1 /*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #define pr_fmt(fmt) "%s: " fmt, __func__
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44
45 #include "remoteproc_internal.h"
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
54
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
62 };
63
64 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
66 {
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
70 }
71
72 /*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
79 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
82 {
83 struct rproc *rproc = token;
84
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
89 /*
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
92 */
93 return -ENOSYS;
94 }
95
rproc_enable_iommu(struct rproc * rproc)96 static int rproc_enable_iommu(struct rproc *rproc)
97 {
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
101
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
128 }
129
rproc_disable_iommu(struct rproc * rproc)130 static void rproc_disable_iommu(struct rproc *rproc)
131 {
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
140 }
141
142 /**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
170 */
rproc_da_to_va(struct rproc * rproc,u64 da,int len)171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 {
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
198 out:
199 return ptr;
200 }
201 EXPORT_SYMBOL(rproc_da_to_va);
202
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204 {
205 struct rproc *rproc = rvdev->rproc;
206 struct device *dev = &rproc->dev;
207 struct rproc_vring *rvring = &rvdev->vring[i];
208 struct fw_rsc_vdev *rsc;
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
212
213 /* actual size of vring (in bytes) */
214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 if (!va) {
222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 return -EINVAL;
224 }
225
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
229 * TODO: support predefined notifyids (via resource table)
230 */
231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 if (ret < 0) {
233 dev_err(dev, "idr_alloc failed: %d\n", ret);
234 dma_free_coherent(dev->parent, size, va, dma);
235 return ret;
236 }
237 notifyid = ret;
238
239 /* Potentially bump max_notifyid */
240 if (notifyid > rproc->max_notifyid)
241 rproc->max_notifyid = notifyid;
242
243 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
244 i, va, &dma, size, notifyid);
245
246 rvring->va = va;
247 rvring->dma = dma;
248 rvring->notifyid = notifyid;
249
250 /*
251 * Let the rproc know the notifyid and da of this vring.
252 * Not all platforms use dma_alloc_coherent to automatically
253 * set up the iommu. In this case the device address (da) will
254 * hold the physical address and not the device address.
255 */
256 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
257 rsc->vring[i].da = dma;
258 rsc->vring[i].notifyid = notifyid;
259 return 0;
260 }
261
262 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)263 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
264 {
265 struct rproc *rproc = rvdev->rproc;
266 struct device *dev = &rproc->dev;
267 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
268 struct rproc_vring *rvring = &rvdev->vring[i];
269
270 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
271 i, vring->da, vring->num, vring->align);
272
273 /* verify queue size and vring alignment are sane */
274 if (!vring->num || !vring->align) {
275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276 vring->num, vring->align);
277 return -EINVAL;
278 }
279
280 rvring->len = vring->num;
281 rvring->align = vring->align;
282 rvring->rvdev = rvdev;
283
284 return 0;
285 }
286
rproc_free_vring(struct rproc_vring * rvring)287 void rproc_free_vring(struct rproc_vring *rvring)
288 {
289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
290 struct rproc *rproc = rvring->rvdev->rproc;
291 int idx = rvring->rvdev->vring - rvring;
292 struct fw_rsc_vdev *rsc;
293
294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295 idr_remove(&rproc->notifyids, rvring->notifyid);
296
297 /* reset resource entry info */
298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
299 rsc->vring[idx].da = 0;
300 rsc->vring[idx].notifyid = -1;
301 }
302
rproc_vdev_do_probe(struct rproc_subdev * subdev)303 static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
304 {
305 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
306
307 return rproc_add_virtio_dev(rvdev, rvdev->id);
308 }
309
rproc_vdev_do_remove(struct rproc_subdev * subdev)310 static void rproc_vdev_do_remove(struct rproc_subdev *subdev)
311 {
312 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
313
314 rproc_remove_virtio_dev(rvdev);
315 }
316
317 /**
318 * rproc_handle_vdev() - handle a vdev fw resource
319 * @rproc: the remote processor
320 * @rsc: the vring resource descriptor
321 * @avail: size of available data (for sanity checking the image)
322 *
323 * This resource entry requests the host to statically register a virtio
324 * device (vdev), and setup everything needed to support it. It contains
325 * everything needed to make it possible: the virtio device id, virtio
326 * device features, vrings information, virtio config space, etc...
327 *
328 * Before registering the vdev, the vrings are allocated from non-cacheable
329 * physically contiguous memory. Currently we only support two vrings per
330 * remote processor (temporary limitation). We might also want to consider
331 * doing the vring allocation only later when ->find_vqs() is invoked, and
332 * then release them upon ->del_vqs().
333 *
334 * Note: @da is currently not really handled correctly: we dynamically
335 * allocate it using the DMA API, ignoring requested hard coded addresses,
336 * and we don't take care of any required IOMMU programming. This is all
337 * going to be taken care of when the generic iommu-based DMA API will be
338 * merged. Meanwhile, statically-addressed iommu-based firmware images should
339 * use RSC_DEVMEM resource entries to map their required @da to the physical
340 * address of their base CMA region (ouch, hacky!).
341 *
342 * Returns 0 on success, or an appropriate error code otherwise
343 */
rproc_handle_vdev(struct rproc * rproc,struct fw_rsc_vdev * rsc,int offset,int avail)344 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
345 int offset, int avail)
346 {
347 struct device *dev = &rproc->dev;
348 struct rproc_vdev *rvdev;
349 int i, ret;
350
351 /* make sure resource isn't truncated */
352 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
353 + rsc->config_len > avail) {
354 dev_err(dev, "vdev rsc is truncated\n");
355 return -EINVAL;
356 }
357
358 /* make sure reserved bytes are zeroes */
359 if (rsc->reserved[0] || rsc->reserved[1]) {
360 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
361 return -EINVAL;
362 }
363
364 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
365 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
366
367 /* we currently support only two vrings per rvdev */
368 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
369 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
370 return -EINVAL;
371 }
372
373 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
374 if (!rvdev)
375 return -ENOMEM;
376
377 kref_init(&rvdev->refcount);
378
379 rvdev->id = rsc->id;
380 rvdev->rproc = rproc;
381
382 /* parse the vrings */
383 for (i = 0; i < rsc->num_of_vrings; i++) {
384 ret = rproc_parse_vring(rvdev, rsc, i);
385 if (ret)
386 goto free_rvdev;
387 }
388
389 /* remember the resource offset*/
390 rvdev->rsc_offset = offset;
391
392 /* allocate the vring resources */
393 for (i = 0; i < rsc->num_of_vrings; i++) {
394 ret = rproc_alloc_vring(rvdev, i);
395 if (ret)
396 goto unwind_vring_allocations;
397 }
398
399 list_add_tail(&rvdev->node, &rproc->rvdevs);
400
401 rproc_add_subdev(rproc, &rvdev->subdev,
402 rproc_vdev_do_probe, rproc_vdev_do_remove);
403
404 return 0;
405
406 unwind_vring_allocations:
407 for (i--; i >= 0; i--)
408 rproc_free_vring(&rvdev->vring[i]);
409 free_rvdev:
410 kfree(rvdev);
411 return ret;
412 }
413
rproc_vdev_release(struct kref * ref)414 void rproc_vdev_release(struct kref *ref)
415 {
416 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
417 struct rproc_vring *rvring;
418 struct rproc *rproc = rvdev->rproc;
419 int id;
420
421 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
422 rvring = &rvdev->vring[id];
423 if (!rvring->va)
424 continue;
425
426 rproc_free_vring(rvring);
427 }
428
429 rproc_remove_subdev(rproc, &rvdev->subdev);
430 list_del(&rvdev->node);
431 kfree(rvdev);
432 }
433
434 /**
435 * rproc_handle_trace() - handle a shared trace buffer resource
436 * @rproc: the remote processor
437 * @rsc: the trace resource descriptor
438 * @avail: size of available data (for sanity checking the image)
439 *
440 * In case the remote processor dumps trace logs into memory,
441 * export it via debugfs.
442 *
443 * Currently, the 'da' member of @rsc should contain the device address
444 * where the remote processor is dumping the traces. Later we could also
445 * support dynamically allocating this address using the generic
446 * DMA API (but currently there isn't a use case for that).
447 *
448 * Returns 0 on success, or an appropriate error code otherwise
449 */
rproc_handle_trace(struct rproc * rproc,struct fw_rsc_trace * rsc,int offset,int avail)450 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
451 int offset, int avail)
452 {
453 struct rproc_mem_entry *trace;
454 struct device *dev = &rproc->dev;
455 void *ptr;
456 char name[15];
457
458 if (sizeof(*rsc) > avail) {
459 dev_err(dev, "trace rsc is truncated\n");
460 return -EINVAL;
461 }
462
463 /* make sure reserved bytes are zeroes */
464 if (rsc->reserved) {
465 dev_err(dev, "trace rsc has non zero reserved bytes\n");
466 return -EINVAL;
467 }
468
469 /* what's the kernel address of this resource ? */
470 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
471 if (!ptr) {
472 dev_err(dev, "erroneous trace resource entry\n");
473 return -EINVAL;
474 }
475
476 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
477 if (!trace)
478 return -ENOMEM;
479
480 /* set the trace buffer dma properties */
481 trace->len = rsc->len;
482 trace->va = ptr;
483
484 /* make sure snprintf always null terminates, even if truncating */
485 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
486
487 /* create the debugfs entry */
488 trace->priv = rproc_create_trace_file(name, rproc, trace);
489 if (!trace->priv) {
490 trace->va = NULL;
491 kfree(trace);
492 return -EINVAL;
493 }
494
495 list_add_tail(&trace->node, &rproc->traces);
496
497 rproc->num_traces++;
498
499 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
500 name, ptr, rsc->da, rsc->len);
501
502 return 0;
503 }
504
505 /**
506 * rproc_handle_devmem() - handle devmem resource entry
507 * @rproc: remote processor handle
508 * @rsc: the devmem resource entry
509 * @avail: size of available data (for sanity checking the image)
510 *
511 * Remote processors commonly need to access certain on-chip peripherals.
512 *
513 * Some of these remote processors access memory via an iommu device,
514 * and might require us to configure their iommu before they can access
515 * the on-chip peripherals they need.
516 *
517 * This resource entry is a request to map such a peripheral device.
518 *
519 * These devmem entries will contain the physical address of the device in
520 * the 'pa' member. If a specific device address is expected, then 'da' will
521 * contain it (currently this is the only use case supported). 'len' will
522 * contain the size of the physical region we need to map.
523 *
524 * Currently we just "trust" those devmem entries to contain valid physical
525 * addresses, but this is going to change: we want the implementations to
526 * tell us ranges of physical addresses the firmware is allowed to request,
527 * and not allow firmwares to request access to physical addresses that
528 * are outside those ranges.
529 */
rproc_handle_devmem(struct rproc * rproc,struct fw_rsc_devmem * rsc,int offset,int avail)530 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
531 int offset, int avail)
532 {
533 struct rproc_mem_entry *mapping;
534 struct device *dev = &rproc->dev;
535 int ret;
536
537 /* no point in handling this resource without a valid iommu domain */
538 if (!rproc->domain)
539 return -EINVAL;
540
541 if (sizeof(*rsc) > avail) {
542 dev_err(dev, "devmem rsc is truncated\n");
543 return -EINVAL;
544 }
545
546 /* make sure reserved bytes are zeroes */
547 if (rsc->reserved) {
548 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
549 return -EINVAL;
550 }
551
552 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
553 if (!mapping)
554 return -ENOMEM;
555
556 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
557 if (ret) {
558 dev_err(dev, "failed to map devmem: %d\n", ret);
559 goto out;
560 }
561
562 /*
563 * We'll need this info later when we'll want to unmap everything
564 * (e.g. on shutdown).
565 *
566 * We can't trust the remote processor not to change the resource
567 * table, so we must maintain this info independently.
568 */
569 mapping->da = rsc->da;
570 mapping->len = rsc->len;
571 list_add_tail(&mapping->node, &rproc->mappings);
572
573 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
574 rsc->pa, rsc->da, rsc->len);
575
576 return 0;
577
578 out:
579 kfree(mapping);
580 return ret;
581 }
582
583 /**
584 * rproc_handle_carveout() - handle phys contig memory allocation requests
585 * @rproc: rproc handle
586 * @rsc: the resource entry
587 * @avail: size of available data (for image validation)
588 *
589 * This function will handle firmware requests for allocation of physically
590 * contiguous memory regions.
591 *
592 * These request entries should come first in the firmware's resource table,
593 * as other firmware entries might request placing other data objects inside
594 * these memory regions (e.g. data/code segments, trace resource entries, ...).
595 *
596 * Allocating memory this way helps utilizing the reserved physical memory
597 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
598 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
599 * pressure is important; it may have a substantial impact on performance.
600 */
rproc_handle_carveout(struct rproc * rproc,struct fw_rsc_carveout * rsc,int offset,int avail)601 static int rproc_handle_carveout(struct rproc *rproc,
602 struct fw_rsc_carveout *rsc,
603 int offset, int avail)
604 {
605 struct rproc_mem_entry *carveout, *mapping;
606 struct device *dev = &rproc->dev;
607 dma_addr_t dma;
608 void *va;
609 int ret;
610
611 if (sizeof(*rsc) > avail) {
612 dev_err(dev, "carveout rsc is truncated\n");
613 return -EINVAL;
614 }
615
616 /* make sure reserved bytes are zeroes */
617 if (rsc->reserved) {
618 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
619 return -EINVAL;
620 }
621
622 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
623 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
624
625 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
626 if (!carveout)
627 return -ENOMEM;
628
629 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
630 if (!va) {
631 dev_err(dev->parent,
632 "failed to allocate dma memory: len 0x%x\n", rsc->len);
633 ret = -ENOMEM;
634 goto free_carv;
635 }
636
637 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
638 va, &dma, rsc->len);
639
640 /*
641 * Ok, this is non-standard.
642 *
643 * Sometimes we can't rely on the generic iommu-based DMA API
644 * to dynamically allocate the device address and then set the IOMMU
645 * tables accordingly, because some remote processors might
646 * _require_ us to use hard coded device addresses that their
647 * firmware was compiled with.
648 *
649 * In this case, we must use the IOMMU API directly and map
650 * the memory to the device address as expected by the remote
651 * processor.
652 *
653 * Obviously such remote processor devices should not be configured
654 * to use the iommu-based DMA API: we expect 'dma' to contain the
655 * physical address in this case.
656 */
657 if (rproc->domain) {
658 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
659 if (!mapping) {
660 ret = -ENOMEM;
661 goto dma_free;
662 }
663
664 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
665 rsc->flags);
666 if (ret) {
667 dev_err(dev, "iommu_map failed: %d\n", ret);
668 goto free_mapping;
669 }
670
671 /*
672 * We'll need this info later when we'll want to unmap
673 * everything (e.g. on shutdown).
674 *
675 * We can't trust the remote processor not to change the
676 * resource table, so we must maintain this info independently.
677 */
678 mapping->da = rsc->da;
679 mapping->len = rsc->len;
680 list_add_tail(&mapping->node, &rproc->mappings);
681
682 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
683 rsc->da, &dma);
684 }
685
686 /*
687 * Some remote processors might need to know the pa
688 * even though they are behind an IOMMU. E.g., OMAP4's
689 * remote M3 processor needs this so it can control
690 * on-chip hardware accelerators that are not behind
691 * the IOMMU, and therefor must know the pa.
692 *
693 * Generally we don't want to expose physical addresses
694 * if we don't have to (remote processors are generally
695 * _not_ trusted), so we might want to do this only for
696 * remote processor that _must_ have this (e.g. OMAP4's
697 * dual M3 subsystem).
698 *
699 * Non-IOMMU processors might also want to have this info.
700 * In this case, the device address and the physical address
701 * are the same.
702 */
703 rsc->pa = dma;
704
705 carveout->va = va;
706 carveout->len = rsc->len;
707 carveout->dma = dma;
708 carveout->da = rsc->da;
709
710 list_add_tail(&carveout->node, &rproc->carveouts);
711
712 return 0;
713
714 free_mapping:
715 kfree(mapping);
716 dma_free:
717 dma_free_coherent(dev->parent, rsc->len, va, dma);
718 free_carv:
719 kfree(carveout);
720 return ret;
721 }
722
723 /*
724 * A lookup table for resource handlers. The indices are defined in
725 * enum fw_resource_type.
726 */
727 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
728 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
729 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
730 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
731 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
732 };
733
734 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,int len,rproc_handle_resource_t handlers[RSC_LAST])735 static int rproc_handle_resources(struct rproc *rproc, int len,
736 rproc_handle_resource_t handlers[RSC_LAST])
737 {
738 struct device *dev = &rproc->dev;
739 rproc_handle_resource_t handler;
740 int ret = 0, i;
741
742 for (i = 0; i < rproc->table_ptr->num; i++) {
743 int offset = rproc->table_ptr->offset[i];
744 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
745 int avail = len - offset - sizeof(*hdr);
746 void *rsc = (void *)hdr + sizeof(*hdr);
747
748 /* make sure table isn't truncated */
749 if (avail < 0) {
750 dev_err(dev, "rsc table is truncated\n");
751 return -EINVAL;
752 }
753
754 dev_dbg(dev, "rsc: type %d\n", hdr->type);
755
756 if (hdr->type >= RSC_LAST) {
757 dev_warn(dev, "unsupported resource %d\n", hdr->type);
758 continue;
759 }
760
761 handler = handlers[hdr->type];
762 if (!handler)
763 continue;
764
765 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
766 if (ret)
767 break;
768 }
769
770 return ret;
771 }
772
rproc_probe_subdevices(struct rproc * rproc)773 static int rproc_probe_subdevices(struct rproc *rproc)
774 {
775 struct rproc_subdev *subdev;
776 int ret;
777
778 list_for_each_entry(subdev, &rproc->subdevs, node) {
779 ret = subdev->probe(subdev);
780 if (ret)
781 goto unroll_registration;
782 }
783
784 return 0;
785
786 unroll_registration:
787 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
788 subdev->remove(subdev);
789
790 return ret;
791 }
792
rproc_remove_subdevices(struct rproc * rproc)793 static void rproc_remove_subdevices(struct rproc *rproc)
794 {
795 struct rproc_subdev *subdev;
796
797 list_for_each_entry_reverse(subdev, &rproc->subdevs, node)
798 subdev->remove(subdev);
799 }
800
801 /**
802 * rproc_resource_cleanup() - clean up and free all acquired resources
803 * @rproc: rproc handle
804 *
805 * This function will free all resources acquired for @rproc, and it
806 * is called whenever @rproc either shuts down or fails to boot.
807 */
rproc_resource_cleanup(struct rproc * rproc)808 static void rproc_resource_cleanup(struct rproc *rproc)
809 {
810 struct rproc_mem_entry *entry, *tmp;
811 struct rproc_vdev *rvdev, *rvtmp;
812 struct device *dev = &rproc->dev;
813
814 /* clean up debugfs trace entries */
815 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
816 rproc_remove_trace_file(entry->priv);
817 rproc->num_traces--;
818 list_del(&entry->node);
819 kfree(entry);
820 }
821
822 /* clean up iommu mapping entries */
823 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
824 size_t unmapped;
825
826 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
827 if (unmapped != entry->len) {
828 /* nothing much to do besides complaining */
829 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
830 unmapped);
831 }
832
833 list_del(&entry->node);
834 kfree(entry);
835 }
836
837 /* clean up carveout allocations */
838 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
839 dma_free_coherent(dev->parent, entry->len, entry->va,
840 entry->dma);
841 list_del(&entry->node);
842 kfree(entry);
843 }
844
845 /* clean up remote vdev entries */
846 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
847 kref_put(&rvdev->refcount, rproc_vdev_release);
848 }
849
rproc_start(struct rproc * rproc,const struct firmware * fw)850 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
851 {
852 struct resource_table *table, *loaded_table;
853 struct device *dev = &rproc->dev;
854 int ret, tablesz;
855
856 /* look for the resource table */
857 table = rproc_find_rsc_table(rproc, fw, &tablesz);
858 if (!table) {
859 dev_err(dev, "Resource table look up failed\n");
860 return -EINVAL;
861 }
862
863 /* load the ELF segments to memory */
864 ret = rproc_load_segments(rproc, fw);
865 if (ret) {
866 dev_err(dev, "Failed to load program segments: %d\n", ret);
867 return ret;
868 }
869
870 /*
871 * The starting device has been given the rproc->cached_table as the
872 * resource table. The address of the vring along with the other
873 * allocated resources (carveouts etc) is stored in cached_table.
874 * In order to pass this information to the remote device we must copy
875 * this information to device memory. We also update the table_ptr so
876 * that any subsequent changes will be applied to the loaded version.
877 */
878 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
879 if (loaded_table) {
880 memcpy(loaded_table, rproc->cached_table, tablesz);
881 rproc->table_ptr = loaded_table;
882 }
883
884 /* power up the remote processor */
885 ret = rproc->ops->start(rproc);
886 if (ret) {
887 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
888 return ret;
889 }
890
891 /* probe any subdevices for the remote processor */
892 ret = rproc_probe_subdevices(rproc);
893 if (ret) {
894 dev_err(dev, "failed to probe subdevices for %s: %d\n",
895 rproc->name, ret);
896 rproc->ops->stop(rproc);
897 return ret;
898 }
899
900 rproc->state = RPROC_RUNNING;
901
902 dev_info(dev, "remote processor %s is now up\n", rproc->name);
903
904 return 0;
905 }
906
907 /*
908 * take a firmware and boot a remote processor with it.
909 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)910 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
911 {
912 struct device *dev = &rproc->dev;
913 const char *name = rproc->firmware;
914 struct resource_table *table;
915 int ret, tablesz;
916
917 ret = rproc_fw_sanity_check(rproc, fw);
918 if (ret)
919 return ret;
920
921 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
922
923 /*
924 * if enabling an IOMMU isn't relevant for this rproc, this is
925 * just a nop
926 */
927 ret = rproc_enable_iommu(rproc);
928 if (ret) {
929 dev_err(dev, "can't enable iommu: %d\n", ret);
930 return ret;
931 }
932
933 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
934 ret = -EINVAL;
935
936 /* look for the resource table */
937 table = rproc_find_rsc_table(rproc, fw, &tablesz);
938 if (!table) {
939 dev_err(dev, "Failed to find resource table\n");
940 goto clean_up;
941 }
942
943 /*
944 * Create a copy of the resource table. When a virtio device starts
945 * and calls vring_new_virtqueue() the address of the allocated vring
946 * will be stored in the cached_table. Before the device is started,
947 * cached_table will be copied into device memory.
948 */
949 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
950 if (!rproc->cached_table)
951 goto clean_up;
952
953 rproc->table_ptr = rproc->cached_table;
954
955 /* reset max_notifyid */
956 rproc->max_notifyid = -1;
957
958 /* handle fw resources which are required to boot rproc */
959 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
960 if (ret) {
961 dev_err(dev, "Failed to process resources: %d\n", ret);
962 goto clean_up_resources;
963 }
964
965 ret = rproc_start(rproc, fw);
966 if (ret)
967 goto clean_up_resources;
968
969 return 0;
970
971 clean_up_resources:
972 rproc_resource_cleanup(rproc);
973 clean_up:
974 kfree(rproc->cached_table);
975 rproc->cached_table = NULL;
976 rproc->table_ptr = NULL;
977
978 rproc_disable_iommu(rproc);
979 return ret;
980 }
981
982 /*
983 * take a firmware and boot it up.
984 *
985 * Note: this function is called asynchronously upon registration of the
986 * remote processor (so we must wait until it completes before we try
987 * to unregister the device. one other option is just to use kref here,
988 * that might be cleaner).
989 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)990 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
991 {
992 struct rproc *rproc = context;
993
994 rproc_boot(rproc);
995
996 release_firmware(fw);
997 }
998
rproc_trigger_auto_boot(struct rproc * rproc)999 static int rproc_trigger_auto_boot(struct rproc *rproc)
1000 {
1001 int ret;
1002
1003 /*
1004 * We're initiating an asynchronous firmware loading, so we can
1005 * be built-in kernel code, without hanging the boot process.
1006 */
1007 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1008 rproc->firmware, &rproc->dev, GFP_KERNEL,
1009 rproc, rproc_auto_boot_callback);
1010 if (ret < 0)
1011 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1012
1013 return ret;
1014 }
1015
rproc_stop(struct rproc * rproc)1016 static int rproc_stop(struct rproc *rproc)
1017 {
1018 struct device *dev = &rproc->dev;
1019 int ret;
1020
1021 /* remove any subdevices for the remote processor */
1022 rproc_remove_subdevices(rproc);
1023
1024 /* power off the remote processor */
1025 ret = rproc->ops->stop(rproc);
1026 if (ret) {
1027 dev_err(dev, "can't stop rproc: %d\n", ret);
1028 return ret;
1029 }
1030
1031 /* if in crash state, unlock crash handler */
1032 if (rproc->state == RPROC_CRASHED)
1033 complete_all(&rproc->crash_comp);
1034
1035 rproc->state = RPROC_OFFLINE;
1036
1037 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1038
1039 return 0;
1040 }
1041
1042 /**
1043 * rproc_trigger_recovery() - recover a remoteproc
1044 * @rproc: the remote processor
1045 *
1046 * The recovery is done by resetting all the virtio devices, that way all the
1047 * rpmsg drivers will be reseted along with the remote processor making the
1048 * remoteproc functional again.
1049 *
1050 * This function can sleep, so it cannot be called from atomic context.
1051 */
rproc_trigger_recovery(struct rproc * rproc)1052 int rproc_trigger_recovery(struct rproc *rproc)
1053 {
1054 const struct firmware *firmware_p;
1055 struct device *dev = &rproc->dev;
1056 int ret;
1057
1058 dev_err(dev, "recovering %s\n", rproc->name);
1059
1060 init_completion(&rproc->crash_comp);
1061
1062 ret = mutex_lock_interruptible(&rproc->lock);
1063 if (ret)
1064 return ret;
1065
1066 ret = rproc_stop(rproc);
1067 if (ret)
1068 goto unlock_mutex;
1069
1070 /* wait until there is no more rproc users */
1071 wait_for_completion(&rproc->crash_comp);
1072
1073 /* load firmware */
1074 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1075 if (ret < 0) {
1076 dev_err(dev, "request_firmware failed: %d\n", ret);
1077 goto unlock_mutex;
1078 }
1079
1080 /* boot the remote processor up again */
1081 ret = rproc_start(rproc, firmware_p);
1082
1083 release_firmware(firmware_p);
1084
1085 unlock_mutex:
1086 mutex_unlock(&rproc->lock);
1087 return ret;
1088 }
1089
1090 /**
1091 * rproc_crash_handler_work() - handle a crash
1092 *
1093 * This function needs to handle everything related to a crash, like cpu
1094 * registers and stack dump, information to help to debug the fatal error, etc.
1095 */
rproc_crash_handler_work(struct work_struct * work)1096 static void rproc_crash_handler_work(struct work_struct *work)
1097 {
1098 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1099 struct device *dev = &rproc->dev;
1100
1101 dev_dbg(dev, "enter %s\n", __func__);
1102
1103 mutex_lock(&rproc->lock);
1104
1105 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1106 /* handle only the first crash detected */
1107 mutex_unlock(&rproc->lock);
1108 return;
1109 }
1110
1111 rproc->state = RPROC_CRASHED;
1112 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1113 rproc->name);
1114
1115 mutex_unlock(&rproc->lock);
1116
1117 if (!rproc->recovery_disabled)
1118 rproc_trigger_recovery(rproc);
1119 }
1120
1121 /**
1122 * rproc_boot() - boot a remote processor
1123 * @rproc: handle of a remote processor
1124 *
1125 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1126 *
1127 * If the remote processor is already powered on, this function immediately
1128 * returns (successfully).
1129 *
1130 * Returns 0 on success, and an appropriate error value otherwise.
1131 */
rproc_boot(struct rproc * rproc)1132 int rproc_boot(struct rproc *rproc)
1133 {
1134 const struct firmware *firmware_p;
1135 struct device *dev;
1136 int ret;
1137
1138 if (!rproc) {
1139 pr_err("invalid rproc handle\n");
1140 return -EINVAL;
1141 }
1142
1143 dev = &rproc->dev;
1144
1145 ret = mutex_lock_interruptible(&rproc->lock);
1146 if (ret) {
1147 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1148 return ret;
1149 }
1150
1151 if (rproc->state == RPROC_DELETED) {
1152 ret = -ENODEV;
1153 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1154 goto unlock_mutex;
1155 }
1156
1157 /* skip the boot process if rproc is already powered up */
1158 if (atomic_inc_return(&rproc->power) > 1) {
1159 ret = 0;
1160 goto unlock_mutex;
1161 }
1162
1163 dev_info(dev, "powering up %s\n", rproc->name);
1164
1165 /* load firmware */
1166 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1167 if (ret < 0) {
1168 dev_err(dev, "request_firmware failed: %d\n", ret);
1169 goto downref_rproc;
1170 }
1171
1172 ret = rproc_fw_boot(rproc, firmware_p);
1173
1174 release_firmware(firmware_p);
1175
1176 downref_rproc:
1177 if (ret)
1178 atomic_dec(&rproc->power);
1179 unlock_mutex:
1180 mutex_unlock(&rproc->lock);
1181 return ret;
1182 }
1183 EXPORT_SYMBOL(rproc_boot);
1184
1185 /**
1186 * rproc_shutdown() - power off the remote processor
1187 * @rproc: the remote processor
1188 *
1189 * Power off a remote processor (previously booted with rproc_boot()).
1190 *
1191 * In case @rproc is still being used by an additional user(s), then
1192 * this function will just decrement the power refcount and exit,
1193 * without really powering off the device.
1194 *
1195 * Every call to rproc_boot() must (eventually) be accompanied by a call
1196 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1197 *
1198 * Notes:
1199 * - we're not decrementing the rproc's refcount, only the power refcount.
1200 * which means that the @rproc handle stays valid even after rproc_shutdown()
1201 * returns, and users can still use it with a subsequent rproc_boot(), if
1202 * needed.
1203 */
rproc_shutdown(struct rproc * rproc)1204 void rproc_shutdown(struct rproc *rproc)
1205 {
1206 struct device *dev = &rproc->dev;
1207 int ret;
1208
1209 ret = mutex_lock_interruptible(&rproc->lock);
1210 if (ret) {
1211 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1212 return;
1213 }
1214
1215 /* if the remote proc is still needed, bail out */
1216 if (!atomic_dec_and_test(&rproc->power))
1217 goto out;
1218
1219 ret = rproc_stop(rproc);
1220 if (ret) {
1221 atomic_inc(&rproc->power);
1222 goto out;
1223 }
1224
1225 /* clean up all acquired resources */
1226 rproc_resource_cleanup(rproc);
1227
1228 rproc_disable_iommu(rproc);
1229
1230 /* Free the copy of the resource table */
1231 kfree(rproc->cached_table);
1232 rproc->cached_table = NULL;
1233 rproc->table_ptr = NULL;
1234 out:
1235 mutex_unlock(&rproc->lock);
1236 }
1237 EXPORT_SYMBOL(rproc_shutdown);
1238
1239 /**
1240 * rproc_get_by_phandle() - find a remote processor by phandle
1241 * @phandle: phandle to the rproc
1242 *
1243 * Finds an rproc handle using the remote processor's phandle, and then
1244 * return a handle to the rproc.
1245 *
1246 * This function increments the remote processor's refcount, so always
1247 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1248 *
1249 * Returns the rproc handle on success, and NULL on failure.
1250 */
1251 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)1252 struct rproc *rproc_get_by_phandle(phandle phandle)
1253 {
1254 struct rproc *rproc = NULL, *r;
1255 struct device_node *np;
1256
1257 np = of_find_node_by_phandle(phandle);
1258 if (!np)
1259 return NULL;
1260
1261 mutex_lock(&rproc_list_mutex);
1262 list_for_each_entry(r, &rproc_list, node) {
1263 if (r->dev.parent && r->dev.parent->of_node == np) {
1264 /* prevent underlying implementation from being removed */
1265 if (!try_module_get(r->dev.parent->driver->owner)) {
1266 dev_err(&r->dev, "can't get owner\n");
1267 break;
1268 }
1269
1270 rproc = r;
1271 get_device(&rproc->dev);
1272 break;
1273 }
1274 }
1275 mutex_unlock(&rproc_list_mutex);
1276
1277 of_node_put(np);
1278
1279 return rproc;
1280 }
1281 #else
rproc_get_by_phandle(phandle phandle)1282 struct rproc *rproc_get_by_phandle(phandle phandle)
1283 {
1284 return NULL;
1285 }
1286 #endif
1287 EXPORT_SYMBOL(rproc_get_by_phandle);
1288
1289 /**
1290 * rproc_add() - register a remote processor
1291 * @rproc: the remote processor handle to register
1292 *
1293 * Registers @rproc with the remoteproc framework, after it has been
1294 * allocated with rproc_alloc().
1295 *
1296 * This is called by the platform-specific rproc implementation, whenever
1297 * a new remote processor device is probed.
1298 *
1299 * Returns 0 on success and an appropriate error code otherwise.
1300 *
1301 * Note: this function initiates an asynchronous firmware loading
1302 * context, which will look for virtio devices supported by the rproc's
1303 * firmware.
1304 *
1305 * If found, those virtio devices will be created and added, so as a result
1306 * of registering this remote processor, additional virtio drivers might be
1307 * probed.
1308 */
rproc_add(struct rproc * rproc)1309 int rproc_add(struct rproc *rproc)
1310 {
1311 struct device *dev = &rproc->dev;
1312 int ret;
1313
1314 ret = device_add(dev);
1315 if (ret < 0)
1316 return ret;
1317
1318 dev_info(dev, "%s is available\n", rproc->name);
1319
1320 /* create debugfs entries */
1321 rproc_create_debug_dir(rproc);
1322
1323 /* if rproc is marked always-on, request it to boot */
1324 if (rproc->auto_boot) {
1325 ret = rproc_trigger_auto_boot(rproc);
1326 if (ret < 0)
1327 return ret;
1328 }
1329
1330 /* expose to rproc_get_by_phandle users */
1331 mutex_lock(&rproc_list_mutex);
1332 list_add(&rproc->node, &rproc_list);
1333 mutex_unlock(&rproc_list_mutex);
1334
1335 return 0;
1336 }
1337 EXPORT_SYMBOL(rproc_add);
1338
1339 /**
1340 * rproc_type_release() - release a remote processor instance
1341 * @dev: the rproc's device
1342 *
1343 * This function should _never_ be called directly.
1344 *
1345 * It will be called by the driver core when no one holds a valid pointer
1346 * to @dev anymore.
1347 */
rproc_type_release(struct device * dev)1348 static void rproc_type_release(struct device *dev)
1349 {
1350 struct rproc *rproc = container_of(dev, struct rproc, dev);
1351
1352 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1353
1354 idr_destroy(&rproc->notifyids);
1355
1356 if (rproc->index >= 0)
1357 ida_simple_remove(&rproc_dev_index, rproc->index);
1358
1359 kfree(rproc->firmware);
1360 kfree(rproc);
1361 }
1362
1363 static const struct device_type rproc_type = {
1364 .name = "remoteproc",
1365 .release = rproc_type_release,
1366 };
1367
1368 /**
1369 * rproc_alloc() - allocate a remote processor handle
1370 * @dev: the underlying device
1371 * @name: name of this remote processor
1372 * @ops: platform-specific handlers (mainly start/stop)
1373 * @firmware: name of firmware file to load, can be NULL
1374 * @len: length of private data needed by the rproc driver (in bytes)
1375 *
1376 * Allocates a new remote processor handle, but does not register
1377 * it yet. if @firmware is NULL, a default name is used.
1378 *
1379 * This function should be used by rproc implementations during initialization
1380 * of the remote processor.
1381 *
1382 * After creating an rproc handle using this function, and when ready,
1383 * implementations should then call rproc_add() to complete
1384 * the registration of the remote processor.
1385 *
1386 * On success the new rproc is returned, and on failure, NULL.
1387 *
1388 * Note: _never_ directly deallocate @rproc, even if it was not registered
1389 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1390 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)1391 struct rproc *rproc_alloc(struct device *dev, const char *name,
1392 const struct rproc_ops *ops,
1393 const char *firmware, int len)
1394 {
1395 struct rproc *rproc;
1396 char *p, *template = "rproc-%s-fw";
1397 int name_len;
1398
1399 if (!dev || !name || !ops)
1400 return NULL;
1401
1402 if (!firmware) {
1403 /*
1404 * If the caller didn't pass in a firmware name then
1405 * construct a default name.
1406 */
1407 name_len = strlen(name) + strlen(template) - 2 + 1;
1408 p = kmalloc(name_len, GFP_KERNEL);
1409 if (!p)
1410 return NULL;
1411 snprintf(p, name_len, template, name);
1412 } else {
1413 p = kstrdup(firmware, GFP_KERNEL);
1414 if (!p)
1415 return NULL;
1416 }
1417
1418 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1419 if (!rproc) {
1420 kfree(p);
1421 return NULL;
1422 }
1423
1424 rproc->firmware = p;
1425 rproc->name = name;
1426 rproc->ops = ops;
1427 rproc->priv = &rproc[1];
1428 rproc->auto_boot = true;
1429
1430 device_initialize(&rproc->dev);
1431 rproc->dev.parent = dev;
1432 rproc->dev.type = &rproc_type;
1433 rproc->dev.class = &rproc_class;
1434 rproc->dev.driver_data = rproc;
1435
1436 /* Assign a unique device index and name */
1437 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1438 if (rproc->index < 0) {
1439 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1440 put_device(&rproc->dev);
1441 return NULL;
1442 }
1443
1444 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1445
1446 atomic_set(&rproc->power, 0);
1447
1448 /* Set ELF as the default fw_ops handler */
1449 rproc->fw_ops = &rproc_elf_fw_ops;
1450
1451 mutex_init(&rproc->lock);
1452
1453 idr_init(&rproc->notifyids);
1454
1455 INIT_LIST_HEAD(&rproc->carveouts);
1456 INIT_LIST_HEAD(&rproc->mappings);
1457 INIT_LIST_HEAD(&rproc->traces);
1458 INIT_LIST_HEAD(&rproc->rvdevs);
1459 INIT_LIST_HEAD(&rproc->subdevs);
1460
1461 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1462 init_completion(&rproc->crash_comp);
1463
1464 rproc->state = RPROC_OFFLINE;
1465
1466 return rproc;
1467 }
1468 EXPORT_SYMBOL(rproc_alloc);
1469
1470 /**
1471 * rproc_free() - unroll rproc_alloc()
1472 * @rproc: the remote processor handle
1473 *
1474 * This function decrements the rproc dev refcount.
1475 *
1476 * If no one holds any reference to rproc anymore, then its refcount would
1477 * now drop to zero, and it would be freed.
1478 */
rproc_free(struct rproc * rproc)1479 void rproc_free(struct rproc *rproc)
1480 {
1481 put_device(&rproc->dev);
1482 }
1483 EXPORT_SYMBOL(rproc_free);
1484
1485 /**
1486 * rproc_put() - release rproc reference
1487 * @rproc: the remote processor handle
1488 *
1489 * This function decrements the rproc dev refcount.
1490 *
1491 * If no one holds any reference to rproc anymore, then its refcount would
1492 * now drop to zero, and it would be freed.
1493 */
rproc_put(struct rproc * rproc)1494 void rproc_put(struct rproc *rproc)
1495 {
1496 module_put(rproc->dev.parent->driver->owner);
1497 put_device(&rproc->dev);
1498 }
1499 EXPORT_SYMBOL(rproc_put);
1500
1501 /**
1502 * rproc_del() - unregister a remote processor
1503 * @rproc: rproc handle to unregister
1504 *
1505 * This function should be called when the platform specific rproc
1506 * implementation decides to remove the rproc device. it should
1507 * _only_ be called if a previous invocation of rproc_add()
1508 * has completed successfully.
1509 *
1510 * After rproc_del() returns, @rproc isn't freed yet, because
1511 * of the outstanding reference created by rproc_alloc. To decrement that
1512 * one last refcount, one still needs to call rproc_free().
1513 *
1514 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1515 */
rproc_del(struct rproc * rproc)1516 int rproc_del(struct rproc *rproc)
1517 {
1518 if (!rproc)
1519 return -EINVAL;
1520
1521 /* if rproc is marked always-on, rproc_add() booted it */
1522 /* TODO: make sure this works with rproc->power > 1 */
1523 if (rproc->auto_boot)
1524 rproc_shutdown(rproc);
1525
1526 mutex_lock(&rproc->lock);
1527 rproc->state = RPROC_DELETED;
1528 mutex_unlock(&rproc->lock);
1529
1530 rproc_delete_debug_dir(rproc);
1531
1532 /* the rproc is downref'ed as soon as it's removed from the klist */
1533 mutex_lock(&rproc_list_mutex);
1534 list_del(&rproc->node);
1535 mutex_unlock(&rproc_list_mutex);
1536
1537 device_del(&rproc->dev);
1538
1539 return 0;
1540 }
1541 EXPORT_SYMBOL(rproc_del);
1542
1543 /**
1544 * rproc_add_subdev() - add a subdevice to a remoteproc
1545 * @rproc: rproc handle to add the subdevice to
1546 * @subdev: subdev handle to register
1547 * @probe: function to call when the rproc boots
1548 * @remove: function to call when the rproc shuts down
1549 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev,int (* probe)(struct rproc_subdev * subdev),void (* remove)(struct rproc_subdev * subdev))1550 void rproc_add_subdev(struct rproc *rproc,
1551 struct rproc_subdev *subdev,
1552 int (*probe)(struct rproc_subdev *subdev),
1553 void (*remove)(struct rproc_subdev *subdev))
1554 {
1555 subdev->probe = probe;
1556 subdev->remove = remove;
1557
1558 list_add_tail(&subdev->node, &rproc->subdevs);
1559 }
1560 EXPORT_SYMBOL(rproc_add_subdev);
1561
1562 /**
1563 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1564 * @rproc: rproc handle to remove the subdevice from
1565 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1566 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)1567 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1568 {
1569 list_del(&subdev->node);
1570 }
1571 EXPORT_SYMBOL(rproc_remove_subdev);
1572
1573 /**
1574 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1575 * @dev: child device to find ancestor of
1576 *
1577 * Returns the ancestor rproc instance, or NULL if not found.
1578 */
rproc_get_by_child(struct device * dev)1579 struct rproc *rproc_get_by_child(struct device *dev)
1580 {
1581 for (dev = dev->parent; dev; dev = dev->parent) {
1582 if (dev->type == &rproc_type)
1583 return dev->driver_data;
1584 }
1585
1586 return NULL;
1587 }
1588 EXPORT_SYMBOL(rproc_get_by_child);
1589
1590 /**
1591 * rproc_report_crash() - rproc crash reporter function
1592 * @rproc: remote processor
1593 * @type: crash type
1594 *
1595 * This function must be called every time a crash is detected by the low-level
1596 * drivers implementing a specific remoteproc. This should not be called from a
1597 * non-remoteproc driver.
1598 *
1599 * This function can be called from atomic/interrupt context.
1600 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)1601 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1602 {
1603 if (!rproc) {
1604 pr_err("NULL rproc pointer\n");
1605 return;
1606 }
1607
1608 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1609 rproc->name, rproc_crash_to_string(type));
1610
1611 /* create a new task to handle the error */
1612 schedule_work(&rproc->crash_handler);
1613 }
1614 EXPORT_SYMBOL(rproc_report_crash);
1615
remoteproc_init(void)1616 static int __init remoteproc_init(void)
1617 {
1618 rproc_init_sysfs();
1619 rproc_init_debugfs();
1620
1621 return 0;
1622 }
1623 subsys_initcall(remoteproc_init);
1624
remoteproc_exit(void)1625 static void __exit remoteproc_exit(void)
1626 {
1627 ida_destroy(&rproc_dev_index);
1628
1629 rproc_exit_debugfs();
1630 rproc_exit_sysfs();
1631 }
1632 module_exit(remoteproc_exit);
1633
1634 MODULE_LICENSE("GPL v2");
1635 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1636