• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 #include "sched.h"
8 
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11 #include "tune.h"
12 
13 #include "walt.h"
14 
15 int sched_rr_timeslice = RR_TIMESLICE;
16 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
17 
18 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
19 
20 struct rt_bandwidth def_rt_bandwidth;
21 
sched_rt_period_timer(struct hrtimer * timer)22 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
23 {
24 	struct rt_bandwidth *rt_b =
25 		container_of(timer, struct rt_bandwidth, rt_period_timer);
26 	int idle = 0;
27 	int overrun;
28 
29 	raw_spin_lock(&rt_b->rt_runtime_lock);
30 	for (;;) {
31 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
32 		if (!overrun)
33 			break;
34 
35 		raw_spin_unlock(&rt_b->rt_runtime_lock);
36 		idle = do_sched_rt_period_timer(rt_b, overrun);
37 		raw_spin_lock(&rt_b->rt_runtime_lock);
38 	}
39 	if (idle)
40 		rt_b->rt_period_active = 0;
41 	raw_spin_unlock(&rt_b->rt_runtime_lock);
42 
43 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
44 }
45 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)46 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
47 {
48 	rt_b->rt_period = ns_to_ktime(period);
49 	rt_b->rt_runtime = runtime;
50 
51 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
52 
53 	hrtimer_init(&rt_b->rt_period_timer,
54 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
55 	rt_b->rt_period_timer.function = sched_rt_period_timer;
56 }
57 
start_rt_bandwidth(struct rt_bandwidth * rt_b)58 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
59 {
60 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
61 		return;
62 
63 	raw_spin_lock(&rt_b->rt_runtime_lock);
64 	if (!rt_b->rt_period_active) {
65 		rt_b->rt_period_active = 1;
66 		/*
67 		 * SCHED_DEADLINE updates the bandwidth, as a run away
68 		 * RT task with a DL task could hog a CPU. But DL does
69 		 * not reset the period. If a deadline task was running
70 		 * without an RT task running, it can cause RT tasks to
71 		 * throttle when they start up. Kick the timer right away
72 		 * to update the period.
73 		 */
74 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
75 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
76 	}
77 	raw_spin_unlock(&rt_b->rt_runtime_lock);
78 }
79 
init_rt_rq(struct rt_rq * rt_rq)80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82 	struct rt_prio_array *array;
83 	int i;
84 
85 	array = &rt_rq->active;
86 	for (i = 0; i < MAX_RT_PRIO; i++) {
87 		INIT_LIST_HEAD(array->queue + i);
88 		__clear_bit(i, array->bitmap);
89 	}
90 	/* delimiter for bitsearch: */
91 	__set_bit(MAX_RT_PRIO, array->bitmap);
92 
93 #if defined CONFIG_SMP
94 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
95 	rt_rq->highest_prio.next = MAX_RT_PRIO;
96 	rt_rq->rt_nr_migratory = 0;
97 	rt_rq->overloaded = 0;
98 	plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100 	/* We start is dequeued state, because no RT tasks are queued */
101 	rt_rq->rt_queued = 0;
102 
103 	rt_rq->rt_time = 0;
104 	rt_rq->rt_throttled = 0;
105 	rt_rq->rt_runtime = 0;
106 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108 
109 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112 	hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114 
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116 
rt_task_of(struct sched_rt_entity * rt_se)117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122 	return container_of(rt_se, struct task_struct, rt);
123 }
124 
rq_of_rt_rq(struct rt_rq * rt_rq)125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127 	return rt_rq->rq;
128 }
129 
rt_rq_of_se(struct sched_rt_entity * rt_se)130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132 	return rt_se->rt_rq;
133 }
134 
rq_of_rt_se(struct sched_rt_entity * rt_se)135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137 	struct rt_rq *rt_rq = rt_se->rt_rq;
138 
139 	return rt_rq->rq;
140 }
141 
free_rt_sched_group(struct task_group * tg)142 void free_rt_sched_group(struct task_group *tg)
143 {
144 	int i;
145 
146 	if (tg->rt_se)
147 		destroy_rt_bandwidth(&tg->rt_bandwidth);
148 
149 	for_each_possible_cpu(i) {
150 		if (tg->rt_rq)
151 			kfree(tg->rt_rq[i]);
152 		if (tg->rt_se)
153 			kfree(tg->rt_se[i]);
154 	}
155 
156 	kfree(tg->rt_rq);
157 	kfree(tg->rt_se);
158 }
159 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161 		struct sched_rt_entity *rt_se, int cpu,
162 		struct sched_rt_entity *parent)
163 {
164 	struct rq *rq = cpu_rq(cpu);
165 
166 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
167 	rt_rq->rt_nr_boosted = 0;
168 	rt_rq->rq = rq;
169 	rt_rq->tg = tg;
170 
171 	tg->rt_rq[cpu] = rt_rq;
172 	tg->rt_se[cpu] = rt_se;
173 
174 	if (!rt_se)
175 		return;
176 
177 	if (!parent)
178 		rt_se->rt_rq = &rq->rt;
179 	else
180 		rt_se->rt_rq = parent->my_q;
181 
182 	rt_se->my_q = rt_rq;
183 	rt_se->parent = parent;
184 	INIT_LIST_HEAD(&rt_se->run_list);
185 }
186 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189 	struct rt_rq *rt_rq;
190 	struct sched_rt_entity *rt_se;
191 	int i;
192 
193 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
194 	if (!tg->rt_rq)
195 		goto err;
196 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
197 	if (!tg->rt_se)
198 		goto err;
199 
200 	init_rt_bandwidth(&tg->rt_bandwidth,
201 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202 
203 	for_each_possible_cpu(i) {
204 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
205 				     GFP_KERNEL, cpu_to_node(i));
206 		if (!rt_rq)
207 			goto err;
208 
209 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210 				     GFP_KERNEL, cpu_to_node(i));
211 		if (!rt_se)
212 			goto err_free_rq;
213 
214 		init_rt_rq(rt_rq);
215 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217 	}
218 
219 	return 1;
220 
221 err_free_rq:
222 	kfree(rt_rq);
223 err:
224 	return 0;
225 }
226 
227 #else /* CONFIG_RT_GROUP_SCHED */
228 
229 #define rt_entity_is_task(rt_se) (1)
230 
rt_task_of(struct sched_rt_entity * rt_se)231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233 	return container_of(rt_se, struct task_struct, rt);
234 }
235 
rq_of_rt_rq(struct rt_rq * rt_rq)236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238 	return container_of(rt_rq, struct rq, rt);
239 }
240 
rq_of_rt_se(struct sched_rt_entity * rt_se)241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243 	struct task_struct *p = rt_task_of(rt_se);
244 
245 	return task_rq(p);
246 }
247 
rt_rq_of_se(struct sched_rt_entity * rt_se)248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250 	struct rq *rq = rq_of_rt_se(rt_se);
251 
252 	return &rq->rt;
253 }
254 
free_rt_sched_group(struct task_group * tg)255 void free_rt_sched_group(struct task_group *tg) { }
256 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259 	return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262 
263 #ifdef CONFIG_SMP
264 
265 static void pull_rt_task(struct rq *this_rq);
266 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269 	/* Try to pull RT tasks here if we lower this rq's prio */
270 	return rq->rt.highest_prio.curr > prev->prio;
271 }
272 
rt_overloaded(struct rq * rq)273 static inline int rt_overloaded(struct rq *rq)
274 {
275 	return atomic_read(&rq->rd->rto_count);
276 }
277 
rt_set_overload(struct rq * rq)278 static inline void rt_set_overload(struct rq *rq)
279 {
280 	if (!rq->online)
281 		return;
282 
283 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284 	/*
285 	 * Make sure the mask is visible before we set
286 	 * the overload count. That is checked to determine
287 	 * if we should look at the mask. It would be a shame
288 	 * if we looked at the mask, but the mask was not
289 	 * updated yet.
290 	 *
291 	 * Matched by the barrier in pull_rt_task().
292 	 */
293 	smp_wmb();
294 	atomic_inc(&rq->rd->rto_count);
295 }
296 
rt_clear_overload(struct rq * rq)297 static inline void rt_clear_overload(struct rq *rq)
298 {
299 	if (!rq->online)
300 		return;
301 
302 	/* the order here really doesn't matter */
303 	atomic_dec(&rq->rd->rto_count);
304 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306 
update_rt_migration(struct rt_rq * rt_rq)307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310 		if (!rt_rq->overloaded) {
311 			rt_set_overload(rq_of_rt_rq(rt_rq));
312 			rt_rq->overloaded = 1;
313 		}
314 	} else if (rt_rq->overloaded) {
315 		rt_clear_overload(rq_of_rt_rq(rt_rq));
316 		rt_rq->overloaded = 0;
317 	}
318 }
319 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322 	struct task_struct *p;
323 
324 	if (!rt_entity_is_task(rt_se))
325 		return;
326 
327 	p = rt_task_of(rt_se);
328 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329 
330 	rt_rq->rt_nr_total++;
331 	if (p->nr_cpus_allowed > 1)
332 		rt_rq->rt_nr_migratory++;
333 
334 	update_rt_migration(rt_rq);
335 }
336 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339 	struct task_struct *p;
340 
341 	if (!rt_entity_is_task(rt_se))
342 		return;
343 
344 	p = rt_task_of(rt_se);
345 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346 
347 	rt_rq->rt_nr_total--;
348 	if (p->nr_cpus_allowed > 1)
349 		rt_rq->rt_nr_migratory--;
350 
351 	update_rt_migration(rt_rq);
352 }
353 
has_pushable_tasks(struct rq * rq)354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356 	return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358 
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361 
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364 
queue_push_tasks(struct rq * rq)365 static inline void queue_push_tasks(struct rq *rq)
366 {
367 	if (!has_pushable_tasks(rq))
368 		return;
369 
370 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372 
queue_pull_task(struct rq * rq)373 static inline void queue_pull_task(struct rq *rq)
374 {
375 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381 	plist_node_init(&p->pushable_tasks, p->prio);
382 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383 
384 	/* Update the highest prio pushable task */
385 	if (p->prio < rq->rt.highest_prio.next)
386 		rq->rt.highest_prio.next = p->prio;
387 }
388 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392 
393 	/* Update the new highest prio pushable task */
394 	if (has_pushable_tasks(rq)) {
395 		p = plist_first_entry(&rq->rt.pushable_tasks,
396 				      struct task_struct, pushable_tasks);
397 		rq->rt.highest_prio.next = p->prio;
398 	} else
399 		rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401 
402 #else
403 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411 
412 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416 
417 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424 	return false;
425 }
426 
pull_rt_task(struct rq * this_rq)427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430 
queue_push_tasks(struct rq * rq)431 static inline void queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435 
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438 
on_rt_rq(struct sched_rt_entity * rt_se)439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441 	return rt_se->on_rq;
442 }
443 
444 #ifdef CONFIG_RT_GROUP_SCHED
445 
sched_rt_runtime(struct rt_rq * rt_rq)446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448 	if (!rt_rq->tg)
449 		return RUNTIME_INF;
450 
451 	return rt_rq->rt_runtime;
452 }
453 
sched_rt_period(struct rt_rq * rt_rq)454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458 
459 typedef struct task_group *rt_rq_iter_t;
460 
next_task_group(struct task_group * tg)461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463 	do {
464 		tg = list_entry_rcu(tg->list.next,
465 			typeof(struct task_group), list);
466 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467 
468 	if (&tg->list == &task_groups)
469 		tg = NULL;
470 
471 	return tg;
472 }
473 
474 #define for_each_rt_rq(rt_rq, iter, rq)					\
475 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
476 		(iter = next_task_group(iter)) &&			\
477 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
478 
479 #define for_each_sched_rt_entity(rt_se) \
480 	for (; rt_se; rt_se = rt_se->parent)
481 
group_rt_rq(struct sched_rt_entity * rt_se)482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484 	return rt_se->my_q;
485 }
486 
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
489 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493 	struct rq *rq = rq_of_rt_rq(rt_rq);
494 	struct sched_rt_entity *rt_se;
495 
496 	int cpu = cpu_of(rq);
497 
498 	rt_se = rt_rq->tg->rt_se[cpu];
499 
500 	if (rt_rq->rt_nr_running) {
501 		if (!rt_se)
502 			enqueue_top_rt_rq(rt_rq);
503 		else if (!on_rt_rq(rt_se))
504 			enqueue_rt_entity(rt_se, 0);
505 
506 		if (rt_rq->highest_prio.curr < curr->prio)
507 			resched_curr(rq);
508 	}
509 }
510 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513 	struct sched_rt_entity *rt_se;
514 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515 
516 	rt_se = rt_rq->tg->rt_se[cpu];
517 
518 	if (!rt_se)
519 		dequeue_top_rt_rq(rt_rq);
520 	else if (on_rt_rq(rt_se))
521 		dequeue_rt_entity(rt_se, 0);
522 }
523 
rt_rq_throttled(struct rt_rq * rt_rq)524 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
525 {
526 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
527 }
528 
rt_se_boosted(struct sched_rt_entity * rt_se)529 static int rt_se_boosted(struct sched_rt_entity *rt_se)
530 {
531 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
532 	struct task_struct *p;
533 
534 	if (rt_rq)
535 		return !!rt_rq->rt_nr_boosted;
536 
537 	p = rt_task_of(rt_se);
538 	return p->prio != p->normal_prio;
539 }
540 
541 #ifdef CONFIG_SMP
sched_rt_period_mask(void)542 static inline const struct cpumask *sched_rt_period_mask(void)
543 {
544 	return this_rq()->rd->span;
545 }
546 #else
sched_rt_period_mask(void)547 static inline const struct cpumask *sched_rt_period_mask(void)
548 {
549 	return cpu_online_mask;
550 }
551 #endif
552 
553 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)554 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
555 {
556 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
557 }
558 
sched_rt_bandwidth(struct rt_rq * rt_rq)559 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
560 {
561 	return &rt_rq->tg->rt_bandwidth;
562 }
563 
564 #else /* !CONFIG_RT_GROUP_SCHED */
565 
sched_rt_runtime(struct rt_rq * rt_rq)566 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
567 {
568 	return rt_rq->rt_runtime;
569 }
570 
sched_rt_period(struct rt_rq * rt_rq)571 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
572 {
573 	return ktime_to_ns(def_rt_bandwidth.rt_period);
574 }
575 
576 typedef struct rt_rq *rt_rq_iter_t;
577 
578 #define for_each_rt_rq(rt_rq, iter, rq) \
579 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
580 
581 #define for_each_sched_rt_entity(rt_se) \
582 	for (; rt_se; rt_se = NULL)
583 
group_rt_rq(struct sched_rt_entity * rt_se)584 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
585 {
586 	return NULL;
587 }
588 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)589 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
590 {
591 	struct rq *rq = rq_of_rt_rq(rt_rq);
592 
593 	if (!rt_rq->rt_nr_running)
594 		return;
595 
596 	enqueue_top_rt_rq(rt_rq);
597 	resched_curr(rq);
598 }
599 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)600 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602 	dequeue_top_rt_rq(rt_rq);
603 }
604 
rt_rq_throttled(struct rt_rq * rt_rq)605 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
606 {
607 	return rt_rq->rt_throttled;
608 }
609 
sched_rt_period_mask(void)610 static inline const struct cpumask *sched_rt_period_mask(void)
611 {
612 	return cpu_online_mask;
613 }
614 
615 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)616 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
617 {
618 	return &cpu_rq(cpu)->rt;
619 }
620 
sched_rt_bandwidth(struct rt_rq * rt_rq)621 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
622 {
623 	return &def_rt_bandwidth;
624 }
625 
626 #endif /* CONFIG_RT_GROUP_SCHED */
627 
sched_rt_bandwidth_account(struct rt_rq * rt_rq)628 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
629 {
630 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
631 
632 	return (hrtimer_active(&rt_b->rt_period_timer) ||
633 		rt_rq->rt_time < rt_b->rt_runtime);
634 }
635 
636 #ifdef CONFIG_SMP
637 /*
638  * We ran out of runtime, see if we can borrow some from our neighbours.
639  */
do_balance_runtime(struct rt_rq * rt_rq)640 static void do_balance_runtime(struct rt_rq *rt_rq)
641 {
642 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
643 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
644 	int i, weight;
645 	u64 rt_period;
646 
647 	weight = cpumask_weight(rd->span);
648 
649 	raw_spin_lock(&rt_b->rt_runtime_lock);
650 	rt_period = ktime_to_ns(rt_b->rt_period);
651 	for_each_cpu(i, rd->span) {
652 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653 		s64 diff;
654 
655 		if (iter == rt_rq)
656 			continue;
657 
658 		raw_spin_lock(&iter->rt_runtime_lock);
659 		/*
660 		 * Either all rqs have inf runtime and there's nothing to steal
661 		 * or __disable_runtime() below sets a specific rq to inf to
662 		 * indicate its been disabled and disalow stealing.
663 		 */
664 		if (iter->rt_runtime == RUNTIME_INF)
665 			goto next;
666 
667 		/*
668 		 * From runqueues with spare time, take 1/n part of their
669 		 * spare time, but no more than our period.
670 		 */
671 		diff = iter->rt_runtime - iter->rt_time;
672 		if (diff > 0) {
673 			diff = div_u64((u64)diff, weight);
674 			if (rt_rq->rt_runtime + diff > rt_period)
675 				diff = rt_period - rt_rq->rt_runtime;
676 			iter->rt_runtime -= diff;
677 			rt_rq->rt_runtime += diff;
678 			if (rt_rq->rt_runtime == rt_period) {
679 				raw_spin_unlock(&iter->rt_runtime_lock);
680 				break;
681 			}
682 		}
683 next:
684 		raw_spin_unlock(&iter->rt_runtime_lock);
685 	}
686 	raw_spin_unlock(&rt_b->rt_runtime_lock);
687 }
688 
689 /*
690  * Ensure this RQ takes back all the runtime it lend to its neighbours.
691  */
__disable_runtime(struct rq * rq)692 static void __disable_runtime(struct rq *rq)
693 {
694 	struct root_domain *rd = rq->rd;
695 	rt_rq_iter_t iter;
696 	struct rt_rq *rt_rq;
697 
698 	if (unlikely(!scheduler_running))
699 		return;
700 
701 	for_each_rt_rq(rt_rq, iter, rq) {
702 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
703 		s64 want;
704 		int i;
705 
706 		raw_spin_lock(&rt_b->rt_runtime_lock);
707 		raw_spin_lock(&rt_rq->rt_runtime_lock);
708 		/*
709 		 * Either we're all inf and nobody needs to borrow, or we're
710 		 * already disabled and thus have nothing to do, or we have
711 		 * exactly the right amount of runtime to take out.
712 		 */
713 		if (rt_rq->rt_runtime == RUNTIME_INF ||
714 				rt_rq->rt_runtime == rt_b->rt_runtime)
715 			goto balanced;
716 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
717 
718 		/*
719 		 * Calculate the difference between what we started out with
720 		 * and what we current have, that's the amount of runtime
721 		 * we lend and now have to reclaim.
722 		 */
723 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
724 
725 		/*
726 		 * Greedy reclaim, take back as much as we can.
727 		 */
728 		for_each_cpu(i, rd->span) {
729 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
730 			s64 diff;
731 
732 			/*
733 			 * Can't reclaim from ourselves or disabled runqueues.
734 			 */
735 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
736 				continue;
737 
738 			raw_spin_lock(&iter->rt_runtime_lock);
739 			if (want > 0) {
740 				diff = min_t(s64, iter->rt_runtime, want);
741 				iter->rt_runtime -= diff;
742 				want -= diff;
743 			} else {
744 				iter->rt_runtime -= want;
745 				want -= want;
746 			}
747 			raw_spin_unlock(&iter->rt_runtime_lock);
748 
749 			if (!want)
750 				break;
751 		}
752 
753 		raw_spin_lock(&rt_rq->rt_runtime_lock);
754 		/*
755 		 * We cannot be left wanting - that would mean some runtime
756 		 * leaked out of the system.
757 		 */
758 		BUG_ON(want);
759 balanced:
760 		/*
761 		 * Disable all the borrow logic by pretending we have inf
762 		 * runtime - in which case borrowing doesn't make sense.
763 		 */
764 		rt_rq->rt_runtime = RUNTIME_INF;
765 		rt_rq->rt_throttled = 0;
766 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
767 		raw_spin_unlock(&rt_b->rt_runtime_lock);
768 
769 		/* Make rt_rq available for pick_next_task() */
770 		sched_rt_rq_enqueue(rt_rq);
771 	}
772 }
773 
__enable_runtime(struct rq * rq)774 static void __enable_runtime(struct rq *rq)
775 {
776 	rt_rq_iter_t iter;
777 	struct rt_rq *rt_rq;
778 
779 	if (unlikely(!scheduler_running))
780 		return;
781 
782 	/*
783 	 * Reset each runqueue's bandwidth settings
784 	 */
785 	for_each_rt_rq(rt_rq, iter, rq) {
786 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
787 
788 		raw_spin_lock(&rt_b->rt_runtime_lock);
789 		raw_spin_lock(&rt_rq->rt_runtime_lock);
790 		rt_rq->rt_runtime = rt_b->rt_runtime;
791 		rt_rq->rt_time = 0;
792 		rt_rq->rt_throttled = 0;
793 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
794 		raw_spin_unlock(&rt_b->rt_runtime_lock);
795 	}
796 }
797 
balance_runtime(struct rt_rq * rt_rq)798 static void balance_runtime(struct rt_rq *rt_rq)
799 {
800 	if (!sched_feat(RT_RUNTIME_SHARE))
801 		return;
802 
803 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
804 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 		do_balance_runtime(rt_rq);
806 		raw_spin_lock(&rt_rq->rt_runtime_lock);
807 	}
808 }
809 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)810 static inline void balance_runtime(struct rt_rq *rt_rq) {}
811 #endif /* CONFIG_SMP */
812 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)813 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
814 {
815 	int i, idle = 1, throttled = 0;
816 	const struct cpumask *span;
817 
818 	span = sched_rt_period_mask();
819 #ifdef CONFIG_RT_GROUP_SCHED
820 	/*
821 	 * FIXME: isolated CPUs should really leave the root task group,
822 	 * whether they are isolcpus or were isolated via cpusets, lest
823 	 * the timer run on a CPU which does not service all runqueues,
824 	 * potentially leaving other CPUs indefinitely throttled.  If
825 	 * isolation is really required, the user will turn the throttle
826 	 * off to kill the perturbations it causes anyway.  Meanwhile,
827 	 * this maintains functionality for boot and/or troubleshooting.
828 	 */
829 	if (rt_b == &root_task_group.rt_bandwidth)
830 		span = cpu_online_mask;
831 #endif
832 	for_each_cpu(i, span) {
833 		int enqueue = 0;
834 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
835 		struct rq *rq = rq_of_rt_rq(rt_rq);
836 		int skip;
837 
838 		/*
839 		 * When span == cpu_online_mask, taking each rq->lock
840 		 * can be time-consuming. Try to avoid it when possible.
841 		 */
842 		raw_spin_lock(&rt_rq->rt_runtime_lock);
843 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
844 			rt_rq->rt_runtime = rt_b->rt_runtime;
845 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
846 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
847 		if (skip)
848 			continue;
849 
850 		raw_spin_lock(&rq->lock);
851 		update_rq_clock(rq);
852 
853 		if (rt_rq->rt_time) {
854 			u64 runtime;
855 
856 			raw_spin_lock(&rt_rq->rt_runtime_lock);
857 			if (rt_rq->rt_throttled)
858 				balance_runtime(rt_rq);
859 			runtime = rt_rq->rt_runtime;
860 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
861 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
862 				rt_rq->rt_throttled = 0;
863 				enqueue = 1;
864 
865 				/*
866 				 * When we're idle and a woken (rt) task is
867 				 * throttled check_preempt_curr() will set
868 				 * skip_update and the time between the wakeup
869 				 * and this unthrottle will get accounted as
870 				 * 'runtime'.
871 				 */
872 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
873 					rq_clock_skip_update(rq, false);
874 			}
875 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
876 				idle = 0;
877 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
878 		} else if (rt_rq->rt_nr_running) {
879 			idle = 0;
880 			if (!rt_rq_throttled(rt_rq))
881 				enqueue = 1;
882 		}
883 		if (rt_rq->rt_throttled)
884 			throttled = 1;
885 
886 		if (enqueue)
887 			sched_rt_rq_enqueue(rt_rq);
888 		raw_spin_unlock(&rq->lock);
889 	}
890 
891 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
892 		return 1;
893 
894 	return idle;
895 }
896 
rt_se_prio(struct sched_rt_entity * rt_se)897 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
898 {
899 #ifdef CONFIG_RT_GROUP_SCHED
900 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
901 
902 	if (rt_rq)
903 		return rt_rq->highest_prio.curr;
904 #endif
905 
906 	return rt_task_of(rt_se)->prio;
907 }
908 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)909 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
910 {
911 	u64 runtime = sched_rt_runtime(rt_rq);
912 
913 	if (rt_rq->rt_throttled)
914 		return rt_rq_throttled(rt_rq);
915 
916 	if (runtime >= sched_rt_period(rt_rq))
917 		return 0;
918 
919 	balance_runtime(rt_rq);
920 	runtime = sched_rt_runtime(rt_rq);
921 	if (runtime == RUNTIME_INF)
922 		return 0;
923 
924 	if (rt_rq->rt_time > runtime) {
925 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
926 
927 		/*
928 		 * Don't actually throttle groups that have no runtime assigned
929 		 * but accrue some time due to boosting.
930 		 */
931 		if (likely(rt_b->rt_runtime)) {
932 			rt_rq->rt_throttled = 1;
933 			printk_deferred_once("sched: RT throttling activated\n");
934 		} else {
935 			/*
936 			 * In case we did anyway, make it go away,
937 			 * replenishment is a joke, since it will replenish us
938 			 * with exactly 0 ns.
939 			 */
940 			rt_rq->rt_time = 0;
941 		}
942 
943 		if (rt_rq_throttled(rt_rq)) {
944 			sched_rt_rq_dequeue(rt_rq);
945 			return 1;
946 		}
947 	}
948 
949 	return 0;
950 }
951 
952 /*
953  * Update the current task's runtime statistics. Skip current tasks that
954  * are not in our scheduling class.
955  */
update_curr_rt(struct rq * rq)956 static void update_curr_rt(struct rq *rq)
957 {
958 	struct task_struct *curr = rq->curr;
959 	struct sched_rt_entity *rt_se = &curr->rt;
960 	u64 delta_exec;
961 
962 	if (curr->sched_class != &rt_sched_class)
963 		return;
964 
965 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
966 	if (unlikely((s64)delta_exec <= 0))
967 		return;
968 
969 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
970 	cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
971 
972 	schedstat_set(curr->se.statistics.exec_max,
973 		      max(curr->se.statistics.exec_max, delta_exec));
974 
975 	curr->se.sum_exec_runtime += delta_exec;
976 	account_group_exec_runtime(curr, delta_exec);
977 
978 	curr->se.exec_start = rq_clock_task(rq);
979 	cpuacct_charge(curr, delta_exec);
980 
981 	sched_rt_avg_update(rq, delta_exec);
982 
983 	if (!rt_bandwidth_enabled())
984 		return;
985 
986 	for_each_sched_rt_entity(rt_se) {
987 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
988 
989 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
990 			raw_spin_lock(&rt_rq->rt_runtime_lock);
991 			rt_rq->rt_time += delta_exec;
992 			if (sched_rt_runtime_exceeded(rt_rq))
993 				resched_curr(rq);
994 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
995 		}
996 	}
997 }
998 
999 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)1000 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1001 {
1002 	struct rq *rq = rq_of_rt_rq(rt_rq);
1003 
1004 	BUG_ON(&rq->rt != rt_rq);
1005 
1006 	if (!rt_rq->rt_queued)
1007 		return;
1008 
1009 	BUG_ON(!rq->nr_running);
1010 
1011 	sub_nr_running(rq, rt_rq->rt_nr_running);
1012 	rt_rq->rt_queued = 0;
1013 }
1014 
1015 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1016 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1017 {
1018 	struct rq *rq = rq_of_rt_rq(rt_rq);
1019 
1020 	BUG_ON(&rq->rt != rt_rq);
1021 
1022 	if (rt_rq->rt_queued)
1023 		return;
1024 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1025 		return;
1026 
1027 	add_nr_running(rq, rt_rq->rt_nr_running);
1028 	rt_rq->rt_queued = 1;
1029 }
1030 
1031 #if defined CONFIG_SMP
1032 
1033 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1034 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1035 {
1036 	struct rq *rq = rq_of_rt_rq(rt_rq);
1037 
1038 #ifdef CONFIG_RT_GROUP_SCHED
1039 	/*
1040 	 * Change rq's cpupri only if rt_rq is the top queue.
1041 	 */
1042 	if (&rq->rt != rt_rq)
1043 		return;
1044 #endif
1045 	if (rq->online && prio < prev_prio)
1046 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1047 }
1048 
1049 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1050 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1051 {
1052 	struct rq *rq = rq_of_rt_rq(rt_rq);
1053 
1054 #ifdef CONFIG_RT_GROUP_SCHED
1055 	/*
1056 	 * Change rq's cpupri only if rt_rq is the top queue.
1057 	 */
1058 	if (&rq->rt != rt_rq)
1059 		return;
1060 #endif
1061 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1062 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1063 }
1064 
1065 #else /* CONFIG_SMP */
1066 
1067 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1068 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1069 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1070 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071 
1072 #endif /* CONFIG_SMP */
1073 
1074 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1075 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1076 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1077 {
1078 	int prev_prio = rt_rq->highest_prio.curr;
1079 
1080 	if (prio < prev_prio)
1081 		rt_rq->highest_prio.curr = prio;
1082 
1083 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1084 }
1085 
1086 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1087 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1088 {
1089 	int prev_prio = rt_rq->highest_prio.curr;
1090 
1091 	if (rt_rq->rt_nr_running) {
1092 
1093 		WARN_ON(prio < prev_prio);
1094 
1095 		/*
1096 		 * This may have been our highest task, and therefore
1097 		 * we may have some recomputation to do
1098 		 */
1099 		if (prio == prev_prio) {
1100 			struct rt_prio_array *array = &rt_rq->active;
1101 
1102 			rt_rq->highest_prio.curr =
1103 				sched_find_first_bit(array->bitmap);
1104 		}
1105 
1106 	} else
1107 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1108 
1109 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1110 }
1111 
1112 #else
1113 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1114 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1115 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1116 
1117 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1118 
1119 #ifdef CONFIG_RT_GROUP_SCHED
1120 
1121 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1122 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1123 {
1124 	if (rt_se_boosted(rt_se))
1125 		rt_rq->rt_nr_boosted++;
1126 
1127 	if (rt_rq->tg)
1128 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1129 }
1130 
1131 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1132 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1133 {
1134 	if (rt_se_boosted(rt_se))
1135 		rt_rq->rt_nr_boosted--;
1136 
1137 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1138 }
1139 
1140 #else /* CONFIG_RT_GROUP_SCHED */
1141 
1142 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1143 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145 	start_rt_bandwidth(&def_rt_bandwidth);
1146 }
1147 
1148 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1149 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1150 
1151 #endif /* CONFIG_RT_GROUP_SCHED */
1152 
1153 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1154 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1155 {
1156 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1157 
1158 	if (group_rq)
1159 		return group_rq->rt_nr_running;
1160 	else
1161 		return 1;
1162 }
1163 
1164 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1165 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1166 {
1167 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1168 	struct task_struct *tsk;
1169 
1170 	if (group_rq)
1171 		return group_rq->rr_nr_running;
1172 
1173 	tsk = rt_task_of(rt_se);
1174 
1175 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1176 }
1177 
1178 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1179 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1180 {
1181 	int prio = rt_se_prio(rt_se);
1182 
1183 	WARN_ON(!rt_prio(prio));
1184 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1185 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1186 
1187 	inc_rt_prio(rt_rq, prio);
1188 	inc_rt_migration(rt_se, rt_rq);
1189 	inc_rt_group(rt_se, rt_rq);
1190 }
1191 
1192 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1193 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 {
1195 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1196 	WARN_ON(!rt_rq->rt_nr_running);
1197 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1198 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1199 
1200 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1201 	dec_rt_migration(rt_se, rt_rq);
1202 	dec_rt_group(rt_se, rt_rq);
1203 }
1204 
1205 /*
1206  * Change rt_se->run_list location unless SAVE && !MOVE
1207  *
1208  * assumes ENQUEUE/DEQUEUE flags match
1209  */
move_entity(unsigned int flags)1210 static inline bool move_entity(unsigned int flags)
1211 {
1212 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1213 		return false;
1214 
1215 	return true;
1216 }
1217 
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1218 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1219 {
1220 	list_del_init(&rt_se->run_list);
1221 
1222 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1223 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1224 
1225 	rt_se->on_list = 0;
1226 }
1227 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1228 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1229 {
1230 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1231 	struct rt_prio_array *array = &rt_rq->active;
1232 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1233 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1234 
1235 	/*
1236 	 * Don't enqueue the group if its throttled, or when empty.
1237 	 * The latter is a consequence of the former when a child group
1238 	 * get throttled and the current group doesn't have any other
1239 	 * active members.
1240 	 */
1241 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1242 		if (rt_se->on_list)
1243 			__delist_rt_entity(rt_se, array);
1244 		return;
1245 	}
1246 
1247 	if (move_entity(flags)) {
1248 		WARN_ON_ONCE(rt_se->on_list);
1249 		if (flags & ENQUEUE_HEAD)
1250 			list_add(&rt_se->run_list, queue);
1251 		else
1252 			list_add_tail(&rt_se->run_list, queue);
1253 
1254 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1255 		rt_se->on_list = 1;
1256 	}
1257 	rt_se->on_rq = 1;
1258 
1259 	inc_rt_tasks(rt_se, rt_rq);
1260 }
1261 
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1262 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1263 {
1264 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1265 	struct rt_prio_array *array = &rt_rq->active;
1266 
1267 	if (move_entity(flags)) {
1268 		WARN_ON_ONCE(!rt_se->on_list);
1269 		__delist_rt_entity(rt_se, array);
1270 	}
1271 	rt_se->on_rq = 0;
1272 
1273 	dec_rt_tasks(rt_se, rt_rq);
1274 }
1275 
1276 /*
1277  * Because the prio of an upper entry depends on the lower
1278  * entries, we must remove entries top - down.
1279  */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1280 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1281 {
1282 	struct sched_rt_entity *back = NULL;
1283 
1284 	for_each_sched_rt_entity(rt_se) {
1285 		rt_se->back = back;
1286 		back = rt_se;
1287 	}
1288 
1289 	dequeue_top_rt_rq(rt_rq_of_se(back));
1290 
1291 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1292 		if (on_rt_rq(rt_se))
1293 			__dequeue_rt_entity(rt_se, flags);
1294 	}
1295 }
1296 
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1297 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1298 {
1299 	struct rq *rq = rq_of_rt_se(rt_se);
1300 
1301 	dequeue_rt_stack(rt_se, flags);
1302 	for_each_sched_rt_entity(rt_se)
1303 		__enqueue_rt_entity(rt_se, flags);
1304 	enqueue_top_rt_rq(&rq->rt);
1305 }
1306 
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1307 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1308 {
1309 	struct rq *rq = rq_of_rt_se(rt_se);
1310 
1311 	dequeue_rt_stack(rt_se, flags);
1312 
1313 	for_each_sched_rt_entity(rt_se) {
1314 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1315 
1316 		if (rt_rq && rt_rq->rt_nr_running)
1317 			__enqueue_rt_entity(rt_se, flags);
1318 	}
1319 	enqueue_top_rt_rq(&rq->rt);
1320 }
1321 
1322 /*
1323  * Adding/removing a task to/from a priority array:
1324  */
1325 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1326 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1327 {
1328 	struct sched_rt_entity *rt_se = &p->rt;
1329 
1330 	schedtune_enqueue_task(p, cpu_of(rq));
1331 
1332 	if (flags & ENQUEUE_WAKEUP)
1333 		rt_se->timeout = 0;
1334 
1335 	enqueue_rt_entity(rt_se, flags);
1336 	walt_inc_cumulative_runnable_avg(rq, p);
1337 
1338 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1339 		enqueue_pushable_task(rq, p);
1340 }
1341 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1342 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1343 {
1344 	struct sched_rt_entity *rt_se = &p->rt;
1345 
1346 	schedtune_dequeue_task(p, cpu_of(rq));
1347 
1348 	update_curr_rt(rq);
1349 	dequeue_rt_entity(rt_se, flags);
1350 	walt_dec_cumulative_runnable_avg(rq, p);
1351 
1352 	dequeue_pushable_task(rq, p);
1353 }
1354 
1355 /*
1356  * Put task to the head or the end of the run list without the overhead of
1357  * dequeue followed by enqueue.
1358  */
1359 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1360 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1361 {
1362 	if (on_rt_rq(rt_se)) {
1363 		struct rt_prio_array *array = &rt_rq->active;
1364 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1365 
1366 		if (head)
1367 			list_move(&rt_se->run_list, queue);
1368 		else
1369 			list_move_tail(&rt_se->run_list, queue);
1370 	}
1371 }
1372 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1373 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1374 {
1375 	struct sched_rt_entity *rt_se = &p->rt;
1376 	struct rt_rq *rt_rq;
1377 
1378 	for_each_sched_rt_entity(rt_se) {
1379 		rt_rq = rt_rq_of_se(rt_se);
1380 		requeue_rt_entity(rt_rq, rt_se, head);
1381 	}
1382 }
1383 
yield_task_rt(struct rq * rq)1384 static void yield_task_rt(struct rq *rq)
1385 {
1386 	requeue_task_rt(rq, rq->curr, 0);
1387 }
1388 
1389 #ifdef CONFIG_SMP
1390 static int find_lowest_rq(struct task_struct *task);
1391 
1392 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags,int sibling_count_hint)1393 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
1394 		  int sibling_count_hint)
1395 {
1396 	struct task_struct *curr;
1397 	struct rq *rq;
1398 
1399 	/* For anything but wake ups, just return the task_cpu */
1400 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1401 		goto out;
1402 
1403 	rq = cpu_rq(cpu);
1404 
1405 	rcu_read_lock();
1406 	curr = READ_ONCE(rq->curr); /* unlocked access */
1407 
1408 	/*
1409 	 * If the current task on @p's runqueue is an RT task, then
1410 	 * try to see if we can wake this RT task up on another
1411 	 * runqueue. Otherwise simply start this RT task
1412 	 * on its current runqueue.
1413 	 *
1414 	 * We want to avoid overloading runqueues. If the woken
1415 	 * task is a higher priority, then it will stay on this CPU
1416 	 * and the lower prio task should be moved to another CPU.
1417 	 * Even though this will probably make the lower prio task
1418 	 * lose its cache, we do not want to bounce a higher task
1419 	 * around just because it gave up its CPU, perhaps for a
1420 	 * lock?
1421 	 *
1422 	 * For equal prio tasks, we just let the scheduler sort it out.
1423 	 *
1424 	 * Otherwise, just let it ride on the affined RQ and the
1425 	 * post-schedule router will push the preempted task away
1426 	 *
1427 	 * This test is optimistic, if we get it wrong the load-balancer
1428 	 * will have to sort it out.
1429 	 */
1430 	if (curr && unlikely(rt_task(curr)) &&
1431 	    (curr->nr_cpus_allowed < 2 ||
1432 	     curr->prio <= p->prio)) {
1433 		int target = find_lowest_rq(p);
1434 
1435 		/*
1436 		 * Don't bother moving it if the destination CPU is
1437 		 * not running a lower priority task.
1438 		 */
1439 		if (target != -1 &&
1440 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1441 			cpu = target;
1442 	}
1443 	rcu_read_unlock();
1444 
1445 out:
1446 	return cpu;
1447 }
1448 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1449 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1450 {
1451 	/*
1452 	 * Current can't be migrated, useless to reschedule,
1453 	 * let's hope p can move out.
1454 	 */
1455 	if (rq->curr->nr_cpus_allowed == 1 ||
1456 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1457 		return;
1458 
1459 	/*
1460 	 * p is migratable, so let's not schedule it and
1461 	 * see if it is pushed or pulled somewhere else.
1462 	 */
1463 	if (p->nr_cpus_allowed != 1
1464 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1465 		return;
1466 
1467 	/*
1468 	 * There appears to be other cpus that can accept
1469 	 * current and none to run 'p', so lets reschedule
1470 	 * to try and push current away:
1471 	 */
1472 	requeue_task_rt(rq, p, 1);
1473 	resched_curr(rq);
1474 }
1475 
1476 #endif /* CONFIG_SMP */
1477 
1478 /*
1479  * Preempt the current task with a newly woken task if needed:
1480  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1481 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1482 {
1483 	if (p->prio < rq->curr->prio) {
1484 		resched_curr(rq);
1485 		return;
1486 	}
1487 
1488 #ifdef CONFIG_SMP
1489 	/*
1490 	 * If:
1491 	 *
1492 	 * - the newly woken task is of equal priority to the current task
1493 	 * - the newly woken task is non-migratable while current is migratable
1494 	 * - current will be preempted on the next reschedule
1495 	 *
1496 	 * we should check to see if current can readily move to a different
1497 	 * cpu.  If so, we will reschedule to allow the push logic to try
1498 	 * to move current somewhere else, making room for our non-migratable
1499 	 * task.
1500 	 */
1501 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1502 		check_preempt_equal_prio(rq, p);
1503 #endif
1504 }
1505 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1506 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1507 						   struct rt_rq *rt_rq)
1508 {
1509 	struct rt_prio_array *array = &rt_rq->active;
1510 	struct sched_rt_entity *next = NULL;
1511 	struct list_head *queue;
1512 	int idx;
1513 
1514 	idx = sched_find_first_bit(array->bitmap);
1515 	BUG_ON(idx >= MAX_RT_PRIO);
1516 
1517 	queue = array->queue + idx;
1518 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1519 
1520 	return next;
1521 }
1522 
_pick_next_task_rt(struct rq * rq)1523 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1524 {
1525 	struct sched_rt_entity *rt_se;
1526 	struct task_struct *p;
1527 	struct rt_rq *rt_rq  = &rq->rt;
1528 
1529 	do {
1530 		rt_se = pick_next_rt_entity(rq, rt_rq);
1531 		BUG_ON(!rt_se);
1532 		rt_rq = group_rt_rq(rt_se);
1533 	} while (rt_rq);
1534 
1535 	p = rt_task_of(rt_se);
1536 	p->se.exec_start = rq_clock_task(rq);
1537 
1538 	return p;
1539 }
1540 
1541 extern int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running);
1542 
1543 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1544 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1545 {
1546 	struct task_struct *p;
1547 	struct rt_rq *rt_rq = &rq->rt;
1548 
1549 	if (need_pull_rt_task(rq, prev)) {
1550 		/*
1551 		 * This is OK, because current is on_cpu, which avoids it being
1552 		 * picked for load-balance and preemption/IRQs are still
1553 		 * disabled avoiding further scheduler activity on it and we're
1554 		 * being very careful to re-start the picking loop.
1555 		 */
1556 		rq_unpin_lock(rq, rf);
1557 		pull_rt_task(rq);
1558 		rq_repin_lock(rq, rf);
1559 		/*
1560 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1561 		 * means a dl or stop task can slip in, in which case we need
1562 		 * to re-start task selection.
1563 		 */
1564 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1565 			     rq->dl.dl_nr_running))
1566 			return RETRY_TASK;
1567 	}
1568 
1569 	/*
1570 	 * We may dequeue prev's rt_rq in put_prev_task().
1571 	 * So, we update time before rt_nr_running check.
1572 	 */
1573 	if (prev->sched_class == &rt_sched_class)
1574 		update_curr_rt(rq);
1575 
1576 	if (!rt_rq->rt_queued)
1577 		return NULL;
1578 
1579 	put_prev_task(rq, prev);
1580 
1581 	p = _pick_next_task_rt(rq);
1582 
1583 	/* The running task is never eligible for pushing */
1584 	dequeue_pushable_task(rq, p);
1585 
1586 	queue_push_tasks(rq);
1587 
1588 	if (p)
1589 		update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), rt_rq,
1590 					rq->curr->sched_class == &rt_sched_class);
1591 
1592 	return p;
1593 }
1594 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1595 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1596 {
1597 	update_curr_rt(rq);
1598 
1599 	update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
1600 
1601 	/*
1602 	 * The previous task needs to be made eligible for pushing
1603 	 * if it is still active
1604 	 */
1605 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1606 		enqueue_pushable_task(rq, p);
1607 }
1608 
1609 #ifdef CONFIG_SMP
1610 
1611 /* Only try algorithms three times */
1612 #define RT_MAX_TRIES 3
1613 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1614 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1615 {
1616 	if (!task_running(rq, p) &&
1617 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1618 		return 1;
1619 	return 0;
1620 }
1621 
1622 /*
1623  * Return the highest pushable rq's task, which is suitable to be executed
1624  * on the cpu, NULL otherwise
1625  */
pick_highest_pushable_task(struct rq * rq,int cpu)1626 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1627 {
1628 	struct plist_head *head = &rq->rt.pushable_tasks;
1629 	struct task_struct *p;
1630 
1631 	if (!has_pushable_tasks(rq))
1632 		return NULL;
1633 
1634 	plist_for_each_entry(p, head, pushable_tasks) {
1635 		if (pick_rt_task(rq, p, cpu))
1636 			return p;
1637 	}
1638 
1639 	return NULL;
1640 }
1641 
1642 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1643 
find_lowest_rq(struct task_struct * task)1644 static int find_lowest_rq(struct task_struct *task)
1645 {
1646 	struct sched_domain *sd;
1647 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1648 	int this_cpu = smp_processor_id();
1649 	int cpu      = task_cpu(task);
1650 
1651 	/* Make sure the mask is initialized first */
1652 	if (unlikely(!lowest_mask))
1653 		return -1;
1654 
1655 	if (task->nr_cpus_allowed == 1)
1656 		return -1; /* No other targets possible */
1657 
1658 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1659 		return -1; /* No targets found */
1660 
1661 	/*
1662 	 * At this point we have built a mask of cpus representing the
1663 	 * lowest priority tasks in the system.  Now we want to elect
1664 	 * the best one based on our affinity and topology.
1665 	 *
1666 	 * We prioritize the last cpu that the task executed on since
1667 	 * it is most likely cache-hot in that location.
1668 	 */
1669 	if (cpumask_test_cpu(cpu, lowest_mask))
1670 		return cpu;
1671 
1672 	/*
1673 	 * Otherwise, we consult the sched_domains span maps to figure
1674 	 * out which cpu is logically closest to our hot cache data.
1675 	 */
1676 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1677 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1678 
1679 	rcu_read_lock();
1680 	for_each_domain(cpu, sd) {
1681 		if (sd->flags & SD_WAKE_AFFINE) {
1682 			int best_cpu;
1683 
1684 			/*
1685 			 * "this_cpu" is cheaper to preempt than a
1686 			 * remote processor.
1687 			 */
1688 			if (this_cpu != -1 &&
1689 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1690 				rcu_read_unlock();
1691 				return this_cpu;
1692 			}
1693 
1694 			best_cpu = cpumask_first_and(lowest_mask,
1695 						     sched_domain_span(sd));
1696 			if (best_cpu < nr_cpu_ids) {
1697 				rcu_read_unlock();
1698 				return best_cpu;
1699 			}
1700 		}
1701 	}
1702 	rcu_read_unlock();
1703 
1704 	/*
1705 	 * And finally, if there were no matches within the domains
1706 	 * just give the caller *something* to work with from the compatible
1707 	 * locations.
1708 	 */
1709 	if (this_cpu != -1)
1710 		return this_cpu;
1711 
1712 	cpu = cpumask_any(lowest_mask);
1713 	if (cpu < nr_cpu_ids)
1714 		return cpu;
1715 	return -1;
1716 }
1717 
1718 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1719 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1720 {
1721 	struct rq *lowest_rq = NULL;
1722 	int tries;
1723 	int cpu;
1724 
1725 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1726 		cpu = find_lowest_rq(task);
1727 
1728 		if ((cpu == -1) || (cpu == rq->cpu))
1729 			break;
1730 
1731 		lowest_rq = cpu_rq(cpu);
1732 
1733 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1734 			/*
1735 			 * Target rq has tasks of equal or higher priority,
1736 			 * retrying does not release any lock and is unlikely
1737 			 * to yield a different result.
1738 			 */
1739 			lowest_rq = NULL;
1740 			break;
1741 		}
1742 
1743 		/* if the prio of this runqueue changed, try again */
1744 		if (double_lock_balance(rq, lowest_rq)) {
1745 			/*
1746 			 * We had to unlock the run queue. In
1747 			 * the mean time, task could have
1748 			 * migrated already or had its affinity changed.
1749 			 * Also make sure that it wasn't scheduled on its rq.
1750 			 */
1751 			if (unlikely(task_rq(task) != rq ||
1752 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1753 				     task_running(rq, task) ||
1754 				     !rt_task(task) ||
1755 				     !task_on_rq_queued(task))) {
1756 
1757 				double_unlock_balance(rq, lowest_rq);
1758 				lowest_rq = NULL;
1759 				break;
1760 			}
1761 		}
1762 
1763 		/* If this rq is still suitable use it. */
1764 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1765 			break;
1766 
1767 		/* try again */
1768 		double_unlock_balance(rq, lowest_rq);
1769 		lowest_rq = NULL;
1770 	}
1771 
1772 	return lowest_rq;
1773 }
1774 
pick_next_pushable_task(struct rq * rq)1775 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1776 {
1777 	struct task_struct *p;
1778 
1779 	if (!has_pushable_tasks(rq))
1780 		return NULL;
1781 
1782 	p = plist_first_entry(&rq->rt.pushable_tasks,
1783 			      struct task_struct, pushable_tasks);
1784 
1785 	BUG_ON(rq->cpu != task_cpu(p));
1786 	BUG_ON(task_current(rq, p));
1787 	BUG_ON(p->nr_cpus_allowed <= 1);
1788 
1789 	BUG_ON(!task_on_rq_queued(p));
1790 	BUG_ON(!rt_task(p));
1791 
1792 	return p;
1793 }
1794 
1795 /*
1796  * If the current CPU has more than one RT task, see if the non
1797  * running task can migrate over to a CPU that is running a task
1798  * of lesser priority.
1799  */
push_rt_task(struct rq * rq)1800 static int push_rt_task(struct rq *rq)
1801 {
1802 	struct task_struct *next_task;
1803 	struct rq *lowest_rq;
1804 	int ret = 0;
1805 
1806 	if (!rq->rt.overloaded)
1807 		return 0;
1808 
1809 	next_task = pick_next_pushable_task(rq);
1810 	if (!next_task)
1811 		return 0;
1812 
1813 retry:
1814 	if (unlikely(next_task == rq->curr)) {
1815 		WARN_ON(1);
1816 		return 0;
1817 	}
1818 
1819 	/*
1820 	 * It's possible that the next_task slipped in of
1821 	 * higher priority than current. If that's the case
1822 	 * just reschedule current.
1823 	 */
1824 	if (unlikely(next_task->prio < rq->curr->prio)) {
1825 		resched_curr(rq);
1826 		return 0;
1827 	}
1828 
1829 	/* We might release rq lock */
1830 	get_task_struct(next_task);
1831 
1832 	/* find_lock_lowest_rq locks the rq if found */
1833 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1834 	if (!lowest_rq) {
1835 		struct task_struct *task;
1836 		/*
1837 		 * find_lock_lowest_rq releases rq->lock
1838 		 * so it is possible that next_task has migrated.
1839 		 *
1840 		 * We need to make sure that the task is still on the same
1841 		 * run-queue and is also still the next task eligible for
1842 		 * pushing.
1843 		 */
1844 		task = pick_next_pushable_task(rq);
1845 		if (task == next_task) {
1846 			/*
1847 			 * The task hasn't migrated, and is still the next
1848 			 * eligible task, but we failed to find a run-queue
1849 			 * to push it to.  Do not retry in this case, since
1850 			 * other cpus will pull from us when ready.
1851 			 */
1852 			goto out;
1853 		}
1854 
1855 		if (!task)
1856 			/* No more tasks, just exit */
1857 			goto out;
1858 
1859 		/*
1860 		 * Something has shifted, try again.
1861 		 */
1862 		put_task_struct(next_task);
1863 		next_task = task;
1864 		goto retry;
1865 	}
1866 
1867 	deactivate_task(rq, next_task, 0);
1868 	next_task->on_rq = TASK_ON_RQ_MIGRATING;
1869 	set_task_cpu(next_task, lowest_rq->cpu);
1870 	next_task->on_rq = TASK_ON_RQ_QUEUED;
1871 	activate_task(lowest_rq, next_task, 0);
1872 	ret = 1;
1873 
1874 	resched_curr(lowest_rq);
1875 
1876 	double_unlock_balance(rq, lowest_rq);
1877 
1878 out:
1879 	put_task_struct(next_task);
1880 
1881 	return ret;
1882 }
1883 
push_rt_tasks(struct rq * rq)1884 static void push_rt_tasks(struct rq *rq)
1885 {
1886 	/* push_rt_task will return true if it moved an RT */
1887 	while (push_rt_task(rq))
1888 		;
1889 }
1890 
1891 #ifdef HAVE_RT_PUSH_IPI
1892 
1893 /*
1894  * When a high priority task schedules out from a CPU and a lower priority
1895  * task is scheduled in, a check is made to see if there's any RT tasks
1896  * on other CPUs that are waiting to run because a higher priority RT task
1897  * is currently running on its CPU. In this case, the CPU with multiple RT
1898  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1899  * up that may be able to run one of its non-running queued RT tasks.
1900  *
1901  * All CPUs with overloaded RT tasks need to be notified as there is currently
1902  * no way to know which of these CPUs have the highest priority task waiting
1903  * to run. Instead of trying to take a spinlock on each of these CPUs,
1904  * which has shown to cause large latency when done on machines with many
1905  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1906  * RT tasks waiting to run.
1907  *
1908  * Just sending an IPI to each of the CPUs is also an issue, as on large
1909  * count CPU machines, this can cause an IPI storm on a CPU, especially
1910  * if its the only CPU with multiple RT tasks queued, and a large number
1911  * of CPUs scheduling a lower priority task at the same time.
1912  *
1913  * Each root domain has its own irq work function that can iterate over
1914  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1915  * tassk must be checked if there's one or many CPUs that are lowering
1916  * their priority, there's a single irq work iterator that will try to
1917  * push off RT tasks that are waiting to run.
1918  *
1919  * When a CPU schedules a lower priority task, it will kick off the
1920  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1921  * As it only takes the first CPU that schedules a lower priority task
1922  * to start the process, the rto_start variable is incremented and if
1923  * the atomic result is one, then that CPU will try to take the rto_lock.
1924  * This prevents high contention on the lock as the process handles all
1925  * CPUs scheduling lower priority tasks.
1926  *
1927  * All CPUs that are scheduling a lower priority task will increment the
1928  * rt_loop_next variable. This will make sure that the irq work iterator
1929  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1930  * priority task, even if the iterator is in the middle of a scan. Incrementing
1931  * the rt_loop_next will cause the iterator to perform another scan.
1932  *
1933  */
rto_next_cpu(struct root_domain * rd)1934 static int rto_next_cpu(struct root_domain *rd)
1935 {
1936 	int next;
1937 	int cpu;
1938 
1939 	/*
1940 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1941 	 * rt_next_cpu() will simply return the first CPU found in
1942 	 * the rto_mask.
1943 	 *
1944 	 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1945 	 * will return the next CPU found in the rto_mask.
1946 	 *
1947 	 * If there are no more CPUs left in the rto_mask, then a check is made
1948 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1949 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1950 	 * without any locking.
1951 	 */
1952 	for (;;) {
1953 
1954 		/* When rto_cpu is -1 this acts like cpumask_first() */
1955 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1956 
1957 		rd->rto_cpu = cpu;
1958 
1959 		if (cpu < nr_cpu_ids)
1960 			return cpu;
1961 
1962 		rd->rto_cpu = -1;
1963 
1964 		/*
1965 		 * ACQUIRE ensures we see the @rto_mask changes
1966 		 * made prior to the @next value observed.
1967 		 *
1968 		 * Matches WMB in rt_set_overload().
1969 		 */
1970 		next = atomic_read_acquire(&rd->rto_loop_next);
1971 
1972 		if (rd->rto_loop == next)
1973 			break;
1974 
1975 		rd->rto_loop = next;
1976 	}
1977 
1978 	return -1;
1979 }
1980 
rto_start_trylock(atomic_t * v)1981 static inline bool rto_start_trylock(atomic_t *v)
1982 {
1983 	return !atomic_cmpxchg_acquire(v, 0, 1);
1984 }
1985 
rto_start_unlock(atomic_t * v)1986 static inline void rto_start_unlock(atomic_t *v)
1987 {
1988 	atomic_set_release(v, 0);
1989 }
1990 
tell_cpu_to_push(struct rq * rq)1991 static void tell_cpu_to_push(struct rq *rq)
1992 {
1993 	int cpu = -1;
1994 
1995 	/* Keep the loop going if the IPI is currently active */
1996 	atomic_inc(&rq->rd->rto_loop_next);
1997 
1998 	/* Only one CPU can initiate a loop at a time */
1999 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2000 		return;
2001 
2002 	raw_spin_lock(&rq->rd->rto_lock);
2003 
2004 	/*
2005 	 * The rto_cpu is updated under the lock, if it has a valid cpu
2006 	 * then the IPI is still running and will continue due to the
2007 	 * update to loop_next, and nothing needs to be done here.
2008 	 * Otherwise it is finishing up and an ipi needs to be sent.
2009 	 */
2010 	if (rq->rd->rto_cpu < 0)
2011 		cpu = rto_next_cpu(rq->rd);
2012 
2013 	raw_spin_unlock(&rq->rd->rto_lock);
2014 
2015 	rto_start_unlock(&rq->rd->rto_loop_start);
2016 
2017 	if (cpu >= 0) {
2018 		/* Make sure the rd does not get freed while pushing */
2019 		sched_get_rd(rq->rd);
2020 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2021 	}
2022 }
2023 
2024 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2025 void rto_push_irq_work_func(struct irq_work *work)
2026 {
2027 	struct root_domain *rd =
2028 		container_of(work, struct root_domain, rto_push_work);
2029 	struct rq *rq;
2030 	int cpu;
2031 
2032 	rq = this_rq();
2033 
2034 	/*
2035 	 * We do not need to grab the lock to check for has_pushable_tasks.
2036 	 * When it gets updated, a check is made if a push is possible.
2037 	 */
2038 	if (has_pushable_tasks(rq)) {
2039 		raw_spin_lock(&rq->lock);
2040 		push_rt_tasks(rq);
2041 		raw_spin_unlock(&rq->lock);
2042 	}
2043 
2044 	raw_spin_lock(&rd->rto_lock);
2045 
2046 	/* Pass the IPI to the next rt overloaded queue */
2047 	cpu = rto_next_cpu(rd);
2048 
2049 	raw_spin_unlock(&rd->rto_lock);
2050 
2051 	if (cpu < 0) {
2052 		sched_put_rd(rd);
2053 		return;
2054 	}
2055 
2056 	/* Try the next RT overloaded CPU */
2057 	irq_work_queue_on(&rd->rto_push_work, cpu);
2058 }
2059 #endif /* HAVE_RT_PUSH_IPI */
2060 
pull_rt_task(struct rq * this_rq)2061 static void pull_rt_task(struct rq *this_rq)
2062 {
2063 	int this_cpu = this_rq->cpu, cpu;
2064 	bool resched = false;
2065 	struct task_struct *p;
2066 	struct rq *src_rq;
2067 	int rt_overload_count = rt_overloaded(this_rq);
2068 
2069 	if (likely(!rt_overload_count))
2070 		return;
2071 
2072 	/*
2073 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2074 	 * see overloaded we must also see the rto_mask bit.
2075 	 */
2076 	smp_rmb();
2077 
2078 	/* If we are the only overloaded CPU do nothing */
2079 	if (rt_overload_count == 1 &&
2080 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2081 		return;
2082 
2083 #ifdef HAVE_RT_PUSH_IPI
2084 	if (sched_feat(RT_PUSH_IPI)) {
2085 		tell_cpu_to_push(this_rq);
2086 		return;
2087 	}
2088 #endif
2089 
2090 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2091 		if (this_cpu == cpu)
2092 			continue;
2093 
2094 		src_rq = cpu_rq(cpu);
2095 
2096 		/*
2097 		 * Don't bother taking the src_rq->lock if the next highest
2098 		 * task is known to be lower-priority than our current task.
2099 		 * This may look racy, but if this value is about to go
2100 		 * logically higher, the src_rq will push this task away.
2101 		 * And if its going logically lower, we do not care
2102 		 */
2103 		if (src_rq->rt.highest_prio.next >=
2104 		    this_rq->rt.highest_prio.curr)
2105 			continue;
2106 
2107 		/*
2108 		 * We can potentially drop this_rq's lock in
2109 		 * double_lock_balance, and another CPU could
2110 		 * alter this_rq
2111 		 */
2112 		double_lock_balance(this_rq, src_rq);
2113 
2114 		/*
2115 		 * We can pull only a task, which is pushable
2116 		 * on its rq, and no others.
2117 		 */
2118 		p = pick_highest_pushable_task(src_rq, this_cpu);
2119 
2120 		/*
2121 		 * Do we have an RT task that preempts
2122 		 * the to-be-scheduled task?
2123 		 */
2124 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2125 			WARN_ON(p == src_rq->curr);
2126 			WARN_ON(!task_on_rq_queued(p));
2127 
2128 			/*
2129 			 * There's a chance that p is higher in priority
2130 			 * than what's currently running on its cpu.
2131 			 * This is just that p is wakeing up and hasn't
2132 			 * had a chance to schedule. We only pull
2133 			 * p if it is lower in priority than the
2134 			 * current task on the run queue
2135 			 */
2136 			if (p->prio < src_rq->curr->prio)
2137 				goto skip;
2138 
2139 			resched = true;
2140 
2141 			deactivate_task(src_rq, p, 0);
2142 			p->on_rq = TASK_ON_RQ_MIGRATING;
2143 			set_task_cpu(p, this_cpu);
2144 			p->on_rq = TASK_ON_RQ_QUEUED;
2145 			activate_task(this_rq, p, 0);
2146 			/*
2147 			 * We continue with the search, just in
2148 			 * case there's an even higher prio task
2149 			 * in another runqueue. (low likelihood
2150 			 * but possible)
2151 			 */
2152 		}
2153 skip:
2154 		double_unlock_balance(this_rq, src_rq);
2155 	}
2156 
2157 	if (resched)
2158 		resched_curr(this_rq);
2159 }
2160 
2161 /*
2162  * If we are not running and we are not going to reschedule soon, we should
2163  * try to push tasks away now
2164  */
task_woken_rt(struct rq * rq,struct task_struct * p)2165 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2166 {
2167 	if (!task_running(rq, p) &&
2168 	    !test_tsk_need_resched(rq->curr) &&
2169 	    p->nr_cpus_allowed > 1 &&
2170 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2171 	    (rq->curr->nr_cpus_allowed < 2 ||
2172 	     rq->curr->prio <= p->prio))
2173 		push_rt_tasks(rq);
2174 }
2175 
2176 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2177 static void rq_online_rt(struct rq *rq)
2178 {
2179 	if (rq->rt.overloaded)
2180 		rt_set_overload(rq);
2181 
2182 	__enable_runtime(rq);
2183 
2184 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2185 }
2186 
2187 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2188 static void rq_offline_rt(struct rq *rq)
2189 {
2190 	if (rq->rt.overloaded)
2191 		rt_clear_overload(rq);
2192 
2193 	__disable_runtime(rq);
2194 
2195 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2196 }
2197 
2198 /*
2199  * When switch from the rt queue, we bring ourselves to a position
2200  * that we might want to pull RT tasks from other runqueues.
2201  */
switched_from_rt(struct rq * rq,struct task_struct * p)2202 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2203 {
2204 	/*
2205 	 * If there are other RT tasks then we will reschedule
2206 	 * and the scheduling of the other RT tasks will handle
2207 	 * the balancing. But if we are the last RT task
2208 	 * we may need to handle the pulling of RT tasks
2209 	 * now.
2210 	 */
2211 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2212 		return;
2213 
2214 	queue_pull_task(rq);
2215 }
2216 
init_sched_rt_class(void)2217 void __init init_sched_rt_class(void)
2218 {
2219 	unsigned int i;
2220 
2221 	for_each_possible_cpu(i) {
2222 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2223 					GFP_KERNEL, cpu_to_node(i));
2224 	}
2225 }
2226 #endif /* CONFIG_SMP */
2227 
2228 /*
2229  * When switching a task to RT, we may overload the runqueue
2230  * with RT tasks. In this case we try to push them off to
2231  * other runqueues.
2232  */
switched_to_rt(struct rq * rq,struct task_struct * p)2233 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2234 {
2235 	/*
2236 	 * If we are already running, then there's nothing
2237 	 * that needs to be done. But if we are not running
2238 	 * we may need to preempt the current running task.
2239 	 * If that current running task is also an RT task
2240 	 * then see if we can move to another run queue.
2241 	 */
2242 	if (task_on_rq_queued(p) && rq->curr != p) {
2243 #ifdef CONFIG_SMP
2244 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2245 			queue_push_tasks(rq);
2246 #endif /* CONFIG_SMP */
2247 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2248 			resched_curr(rq);
2249 	}
2250 }
2251 
2252 /*
2253  * Priority of the task has changed. This may cause
2254  * us to initiate a push or pull.
2255  */
2256 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2257 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2258 {
2259 	if (!task_on_rq_queued(p))
2260 		return;
2261 
2262 	if (rq->curr == p) {
2263 #ifdef CONFIG_SMP
2264 		/*
2265 		 * If our priority decreases while running, we
2266 		 * may need to pull tasks to this runqueue.
2267 		 */
2268 		if (oldprio < p->prio)
2269 			queue_pull_task(rq);
2270 
2271 		/*
2272 		 * If there's a higher priority task waiting to run
2273 		 * then reschedule.
2274 		 */
2275 		if (p->prio > rq->rt.highest_prio.curr)
2276 			resched_curr(rq);
2277 #else
2278 		/* For UP simply resched on drop of prio */
2279 		if (oldprio < p->prio)
2280 			resched_curr(rq);
2281 #endif /* CONFIG_SMP */
2282 	} else {
2283 		/*
2284 		 * This task is not running, but if it is
2285 		 * greater than the current running task
2286 		 * then reschedule.
2287 		 */
2288 		if (p->prio < rq->curr->prio)
2289 			resched_curr(rq);
2290 	}
2291 }
2292 
2293 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2294 static void watchdog(struct rq *rq, struct task_struct *p)
2295 {
2296 	unsigned long soft, hard;
2297 
2298 	/* max may change after cur was read, this will be fixed next tick */
2299 	soft = task_rlimit(p, RLIMIT_RTTIME);
2300 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2301 
2302 	if (soft != RLIM_INFINITY) {
2303 		unsigned long next;
2304 
2305 		if (p->rt.watchdog_stamp != jiffies) {
2306 			p->rt.timeout++;
2307 			p->rt.watchdog_stamp = jiffies;
2308 		}
2309 
2310 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2311 		if (p->rt.timeout > next)
2312 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2313 	}
2314 }
2315 #else
watchdog(struct rq * rq,struct task_struct * p)2316 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2317 #endif
2318 
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2319 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2320 {
2321 	struct sched_rt_entity *rt_se = &p->rt;
2322 
2323 	update_curr_rt(rq);
2324 	update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
2325 
2326 	watchdog(rq, p);
2327 
2328 	/*
2329 	 * RR tasks need a special form of timeslice management.
2330 	 * FIFO tasks have no timeslices.
2331 	 */
2332 	if (p->policy != SCHED_RR)
2333 		return;
2334 
2335 	if (--p->rt.time_slice)
2336 		return;
2337 
2338 	p->rt.time_slice = sched_rr_timeslice;
2339 
2340 	/*
2341 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2342 	 * the only element on the queue
2343 	 */
2344 	for_each_sched_rt_entity(rt_se) {
2345 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2346 			requeue_task_rt(rq, p, 0);
2347 			resched_curr(rq);
2348 			return;
2349 		}
2350 	}
2351 }
2352 
set_curr_task_rt(struct rq * rq)2353 static void set_curr_task_rt(struct rq *rq)
2354 {
2355 	struct task_struct *p = rq->curr;
2356 
2357 	p->se.exec_start = rq_clock_task(rq);
2358 
2359 	/* The running task is never eligible for pushing */
2360 	dequeue_pushable_task(rq, p);
2361 }
2362 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2363 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2364 {
2365 	/*
2366 	 * Time slice is 0 for SCHED_FIFO tasks
2367 	 */
2368 	if (task->policy == SCHED_RR)
2369 		return sched_rr_timeslice;
2370 	else
2371 		return 0;
2372 }
2373 
2374 const struct sched_class rt_sched_class = {
2375 	.next			= &fair_sched_class,
2376 	.enqueue_task		= enqueue_task_rt,
2377 	.dequeue_task		= dequeue_task_rt,
2378 	.yield_task		= yield_task_rt,
2379 
2380 	.check_preempt_curr	= check_preempt_curr_rt,
2381 
2382 	.pick_next_task		= pick_next_task_rt,
2383 	.put_prev_task		= put_prev_task_rt,
2384 
2385 #ifdef CONFIG_SMP
2386 	.select_task_rq		= select_task_rq_rt,
2387 
2388 	.set_cpus_allowed       = set_cpus_allowed_common,
2389 	.rq_online              = rq_online_rt,
2390 	.rq_offline             = rq_offline_rt,
2391 	.task_woken		= task_woken_rt,
2392 	.switched_from		= switched_from_rt,
2393 #endif
2394 
2395 	.set_curr_task          = set_curr_task_rt,
2396 	.task_tick		= task_tick_rt,
2397 
2398 	.get_rr_interval	= get_rr_interval_rt,
2399 
2400 	.prio_changed		= prio_changed_rt,
2401 	.switched_to		= switched_to_rt,
2402 
2403 	.update_curr		= update_curr_rt,
2404 };
2405 
2406 #ifdef CONFIG_RT_GROUP_SCHED
2407 /*
2408  * Ensure that the real time constraints are schedulable.
2409  */
2410 static DEFINE_MUTEX(rt_constraints_mutex);
2411 
2412 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)2413 static inline int tg_has_rt_tasks(struct task_group *tg)
2414 {
2415 	struct task_struct *g, *p;
2416 
2417 	/*
2418 	 * Autogroups do not have RT tasks; see autogroup_create().
2419 	 */
2420 	if (task_group_is_autogroup(tg))
2421 		return 0;
2422 
2423 	for_each_process_thread(g, p) {
2424 		if (rt_task(p) && task_group(p) == tg)
2425 			return 1;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 struct rt_schedulable_data {
2432 	struct task_group *tg;
2433 	u64 rt_period;
2434 	u64 rt_runtime;
2435 };
2436 
tg_rt_schedulable(struct task_group * tg,void * data)2437 static int tg_rt_schedulable(struct task_group *tg, void *data)
2438 {
2439 	struct rt_schedulable_data *d = data;
2440 	struct task_group *child;
2441 	unsigned long total, sum = 0;
2442 	u64 period, runtime;
2443 
2444 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2445 	runtime = tg->rt_bandwidth.rt_runtime;
2446 
2447 	if (tg == d->tg) {
2448 		period = d->rt_period;
2449 		runtime = d->rt_runtime;
2450 	}
2451 
2452 	/*
2453 	 * Cannot have more runtime than the period.
2454 	 */
2455 	if (runtime > period && runtime != RUNTIME_INF)
2456 		return -EINVAL;
2457 
2458 	/*
2459 	 * Ensure we don't starve existing RT tasks.
2460 	 */
2461 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2462 		return -EBUSY;
2463 
2464 	total = to_ratio(period, runtime);
2465 
2466 	/*
2467 	 * Nobody can have more than the global setting allows.
2468 	 */
2469 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2470 		return -EINVAL;
2471 
2472 	/*
2473 	 * The sum of our children's runtime should not exceed our own.
2474 	 */
2475 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2476 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2477 		runtime = child->rt_bandwidth.rt_runtime;
2478 
2479 		if (child == d->tg) {
2480 			period = d->rt_period;
2481 			runtime = d->rt_runtime;
2482 		}
2483 
2484 		sum += to_ratio(period, runtime);
2485 	}
2486 
2487 	if (sum > total)
2488 		return -EINVAL;
2489 
2490 	return 0;
2491 }
2492 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2493 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2494 {
2495 	int ret;
2496 
2497 	struct rt_schedulable_data data = {
2498 		.tg = tg,
2499 		.rt_period = period,
2500 		.rt_runtime = runtime,
2501 	};
2502 
2503 	rcu_read_lock();
2504 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2505 	rcu_read_unlock();
2506 
2507 	return ret;
2508 }
2509 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2510 static int tg_set_rt_bandwidth(struct task_group *tg,
2511 		u64 rt_period, u64 rt_runtime)
2512 {
2513 	int i, err = 0;
2514 
2515 	/*
2516 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2517 	 * kernel creating (and or operating) RT threads.
2518 	 */
2519 	if (tg == &root_task_group && rt_runtime == 0)
2520 		return -EINVAL;
2521 
2522 	/* No period doesn't make any sense. */
2523 	if (rt_period == 0)
2524 		return -EINVAL;
2525 
2526 	mutex_lock(&rt_constraints_mutex);
2527 	read_lock(&tasklist_lock);
2528 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2529 	if (err)
2530 		goto unlock;
2531 
2532 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2533 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2534 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2535 
2536 	for_each_possible_cpu(i) {
2537 		struct rt_rq *rt_rq = tg->rt_rq[i];
2538 
2539 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2540 		rt_rq->rt_runtime = rt_runtime;
2541 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2542 	}
2543 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2544 unlock:
2545 	read_unlock(&tasklist_lock);
2546 	mutex_unlock(&rt_constraints_mutex);
2547 
2548 	return err;
2549 }
2550 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2551 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2552 {
2553 	u64 rt_runtime, rt_period;
2554 
2555 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2556 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2557 	if (rt_runtime_us < 0)
2558 		rt_runtime = RUNTIME_INF;
2559 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2560 		return -EINVAL;
2561 
2562 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2563 }
2564 
sched_group_rt_runtime(struct task_group * tg)2565 long sched_group_rt_runtime(struct task_group *tg)
2566 {
2567 	u64 rt_runtime_us;
2568 
2569 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2570 		return -1;
2571 
2572 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2573 	do_div(rt_runtime_us, NSEC_PER_USEC);
2574 	return rt_runtime_us;
2575 }
2576 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2577 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2578 {
2579 	u64 rt_runtime, rt_period;
2580 
2581 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2582 		return -EINVAL;
2583 
2584 	rt_period = rt_period_us * NSEC_PER_USEC;
2585 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2586 
2587 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2588 }
2589 
sched_group_rt_period(struct task_group * tg)2590 long sched_group_rt_period(struct task_group *tg)
2591 {
2592 	u64 rt_period_us;
2593 
2594 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2595 	do_div(rt_period_us, NSEC_PER_USEC);
2596 	return rt_period_us;
2597 }
2598 
sched_rt_global_constraints(void)2599 static int sched_rt_global_constraints(void)
2600 {
2601 	int ret = 0;
2602 
2603 	mutex_lock(&rt_constraints_mutex);
2604 	read_lock(&tasklist_lock);
2605 	ret = __rt_schedulable(NULL, 0, 0);
2606 	read_unlock(&tasklist_lock);
2607 	mutex_unlock(&rt_constraints_mutex);
2608 
2609 	return ret;
2610 }
2611 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2612 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2613 {
2614 	/* Don't accept realtime tasks when there is no way for them to run */
2615 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2616 		return 0;
2617 
2618 	return 1;
2619 }
2620 
2621 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2622 static int sched_rt_global_constraints(void)
2623 {
2624 	unsigned long flags;
2625 	int i;
2626 
2627 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2628 	for_each_possible_cpu(i) {
2629 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2630 
2631 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2632 		rt_rq->rt_runtime = global_rt_runtime();
2633 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2634 	}
2635 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2636 
2637 	return 0;
2638 }
2639 #endif /* CONFIG_RT_GROUP_SCHED */
2640 
sched_rt_global_validate(void)2641 static int sched_rt_global_validate(void)
2642 {
2643 	if (sysctl_sched_rt_period <= 0)
2644 		return -EINVAL;
2645 
2646 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2647 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2648 		return -EINVAL;
2649 
2650 	return 0;
2651 }
2652 
sched_rt_do_global(void)2653 static void sched_rt_do_global(void)
2654 {
2655 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2656 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2657 }
2658 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2659 int sched_rt_handler(struct ctl_table *table, int write,
2660 		void __user *buffer, size_t *lenp,
2661 		loff_t *ppos)
2662 {
2663 	int old_period, old_runtime;
2664 	static DEFINE_MUTEX(mutex);
2665 	int ret;
2666 
2667 	mutex_lock(&mutex);
2668 	old_period = sysctl_sched_rt_period;
2669 	old_runtime = sysctl_sched_rt_runtime;
2670 
2671 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2672 
2673 	if (!ret && write) {
2674 		ret = sched_rt_global_validate();
2675 		if (ret)
2676 			goto undo;
2677 
2678 		ret = sched_dl_global_validate();
2679 		if (ret)
2680 			goto undo;
2681 
2682 		ret = sched_rt_global_constraints();
2683 		if (ret)
2684 			goto undo;
2685 
2686 		sched_rt_do_global();
2687 		sched_dl_do_global();
2688 	}
2689 	if (0) {
2690 undo:
2691 		sysctl_sched_rt_period = old_period;
2692 		sysctl_sched_rt_runtime = old_runtime;
2693 	}
2694 	mutex_unlock(&mutex);
2695 
2696 	return ret;
2697 }
2698 
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2699 int sched_rr_handler(struct ctl_table *table, int write,
2700 		void __user *buffer, size_t *lenp,
2701 		loff_t *ppos)
2702 {
2703 	int ret;
2704 	static DEFINE_MUTEX(mutex);
2705 
2706 	mutex_lock(&mutex);
2707 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2708 	/*
2709 	 * Make sure that internally we keep jiffies.
2710 	 * Also, writing zero resets the timeslice to default:
2711 	 */
2712 	if (!ret && write) {
2713 		sched_rr_timeslice =
2714 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2715 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2716 	}
2717 	mutex_unlock(&mutex);
2718 	return ret;
2719 }
2720 
2721 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2722 void print_rt_stats(struct seq_file *m, int cpu)
2723 {
2724 	rt_rq_iter_t iter;
2725 	struct rt_rq *rt_rq;
2726 
2727 	rcu_read_lock();
2728 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2729 		print_rt_rq(m, cpu, rt_rq);
2730 	rcu_read_unlock();
2731 }
2732 #endif /* CONFIG_SCHED_DEBUG */
2733