struct smp_hotplug_thread cpuhp_threads = {
760 	.store			= &cpuhp_state.thread,
761 	.create			= &cpuhp_create,
762 	.thread_should_run	= cpuhp_should_run,
763 	.thread_fn		= cpuhp_thread_fun,
764 	.thread_comm		= "cpuhp/%u",
765 	.selfparking		= true,
766 };
767 
cpuhp_threads_init(void)768 void __init cpuhp_threads_init(void)
769 {
770 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
771 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
772 }
773 
774 #ifdef CONFIG_HOTPLUG_CPU
775 /**
776  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
777  * @cpu: a CPU id
778  *
779  * This function walks all processes, finds a valid mm struct for each one and
780  * then clears a corresponding bit in mm's cpumask.  While this all sounds
781  * trivial, there are various non-obvious corner cases, which this function
782  * tries to solve in a safe manner.
783  *
784  * Also note that the function uses a somewhat relaxed locking scheme, so it may
785  * be called only for an already offlined CPU.
786  */
clear_tasks_mm_cpumask(int cpu)787 void clear_tasks_mm_cpumask(int cpu)
788 {
789 	struct task_struct *p;
790 
791 	/*
792 	 * This function is called after the cpu is taken down and marked
793 	 * offline, so its not like new tasks will ever get this cpu set in
794 	 * their mm mask. -- Peter Zijlstra
795 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
796 	 * full-fledged tasklist_lock.
797 	 */
798 	WARN_ON(cpu_online(cpu));
799 	rcu_read_lock();
800 	for_each_process(p) {
801 		struct task_struct *t;
802 
803 		/*
804 		 * Main thread might exit, but other threads may still have
805 		 * a valid mm. Find one.
806 		 */
807 		t = find_lock_task_mm(p);
808 		if (!t)
809 			continue;
810 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
811 		task_unlock(t);
812 	}
813 	rcu_read_unlock();
814 }
815 
816 /* Take this CPU down. */
take_cpu_down(void * _param)817 static int take_cpu_down(void *_param)
818 {
819 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
820 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
821 	int err, cpu = smp_processor_id();
822 	int ret;
823 
824 	/* Ensure this CPU doesn't handle any more interrupts. */
825 	err = __cpu_disable();
826 	if (err < 0)
827 		return err;
828 
829 	/*
830 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
831 	 * do this step again.
832 	 */
833 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
834 	st->state--;
835 	/* Invoke the former CPU_DYING callbacks */
836 	for (; st->state > target; st->state--) {
837 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
838 		/*
839 		 * DYING must not fail!
840 		 */
841 		WARN_ON_ONCE(ret);
842 	}
843 
844 	/* Give up timekeeping duties */
845 	tick_handover_do_timer();
846 	/* Park the stopper thread */
847 	stop_machine_park(cpu);
848 	return 0;
849 }
850 
takedown_cpu(unsigned int cpu)851 static int takedown_cpu(unsigned int cpu)
852 {
853 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
854 	int err;
855 
856 	/* Park the smpboot threads */
857 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
858 
859 	/*
860 	 * Prevent irq alloc/free while the dying cpu reorganizes the
861 	 * interrupt affinities.
862 	 */
863 	irq_lock_sparse();
864 
865 	/*
866 	 * So now all preempt/rcu users must observe !cpu_active().
867 	 */
868 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
869 	if (err) {
870 		/* CPU refused to die */
871 		irq_unlock_sparse();
872 		/* Unpark the hotplug thread so we can rollback there */
873 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
874 		return err;
875 	}
876 	BUG_ON(cpu_online(cpu));
877 
878 	/*
879 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
880 	 * runnable tasks from the cpu, there's only the idle task left now
881 	 * that the migration thread is done doing the stop_machine thing.
882 	 *
883 	 * Wait for the stop thread to go away.
884 	 */
885 	wait_for_ap_thread(st, false);
886 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
887 
888 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
889 	irq_unlock_sparse();
890 
891 	hotplug_cpu__broadcast_tick_pull(cpu);
892 	/* This actually kills the CPU. */
893 	__cpu_die(cpu);
894 
895 	tick_cleanup_dead_cpu(cpu);
896 	rcutree_migrate_callbacks(cpu);
897 	return 0;
898 }
899 
cpuhp_complete_idle_dead(void * arg)900 static void cpuhp_complete_idle_dead(void *arg)
901 {
902 	struct cpuhp_cpu_state *st = arg;
903 
904 	complete_ap_thread(st, false);
905 }
906 
cpuhp_report_idle_dead(void)907 void cpuhp_report_idle_dead(void)
908 {
909 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
910 
911 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
912 	rcu_report_dead(smp_processor_id());
913 	st->state = CPUHP_AP_IDLE_DEAD;
914 	/*
915 	 * We cannot call complete after rcu_report_dead() so we delegate it
916 	 * to an online cpu.
917 	 */
918 	smp_call_function_single(cpumask_first(cpu_online_mask),
919 				 cpuhp_complete_idle_dead, st, 0);
920 }
921 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)922 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
923 {
924 	for (st->state++; st->state < st->target; st->state++) {
925 		struct cpuhp_step *step = cpuhp_get_step(st->state);
926 
927 		if (!step->skip_onerr)
928 			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
929 	}
930 }
931 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)932 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
933 				enum cpuhp_state target)
934 {
935 	enum cpuhp_state prev_state = st->state;
936 	int ret = 0;
937 
938 	for (; st->state > target; st->state--) {
939 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
940 		if (ret) {
941 			st->target = prev_state;
942 			if (st->state < prev_state)
943 				undo_cpu_down(cpu, st);
944 			break;
945 		}
946 	}
947 	return ret;
948 }
949 
950 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)951 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
952 			   enum cpuhp_state target)
953 {
954 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
955 	int prev_state, ret = 0;
956 
957 	if (num_online_cpus() == 1)
958 		return -EBUSY;
959 
960 	if (!cpu_present(cpu))
961 		return -EINVAL;
962 
963 	cpus_write_lock();
964 
965 	cpuhp_tasks_frozen = tasks_frozen;
966 
967 	prev_state = cpuhp_set_state(st, target);
968 	/*
969 	 * If the current CPU state is in the range of the AP hotplug thread,
970 	 * then we need to kick the thread.
971 	 */
972 	if (st->state > CPUHP_TEARDOWN_CPU) {
973 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
974 		ret = cpuhp_kick_ap_work(cpu);
975 		/*
976 		 * The AP side has done the error rollback already. Just
977 		 * return the error code..
978 		 */
979 		if (ret)
980 			goto out;
981 
982 		/*
983 		 * We might have stopped still in the range of the AP hotplug
984 		 * thread. Nothing to do anymore.
985 		 */
986 		if (st->state > CPUHP_TEARDOWN_CPU)
987 			goto out;
988 
989 		st->target = target;
990 	}
991 	/*
992 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
993 	 * to do the further cleanups.
994 	 */
995 	ret = cpuhp_down_callbacks(cpu, st, target);
996 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
997 		cpuhp_reset_state(st, prev_state);
998 		__cpuhp_kick_ap(st);
999 	}
1000 
1001 out:
1002 	cpus_write_unlock();
1003 	/*
1004 	 * Do post unplug cleanup. This is still protected against
1005 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1006 	 */
1007 	lockup_detector_cleanup();
1008 	arch_smt_update();
1009 	return ret;
1010 }
1011 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1012 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1013 {
1014 	if (cpu_hotplug_disabled)
1015 		return -EBUSY;
1016 	return _cpu_down(cpu, 0, target);
1017 }
1018 
do_cpu_down(unsigned int cpu,enum cpuhp_state target)1019 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1020 {
1021 	int err;
1022 
1023 	cpu_maps_update_begin();
1024 	err = cpu_down_maps_locked(cpu, target);
1025 	cpu_maps_update_done();
1026 	return err;
1027 }
1028 
cpu_down(unsigned int cpu)1029 int cpu_down(unsigned int cpu)
1030 {
1031 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1032 }
1033 EXPORT_SYMBOL(cpu_down);
1034 
1035 #else
1036 #define takedown_cpu		NULL
1037 #endif /*CONFIG_HOTPLUG_CPU*/
1038 
1039 /**
1040  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1041  * @cpu: cpu that just started
1042  *
1043  * It must be called by the arch code on the new cpu, before the new cpu
1044  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1045  */
notify_cpu_starting(unsigned int cpu)1046 void notify_cpu_starting(unsigned int cpu)
1047 {
1048 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1049 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1050 	int ret;
1051 
1052 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1053 	st->booted_once = true;
1054 	while (st->state < target) {
1055 		st->state++;
1056 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1057 		/*
1058 		 * STARTING must not fail!
1059 		 */
1060 		WARN_ON_ONCE(ret);
1061 	}
1062 }
1063 
1064 /*
1065  * Called from the idle task. Wake up the controlling task which brings the
1066  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1067  * online bringup to the hotplug thread.
1068  */
cpuhp_online_idle(enum cpuhp_state state)1069 void cpuhp_online_idle(enum cpuhp_state state)
1070 {
1071 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1072 
1073 	/* Happens for the boot cpu */
1074 	if (state != CPUHP_AP_ONLINE_IDLE)
1075 		return;
1076 
1077 	/*
1078 	 * Unpart the stopper thread before we start the idle loop (and start
1079 	 * scheduling); this ensures the stopper task is always available.
1080 	 */
1081 	stop_machine_unpark(smp_processor_id());
1082 
1083 	st->state = CPUHP_AP_ONLINE_IDLE;
1084 	complete_ap_thread(st, true);
1085 }
1086 
1087 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1088 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1089 {
1090 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1091 	struct task_struct *idle;
1092 	int ret = 0;
1093 
1094 	cpus_write_lock();
1095 
1096 	if (!cpu_present(cpu)) {
1097 		ret = -EINVAL;
1098 		goto out;
1099 	}
1100 
1101 	/*
1102 	 * The caller of do_cpu_up might have raced with another
1103 	 * caller. Ignore it for now.
1104 	 */
1105 	if (st->state >= target)
1106 		goto out;
1107 
1108 	if (st->state == CPUHP_OFFLINE) {
1109 		/* Let it fail before we try to bring the cpu up */
1110 		idle = idle_thread_get(cpu);
1111 		if (IS_ERR(idle)) {
1112 			ret = PTR_ERR(idle);
1113 			goto out;
1114 		}
1115 	}
1116 
1117 	cpuhp_tasks_frozen = tasks_frozen;
1118 
1119 	cpuhp_set_state(st, target);
1120 	/*
1121 	 * If the current CPU state is in the range of the AP hotplug thread,
1122 	 * then we need to kick the thread once more.
1123 	 */
1124 	if (st->state > CPUHP_BRINGUP_CPU) {
1125 		ret = cpuhp_kick_ap_work(cpu);
1126 		/*
1127 		 * The AP side has done the error rollback already. Just
1128 		 * return the error code..
1129 		 */
1130 		if (ret)
1131 			goto out;
1132 	}
1133 
1134 	/*
1135 	 * Try to reach the target state. We max out on the BP at
1136 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1137 	 * responsible for bringing it up to the target state.
1138 	 */
1139 	target = min((int)target, CPUHP_BRINGUP_CPU);
1140 	ret = cpuhp_up_callbacks(cpu, st, target);
1141 out:
1142 	cpus_write_unlock();
1143 	arch_smt_update();
1144 	return ret;
1145 }
1146 
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1147 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1148 {
1149 	int err = 0;
1150 
1151 	if (!cpu_possible(cpu)) {
1152 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1153 		       cpu);
1154 #if defined(CONFIG_IA64)
1155 		pr_err("please check additional_cpus= boot parameter\n");
1156 #endif
1157 		return -EINVAL;
1158 	}
1159 
1160 	err = try_online_node(cpu_to_node(cpu));
1161 	if (err)
1162 		return err;
1163 
1164 	cpu_maps_update_begin();
1165 
1166 	if (cpu_hotplug_disabled) {
1167 		err = -EBUSY;
1168 		goto out;
1169 	}
1170 	if (!cpu_smt_allowed(cpu)) {
1171 		err = -EPERM;
1172 		goto out;
1173 	}
1174 
1175 	err = _cpu_up(cpu, 0, target);
1176 out:
1177 	cpu_maps_update_done();
1178 	return err;
1179 }
1180 
cpu_up(unsigned int cpu)1181 int cpu_up(unsigned int cpu)
1182 {
1183 	return do_cpu_up(cpu, CPUHP_ONLINE);
1184 }
1185 EXPORT_SYMBOL_GPL(cpu_up);
1186 
1187 #ifdef CONFIG_PM_SLEEP_SMP
1188 static cpumask_var_t frozen_cpus;
1189 
freeze_secondary_cpus(int primary)1190 int freeze_secondary_cpus(int primary)
1191 {
1192 	int cpu, error = 0;
1193 
1194 	cpu_maps_update_begin();
1195 	if (!cpu_online(primary))
1196 		primary = cpumask_first(cpu_online_mask);
1197 	/*
1198 	 * We take down all of the non-boot CPUs in one shot to avoid races
1199 	 * with the userspace trying to use the CPU hotplug at the same time
1200 	 */
1201 	cpumask_clear(frozen_cpus);
1202 
1203 	pr_info("Disabling non-boot CPUs ...\n");
1204 	for_each_online_cpu(cpu) {
1205 		if (cpu == primary)
1206 			continue;
1207 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1208 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1209 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1210 		if (!error)
1211 			cpumask_set_cpu(cpu, frozen_cpus);
1212 		else {
1213 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1214 			break;
1215 		}
1216 	}
1217 
1218 	if (!error)
1219 		BUG_ON(num_online_cpus() > 1);
1220 	else
1221 		pr_err("Non-boot CPUs are not disabled\n");
1222 
1223 	/*
1224 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1225 	 * this even in case of failure as all disable_nonboot_cpus() users are
1226 	 * supposed to do enable_nonboot_cpus() on the failure path.
1227 	 */
1228 	cpu_hotplug_disabled++;
1229 
1230 	cpu_maps_update_done();
1231 	return error;
1232 }
1233 
arch_enable_nonboot_cpus_begin(void)1234 void __weak arch_enable_nonboot_cpus_begin(void)
1235 {
1236 }
1237 
arch_enable_nonboot_cpus_end(void)1238 void __weak arch_enable_nonboot_cpus_end(void)
1239 {
1240 }
1241 
enable_nonboot_cpus(void)1242 void enable_nonboot_cpus(void)
1243 {
1244 	int cpu, error;
1245 	struct device *cpu_device;
1246 
1247 	/* Allow everyone to use the CPU hotplug again */
1248 	cpu_maps_update_begin();
1249 	__cpu_hotplug_enable();
1250 	if (cpumask_empty(frozen_cpus))
1251 		goto out;
1252 
1253 	pr_info("Enabling non-boot CPUs ...\n");
1254 
1255 	arch_enable_nonboot_cpus_begin();
1256 
1257 	for_each_cpu(cpu, frozen_cpus) {
1258 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1259 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1260 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1261 		if (!error) {
1262 			pr_info("CPU%d is up\n", cpu);
1263 			cpu_device = get_cpu_device(cpu);
1264 			if (!cpu_device)
1265 				pr_err("%s: failed to get cpu%d device\n",
1266 				       __func__, cpu);
1267 			else
1268 				kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1269 			continue;
1270 		}
1271 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1272 	}
1273 
1274 	arch_enable_nonboot_cpus_end();
1275 
1276 	cpumask_clear(frozen_cpus);
1277 out:
1278 	cpu_maps_update_done();
1279 }
1280 
alloc_frozen_cpus(void)1281 static int __init alloc_frozen_cpus(void)
1282 {
1283 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1284 		return -ENOMEM;
1285 	return 0;
1286 }
1287 core_initcall(alloc_frozen_cpus);
1288 
1289 /*
1290  * When callbacks for CPU hotplug notifications are being executed, we must
1291  * ensure that the state of the system with respect to the tasks being frozen
1292  * or not, as reported by the notification, remains unchanged *throughout the
1293  * duration* of the execution of the callbacks.
1294  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1295  *
1296  * This synchronization is implemented by mutually excluding regular CPU
1297  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1298  * Hibernate notifications.
1299  */
1300 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1301 cpu_hotplug_pm_callback(struct notifier_block *nb,
1302 			unsigned long action, void *ptr)
1303 {
1304 	switch (action) {
1305 
1306 	case PM_SUSPEND_PREPARE:
1307 	case PM_HIBERNATION_PREPARE:
1308 		cpu_hotplug_disable();
1309 		break;
1310 
1311 	case PM_POST_SUSPEND:
1312 	case PM_POST_HIBERNATION:
1313 		cpu_hotplug_enable();
1314 		break;
1315 
1316 	default:
1317 		return NOTIFY_DONE;
1318 	}
1319 
1320 	return NOTIFY_OK;
1321 }
1322 
1323 
cpu_hotplug_pm_sync_init(void)1324 static int __init cpu_hotplug_pm_sync_init(void)
1325 {
1326 	/*
1327 	 * cpu_hotplug_pm_callback has higher priority than x86
1328 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1329 	 * to disable cpu hotplug to avoid cpu hotplug race.
1330 	 */
1331 	pm_notifier(cpu_hotplug_pm_callback, 0);
1332 	return 0;
1333 }
1334 core_initcall(cpu_hotplug_pm_sync_init);
1335 
1336 #endif /* CONFIG_PM_SLEEP_SMP */
1337 
1338 int __boot_cpu_id;
1339 
1340 #endif /* CONFIG_SMP */
1341 
1342 /* Boot processor state steps */
1343 static struct cpuhp_step cpuhp_bp_states[] = {
1344 	[CPUHP_OFFLINE] = {
1345 		.name			= "offline",
1346 		.startup.single		= NULL,
1347 		.teardown.single	= NULL,
1348 	},
1349 #ifdef CONFIG_SMP
1350 	[CPUHP_CREATE_THREADS]= {
1351 		.name			= "threads:prepare",
1352 		.startup.single		= smpboot_create_threads,
1353 		.teardown.single	= NULL,
1354 		.cant_stop		= true,
1355 	},
1356 	[CPUHP_PERF_PREPARE] = {
1357 		.name			= "perf:prepare",
1358 		.startup.single		= perf_event_init_cpu,
1359 		.teardown.single	= perf_event_exit_cpu,
1360 	},
1361 	[CPUHP_WORKQUEUE_PREP] = {
1362 		.name			= "workqueue:prepare",
1363 		.startup.single		= workqueue_prepare_cpu,
1364 		.teardown.single	= NULL,
1365 	},
1366 	[CPUHP_HRTIMERS_PREPARE] = {
1367 		.name			= "hrtimers:prepare",
1368 		.startup.single		= hrtimers_prepare_cpu,
1369 		.teardown.single	= hrtimers_dead_cpu,
1370 	},
1371 	[CPUHP_SMPCFD_PREPARE] = {
1372 		.name			= "smpcfd:prepare",
1373 		.startup.single		= smpcfd_prepare_cpu,
1374 		.teardown.single	= smpcfd_dead_cpu,
1375 	},
1376 	[CPUHP_RELAY_PREPARE] = {
1377 		.name			= "relay:prepare",
1378 		.startup.single		= relay_prepare_cpu,
1379 		.teardown.single	= NULL,
1380 	},
1381 	[CPUHP_SLAB_PREPARE] = {
1382 		.name			= "slab:prepare",
1383 		.startup.single		= slab_prepare_cpu,
1384 		.teardown.single	= slab_dead_cpu,
1385 	},
1386 	[CPUHP_RCUTREE_PREP] = {
1387 		.name			= "RCU/tree:prepare",
1388 		.startup.single		= rcutree_prepare_cpu,
1389 		.teardown.single	= rcutree_dead_cpu,
1390 	},
1391 	/*
1392 	 * On the tear-down path, timers_dead_cpu() must be invoked
1393 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1394 	 * otherwise a RCU stall occurs.
1395 	 */
1396 	[CPUHP_TIMERS_PREPARE] = {
1397 		.name			= "timers:dead",
1398 		.startup.single		= timers_prepare_cpu,
1399 		.teardown.single	= timers_dead_cpu,
1400 	},
1401 	/* Kicks the plugged cpu into life */
1402 	[CPUHP_BRINGUP_CPU] = {
1403 		.name			= "cpu:bringup",
1404 		.startup.single		= bringup_cpu,
1405 		.teardown.single	= NULL,
1406 		.cant_stop		= true,
1407 	},
1408 	/*
1409 	 * Handled on controll processor until the plugged processor manages
1410 	 * this itself.
1411 	 */
1412 	[CPUHP_TEARDOWN_CPU] = {
1413 		.name			= "cpu:teardown",
1414 		.startup.single		= NULL,
1415 		.teardown.single	= takedown_cpu,
1416 		.cant_stop		= true,
1417 	},
1418 #else
1419 	[CPUHP_BRINGUP_CPU] = { },
1420 #endif
1421 };
1422 
1423 /* Application processor state steps */
1424 static struct cpuhp_step cpuhp_ap_states[] = {
1425 #ifdef CONFIG_SMP
1426 	/* Final state before CPU kills itself */
1427 	[CPUHP_AP_IDLE_DEAD] = {
1428 		.name			= "idle:dead",
1429 	},
1430 	/*
1431 	 * Last state before CPU enters the idle loop to die. Transient state
1432 	 * for synchronization.
1433 	 */
1434 	[CPUHP_AP_OFFLINE] = {
1435 		.name			= "ap:offline",
1436 		.cant_stop		= true,
1437 	},
1438 	/* First state is scheduler control. Interrupts are disabled */
1439 	[CPUHP_AP_SCHED_STARTING] = {
1440 		.name			= "sched:starting",
1441 		.startup.single		= sched_cpu_starting,
1442 		.teardown.single	= sched_cpu_dying,
1443 	},
1444 	[CPUHP_AP_RCUTREE_DYING] = {
1445 		.name			= "RCU/tree:dying",
1446 		.startup.single		= NULL,
1447 		.teardown.single	= rcutree_dying_cpu,
1448 	},
1449 	[CPUHP_AP_SMPCFD_DYING] = {
1450 		.name			= "smpcfd:dying",
1451 		.startup.single		= NULL,
1452 		.teardown.single	= smpcfd_dying_cpu,
1453 	},
1454 	/* Entry state on starting. Interrupts enabled from here on. Transient
1455 	 * state for synchronsization */
1456 	[CPUHP_AP_ONLINE] = {
1457 		.name			= "ap:online",
1458 	},
1459 	/* Handle smpboot threads park/unpark */
1460 	[CPUHP_AP_SMPBOOT_THREADS] = {
1461 		.name			= "smpboot/threads:online",
1462 		.startup.single		= smpboot_unpark_threads,
1463 		.teardown.single	= smpboot_park_threads,
1464 	},
1465 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1466 		.name			= "irq/affinity:online",
1467 		.startup.single		= irq_affinity_online_cpu,
1468 		.teardown.single	= NULL,
1469 	},
1470 	[CPUHP_AP_PERF_ONLINE] = {
1471 		.name			= "perf:online",
1472 		.startup.single		= perf_event_init_cpu,
1473 		.teardown.single	= perf_event_exit_cpu,
1474 	},
1475 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1476 		.name			= "workqueue:online",
1477 		.startup.single		= workqueue_online_cpu,
1478 		.teardown.single	= workqueue_offline_cpu,
1479 	},
1480 	[CPUHP_AP_RCUTREE_ONLINE] = {
1481 		.name			= "RCU/tree:online",
1482 		.startup.single		= rcutree_online_cpu,
1483 		.teardown.single	= rcutree_offline_cpu,
1484 	},
1485 #endif
1486 	/*
1487 	 * The dynamically registered state space is here
1488 	 */
1489 
1490 #ifdef CONFIG_SMP
1491 	/* Last state is scheduler control setting the cpu active */
1492 	[CPUHP_AP_ACTIVE] = {
1493 		.name			= "sched:active",
1494 		.startup.single		= sched_cpu_activate,
1495 		.teardown.single	= sched_cpu_deactivate,
1496 	},
1497 #endif
1498 
1499 	/* CPU is fully up and running. */
1500 	[CPUHP_ONLINE] = {
1501 		.name			= "online",
1502 		.startup.single		= NULL,
1503 		.teardown.single	= NULL,
1504 	},
1505 };
1506 
1507 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1508 static int cpuhp_cb_check(enum cpuhp_state state)
1509 {
1510 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1511 		return -EINVAL;
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Returns a free for dynamic slot assignment of the Online state. The states
1517  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1518  * by having no name assigned.
1519  */
cpuhp_reserve_state(enum cpuhp_state state)1520 static int cpuhp_reserve_state(enum cpuhp_state state)
1521 {
1522 	enum cpuhp_state i, end;
1523 	struct cpuhp_step *step;
1524 
1525 	switch (state) {
1526 	case CPUHP_AP_ONLINE_DYN:
1527 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1528 		end = CPUHP_AP_ONLINE_DYN_END;
1529 		break;
1530 	case CPUHP_BP_PREPARE_DYN:
1531 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1532 		end = CPUHP_BP_PREPARE_DYN_END;
1533 		break;
1534 	default:
1535 		return -EINVAL;
1536 	}
1537 
1538 	for (i = state; i <= end; i++, step++) {
1539 		if (!step->name)
1540 			return i;
1541 	}
1542 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1543 	return -ENOSPC;
1544 }
1545 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1546 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1547 				 int (*startup)(unsigned int cpu),
1548 				 int (*teardown)(unsigned int cpu),
1549 				 bool multi_instance)
1550 {
1551 	/* (Un)Install the callbacks for further cpu hotplug operations */
1552 	struct cpuhp_step *sp;
1553 	int ret = 0;
1554 
1555 	/*
1556 	 * If name is NULL, then the state gets removed.
1557 	 *
1558 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1559 	 * the first allocation from these dynamic ranges, so the removal
1560 	 * would trigger a new allocation and clear the wrong (already
1561 	 * empty) state, leaving the callbacks of the to be cleared state
1562 	 * dangling, which causes wreckage on the next hotplug operation.
1563 	 */
1564 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1565 		     state == CPUHP_BP_PREPARE_DYN)) {
1566 		ret = cpuhp_reserve_state(state);
1567 		if (ret < 0)
1568 			return ret;
1569 		state = ret;
1570 	}
1571 	sp = cpuhp_get_step(state);
1572 	if (name && sp->name)
1573 		return -EBUSY;
1574 
1575 	sp->startup.single = startup;
1576 	sp->teardown.single = teardown;
1577 	sp->name = name;
1578 	sp->multi_instance = multi_instance;
1579 	INIT_HLIST_HEAD(&sp->list);
1580 	return ret;
1581 }
1582 
cpuhp_get_teardown_cb(enum cpuhp_state state)1583 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1584 {
1585 	return cpuhp_get_step(state)->teardown.single;
1586 }
1587 
1588 /*
1589  * Call the startup/teardown function for a step either on the AP or
1590  * on the current CPU.
1591  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1592 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1593 			    struct hlist_node *node)
1594 {
1595 	struct cpuhp_step *sp = cpuhp_get_step(state);
1596 	int ret;
1597 
1598 	/*
1599 	 * If there's nothing to do, we done.
1600 	 * Relies on the union for multi_instance.
1601 	 */
1602 	if ((bringup && !sp->startup.single) ||
1603 	    (!bringup && !sp->teardown.single))
1604 		return 0;
1605 	/*
1606 	 * The non AP bound callbacks can fail on bringup. On teardown
1607 	 * e.g. module removal we crash for now.
1608 	 */
1609 #ifdef CONFIG_SMP
1610 	if (cpuhp_is_ap_state(state))
1611 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1612 	else
1613 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1614 #else
1615 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1616 #endif
1617 	BUG_ON(ret && !bringup);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * Called from __cpuhp_setup_state on a recoverable failure.
1623  *
1624  * Note: The teardown callbacks for rollback are not allowed to fail!
1625  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1626 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1627 				   struct hlist_node *node)
1628 {
1629 	int cpu;
1630 
1631 	/* Roll back the already executed steps on the other cpus */
1632 	for_each_present_cpu(cpu) {
1633 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1634 		int cpustate = st->state;
1635 
1636 		if (cpu >= failedcpu)
1637 			break;
1638 
1639 		/* Did we invoke the startup call on that cpu ? */
1640 		if (cpustate >= state)
1641 			cpuhp_issue_call(cpu, state, false, node);
1642 	}
1643 }
1644 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1645 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1646 					  struct hlist_node *node,
1647 					  bool invoke)
1648 {
1649 	struct cpuhp_step *sp;
1650 	int cpu;
1651 	int ret;
1652 
1653 	lockdep_assert_cpus_held();
1654 
1655 	sp = cpuhp_get_step(state);
1656 	if (sp->multi_instance == false)
1657 		return -EINVAL;
1658 
1659 	mutex_lock(&cpuhp_state_mutex);
1660 
1661 	if (!invoke || !sp->startup.multi)
1662 		goto add_node;
1663 
1664 	/*
1665 	 * Try to call the startup callback for each present cpu
1666 	 * depending on the hotplug state of the cpu.
1667 	 */
1668 	for_each_present_cpu(cpu) {
1669 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1670 		int cpustate = st->state;
1671 
1672 		if (cpustate < state)
1673 			continue;
1674 
1675 		ret = cpuhp_issue_call(cpu, state, true, node);
1676 		if (ret) {
1677 			if (sp->teardown.multi)
1678 				cpuhp_rollback_install(cpu, state, node);
1679 			goto unlock;
1680 		}
1681 	}
1682 add_node:
1683 	ret = 0;
1684 	hlist_add_head(node, &sp->list);
1685 unlock:
1686 	mutex_unlock(&cpuhp_state_mutex);
1687 	return ret;
1688 }
1689 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1690 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1691 			       bool invoke)
1692 {
1693 	int ret;
1694 
1695 	cpus_read_lock();
1696 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1697 	cpus_read_unlock();
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1701 
1702 /**
1703  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1704  * @state:		The state to setup
1705  * @invoke:		If true, the startup function is invoked for cpus where
1706  *			cpu state >= @state
1707  * @startup:		startup callback function
1708  * @teardown:		teardown callback function
1709  * @multi_instance:	State is set up for multiple instances which get
1710  *			added afterwards.
1711  *
1712  * The caller needs to hold cpus read locked while calling this function.
1713  * Returns:
1714  *   On success:
1715  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1716  *      0 for all other states
1717  *   On failure: proper (negative) error code
1718  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1719 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1720 				   const char *name, bool invoke,
1721 				   int (*startup)(unsigned int cpu),
1722 				   int (*teardown)(unsigned int cpu),
1723 				   bool multi_instance)
1724 {
1725 	int cpu, ret = 0;
1726 	bool dynstate;
1727 
1728 	lockdep_assert_cpus_held();
1729 
1730 	if (cpuhp_cb_check(state) || !name)
1731 		return -EINVAL;
1732 
1733 	mutex_lock(&cpuhp_state_mutex);
1734 
1735 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1736 				    multi_instance);
1737 
1738 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1739 	if (ret > 0 && dynstate) {
1740 		state = ret;
1741 		ret = 0;
1742 	}
1743 
1744 	if (ret || !invoke || !startup)
1745 		goto out;
1746 
1747 	/*
1748 	 * Try to call the startup callback for each present cpu
1749 	 * depending on the hotplug state of the cpu.
1750 	 */
1751 	for_each_present_cpu(cpu) {
1752 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1753 		int cpustate = st->state;
1754 
1755 		if (cpustate < state)
1756 			continue;
1757 
1758 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1759 		if (ret) {
1760 			if (teardown)
1761 				cpuhp_rollback_install(cpu, state, NULL);
1762 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1763 			goto out;
1764 		}
1765 	}
1766 out:
1767 	mutex_unlock(&cpuhp_state_mutex);
1768 	/*
1769 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1770 	 * dynamically allocated state in case of success.
1771 	 */
1772 	if (!ret && dynstate)
1773 		return state;
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1777 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1778 int __cpuhp_setup_state(enum cpuhp_state state,
1779 			const char *name, bool invoke,
1780 			int (*startup)(unsigned int cpu),
1781 			int (*teardown)(unsigned int cpu),
1782 			bool multi_instance)
1783 {
1784 	int ret;
1785 
1786 	cpus_read_lock();
1787 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1788 					     teardown, multi_instance);
1789 	cpus_read_unlock();
1790 	return ret;
1791 }
1792 EXPORT_SYMBOL(__cpuhp_setup_state);
1793 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1794 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1795 				  struct hlist_node *node, bool invoke)
1796 {
1797 	struct cpuhp_step *sp = cpuhp_get_step(state);
1798 	int cpu;
1799 
1800 	BUG_ON(cpuhp_cb_check(state));
1801 
1802 	if (!sp->multi_instance)
1803 		return -EINVAL;
1804 
1805 	cpus_read_lock();
1806 	mutex_lock(&cpuhp_state_mutex);
1807 
1808 	if (!invoke || !cpuhp_get_teardown_cb(state))
1809 		goto remove;
1810 	/*
1811 	 * Call the teardown callback for each present cpu depending
1812 	 * on the hotplug state of the cpu. This function is not
1813 	 * allowed to fail currently!
1814 	 */
1815 	for_each_present_cpu(cpu) {
1816 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1817 		int cpustate = st->state;
1818 
1819 		if (cpustate >= state)
1820 			cpuhp_issue_call(cpu, state, false, node);
1821 	}
1822 
1823 remove:
1824 	hlist_del(node);
1825 	mutex_unlock(&cpuhp_state_mutex);
1826 	cpus_read_unlock();
1827 
1828 	return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1831 
1832 /**
1833  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1834  * @state:	The state to remove
1835  * @invoke:	If true, the teardown function is invoked for cpus where
1836  *		cpu state >= @state
1837  *
1838  * The caller needs to hold cpus read locked while calling this function.
1839  * The teardown callback is currently not allowed to fail. Think
1840  * about module removal!
1841  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1842 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1843 {
1844 	struct cpuhp_step *sp = cpuhp_get_step(state);
1845 	int cpu;
1846 
1847 	BUG_ON(cpuhp_cb_check(state));
1848 
1849 	lockdep_assert_cpus_held();
1850 
1851 	mutex_lock(&cpuhp_state_mutex);
1852 	if (sp->multi_instance) {
1853 		WARN(!hlist_empty(&sp->list),
1854 		     "Error: Removing state %d which has instances left.\n",
1855 		     state);
1856 		goto remove;
1857 	}
1858 
1859 	if (!invoke || !cpuhp_get_teardown_cb(state))
1860 		goto remove;
1861 
1862 	/*
1863 	 * Call the teardown callback for each present cpu depending
1864 	 * on the hotplug state of the cpu. This function is not
1865 	 * allowed to fail currently!
1866 	 */
1867 	for_each_present_cpu(cpu) {
1868 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1869 		int cpustate = st->state;
1870 
1871 		if (cpustate >= state)
1872 			cpuhp_issue_call(cpu, state, false, NULL);
1873 	}
1874 remove:
1875 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1876 	mutex_unlock(&cpuhp_state_mutex);
1877 }
1878 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1879 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1880 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1881 {
1882 	cpus_read_lock();
1883 	__cpuhp_remove_state_cpuslocked(state, invoke);
1884 	cpus_read_unlock();
1885 }
1886 EXPORT_SYMBOL(__cpuhp_remove_state);
1887 
1888 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1889 static ssize_t show_cpuhp_state(struct device *dev,
1890 				struct device_attribute *attr, char *buf)
1891 {
1892 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1893 
1894 	return sprintf(buf, "%d\n", st->state);
1895 }
1896 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1897 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1898 static ssize_t write_cpuhp_target(struct device *dev,
1899 				  struct device_attribute *attr,
1900 				  const char *buf, size_t count)
1901 {
1902 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1903 	struct cpuhp_step *sp;
1904 	int target, ret;
1905 
1906 	ret = kstrtoint(buf, 10, &target);
1907 	if (ret)
1908 		return ret;
1909 
1910 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1911 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1912 		return -EINVAL;
1913 #else
1914 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1915 		return -EINVAL;
1916 #endif
1917 
1918 	ret = lock_device_hotplug_sysfs();
1919 	if (ret)
1920 		return ret;
1921 
1922 	mutex_lock(&cpuhp_state_mutex);
1923 	sp = cpuhp_get_step(target);
1924 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1925 	mutex_unlock(&cpuhp_state_mutex);
1926 	if (ret)
1927 		goto out;
1928 
1929 	if (st->state < target)
1930 		ret = do_cpu_up(dev->id, target);
1931 	else
1932 		ret = do_cpu_down(dev->id, target);
1933 out:
1934 	unlock_device_hotplug();
1935 	return ret ? ret : count;
1936 }
1937 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)1938 static ssize_t show_cpuhp_target(struct device *dev,
1939 				 struct device_attribute *attr, char *buf)
1940 {
1941 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1942 
1943 	return sprintf(buf, "%d\n", st->target);
1944 }
1945 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1946 
1947 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1948 static ssize_t write_cpuhp_fail(struct device *dev,
1949 				struct device_attribute *attr,
1950 				const char *buf, size_t count)
1951 {
1952 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1953 	struct cpuhp_step *sp;
1954 	int fail, ret;
1955 
1956 	ret = kstrtoint(buf, 10, &fail);
1957 	if (ret)
1958 		return ret;
1959 
1960 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1961 		return -EINVAL;
1962 
1963 	/*
1964 	 * Cannot fail STARTING/DYING callbacks.
1965 	 */
1966 	if (cpuhp_is_atomic_state(fail))
1967 		return -EINVAL;
1968 
1969 	/*
1970 	 * Cannot fail anything that doesn't have callbacks.
1971 	 */
1972 	mutex_lock(&cpuhp_state_mutex);
1973 	sp = cpuhp_get_step(fail);
1974 	if (!sp->startup.single && !sp->teardown.single)
1975 		ret = -EINVAL;
1976 	mutex_unlock(&cpuhp_state_mutex);
1977 	if (ret)
1978 		return ret;
1979 
1980 	st->fail = fail;
1981 
1982 	return count;
1983 }
1984 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)1985 static ssize_t show_cpuhp_fail(struct device *dev,
1986 			       struct device_attribute *attr, char *buf)
1987 {
1988 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1989 
1990 	return sprintf(buf, "%d\n", st->fail);
1991 }
1992 
1993 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1994 
1995 static struct attribute *cpuhp_cpu_attrs[] = {
1996 	&dev_attr_state.attr,
1997 	&dev_attr_target.attr,
1998 	&dev_attr_fail.attr,
1999 	NULL
2000 };
2001 
2002 static const struct attribute_group cpuhp_cpu_attr_group = {
2003 	.attrs = cpuhp_cpu_attrs,
2004 	.name = "hotplug",
2005 	NULL
2006 };
2007 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2008 static ssize_t show_cpuhp_states(struct device *dev,
2009 				 struct device_attribute *attr, char *buf)
2010 {
2011 	ssize_t cur, res = 0;
2012 	int i;
2013 
2014 	mutex_lock(&cpuhp_state_mutex);
2015 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2016 		struct cpuhp_step *sp = cpuhp_get_step(i);
2017 
2018 		if (sp->name) {
2019 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2020 			buf += cur;
2021 			res += cur;
2022 		}
2023 	}
2024 	mutex_unlock(&cpuhp_state_mutex);
2025 	return res;
2026 }
2027 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2028 
2029 static struct attribute *cpuhp_cpu_root_attrs[] = {
2030 	&dev_attr_states.attr,
2031 	NULL
2032 };
2033 
2034 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2035 	.attrs = cpuhp_cpu_root_attrs,
2036 	.name = "hotplug",
2037 	NULL
2038 };
2039 
2040 #ifdef CONFIG_HOTPLUG_SMT
2041 
2042 static const char *smt_states[] = {
2043 	[CPU_SMT_ENABLED]		= "on",
2044 	[CPU_SMT_DISABLED]		= "off",
2045 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2046 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2047 };
2048 
2049 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2050 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2051 {
2052 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2053 }
2054 
cpuhp_offline_cpu_device(unsigned int cpu)2055 static void cpuhp_offline_cpu_device(unsigned int cpu)
2056 {
2057 	struct device *dev = get_cpu_device(cpu);
2058 
2059 	dev->offline = true;
2060 	/* Tell user space about the state change */
2061 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2062 }
2063 
cpuhp_online_cpu_device(unsigned int cpu)2064 static void cpuhp_online_cpu_device(unsigned int cpu)
2065 {
2066 	struct device *dev = get_cpu_device(cpu);
2067 
2068 	dev->offline = false;
2069 	/* Tell user space about the state change */
2070 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2071 }
2072 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2073 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2074 {
2075 	int cpu, ret = 0;
2076 
2077 	cpu_maps_update_begin();
2078 	for_each_online_cpu(cpu) {
2079 		if (topology_is_primary_thread(cpu))
2080 			continue;
2081 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2082 		if (ret)
2083 			break;
2084 		/*
2085 		 * As this needs to hold the cpu maps lock it's impossible
2086 		 * to call device_offline() because that ends up calling
2087 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2088 		 * needs to be held as this might race against in kernel
2089 		 * abusers of the hotplug machinery (thermal management).
2090 		 *
2091 		 * So nothing would update device:offline state. That would
2092 		 * leave the sysfs entry stale and prevent onlining after
2093 		 * smt control has been changed to 'off' again. This is
2094 		 * called under the sysfs hotplug lock, so it is properly
2095 		 * serialized against the regular offline usage.
2096 		 */
2097 		cpuhp_offline_cpu_device(cpu);
2098 	}
2099 	if (!ret) {
2100 		cpu_smt_control = ctrlval;
2101 		arch_smt_update();
2102 	}
2103 	cpu_maps_update_done();
2104 	return ret;
2105 }
2106 
cpuhp_smt_enable(void)2107 int cpuhp_smt_enable(void)
2108 {
2109 	int cpu, ret = 0;
2110 
2111 	cpu_maps_update_begin();
2112 	cpu_smt_control = CPU_SMT_ENABLED;
2113 	arch_smt_update();
2114 	for_each_present_cpu(cpu) {
2115 		/* Skip online CPUs and CPUs on offline nodes */
2116 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2117 			continue;
2118 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2119 		if (ret)
2120 			break;
2121 		/* See comment in cpuhp_smt_disable() */
2122 		cpuhp_online_cpu_device(cpu);
2123 	}
2124 	cpu_maps_update_done();
2125 	return ret;
2126 }
2127 
2128 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2129 store_smt_control(struct device *dev, struct device_attribute *attr,
2130 		  const char *buf, size_t count)
2131 {
2132 	int ctrlval, ret;
2133 
2134 	if (sysfs_streq(buf, "on"))
2135 		ctrlval = CPU_SMT_ENABLED;
2136 	else if (sysfs_streq(buf, "off"))
2137 		ctrlval = CPU_SMT_DISABLED;
2138 	else if (sysfs_streq(buf, "forceoff"))
2139 		ctrlval = CPU_SMT_FORCE_DISABLED;
2140 	else
2141 		return -EINVAL;
2142 
2143 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2144 		return -EPERM;
2145 
2146 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2147 		return -ENODEV;
2148 
2149 	ret = lock_device_hotplug_sysfs();
2150 	if (ret)
2151 		return ret;
2152 
2153 	if (ctrlval != cpu_smt_control) {
2154 		switch (ctrlval) {
2155 		case CPU_SMT_ENABLED:
2156 			ret = cpuhp_smt_enable();
2157 			break;
2158 		case CPU_SMT_DISABLED:
2159 		case CPU_SMT_FORCE_DISABLED:
2160 			ret = cpuhp_smt_disable(ctrlval);
2161 			break;
2162 		}
2163 	}
2164 
2165 	unlock_device_hotplug();
2166 	return ret ? ret : count;
2167 }
2168 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2169 
2170 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2171 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2172 {
2173 	bool active = topology_max_smt_threads() > 1;
2174 
2175 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2176 }
2177 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2178 
2179 static struct attribute *cpuhp_smt_attrs[] = {
2180 	&dev_attr_control.attr,
2181 	&dev_attr_active.attr,
2182 	NULL
2183 };
2184 
2185 static const struct attribute_group cpuhp_smt_attr_group = {
2186 	.attrs = cpuhp_smt_attrs,
2187 	.name = "smt",
2188 	NULL
2189 };
2190 
cpu_smt_state_init(void)2191 static int __init cpu_smt_state_init(void)
2192 {
2193 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2194 				  &cpuhp_smt_attr_group);
2195 }
2196 
2197 #else
cpu_smt_state_init(void)2198 static inline int cpu_smt_state_init(void) { return 0; }
2199 #endif
2200 
cpuhp_sysfs_init(void)2201 static int __init cpuhp_sysfs_init(void)
2202 {
2203 	int cpu, ret;
2204 
2205 	ret = cpu_smt_state_init();
2206 	if (ret)
2207 		return ret;
2208 
2209 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2210 				 &cpuhp_cpu_root_attr_group);
2211 	if (ret)
2212 		return ret;
2213 
2214 	for_each_possible_cpu(cpu) {
2215 		struct device *dev = get_cpu_device(cpu);
2216 
2217 		if (!dev)
2218 			continue;
2219 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2220 		if (ret)
2221 			return ret;
2222 	}
2223 	return 0;
2224 }
2225 device_initcall(cpuhp_sysfs_init);
2226 #endif
2227 
2228 /*
2229  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2230  * represents all NR_CPUS bits binary values of 1<<nr.
2231  *
2232  * It is used by cpumask_of() to get a constant address to a CPU
2233  * mask value that has a single bit set only.
2234  */
2235 
2236 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2237 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2238 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2239 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2240 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2241 
2242 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2243 
2244 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2245 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2246 #if BITS_PER_LONG > 32
2247 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2248 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2249 #endif
2250 };
2251 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2252 
2253 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2254 EXPORT_SYMBOL(cpu_all_bits);
2255 
2256 #ifdef CONFIG_INIT_ALL_POSSIBLE
2257 struct cpumask __cpu_possible_mask __read_mostly
2258 	= {CPU_BITS_ALL};
2259 #else
2260 struct cpumask __cpu_possible_mask __read_mostly;
2261 #endif
2262 EXPORT_SYMBOL(__cpu_possible_mask);
2263 
2264 struct cpumask __cpu_online_mask __read_mostly;
2265 EXPORT_SYMBOL(__cpu_online_mask);
2266 
2267 struct cpumask __cpu_present_mask __read_mostly;
2268 EXPORT_SYMBOL(__cpu_present_mask);
2269 
2270 struct cpumask __cpu_active_mask __read_mostly;
2271 EXPORT_SYMBOL(__cpu_active_mask);
2272 
init_cpu_present(const struct cpumask * src)2273 void init_cpu_present(const struct cpumask *src)
2274 {
2275 	cpumask_copy(&__cpu_present_mask, src);
2276 }
2277 
init_cpu_possible(const struct cpumask * src)2278 void init_cpu_possible(const struct cpumask *src)
2279 {
2280 	cpumask_copy(&__cpu_possible_mask, src);
2281 }
2282 
init_cpu_online(const struct cpumask * src)2283 void init_cpu_online(const struct cpumask *src)
2284 {
2285 	cpumask_copy(&__cpu_online_mask, src);
2286 }
2287 
2288 /*
2289  * Activate the first processor.
2290  */
boot_cpu_init(void)2291 void __init boot_cpu_init(void)
2292 {
2293 	int cpu = smp_processor_id();
2294 
2295 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2296 	set_cpu_online(cpu, true);
2297 	set_cpu_active(cpu, true);
2298 	set_cpu_present(cpu, true);
2299 	set_cpu_possible(cpu, true);
2300 
2301 #ifdef CONFIG_SMP
2302 	__boot_cpu_id = cpu;
2303 #endif
2304 }
2305 
2306 /*
2307  * Must be called _AFTER_ setting up the per_cpu areas
2308  */
boot_cpu_hotplug_init(void)2309 void __init boot_cpu_hotplug_init(void)
2310 {
2311 #ifdef CONFIG_SMP
2312 	this_cpu_write(cpuhp_state.booted_once, true);
2313 #endif
2314 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2315 }
2316 
2317 /*
2318  * These are used for a global "mitigations=" cmdline option for toggling
2319  * optional CPU mitigations.
2320  */
2321 enum cpu_mitigations {
2322 	CPU_MITIGATIONS_OFF,
2323 	CPU_MITIGATIONS_AUTO,
2324 	CPU_MITIGATIONS_AUTO_NOSMT,
2325 };
2326 
2327 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2328 	CPU_MITIGATIONS_AUTO;
2329 
mitigations_parse_cmdline(char * arg)2330 static int __init mitigations_parse_cmdline(char *arg)
2331 {
2332 	if (!strcmp(arg, "off"))
2333 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2334 	else if (!strcmp(arg, "auto"))
2335 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2336 	else if (!strcmp(arg, "auto,nosmt"))
2337 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2338 	else
2339 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2340 			arg);
2341 
2342 	return 0;
2343 }
2344 early_param("mitigations", mitigations_parse_cmdline);
2345 
2346 /* mitigations=off */
cpu_mitigations_off(void)2347 bool cpu_mitigations_off(void)
2348 {
2349 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2350 }
2351 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2352 
2353 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2354 bool cpu_mitigations_auto_nosmt(void)
2355 {
2356 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2357 }
2358 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2359