1 /*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55
56 /**
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
59 *
60 * Do any intilization needed when a driver registers with rdmavt.
61 *
62 * Return: 0 on success or errno on failure
63 */
rvt_driver_mr_init(struct rvt_dev_info * rdi)64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 unsigned lk_tab_size;
68 int i;
69
70 /*
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
74 */
75 if (!lkey_table_size)
76 return -EINVAL;
77
78 spin_lock_init(&rdi->lkey_table.lock);
79
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 lkey_table_size = rdi->dparms.lkey_table_size;
86 }
87 rdi->lkey_table.max = 1 << lkey_table_size;
88 rdi->lkey_table.shift = 32 - lkey_table_size;
89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 vmalloc_node(lk_tab_size, rdi->dparms.node);
92 if (!rdi->lkey_table.table)
93 return -ENOMEM;
94
95 RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 for (i = 0; i < rdi->lkey_table.max; i++)
97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98
99 rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
101 return 0;
102 }
103
104 /**
105 *rvt_mr_exit: clean up MR
106 *@rdi: rvt dev structure
107 *
108 * called when drivers have unregistered or perhaps failed to register with us
109 */
rvt_mr_exit(struct rvt_dev_info * rdi)110 void rvt_mr_exit(struct rvt_dev_info *rdi)
111 {
112 if (rdi->dma_mr)
113 rvt_pr_err(rdi, "DMA MR not null!\n");
114
115 vfree(rdi->lkey_table.table);
116 }
117
rvt_deinit_mregion(struct rvt_mregion * mr)118 static void rvt_deinit_mregion(struct rvt_mregion *mr)
119 {
120 int i = mr->mapsz;
121
122 mr->mapsz = 0;
123 while (i)
124 kfree(mr->map[--i]);
125 percpu_ref_exit(&mr->refcount);
126 }
127
__rvt_mregion_complete(struct percpu_ref * ref)128 static void __rvt_mregion_complete(struct percpu_ref *ref)
129 {
130 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
131 refcount);
132
133 complete(&mr->comp);
134 }
135
rvt_init_mregion(struct rvt_mregion * mr,struct ib_pd * pd,int count,unsigned int percpu_flags)136 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
137 int count, unsigned int percpu_flags)
138 {
139 int m, i = 0;
140 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
141
142 mr->mapsz = 0;
143 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
144 for (; i < m; i++) {
145 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
146 dev->dparms.node);
147 if (!mr->map[i])
148 goto bail;
149 mr->mapsz++;
150 }
151 init_completion(&mr->comp);
152 /* count returning the ptr to user */
153 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
154 percpu_flags, GFP_KERNEL))
155 goto bail;
156
157 atomic_set(&mr->lkey_invalid, 0);
158 mr->pd = pd;
159 mr->max_segs = count;
160 return 0;
161 bail:
162 rvt_deinit_mregion(mr);
163 return -ENOMEM;
164 }
165
166 /**
167 * rvt_alloc_lkey - allocate an lkey
168 * @mr: memory region that this lkey protects
169 * @dma_region: 0->normal key, 1->restricted DMA key
170 *
171 * Returns 0 if successful, otherwise returns -errno.
172 *
173 * Increments mr reference count as required.
174 *
175 * Sets the lkey field mr for non-dma regions.
176 *
177 */
rvt_alloc_lkey(struct rvt_mregion * mr,int dma_region)178 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
179 {
180 unsigned long flags;
181 u32 r;
182 u32 n;
183 int ret = 0;
184 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
185 struct rvt_lkey_table *rkt = &dev->lkey_table;
186
187 rvt_get_mr(mr);
188 spin_lock_irqsave(&rkt->lock, flags);
189
190 /* special case for dma_mr lkey == 0 */
191 if (dma_region) {
192 struct rvt_mregion *tmr;
193
194 tmr = rcu_access_pointer(dev->dma_mr);
195 if (!tmr) {
196 mr->lkey_published = 1;
197 /* Insure published written first */
198 rcu_assign_pointer(dev->dma_mr, mr);
199 rvt_get_mr(mr);
200 }
201 goto success;
202 }
203
204 /* Find the next available LKEY */
205 r = rkt->next;
206 n = r;
207 for (;;) {
208 if (!rcu_access_pointer(rkt->table[r]))
209 break;
210 r = (r + 1) & (rkt->max - 1);
211 if (r == n)
212 goto bail;
213 }
214 rkt->next = (r + 1) & (rkt->max - 1);
215 /*
216 * Make sure lkey is never zero which is reserved to indicate an
217 * unrestricted LKEY.
218 */
219 rkt->gen++;
220 /*
221 * bits are capped to ensure enough bits for generation number
222 */
223 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
224 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
225 << 8);
226 if (mr->lkey == 0) {
227 mr->lkey |= 1 << 8;
228 rkt->gen++;
229 }
230 mr->lkey_published = 1;
231 /* Insure published written first */
232 rcu_assign_pointer(rkt->table[r], mr);
233 success:
234 spin_unlock_irqrestore(&rkt->lock, flags);
235 out:
236 return ret;
237 bail:
238 rvt_put_mr(mr);
239 spin_unlock_irqrestore(&rkt->lock, flags);
240 ret = -ENOMEM;
241 goto out;
242 }
243
244 /**
245 * rvt_free_lkey - free an lkey
246 * @mr: mr to free from tables
247 */
rvt_free_lkey(struct rvt_mregion * mr)248 static void rvt_free_lkey(struct rvt_mregion *mr)
249 {
250 unsigned long flags;
251 u32 lkey = mr->lkey;
252 u32 r;
253 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
254 struct rvt_lkey_table *rkt = &dev->lkey_table;
255 int freed = 0;
256
257 spin_lock_irqsave(&rkt->lock, flags);
258 if (!lkey) {
259 if (mr->lkey_published) {
260 mr->lkey_published = 0;
261 /* insure published is written before pointer */
262 rcu_assign_pointer(dev->dma_mr, NULL);
263 rvt_put_mr(mr);
264 }
265 } else {
266 if (!mr->lkey_published)
267 goto out;
268 r = lkey >> (32 - dev->dparms.lkey_table_size);
269 mr->lkey_published = 0;
270 /* insure published is written before pointer */
271 rcu_assign_pointer(rkt->table[r], NULL);
272 }
273 freed++;
274 out:
275 spin_unlock_irqrestore(&rkt->lock, flags);
276 if (freed)
277 percpu_ref_kill(&mr->refcount);
278 }
279
__rvt_alloc_mr(int count,struct ib_pd * pd)280 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
281 {
282 struct rvt_mr *mr;
283 int rval = -ENOMEM;
284 int m;
285
286 /* Allocate struct plus pointers to first level page tables. */
287 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
288 mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
289 if (!mr)
290 goto bail;
291
292 rval = rvt_init_mregion(&mr->mr, pd, count, 0);
293 if (rval)
294 goto bail;
295 /*
296 * ib_reg_phys_mr() will initialize mr->ibmr except for
297 * lkey and rkey.
298 */
299 rval = rvt_alloc_lkey(&mr->mr, 0);
300 if (rval)
301 goto bail_mregion;
302 mr->ibmr.lkey = mr->mr.lkey;
303 mr->ibmr.rkey = mr->mr.lkey;
304 done:
305 return mr;
306
307 bail_mregion:
308 rvt_deinit_mregion(&mr->mr);
309 bail:
310 kfree(mr);
311 mr = ERR_PTR(rval);
312 goto done;
313 }
314
__rvt_free_mr(struct rvt_mr * mr)315 static void __rvt_free_mr(struct rvt_mr *mr)
316 {
317 rvt_free_lkey(&mr->mr);
318 rvt_deinit_mregion(&mr->mr);
319 kfree(mr);
320 }
321
322 /**
323 * rvt_get_dma_mr - get a DMA memory region
324 * @pd: protection domain for this memory region
325 * @acc: access flags
326 *
327 * Return: the memory region on success, otherwise returns an errno.
328 * Note that all DMA addresses should be created via the functions in
329 * struct dma_virt_ops.
330 */
rvt_get_dma_mr(struct ib_pd * pd,int acc)331 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
332 {
333 struct rvt_mr *mr;
334 struct ib_mr *ret;
335 int rval;
336
337 if (ibpd_to_rvtpd(pd)->user)
338 return ERR_PTR(-EPERM);
339
340 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
341 if (!mr) {
342 ret = ERR_PTR(-ENOMEM);
343 goto bail;
344 }
345
346 rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
347 if (rval) {
348 ret = ERR_PTR(rval);
349 goto bail;
350 }
351
352 rval = rvt_alloc_lkey(&mr->mr, 1);
353 if (rval) {
354 ret = ERR_PTR(rval);
355 goto bail_mregion;
356 }
357
358 mr->mr.access_flags = acc;
359 ret = &mr->ibmr;
360 done:
361 return ret;
362
363 bail_mregion:
364 rvt_deinit_mregion(&mr->mr);
365 bail:
366 kfree(mr);
367 goto done;
368 }
369
370 /**
371 * rvt_reg_user_mr - register a userspace memory region
372 * @pd: protection domain for this memory region
373 * @start: starting userspace address
374 * @length: length of region to register
375 * @mr_access_flags: access flags for this memory region
376 * @udata: unused by the driver
377 *
378 * Return: the memory region on success, otherwise returns an errno.
379 */
rvt_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_udata * udata)380 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
381 u64 virt_addr, int mr_access_flags,
382 struct ib_udata *udata)
383 {
384 struct rvt_mr *mr;
385 struct ib_umem *umem;
386 struct scatterlist *sg;
387 int n, m, entry;
388 struct ib_mr *ret;
389
390 if (length == 0)
391 return ERR_PTR(-EINVAL);
392
393 umem = ib_umem_get(pd->uobject->context, start, length,
394 mr_access_flags, 0);
395 if (IS_ERR(umem))
396 return (void *)umem;
397
398 n = umem->nmap;
399
400 mr = __rvt_alloc_mr(n, pd);
401 if (IS_ERR(mr)) {
402 ret = (struct ib_mr *)mr;
403 goto bail_umem;
404 }
405
406 mr->mr.user_base = start;
407 mr->mr.iova = virt_addr;
408 mr->mr.length = length;
409 mr->mr.offset = ib_umem_offset(umem);
410 mr->mr.access_flags = mr_access_flags;
411 mr->umem = umem;
412
413 mr->mr.page_shift = umem->page_shift;
414 m = 0;
415 n = 0;
416 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
417 void *vaddr;
418
419 vaddr = page_address(sg_page(sg));
420 if (!vaddr) {
421 ret = ERR_PTR(-EINVAL);
422 goto bail_inval;
423 }
424 mr->mr.map[m]->segs[n].vaddr = vaddr;
425 mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
426 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
427 BIT(umem->page_shift));
428 n++;
429 if (n == RVT_SEGSZ) {
430 m++;
431 n = 0;
432 }
433 }
434 return &mr->ibmr;
435
436 bail_inval:
437 __rvt_free_mr(mr);
438
439 bail_umem:
440 ib_umem_release(umem);
441
442 return ret;
443 }
444
445 /**
446 * rvt_dereg_clean_qp_cb - callback from iterator
447 * @qp - the qp
448 * @v - the mregion (as u64)
449 *
450 * This routine fields the callback for all QPs and
451 * for QPs in the same PD as the MR will call the
452 * rvt_qp_mr_clean() to potentially cleanup references.
453 */
rvt_dereg_clean_qp_cb(struct rvt_qp * qp,u64 v)454 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
455 {
456 struct rvt_mregion *mr = (struct rvt_mregion *)v;
457
458 /* skip PDs that are not ours */
459 if (mr->pd != qp->ibqp.pd)
460 return;
461 rvt_qp_mr_clean(qp, mr->lkey);
462 }
463
464 /**
465 * rvt_dereg_clean_qps - find QPs for reference cleanup
466 * @mr - the MR that is being deregistered
467 *
468 * This routine iterates RC QPs looking for references
469 * to the lkey noted in mr.
470 */
rvt_dereg_clean_qps(struct rvt_mregion * mr)471 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
472 {
473 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
474
475 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
476 }
477
478 /**
479 * rvt_check_refs - check references
480 * @mr - the megion
481 * @t - the caller identification
482 *
483 * This routine checks MRs holding a reference during
484 * when being de-registered.
485 *
486 * If the count is non-zero, the code calls a clean routine then
487 * waits for the timeout for the count to zero.
488 */
rvt_check_refs(struct rvt_mregion * mr,const char * t)489 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
490 {
491 unsigned long timeout;
492 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
493
494 if (mr->lkey) {
495 /* avoid dma mr */
496 rvt_dereg_clean_qps(mr);
497 /* @mr was indexed on rcu protected @lkey_table */
498 synchronize_rcu();
499 }
500
501 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
502 if (!timeout) {
503 rvt_pr_err(rdi,
504 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
505 t, mr, mr->pd, mr->lkey,
506 atomic_long_read(&mr->refcount.count));
507 rvt_get_mr(mr);
508 return -EBUSY;
509 }
510 return 0;
511 }
512
513 /**
514 * rvt_mr_has_lkey - is MR
515 * @mr - the mregion
516 * @lkey - the lkey
517 */
rvt_mr_has_lkey(struct rvt_mregion * mr,u32 lkey)518 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
519 {
520 return mr && lkey == mr->lkey;
521 }
522
523 /**
524 * rvt_ss_has_lkey - is mr in sge tests
525 * @ss - the sge state
526 * @lkey
527 *
528 * This code tests for an MR in the indicated
529 * sge state.
530 */
rvt_ss_has_lkey(struct rvt_sge_state * ss,u32 lkey)531 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
532 {
533 int i;
534 bool rval = false;
535
536 if (!ss->num_sge)
537 return rval;
538 /* first one */
539 rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
540 /* any others */
541 for (i = 0; !rval && i < ss->num_sge - 1; i++)
542 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
543 return rval;
544 }
545
546 /**
547 * rvt_dereg_mr - unregister and free a memory region
548 * @ibmr: the memory region to free
549 *
550 *
551 * Note that this is called to free MRs created by rvt_get_dma_mr()
552 * or rvt_reg_user_mr().
553 *
554 * Returns 0 on success.
555 */
rvt_dereg_mr(struct ib_mr * ibmr)556 int rvt_dereg_mr(struct ib_mr *ibmr)
557 {
558 struct rvt_mr *mr = to_imr(ibmr);
559 int ret;
560
561 rvt_free_lkey(&mr->mr);
562
563 rvt_put_mr(&mr->mr); /* will set completion if last */
564 ret = rvt_check_refs(&mr->mr, __func__);
565 if (ret)
566 goto out;
567 rvt_deinit_mregion(&mr->mr);
568 if (mr->umem)
569 ib_umem_release(mr->umem);
570 kfree(mr);
571 out:
572 return ret;
573 }
574
575 /**
576 * rvt_alloc_mr - Allocate a memory region usable with the
577 * @pd: protection domain for this memory region
578 * @mr_type: mem region type
579 * @max_num_sg: Max number of segments allowed
580 *
581 * Return: the memory region on success, otherwise return an errno.
582 */
rvt_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)583 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
584 enum ib_mr_type mr_type,
585 u32 max_num_sg)
586 {
587 struct rvt_mr *mr;
588
589 if (mr_type != IB_MR_TYPE_MEM_REG)
590 return ERR_PTR(-EINVAL);
591
592 mr = __rvt_alloc_mr(max_num_sg, pd);
593 if (IS_ERR(mr))
594 return (struct ib_mr *)mr;
595
596 return &mr->ibmr;
597 }
598
599 /**
600 * rvt_set_page - page assignment function called by ib_sg_to_pages
601 * @ibmr: memory region
602 * @addr: dma address of mapped page
603 *
604 * Return: 0 on success
605 */
rvt_set_page(struct ib_mr * ibmr,u64 addr)606 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
607 {
608 struct rvt_mr *mr = to_imr(ibmr);
609 u32 ps = 1 << mr->mr.page_shift;
610 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
611 int m, n;
612
613 if (unlikely(mapped_segs == mr->mr.max_segs))
614 return -ENOMEM;
615
616 m = mapped_segs / RVT_SEGSZ;
617 n = mapped_segs % RVT_SEGSZ;
618 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
619 mr->mr.map[m]->segs[n].length = ps;
620 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
621 mr->mr.length += ps;
622
623 return 0;
624 }
625
626 /**
627 * rvt_map_mr_sg - map sg list and set it the memory region
628 * @ibmr: memory region
629 * @sg: dma mapped scatterlist
630 * @sg_nents: number of entries in sg
631 * @sg_offset: offset in bytes into sg
632 *
633 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
634 *
635 * Return: number of sg elements mapped to the memory region
636 */
rvt_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)637 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
638 int sg_nents, unsigned int *sg_offset)
639 {
640 struct rvt_mr *mr = to_imr(ibmr);
641 int ret;
642
643 mr->mr.length = 0;
644 mr->mr.page_shift = PAGE_SHIFT;
645 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
646 mr->mr.user_base = ibmr->iova;
647 mr->mr.iova = ibmr->iova;
648 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
649 mr->mr.length = (size_t)ibmr->length;
650 return ret;
651 }
652
653 /**
654 * rvt_fast_reg_mr - fast register physical MR
655 * @qp: the queue pair where the work request comes from
656 * @ibmr: the memory region to be registered
657 * @key: updated key for this memory region
658 * @access: access flags for this memory region
659 *
660 * Returns 0 on success.
661 */
rvt_fast_reg_mr(struct rvt_qp * qp,struct ib_mr * ibmr,u32 key,int access)662 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
663 int access)
664 {
665 struct rvt_mr *mr = to_imr(ibmr);
666
667 if (qp->ibqp.pd != mr->mr.pd)
668 return -EACCES;
669
670 /* not applicable to dma MR or user MR */
671 if (!mr->mr.lkey || mr->umem)
672 return -EINVAL;
673
674 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
675 return -EINVAL;
676
677 ibmr->lkey = key;
678 ibmr->rkey = key;
679 mr->mr.lkey = key;
680 mr->mr.access_flags = access;
681 mr->mr.iova = ibmr->iova;
682 atomic_set(&mr->mr.lkey_invalid, 0);
683
684 return 0;
685 }
686 EXPORT_SYMBOL(rvt_fast_reg_mr);
687
688 /**
689 * rvt_invalidate_rkey - invalidate an MR rkey
690 * @qp: queue pair associated with the invalidate op
691 * @rkey: rkey to invalidate
692 *
693 * Returns 0 on success.
694 */
rvt_invalidate_rkey(struct rvt_qp * qp,u32 rkey)695 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
696 {
697 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
698 struct rvt_lkey_table *rkt = &dev->lkey_table;
699 struct rvt_mregion *mr;
700
701 if (rkey == 0)
702 return -EINVAL;
703
704 rcu_read_lock();
705 mr = rcu_dereference(
706 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
707 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
708 goto bail;
709
710 atomic_set(&mr->lkey_invalid, 1);
711 rcu_read_unlock();
712 return 0;
713
714 bail:
715 rcu_read_unlock();
716 return -EINVAL;
717 }
718 EXPORT_SYMBOL(rvt_invalidate_rkey);
719
720 /**
721 * rvt_alloc_fmr - allocate a fast memory region
722 * @pd: the protection domain for this memory region
723 * @mr_access_flags: access flags for this memory region
724 * @fmr_attr: fast memory region attributes
725 *
726 * Return: the memory region on success, otherwise returns an errno.
727 */
rvt_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)728 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
729 struct ib_fmr_attr *fmr_attr)
730 {
731 struct rvt_fmr *fmr;
732 int m;
733 struct ib_fmr *ret;
734 int rval = -ENOMEM;
735
736 /* Allocate struct plus pointers to first level page tables. */
737 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
738 fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
739 if (!fmr)
740 goto bail;
741
742 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
743 PERCPU_REF_INIT_ATOMIC);
744 if (rval)
745 goto bail;
746
747 /*
748 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
749 * rkey.
750 */
751 rval = rvt_alloc_lkey(&fmr->mr, 0);
752 if (rval)
753 goto bail_mregion;
754 fmr->ibfmr.rkey = fmr->mr.lkey;
755 fmr->ibfmr.lkey = fmr->mr.lkey;
756 /*
757 * Resources are allocated but no valid mapping (RKEY can't be
758 * used).
759 */
760 fmr->mr.access_flags = mr_access_flags;
761 fmr->mr.max_segs = fmr_attr->max_pages;
762 fmr->mr.page_shift = fmr_attr->page_shift;
763
764 ret = &fmr->ibfmr;
765 done:
766 return ret;
767
768 bail_mregion:
769 rvt_deinit_mregion(&fmr->mr);
770 bail:
771 kfree(fmr);
772 ret = ERR_PTR(rval);
773 goto done;
774 }
775
776 /**
777 * rvt_map_phys_fmr - set up a fast memory region
778 * @ibmfr: the fast memory region to set up
779 * @page_list: the list of pages to associate with the fast memory region
780 * @list_len: the number of pages to associate with the fast memory region
781 * @iova: the virtual address of the start of the fast memory region
782 *
783 * This may be called from interrupt context.
784 *
785 * Return: 0 on success
786 */
787
rvt_map_phys_fmr(struct ib_fmr * ibfmr,u64 * page_list,int list_len,u64 iova)788 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
789 int list_len, u64 iova)
790 {
791 struct rvt_fmr *fmr = to_ifmr(ibfmr);
792 struct rvt_lkey_table *rkt;
793 unsigned long flags;
794 int m, n;
795 unsigned long i;
796 u32 ps;
797 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
798
799 i = atomic_long_read(&fmr->mr.refcount.count);
800 if (i > 2)
801 return -EBUSY;
802
803 if (list_len > fmr->mr.max_segs)
804 return -EINVAL;
805
806 rkt = &rdi->lkey_table;
807 spin_lock_irqsave(&rkt->lock, flags);
808 fmr->mr.user_base = iova;
809 fmr->mr.iova = iova;
810 ps = 1 << fmr->mr.page_shift;
811 fmr->mr.length = list_len * ps;
812 m = 0;
813 n = 0;
814 for (i = 0; i < list_len; i++) {
815 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
816 fmr->mr.map[m]->segs[n].length = ps;
817 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
818 if (++n == RVT_SEGSZ) {
819 m++;
820 n = 0;
821 }
822 }
823 spin_unlock_irqrestore(&rkt->lock, flags);
824 return 0;
825 }
826
827 /**
828 * rvt_unmap_fmr - unmap fast memory regions
829 * @fmr_list: the list of fast memory regions to unmap
830 *
831 * Return: 0 on success.
832 */
rvt_unmap_fmr(struct list_head * fmr_list)833 int rvt_unmap_fmr(struct list_head *fmr_list)
834 {
835 struct rvt_fmr *fmr;
836 struct rvt_lkey_table *rkt;
837 unsigned long flags;
838 struct rvt_dev_info *rdi;
839
840 list_for_each_entry(fmr, fmr_list, ibfmr.list) {
841 rdi = ib_to_rvt(fmr->ibfmr.device);
842 rkt = &rdi->lkey_table;
843 spin_lock_irqsave(&rkt->lock, flags);
844 fmr->mr.user_base = 0;
845 fmr->mr.iova = 0;
846 fmr->mr.length = 0;
847 spin_unlock_irqrestore(&rkt->lock, flags);
848 }
849 return 0;
850 }
851
852 /**
853 * rvt_dealloc_fmr - deallocate a fast memory region
854 * @ibfmr: the fast memory region to deallocate
855 *
856 * Return: 0 on success.
857 */
rvt_dealloc_fmr(struct ib_fmr * ibfmr)858 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
859 {
860 struct rvt_fmr *fmr = to_ifmr(ibfmr);
861 int ret = 0;
862
863 rvt_free_lkey(&fmr->mr);
864 rvt_put_mr(&fmr->mr); /* will set completion if last */
865 ret = rvt_check_refs(&fmr->mr, __func__);
866 if (ret)
867 goto out;
868 rvt_deinit_mregion(&fmr->mr);
869 kfree(fmr);
870 out:
871 return ret;
872 }
873
874 /**
875 * rvt_sge_adjacent - is isge compressible
876 * @last_sge: last outgoing SGE written
877 * @sge: SGE to check
878 *
879 * If adjacent will update last_sge to add length.
880 *
881 * Return: true if isge is adjacent to last sge
882 */
rvt_sge_adjacent(struct rvt_sge * last_sge,struct ib_sge * sge)883 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
884 struct ib_sge *sge)
885 {
886 if (last_sge && sge->lkey == last_sge->mr->lkey &&
887 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
888 if (sge->lkey) {
889 if (unlikely((sge->addr - last_sge->mr->user_base +
890 sge->length > last_sge->mr->length)))
891 return false; /* overrun, caller will catch */
892 } else {
893 last_sge->length += sge->length;
894 }
895 last_sge->sge_length += sge->length;
896 trace_rvt_sge_adjacent(last_sge, sge);
897 return true;
898 }
899 return false;
900 }
901
902 /**
903 * rvt_lkey_ok - check IB SGE for validity and initialize
904 * @rkt: table containing lkey to check SGE against
905 * @pd: protection domain
906 * @isge: outgoing internal SGE
907 * @last_sge: last outgoing SGE written
908 * @sge: SGE to check
909 * @acc: access flags
910 *
911 * Check the IB SGE for validity and initialize our internal version
912 * of it.
913 *
914 * Increments the reference count when a new sge is stored.
915 *
916 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
917 */
rvt_lkey_ok(struct rvt_lkey_table * rkt,struct rvt_pd * pd,struct rvt_sge * isge,struct rvt_sge * last_sge,struct ib_sge * sge,int acc)918 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
919 struct rvt_sge *isge, struct rvt_sge *last_sge,
920 struct ib_sge *sge, int acc)
921 {
922 struct rvt_mregion *mr;
923 unsigned n, m;
924 size_t off;
925
926 /*
927 * We use LKEY == zero for kernel virtual addresses
928 * (see rvt_get_dma_mr() and dma_virt_ops).
929 */
930 if (sge->lkey == 0) {
931 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
932
933 if (pd->user)
934 return -EINVAL;
935 if (rvt_sge_adjacent(last_sge, sge))
936 return 0;
937 rcu_read_lock();
938 mr = rcu_dereference(dev->dma_mr);
939 if (!mr)
940 goto bail;
941 rvt_get_mr(mr);
942 rcu_read_unlock();
943
944 isge->mr = mr;
945 isge->vaddr = (void *)sge->addr;
946 isge->length = sge->length;
947 isge->sge_length = sge->length;
948 isge->m = 0;
949 isge->n = 0;
950 goto ok;
951 }
952 if (rvt_sge_adjacent(last_sge, sge))
953 return 0;
954 rcu_read_lock();
955 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
956 if (!mr)
957 goto bail;
958 rvt_get_mr(mr);
959 if (!READ_ONCE(mr->lkey_published))
960 goto bail_unref;
961
962 if (unlikely(atomic_read(&mr->lkey_invalid) ||
963 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
964 goto bail_unref;
965
966 off = sge->addr - mr->user_base;
967 if (unlikely(sge->addr < mr->user_base ||
968 off + sge->length > mr->length ||
969 (mr->access_flags & acc) != acc))
970 goto bail_unref;
971 rcu_read_unlock();
972
973 off += mr->offset;
974 if (mr->page_shift) {
975 /*
976 * page sizes are uniform power of 2 so no loop is necessary
977 * entries_spanned_by_off is the number of times the loop below
978 * would have executed.
979 */
980 size_t entries_spanned_by_off;
981
982 entries_spanned_by_off = off >> mr->page_shift;
983 off -= (entries_spanned_by_off << mr->page_shift);
984 m = entries_spanned_by_off / RVT_SEGSZ;
985 n = entries_spanned_by_off % RVT_SEGSZ;
986 } else {
987 m = 0;
988 n = 0;
989 while (off >= mr->map[m]->segs[n].length) {
990 off -= mr->map[m]->segs[n].length;
991 n++;
992 if (n >= RVT_SEGSZ) {
993 m++;
994 n = 0;
995 }
996 }
997 }
998 isge->mr = mr;
999 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
1000 isge->length = mr->map[m]->segs[n].length - off;
1001 isge->sge_length = sge->length;
1002 isge->m = m;
1003 isge->n = n;
1004 ok:
1005 trace_rvt_sge_new(isge, sge);
1006 return 1;
1007 bail_unref:
1008 rvt_put_mr(mr);
1009 bail:
1010 rcu_read_unlock();
1011 return -EINVAL;
1012 }
1013 EXPORT_SYMBOL(rvt_lkey_ok);
1014
1015 /**
1016 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1017 * @qp: qp for validation
1018 * @sge: SGE state
1019 * @len: length of data
1020 * @vaddr: virtual address to place data
1021 * @rkey: rkey to check
1022 * @acc: access flags
1023 *
1024 * Return: 1 if successful, otherwise 0.
1025 *
1026 * increments the reference count upon success
1027 */
rvt_rkey_ok(struct rvt_qp * qp,struct rvt_sge * sge,u32 len,u64 vaddr,u32 rkey,int acc)1028 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1029 u32 len, u64 vaddr, u32 rkey, int acc)
1030 {
1031 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1032 struct rvt_lkey_table *rkt = &dev->lkey_table;
1033 struct rvt_mregion *mr;
1034 unsigned n, m;
1035 size_t off;
1036
1037 /*
1038 * We use RKEY == zero for kernel virtual addresses
1039 * (see rvt_get_dma_mr() and dma_virt_ops).
1040 */
1041 rcu_read_lock();
1042 if (rkey == 0) {
1043 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1044 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1045
1046 if (pd->user)
1047 goto bail;
1048 mr = rcu_dereference(rdi->dma_mr);
1049 if (!mr)
1050 goto bail;
1051 rvt_get_mr(mr);
1052 rcu_read_unlock();
1053
1054 sge->mr = mr;
1055 sge->vaddr = (void *)vaddr;
1056 sge->length = len;
1057 sge->sge_length = len;
1058 sge->m = 0;
1059 sge->n = 0;
1060 goto ok;
1061 }
1062
1063 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1064 if (!mr)
1065 goto bail;
1066 rvt_get_mr(mr);
1067 /* insure mr read is before test */
1068 if (!READ_ONCE(mr->lkey_published))
1069 goto bail_unref;
1070 if (unlikely(atomic_read(&mr->lkey_invalid) ||
1071 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1072 goto bail_unref;
1073
1074 off = vaddr - mr->iova;
1075 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1076 (mr->access_flags & acc) == 0))
1077 goto bail_unref;
1078 rcu_read_unlock();
1079
1080 off += mr->offset;
1081 if (mr->page_shift) {
1082 /*
1083 * page sizes are uniform power of 2 so no loop is necessary
1084 * entries_spanned_by_off is the number of times the loop below
1085 * would have executed.
1086 */
1087 size_t entries_spanned_by_off;
1088
1089 entries_spanned_by_off = off >> mr->page_shift;
1090 off -= (entries_spanned_by_off << mr->page_shift);
1091 m = entries_spanned_by_off / RVT_SEGSZ;
1092 n = entries_spanned_by_off % RVT_SEGSZ;
1093 } else {
1094 m = 0;
1095 n = 0;
1096 while (off >= mr->map[m]->segs[n].length) {
1097 off -= mr->map[m]->segs[n].length;
1098 n++;
1099 if (n >= RVT_SEGSZ) {
1100 m++;
1101 n = 0;
1102 }
1103 }
1104 }
1105 sge->mr = mr;
1106 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1107 sge->length = mr->map[m]->segs[n].length - off;
1108 sge->sge_length = len;
1109 sge->m = m;
1110 sge->n = n;
1111 ok:
1112 return 1;
1113 bail_unref:
1114 rvt_put_mr(mr);
1115 bail:
1116 rcu_read_unlock();
1117 return 0;
1118 }
1119 EXPORT_SYMBOL(rvt_rkey_ok);
1120