1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60 /*
61 * Disable the timer for a given RPC task. Should be called with
62 * queue->lock and bh_disabled in order to avoid races within
63 * rpc_run_timer().
64 */
65 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68 if (task->tk_timeout == 0)
69 return;
70 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 task->tk_timeout = 0;
72 list_del(&task->u.tk_wait.timer_list);
73 if (list_empty(&queue->timer_list.list))
74 del_timer(&queue->timer_list.timer);
75 }
76
77 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80 queue->timer_list.expires = expires;
81 mod_timer(&queue->timer_list.timer, expires);
82 }
83
84 /*
85 * Set up a timer for the current task.
86 */
87 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 if (!task->tk_timeout)
91 return;
92
93 dprintk("RPC: %5u setting alarm for %u ms\n",
94 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96 task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)102 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
103 {
104 if (queue->priority != priority) {
105 queue->priority = priority;
106 queue->nr = 1U << priority;
107 }
108 }
109
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)110 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
111 {
112 rpc_set_waitqueue_priority(queue, queue->maxpriority);
113 }
114
115 /*
116 * Add a request to a queue list
117 */
118 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)119 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
120 {
121 struct rpc_task *t;
122
123 list_for_each_entry(t, q, u.tk_wait.list) {
124 if (t->tk_owner == task->tk_owner) {
125 list_add_tail(&task->u.tk_wait.links,
126 &t->u.tk_wait.links);
127 /* Cache the queue head in task->u.tk_wait.list */
128 task->u.tk_wait.list.next = q;
129 task->u.tk_wait.list.prev = NULL;
130 return;
131 }
132 }
133 INIT_LIST_HEAD(&task->u.tk_wait.links);
134 list_add_tail(&task->u.tk_wait.list, q);
135 }
136
137 /*
138 * Remove request from a queue list
139 */
140 static void
__rpc_list_dequeue_task(struct rpc_task * task)141 __rpc_list_dequeue_task(struct rpc_task *task)
142 {
143 struct list_head *q;
144 struct rpc_task *t;
145
146 if (task->u.tk_wait.list.prev == NULL) {
147 list_del(&task->u.tk_wait.links);
148 return;
149 }
150 if (!list_empty(&task->u.tk_wait.links)) {
151 t = list_first_entry(&task->u.tk_wait.links,
152 struct rpc_task,
153 u.tk_wait.links);
154 /* Assume __rpc_list_enqueue_task() cached the queue head */
155 q = t->u.tk_wait.list.next;
156 list_add_tail(&t->u.tk_wait.list, q);
157 list_del(&task->u.tk_wait.links);
158 }
159 list_del(&task->u.tk_wait.list);
160 }
161
162 /*
163 * Add new request to a priority queue.
164 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)165 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
166 struct rpc_task *task,
167 unsigned char queue_priority)
168 {
169 if (unlikely(queue_priority > queue->maxpriority))
170 queue_priority = queue->maxpriority;
171 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
172 }
173
174 /*
175 * Add new request to wait queue.
176 *
177 * Swapper tasks always get inserted at the head of the queue.
178 * This should avoid many nasty memory deadlocks and hopefully
179 * improve overall performance.
180 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
181 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)182 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
183 struct rpc_task *task,
184 unsigned char queue_priority)
185 {
186 WARN_ON_ONCE(RPC_IS_QUEUED(task));
187 if (RPC_IS_QUEUED(task))
188 return;
189
190 if (RPC_IS_PRIORITY(queue))
191 __rpc_add_wait_queue_priority(queue, task, queue_priority);
192 else if (RPC_IS_SWAPPER(task))
193 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
194 else
195 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
196 task->tk_waitqueue = queue;
197 queue->qlen++;
198 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
199 smp_wmb();
200 rpc_set_queued(task);
201
202 dprintk("RPC: %5u added to queue %p \"%s\"\n",
203 task->tk_pid, queue, rpc_qname(queue));
204 }
205
206 /*
207 * Remove request from a priority queue.
208 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210 {
211 __rpc_list_dequeue_task(task);
212 }
213
214 /*
215 * Remove request from queue.
216 * Note: must be called with spin lock held.
217 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219 {
220 __rpc_disable_timer(queue, task);
221 if (RPC_IS_PRIORITY(queue))
222 __rpc_remove_wait_queue_priority(task);
223 else
224 list_del(&task->u.tk_wait.list);
225 queue->qlen--;
226 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227 task->tk_pid, queue, rpc_qname(queue));
228 }
229
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)230 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
231 {
232 int i;
233
234 spin_lock_init(&queue->lock);
235 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
236 INIT_LIST_HEAD(&queue->tasks[i]);
237 queue->maxpriority = nr_queues - 1;
238 rpc_reset_waitqueue_priority(queue);
239 queue->qlen = 0;
240 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
241 INIT_LIST_HEAD(&queue->timer_list.list);
242 rpc_assign_waitqueue_name(queue, qname);
243 }
244
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)245 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246 {
247 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248 }
249 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)251 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 __rpc_init_priority_wait_queue(queue, qname, 1);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)257 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258 {
259 del_timer_sync(&queue->timer_list.timer);
260 }
261 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)263 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264 {
265 freezable_schedule_unsafe();
266 if (signal_pending_state(mode, current))
267 return -ERESTARTSYS;
268 return 0;
269 }
270
271 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)272 static void rpc_task_set_debuginfo(struct rpc_task *task)
273 {
274 static atomic_t rpc_pid;
275
276 task->tk_pid = atomic_inc_return(&rpc_pid);
277 }
278 #else
rpc_task_set_debuginfo(struct rpc_task * task)279 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 }
282 #endif
283
rpc_set_active(struct rpc_task * task)284 static void rpc_set_active(struct rpc_task *task)
285 {
286 rpc_task_set_debuginfo(task);
287 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
288 trace_rpc_task_begin(task->tk_client, task, NULL);
289 }
290
291 /*
292 * Mark an RPC call as having completed by clearing the 'active' bit
293 * and then waking up all tasks that were sleeping.
294 */
rpc_complete_task(struct rpc_task * task)295 static int rpc_complete_task(struct rpc_task *task)
296 {
297 void *m = &task->tk_runstate;
298 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
299 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
300 unsigned long flags;
301 int ret;
302
303 trace_rpc_task_complete(task->tk_client, task, NULL);
304
305 spin_lock_irqsave(&wq->lock, flags);
306 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 ret = atomic_dec_and_test(&task->tk_count);
308 if (waitqueue_active(wq))
309 __wake_up_locked_key(wq, TASK_NORMAL, &k);
310 spin_unlock_irqrestore(&wq->lock, flags);
311 return ret;
312 }
313
314 /*
315 * Allow callers to wait for completion of an RPC call
316 *
317 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318 * to enforce taking of the wq->lock and hence avoid races with
319 * rpc_complete_task().
320 */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)321 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
322 {
323 if (action == NULL)
324 action = rpc_wait_bit_killable;
325 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
326 action, TASK_KILLABLE);
327 }
328 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
329
330 /*
331 * Make an RPC task runnable.
332 *
333 * Note: If the task is ASYNC, and is being made runnable after sitting on an
334 * rpc_wait_queue, this must be called with the queue spinlock held to protect
335 * the wait queue operation.
336 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339 * the RPC_TASK_RUNNING flag.
340 */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)341 static void rpc_make_runnable(struct workqueue_struct *wq,
342 struct rpc_task *task)
343 {
344 bool need_wakeup = !rpc_test_and_set_running(task);
345
346 rpc_clear_queued(task);
347 if (!need_wakeup)
348 return;
349 if (RPC_IS_ASYNC(task)) {
350 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
351 queue_work(wq, &task->u.tk_work);
352 } else
353 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
354 }
355
356 /*
357 * Prepare for sleeping on a wait queue.
358 * By always appending tasks to the list we ensure FIFO behavior.
359 * NB: An RPC task will only receive interrupt-driven events as long
360 * as it's on a wait queue.
361 */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)362 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
363 struct rpc_task *task,
364 rpc_action action,
365 unsigned char queue_priority)
366 {
367 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368 task->tk_pid, rpc_qname(q), jiffies);
369
370 trace_rpc_task_sleep(task->tk_client, task, q);
371
372 __rpc_add_wait_queue(q, task, queue_priority);
373
374 WARN_ON_ONCE(task->tk_callback != NULL);
375 task->tk_callback = action;
376 __rpc_add_timer(q, task);
377 }
378
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)379 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
380 rpc_action action)
381 {
382 /* We shouldn't ever put an inactive task to sleep */
383 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
384 if (!RPC_IS_ACTIVATED(task)) {
385 task->tk_status = -EIO;
386 rpc_put_task_async(task);
387 return;
388 }
389
390 /*
391 * Protect the queue operations.
392 */
393 spin_lock_bh(&q->lock);
394 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
395 spin_unlock_bh(&q->lock);
396 }
397 EXPORT_SYMBOL_GPL(rpc_sleep_on);
398
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)399 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
400 rpc_action action, int priority)
401 {
402 /* We shouldn't ever put an inactive task to sleep */
403 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
404 if (!RPC_IS_ACTIVATED(task)) {
405 task->tk_status = -EIO;
406 rpc_put_task_async(task);
407 return;
408 }
409
410 /*
411 * Protect the queue operations.
412 */
413 spin_lock_bh(&q->lock);
414 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
415 spin_unlock_bh(&q->lock);
416 }
417 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
418
419 /**
420 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421 * @wq: workqueue on which to run task
422 * @queue: wait queue
423 * @task: task to be woken up
424 *
425 * Caller must hold queue->lock, and have cleared the task queued flag.
426 */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)427 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
428 struct rpc_wait_queue *queue,
429 struct rpc_task *task)
430 {
431 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432 task->tk_pid, jiffies);
433
434 /* Has the task been executed yet? If not, we cannot wake it up! */
435 if (!RPC_IS_ACTIVATED(task)) {
436 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
437 return;
438 }
439
440 trace_rpc_task_wakeup(task->tk_client, task, queue);
441
442 __rpc_remove_wait_queue(queue, task);
443
444 rpc_make_runnable(wq, task);
445
446 dprintk("RPC: __rpc_wake_up_task done\n");
447 }
448
449 /*
450 * Wake up a queued task while the queue lock is being held
451 */
rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)452 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
453 struct rpc_wait_queue *queue, struct rpc_task *task)
454 {
455 if (RPC_IS_QUEUED(task)) {
456 smp_rmb();
457 if (task->tk_waitqueue == queue)
458 __rpc_do_wake_up_task_on_wq(wq, queue, task);
459 }
460 }
461
462 /*
463 * Wake up a queued task while the queue lock is being held
464 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)465 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
468 }
469
470 /*
471 * Wake up a task on a specific queue
472 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)473 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
474 {
475 spin_lock_bh(&queue->lock);
476 rpc_wake_up_task_queue_locked(queue, task);
477 spin_unlock_bh(&queue->lock);
478 }
479 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
480
481 /*
482 * Wake up the next task on a priority queue.
483 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)484 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
485 {
486 struct list_head *q;
487 struct rpc_task *task;
488
489 /*
490 * Service a batch of tasks from a single owner.
491 */
492 q = &queue->tasks[queue->priority];
493 if (!list_empty(q) && --queue->nr) {
494 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
495 goto out;
496 }
497
498 /*
499 * Service the next queue.
500 */
501 do {
502 if (q == &queue->tasks[0])
503 q = &queue->tasks[queue->maxpriority];
504 else
505 q = q - 1;
506 if (!list_empty(q)) {
507 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
508 goto new_queue;
509 }
510 } while (q != &queue->tasks[queue->priority]);
511
512 rpc_reset_waitqueue_priority(queue);
513 return NULL;
514
515 new_queue:
516 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 out:
518 return task;
519 }
520
__rpc_find_next_queued(struct rpc_wait_queue * queue)521 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
522 {
523 if (RPC_IS_PRIORITY(queue))
524 return __rpc_find_next_queued_priority(queue);
525 if (!list_empty(&queue->tasks[0]))
526 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
527 return NULL;
528 }
529
530 /*
531 * Wake up the first task on the wait queue.
532 */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)533 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
534 struct rpc_wait_queue *queue,
535 bool (*func)(struct rpc_task *, void *), void *data)
536 {
537 struct rpc_task *task = NULL;
538
539 dprintk("RPC: wake_up_first(%p \"%s\")\n",
540 queue, rpc_qname(queue));
541 spin_lock_bh(&queue->lock);
542 task = __rpc_find_next_queued(queue);
543 if (task != NULL) {
544 if (func(task, data))
545 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
546 else
547 task = NULL;
548 }
549 spin_unlock_bh(&queue->lock);
550
551 return task;
552 }
553
554 /*
555 * Wake up the first task on the wait queue.
556 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)557 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
558 bool (*func)(struct rpc_task *, void *), void *data)
559 {
560 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
561 }
562 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
563
rpc_wake_up_next_func(struct rpc_task * task,void * data)564 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
565 {
566 return true;
567 }
568
569 /*
570 * Wake up the next task on the wait queue.
571 */
rpc_wake_up_next(struct rpc_wait_queue * queue)572 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
573 {
574 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
575 }
576 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
577
578 /**
579 * rpc_wake_up - wake up all rpc_tasks
580 * @queue: rpc_wait_queue on which the tasks are sleeping
581 *
582 * Grabs queue->lock
583 */
rpc_wake_up(struct rpc_wait_queue * queue)584 void rpc_wake_up(struct rpc_wait_queue *queue)
585 {
586 struct list_head *head;
587
588 spin_lock_bh(&queue->lock);
589 head = &queue->tasks[queue->maxpriority];
590 for (;;) {
591 while (!list_empty(head)) {
592 struct rpc_task *task;
593 task = list_first_entry(head,
594 struct rpc_task,
595 u.tk_wait.list);
596 rpc_wake_up_task_queue_locked(queue, task);
597 }
598 if (head == &queue->tasks[0])
599 break;
600 head--;
601 }
602 spin_unlock_bh(&queue->lock);
603 }
604 EXPORT_SYMBOL_GPL(rpc_wake_up);
605
606 /**
607 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
608 * @queue: rpc_wait_queue on which the tasks are sleeping
609 * @status: status value to set
610 *
611 * Grabs queue->lock
612 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)613 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
614 {
615 struct list_head *head;
616
617 spin_lock_bh(&queue->lock);
618 head = &queue->tasks[queue->maxpriority];
619 for (;;) {
620 while (!list_empty(head)) {
621 struct rpc_task *task;
622 task = list_first_entry(head,
623 struct rpc_task,
624 u.tk_wait.list);
625 task->tk_status = status;
626 rpc_wake_up_task_queue_locked(queue, task);
627 }
628 if (head == &queue->tasks[0])
629 break;
630 head--;
631 }
632 spin_unlock_bh(&queue->lock);
633 }
634 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
635
__rpc_queue_timer_fn(unsigned long ptr)636 static void __rpc_queue_timer_fn(unsigned long ptr)
637 {
638 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
639 struct rpc_task *task, *n;
640 unsigned long expires, now, timeo;
641
642 spin_lock(&queue->lock);
643 expires = now = jiffies;
644 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
645 timeo = task->u.tk_wait.expires;
646 if (time_after_eq(now, timeo)) {
647 dprintk("RPC: %5u timeout\n", task->tk_pid);
648 task->tk_status = -ETIMEDOUT;
649 rpc_wake_up_task_queue_locked(queue, task);
650 continue;
651 }
652 if (expires == now || time_after(expires, timeo))
653 expires = timeo;
654 }
655 if (!list_empty(&queue->timer_list.list))
656 rpc_set_queue_timer(queue, expires);
657 spin_unlock(&queue->lock);
658 }
659
__rpc_atrun(struct rpc_task * task)660 static void __rpc_atrun(struct rpc_task *task)
661 {
662 if (task->tk_status == -ETIMEDOUT)
663 task->tk_status = 0;
664 }
665
666 /*
667 * Run a task at a later time
668 */
rpc_delay(struct rpc_task * task,unsigned long delay)669 void rpc_delay(struct rpc_task *task, unsigned long delay)
670 {
671 task->tk_timeout = delay;
672 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
673 }
674 EXPORT_SYMBOL_GPL(rpc_delay);
675
676 /*
677 * Helper to call task->tk_ops->rpc_call_prepare
678 */
rpc_prepare_task(struct rpc_task * task)679 void rpc_prepare_task(struct rpc_task *task)
680 {
681 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
682 }
683
684 static void
rpc_init_task_statistics(struct rpc_task * task)685 rpc_init_task_statistics(struct rpc_task *task)
686 {
687 /* Initialize retry counters */
688 task->tk_garb_retry = 2;
689 task->tk_cred_retry = 2;
690 task->tk_rebind_retry = 2;
691
692 /* starting timestamp */
693 task->tk_start = ktime_get();
694 }
695
696 static void
rpc_reset_task_statistics(struct rpc_task * task)697 rpc_reset_task_statistics(struct rpc_task *task)
698 {
699 task->tk_timeouts = 0;
700 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
701
702 rpc_init_task_statistics(task);
703 }
704
705 /*
706 * Helper that calls task->tk_ops->rpc_call_done if it exists
707 */
rpc_exit_task(struct rpc_task * task)708 void rpc_exit_task(struct rpc_task *task)
709 {
710 task->tk_action = NULL;
711 if (task->tk_ops->rpc_call_done != NULL) {
712 task->tk_ops->rpc_call_done(task, task->tk_calldata);
713 if (task->tk_action != NULL) {
714 WARN_ON(RPC_ASSASSINATED(task));
715 /* Always release the RPC slot and buffer memory */
716 xprt_release(task);
717 rpc_reset_task_statistics(task);
718 }
719 }
720 }
721
rpc_exit(struct rpc_task * task,int status)722 void rpc_exit(struct rpc_task *task, int status)
723 {
724 task->tk_status = status;
725 task->tk_action = rpc_exit_task;
726 if (RPC_IS_QUEUED(task))
727 rpc_wake_up_queued_task(task->tk_waitqueue, task);
728 }
729 EXPORT_SYMBOL_GPL(rpc_exit);
730
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)731 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
732 {
733 if (ops->rpc_release != NULL)
734 ops->rpc_release(calldata);
735 }
736
737 /*
738 * This is the RPC `scheduler' (or rather, the finite state machine).
739 */
__rpc_execute(struct rpc_task * task)740 static void __rpc_execute(struct rpc_task *task)
741 {
742 struct rpc_wait_queue *queue;
743 int task_is_async = RPC_IS_ASYNC(task);
744 int status = 0;
745
746 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
747 task->tk_pid, task->tk_flags);
748
749 WARN_ON_ONCE(RPC_IS_QUEUED(task));
750 if (RPC_IS_QUEUED(task))
751 return;
752
753 for (;;) {
754 void (*do_action)(struct rpc_task *);
755
756 /*
757 * Execute any pending callback first.
758 */
759 do_action = task->tk_callback;
760 task->tk_callback = NULL;
761 if (do_action == NULL) {
762 /*
763 * Perform the next FSM step.
764 * tk_action may be NULL if the task has been killed.
765 * In particular, note that rpc_killall_tasks may
766 * do this at any time, so beware when dereferencing.
767 */
768 do_action = task->tk_action;
769 if (do_action == NULL)
770 break;
771 }
772 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
773 do_action(task);
774
775 /*
776 * Lockless check for whether task is sleeping or not.
777 */
778 if (!RPC_IS_QUEUED(task))
779 continue;
780 /*
781 * The queue->lock protects against races with
782 * rpc_make_runnable().
783 *
784 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
785 * rpc_task, rpc_make_runnable() can assign it to a
786 * different workqueue. We therefore cannot assume that the
787 * rpc_task pointer may still be dereferenced.
788 */
789 queue = task->tk_waitqueue;
790 spin_lock_bh(&queue->lock);
791 if (!RPC_IS_QUEUED(task)) {
792 spin_unlock_bh(&queue->lock);
793 continue;
794 }
795 rpc_clear_running(task);
796 spin_unlock_bh(&queue->lock);
797 if (task_is_async)
798 return;
799
800 /* sync task: sleep here */
801 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
802 status = out_of_line_wait_on_bit(&task->tk_runstate,
803 RPC_TASK_QUEUED, rpc_wait_bit_killable,
804 TASK_KILLABLE);
805 if (status == -ERESTARTSYS) {
806 /*
807 * When a sync task receives a signal, it exits with
808 * -ERESTARTSYS. In order to catch any callbacks that
809 * clean up after sleeping on some queue, we don't
810 * break the loop here, but go around once more.
811 */
812 dprintk("RPC: %5u got signal\n", task->tk_pid);
813 task->tk_flags |= RPC_TASK_KILLED;
814 rpc_exit(task, -ERESTARTSYS);
815 }
816 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
817 }
818
819 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
820 task->tk_status);
821 /* Release all resources associated with the task */
822 rpc_release_task(task);
823 }
824
825 /*
826 * User-visible entry point to the scheduler.
827 *
828 * This may be called recursively if e.g. an async NFS task updates
829 * the attributes and finds that dirty pages must be flushed.
830 * NOTE: Upon exit of this function the task is guaranteed to be
831 * released. In particular note that tk_release() will have
832 * been called, so your task memory may have been freed.
833 */
rpc_execute(struct rpc_task * task)834 void rpc_execute(struct rpc_task *task)
835 {
836 bool is_async = RPC_IS_ASYNC(task);
837
838 rpc_set_active(task);
839 rpc_make_runnable(rpciod_workqueue, task);
840 if (!is_async)
841 __rpc_execute(task);
842 }
843
rpc_async_schedule(struct work_struct * work)844 static void rpc_async_schedule(struct work_struct *work)
845 {
846 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
847 }
848
849 /**
850 * rpc_malloc - allocate RPC buffer resources
851 * @task: RPC task
852 *
853 * A single memory region is allocated, which is split between the
854 * RPC call and RPC reply that this task is being used for. When
855 * this RPC is retired, the memory is released by calling rpc_free.
856 *
857 * To prevent rpciod from hanging, this allocator never sleeps,
858 * returning -ENOMEM and suppressing warning if the request cannot
859 * be serviced immediately. The caller can arrange to sleep in a
860 * way that is safe for rpciod.
861 *
862 * Most requests are 'small' (under 2KiB) and can be serviced from a
863 * mempool, ensuring that NFS reads and writes can always proceed,
864 * and that there is good locality of reference for these buffers.
865 *
866 * In order to avoid memory starvation triggering more writebacks of
867 * NFS requests, we avoid using GFP_KERNEL.
868 */
rpc_malloc(struct rpc_task * task)869 int rpc_malloc(struct rpc_task *task)
870 {
871 struct rpc_rqst *rqst = task->tk_rqstp;
872 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
873 struct rpc_buffer *buf;
874 gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
875
876 if (RPC_IS_SWAPPER(task))
877 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
878
879 size += sizeof(struct rpc_buffer);
880 if (size <= RPC_BUFFER_MAXSIZE)
881 buf = mempool_alloc(rpc_buffer_mempool, gfp);
882 else
883 buf = kmalloc(size, gfp);
884
885 if (!buf)
886 return -ENOMEM;
887
888 buf->len = size;
889 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
890 task->tk_pid, size, buf);
891 rqst->rq_buffer = buf->data;
892 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
893 return 0;
894 }
895 EXPORT_SYMBOL_GPL(rpc_malloc);
896
897 /**
898 * rpc_free - free RPC buffer resources allocated via rpc_malloc
899 * @task: RPC task
900 *
901 */
rpc_free(struct rpc_task * task)902 void rpc_free(struct rpc_task *task)
903 {
904 void *buffer = task->tk_rqstp->rq_buffer;
905 size_t size;
906 struct rpc_buffer *buf;
907
908 buf = container_of(buffer, struct rpc_buffer, data);
909 size = buf->len;
910
911 dprintk("RPC: freeing buffer of size %zu at %p\n",
912 size, buf);
913
914 if (size <= RPC_BUFFER_MAXSIZE)
915 mempool_free(buf, rpc_buffer_mempool);
916 else
917 kfree(buf);
918 }
919 EXPORT_SYMBOL_GPL(rpc_free);
920
921 /*
922 * Creation and deletion of RPC task structures
923 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)924 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
925 {
926 memset(task, 0, sizeof(*task));
927 atomic_set(&task->tk_count, 1);
928 task->tk_flags = task_setup_data->flags;
929 task->tk_ops = task_setup_data->callback_ops;
930 task->tk_calldata = task_setup_data->callback_data;
931 INIT_LIST_HEAD(&task->tk_task);
932
933 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
934 task->tk_owner = current->tgid;
935
936 /* Initialize workqueue for async tasks */
937 task->tk_workqueue = task_setup_data->workqueue;
938
939 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
940
941 if (task->tk_ops->rpc_call_prepare != NULL)
942 task->tk_action = rpc_prepare_task;
943
944 rpc_init_task_statistics(task);
945
946 dprintk("RPC: new task initialized, procpid %u\n",
947 task_pid_nr(current));
948 }
949
950 static struct rpc_task *
rpc_alloc_task(void)951 rpc_alloc_task(void)
952 {
953 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
954 }
955
956 /*
957 * Create a new task for the specified client.
958 */
rpc_new_task(const struct rpc_task_setup * setup_data)959 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
960 {
961 struct rpc_task *task = setup_data->task;
962 unsigned short flags = 0;
963
964 if (task == NULL) {
965 task = rpc_alloc_task();
966 flags = RPC_TASK_DYNAMIC;
967 }
968
969 rpc_init_task(task, setup_data);
970 task->tk_flags |= flags;
971 dprintk("RPC: allocated task %p\n", task);
972 return task;
973 }
974
975 /*
976 * rpc_free_task - release rpc task and perform cleanups
977 *
978 * Note that we free up the rpc_task _after_ rpc_release_calldata()
979 * in order to work around a workqueue dependency issue.
980 *
981 * Tejun Heo states:
982 * "Workqueue currently considers two work items to be the same if they're
983 * on the same address and won't execute them concurrently - ie. it
984 * makes a work item which is queued again while being executed wait
985 * for the previous execution to complete.
986 *
987 * If a work function frees the work item, and then waits for an event
988 * which should be performed by another work item and *that* work item
989 * recycles the freed work item, it can create a false dependency loop.
990 * There really is no reliable way to detect this short of verifying
991 * every memory free."
992 *
993 */
rpc_free_task(struct rpc_task * task)994 static void rpc_free_task(struct rpc_task *task)
995 {
996 unsigned short tk_flags = task->tk_flags;
997
998 rpc_release_calldata(task->tk_ops, task->tk_calldata);
999
1000 if (tk_flags & RPC_TASK_DYNAMIC) {
1001 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1002 mempool_free(task, rpc_task_mempool);
1003 }
1004 }
1005
rpc_async_release(struct work_struct * work)1006 static void rpc_async_release(struct work_struct *work)
1007 {
1008 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1009 }
1010
rpc_release_resources_task(struct rpc_task * task)1011 static void rpc_release_resources_task(struct rpc_task *task)
1012 {
1013 xprt_release(task);
1014 if (task->tk_msg.rpc_cred) {
1015 put_rpccred(task->tk_msg.rpc_cred);
1016 task->tk_msg.rpc_cred = NULL;
1017 }
1018 rpc_task_release_client(task);
1019 }
1020
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1021 static void rpc_final_put_task(struct rpc_task *task,
1022 struct workqueue_struct *q)
1023 {
1024 if (q != NULL) {
1025 INIT_WORK(&task->u.tk_work, rpc_async_release);
1026 queue_work(q, &task->u.tk_work);
1027 } else
1028 rpc_free_task(task);
1029 }
1030
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1031 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1032 {
1033 if (atomic_dec_and_test(&task->tk_count)) {
1034 rpc_release_resources_task(task);
1035 rpc_final_put_task(task, q);
1036 }
1037 }
1038
rpc_put_task(struct rpc_task * task)1039 void rpc_put_task(struct rpc_task *task)
1040 {
1041 rpc_do_put_task(task, NULL);
1042 }
1043 EXPORT_SYMBOL_GPL(rpc_put_task);
1044
rpc_put_task_async(struct rpc_task * task)1045 void rpc_put_task_async(struct rpc_task *task)
1046 {
1047 rpc_do_put_task(task, task->tk_workqueue);
1048 }
1049 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1050
rpc_release_task(struct rpc_task * task)1051 static void rpc_release_task(struct rpc_task *task)
1052 {
1053 dprintk("RPC: %5u release task\n", task->tk_pid);
1054
1055 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1056
1057 rpc_release_resources_task(task);
1058
1059 /*
1060 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1061 * so it should be safe to use task->tk_count as a test for whether
1062 * or not any other processes still hold references to our rpc_task.
1063 */
1064 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1065 /* Wake up anyone who may be waiting for task completion */
1066 if (!rpc_complete_task(task))
1067 return;
1068 } else {
1069 if (!atomic_dec_and_test(&task->tk_count))
1070 return;
1071 }
1072 rpc_final_put_task(task, task->tk_workqueue);
1073 }
1074
rpciod_up(void)1075 int rpciod_up(void)
1076 {
1077 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1078 }
1079
rpciod_down(void)1080 void rpciod_down(void)
1081 {
1082 module_put(THIS_MODULE);
1083 }
1084
1085 /*
1086 * Start up the rpciod workqueue.
1087 */
rpciod_start(void)1088 static int rpciod_start(void)
1089 {
1090 struct workqueue_struct *wq;
1091
1092 /*
1093 * Create the rpciod thread and wait for it to start.
1094 */
1095 dprintk("RPC: creating workqueue rpciod\n");
1096 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1097 if (!wq)
1098 goto out_failed;
1099 rpciod_workqueue = wq;
1100 /* Note: highpri because network receive is latency sensitive */
1101 wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1102 if (!wq)
1103 goto free_rpciod;
1104 xprtiod_workqueue = wq;
1105 return 1;
1106 free_rpciod:
1107 wq = rpciod_workqueue;
1108 rpciod_workqueue = NULL;
1109 destroy_workqueue(wq);
1110 out_failed:
1111 return 0;
1112 }
1113
rpciod_stop(void)1114 static void rpciod_stop(void)
1115 {
1116 struct workqueue_struct *wq = NULL;
1117
1118 if (rpciod_workqueue == NULL)
1119 return;
1120 dprintk("RPC: destroying workqueue rpciod\n");
1121
1122 wq = rpciod_workqueue;
1123 rpciod_workqueue = NULL;
1124 destroy_workqueue(wq);
1125 wq = xprtiod_workqueue;
1126 xprtiod_workqueue = NULL;
1127 destroy_workqueue(wq);
1128 }
1129
1130 void
rpc_destroy_mempool(void)1131 rpc_destroy_mempool(void)
1132 {
1133 rpciod_stop();
1134 mempool_destroy(rpc_buffer_mempool);
1135 mempool_destroy(rpc_task_mempool);
1136 kmem_cache_destroy(rpc_task_slabp);
1137 kmem_cache_destroy(rpc_buffer_slabp);
1138 rpc_destroy_wait_queue(&delay_queue);
1139 }
1140
1141 int
rpc_init_mempool(void)1142 rpc_init_mempool(void)
1143 {
1144 /*
1145 * The following is not strictly a mempool initialisation,
1146 * but there is no harm in doing it here
1147 */
1148 rpc_init_wait_queue(&delay_queue, "delayq");
1149 if (!rpciod_start())
1150 goto err_nomem;
1151
1152 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1153 sizeof(struct rpc_task),
1154 0, SLAB_HWCACHE_ALIGN,
1155 NULL);
1156 if (!rpc_task_slabp)
1157 goto err_nomem;
1158 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1159 RPC_BUFFER_MAXSIZE,
1160 0, SLAB_HWCACHE_ALIGN,
1161 NULL);
1162 if (!rpc_buffer_slabp)
1163 goto err_nomem;
1164 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1165 rpc_task_slabp);
1166 if (!rpc_task_mempool)
1167 goto err_nomem;
1168 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1169 rpc_buffer_slabp);
1170 if (!rpc_buffer_mempool)
1171 goto err_nomem;
1172 return 0;
1173 err_nomem:
1174 rpc_destroy_mempool();
1175 return -ENOMEM;
1176 }
1177