• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
__rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
rtc_set_time(struct rtc_device * rtc,struct rtc_time * tm)60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
rtc_read_alarm_internal(struct rtc_device * rtc,struct rtc_wkalrm * alarm)94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (rtc->ops == NULL)
103 		err = -ENODEV;
104 	else if (!rtc->ops->read_alarm)
105 		err = -EINVAL;
106 	else {
107 		alarm->enabled = 0;
108 		alarm->pending = 0;
109 		alarm->time.tm_sec = -1;
110 		alarm->time.tm_min = -1;
111 		alarm->time.tm_hour = -1;
112 		alarm->time.tm_mday = -1;
113 		alarm->time.tm_mon = -1;
114 		alarm->time.tm_year = -1;
115 		alarm->time.tm_wday = -1;
116 		alarm->time.tm_yday = -1;
117 		alarm->time.tm_isdst = -1;
118 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
119 	}
120 
121 	mutex_unlock(&rtc->ops_lock);
122 	return err;
123 }
124 
__rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 {
127 	int err;
128 	struct rtc_time before, now;
129 	int first_time = 1;
130 	time64_t t_now, t_alm;
131 	enum { none, day, month, year } missing = none;
132 	unsigned days;
133 
134 	/* The lower level RTC driver may return -1 in some fields,
135 	 * creating invalid alarm->time values, for reasons like:
136 	 *
137 	 *   - The hardware may not be capable of filling them in;
138 	 *     many alarms match only on time-of-day fields, not
139 	 *     day/month/year calendar data.
140 	 *
141 	 *   - Some hardware uses illegal values as "wildcard" match
142 	 *     values, which non-Linux firmware (like a BIOS) may try
143 	 *     to set up as e.g. "alarm 15 minutes after each hour".
144 	 *     Linux uses only oneshot alarms.
145 	 *
146 	 * When we see that here, we deal with it by using values from
147 	 * a current RTC timestamp for any missing (-1) values.  The
148 	 * RTC driver prevents "periodic alarm" modes.
149 	 *
150 	 * But this can be racey, because some fields of the RTC timestamp
151 	 * may have wrapped in the interval since we read the RTC alarm,
152 	 * which would lead to us inserting inconsistent values in place
153 	 * of the -1 fields.
154 	 *
155 	 * Reading the alarm and timestamp in the reverse sequence
156 	 * would have the same race condition, and not solve the issue.
157 	 *
158 	 * So, we must first read the RTC timestamp,
159 	 * then read the RTC alarm value,
160 	 * and then read a second RTC timestamp.
161 	 *
162 	 * If any fields of the second timestamp have changed
163 	 * when compared with the first timestamp, then we know
164 	 * our timestamp may be inconsistent with that used by
165 	 * the low-level rtc_read_alarm_internal() function.
166 	 *
167 	 * So, when the two timestamps disagree, we just loop and do
168 	 * the process again to get a fully consistent set of values.
169 	 *
170 	 * This could all instead be done in the lower level driver,
171 	 * but since more than one lower level RTC implementation needs it,
172 	 * then it's probably best best to do it here instead of there..
173 	 */
174 
175 	/* Get the "before" timestamp */
176 	err = rtc_read_time(rtc, &before);
177 	if (err < 0)
178 		return err;
179 	do {
180 		if (!first_time)
181 			memcpy(&before, &now, sizeof(struct rtc_time));
182 		first_time = 0;
183 
184 		/* get the RTC alarm values, which may be incomplete */
185 		err = rtc_read_alarm_internal(rtc, alarm);
186 		if (err)
187 			return err;
188 
189 		/* full-function RTCs won't have such missing fields */
190 		if (rtc_valid_tm(&alarm->time) == 0)
191 			return 0;
192 
193 		/* get the "after" timestamp, to detect wrapped fields */
194 		err = rtc_read_time(rtc, &now);
195 		if (err < 0)
196 			return err;
197 
198 		/* note that tm_sec is a "don't care" value here: */
199 	} while (   before.tm_min   != now.tm_min
200 		 || before.tm_hour  != now.tm_hour
201 		 || before.tm_mon   != now.tm_mon
202 		 || before.tm_year  != now.tm_year);
203 
204 	/* Fill in the missing alarm fields using the timestamp; we
205 	 * know there's at least one since alarm->time is invalid.
206 	 */
207 	if (alarm->time.tm_sec == -1)
208 		alarm->time.tm_sec = now.tm_sec;
209 	if (alarm->time.tm_min == -1)
210 		alarm->time.tm_min = now.tm_min;
211 	if (alarm->time.tm_hour == -1)
212 		alarm->time.tm_hour = now.tm_hour;
213 
214 	/* For simplicity, only support date rollover for now */
215 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
216 		alarm->time.tm_mday = now.tm_mday;
217 		missing = day;
218 	}
219 	if ((unsigned)alarm->time.tm_mon >= 12) {
220 		alarm->time.tm_mon = now.tm_mon;
221 		if (missing == none)
222 			missing = month;
223 	}
224 	if (alarm->time.tm_year == -1) {
225 		alarm->time.tm_year = now.tm_year;
226 		if (missing == none)
227 			missing = year;
228 	}
229 
230 	/* Can't proceed if alarm is still invalid after replacing
231 	 * missing fields.
232 	 */
233 	err = rtc_valid_tm(&alarm->time);
234 	if (err)
235 		goto done;
236 
237 	/* with luck, no rollover is needed */
238 	t_now = rtc_tm_to_time64(&now);
239 	t_alm = rtc_tm_to_time64(&alarm->time);
240 	if (t_now < t_alm)
241 		goto done;
242 
243 	switch (missing) {
244 
245 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
246 	 * that will trigger at 5am will do so at 5am Tuesday, which
247 	 * could also be in the next month or year.  This is a common
248 	 * case, especially for PCs.
249 	 */
250 	case day:
251 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
252 		t_alm += 24 * 60 * 60;
253 		rtc_time64_to_tm(t_alm, &alarm->time);
254 		break;
255 
256 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
257 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
258 	 * may end up in the month after that!  Many newer PCs support
259 	 * this type of alarm.
260 	 */
261 	case month:
262 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263 		do {
264 			if (alarm->time.tm_mon < 11)
265 				alarm->time.tm_mon++;
266 			else {
267 				alarm->time.tm_mon = 0;
268 				alarm->time.tm_year++;
269 			}
270 			days = rtc_month_days(alarm->time.tm_mon,
271 					alarm->time.tm_year);
272 		} while (days < alarm->time.tm_mday);
273 		break;
274 
275 	/* Year rollover ... easy except for leap years! */
276 	case year:
277 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278 		do {
279 			alarm->time.tm_year++;
280 		} while (!is_leap_year(alarm->time.tm_year + 1900)
281 			&& rtc_valid_tm(&alarm->time) != 0);
282 		break;
283 
284 	default:
285 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
286 	}
287 
288 	err = rtc_valid_tm(&alarm->time);
289 
290 done:
291 	if (err) {
292 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
293 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
294 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
295 			alarm->time.tm_sec);
296 	}
297 
298 	return err;
299 }
300 
rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)301 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
302 {
303 	int err;
304 
305 	err = mutex_lock_interruptible(&rtc->ops_lock);
306 	if (err)
307 		return err;
308 	if (rtc->ops == NULL)
309 		err = -ENODEV;
310 	else if (!rtc->ops->read_alarm)
311 		err = -EINVAL;
312 	else {
313 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
314 		alarm->enabled = rtc->aie_timer.enabled;
315 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
316 	}
317 	mutex_unlock(&rtc->ops_lock);
318 
319 	return err;
320 }
321 EXPORT_SYMBOL_GPL(rtc_read_alarm);
322 
__rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)323 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
324 {
325 	struct rtc_time tm;
326 	time64_t now, scheduled;
327 	int err;
328 
329 	err = rtc_valid_tm(&alarm->time);
330 	if (err)
331 		return err;
332 	scheduled = rtc_tm_to_time64(&alarm->time);
333 
334 	/* Make sure we're not setting alarms in the past */
335 	err = __rtc_read_time(rtc, &tm);
336 	if (err)
337 		return err;
338 	now = rtc_tm_to_time64(&tm);
339 	if (scheduled <= now)
340 		return -ETIME;
341 	/*
342 	 * XXX - We just checked to make sure the alarm time is not
343 	 * in the past, but there is still a race window where if
344 	 * the is alarm set for the next second and the second ticks
345 	 * over right here, before we set the alarm.
346 	 */
347 
348 	if (!rtc->ops)
349 		err = -ENODEV;
350 	else if (!rtc->ops->set_alarm)
351 		err = -EINVAL;
352 	else
353 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
354 
355 	return err;
356 }
357 
rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)358 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
359 {
360 	int err;
361 
362 	if (!rtc->ops)
363 		return -ENODEV;
364 	else if (!rtc->ops->set_alarm)
365 		return -EINVAL;
366 
367 	err = rtc_valid_tm(&alarm->time);
368 	if (err != 0)
369 		return err;
370 
371 	err = mutex_lock_interruptible(&rtc->ops_lock);
372 	if (err)
373 		return err;
374 	if (rtc->aie_timer.enabled)
375 		rtc_timer_remove(rtc, &rtc->aie_timer);
376 
377 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
378 	rtc->aie_timer.period = 0;
379 	if (alarm->enabled)
380 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
381 
382 	mutex_unlock(&rtc->ops_lock);
383 	return err;
384 }
385 EXPORT_SYMBOL_GPL(rtc_set_alarm);
386 
387 /* Called once per device from rtc_device_register */
rtc_initialize_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)388 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
389 {
390 	int err;
391 	struct rtc_time now;
392 
393 	err = rtc_valid_tm(&alarm->time);
394 	if (err != 0)
395 		return err;
396 
397 	err = rtc_read_time(rtc, &now);
398 	if (err)
399 		return err;
400 
401 	err = mutex_lock_interruptible(&rtc->ops_lock);
402 	if (err)
403 		return err;
404 
405 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
406 	rtc->aie_timer.period = 0;
407 
408 	/* Alarm has to be enabled & in the future for us to enqueue it */
409 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
410 			 rtc->aie_timer.node.expires)) {
411 
412 		rtc->aie_timer.enabled = 1;
413 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
414 	}
415 	mutex_unlock(&rtc->ops_lock);
416 	return err;
417 }
418 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
419 
rtc_alarm_irq_enable(struct rtc_device * rtc,unsigned int enabled)420 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
421 {
422 	int err = mutex_lock_interruptible(&rtc->ops_lock);
423 	if (err)
424 		return err;
425 
426 	if (rtc->aie_timer.enabled != enabled) {
427 		if (enabled)
428 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
429 		else
430 			rtc_timer_remove(rtc, &rtc->aie_timer);
431 	}
432 
433 	if (err)
434 		/* nothing */;
435 	else if (!rtc->ops)
436 		err = -ENODEV;
437 	else if (!rtc->ops->alarm_irq_enable)
438 		err = -EINVAL;
439 	else
440 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
441 
442 	mutex_unlock(&rtc->ops_lock);
443 	return err;
444 }
445 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
446 
rtc_update_irq_enable(struct rtc_device * rtc,unsigned int enabled)447 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
448 {
449 	int err = mutex_lock_interruptible(&rtc->ops_lock);
450 	if (err)
451 		return err;
452 
453 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
454 	if (enabled == 0 && rtc->uie_irq_active) {
455 		mutex_unlock(&rtc->ops_lock);
456 		return rtc_dev_update_irq_enable_emul(rtc, 0);
457 	}
458 #endif
459 	/* make sure we're changing state */
460 	if (rtc->uie_rtctimer.enabled == enabled)
461 		goto out;
462 
463 	if (rtc->uie_unsupported) {
464 		err = -EINVAL;
465 		goto out;
466 	}
467 
468 	if (enabled) {
469 		struct rtc_time tm;
470 		ktime_t now, onesec;
471 
472 		__rtc_read_time(rtc, &tm);
473 		onesec = ktime_set(1, 0);
474 		now = rtc_tm_to_ktime(tm);
475 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
476 		rtc->uie_rtctimer.period = ktime_set(1, 0);
477 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
478 	} else
479 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
480 
481 out:
482 	mutex_unlock(&rtc->ops_lock);
483 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
484 	/*
485 	 * Enable emulation if the driver did not provide
486 	 * the update_irq_enable function pointer or if returned
487 	 * -EINVAL to signal that it has been configured without
488 	 * interrupts or that are not available at the moment.
489 	 */
490 	if (err == -EINVAL)
491 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
492 #endif
493 	return err;
494 
495 }
496 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
497 
498 
499 /**
500  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
501  * @rtc: pointer to the rtc device
502  *
503  * This function is called when an AIE, UIE or PIE mode interrupt
504  * has occurred (or been emulated).
505  *
506  * Triggers the registered irq_task function callback.
507  */
rtc_handle_legacy_irq(struct rtc_device * rtc,int num,int mode)508 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
509 {
510 	unsigned long flags;
511 
512 	/* mark one irq of the appropriate mode */
513 	spin_lock_irqsave(&rtc->irq_lock, flags);
514 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
515 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
516 
517 	/* call the task func */
518 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
519 	if (rtc->irq_task)
520 		rtc->irq_task->func(rtc->irq_task->private_data);
521 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
522 
523 	wake_up_interruptible(&rtc->irq_queue);
524 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
525 }
526 
527 
528 /**
529  * rtc_aie_update_irq - AIE mode rtctimer hook
530  * @private: pointer to the rtc_device
531  *
532  * This functions is called when the aie_timer expires.
533  */
rtc_aie_update_irq(void * private)534 void rtc_aie_update_irq(void *private)
535 {
536 	struct rtc_device *rtc = (struct rtc_device *)private;
537 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
538 }
539 
540 
541 /**
542  * rtc_uie_update_irq - UIE mode rtctimer hook
543  * @private: pointer to the rtc_device
544  *
545  * This functions is called when the uie_timer expires.
546  */
rtc_uie_update_irq(void * private)547 void rtc_uie_update_irq(void *private)
548 {
549 	struct rtc_device *rtc = (struct rtc_device *)private;
550 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
551 }
552 
553 
554 /**
555  * rtc_pie_update_irq - PIE mode hrtimer hook
556  * @timer: pointer to the pie mode hrtimer
557  *
558  * This function is used to emulate PIE mode interrupts
559  * using an hrtimer. This function is called when the periodic
560  * hrtimer expires.
561  */
rtc_pie_update_irq(struct hrtimer * timer)562 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
563 {
564 	struct rtc_device *rtc;
565 	ktime_t period;
566 	int count;
567 	rtc = container_of(timer, struct rtc_device, pie_timer);
568 
569 	period = NSEC_PER_SEC / rtc->irq_freq;
570 	count = hrtimer_forward_now(timer, period);
571 
572 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
573 
574 	return HRTIMER_RESTART;
575 }
576 
577 /**
578  * rtc_update_irq - Triggered when a RTC interrupt occurs.
579  * @rtc: the rtc device
580  * @num: how many irqs are being reported (usually one)
581  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
582  * Context: any
583  */
rtc_update_irq(struct rtc_device * rtc,unsigned long num,unsigned long events)584 void rtc_update_irq(struct rtc_device *rtc,
585 		unsigned long num, unsigned long events)
586 {
587 	if (IS_ERR_OR_NULL(rtc))
588 		return;
589 
590 	pm_stay_awake(rtc->dev.parent);
591 	schedule_work(&rtc->irqwork);
592 }
593 EXPORT_SYMBOL_GPL(rtc_update_irq);
594 
__rtc_match(struct device * dev,const void * data)595 static int __rtc_match(struct device *dev, const void *data)
596 {
597 	const char *name = data;
598 
599 	if (strcmp(dev_name(dev), name) == 0)
600 		return 1;
601 	return 0;
602 }
603 
rtc_class_open(const char * name)604 struct rtc_device *rtc_class_open(const char *name)
605 {
606 	struct device *dev;
607 	struct rtc_device *rtc = NULL;
608 
609 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
610 	if (dev)
611 		rtc = to_rtc_device(dev);
612 
613 	if (rtc) {
614 		if (!try_module_get(rtc->owner)) {
615 			put_device(dev);
616 			rtc = NULL;
617 		}
618 	}
619 
620 	return rtc;
621 }
622 EXPORT_SYMBOL_GPL(rtc_class_open);
623 
rtc_class_close(struct rtc_device * rtc)624 void rtc_class_close(struct rtc_device *rtc)
625 {
626 	module_put(rtc->owner);
627 	put_device(&rtc->dev);
628 }
629 EXPORT_SYMBOL_GPL(rtc_class_close);
630 
rtc_irq_register(struct rtc_device * rtc,struct rtc_task * task)631 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
632 {
633 	int retval = -EBUSY;
634 
635 	if (task == NULL || task->func == NULL)
636 		return -EINVAL;
637 
638 	/* Cannot register while the char dev is in use */
639 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
640 		return -EBUSY;
641 
642 	spin_lock_irq(&rtc->irq_task_lock);
643 	if (rtc->irq_task == NULL) {
644 		rtc->irq_task = task;
645 		retval = 0;
646 	}
647 	spin_unlock_irq(&rtc->irq_task_lock);
648 
649 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
650 
651 	return retval;
652 }
653 EXPORT_SYMBOL_GPL(rtc_irq_register);
654 
rtc_irq_unregister(struct rtc_device * rtc,struct rtc_task * task)655 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
656 {
657 	spin_lock_irq(&rtc->irq_task_lock);
658 	if (rtc->irq_task == task)
659 		rtc->irq_task = NULL;
660 	spin_unlock_irq(&rtc->irq_task_lock);
661 }
662 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
663 
rtc_update_hrtimer(struct rtc_device * rtc,int enabled)664 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
665 {
666 	/*
667 	 * We always cancel the timer here first, because otherwise
668 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
669 	 * when we manage to start the timer before the callback
670 	 * returns HRTIMER_RESTART.
671 	 *
672 	 * We cannot use hrtimer_cancel() here as a running callback
673 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
674 	 * would spin forever.
675 	 */
676 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
677 		return -1;
678 
679 	if (enabled) {
680 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
681 
682 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
683 	}
684 	return 0;
685 }
686 
687 /**
688  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
689  * @rtc: the rtc device
690  * @task: currently registered with rtc_irq_register()
691  * @enabled: true to enable periodic IRQs
692  * Context: any
693  *
694  * Note that rtc_irq_set_freq() should previously have been used to
695  * specify the desired frequency of periodic IRQ task->func() callbacks.
696  */
rtc_irq_set_state(struct rtc_device * rtc,struct rtc_task * task,int enabled)697 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
698 {
699 	int err = 0;
700 	unsigned long flags;
701 
702 retry:
703 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
704 	if (rtc->irq_task != NULL && task == NULL)
705 		err = -EBUSY;
706 	else if (rtc->irq_task != task)
707 		err = -EACCES;
708 	else {
709 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
710 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711 			cpu_relax();
712 			goto retry;
713 		}
714 		rtc->pie_enabled = enabled;
715 	}
716 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
717 	return err;
718 }
719 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
720 
721 /**
722  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
723  * @rtc: the rtc device
724  * @task: currently registered with rtc_irq_register()
725  * @freq: positive frequency with which task->func() will be called
726  * Context: any
727  *
728  * Note that rtc_irq_set_state() is used to enable or disable the
729  * periodic IRQs.
730  */
rtc_irq_set_freq(struct rtc_device * rtc,struct rtc_task * task,int freq)731 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
732 {
733 	int err = 0;
734 	unsigned long flags;
735 
736 	if (freq <= 0 || freq > RTC_MAX_FREQ)
737 		return -EINVAL;
738 retry:
739 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
740 	if (rtc->irq_task != NULL && task == NULL)
741 		err = -EBUSY;
742 	else if (rtc->irq_task != task)
743 		err = -EACCES;
744 	else {
745 		rtc->irq_freq = freq;
746 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
747 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
748 			cpu_relax();
749 			goto retry;
750 		}
751 	}
752 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753 	return err;
754 }
755 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
756 
757 /**
758  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
759  * @rtc rtc device
760  * @timer timer being added.
761  *
762  * Enqueues a timer onto the rtc devices timerqueue and sets
763  * the next alarm event appropriately.
764  *
765  * Sets the enabled bit on the added timer.
766  *
767  * Must hold ops_lock for proper serialization of timerqueue
768  */
rtc_timer_enqueue(struct rtc_device * rtc,struct rtc_timer * timer)769 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
770 {
771 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
772 	struct rtc_time tm;
773 	ktime_t now;
774 
775 	timer->enabled = 1;
776 	__rtc_read_time(rtc, &tm);
777 	now = rtc_tm_to_ktime(tm);
778 
779 	/* Skip over expired timers */
780 	while (next) {
781 		if (next->expires >= now)
782 			break;
783 		next = timerqueue_iterate_next(next);
784 	}
785 
786 	timerqueue_add(&rtc->timerqueue, &timer->node);
787 	if (!next || ktime_before(timer->node.expires, next->expires)) {
788 		struct rtc_wkalrm alarm;
789 		int err;
790 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
791 		alarm.enabled = 1;
792 		err = __rtc_set_alarm(rtc, &alarm);
793 		if (err == -ETIME) {
794 			pm_stay_awake(rtc->dev.parent);
795 			schedule_work(&rtc->irqwork);
796 		} else if (err) {
797 			timerqueue_del(&rtc->timerqueue, &timer->node);
798 			timer->enabled = 0;
799 			return err;
800 		}
801 	}
802 	return 0;
803 }
804 
rtc_alarm_disable(struct rtc_device * rtc)805 static void rtc_alarm_disable(struct rtc_device *rtc)
806 {
807 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
808 		return;
809 
810 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
811 }
812 
813 /**
814  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
815  * @rtc rtc device
816  * @timer timer being removed.
817  *
818  * Removes a timer onto the rtc devices timerqueue and sets
819  * the next alarm event appropriately.
820  *
821  * Clears the enabled bit on the removed timer.
822  *
823  * Must hold ops_lock for proper serialization of timerqueue
824  */
rtc_timer_remove(struct rtc_device * rtc,struct rtc_timer * timer)825 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
826 {
827 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
828 	timerqueue_del(&rtc->timerqueue, &timer->node);
829 	timer->enabled = 0;
830 	if (next == &timer->node) {
831 		struct rtc_wkalrm alarm;
832 		int err;
833 		next = timerqueue_getnext(&rtc->timerqueue);
834 		if (!next) {
835 			rtc_alarm_disable(rtc);
836 			return;
837 		}
838 		alarm.time = rtc_ktime_to_tm(next->expires);
839 		alarm.enabled = 1;
840 		err = __rtc_set_alarm(rtc, &alarm);
841 		if (err == -ETIME) {
842 			pm_stay_awake(rtc->dev.parent);
843 			schedule_work(&rtc->irqwork);
844 		}
845 	}
846 }
847 
848 /**
849  * rtc_timer_do_work - Expires rtc timers
850  * @rtc rtc device
851  * @timer timer being removed.
852  *
853  * Expires rtc timers. Reprograms next alarm event if needed.
854  * Called via worktask.
855  *
856  * Serializes access to timerqueue via ops_lock mutex
857  */
rtc_timer_do_work(struct work_struct * work)858 void rtc_timer_do_work(struct work_struct *work)
859 {
860 	struct rtc_timer *timer;
861 	struct timerqueue_node *next;
862 	ktime_t now;
863 	struct rtc_time tm;
864 
865 	struct rtc_device *rtc =
866 		container_of(work, struct rtc_device, irqwork);
867 
868 	mutex_lock(&rtc->ops_lock);
869 again:
870 	__rtc_read_time(rtc, &tm);
871 	now = rtc_tm_to_ktime(tm);
872 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
873 		if (next->expires > now)
874 			break;
875 
876 		/* expire timer */
877 		timer = container_of(next, struct rtc_timer, node);
878 		timerqueue_del(&rtc->timerqueue, &timer->node);
879 		timer->enabled = 0;
880 		if (timer->task.func)
881 			timer->task.func(timer->task.private_data);
882 
883 		/* Re-add/fwd periodic timers */
884 		if (ktime_to_ns(timer->period)) {
885 			timer->node.expires = ktime_add(timer->node.expires,
886 							timer->period);
887 			timer->enabled = 1;
888 			timerqueue_add(&rtc->timerqueue, &timer->node);
889 		}
890 	}
891 
892 	/* Set next alarm */
893 	if (next) {
894 		struct rtc_wkalrm alarm;
895 		int err;
896 		int retry = 3;
897 
898 		alarm.time = rtc_ktime_to_tm(next->expires);
899 		alarm.enabled = 1;
900 reprogram:
901 		err = __rtc_set_alarm(rtc, &alarm);
902 		if (err == -ETIME)
903 			goto again;
904 		else if (err) {
905 			if (retry-- > 0)
906 				goto reprogram;
907 
908 			timer = container_of(next, struct rtc_timer, node);
909 			timerqueue_del(&rtc->timerqueue, &timer->node);
910 			timer->enabled = 0;
911 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
912 			goto again;
913 		}
914 	} else
915 		rtc_alarm_disable(rtc);
916 
917 	pm_relax(rtc->dev.parent);
918 	mutex_unlock(&rtc->ops_lock);
919 }
920 
921 
922 /* rtc_timer_init - Initializes an rtc_timer
923  * @timer: timer to be intiialized
924  * @f: function pointer to be called when timer fires
925  * @data: private data passed to function pointer
926  *
927  * Kernel interface to initializing an rtc_timer.
928  */
rtc_timer_init(struct rtc_timer * timer,void (* f)(void * p),void * data)929 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
930 {
931 	timerqueue_init(&timer->node);
932 	timer->enabled = 0;
933 	timer->task.func = f;
934 	timer->task.private_data = data;
935 }
936 
937 /* rtc_timer_start - Sets an rtc_timer to fire in the future
938  * @ rtc: rtc device to be used
939  * @ timer: timer being set
940  * @ expires: time at which to expire the timer
941  * @ period: period that the timer will recur
942  *
943  * Kernel interface to set an rtc_timer
944  */
rtc_timer_start(struct rtc_device * rtc,struct rtc_timer * timer,ktime_t expires,ktime_t period)945 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
946 			ktime_t expires, ktime_t period)
947 {
948 	int ret = 0;
949 	mutex_lock(&rtc->ops_lock);
950 	if (timer->enabled)
951 		rtc_timer_remove(rtc, timer);
952 
953 	timer->node.expires = expires;
954 	timer->period = period;
955 
956 	ret = rtc_timer_enqueue(rtc, timer);
957 
958 	mutex_unlock(&rtc->ops_lock);
959 	return ret;
960 }
961 
962 /* rtc_timer_cancel - Stops an rtc_timer
963  * @ rtc: rtc device to be used
964  * @ timer: timer being set
965  *
966  * Kernel interface to cancel an rtc_timer
967  */
rtc_timer_cancel(struct rtc_device * rtc,struct rtc_timer * timer)968 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
969 {
970 	mutex_lock(&rtc->ops_lock);
971 	if (timer->enabled)
972 		rtc_timer_remove(rtc, timer);
973 	mutex_unlock(&rtc->ops_lock);
974 }
975 
976 /**
977  * rtc_read_offset - Read the amount of rtc offset in parts per billion
978  * @ rtc: rtc device to be used
979  * @ offset: the offset in parts per billion
980  *
981  * see below for details.
982  *
983  * Kernel interface to read rtc clock offset
984  * Returns 0 on success, or a negative number on error.
985  * If read_offset() is not implemented for the rtc, return -EINVAL
986  */
rtc_read_offset(struct rtc_device * rtc,long * offset)987 int rtc_read_offset(struct rtc_device *rtc, long *offset)
988 {
989 	int ret;
990 
991 	if (!rtc->ops)
992 		return -ENODEV;
993 
994 	if (!rtc->ops->read_offset)
995 		return -EINVAL;
996 
997 	mutex_lock(&rtc->ops_lock);
998 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
999 	mutex_unlock(&rtc->ops_lock);
1000 	return ret;
1001 }
1002 
1003 /**
1004  * rtc_set_offset - Adjusts the duration of the average second
1005  * @ rtc: rtc device to be used
1006  * @ offset: the offset in parts per billion
1007  *
1008  * Some rtc's allow an adjustment to the average duration of a second
1009  * to compensate for differences in the actual clock rate due to temperature,
1010  * the crystal, capacitor, etc.
1011  *
1012  * Kernel interface to adjust an rtc clock offset.
1013  * Return 0 on success, or a negative number on error.
1014  * If the rtc offset is not setable (or not implemented), return -EINVAL
1015  */
rtc_set_offset(struct rtc_device * rtc,long offset)1016 int rtc_set_offset(struct rtc_device *rtc, long offset)
1017 {
1018 	int ret;
1019 
1020 	if (!rtc->ops)
1021 		return -ENODEV;
1022 
1023 	if (!rtc->ops->set_offset)
1024 		return -EINVAL;
1025 
1026 	mutex_lock(&rtc->ops_lock);
1027 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1028 	mutex_unlock(&rtc->ops_lock);
1029 	return ret;
1030 }
1031