1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29
30 #include <asm/switch_to.h>
31 #include <asm/tlb.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
34 #endif
35
36 #include "sched.h"
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
42 #include "walt.h"
43
44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45
46 /*
47 * Debugging: various feature bits
48 */
49
50 #define SCHED_FEAT(name, enabled) \
51 (1UL << __SCHED_FEAT_##name) * enabled |
52
53 const_debug unsigned int sysctl_sched_features =
54 #include "features.h"
55 0;
56
57 #undef SCHED_FEAT
58
59 /*
60 * Number of tasks to iterate in a single balance run.
61 * Limited because this is done with IRQs disabled.
62 */
63 const_debug unsigned int sysctl_sched_nr_migrate = 32;
64
65 /*
66 * period over which we average the RT time consumption, measured
67 * in ms.
68 *
69 * default: 1s
70 */
71 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
72
73 /*
74 * period over which we measure -rt task CPU usage in us.
75 * default: 1s
76 */
77 unsigned int sysctl_sched_rt_period = 1000000;
78
79 __read_mostly int scheduler_running;
80
81 /*
82 * part of the period that we allow rt tasks to run in us.
83 * default: 0.95s
84 */
85 int sysctl_sched_rt_runtime = 950000;
86
87 /* CPUs with isolated domains */
88 cpumask_var_t cpu_isolated_map;
89
90 /*
91 * __task_rq_lock - lock the rq @p resides on.
92 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)93 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
94 __acquires(rq->lock)
95 {
96 struct rq *rq;
97
98 lockdep_assert_held(&p->pi_lock);
99
100 for (;;) {
101 rq = task_rq(p);
102 raw_spin_lock(&rq->lock);
103 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
104 rq_pin_lock(rq, rf);
105 return rq;
106 }
107 raw_spin_unlock(&rq->lock);
108
109 while (unlikely(task_on_rq_migrating(p)))
110 cpu_relax();
111 }
112 }
113
114 /*
115 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
116 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)117 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
118 __acquires(p->pi_lock)
119 __acquires(rq->lock)
120 {
121 struct rq *rq;
122
123 for (;;) {
124 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
125 rq = task_rq(p);
126 raw_spin_lock(&rq->lock);
127 /*
128 * move_queued_task() task_rq_lock()
129 *
130 * ACQUIRE (rq->lock)
131 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
132 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
133 * [S] ->cpu = new_cpu [L] task_rq()
134 * [L] ->on_rq
135 * RELEASE (rq->lock)
136 *
137 * If we observe the old cpu in task_rq_lock, the acquire of
138 * the old rq->lock will fully serialize against the stores.
139 *
140 * If we observe the new CPU in task_rq_lock, the acquire will
141 * pair with the WMB to ensure we must then also see migrating.
142 */
143 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
144 rq_pin_lock(rq, rf);
145 return rq;
146 }
147 raw_spin_unlock(&rq->lock);
148 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
149
150 while (unlikely(task_on_rq_migrating(p)))
151 cpu_relax();
152 }
153 }
154
155 /*
156 * RQ-clock updating methods:
157 */
158
update_rq_clock_task(struct rq * rq,s64 delta)159 static void update_rq_clock_task(struct rq *rq, s64 delta)
160 {
161 /*
162 * In theory, the compile should just see 0 here, and optimize out the call
163 * to sched_rt_avg_update. But I don't trust it...
164 */
165 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
166 s64 steal = 0, irq_delta = 0;
167 #endif
168 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
169 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
170
171 /*
172 * Since irq_time is only updated on {soft,}irq_exit, we might run into
173 * this case when a previous update_rq_clock() happened inside a
174 * {soft,}irq region.
175 *
176 * When this happens, we stop ->clock_task and only update the
177 * prev_irq_time stamp to account for the part that fit, so that a next
178 * update will consume the rest. This ensures ->clock_task is
179 * monotonic.
180 *
181 * It does however cause some slight miss-attribution of {soft,}irq
182 * time, a more accurate solution would be to update the irq_time using
183 * the current rq->clock timestamp, except that would require using
184 * atomic ops.
185 */
186 if (irq_delta > delta)
187 irq_delta = delta;
188
189 rq->prev_irq_time += irq_delta;
190 delta -= irq_delta;
191 #endif
192 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
193 if (static_key_false((¶virt_steal_rq_enabled))) {
194 steal = paravirt_steal_clock(cpu_of(rq));
195 steal -= rq->prev_steal_time_rq;
196
197 if (unlikely(steal > delta))
198 steal = delta;
199
200 rq->prev_steal_time_rq += steal;
201 delta -= steal;
202 }
203 #endif
204
205 rq->clock_task += delta;
206
207 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
208 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
209 sched_rt_avg_update(rq, irq_delta + steal);
210 #endif
211 }
212
update_rq_clock(struct rq * rq)213 void update_rq_clock(struct rq *rq)
214 {
215 s64 delta;
216
217 lockdep_assert_held(&rq->lock);
218
219 if (rq->clock_update_flags & RQCF_ACT_SKIP)
220 return;
221
222 #ifdef CONFIG_SCHED_DEBUG
223 if (sched_feat(WARN_DOUBLE_CLOCK))
224 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
225 rq->clock_update_flags |= RQCF_UPDATED;
226 #endif
227
228 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
229 if (delta < 0)
230 return;
231 rq->clock += delta;
232 update_rq_clock_task(rq, delta);
233 }
234
235
236 #ifdef CONFIG_SCHED_HRTICK
237 /*
238 * Use HR-timers to deliver accurate preemption points.
239 */
240
hrtick_clear(struct rq * rq)241 static void hrtick_clear(struct rq *rq)
242 {
243 if (hrtimer_active(&rq->hrtick_timer))
244 hrtimer_cancel(&rq->hrtick_timer);
245 }
246
247 /*
248 * High-resolution timer tick.
249 * Runs from hardirq context with interrupts disabled.
250 */
hrtick(struct hrtimer * timer)251 static enum hrtimer_restart hrtick(struct hrtimer *timer)
252 {
253 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
254 struct rq_flags rf;
255
256 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
257
258 rq_lock(rq, &rf);
259 update_rq_clock(rq);
260 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
261 rq_unlock(rq, &rf);
262
263 return HRTIMER_NORESTART;
264 }
265
266 #ifdef CONFIG_SMP
267
__hrtick_restart(struct rq * rq)268 static void __hrtick_restart(struct rq *rq)
269 {
270 struct hrtimer *timer = &rq->hrtick_timer;
271
272 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
273 }
274
275 /*
276 * called from hardirq (IPI) context
277 */
__hrtick_start(void * arg)278 static void __hrtick_start(void *arg)
279 {
280 struct rq *rq = arg;
281 struct rq_flags rf;
282
283 rq_lock(rq, &rf);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 rq_unlock(rq, &rf);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
hrtick_start(struct rq * rq,u64 delay)294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
hrtick_start(struct rq * rq,u64 delay)323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
init_rq_hrtick(struct rq * rq)335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
init_rq_hrtick(struct rq * rq)353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
set_nr_and_not_polling(struct task_struct * p)382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
set_nr_if_polling(struct task_struct * p)394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
set_nr_and_not_polling(struct task_struct * p)413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
wake_q_add(struct wake_q_head * head,struct task_struct * task)427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * In order to ensure that a pending wakeup will observe our pending
437 * state, even in the failed case, an explicit smp_mb() must be used.
438 */
439 smp_mb__before_atomic();
440 if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 head->count++;
444
445 get_task_struct(task);
446
447 /*
448 * The head is context local, there can be no concurrency.
449 */
450 *head->lastp = node;
451 head->lastp = &node->next;
452 }
453
454 static int
455 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
456 int sibling_count_hint);
457
wake_up_q(struct wake_q_head * head)458 void wake_up_q(struct wake_q_head *head)
459 {
460 struct wake_q_node *node = head->first;
461
462 while (node != WAKE_Q_TAIL) {
463 struct task_struct *task;
464
465 task = container_of(node, struct task_struct, wake_q);
466 BUG_ON(!task);
467 /* Task can safely be re-inserted now: */
468 node = node->next;
469 task->wake_q.next = NULL;
470
471 /*
472 * try_to_wake_up() implies a wmb() to pair with the queueing
473 * in wake_q_add() so as not to miss wakeups.
474 */
475 try_to_wake_up(task, TASK_NORMAL, 0, head->count);
476 put_task_struct(task);
477 }
478 }
479
480 /*
481 * resched_curr - mark rq's current task 'to be rescheduled now'.
482 *
483 * On UP this means the setting of the need_resched flag, on SMP it
484 * might also involve a cross-CPU call to trigger the scheduler on
485 * the target CPU.
486 */
resched_curr(struct rq * rq)487 void resched_curr(struct rq *rq)
488 {
489 struct task_struct *curr = rq->curr;
490 int cpu;
491
492 lockdep_assert_held(&rq->lock);
493
494 if (test_tsk_need_resched(curr))
495 return;
496
497 cpu = cpu_of(rq);
498
499 if (cpu == smp_processor_id()) {
500 set_tsk_need_resched(curr);
501 set_preempt_need_resched();
502 return;
503 }
504
505 if (set_nr_and_not_polling(curr))
506 smp_send_reschedule(cpu);
507 else
508 trace_sched_wake_idle_without_ipi(cpu);
509 }
510
resched_cpu(int cpu)511 void resched_cpu(int cpu)
512 {
513 struct rq *rq = cpu_rq(cpu);
514 unsigned long flags;
515
516 raw_spin_lock_irqsave(&rq->lock, flags);
517 if (cpu_online(cpu) || cpu == smp_processor_id())
518 resched_curr(rq);
519 raw_spin_unlock_irqrestore(&rq->lock, flags);
520 }
521
522 #ifdef CONFIG_SMP
523 #ifdef CONFIG_NO_HZ_COMMON
524 /*
525 * In the semi idle case, use the nearest busy CPU for migrating timers
526 * from an idle CPU. This is good for power-savings.
527 *
528 * We don't do similar optimization for completely idle system, as
529 * selecting an idle CPU will add more delays to the timers than intended
530 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
531 */
get_nohz_timer_target(void)532 int get_nohz_timer_target(void)
533 {
534 int i, cpu = smp_processor_id();
535 struct sched_domain *sd;
536
537 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
538 return cpu;
539
540 rcu_read_lock();
541 for_each_domain(cpu, sd) {
542 for_each_cpu(i, sched_domain_span(sd)) {
543 if (cpu == i)
544 continue;
545
546 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
547 cpu = i;
548 goto unlock;
549 }
550 }
551 }
552
553 if (!is_housekeeping_cpu(cpu))
554 cpu = housekeeping_any_cpu();
555 unlock:
556 rcu_read_unlock();
557 return cpu;
558 }
559
560 /*
561 * When add_timer_on() enqueues a timer into the timer wheel of an
562 * idle CPU then this timer might expire before the next timer event
563 * which is scheduled to wake up that CPU. In case of a completely
564 * idle system the next event might even be infinite time into the
565 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
566 * leaves the inner idle loop so the newly added timer is taken into
567 * account when the CPU goes back to idle and evaluates the timer
568 * wheel for the next timer event.
569 */
wake_up_idle_cpu(int cpu)570 static void wake_up_idle_cpu(int cpu)
571 {
572 struct rq *rq = cpu_rq(cpu);
573
574 if (cpu == smp_processor_id())
575 return;
576
577 if (set_nr_and_not_polling(rq->idle))
578 smp_send_reschedule(cpu);
579 else
580 trace_sched_wake_idle_without_ipi(cpu);
581 }
582
wake_up_full_nohz_cpu(int cpu)583 static bool wake_up_full_nohz_cpu(int cpu)
584 {
585 /*
586 * We just need the target to call irq_exit() and re-evaluate
587 * the next tick. The nohz full kick at least implies that.
588 * If needed we can still optimize that later with an
589 * empty IRQ.
590 */
591 if (cpu_is_offline(cpu))
592 return true; /* Don't try to wake offline CPUs. */
593 if (tick_nohz_full_cpu(cpu)) {
594 if (cpu != smp_processor_id() ||
595 tick_nohz_tick_stopped())
596 tick_nohz_full_kick_cpu(cpu);
597 return true;
598 }
599
600 return false;
601 }
602
603 /*
604 * Wake up the specified CPU. If the CPU is going offline, it is the
605 * caller's responsibility to deal with the lost wakeup, for example,
606 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
607 */
wake_up_nohz_cpu(int cpu)608 void wake_up_nohz_cpu(int cpu)
609 {
610 if (!wake_up_full_nohz_cpu(cpu))
611 wake_up_idle_cpu(cpu);
612 }
613
got_nohz_idle_kick(void)614 static inline bool got_nohz_idle_kick(void)
615 {
616 int cpu = smp_processor_id();
617
618 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
619 return false;
620
621 if (idle_cpu(cpu) && !need_resched())
622 return true;
623
624 /*
625 * We can't run Idle Load Balance on this CPU for this time so we
626 * cancel it and clear NOHZ_BALANCE_KICK
627 */
628 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
629 return false;
630 }
631
632 #else /* CONFIG_NO_HZ_COMMON */
633
got_nohz_idle_kick(void)634 static inline bool got_nohz_idle_kick(void)
635 {
636 return false;
637 }
638
639 #endif /* CONFIG_NO_HZ_COMMON */
640
641 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)642 bool sched_can_stop_tick(struct rq *rq)
643 {
644 int fifo_nr_running;
645
646 /* Deadline tasks, even if single, need the tick */
647 if (rq->dl.dl_nr_running)
648 return false;
649
650 /*
651 * If there are more than one RR tasks, we need the tick to effect the
652 * actual RR behaviour.
653 */
654 if (rq->rt.rr_nr_running) {
655 if (rq->rt.rr_nr_running == 1)
656 return true;
657 else
658 return false;
659 }
660
661 /*
662 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
663 * forced preemption between FIFO tasks.
664 */
665 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
666 if (fifo_nr_running)
667 return true;
668
669 /*
670 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
671 * if there's more than one we need the tick for involuntary
672 * preemption.
673 */
674 if (rq->nr_running > 1)
675 return false;
676
677 return true;
678 }
679 #endif /* CONFIG_NO_HZ_FULL */
680
sched_avg_update(struct rq * rq)681 void sched_avg_update(struct rq *rq)
682 {
683 s64 period = sched_avg_period();
684
685 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
686 /*
687 * Inline assembly required to prevent the compiler
688 * optimising this loop into a divmod call.
689 * See __iter_div_u64_rem() for another example of this.
690 */
691 asm("" : "+rm" (rq->age_stamp));
692 rq->age_stamp += period;
693 rq->rt_avg /= 2;
694 }
695 }
696
697 #endif /* CONFIG_SMP */
698
699 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
700 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
701 /*
702 * Iterate task_group tree rooted at *from, calling @down when first entering a
703 * node and @up when leaving it for the final time.
704 *
705 * Caller must hold rcu_lock or sufficient equivalent.
706 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)707 int walk_tg_tree_from(struct task_group *from,
708 tg_visitor down, tg_visitor up, void *data)
709 {
710 struct task_group *parent, *child;
711 int ret;
712
713 parent = from;
714
715 down:
716 ret = (*down)(parent, data);
717 if (ret)
718 goto out;
719 list_for_each_entry_rcu(child, &parent->children, siblings) {
720 parent = child;
721 goto down;
722
723 up:
724 continue;
725 }
726 ret = (*up)(parent, data);
727 if (ret || parent == from)
728 goto out;
729
730 child = parent;
731 parent = parent->parent;
732 if (parent)
733 goto up;
734 out:
735 return ret;
736 }
737
tg_nop(struct task_group * tg,void * data)738 int tg_nop(struct task_group *tg, void *data)
739 {
740 return 0;
741 }
742 #endif
743
set_load_weight(struct task_struct * p)744 static void set_load_weight(struct task_struct *p)
745 {
746 int prio = p->static_prio - MAX_RT_PRIO;
747 struct load_weight *load = &p->se.load;
748
749 /*
750 * SCHED_IDLE tasks get minimal weight:
751 */
752 if (idle_policy(p->policy)) {
753 load->weight = scale_load(WEIGHT_IDLEPRIO);
754 load->inv_weight = WMULT_IDLEPRIO;
755 return;
756 }
757
758 load->weight = scale_load(sched_prio_to_weight[prio]);
759 load->inv_weight = sched_prio_to_wmult[prio];
760 }
761
enqueue_task(struct rq * rq,struct task_struct * p,int flags)762 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
763 {
764 if (!(flags & ENQUEUE_NOCLOCK))
765 update_rq_clock(rq);
766
767 if (!(flags & ENQUEUE_RESTORE)) {
768 sched_info_queued(rq, p);
769 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
770 }
771
772 p->sched_class->enqueue_task(rq, p, flags);
773 }
774
dequeue_task(struct rq * rq,struct task_struct * p,int flags)775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (!(flags & DEQUEUE_NOCLOCK))
778 update_rq_clock(rq);
779
780 if (!(flags & DEQUEUE_SAVE)) {
781 sched_info_dequeued(rq, p);
782 psi_dequeue(p, flags & DEQUEUE_SLEEP);
783 }
784
785 p->sched_class->dequeue_task(rq, p, flags);
786 }
787
activate_task(struct rq * rq,struct task_struct * p,int flags)788 void activate_task(struct rq *rq, struct task_struct *p, int flags)
789 {
790 if (task_contributes_to_load(p))
791 rq->nr_uninterruptible--;
792
793 enqueue_task(rq, p, flags);
794 }
795
deactivate_task(struct rq * rq,struct task_struct * p,int flags)796 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
797 {
798 if (task_contributes_to_load(p))
799 rq->nr_uninterruptible++;
800
801 dequeue_task(rq, p, flags);
802 }
803
804 /*
805 * __normal_prio - return the priority that is based on the static prio
806 */
__normal_prio(struct task_struct * p)807 static inline int __normal_prio(struct task_struct *p)
808 {
809 return p->static_prio;
810 }
811
812 /*
813 * Calculate the expected normal priority: i.e. priority
814 * without taking RT-inheritance into account. Might be
815 * boosted by interactivity modifiers. Changes upon fork,
816 * setprio syscalls, and whenever the interactivity
817 * estimator recalculates.
818 */
normal_prio(struct task_struct * p)819 static inline int normal_prio(struct task_struct *p)
820 {
821 int prio;
822
823 if (task_has_dl_policy(p))
824 prio = MAX_DL_PRIO-1;
825 else if (task_has_rt_policy(p))
826 prio = MAX_RT_PRIO-1 - p->rt_priority;
827 else
828 prio = __normal_prio(p);
829 return prio;
830 }
831
832 /*
833 * Calculate the current priority, i.e. the priority
834 * taken into account by the scheduler. This value might
835 * be boosted by RT tasks, or might be boosted by
836 * interactivity modifiers. Will be RT if the task got
837 * RT-boosted. If not then it returns p->normal_prio.
838 */
effective_prio(struct task_struct * p)839 static int effective_prio(struct task_struct *p)
840 {
841 p->normal_prio = normal_prio(p);
842 /*
843 * If we are RT tasks or we were boosted to RT priority,
844 * keep the priority unchanged. Otherwise, update priority
845 * to the normal priority:
846 */
847 if (!rt_prio(p->prio))
848 return p->normal_prio;
849 return p->prio;
850 }
851
852 /**
853 * task_curr - is this task currently executing on a CPU?
854 * @p: the task in question.
855 *
856 * Return: 1 if the task is currently executing. 0 otherwise.
857 */
task_curr(const struct task_struct * p)858 inline int task_curr(const struct task_struct *p)
859 {
860 return cpu_curr(task_cpu(p)) == p;
861 }
862
863 /*
864 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
865 * use the balance_callback list if you want balancing.
866 *
867 * this means any call to check_class_changed() must be followed by a call to
868 * balance_callback().
869 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)870 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
871 const struct sched_class *prev_class,
872 int oldprio)
873 {
874 if (prev_class != p->sched_class) {
875 if (prev_class->switched_from)
876 prev_class->switched_from(rq, p);
877
878 p->sched_class->switched_to(rq, p);
879 } else if (oldprio != p->prio || dl_task(p))
880 p->sched_class->prio_changed(rq, p, oldprio);
881 }
882
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)883 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
884 {
885 const struct sched_class *class;
886
887 if (p->sched_class == rq->curr->sched_class) {
888 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
889 } else {
890 for_each_class(class) {
891 if (class == rq->curr->sched_class)
892 break;
893 if (class == p->sched_class) {
894 resched_curr(rq);
895 break;
896 }
897 }
898 }
899
900 /*
901 * A queue event has occurred, and we're going to schedule. In
902 * this case, we can save a useless back to back clock update.
903 */
904 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
905 rq_clock_skip_update(rq, true);
906 }
907
908 #ifdef CONFIG_SMP
909
is_per_cpu_kthread(struct task_struct * p)910 static inline bool is_per_cpu_kthread(struct task_struct *p)
911 {
912 if (!(p->flags & PF_KTHREAD))
913 return false;
914
915 if (p->nr_cpus_allowed != 1)
916 return false;
917
918 return true;
919 }
920
921 /*
922 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
923 * __set_cpus_allowed_ptr() and select_fallback_rq().
924 */
is_cpu_allowed(struct task_struct * p,int cpu)925 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
926 {
927 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
928 return false;
929
930 if (is_per_cpu_kthread(p))
931 return cpu_online(cpu);
932
933 return cpu_active(cpu);
934 }
935
936 /*
937 * This is how migration works:
938 *
939 * 1) we invoke migration_cpu_stop() on the target CPU using
940 * stop_one_cpu().
941 * 2) stopper starts to run (implicitly forcing the migrated thread
942 * off the CPU)
943 * 3) it checks whether the migrated task is still in the wrong runqueue.
944 * 4) if it's in the wrong runqueue then the migration thread removes
945 * it and puts it into the right queue.
946 * 5) stopper completes and stop_one_cpu() returns and the migration
947 * is done.
948 */
949
950 /*
951 * move_queued_task - move a queued task to new rq.
952 *
953 * Returns (locked) new rq. Old rq's lock is released.
954 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)955 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
956 struct task_struct *p, int new_cpu)
957 {
958 lockdep_assert_held(&rq->lock);
959
960 p->on_rq = TASK_ON_RQ_MIGRATING;
961 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
962 rq_unpin_lock(rq, rf);
963 double_lock_balance(rq, cpu_rq(new_cpu));
964 set_task_cpu(p, new_cpu);
965 double_rq_unlock(cpu_rq(new_cpu), rq);
966
967 rq = cpu_rq(new_cpu);
968
969 rq_lock(rq, rf);
970 BUG_ON(task_cpu(p) != new_cpu);
971 enqueue_task(rq, p, 0);
972 p->on_rq = TASK_ON_RQ_QUEUED;
973 check_preempt_curr(rq, p, 0);
974
975 return rq;
976 }
977
978 struct migration_arg {
979 struct task_struct *task;
980 int dest_cpu;
981 };
982
983 /*
984 * Move (not current) task off this CPU, onto the destination CPU. We're doing
985 * this because either it can't run here any more (set_cpus_allowed()
986 * away from this CPU, or CPU going down), or because we're
987 * attempting to rebalance this task on exec (sched_exec).
988 *
989 * So we race with normal scheduler movements, but that's OK, as long
990 * as the task is no longer on this CPU.
991 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)992 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
993 struct task_struct *p, int dest_cpu)
994 {
995 /* Affinity changed (again). */
996 if (!is_cpu_allowed(p, dest_cpu))
997 return rq;
998
999 update_rq_clock(rq);
1000 rq = move_queued_task(rq, rf, p, dest_cpu);
1001
1002 return rq;
1003 }
1004
1005 /*
1006 * migration_cpu_stop - this will be executed by a highprio stopper thread
1007 * and performs thread migration by bumping thread off CPU then
1008 * 'pushing' onto another runqueue.
1009 */
migration_cpu_stop(void * data)1010 static int migration_cpu_stop(void *data)
1011 {
1012 struct migration_arg *arg = data;
1013 struct task_struct *p = arg->task;
1014 struct rq *rq = this_rq();
1015 struct rq_flags rf;
1016
1017 /*
1018 * The original target CPU might have gone down and we might
1019 * be on another CPU but it doesn't matter.
1020 */
1021 local_irq_disable();
1022 /*
1023 * We need to explicitly wake pending tasks before running
1024 * __migrate_task() such that we will not miss enforcing cpus_allowed
1025 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1026 */
1027 sched_ttwu_pending();
1028
1029 raw_spin_lock(&p->pi_lock);
1030 rq_lock(rq, &rf);
1031 /*
1032 * If task_rq(p) != rq, it cannot be migrated here, because we're
1033 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1034 * we're holding p->pi_lock.
1035 */
1036 if (task_rq(p) == rq) {
1037 if (task_on_rq_queued(p))
1038 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1039 else
1040 p->wake_cpu = arg->dest_cpu;
1041 }
1042 rq_unlock(rq, &rf);
1043 raw_spin_unlock(&p->pi_lock);
1044
1045 local_irq_enable();
1046 return 0;
1047 }
1048
1049 /*
1050 * sched_class::set_cpus_allowed must do the below, but is not required to
1051 * actually call this function.
1052 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1053 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1054 {
1055 cpumask_copy(&p->cpus_allowed, new_mask);
1056 p->nr_cpus_allowed = cpumask_weight(new_mask);
1057 }
1058
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1059 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1060 {
1061 struct rq *rq = task_rq(p);
1062 bool queued, running;
1063
1064 lockdep_assert_held(&p->pi_lock);
1065
1066 queued = task_on_rq_queued(p);
1067 running = task_current(rq, p);
1068
1069 if (queued) {
1070 /*
1071 * Because __kthread_bind() calls this on blocked tasks without
1072 * holding rq->lock.
1073 */
1074 lockdep_assert_held(&rq->lock);
1075 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1076 }
1077 if (running)
1078 put_prev_task(rq, p);
1079
1080 p->sched_class->set_cpus_allowed(p, new_mask);
1081
1082 if (queued)
1083 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1084 if (running)
1085 set_curr_task(rq, p);
1086 }
1087
1088 /*
1089 * Change a given task's CPU affinity. Migrate the thread to a
1090 * proper CPU and schedule it away if the CPU it's executing on
1091 * is removed from the allowed bitmask.
1092 *
1093 * NOTE: the caller must have a valid reference to the task, the
1094 * task must not exit() & deallocate itself prematurely. The
1095 * call is not atomic; no spinlocks may be held.
1096 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1097 static int __set_cpus_allowed_ptr(struct task_struct *p,
1098 const struct cpumask *new_mask, bool check)
1099 {
1100 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1101 unsigned int dest_cpu;
1102 struct rq_flags rf;
1103 struct rq *rq;
1104 int ret = 0;
1105
1106 rq = task_rq_lock(p, &rf);
1107 update_rq_clock(rq);
1108
1109 if (p->flags & PF_KTHREAD) {
1110 /*
1111 * Kernel threads are allowed on online && !active CPUs
1112 */
1113 cpu_valid_mask = cpu_online_mask;
1114 }
1115
1116 /*
1117 * Must re-check here, to close a race against __kthread_bind(),
1118 * sched_setaffinity() is not guaranteed to observe the flag.
1119 */
1120 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1121 ret = -EINVAL;
1122 goto out;
1123 }
1124
1125 if (cpumask_equal(&p->cpus_allowed, new_mask))
1126 goto out;
1127
1128 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1129 if (dest_cpu >= nr_cpu_ids) {
1130 ret = -EINVAL;
1131 goto out;
1132 }
1133
1134 do_set_cpus_allowed(p, new_mask);
1135
1136 if (p->flags & PF_KTHREAD) {
1137 /*
1138 * For kernel threads that do indeed end up on online &&
1139 * !active we want to ensure they are strict per-CPU threads.
1140 */
1141 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1142 !cpumask_intersects(new_mask, cpu_active_mask) &&
1143 p->nr_cpus_allowed != 1);
1144 }
1145
1146 /* Can the task run on the task's current CPU? If so, we're done */
1147 if (cpumask_test_cpu(task_cpu(p), new_mask))
1148 goto out;
1149
1150 if (task_running(rq, p) || p->state == TASK_WAKING) {
1151 struct migration_arg arg = { p, dest_cpu };
1152 /* Need help from migration thread: drop lock and wait. */
1153 task_rq_unlock(rq, p, &rf);
1154 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1155 tlb_migrate_finish(p->mm);
1156 return 0;
1157 } else if (task_on_rq_queued(p)) {
1158 /*
1159 * OK, since we're going to drop the lock immediately
1160 * afterwards anyway.
1161 */
1162 rq = move_queued_task(rq, &rf, p, dest_cpu);
1163 }
1164 out:
1165 task_rq_unlock(rq, p, &rf);
1166
1167 return ret;
1168 }
1169
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1170 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1171 {
1172 return __set_cpus_allowed_ptr(p, new_mask, false);
1173 }
1174 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1175
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1176 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1177 {
1178 #ifdef CONFIG_SCHED_DEBUG
1179 /*
1180 * We should never call set_task_cpu() on a blocked task,
1181 * ttwu() will sort out the placement.
1182 */
1183 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1184 !p->on_rq);
1185
1186 /*
1187 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1188 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1189 * time relying on p->on_rq.
1190 */
1191 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1192 p->sched_class == &fair_sched_class &&
1193 (p->on_rq && !task_on_rq_migrating(p)));
1194
1195 #ifdef CONFIG_LOCKDEP
1196 /*
1197 * The caller should hold either p->pi_lock or rq->lock, when changing
1198 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1199 *
1200 * sched_move_task() holds both and thus holding either pins the cgroup,
1201 * see task_group().
1202 *
1203 * Furthermore, all task_rq users should acquire both locks, see
1204 * task_rq_lock().
1205 */
1206 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1207 lockdep_is_held(&task_rq(p)->lock)));
1208 #endif
1209 /*
1210 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1211 */
1212 WARN_ON_ONCE(!cpu_online(new_cpu));
1213 #endif
1214
1215 trace_sched_migrate_task(p, new_cpu);
1216
1217 if (task_cpu(p) != new_cpu) {
1218 if (p->sched_class->migrate_task_rq)
1219 p->sched_class->migrate_task_rq(p);
1220 p->se.nr_migrations++;
1221 perf_event_task_migrate(p);
1222
1223 walt_fixup_busy_time(p, new_cpu);
1224 }
1225
1226 __set_task_cpu(p, new_cpu);
1227 }
1228
__migrate_swap_task(struct task_struct * p,int cpu)1229 static void __migrate_swap_task(struct task_struct *p, int cpu)
1230 {
1231 if (task_on_rq_queued(p)) {
1232 struct rq *src_rq, *dst_rq;
1233 struct rq_flags srf, drf;
1234
1235 src_rq = task_rq(p);
1236 dst_rq = cpu_rq(cpu);
1237
1238 rq_pin_lock(src_rq, &srf);
1239 rq_pin_lock(dst_rq, &drf);
1240
1241 p->on_rq = TASK_ON_RQ_MIGRATING;
1242 deactivate_task(src_rq, p, 0);
1243 set_task_cpu(p, cpu);
1244 activate_task(dst_rq, p, 0);
1245 p->on_rq = TASK_ON_RQ_QUEUED;
1246 check_preempt_curr(dst_rq, p, 0);
1247
1248 rq_unpin_lock(dst_rq, &drf);
1249 rq_unpin_lock(src_rq, &srf);
1250
1251 } else {
1252 /*
1253 * Task isn't running anymore; make it appear like we migrated
1254 * it before it went to sleep. This means on wakeup we make the
1255 * previous CPU our target instead of where it really is.
1256 */
1257 p->wake_cpu = cpu;
1258 }
1259 }
1260
1261 struct migration_swap_arg {
1262 struct task_struct *src_task, *dst_task;
1263 int src_cpu, dst_cpu;
1264 };
1265
migrate_swap_stop(void * data)1266 static int migrate_swap_stop(void *data)
1267 {
1268 struct migration_swap_arg *arg = data;
1269 struct rq *src_rq, *dst_rq;
1270 int ret = -EAGAIN;
1271
1272 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1273 return -EAGAIN;
1274
1275 src_rq = cpu_rq(arg->src_cpu);
1276 dst_rq = cpu_rq(arg->dst_cpu);
1277
1278 double_raw_lock(&arg->src_task->pi_lock,
1279 &arg->dst_task->pi_lock);
1280 double_rq_lock(src_rq, dst_rq);
1281
1282 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1283 goto unlock;
1284
1285 if (task_cpu(arg->src_task) != arg->src_cpu)
1286 goto unlock;
1287
1288 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1289 goto unlock;
1290
1291 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1292 goto unlock;
1293
1294 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1295 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1296
1297 ret = 0;
1298
1299 unlock:
1300 double_rq_unlock(src_rq, dst_rq);
1301 raw_spin_unlock(&arg->dst_task->pi_lock);
1302 raw_spin_unlock(&arg->src_task->pi_lock);
1303
1304 return ret;
1305 }
1306
1307 /*
1308 * Cross migrate two tasks
1309 */
migrate_swap(struct task_struct * cur,struct task_struct * p)1310 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1311 {
1312 struct migration_swap_arg arg;
1313 int ret = -EINVAL;
1314
1315 arg = (struct migration_swap_arg){
1316 .src_task = cur,
1317 .src_cpu = task_cpu(cur),
1318 .dst_task = p,
1319 .dst_cpu = task_cpu(p),
1320 };
1321
1322 if (arg.src_cpu == arg.dst_cpu)
1323 goto out;
1324
1325 /*
1326 * These three tests are all lockless; this is OK since all of them
1327 * will be re-checked with proper locks held further down the line.
1328 */
1329 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1330 goto out;
1331
1332 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1333 goto out;
1334
1335 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1336 goto out;
1337
1338 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1339 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1340
1341 out:
1342 return ret;
1343 }
1344
1345 /*
1346 * wait_task_inactive - wait for a thread to unschedule.
1347 *
1348 * If @match_state is nonzero, it's the @p->state value just checked and
1349 * not expected to change. If it changes, i.e. @p might have woken up,
1350 * then return zero. When we succeed in waiting for @p to be off its CPU,
1351 * we return a positive number (its total switch count). If a second call
1352 * a short while later returns the same number, the caller can be sure that
1353 * @p has remained unscheduled the whole time.
1354 *
1355 * The caller must ensure that the task *will* unschedule sometime soon,
1356 * else this function might spin for a *long* time. This function can't
1357 * be called with interrupts off, or it may introduce deadlock with
1358 * smp_call_function() if an IPI is sent by the same process we are
1359 * waiting to become inactive.
1360 */
wait_task_inactive(struct task_struct * p,long match_state)1361 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1362 {
1363 int running, queued;
1364 struct rq_flags rf;
1365 unsigned long ncsw;
1366 struct rq *rq;
1367
1368 for (;;) {
1369 /*
1370 * We do the initial early heuristics without holding
1371 * any task-queue locks at all. We'll only try to get
1372 * the runqueue lock when things look like they will
1373 * work out!
1374 */
1375 rq = task_rq(p);
1376
1377 /*
1378 * If the task is actively running on another CPU
1379 * still, just relax and busy-wait without holding
1380 * any locks.
1381 *
1382 * NOTE! Since we don't hold any locks, it's not
1383 * even sure that "rq" stays as the right runqueue!
1384 * But we don't care, since "task_running()" will
1385 * return false if the runqueue has changed and p
1386 * is actually now running somewhere else!
1387 */
1388 while (task_running(rq, p)) {
1389 if (match_state && unlikely(p->state != match_state))
1390 return 0;
1391 cpu_relax();
1392 }
1393
1394 /*
1395 * Ok, time to look more closely! We need the rq
1396 * lock now, to be *sure*. If we're wrong, we'll
1397 * just go back and repeat.
1398 */
1399 rq = task_rq_lock(p, &rf);
1400 trace_sched_wait_task(p);
1401 running = task_running(rq, p);
1402 queued = task_on_rq_queued(p);
1403 ncsw = 0;
1404 if (!match_state || p->state == match_state)
1405 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1406 task_rq_unlock(rq, p, &rf);
1407
1408 /*
1409 * If it changed from the expected state, bail out now.
1410 */
1411 if (unlikely(!ncsw))
1412 break;
1413
1414 /*
1415 * Was it really running after all now that we
1416 * checked with the proper locks actually held?
1417 *
1418 * Oops. Go back and try again..
1419 */
1420 if (unlikely(running)) {
1421 cpu_relax();
1422 continue;
1423 }
1424
1425 /*
1426 * It's not enough that it's not actively running,
1427 * it must be off the runqueue _entirely_, and not
1428 * preempted!
1429 *
1430 * So if it was still runnable (but just not actively
1431 * running right now), it's preempted, and we should
1432 * yield - it could be a while.
1433 */
1434 if (unlikely(queued)) {
1435 ktime_t to = NSEC_PER_SEC / HZ;
1436
1437 set_current_state(TASK_UNINTERRUPTIBLE);
1438 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1439 continue;
1440 }
1441
1442 /*
1443 * Ahh, all good. It wasn't running, and it wasn't
1444 * runnable, which means that it will never become
1445 * running in the future either. We're all done!
1446 */
1447 break;
1448 }
1449
1450 return ncsw;
1451 }
1452
1453 /***
1454 * kick_process - kick a running thread to enter/exit the kernel
1455 * @p: the to-be-kicked thread
1456 *
1457 * Cause a process which is running on another CPU to enter
1458 * kernel-mode, without any delay. (to get signals handled.)
1459 *
1460 * NOTE: this function doesn't have to take the runqueue lock,
1461 * because all it wants to ensure is that the remote task enters
1462 * the kernel. If the IPI races and the task has been migrated
1463 * to another CPU then no harm is done and the purpose has been
1464 * achieved as well.
1465 */
kick_process(struct task_struct * p)1466 void kick_process(struct task_struct *p)
1467 {
1468 int cpu;
1469
1470 preempt_disable();
1471 cpu = task_cpu(p);
1472 if ((cpu != smp_processor_id()) && task_curr(p))
1473 smp_send_reschedule(cpu);
1474 preempt_enable();
1475 }
1476 EXPORT_SYMBOL_GPL(kick_process);
1477
1478 /*
1479 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1480 *
1481 * A few notes on cpu_active vs cpu_online:
1482 *
1483 * - cpu_active must be a subset of cpu_online
1484 *
1485 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1486 * see __set_cpus_allowed_ptr(). At this point the newly online
1487 * CPU isn't yet part of the sched domains, and balancing will not
1488 * see it.
1489 *
1490 * - on CPU-down we clear cpu_active() to mask the sched domains and
1491 * avoid the load balancer to place new tasks on the to be removed
1492 * CPU. Existing tasks will remain running there and will be taken
1493 * off.
1494 *
1495 * This means that fallback selection must not select !active CPUs.
1496 * And can assume that any active CPU must be online. Conversely
1497 * select_task_rq() below may allow selection of !active CPUs in order
1498 * to satisfy the above rules.
1499 */
select_fallback_rq(int cpu,struct task_struct * p)1500 static int select_fallback_rq(int cpu, struct task_struct *p)
1501 {
1502 int nid = cpu_to_node(cpu);
1503 const struct cpumask *nodemask = NULL;
1504 enum { cpuset, possible, fail } state = cpuset;
1505 int dest_cpu;
1506
1507 /*
1508 * If the node that the CPU is on has been offlined, cpu_to_node()
1509 * will return -1. There is no CPU on the node, and we should
1510 * select the CPU on the other node.
1511 */
1512 if (nid != -1) {
1513 nodemask = cpumask_of_node(nid);
1514
1515 /* Look for allowed, online CPU in same node. */
1516 for_each_cpu(dest_cpu, nodemask) {
1517 if (!cpu_active(dest_cpu))
1518 continue;
1519 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1520 return dest_cpu;
1521 }
1522 }
1523
1524 for (;;) {
1525 /* Any allowed, online CPU? */
1526 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1527 if (!is_cpu_allowed(p, dest_cpu))
1528 continue;
1529
1530 goto out;
1531 }
1532
1533 /* No more Mr. Nice Guy. */
1534 switch (state) {
1535 case cpuset:
1536 if (IS_ENABLED(CONFIG_CPUSETS)) {
1537 cpuset_cpus_allowed_fallback(p);
1538 state = possible;
1539 break;
1540 }
1541 /* Fall-through */
1542 case possible:
1543 do_set_cpus_allowed(p, cpu_possible_mask);
1544 state = fail;
1545 break;
1546
1547 case fail:
1548 BUG();
1549 break;
1550 }
1551 }
1552
1553 out:
1554 if (state != cpuset) {
1555 /*
1556 * Don't tell them about moving exiting tasks or
1557 * kernel threads (both mm NULL), since they never
1558 * leave kernel.
1559 */
1560 if (p->mm && printk_ratelimit()) {
1561 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1562 task_pid_nr(p), p->comm, cpu);
1563 }
1564 }
1565
1566 return dest_cpu;
1567 }
1568
1569 /*
1570 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1571 */
1572 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags,int sibling_count_hint)1573 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags,
1574 int sibling_count_hint)
1575 {
1576 lockdep_assert_held(&p->pi_lock);
1577
1578 if (p->nr_cpus_allowed > 1)
1579 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags,
1580 sibling_count_hint);
1581 else
1582 cpu = cpumask_any(&p->cpus_allowed);
1583
1584 /*
1585 * In order not to call set_task_cpu() on a blocking task we need
1586 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1587 * CPU.
1588 *
1589 * Since this is common to all placement strategies, this lives here.
1590 *
1591 * [ this allows ->select_task() to simply return task_cpu(p) and
1592 * not worry about this generic constraint ]
1593 */
1594 if (unlikely(!is_cpu_allowed(p, cpu)))
1595 cpu = select_fallback_rq(task_cpu(p), p);
1596
1597 return cpu;
1598 }
1599
update_avg(u64 * avg,u64 sample)1600 static void update_avg(u64 *avg, u64 sample)
1601 {
1602 s64 diff = sample - *avg;
1603 *avg += diff >> 3;
1604 }
1605
sched_set_stop_task(int cpu,struct task_struct * stop)1606 void sched_set_stop_task(int cpu, struct task_struct *stop)
1607 {
1608 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1609 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1610
1611 if (stop) {
1612 /*
1613 * Make it appear like a SCHED_FIFO task, its something
1614 * userspace knows about and won't get confused about.
1615 *
1616 * Also, it will make PI more or less work without too
1617 * much confusion -- but then, stop work should not
1618 * rely on PI working anyway.
1619 */
1620 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1621
1622 stop->sched_class = &stop_sched_class;
1623 }
1624
1625 cpu_rq(cpu)->stop = stop;
1626
1627 if (old_stop) {
1628 /*
1629 * Reset it back to a normal scheduling class so that
1630 * it can die in pieces.
1631 */
1632 old_stop->sched_class = &rt_sched_class;
1633 }
1634 }
1635
1636 #else
1637
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1638 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1639 const struct cpumask *new_mask, bool check)
1640 {
1641 return set_cpus_allowed_ptr(p, new_mask);
1642 }
1643
1644 #endif /* CONFIG_SMP */
1645
1646 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1647 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1648 {
1649 struct rq *rq;
1650
1651 if (!schedstat_enabled())
1652 return;
1653
1654 rq = this_rq();
1655
1656 #ifdef CONFIG_SMP
1657 if (cpu == rq->cpu) {
1658 schedstat_inc(rq->ttwu_local);
1659 schedstat_inc(p->se.statistics.nr_wakeups_local);
1660 } else {
1661 struct sched_domain *sd;
1662
1663 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1664 rcu_read_lock();
1665 for_each_domain(rq->cpu, sd) {
1666 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1667 schedstat_inc(sd->ttwu_wake_remote);
1668 break;
1669 }
1670 }
1671 rcu_read_unlock();
1672 }
1673
1674 if (wake_flags & WF_MIGRATED)
1675 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1676 #endif /* CONFIG_SMP */
1677
1678 schedstat_inc(rq->ttwu_count);
1679 schedstat_inc(p->se.statistics.nr_wakeups);
1680
1681 if (wake_flags & WF_SYNC)
1682 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1683 }
1684
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1685 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1686 {
1687 activate_task(rq, p, en_flags);
1688 p->on_rq = TASK_ON_RQ_QUEUED;
1689
1690 /* If a worker is waking up, notify the workqueue: */
1691 if (p->flags & PF_WQ_WORKER)
1692 wq_worker_waking_up(p, cpu_of(rq));
1693 }
1694
1695 /*
1696 * Mark the task runnable and perform wakeup-preemption.
1697 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)1698 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1699 struct rq_flags *rf)
1700 {
1701 check_preempt_curr(rq, p, wake_flags);
1702 p->state = TASK_RUNNING;
1703 trace_sched_wakeup(p);
1704
1705 #ifdef CONFIG_SMP
1706 if (p->sched_class->task_woken) {
1707 /*
1708 * Our task @p is fully woken up and running; so its safe to
1709 * drop the rq->lock, hereafter rq is only used for statistics.
1710 */
1711 rq_unpin_lock(rq, rf);
1712 p->sched_class->task_woken(rq, p);
1713 rq_repin_lock(rq, rf);
1714 }
1715
1716 if (rq->idle_stamp) {
1717 u64 delta = rq_clock(rq) - rq->idle_stamp;
1718 u64 max = 2*rq->max_idle_balance_cost;
1719
1720 update_avg(&rq->avg_idle, delta);
1721
1722 if (rq->avg_idle > max)
1723 rq->avg_idle = max;
1724
1725 rq->idle_stamp = 0;
1726 }
1727 #endif
1728 }
1729
1730 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)1731 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1732 struct rq_flags *rf)
1733 {
1734 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1735
1736 lockdep_assert_held(&rq->lock);
1737
1738 #ifdef CONFIG_SMP
1739 if (p->sched_contributes_to_load)
1740 rq->nr_uninterruptible--;
1741
1742 if (wake_flags & WF_MIGRATED)
1743 en_flags |= ENQUEUE_MIGRATED;
1744 #endif
1745
1746 ttwu_activate(rq, p, en_flags);
1747 ttwu_do_wakeup(rq, p, wake_flags, rf);
1748 }
1749
1750 /*
1751 * Called in case the task @p isn't fully descheduled from its runqueue,
1752 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1753 * since all we need to do is flip p->state to TASK_RUNNING, since
1754 * the task is still ->on_rq.
1755 */
ttwu_remote(struct task_struct * p,int wake_flags)1756 static int ttwu_remote(struct task_struct *p, int wake_flags)
1757 {
1758 struct rq_flags rf;
1759 struct rq *rq;
1760 int ret = 0;
1761
1762 rq = __task_rq_lock(p, &rf);
1763 if (task_on_rq_queued(p)) {
1764 /* check_preempt_curr() may use rq clock */
1765 update_rq_clock(rq);
1766 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1767 ret = 1;
1768 }
1769 __task_rq_unlock(rq, &rf);
1770
1771 return ret;
1772 }
1773
1774 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1775 void sched_ttwu_pending(void)
1776 {
1777 struct rq *rq = this_rq();
1778 struct llist_node *llist = llist_del_all(&rq->wake_list);
1779 struct task_struct *p, *t;
1780 struct rq_flags rf;
1781
1782 if (!llist)
1783 return;
1784
1785 rq_lock_irqsave(rq, &rf);
1786 update_rq_clock(rq);
1787
1788 llist_for_each_entry_safe(p, t, llist, wake_entry)
1789 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1790
1791 rq_unlock_irqrestore(rq, &rf);
1792 }
1793
scheduler_ipi(void)1794 void scheduler_ipi(void)
1795 {
1796 /*
1797 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1798 * TIF_NEED_RESCHED remotely (for the first time) will also send
1799 * this IPI.
1800 */
1801 preempt_fold_need_resched();
1802
1803 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1804 return;
1805
1806 /*
1807 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1808 * traditionally all their work was done from the interrupt return
1809 * path. Now that we actually do some work, we need to make sure
1810 * we do call them.
1811 *
1812 * Some archs already do call them, luckily irq_enter/exit nest
1813 * properly.
1814 *
1815 * Arguably we should visit all archs and update all handlers,
1816 * however a fair share of IPIs are still resched only so this would
1817 * somewhat pessimize the simple resched case.
1818 */
1819 irq_enter();
1820 sched_ttwu_pending();
1821
1822 /*
1823 * Check if someone kicked us for doing the nohz idle load balance.
1824 */
1825 if (unlikely(got_nohz_idle_kick())) {
1826 this_rq()->idle_balance = 1;
1827 raise_softirq_irqoff(SCHED_SOFTIRQ);
1828 }
1829 irq_exit();
1830 }
1831
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)1832 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1833 {
1834 struct rq *rq = cpu_rq(cpu);
1835
1836 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1837
1838 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1839 if (!set_nr_if_polling(rq->idle))
1840 smp_send_reschedule(cpu);
1841 else
1842 trace_sched_wake_idle_without_ipi(cpu);
1843 }
1844 }
1845
wake_up_if_idle(int cpu)1846 void wake_up_if_idle(int cpu)
1847 {
1848 struct rq *rq = cpu_rq(cpu);
1849 struct rq_flags rf;
1850
1851 rcu_read_lock();
1852
1853 if (!is_idle_task(rcu_dereference(rq->curr)))
1854 goto out;
1855
1856 if (set_nr_if_polling(rq->idle)) {
1857 trace_sched_wake_idle_without_ipi(cpu);
1858 } else {
1859 rq_lock_irqsave(rq, &rf);
1860 if (is_idle_task(rq->curr))
1861 smp_send_reschedule(cpu);
1862 /* Else CPU is not idle, do nothing here: */
1863 rq_unlock_irqrestore(rq, &rf);
1864 }
1865
1866 out:
1867 rcu_read_unlock();
1868 }
1869
cpus_share_cache(int this_cpu,int that_cpu)1870 bool cpus_share_cache(int this_cpu, int that_cpu)
1871 {
1872 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1873 }
1874 #endif /* CONFIG_SMP */
1875
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)1876 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1877 {
1878 struct rq *rq = cpu_rq(cpu);
1879 struct rq_flags rf;
1880
1881 #if defined(CONFIG_SMP)
1882 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1883 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1884 ttwu_queue_remote(p, cpu, wake_flags);
1885 return;
1886 }
1887 #endif
1888
1889 rq_lock(rq, &rf);
1890 update_rq_clock(rq);
1891 ttwu_do_activate(rq, p, wake_flags, &rf);
1892 rq_unlock(rq, &rf);
1893 }
1894
1895 /*
1896 * Notes on Program-Order guarantees on SMP systems.
1897 *
1898 * MIGRATION
1899 *
1900 * The basic program-order guarantee on SMP systems is that when a task [t]
1901 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1902 * execution on its new CPU [c1].
1903 *
1904 * For migration (of runnable tasks) this is provided by the following means:
1905 *
1906 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1907 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1908 * rq(c1)->lock (if not at the same time, then in that order).
1909 * C) LOCK of the rq(c1)->lock scheduling in task
1910 *
1911 * Transitivity guarantees that B happens after A and C after B.
1912 * Note: we only require RCpc transitivity.
1913 * Note: the CPU doing B need not be c0 or c1
1914 *
1915 * Example:
1916 *
1917 * CPU0 CPU1 CPU2
1918 *
1919 * LOCK rq(0)->lock
1920 * sched-out X
1921 * sched-in Y
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(0)->lock // orders against CPU0
1925 * dequeue X
1926 * UNLOCK rq(0)->lock
1927 *
1928 * LOCK rq(1)->lock
1929 * enqueue X
1930 * UNLOCK rq(1)->lock
1931 *
1932 * LOCK rq(1)->lock // orders against CPU2
1933 * sched-out Z
1934 * sched-in X
1935 * UNLOCK rq(1)->lock
1936 *
1937 *
1938 * BLOCKING -- aka. SLEEP + WAKEUP
1939 *
1940 * For blocking we (obviously) need to provide the same guarantee as for
1941 * migration. However the means are completely different as there is no lock
1942 * chain to provide order. Instead we do:
1943 *
1944 * 1) smp_store_release(X->on_cpu, 0)
1945 * 2) smp_cond_load_acquire(!X->on_cpu)
1946 *
1947 * Example:
1948 *
1949 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1950 *
1951 * LOCK rq(0)->lock LOCK X->pi_lock
1952 * dequeue X
1953 * sched-out X
1954 * smp_store_release(X->on_cpu, 0);
1955 *
1956 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1957 * X->state = WAKING
1958 * set_task_cpu(X,2)
1959 *
1960 * LOCK rq(2)->lock
1961 * enqueue X
1962 * X->state = RUNNING
1963 * UNLOCK rq(2)->lock
1964 *
1965 * LOCK rq(2)->lock // orders against CPU1
1966 * sched-out Z
1967 * sched-in X
1968 * UNLOCK rq(2)->lock
1969 *
1970 * UNLOCK X->pi_lock
1971 * UNLOCK rq(0)->lock
1972 *
1973 *
1974 * However; for wakeups there is a second guarantee we must provide, namely we
1975 * must observe the state that lead to our wakeup. That is, not only must our
1976 * task observe its own prior state, it must also observe the stores prior to
1977 * its wakeup.
1978 *
1979 * This means that any means of doing remote wakeups must order the CPU doing
1980 * the wakeup against the CPU the task is going to end up running on. This,
1981 * however, is already required for the regular Program-Order guarantee above,
1982 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1983 *
1984 */
1985
1986 #ifdef CONFIG_SMP
1987 #ifdef CONFIG_SCHED_WALT
1988 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)1989 static inline void walt_try_to_wake_up(struct task_struct *p)
1990 {
1991 struct rq *rq = cpu_rq(task_cpu(p));
1992 struct rq_flags rf;
1993 u64 wallclock;
1994
1995 rq_lock_irqsave(rq, &rf);
1996 wallclock = walt_ktime_clock();
1997 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
1998 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
1999 rq_unlock_irqrestore(rq, &rf);
2000 }
2001 #else
2002 #define walt_try_to_wake_up(a) {}
2003 #endif
2004 #endif
2005
2006 /**
2007 * try_to_wake_up - wake up a thread
2008 * @p: the thread to be awakened
2009 * @state: the mask of task states that can be woken
2010 * @wake_flags: wake modifier flags (WF_*)
2011 * @sibling_count_hint: A hint at the number of threads that are being woken up
2012 * in this event.
2013 *
2014 * If (@state & @p->state) @p->state = TASK_RUNNING.
2015 *
2016 * If the task was not queued/runnable, also place it back on a runqueue.
2017 *
2018 * Atomic against schedule() which would dequeue a task, also see
2019 * set_current_state().
2020 *
2021 * Return: %true if @p->state changes (an actual wakeup was done),
2022 * %false otherwise.
2023 */
2024 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags,int sibling_count_hint)2025 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
2026 int sibling_count_hint)
2027 {
2028 unsigned long flags;
2029 int cpu, success = 0;
2030
2031 /*
2032 * If we are going to wake up a thread waiting for CONDITION we
2033 * need to ensure that CONDITION=1 done by the caller can not be
2034 * reordered with p->state check below. This pairs with mb() in
2035 * set_current_state() the waiting thread does.
2036 */
2037 raw_spin_lock_irqsave(&p->pi_lock, flags);
2038 smp_mb__after_spinlock();
2039 if (!(p->state & state))
2040 goto out;
2041
2042 trace_sched_waking(p);
2043
2044 /* We're going to change ->state: */
2045 success = 1;
2046 cpu = task_cpu(p);
2047
2048 /*
2049 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2050 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2051 * in smp_cond_load_acquire() below.
2052 *
2053 * sched_ttwu_pending() try_to_wake_up()
2054 * [S] p->on_rq = 1; [L] P->state
2055 * UNLOCK rq->lock -----.
2056 * \
2057 * +--- RMB
2058 * schedule() /
2059 * LOCK rq->lock -----'
2060 * UNLOCK rq->lock
2061 *
2062 * [task p]
2063 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2064 *
2065 * Pairs with the UNLOCK+LOCK on rq->lock from the
2066 * last wakeup of our task and the schedule that got our task
2067 * current.
2068 */
2069 smp_rmb();
2070 if (p->on_rq && ttwu_remote(p, wake_flags))
2071 goto stat;
2072
2073 #ifdef CONFIG_SMP
2074 /*
2075 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2076 * possible to, falsely, observe p->on_cpu == 0.
2077 *
2078 * One must be running (->on_cpu == 1) in order to remove oneself
2079 * from the runqueue.
2080 *
2081 * [S] ->on_cpu = 1; [L] ->on_rq
2082 * UNLOCK rq->lock
2083 * RMB
2084 * LOCK rq->lock
2085 * [S] ->on_rq = 0; [L] ->on_cpu
2086 *
2087 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2088 * from the consecutive calls to schedule(); the first switching to our
2089 * task, the second putting it to sleep.
2090 */
2091 smp_rmb();
2092
2093 /*
2094 * If the owning (remote) CPU is still in the middle of schedule() with
2095 * this task as prev, wait until its done referencing the task.
2096 *
2097 * Pairs with the smp_store_release() in finish_lock_switch().
2098 *
2099 * This ensures that tasks getting woken will be fully ordered against
2100 * their previous state and preserve Program Order.
2101 */
2102 smp_cond_load_acquire(&p->on_cpu, !VAL);
2103
2104 walt_try_to_wake_up(p);
2105
2106 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2107 p->state = TASK_WAKING;
2108
2109 if (p->in_iowait) {
2110 delayacct_blkio_end(p);
2111 atomic_dec(&task_rq(p)->nr_iowait);
2112 }
2113
2114 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags,
2115 sibling_count_hint);
2116 if (task_cpu(p) != cpu) {
2117 wake_flags |= WF_MIGRATED;
2118 psi_ttwu_dequeue(p);
2119 set_task_cpu(p, cpu);
2120 }
2121
2122 #else /* CONFIG_SMP */
2123
2124 if (p->in_iowait) {
2125 delayacct_blkio_end(p);
2126 atomic_dec(&task_rq(p)->nr_iowait);
2127 }
2128
2129 #endif /* CONFIG_SMP */
2130
2131 ttwu_queue(p, cpu, wake_flags);
2132 stat:
2133 ttwu_stat(p, cpu, wake_flags);
2134 out:
2135 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2136
2137 return success;
2138 }
2139
2140 /**
2141 * try_to_wake_up_local - try to wake up a local task with rq lock held
2142 * @p: the thread to be awakened
2143 * @rf: request-queue flags for pinning
2144 *
2145 * Put @p on the run-queue if it's not already there. The caller must
2146 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2147 * the current task.
2148 */
try_to_wake_up_local(struct task_struct * p,struct rq_flags * rf)2149 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2150 {
2151 struct rq *rq = task_rq(p);
2152
2153 if (WARN_ON_ONCE(rq != this_rq()) ||
2154 WARN_ON_ONCE(p == current))
2155 return;
2156
2157 lockdep_assert_held(&rq->lock);
2158
2159 if (!raw_spin_trylock(&p->pi_lock)) {
2160 /*
2161 * This is OK, because current is on_cpu, which avoids it being
2162 * picked for load-balance and preemption/IRQs are still
2163 * disabled avoiding further scheduler activity on it and we've
2164 * not yet picked a replacement task.
2165 */
2166 rq_unlock(rq, rf);
2167 raw_spin_lock(&p->pi_lock);
2168 rq_relock(rq, rf);
2169 }
2170
2171 if (!(p->state & TASK_NORMAL))
2172 goto out;
2173
2174 trace_sched_waking(p);
2175
2176 if (!task_on_rq_queued(p)) {
2177 u64 wallclock = walt_ktime_clock();
2178
2179 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2180 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2181
2182 if (p->in_iowait) {
2183 delayacct_blkio_end(p);
2184 atomic_dec(&rq->nr_iowait);
2185 }
2186 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2187 }
2188
2189 ttwu_do_wakeup(rq, p, 0, rf);
2190 ttwu_stat(p, smp_processor_id(), 0);
2191 out:
2192 raw_spin_unlock(&p->pi_lock);
2193 }
2194
2195 /**
2196 * wake_up_process - Wake up a specific process
2197 * @p: The process to be woken up.
2198 *
2199 * Attempt to wake up the nominated process and move it to the set of runnable
2200 * processes.
2201 *
2202 * Return: 1 if the process was woken up, 0 if it was already running.
2203 *
2204 * It may be assumed that this function implies a write memory barrier before
2205 * changing the task state if and only if any tasks are woken up.
2206 */
wake_up_process(struct task_struct * p)2207 int wake_up_process(struct task_struct *p)
2208 {
2209 return try_to_wake_up(p, TASK_NORMAL, 0, 1);
2210 }
2211 EXPORT_SYMBOL(wake_up_process);
2212
wake_up_state(struct task_struct * p,unsigned int state)2213 int wake_up_state(struct task_struct *p, unsigned int state)
2214 {
2215 return try_to_wake_up(p, state, 0, 1);
2216 }
2217
2218 /*
2219 * Perform scheduler related setup for a newly forked process p.
2220 * p is forked by current.
2221 *
2222 * __sched_fork() is basic setup used by init_idle() too:
2223 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2224 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2225 {
2226 p->on_rq = 0;
2227
2228 p->se.on_rq = 0;
2229 p->se.exec_start = 0;
2230 p->se.sum_exec_runtime = 0;
2231 p->se.prev_sum_exec_runtime = 0;
2232 p->se.nr_migrations = 0;
2233 p->se.vruntime = 0;
2234 #ifdef CONFIG_SCHED_WALT
2235 p->last_sleep_ts = 0;
2236 #endif
2237
2238 INIT_LIST_HEAD(&p->se.group_node);
2239 walt_init_new_task_load(p);
2240
2241 #ifdef CONFIG_FAIR_GROUP_SCHED
2242 p->se.cfs_rq = NULL;
2243 #endif
2244
2245 #ifdef CONFIG_SCHEDSTATS
2246 /* Even if schedstat is disabled, there should not be garbage */
2247 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2248 #endif
2249
2250 RB_CLEAR_NODE(&p->dl.rb_node);
2251 init_dl_task_timer(&p->dl);
2252 init_dl_inactive_task_timer(&p->dl);
2253 __dl_clear_params(p);
2254
2255 INIT_LIST_HEAD(&p->rt.run_list);
2256 p->rt.timeout = 0;
2257 p->rt.time_slice = sched_rr_timeslice;
2258 p->rt.on_rq = 0;
2259 p->rt.on_list = 0;
2260
2261 #ifdef CONFIG_PREEMPT_NOTIFIERS
2262 INIT_HLIST_HEAD(&p->preempt_notifiers);
2263 #endif
2264
2265 #ifdef CONFIG_NUMA_BALANCING
2266 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2267 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2268 p->mm->numa_scan_seq = 0;
2269 }
2270
2271 if (clone_flags & CLONE_VM)
2272 p->numa_preferred_nid = current->numa_preferred_nid;
2273 else
2274 p->numa_preferred_nid = -1;
2275
2276 p->node_stamp = 0ULL;
2277 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2278 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2279 p->numa_work.next = &p->numa_work;
2280 p->numa_faults = NULL;
2281 p->last_task_numa_placement = 0;
2282 p->last_sum_exec_runtime = 0;
2283
2284 p->numa_group = NULL;
2285 #endif /* CONFIG_NUMA_BALANCING */
2286 }
2287
2288 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2289
2290 #ifdef CONFIG_NUMA_BALANCING
2291
set_numabalancing_state(bool enabled)2292 void set_numabalancing_state(bool enabled)
2293 {
2294 if (enabled)
2295 static_branch_enable(&sched_numa_balancing);
2296 else
2297 static_branch_disable(&sched_numa_balancing);
2298 }
2299
2300 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2301 int sysctl_numa_balancing(struct ctl_table *table, int write,
2302 void __user *buffer, size_t *lenp, loff_t *ppos)
2303 {
2304 struct ctl_table t;
2305 int err;
2306 int state = static_branch_likely(&sched_numa_balancing);
2307
2308 if (write && !capable(CAP_SYS_ADMIN))
2309 return -EPERM;
2310
2311 t = *table;
2312 t.data = &state;
2313 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2314 if (err < 0)
2315 return err;
2316 if (write)
2317 set_numabalancing_state(state);
2318 return err;
2319 }
2320 #endif
2321 #endif
2322
2323 #ifdef CONFIG_SCHEDSTATS
2324
2325 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2326 static bool __initdata __sched_schedstats = false;
2327
set_schedstats(bool enabled)2328 static void set_schedstats(bool enabled)
2329 {
2330 if (enabled)
2331 static_branch_enable(&sched_schedstats);
2332 else
2333 static_branch_disable(&sched_schedstats);
2334 }
2335
force_schedstat_enabled(void)2336 void force_schedstat_enabled(void)
2337 {
2338 if (!schedstat_enabled()) {
2339 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2340 static_branch_enable(&sched_schedstats);
2341 }
2342 }
2343
setup_schedstats(char * str)2344 static int __init setup_schedstats(char *str)
2345 {
2346 int ret = 0;
2347 if (!str)
2348 goto out;
2349
2350 /*
2351 * This code is called before jump labels have been set up, so we can't
2352 * change the static branch directly just yet. Instead set a temporary
2353 * variable so init_schedstats() can do it later.
2354 */
2355 if (!strcmp(str, "enable")) {
2356 __sched_schedstats = true;
2357 ret = 1;
2358 } else if (!strcmp(str, "disable")) {
2359 __sched_schedstats = false;
2360 ret = 1;
2361 }
2362 out:
2363 if (!ret)
2364 pr_warn("Unable to parse schedstats=\n");
2365
2366 return ret;
2367 }
2368 __setup("schedstats=", setup_schedstats);
2369
init_schedstats(void)2370 static void __init init_schedstats(void)
2371 {
2372 set_schedstats(__sched_schedstats);
2373 }
2374
2375 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2376 int sysctl_schedstats(struct ctl_table *table, int write,
2377 void __user *buffer, size_t *lenp, loff_t *ppos)
2378 {
2379 struct ctl_table t;
2380 int err;
2381 int state = static_branch_likely(&sched_schedstats);
2382
2383 if (write && !capable(CAP_SYS_ADMIN))
2384 return -EPERM;
2385
2386 t = *table;
2387 t.data = &state;
2388 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2389 if (err < 0)
2390 return err;
2391 if (write)
2392 set_schedstats(state);
2393 return err;
2394 }
2395 #endif /* CONFIG_PROC_SYSCTL */
2396 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2397 static inline void init_schedstats(void) {}
2398 #endif /* CONFIG_SCHEDSTATS */
2399
2400 /*
2401 * fork()/clone()-time setup:
2402 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2403 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2404 {
2405 unsigned long flags;
2406 int cpu = get_cpu();
2407
2408 __sched_fork(clone_flags, p);
2409 /*
2410 * We mark the process as NEW here. This guarantees that
2411 * nobody will actually run it, and a signal or other external
2412 * event cannot wake it up and insert it on the runqueue either.
2413 */
2414 p->state = TASK_NEW;
2415
2416 /*
2417 * Make sure we do not leak PI boosting priority to the child.
2418 */
2419 p->prio = current->normal_prio;
2420
2421 /*
2422 * Revert to default priority/policy on fork if requested.
2423 */
2424 if (unlikely(p->sched_reset_on_fork)) {
2425 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2426 p->policy = SCHED_NORMAL;
2427 p->static_prio = NICE_TO_PRIO(0);
2428 p->rt_priority = 0;
2429 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2430 p->static_prio = NICE_TO_PRIO(0);
2431
2432 p->prio = p->normal_prio = __normal_prio(p);
2433 set_load_weight(p);
2434
2435 /*
2436 * We don't need the reset flag anymore after the fork. It has
2437 * fulfilled its duty:
2438 */
2439 p->sched_reset_on_fork = 0;
2440 }
2441
2442 if (dl_prio(p->prio)) {
2443 put_cpu();
2444 return -EAGAIN;
2445 } else if (rt_prio(p->prio)) {
2446 p->sched_class = &rt_sched_class;
2447 } else {
2448 p->sched_class = &fair_sched_class;
2449 }
2450
2451 init_entity_runnable_average(&p->se);
2452
2453 /*
2454 * The child is not yet in the pid-hash so no cgroup attach races,
2455 * and the cgroup is pinned to this child due to cgroup_fork()
2456 * is ran before sched_fork().
2457 *
2458 * Silence PROVE_RCU.
2459 */
2460 raw_spin_lock_irqsave(&p->pi_lock, flags);
2461 /*
2462 * We're setting the CPU for the first time, we don't migrate,
2463 * so use __set_task_cpu().
2464 */
2465 __set_task_cpu(p, cpu);
2466 if (p->sched_class->task_fork)
2467 p->sched_class->task_fork(p);
2468 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2469
2470 #ifdef CONFIG_SCHED_INFO
2471 if (likely(sched_info_on()))
2472 memset(&p->sched_info, 0, sizeof(p->sched_info));
2473 #endif
2474 #if defined(CONFIG_SMP)
2475 p->on_cpu = 0;
2476 #endif
2477 init_task_preempt_count(p);
2478 #ifdef CONFIG_SMP
2479 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2480 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2481 #endif
2482
2483 put_cpu();
2484 return 0;
2485 }
2486
to_ratio(u64 period,u64 runtime)2487 unsigned long to_ratio(u64 period, u64 runtime)
2488 {
2489 if (runtime == RUNTIME_INF)
2490 return BW_UNIT;
2491
2492 /*
2493 * Doing this here saves a lot of checks in all
2494 * the calling paths, and returning zero seems
2495 * safe for them anyway.
2496 */
2497 if (period == 0)
2498 return 0;
2499
2500 return div64_u64(runtime << BW_SHIFT, period);
2501 }
2502
2503 /*
2504 * wake_up_new_task - wake up a newly created task for the first time.
2505 *
2506 * This function will do some initial scheduler statistics housekeeping
2507 * that must be done for every newly created context, then puts the task
2508 * on the runqueue and wakes it.
2509 */
wake_up_new_task(struct task_struct * p)2510 void wake_up_new_task(struct task_struct *p)
2511 {
2512 struct rq_flags rf;
2513 struct rq *rq;
2514
2515 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2516
2517 walt_init_new_task_load(p);
2518
2519 p->state = TASK_RUNNING;
2520 #ifdef CONFIG_SMP
2521 /*
2522 * Fork balancing, do it here and not earlier because:
2523 * - cpus_allowed can change in the fork path
2524 * - any previously selected CPU might disappear through hotplug
2525 *
2526 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2527 * as we're not fully set-up yet.
2528 */
2529 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0, 1));
2530 #endif
2531 rq = __task_rq_lock(p, &rf);
2532 update_rq_clock(rq);
2533 post_init_entity_util_avg(&p->se);
2534
2535 activate_task(rq, p, ENQUEUE_NOCLOCK);
2536 walt_mark_task_starting(p);
2537
2538 p->on_rq = TASK_ON_RQ_QUEUED;
2539 trace_sched_wakeup_new(p);
2540 check_preempt_curr(rq, p, WF_FORK);
2541 #ifdef CONFIG_SMP
2542 if (p->sched_class->task_woken) {
2543 /*
2544 * Nothing relies on rq->lock after this, so its fine to
2545 * drop it.
2546 */
2547 rq_unpin_lock(rq, &rf);
2548 p->sched_class->task_woken(rq, p);
2549 rq_repin_lock(rq, &rf);
2550 }
2551 #endif
2552 task_rq_unlock(rq, p, &rf);
2553 }
2554
2555 #ifdef CONFIG_PREEMPT_NOTIFIERS
2556
2557 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2558
preempt_notifier_inc(void)2559 void preempt_notifier_inc(void)
2560 {
2561 static_key_slow_inc(&preempt_notifier_key);
2562 }
2563 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2564
preempt_notifier_dec(void)2565 void preempt_notifier_dec(void)
2566 {
2567 static_key_slow_dec(&preempt_notifier_key);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2570
2571 /**
2572 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2573 * @notifier: notifier struct to register
2574 */
preempt_notifier_register(struct preempt_notifier * notifier)2575 void preempt_notifier_register(struct preempt_notifier *notifier)
2576 {
2577 if (!static_key_false(&preempt_notifier_key))
2578 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2579
2580 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2581 }
2582 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2583
2584 /**
2585 * preempt_notifier_unregister - no longer interested in preemption notifications
2586 * @notifier: notifier struct to unregister
2587 *
2588 * This is *not* safe to call from within a preemption notifier.
2589 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2590 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2591 {
2592 hlist_del(¬ifier->link);
2593 }
2594 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2595
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2596 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2597 {
2598 struct preempt_notifier *notifier;
2599
2600 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602 }
2603
fire_sched_in_preempt_notifiers(struct task_struct * curr)2604 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2605 {
2606 if (static_key_false(&preempt_notifier_key))
2607 __fire_sched_in_preempt_notifiers(curr);
2608 }
2609
2610 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2611 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2612 struct task_struct *next)
2613 {
2614 struct preempt_notifier *notifier;
2615
2616 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2617 notifier->ops->sched_out(notifier, next);
2618 }
2619
2620 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2621 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2622 struct task_struct *next)
2623 {
2624 if (static_key_false(&preempt_notifier_key))
2625 __fire_sched_out_preempt_notifiers(curr, next);
2626 }
2627
2628 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2629
fire_sched_in_preempt_notifiers(struct task_struct * curr)2630 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631 {
2632 }
2633
2634 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2635 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2636 struct task_struct *next)
2637 {
2638 }
2639
2640 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2641
2642 /**
2643 * prepare_task_switch - prepare to switch tasks
2644 * @rq: the runqueue preparing to switch
2645 * @prev: the current task that is being switched out
2646 * @next: the task we are going to switch to.
2647 *
2648 * This is called with the rq lock held and interrupts off. It must
2649 * be paired with a subsequent finish_task_switch after the context
2650 * switch.
2651 *
2652 * prepare_task_switch sets up locking and calls architecture specific
2653 * hooks.
2654 */
2655 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2656 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2657 struct task_struct *next)
2658 {
2659 sched_info_switch(rq, prev, next);
2660 perf_event_task_sched_out(prev, next);
2661 fire_sched_out_preempt_notifiers(prev, next);
2662 prepare_lock_switch(rq, next);
2663 prepare_arch_switch(next);
2664 }
2665
2666 /**
2667 * finish_task_switch - clean up after a task-switch
2668 * @prev: the thread we just switched away from.
2669 *
2670 * finish_task_switch must be called after the context switch, paired
2671 * with a prepare_task_switch call before the context switch.
2672 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2673 * and do any other architecture-specific cleanup actions.
2674 *
2675 * Note that we may have delayed dropping an mm in context_switch(). If
2676 * so, we finish that here outside of the runqueue lock. (Doing it
2677 * with the lock held can cause deadlocks; see schedule() for
2678 * details.)
2679 *
2680 * The context switch have flipped the stack from under us and restored the
2681 * local variables which were saved when this task called schedule() in the
2682 * past. prev == current is still correct but we need to recalculate this_rq
2683 * because prev may have moved to another CPU.
2684 */
finish_task_switch(struct task_struct * prev)2685 static struct rq *finish_task_switch(struct task_struct *prev)
2686 __releases(rq->lock)
2687 {
2688 struct rq *rq = this_rq();
2689 struct mm_struct *mm = rq->prev_mm;
2690 long prev_state;
2691
2692 /*
2693 * The previous task will have left us with a preempt_count of 2
2694 * because it left us after:
2695 *
2696 * schedule()
2697 * preempt_disable(); // 1
2698 * __schedule()
2699 * raw_spin_lock_irq(&rq->lock) // 2
2700 *
2701 * Also, see FORK_PREEMPT_COUNT.
2702 */
2703 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2704 "corrupted preempt_count: %s/%d/0x%x\n",
2705 current->comm, current->pid, preempt_count()))
2706 preempt_count_set(FORK_PREEMPT_COUNT);
2707
2708 rq->prev_mm = NULL;
2709
2710 /*
2711 * A task struct has one reference for the use as "current".
2712 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2713 * schedule one last time. The schedule call will never return, and
2714 * the scheduled task must drop that reference.
2715 *
2716 * We must observe prev->state before clearing prev->on_cpu (in
2717 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2718 * running on another CPU and we could rave with its RUNNING -> DEAD
2719 * transition, resulting in a double drop.
2720 */
2721 prev_state = prev->state;
2722 vtime_task_switch(prev);
2723 perf_event_task_sched_in(prev, current);
2724 /*
2725 * The membarrier system call requires a full memory barrier
2726 * after storing to rq->curr, before going back to user-space.
2727 *
2728 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2729 * up adding a full barrier to switch_mm(), or we should figure
2730 * out if a smp_mb__after_unlock_lock is really the proper API
2731 * to use.
2732 */
2733 smp_mb__after_unlock_lock();
2734 finish_lock_switch(rq, prev);
2735 finish_arch_post_lock_switch();
2736
2737 fire_sched_in_preempt_notifiers(current);
2738 if (mm)
2739 mmdrop(mm);
2740 if (unlikely(prev_state == TASK_DEAD)) {
2741 if (prev->sched_class->task_dead)
2742 prev->sched_class->task_dead(prev);
2743
2744 /*
2745 * Remove function-return probe instances associated with this
2746 * task and put them back on the free list.
2747 */
2748 kprobe_flush_task(prev);
2749
2750 /* Task is done with its stack. */
2751 put_task_stack(prev);
2752
2753 put_task_struct(prev);
2754 }
2755
2756 tick_nohz_task_switch();
2757 return rq;
2758 }
2759
2760 #ifdef CONFIG_SMP
2761
2762 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2763 static void __balance_callback(struct rq *rq)
2764 {
2765 struct callback_head *head, *next;
2766 void (*func)(struct rq *rq);
2767 unsigned long flags;
2768
2769 raw_spin_lock_irqsave(&rq->lock, flags);
2770 head = rq->balance_callback;
2771 rq->balance_callback = NULL;
2772 while (head) {
2773 func = (void (*)(struct rq *))head->func;
2774 next = head->next;
2775 head->next = NULL;
2776 head = next;
2777
2778 func(rq);
2779 }
2780 raw_spin_unlock_irqrestore(&rq->lock, flags);
2781 }
2782
balance_callback(struct rq * rq)2783 static inline void balance_callback(struct rq *rq)
2784 {
2785 if (unlikely(rq->balance_callback))
2786 __balance_callback(rq);
2787 }
2788
2789 #else
2790
balance_callback(struct rq * rq)2791 static inline void balance_callback(struct rq *rq)
2792 {
2793 }
2794
2795 #endif
2796
2797 /**
2798 * schedule_tail - first thing a freshly forked thread must call.
2799 * @prev: the thread we just switched away from.
2800 */
schedule_tail(struct task_struct * prev)2801 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2802 __releases(rq->lock)
2803 {
2804 struct rq *rq;
2805
2806 /*
2807 * New tasks start with FORK_PREEMPT_COUNT, see there and
2808 * finish_task_switch() for details.
2809 *
2810 * finish_task_switch() will drop rq->lock() and lower preempt_count
2811 * and the preempt_enable() will end up enabling preemption (on
2812 * PREEMPT_COUNT kernels).
2813 */
2814
2815 rq = finish_task_switch(prev);
2816 balance_callback(rq);
2817 preempt_enable();
2818
2819 if (current->set_child_tid)
2820 put_user(task_pid_vnr(current), current->set_child_tid);
2821 }
2822
2823 /*
2824 * context_switch - switch to the new MM and the new thread's register state.
2825 */
2826 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)2827 context_switch(struct rq *rq, struct task_struct *prev,
2828 struct task_struct *next, struct rq_flags *rf)
2829 {
2830 struct mm_struct *mm, *oldmm;
2831
2832 prepare_task_switch(rq, prev, next);
2833
2834 mm = next->mm;
2835 oldmm = prev->active_mm;
2836 /*
2837 * For paravirt, this is coupled with an exit in switch_to to
2838 * combine the page table reload and the switch backend into
2839 * one hypercall.
2840 */
2841 arch_start_context_switch(prev);
2842
2843 if (!mm) {
2844 next->active_mm = oldmm;
2845 mmgrab(oldmm);
2846 enter_lazy_tlb(oldmm, next);
2847 } else
2848 switch_mm_irqs_off(oldmm, mm, next);
2849
2850 if (!prev->mm) {
2851 prev->active_mm = NULL;
2852 rq->prev_mm = oldmm;
2853 }
2854
2855 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2856
2857 /*
2858 * Since the runqueue lock will be released by the next
2859 * task (which is an invalid locking op but in the case
2860 * of the scheduler it's an obvious special-case), so we
2861 * do an early lockdep release here:
2862 */
2863 rq_unpin_lock(rq, rf);
2864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2865
2866 /* Here we just switch the register state and the stack. */
2867 switch_to(prev, next, prev);
2868 barrier();
2869
2870 return finish_task_switch(prev);
2871 }
2872
2873 /*
2874 * nr_running and nr_context_switches:
2875 *
2876 * externally visible scheduler statistics: current number of runnable
2877 * threads, total number of context switches performed since bootup.
2878 */
nr_running(void)2879 unsigned long nr_running(void)
2880 {
2881 unsigned long i, sum = 0;
2882
2883 for_each_online_cpu(i)
2884 sum += cpu_rq(i)->nr_running;
2885
2886 return sum;
2887 }
2888
2889 /*
2890 * Check if only the current task is running on the CPU.
2891 *
2892 * Caution: this function does not check that the caller has disabled
2893 * preemption, thus the result might have a time-of-check-to-time-of-use
2894 * race. The caller is responsible to use it correctly, for example:
2895 *
2896 * - from a non-preemptable section (of course)
2897 *
2898 * - from a thread that is bound to a single CPU
2899 *
2900 * - in a loop with very short iterations (e.g. a polling loop)
2901 */
single_task_running(void)2902 bool single_task_running(void)
2903 {
2904 return raw_rq()->nr_running == 1;
2905 }
2906 EXPORT_SYMBOL(single_task_running);
2907
nr_context_switches(void)2908 unsigned long long nr_context_switches(void)
2909 {
2910 int i;
2911 unsigned long long sum = 0;
2912
2913 for_each_possible_cpu(i)
2914 sum += cpu_rq(i)->nr_switches;
2915
2916 return sum;
2917 }
2918
2919 /*
2920 * IO-wait accounting, and how its mostly bollocks (on SMP).
2921 *
2922 * The idea behind IO-wait account is to account the idle time that we could
2923 * have spend running if it were not for IO. That is, if we were to improve the
2924 * storage performance, we'd have a proportional reduction in IO-wait time.
2925 *
2926 * This all works nicely on UP, where, when a task blocks on IO, we account
2927 * idle time as IO-wait, because if the storage were faster, it could've been
2928 * running and we'd not be idle.
2929 *
2930 * This has been extended to SMP, by doing the same for each CPU. This however
2931 * is broken.
2932 *
2933 * Imagine for instance the case where two tasks block on one CPU, only the one
2934 * CPU will have IO-wait accounted, while the other has regular idle. Even
2935 * though, if the storage were faster, both could've ran at the same time,
2936 * utilising both CPUs.
2937 *
2938 * This means, that when looking globally, the current IO-wait accounting on
2939 * SMP is a lower bound, by reason of under accounting.
2940 *
2941 * Worse, since the numbers are provided per CPU, they are sometimes
2942 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2943 * associated with any one particular CPU, it can wake to another CPU than it
2944 * blocked on. This means the per CPU IO-wait number is meaningless.
2945 *
2946 * Task CPU affinities can make all that even more 'interesting'.
2947 */
2948
nr_iowait(void)2949 unsigned long nr_iowait(void)
2950 {
2951 unsigned long i, sum = 0;
2952
2953 for_each_possible_cpu(i)
2954 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2955
2956 return sum;
2957 }
2958
2959 /*
2960 * Consumers of these two interfaces, like for example the cpufreq menu
2961 * governor are using nonsensical data. Boosting frequency for a CPU that has
2962 * IO-wait which might not even end up running the task when it does become
2963 * runnable.
2964 */
2965
nr_iowait_cpu(int cpu)2966 unsigned long nr_iowait_cpu(int cpu)
2967 {
2968 struct rq *this = cpu_rq(cpu);
2969 return atomic_read(&this->nr_iowait);
2970 }
2971
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2972 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2973 {
2974 struct rq *rq = this_rq();
2975 *nr_waiters = atomic_read(&rq->nr_iowait);
2976 *load = rq->load.weight;
2977 }
2978
2979 #ifdef CONFIG_SMP
2980
2981 /*
2982 * sched_exec - execve() is a valuable balancing opportunity, because at
2983 * this point the task has the smallest effective memory and cache footprint.
2984 */
sched_exec(void)2985 void sched_exec(void)
2986 {
2987 struct task_struct *p = current;
2988 unsigned long flags;
2989 int dest_cpu;
2990
2991 raw_spin_lock_irqsave(&p->pi_lock, flags);
2992 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0, 1);
2993 if (dest_cpu == smp_processor_id())
2994 goto unlock;
2995
2996 if (likely(cpu_active(dest_cpu))) {
2997 struct migration_arg arg = { p, dest_cpu };
2998
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3001 return;
3002 }
3003 unlock:
3004 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3005 }
3006
3007 #endif
3008
3009 DEFINE_PER_CPU(struct kernel_stat, kstat);
3010 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3011
3012 EXPORT_PER_CPU_SYMBOL(kstat);
3013 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3014
3015 /*
3016 * The function fair_sched_class.update_curr accesses the struct curr
3017 * and its field curr->exec_start; when called from task_sched_runtime(),
3018 * we observe a high rate of cache misses in practice.
3019 * Prefetching this data results in improved performance.
3020 */
prefetch_curr_exec_start(struct task_struct * p)3021 static inline void prefetch_curr_exec_start(struct task_struct *p)
3022 {
3023 #ifdef CONFIG_FAIR_GROUP_SCHED
3024 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3025 #else
3026 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3027 #endif
3028 prefetch(curr);
3029 prefetch(&curr->exec_start);
3030 }
3031
3032 /*
3033 * Return accounted runtime for the task.
3034 * In case the task is currently running, return the runtime plus current's
3035 * pending runtime that have not been accounted yet.
3036 */
task_sched_runtime(struct task_struct * p)3037 unsigned long long task_sched_runtime(struct task_struct *p)
3038 {
3039 struct rq_flags rf;
3040 struct rq *rq;
3041 u64 ns;
3042
3043 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3044 /*
3045 * 64-bit doesn't need locks to atomically read a 64bit value.
3046 * So we have a optimization chance when the task's delta_exec is 0.
3047 * Reading ->on_cpu is racy, but this is ok.
3048 *
3049 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3050 * If we race with it entering CPU, unaccounted time is 0. This is
3051 * indistinguishable from the read occurring a few cycles earlier.
3052 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3053 * been accounted, so we're correct here as well.
3054 */
3055 if (!p->on_cpu || !task_on_rq_queued(p))
3056 return p->se.sum_exec_runtime;
3057 #endif
3058
3059 rq = task_rq_lock(p, &rf);
3060 /*
3061 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3062 * project cycles that may never be accounted to this
3063 * thread, breaking clock_gettime().
3064 */
3065 if (task_current(rq, p) && task_on_rq_queued(p)) {
3066 prefetch_curr_exec_start(p);
3067 update_rq_clock(rq);
3068 p->sched_class->update_curr(rq);
3069 }
3070 ns = p->se.sum_exec_runtime;
3071 task_rq_unlock(rq, p, &rf);
3072
3073 return ns;
3074 }
3075
3076 /*
3077 * This function gets called by the timer code, with HZ frequency.
3078 * We call it with interrupts disabled.
3079 */
scheduler_tick(void)3080 void scheduler_tick(void)
3081 {
3082 int cpu = smp_processor_id();
3083 struct rq *rq = cpu_rq(cpu);
3084 struct task_struct *curr = rq->curr;
3085 struct rq_flags rf;
3086
3087 sched_clock_tick();
3088
3089 rq_lock(rq, &rf);
3090
3091 walt_set_window_start(rq, &rf);
3092 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3093 walt_ktime_clock(), 0);
3094 update_rq_clock(rq);
3095 curr->sched_class->task_tick(rq, curr, 0);
3096 cpu_load_update_active(rq);
3097 calc_global_load_tick(rq);
3098 psi_task_tick(rq);
3099
3100 rq_unlock(rq, &rf);
3101
3102 perf_event_task_tick();
3103
3104 #ifdef CONFIG_SMP
3105 rq->idle_balance = idle_cpu(cpu);
3106 trigger_load_balance(rq);
3107 #endif
3108 rq_last_tick_reset(rq);
3109 }
3110
3111 #ifdef CONFIG_NO_HZ_FULL
3112 /**
3113 * scheduler_tick_max_deferment
3114 *
3115 * Keep at least one tick per second when a single
3116 * active task is running because the scheduler doesn't
3117 * yet completely support full dynticks environment.
3118 *
3119 * This makes sure that uptime, CFS vruntime, load
3120 * balancing, etc... continue to move forward, even
3121 * with a very low granularity.
3122 *
3123 * Return: Maximum deferment in nanoseconds.
3124 */
scheduler_tick_max_deferment(void)3125 u64 scheduler_tick_max_deferment(void)
3126 {
3127 struct rq *rq = this_rq();
3128 unsigned long next, now = READ_ONCE(jiffies);
3129
3130 next = rq->last_sched_tick + HZ;
3131
3132 if (time_before_eq(next, now))
3133 return 0;
3134
3135 return jiffies_to_nsecs(next - now);
3136 }
3137 #endif
3138
3139 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3140 defined(CONFIG_PREEMPT_TRACER))
3141 /*
3142 * If the value passed in is equal to the current preempt count
3143 * then we just disabled preemption. Start timing the latency.
3144 */
preempt_latency_start(int val)3145 static inline void preempt_latency_start(int val)
3146 {
3147 if (preempt_count() == val) {
3148 unsigned long ip = get_lock_parent_ip();
3149 #ifdef CONFIG_DEBUG_PREEMPT
3150 current->preempt_disable_ip = ip;
3151 #endif
3152 trace_preempt_off(CALLER_ADDR0, ip);
3153 }
3154 }
3155
preempt_count_add(int val)3156 void preempt_count_add(int val)
3157 {
3158 #ifdef CONFIG_DEBUG_PREEMPT
3159 /*
3160 * Underflow?
3161 */
3162 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3163 return;
3164 #endif
3165 __preempt_count_add(val);
3166 #ifdef CONFIG_DEBUG_PREEMPT
3167 /*
3168 * Spinlock count overflowing soon?
3169 */
3170 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3171 PREEMPT_MASK - 10);
3172 #endif
3173 preempt_latency_start(val);
3174 }
3175 EXPORT_SYMBOL(preempt_count_add);
3176 NOKPROBE_SYMBOL(preempt_count_add);
3177
3178 /*
3179 * If the value passed in equals to the current preempt count
3180 * then we just enabled preemption. Stop timing the latency.
3181 */
preempt_latency_stop(int val)3182 static inline void preempt_latency_stop(int val)
3183 {
3184 if (preempt_count() == val)
3185 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3186 }
3187
preempt_count_sub(int val)3188 void preempt_count_sub(int val)
3189 {
3190 #ifdef CONFIG_DEBUG_PREEMPT
3191 /*
3192 * Underflow?
3193 */
3194 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3195 return;
3196 /*
3197 * Is the spinlock portion underflowing?
3198 */
3199 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3200 !(preempt_count() & PREEMPT_MASK)))
3201 return;
3202 #endif
3203
3204 preempt_latency_stop(val);
3205 __preempt_count_sub(val);
3206 }
3207 EXPORT_SYMBOL(preempt_count_sub);
3208 NOKPROBE_SYMBOL(preempt_count_sub);
3209
3210 #else
preempt_latency_start(int val)3211 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3212 static inline void preempt_latency_stop(int val) { }
3213 #endif
3214
get_preempt_disable_ip(struct task_struct * p)3215 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3216 {
3217 #ifdef CONFIG_DEBUG_PREEMPT
3218 return p->preempt_disable_ip;
3219 #else
3220 return 0;
3221 #endif
3222 }
3223
3224 /*
3225 * Print scheduling while atomic bug:
3226 */
__schedule_bug(struct task_struct * prev)3227 static noinline void __schedule_bug(struct task_struct *prev)
3228 {
3229 /* Save this before calling printk(), since that will clobber it */
3230 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3231
3232 if (oops_in_progress)
3233 return;
3234
3235 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3236 prev->comm, prev->pid, preempt_count());
3237
3238 debug_show_held_locks(prev);
3239 print_modules();
3240 if (irqs_disabled())
3241 print_irqtrace_events(prev);
3242 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3243 && in_atomic_preempt_off()) {
3244 pr_err("Preemption disabled at:");
3245 print_ip_sym(preempt_disable_ip);
3246 pr_cont("\n");
3247 }
3248 if (panic_on_warn)
3249 panic("scheduling while atomic\n");
3250
3251 dump_stack();
3252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3253 }
3254
3255 /*
3256 * Various schedule()-time debugging checks and statistics:
3257 */
schedule_debug(struct task_struct * prev)3258 static inline void schedule_debug(struct task_struct *prev)
3259 {
3260 #ifdef CONFIG_SCHED_STACK_END_CHECK
3261 if (task_stack_end_corrupted(prev))
3262 panic("corrupted stack end detected inside scheduler\n");
3263 #endif
3264
3265 if (unlikely(in_atomic_preempt_off())) {
3266 __schedule_bug(prev);
3267 preempt_count_set(PREEMPT_DISABLED);
3268 }
3269 rcu_sleep_check();
3270
3271 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3272
3273 schedstat_inc(this_rq()->sched_count);
3274 }
3275
3276 /*
3277 * Pick up the highest-prio task:
3278 */
3279 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)3280 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3281 {
3282 const struct sched_class *class;
3283 struct task_struct *p;
3284
3285 /*
3286 * Optimization: we know that if all tasks are in the fair class we can
3287 * call that function directly, but only if the @prev task wasn't of a
3288 * higher scheduling class, because otherwise those loose the
3289 * opportunity to pull in more work from other CPUs.
3290 */
3291 if (likely((prev->sched_class == &idle_sched_class ||
3292 prev->sched_class == &fair_sched_class) &&
3293 rq->nr_running == rq->cfs.h_nr_running)) {
3294
3295 p = fair_sched_class.pick_next_task(rq, prev, rf);
3296 if (unlikely(p == RETRY_TASK))
3297 goto again;
3298
3299 /* Assumes fair_sched_class->next == idle_sched_class */
3300 if (unlikely(!p))
3301 p = idle_sched_class.pick_next_task(rq, prev, rf);
3302
3303 return p;
3304 }
3305
3306 again:
3307 for_each_class(class) {
3308 p = class->pick_next_task(rq, prev, rf);
3309 if (p) {
3310 if (unlikely(p == RETRY_TASK))
3311 goto again;
3312 return p;
3313 }
3314 }
3315
3316 /* The idle class should always have a runnable task: */
3317 BUG();
3318 }
3319
3320 /*
3321 * __schedule() is the main scheduler function.
3322 *
3323 * The main means of driving the scheduler and thus entering this function are:
3324 *
3325 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3326 *
3327 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3328 * paths. For example, see arch/x86/entry_64.S.
3329 *
3330 * To drive preemption between tasks, the scheduler sets the flag in timer
3331 * interrupt handler scheduler_tick().
3332 *
3333 * 3. Wakeups don't really cause entry into schedule(). They add a
3334 * task to the run-queue and that's it.
3335 *
3336 * Now, if the new task added to the run-queue preempts the current
3337 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3338 * called on the nearest possible occasion:
3339 *
3340 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3341 *
3342 * - in syscall or exception context, at the next outmost
3343 * preempt_enable(). (this might be as soon as the wake_up()'s
3344 * spin_unlock()!)
3345 *
3346 * - in IRQ context, return from interrupt-handler to
3347 * preemptible context
3348 *
3349 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3350 * then at the next:
3351 *
3352 * - cond_resched() call
3353 * - explicit schedule() call
3354 * - return from syscall or exception to user-space
3355 * - return from interrupt-handler to user-space
3356 *
3357 * WARNING: must be called with preemption disabled!
3358 */
__schedule(bool preempt)3359 static void __sched notrace __schedule(bool preempt)
3360 {
3361 struct task_struct *prev, *next;
3362 unsigned long *switch_count;
3363 struct rq_flags rf;
3364 struct rq *rq;
3365 int cpu;
3366 u64 wallclock;
3367
3368 cpu = smp_processor_id();
3369 rq = cpu_rq(cpu);
3370 prev = rq->curr;
3371
3372 schedule_debug(prev);
3373
3374 if (sched_feat(HRTICK))
3375 hrtick_clear(rq);
3376
3377 local_irq_disable();
3378 rcu_note_context_switch(preempt);
3379
3380 /*
3381 * Make sure that signal_pending_state()->signal_pending() below
3382 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3383 * done by the caller to avoid the race with signal_wake_up().
3384 */
3385 rq_lock(rq, &rf);
3386 smp_mb__after_spinlock();
3387
3388 /* Promote REQ to ACT */
3389 rq->clock_update_flags <<= 1;
3390 update_rq_clock(rq);
3391
3392 switch_count = &prev->nivcsw;
3393 if (!preempt && prev->state) {
3394 if (unlikely(signal_pending_state(prev->state, prev))) {
3395 prev->state = TASK_RUNNING;
3396 } else {
3397 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3398 prev->on_rq = 0;
3399
3400 if (prev->in_iowait) {
3401 atomic_inc(&rq->nr_iowait);
3402 delayacct_blkio_start();
3403 }
3404
3405 /*
3406 * If a worker went to sleep, notify and ask workqueue
3407 * whether it wants to wake up a task to maintain
3408 * concurrency.
3409 */
3410 if (prev->flags & PF_WQ_WORKER) {
3411 struct task_struct *to_wakeup;
3412
3413 to_wakeup = wq_worker_sleeping(prev);
3414 if (to_wakeup)
3415 try_to_wake_up_local(to_wakeup, &rf);
3416 }
3417 }
3418 switch_count = &prev->nvcsw;
3419 }
3420
3421 next = pick_next_task(rq, prev, &rf);
3422 wallclock = walt_ktime_clock();
3423 walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3424 walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3425 clear_tsk_need_resched(prev);
3426 clear_preempt_need_resched();
3427
3428 if (likely(prev != next)) {
3429 #ifdef CONFIG_SCHED_WALT
3430 if (!prev->on_rq)
3431 prev->last_sleep_ts = wallclock;
3432 #endif
3433 rq->nr_switches++;
3434 rq->curr = next;
3435 /*
3436 * The membarrier system call requires each architecture
3437 * to have a full memory barrier after updating
3438 * rq->curr, before returning to user-space. For TSO
3439 * (e.g. x86), the architecture must provide its own
3440 * barrier in switch_mm(). For weakly ordered machines
3441 * for which spin_unlock() acts as a full memory
3442 * barrier, finish_lock_switch() in common code takes
3443 * care of this barrier. For weakly ordered machines for
3444 * which spin_unlock() acts as a RELEASE barrier (only
3445 * arm64 and PowerPC), arm64 has a full barrier in
3446 * switch_to(), and PowerPC has
3447 * smp_mb__after_unlock_lock() before
3448 * finish_lock_switch().
3449 */
3450 ++*switch_count;
3451
3452 trace_sched_switch(preempt, prev, next);
3453
3454 /* Also unlocks the rq: */
3455 rq = context_switch(rq, prev, next, &rf);
3456 } else {
3457 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3458 rq_unlock_irq(rq, &rf);
3459 }
3460
3461 balance_callback(rq);
3462 }
3463
do_task_dead(void)3464 void __noreturn do_task_dead(void)
3465 {
3466 /* Causes final put_task_struct in finish_task_switch(): */
3467 set_special_state(TASK_DEAD);
3468
3469 /* Tell freezer to ignore us: */
3470 current->flags |= PF_NOFREEZE;
3471
3472 __schedule(false);
3473 BUG();
3474
3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 for (;;)
3477 cpu_relax();
3478 }
3479
sched_submit_work(struct task_struct * tsk)3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 return;
3484 /*
3485 * If we are going to sleep and we have plugged IO queued,
3486 * make sure to submit it to avoid deadlocks.
3487 */
3488 if (blk_needs_flush_plug(tsk))
3489 blk_schedule_flush_plug(tsk);
3490 }
3491
schedule(void)3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 struct task_struct *tsk = current;
3495
3496 sched_submit_work(tsk);
3497 do {
3498 preempt_disable();
3499 __schedule(false);
3500 sched_preempt_enable_no_resched();
3501 } while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504
3505 /*
3506 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3507 * state (have scheduled out non-voluntarily) by making sure that all
3508 * tasks have either left the run queue or have gone into user space.
3509 * As idle tasks do not do either, they must not ever be preempted
3510 * (schedule out non-voluntarily).
3511 *
3512 * schedule_idle() is similar to schedule_preempt_disable() except that it
3513 * never enables preemption because it does not call sched_submit_work().
3514 */
schedule_idle(void)3515 void __sched schedule_idle(void)
3516 {
3517 /*
3518 * As this skips calling sched_submit_work(), which the idle task does
3519 * regardless because that function is a nop when the task is in a
3520 * TASK_RUNNING state, make sure this isn't used someplace that the
3521 * current task can be in any other state. Note, idle is always in the
3522 * TASK_RUNNING state.
3523 */
3524 WARN_ON_ONCE(current->state);
3525 do {
3526 __schedule(false);
3527 } while (need_resched());
3528 }
3529
3530 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3531 asmlinkage __visible void __sched schedule_user(void)
3532 {
3533 /*
3534 * If we come here after a random call to set_need_resched(),
3535 * or we have been woken up remotely but the IPI has not yet arrived,
3536 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 * we find a better solution.
3538 *
3539 * NB: There are buggy callers of this function. Ideally we
3540 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541 * too frequently to make sense yet.
3542 */
3543 enum ctx_state prev_state = exception_enter();
3544 schedule();
3545 exception_exit(prev_state);
3546 }
3547 #endif
3548
3549 /**
3550 * schedule_preempt_disabled - called with preemption disabled
3551 *
3552 * Returns with preemption disabled. Note: preempt_count must be 1
3553 */
schedule_preempt_disabled(void)3554 void __sched schedule_preempt_disabled(void)
3555 {
3556 sched_preempt_enable_no_resched();
3557 schedule();
3558 preempt_disable();
3559 }
3560
preempt_schedule_common(void)3561 static void __sched notrace preempt_schedule_common(void)
3562 {
3563 do {
3564 /*
3565 * Because the function tracer can trace preempt_count_sub()
3566 * and it also uses preempt_enable/disable_notrace(), if
3567 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 * by the function tracer will call this function again and
3569 * cause infinite recursion.
3570 *
3571 * Preemption must be disabled here before the function
3572 * tracer can trace. Break up preempt_disable() into two
3573 * calls. One to disable preemption without fear of being
3574 * traced. The other to still record the preemption latency,
3575 * which can also be traced by the function tracer.
3576 */
3577 preempt_disable_notrace();
3578 preempt_latency_start(1);
3579 __schedule(true);
3580 preempt_latency_stop(1);
3581 preempt_enable_no_resched_notrace();
3582
3583 /*
3584 * Check again in case we missed a preemption opportunity
3585 * between schedule and now.
3586 */
3587 } while (need_resched());
3588 }
3589
3590 #ifdef CONFIG_PREEMPT
3591 /*
3592 * this is the entry point to schedule() from in-kernel preemption
3593 * off of preempt_enable. Kernel preemptions off return from interrupt
3594 * occur there and call schedule directly.
3595 */
preempt_schedule(void)3596 asmlinkage __visible void __sched notrace preempt_schedule(void)
3597 {
3598 /*
3599 * If there is a non-zero preempt_count or interrupts are disabled,
3600 * we do not want to preempt the current task. Just return..
3601 */
3602 if (likely(!preemptible()))
3603 return;
3604
3605 preempt_schedule_common();
3606 }
3607 NOKPROBE_SYMBOL(preempt_schedule);
3608 EXPORT_SYMBOL(preempt_schedule);
3609
3610 /**
3611 * preempt_schedule_notrace - preempt_schedule called by tracing
3612 *
3613 * The tracing infrastructure uses preempt_enable_notrace to prevent
3614 * recursion and tracing preempt enabling caused by the tracing
3615 * infrastructure itself. But as tracing can happen in areas coming
3616 * from userspace or just about to enter userspace, a preempt enable
3617 * can occur before user_exit() is called. This will cause the scheduler
3618 * to be called when the system is still in usermode.
3619 *
3620 * To prevent this, the preempt_enable_notrace will use this function
3621 * instead of preempt_schedule() to exit user context if needed before
3622 * calling the scheduler.
3623 */
preempt_schedule_notrace(void)3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3625 {
3626 enum ctx_state prev_ctx;
3627
3628 if (likely(!preemptible()))
3629 return;
3630
3631 do {
3632 /*
3633 * Because the function tracer can trace preempt_count_sub()
3634 * and it also uses preempt_enable/disable_notrace(), if
3635 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 * by the function tracer will call this function again and
3637 * cause infinite recursion.
3638 *
3639 * Preemption must be disabled here before the function
3640 * tracer can trace. Break up preempt_disable() into two
3641 * calls. One to disable preemption without fear of being
3642 * traced. The other to still record the preemption latency,
3643 * which can also be traced by the function tracer.
3644 */
3645 preempt_disable_notrace();
3646 preempt_latency_start(1);
3647 /*
3648 * Needs preempt disabled in case user_exit() is traced
3649 * and the tracer calls preempt_enable_notrace() causing
3650 * an infinite recursion.
3651 */
3652 prev_ctx = exception_enter();
3653 __schedule(true);
3654 exception_exit(prev_ctx);
3655
3656 preempt_latency_stop(1);
3657 preempt_enable_no_resched_notrace();
3658 } while (need_resched());
3659 }
3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3661
3662 #endif /* CONFIG_PREEMPT */
3663
3664 /*
3665 * this is the entry point to schedule() from kernel preemption
3666 * off of irq context.
3667 * Note, that this is called and return with irqs disabled. This will
3668 * protect us against recursive calling from irq.
3669 */
preempt_schedule_irq(void)3670 asmlinkage __visible void __sched preempt_schedule_irq(void)
3671 {
3672 enum ctx_state prev_state;
3673
3674 /* Catch callers which need to be fixed */
3675 BUG_ON(preempt_count() || !irqs_disabled());
3676
3677 prev_state = exception_enter();
3678
3679 do {
3680 preempt_disable();
3681 local_irq_enable();
3682 __schedule(true);
3683 local_irq_disable();
3684 sched_preempt_enable_no_resched();
3685 } while (need_resched());
3686
3687 exception_exit(prev_state);
3688 }
3689
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)3690 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3691 void *key)
3692 {
3693 return try_to_wake_up(curr->private, mode, wake_flags, 1);
3694 }
3695 EXPORT_SYMBOL(default_wake_function);
3696
3697 #ifdef CONFIG_RT_MUTEXES
3698
__rt_effective_prio(struct task_struct * pi_task,int prio)3699 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3700 {
3701 if (pi_task)
3702 prio = min(prio, pi_task->prio);
3703
3704 return prio;
3705 }
3706
rt_effective_prio(struct task_struct * p,int prio)3707 static inline int rt_effective_prio(struct task_struct *p, int prio)
3708 {
3709 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3710
3711 return __rt_effective_prio(pi_task, prio);
3712 }
3713
3714 /*
3715 * rt_mutex_setprio - set the current priority of a task
3716 * @p: task to boost
3717 * @pi_task: donor task
3718 *
3719 * This function changes the 'effective' priority of a task. It does
3720 * not touch ->normal_prio like __setscheduler().
3721 *
3722 * Used by the rt_mutex code to implement priority inheritance
3723 * logic. Call site only calls if the priority of the task changed.
3724 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)3725 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3726 {
3727 int prio, oldprio, queued, running, queue_flag =
3728 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3729 const struct sched_class *prev_class;
3730 struct rq_flags rf;
3731 struct rq *rq;
3732
3733 /* XXX used to be waiter->prio, not waiter->task->prio */
3734 prio = __rt_effective_prio(pi_task, p->normal_prio);
3735
3736 /*
3737 * If nothing changed; bail early.
3738 */
3739 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3740 return;
3741
3742 rq = __task_rq_lock(p, &rf);
3743 update_rq_clock(rq);
3744 /*
3745 * Set under pi_lock && rq->lock, such that the value can be used under
3746 * either lock.
3747 *
3748 * Note that there is loads of tricky to make this pointer cache work
3749 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3750 * ensure a task is de-boosted (pi_task is set to NULL) before the
3751 * task is allowed to run again (and can exit). This ensures the pointer
3752 * points to a blocked task -- which guaratees the task is present.
3753 */
3754 p->pi_top_task = pi_task;
3755
3756 /*
3757 * For FIFO/RR we only need to set prio, if that matches we're done.
3758 */
3759 if (prio == p->prio && !dl_prio(prio))
3760 goto out_unlock;
3761
3762 /*
3763 * Idle task boosting is a nono in general. There is one
3764 * exception, when PREEMPT_RT and NOHZ is active:
3765 *
3766 * The idle task calls get_next_timer_interrupt() and holds
3767 * the timer wheel base->lock on the CPU and another CPU wants
3768 * to access the timer (probably to cancel it). We can safely
3769 * ignore the boosting request, as the idle CPU runs this code
3770 * with interrupts disabled and will complete the lock
3771 * protected section without being interrupted. So there is no
3772 * real need to boost.
3773 */
3774 if (unlikely(p == rq->idle)) {
3775 WARN_ON(p != rq->curr);
3776 WARN_ON(p->pi_blocked_on);
3777 goto out_unlock;
3778 }
3779
3780 trace_sched_pi_setprio(p, pi_task);
3781 oldprio = p->prio;
3782
3783 if (oldprio == prio)
3784 queue_flag &= ~DEQUEUE_MOVE;
3785
3786 prev_class = p->sched_class;
3787 queued = task_on_rq_queued(p);
3788 running = task_current(rq, p);
3789 if (queued)
3790 dequeue_task(rq, p, queue_flag);
3791 if (running)
3792 put_prev_task(rq, p);
3793
3794 /*
3795 * Boosting condition are:
3796 * 1. -rt task is running and holds mutex A
3797 * --> -dl task blocks on mutex A
3798 *
3799 * 2. -dl task is running and holds mutex A
3800 * --> -dl task blocks on mutex A and could preempt the
3801 * running task
3802 */
3803 if (dl_prio(prio)) {
3804 if (!dl_prio(p->normal_prio) ||
3805 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3806 p->dl.dl_boosted = 1;
3807 queue_flag |= ENQUEUE_REPLENISH;
3808 } else
3809 p->dl.dl_boosted = 0;
3810 p->sched_class = &dl_sched_class;
3811 } else if (rt_prio(prio)) {
3812 if (dl_prio(oldprio))
3813 p->dl.dl_boosted = 0;
3814 if (oldprio < prio)
3815 queue_flag |= ENQUEUE_HEAD;
3816 p->sched_class = &rt_sched_class;
3817 } else {
3818 if (dl_prio(oldprio))
3819 p->dl.dl_boosted = 0;
3820 if (rt_prio(oldprio))
3821 p->rt.timeout = 0;
3822 p->sched_class = &fair_sched_class;
3823 }
3824
3825 p->prio = prio;
3826
3827 if (queued)
3828 enqueue_task(rq, p, queue_flag);
3829 if (running)
3830 set_curr_task(rq, p);
3831
3832 check_class_changed(rq, p, prev_class, oldprio);
3833 out_unlock:
3834 /* Avoid rq from going away on us: */
3835 preempt_disable();
3836 __task_rq_unlock(rq, &rf);
3837
3838 balance_callback(rq);
3839 preempt_enable();
3840 }
3841 #else
rt_effective_prio(struct task_struct * p,int prio)3842 static inline int rt_effective_prio(struct task_struct *p, int prio)
3843 {
3844 return prio;
3845 }
3846 #endif
3847
set_user_nice(struct task_struct * p,long nice)3848 void set_user_nice(struct task_struct *p, long nice)
3849 {
3850 bool queued, running;
3851 int old_prio, delta;
3852 struct rq_flags rf;
3853 struct rq *rq;
3854
3855 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3856 return;
3857 /*
3858 * We have to be careful, if called from sys_setpriority(),
3859 * the task might be in the middle of scheduling on another CPU.
3860 */
3861 rq = task_rq_lock(p, &rf);
3862 update_rq_clock(rq);
3863
3864 /*
3865 * The RT priorities are set via sched_setscheduler(), but we still
3866 * allow the 'normal' nice value to be set - but as expected
3867 * it wont have any effect on scheduling until the task is
3868 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3869 */
3870 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3871 p->static_prio = NICE_TO_PRIO(nice);
3872 goto out_unlock;
3873 }
3874 queued = task_on_rq_queued(p);
3875 running = task_current(rq, p);
3876 if (queued)
3877 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3878 if (running)
3879 put_prev_task(rq, p);
3880
3881 p->static_prio = NICE_TO_PRIO(nice);
3882 set_load_weight(p);
3883 old_prio = p->prio;
3884 p->prio = effective_prio(p);
3885 delta = p->prio - old_prio;
3886
3887 if (queued) {
3888 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3889 /*
3890 * If the task increased its priority or is running and
3891 * lowered its priority, then reschedule its CPU:
3892 */
3893 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3894 resched_curr(rq);
3895 }
3896 if (running)
3897 set_curr_task(rq, p);
3898 out_unlock:
3899 task_rq_unlock(rq, p, &rf);
3900 }
3901 EXPORT_SYMBOL(set_user_nice);
3902
3903 /*
3904 * can_nice - check if a task can reduce its nice value
3905 * @p: task
3906 * @nice: nice value
3907 */
can_nice(const struct task_struct * p,const int nice)3908 int can_nice(const struct task_struct *p, const int nice)
3909 {
3910 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3911 int nice_rlim = nice_to_rlimit(nice);
3912
3913 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3914 capable(CAP_SYS_NICE));
3915 }
3916
3917 #ifdef __ARCH_WANT_SYS_NICE
3918
3919 /*
3920 * sys_nice - change the priority of the current process.
3921 * @increment: priority increment
3922 *
3923 * sys_setpriority is a more generic, but much slower function that
3924 * does similar things.
3925 */
SYSCALL_DEFINE1(nice,int,increment)3926 SYSCALL_DEFINE1(nice, int, increment)
3927 {
3928 long nice, retval;
3929
3930 /*
3931 * Setpriority might change our priority at the same moment.
3932 * We don't have to worry. Conceptually one call occurs first
3933 * and we have a single winner.
3934 */
3935 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3936 nice = task_nice(current) + increment;
3937
3938 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3939 if (increment < 0 && !can_nice(current, nice))
3940 return -EPERM;
3941
3942 retval = security_task_setnice(current, nice);
3943 if (retval)
3944 return retval;
3945
3946 set_user_nice(current, nice);
3947 return 0;
3948 }
3949
3950 #endif
3951
3952 /**
3953 * task_prio - return the priority value of a given task.
3954 * @p: the task in question.
3955 *
3956 * Return: The priority value as seen by users in /proc.
3957 * RT tasks are offset by -200. Normal tasks are centered
3958 * around 0, value goes from -16 to +15.
3959 */
task_prio(const struct task_struct * p)3960 int task_prio(const struct task_struct *p)
3961 {
3962 return p->prio - MAX_RT_PRIO;
3963 }
3964
3965 /**
3966 * idle_cpu - is a given CPU idle currently?
3967 * @cpu: the processor in question.
3968 *
3969 * Return: 1 if the CPU is currently idle. 0 otherwise.
3970 */
idle_cpu(int cpu)3971 int idle_cpu(int cpu)
3972 {
3973 struct rq *rq = cpu_rq(cpu);
3974
3975 if (rq->curr != rq->idle)
3976 return 0;
3977
3978 if (rq->nr_running)
3979 return 0;
3980
3981 #ifdef CONFIG_SMP
3982 if (!llist_empty(&rq->wake_list))
3983 return 0;
3984 #endif
3985
3986 return 1;
3987 }
3988
3989 /**
3990 * idle_task - return the idle task for a given CPU.
3991 * @cpu: the processor in question.
3992 *
3993 * Return: The idle task for the CPU @cpu.
3994 */
idle_task(int cpu)3995 struct task_struct *idle_task(int cpu)
3996 {
3997 return cpu_rq(cpu)->idle;
3998 }
3999
4000 /**
4001 * find_process_by_pid - find a process with a matching PID value.
4002 * @pid: the pid in question.
4003 *
4004 * The task of @pid, if found. %NULL otherwise.
4005 */
find_process_by_pid(pid_t pid)4006 static struct task_struct *find_process_by_pid(pid_t pid)
4007 {
4008 return pid ? find_task_by_vpid(pid) : current;
4009 }
4010
4011 /*
4012 * sched_setparam() passes in -1 for its policy, to let the functions
4013 * it calls know not to change it.
4014 */
4015 #define SETPARAM_POLICY -1
4016
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4017 static void __setscheduler_params(struct task_struct *p,
4018 const struct sched_attr *attr)
4019 {
4020 int policy = attr->sched_policy;
4021
4022 if (policy == SETPARAM_POLICY)
4023 policy = p->policy;
4024
4025 p->policy = policy;
4026
4027 if (dl_policy(policy))
4028 __setparam_dl(p, attr);
4029 else if (fair_policy(policy))
4030 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4031
4032 /*
4033 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4034 * !rt_policy. Always setting this ensures that things like
4035 * getparam()/getattr() don't report silly values for !rt tasks.
4036 */
4037 p->rt_priority = attr->sched_priority;
4038 p->normal_prio = normal_prio(p);
4039 set_load_weight(p);
4040 }
4041
4042 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4043 static void __setscheduler(struct rq *rq, struct task_struct *p,
4044 const struct sched_attr *attr, bool keep_boost)
4045 {
4046 __setscheduler_params(p, attr);
4047
4048 /*
4049 * Keep a potential priority boosting if called from
4050 * sched_setscheduler().
4051 */
4052 p->prio = normal_prio(p);
4053 if (keep_boost)
4054 p->prio = rt_effective_prio(p, p->prio);
4055
4056 if (dl_prio(p->prio))
4057 p->sched_class = &dl_sched_class;
4058 else if (rt_prio(p->prio))
4059 p->sched_class = &rt_sched_class;
4060 else
4061 p->sched_class = &fair_sched_class;
4062 }
4063
4064 /*
4065 * Check the target process has a UID that matches the current process's:
4066 */
check_same_owner(struct task_struct * p)4067 static bool check_same_owner(struct task_struct *p)
4068 {
4069 const struct cred *cred = current_cred(), *pcred;
4070 bool match;
4071
4072 rcu_read_lock();
4073 pcred = __task_cred(p);
4074 match = (uid_eq(cred->euid, pcred->euid) ||
4075 uid_eq(cred->euid, pcred->uid));
4076 rcu_read_unlock();
4077 return match;
4078 }
4079
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4080 static int __sched_setscheduler(struct task_struct *p,
4081 const struct sched_attr *attr,
4082 bool user, bool pi)
4083 {
4084 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4085 MAX_RT_PRIO - 1 - attr->sched_priority;
4086 int retval, oldprio, oldpolicy = -1, queued, running;
4087 int new_effective_prio, policy = attr->sched_policy;
4088 const struct sched_class *prev_class;
4089 struct rq_flags rf;
4090 int reset_on_fork;
4091 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4092 struct rq *rq;
4093
4094 /* The pi code expects interrupts enabled */
4095 BUG_ON(pi && in_interrupt());
4096 recheck:
4097 /* Double check policy once rq lock held: */
4098 if (policy < 0) {
4099 reset_on_fork = p->sched_reset_on_fork;
4100 policy = oldpolicy = p->policy;
4101 } else {
4102 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4103
4104 if (!valid_policy(policy))
4105 return -EINVAL;
4106 }
4107
4108 if (attr->sched_flags &
4109 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4110 return -EINVAL;
4111
4112 /*
4113 * Valid priorities for SCHED_FIFO and SCHED_RR are
4114 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4115 * SCHED_BATCH and SCHED_IDLE is 0.
4116 */
4117 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4118 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4119 return -EINVAL;
4120 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4121 (rt_policy(policy) != (attr->sched_priority != 0)))
4122 return -EINVAL;
4123
4124 /*
4125 * Allow unprivileged RT tasks to decrease priority:
4126 */
4127 if (user && !capable(CAP_SYS_NICE)) {
4128 if (fair_policy(policy)) {
4129 if (attr->sched_nice < task_nice(p) &&
4130 !can_nice(p, attr->sched_nice))
4131 return -EPERM;
4132 }
4133
4134 if (rt_policy(policy)) {
4135 unsigned long rlim_rtprio =
4136 task_rlimit(p, RLIMIT_RTPRIO);
4137
4138 /* Can't set/change the rt policy: */
4139 if (policy != p->policy && !rlim_rtprio)
4140 return -EPERM;
4141
4142 /* Can't increase priority: */
4143 if (attr->sched_priority > p->rt_priority &&
4144 attr->sched_priority > rlim_rtprio)
4145 return -EPERM;
4146 }
4147
4148 /*
4149 * Can't set/change SCHED_DEADLINE policy at all for now
4150 * (safest behavior); in the future we would like to allow
4151 * unprivileged DL tasks to increase their relative deadline
4152 * or reduce their runtime (both ways reducing utilization)
4153 */
4154 if (dl_policy(policy))
4155 return -EPERM;
4156
4157 /*
4158 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4159 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4160 */
4161 if (idle_policy(p->policy) && !idle_policy(policy)) {
4162 if (!can_nice(p, task_nice(p)))
4163 return -EPERM;
4164 }
4165
4166 /* Can't change other user's priorities: */
4167 if (!check_same_owner(p))
4168 return -EPERM;
4169
4170 /* Normal users shall not reset the sched_reset_on_fork flag: */
4171 if (p->sched_reset_on_fork && !reset_on_fork)
4172 return -EPERM;
4173 }
4174
4175 if (user) {
4176 retval = security_task_setscheduler(p);
4177 if (retval)
4178 return retval;
4179 }
4180
4181 /*
4182 * Make sure no PI-waiters arrive (or leave) while we are
4183 * changing the priority of the task:
4184 *
4185 * To be able to change p->policy safely, the appropriate
4186 * runqueue lock must be held.
4187 */
4188 rq = task_rq_lock(p, &rf);
4189 update_rq_clock(rq);
4190
4191 /*
4192 * Changing the policy of the stop threads its a very bad idea:
4193 */
4194 if (p == rq->stop) {
4195 task_rq_unlock(rq, p, &rf);
4196 return -EINVAL;
4197 }
4198
4199 /*
4200 * If not changing anything there's no need to proceed further,
4201 * but store a possible modification of reset_on_fork.
4202 */
4203 if (unlikely(policy == p->policy)) {
4204 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4205 goto change;
4206 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4207 goto change;
4208 if (dl_policy(policy) && dl_param_changed(p, attr))
4209 goto change;
4210
4211 p->sched_reset_on_fork = reset_on_fork;
4212 task_rq_unlock(rq, p, &rf);
4213 return 0;
4214 }
4215 change:
4216
4217 if (user) {
4218 #ifdef CONFIG_RT_GROUP_SCHED
4219 /*
4220 * Do not allow realtime tasks into groups that have no runtime
4221 * assigned.
4222 */
4223 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4224 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4225 !task_group_is_autogroup(task_group(p))) {
4226 task_rq_unlock(rq, p, &rf);
4227 return -EPERM;
4228 }
4229 #endif
4230 #ifdef CONFIG_SMP
4231 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4232 cpumask_t *span = rq->rd->span;
4233
4234 /*
4235 * Don't allow tasks with an affinity mask smaller than
4236 * the entire root_domain to become SCHED_DEADLINE. We
4237 * will also fail if there's no bandwidth available.
4238 */
4239 if (!cpumask_subset(span, &p->cpus_allowed) ||
4240 rq->rd->dl_bw.bw == 0) {
4241 task_rq_unlock(rq, p, &rf);
4242 return -EPERM;
4243 }
4244 }
4245 #endif
4246 }
4247
4248 /* Re-check policy now with rq lock held: */
4249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4250 policy = oldpolicy = -1;
4251 task_rq_unlock(rq, p, &rf);
4252 goto recheck;
4253 }
4254
4255 /*
4256 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4257 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4258 * is available.
4259 */
4260 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4261 task_rq_unlock(rq, p, &rf);
4262 return -EBUSY;
4263 }
4264
4265 p->sched_reset_on_fork = reset_on_fork;
4266 oldprio = p->prio;
4267
4268 if (pi) {
4269 /*
4270 * Take priority boosted tasks into account. If the new
4271 * effective priority is unchanged, we just store the new
4272 * normal parameters and do not touch the scheduler class and
4273 * the runqueue. This will be done when the task deboost
4274 * itself.
4275 */
4276 new_effective_prio = rt_effective_prio(p, newprio);
4277 if (new_effective_prio == oldprio)
4278 queue_flags &= ~DEQUEUE_MOVE;
4279 }
4280
4281 queued = task_on_rq_queued(p);
4282 running = task_current(rq, p);
4283 if (queued)
4284 dequeue_task(rq, p, queue_flags);
4285 if (running)
4286 put_prev_task(rq, p);
4287
4288 prev_class = p->sched_class;
4289 __setscheduler(rq, p, attr, pi);
4290
4291 if (queued) {
4292 /*
4293 * We enqueue to tail when the priority of a task is
4294 * increased (user space view).
4295 */
4296 if (oldprio < p->prio)
4297 queue_flags |= ENQUEUE_HEAD;
4298
4299 enqueue_task(rq, p, queue_flags);
4300 }
4301 if (running)
4302 set_curr_task(rq, p);
4303
4304 check_class_changed(rq, p, prev_class, oldprio);
4305
4306 /* Avoid rq from going away on us: */
4307 preempt_disable();
4308 task_rq_unlock(rq, p, &rf);
4309
4310 if (pi)
4311 rt_mutex_adjust_pi(p);
4312
4313 /* Run balance callbacks after we've adjusted the PI chain: */
4314 balance_callback(rq);
4315 preempt_enable();
4316
4317 return 0;
4318 }
4319
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4320 static int _sched_setscheduler(struct task_struct *p, int policy,
4321 const struct sched_param *param, bool check)
4322 {
4323 struct sched_attr attr = {
4324 .sched_policy = policy,
4325 .sched_priority = param->sched_priority,
4326 .sched_nice = PRIO_TO_NICE(p->static_prio),
4327 };
4328
4329 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4330 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4331 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4332 policy &= ~SCHED_RESET_ON_FORK;
4333 attr.sched_policy = policy;
4334 }
4335
4336 return __sched_setscheduler(p, &attr, check, true);
4337 }
4338 /**
4339 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4340 * @p: the task in question.
4341 * @policy: new policy.
4342 * @param: structure containing the new RT priority.
4343 *
4344 * Return: 0 on success. An error code otherwise.
4345 *
4346 * NOTE that the task may be already dead.
4347 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4348 int sched_setscheduler(struct task_struct *p, int policy,
4349 const struct sched_param *param)
4350 {
4351 return _sched_setscheduler(p, policy, param, true);
4352 }
4353 EXPORT_SYMBOL_GPL(sched_setscheduler);
4354
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4355 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4356 {
4357 return __sched_setscheduler(p, attr, true, true);
4358 }
4359 EXPORT_SYMBOL_GPL(sched_setattr);
4360
4361 /**
4362 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4363 * @p: the task in question.
4364 * @policy: new policy.
4365 * @param: structure containing the new RT priority.
4366 *
4367 * Just like sched_setscheduler, only don't bother checking if the
4368 * current context has permission. For example, this is needed in
4369 * stop_machine(): we create temporary high priority worker threads,
4370 * but our caller might not have that capability.
4371 *
4372 * Return: 0 on success. An error code otherwise.
4373 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4374 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4375 const struct sched_param *param)
4376 {
4377 return _sched_setscheduler(p, policy, param, false);
4378 }
4379 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4380
4381 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4382 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4383 {
4384 struct sched_param lparam;
4385 struct task_struct *p;
4386 int retval;
4387
4388 if (!param || pid < 0)
4389 return -EINVAL;
4390 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4391 return -EFAULT;
4392
4393 rcu_read_lock();
4394 retval = -ESRCH;
4395 p = find_process_by_pid(pid);
4396 if (p != NULL)
4397 retval = sched_setscheduler(p, policy, &lparam);
4398 rcu_read_unlock();
4399
4400 return retval;
4401 }
4402
4403 /*
4404 * Mimics kernel/events/core.c perf_copy_attr().
4405 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4406 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4407 {
4408 u32 size;
4409 int ret;
4410
4411 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4412 return -EFAULT;
4413
4414 /* Zero the full structure, so that a short copy will be nice: */
4415 memset(attr, 0, sizeof(*attr));
4416
4417 ret = get_user(size, &uattr->size);
4418 if (ret)
4419 return ret;
4420
4421 /* Bail out on silly large: */
4422 if (size > PAGE_SIZE)
4423 goto err_size;
4424
4425 /* ABI compatibility quirk: */
4426 if (!size)
4427 size = SCHED_ATTR_SIZE_VER0;
4428
4429 if (size < SCHED_ATTR_SIZE_VER0)
4430 goto err_size;
4431
4432 /*
4433 * If we're handed a bigger struct than we know of,
4434 * ensure all the unknown bits are 0 - i.e. new
4435 * user-space does not rely on any kernel feature
4436 * extensions we dont know about yet.
4437 */
4438 if (size > sizeof(*attr)) {
4439 unsigned char __user *addr;
4440 unsigned char __user *end;
4441 unsigned char val;
4442
4443 addr = (void __user *)uattr + sizeof(*attr);
4444 end = (void __user *)uattr + size;
4445
4446 for (; addr < end; addr++) {
4447 ret = get_user(val, addr);
4448 if (ret)
4449 return ret;
4450 if (val)
4451 goto err_size;
4452 }
4453 size = sizeof(*attr);
4454 }
4455
4456 ret = copy_from_user(attr, uattr, size);
4457 if (ret)
4458 return -EFAULT;
4459
4460 /*
4461 * XXX: Do we want to be lenient like existing syscalls; or do we want
4462 * to be strict and return an error on out-of-bounds values?
4463 */
4464 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4465
4466 return 0;
4467
4468 err_size:
4469 put_user(sizeof(*attr), &uattr->size);
4470 return -E2BIG;
4471 }
4472
4473 /**
4474 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4475 * @pid: the pid in question.
4476 * @policy: new policy.
4477 * @param: structure containing the new RT priority.
4478 *
4479 * Return: 0 on success. An error code otherwise.
4480 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4481 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4482 {
4483 if (policy < 0)
4484 return -EINVAL;
4485
4486 return do_sched_setscheduler(pid, policy, param);
4487 }
4488
4489 /**
4490 * sys_sched_setparam - set/change the RT priority of a thread
4491 * @pid: the pid in question.
4492 * @param: structure containing the new RT priority.
4493 *
4494 * Return: 0 on success. An error code otherwise.
4495 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4496 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4497 {
4498 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4499 }
4500
4501 /**
4502 * sys_sched_setattr - same as above, but with extended sched_attr
4503 * @pid: the pid in question.
4504 * @uattr: structure containing the extended parameters.
4505 * @flags: for future extension.
4506 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4507 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4508 unsigned int, flags)
4509 {
4510 struct sched_attr attr;
4511 struct task_struct *p;
4512 int retval;
4513
4514 if (!uattr || pid < 0 || flags)
4515 return -EINVAL;
4516
4517 retval = sched_copy_attr(uattr, &attr);
4518 if (retval)
4519 return retval;
4520
4521 if ((int)attr.sched_policy < 0)
4522 return -EINVAL;
4523
4524 rcu_read_lock();
4525 retval = -ESRCH;
4526 p = find_process_by_pid(pid);
4527 if (p != NULL)
4528 retval = sched_setattr(p, &attr);
4529 rcu_read_unlock();
4530
4531 return retval;
4532 }
4533
4534 /**
4535 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4536 * @pid: the pid in question.
4537 *
4538 * Return: On success, the policy of the thread. Otherwise, a negative error
4539 * code.
4540 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4541 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4542 {
4543 struct task_struct *p;
4544 int retval;
4545
4546 if (pid < 0)
4547 return -EINVAL;
4548
4549 retval = -ESRCH;
4550 rcu_read_lock();
4551 p = find_process_by_pid(pid);
4552 if (p) {
4553 retval = security_task_getscheduler(p);
4554 if (!retval)
4555 retval = p->policy
4556 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4557 }
4558 rcu_read_unlock();
4559 return retval;
4560 }
4561
4562 /**
4563 * sys_sched_getparam - get the RT priority of a thread
4564 * @pid: the pid in question.
4565 * @param: structure containing the RT priority.
4566 *
4567 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4568 * code.
4569 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4570 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4571 {
4572 struct sched_param lp = { .sched_priority = 0 };
4573 struct task_struct *p;
4574 int retval;
4575
4576 if (!param || pid < 0)
4577 return -EINVAL;
4578
4579 rcu_read_lock();
4580 p = find_process_by_pid(pid);
4581 retval = -ESRCH;
4582 if (!p)
4583 goto out_unlock;
4584
4585 retval = security_task_getscheduler(p);
4586 if (retval)
4587 goto out_unlock;
4588
4589 if (task_has_rt_policy(p))
4590 lp.sched_priority = p->rt_priority;
4591 rcu_read_unlock();
4592
4593 /*
4594 * This one might sleep, we cannot do it with a spinlock held ...
4595 */
4596 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4597
4598 return retval;
4599
4600 out_unlock:
4601 rcu_read_unlock();
4602 return retval;
4603 }
4604
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4605 static int sched_read_attr(struct sched_attr __user *uattr,
4606 struct sched_attr *attr,
4607 unsigned int usize)
4608 {
4609 int ret;
4610
4611 if (!access_ok(VERIFY_WRITE, uattr, usize))
4612 return -EFAULT;
4613
4614 /*
4615 * If we're handed a smaller struct than we know of,
4616 * ensure all the unknown bits are 0 - i.e. old
4617 * user-space does not get uncomplete information.
4618 */
4619 if (usize < sizeof(*attr)) {
4620 unsigned char *addr;
4621 unsigned char *end;
4622
4623 addr = (void *)attr + usize;
4624 end = (void *)attr + sizeof(*attr);
4625
4626 for (; addr < end; addr++) {
4627 if (*addr)
4628 return -EFBIG;
4629 }
4630
4631 attr->size = usize;
4632 }
4633
4634 ret = copy_to_user(uattr, attr, attr->size);
4635 if (ret)
4636 return -EFAULT;
4637
4638 return 0;
4639 }
4640
4641 /**
4642 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4643 * @pid: the pid in question.
4644 * @uattr: structure containing the extended parameters.
4645 * @size: sizeof(attr) for fwd/bwd comp.
4646 * @flags: for future extension.
4647 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4648 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4649 unsigned int, size, unsigned int, flags)
4650 {
4651 struct sched_attr attr = {
4652 .size = sizeof(struct sched_attr),
4653 };
4654 struct task_struct *p;
4655 int retval;
4656
4657 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4658 size < SCHED_ATTR_SIZE_VER0 || flags)
4659 return -EINVAL;
4660
4661 rcu_read_lock();
4662 p = find_process_by_pid(pid);
4663 retval = -ESRCH;
4664 if (!p)
4665 goto out_unlock;
4666
4667 retval = security_task_getscheduler(p);
4668 if (retval)
4669 goto out_unlock;
4670
4671 attr.sched_policy = p->policy;
4672 if (p->sched_reset_on_fork)
4673 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4674 if (task_has_dl_policy(p))
4675 __getparam_dl(p, &attr);
4676 else if (task_has_rt_policy(p))
4677 attr.sched_priority = p->rt_priority;
4678 else
4679 attr.sched_nice = task_nice(p);
4680
4681 rcu_read_unlock();
4682
4683 retval = sched_read_attr(uattr, &attr, size);
4684 return retval;
4685
4686 out_unlock:
4687 rcu_read_unlock();
4688 return retval;
4689 }
4690
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4691 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4692 {
4693 cpumask_var_t cpus_allowed, new_mask;
4694 struct task_struct *p;
4695 int retval;
4696
4697 rcu_read_lock();
4698
4699 p = find_process_by_pid(pid);
4700 if (!p) {
4701 rcu_read_unlock();
4702 return -ESRCH;
4703 }
4704
4705 /* Prevent p going away */
4706 get_task_struct(p);
4707 rcu_read_unlock();
4708
4709 if (p->flags & PF_NO_SETAFFINITY) {
4710 retval = -EINVAL;
4711 goto out_put_task;
4712 }
4713 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4714 retval = -ENOMEM;
4715 goto out_put_task;
4716 }
4717 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4718 retval = -ENOMEM;
4719 goto out_free_cpus_allowed;
4720 }
4721 retval = -EPERM;
4722 if (!check_same_owner(p)) {
4723 rcu_read_lock();
4724 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4725 rcu_read_unlock();
4726 goto out_free_new_mask;
4727 }
4728 rcu_read_unlock();
4729 }
4730
4731 retval = security_task_setscheduler(p);
4732 if (retval)
4733 goto out_free_new_mask;
4734
4735
4736 cpuset_cpus_allowed(p, cpus_allowed);
4737 cpumask_and(new_mask, in_mask, cpus_allowed);
4738
4739 /*
4740 * Since bandwidth control happens on root_domain basis,
4741 * if admission test is enabled, we only admit -deadline
4742 * tasks allowed to run on all the CPUs in the task's
4743 * root_domain.
4744 */
4745 #ifdef CONFIG_SMP
4746 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4747 rcu_read_lock();
4748 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4749 retval = -EBUSY;
4750 rcu_read_unlock();
4751 goto out_free_new_mask;
4752 }
4753 rcu_read_unlock();
4754 }
4755 #endif
4756 again:
4757 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4758
4759 if (!retval) {
4760 cpuset_cpus_allowed(p, cpus_allowed);
4761 if (!cpumask_subset(new_mask, cpus_allowed)) {
4762 /*
4763 * We must have raced with a concurrent cpuset
4764 * update. Just reset the cpus_allowed to the
4765 * cpuset's cpus_allowed
4766 */
4767 cpumask_copy(new_mask, cpus_allowed);
4768 goto again;
4769 }
4770 }
4771 out_free_new_mask:
4772 free_cpumask_var(new_mask);
4773 out_free_cpus_allowed:
4774 free_cpumask_var(cpus_allowed);
4775 out_put_task:
4776 put_task_struct(p);
4777 return retval;
4778 }
4779
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4780 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4781 struct cpumask *new_mask)
4782 {
4783 if (len < cpumask_size())
4784 cpumask_clear(new_mask);
4785 else if (len > cpumask_size())
4786 len = cpumask_size();
4787
4788 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4789 }
4790
4791 /**
4792 * sys_sched_setaffinity - set the CPU affinity of a process
4793 * @pid: pid of the process
4794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4795 * @user_mask_ptr: user-space pointer to the new CPU mask
4796 *
4797 * Return: 0 on success. An error code otherwise.
4798 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4799 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4800 unsigned long __user *, user_mask_ptr)
4801 {
4802 cpumask_var_t new_mask;
4803 int retval;
4804
4805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4806 return -ENOMEM;
4807
4808 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4809 if (retval == 0)
4810 retval = sched_setaffinity(pid, new_mask);
4811 free_cpumask_var(new_mask);
4812 return retval;
4813 }
4814
sched_getaffinity(pid_t pid,struct cpumask * mask)4815 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4816 {
4817 struct task_struct *p;
4818 unsigned long flags;
4819 int retval;
4820
4821 rcu_read_lock();
4822
4823 retval = -ESRCH;
4824 p = find_process_by_pid(pid);
4825 if (!p)
4826 goto out_unlock;
4827
4828 retval = security_task_getscheduler(p);
4829 if (retval)
4830 goto out_unlock;
4831
4832 raw_spin_lock_irqsave(&p->pi_lock, flags);
4833 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4834 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4835
4836 out_unlock:
4837 rcu_read_unlock();
4838
4839 return retval;
4840 }
4841
4842 /**
4843 * sys_sched_getaffinity - get the CPU affinity of a process
4844 * @pid: pid of the process
4845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4846 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4847 *
4848 * Return: size of CPU mask copied to user_mask_ptr on success. An
4849 * error code otherwise.
4850 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4851 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4852 unsigned long __user *, user_mask_ptr)
4853 {
4854 int ret;
4855 cpumask_var_t mask;
4856
4857 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4858 return -EINVAL;
4859 if (len & (sizeof(unsigned long)-1))
4860 return -EINVAL;
4861
4862 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4863 return -ENOMEM;
4864
4865 ret = sched_getaffinity(pid, mask);
4866 if (ret == 0) {
4867 size_t retlen = min_t(size_t, len, cpumask_size());
4868
4869 if (copy_to_user(user_mask_ptr, mask, retlen))
4870 ret = -EFAULT;
4871 else
4872 ret = retlen;
4873 }
4874 free_cpumask_var(mask);
4875
4876 return ret;
4877 }
4878
4879 /**
4880 * sys_sched_yield - yield the current processor to other threads.
4881 *
4882 * This function yields the current CPU to other tasks. If there are no
4883 * other threads running on this CPU then this function will return.
4884 *
4885 * Return: 0.
4886 */
SYSCALL_DEFINE0(sched_yield)4887 SYSCALL_DEFINE0(sched_yield)
4888 {
4889 struct rq_flags rf;
4890 struct rq *rq;
4891
4892 rq = this_rq_lock_irq(&rf);
4893
4894 schedstat_inc(rq->yld_count);
4895 current->sched_class->yield_task(rq);
4896
4897 /*
4898 * Since we are going to call schedule() anyway, there's
4899 * no need to preempt or enable interrupts:
4900 */
4901 preempt_disable();
4902 rq_unlock(rq, &rf);
4903 sched_preempt_enable_no_resched();
4904
4905 schedule();
4906
4907 return 0;
4908 }
4909
4910 #ifndef CONFIG_PREEMPT
_cond_resched(void)4911 int __sched _cond_resched(void)
4912 {
4913 if (should_resched(0)) {
4914 preempt_schedule_common();
4915 return 1;
4916 }
4917 return 0;
4918 }
4919 EXPORT_SYMBOL(_cond_resched);
4920 #endif
4921
4922 /*
4923 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4924 * call schedule, and on return reacquire the lock.
4925 *
4926 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4927 * operations here to prevent schedule() from being called twice (once via
4928 * spin_unlock(), once by hand).
4929 */
__cond_resched_lock(spinlock_t * lock)4930 int __cond_resched_lock(spinlock_t *lock)
4931 {
4932 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4933 int ret = 0;
4934
4935 lockdep_assert_held(lock);
4936
4937 if (spin_needbreak(lock) || resched) {
4938 spin_unlock(lock);
4939 if (resched)
4940 preempt_schedule_common();
4941 else
4942 cpu_relax();
4943 ret = 1;
4944 spin_lock(lock);
4945 }
4946 return ret;
4947 }
4948 EXPORT_SYMBOL(__cond_resched_lock);
4949
__cond_resched_softirq(void)4950 int __sched __cond_resched_softirq(void)
4951 {
4952 BUG_ON(!in_softirq());
4953
4954 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4955 local_bh_enable();
4956 preempt_schedule_common();
4957 local_bh_disable();
4958 return 1;
4959 }
4960 return 0;
4961 }
4962 EXPORT_SYMBOL(__cond_resched_softirq);
4963
4964 /**
4965 * yield - yield the current processor to other threads.
4966 *
4967 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4968 *
4969 * The scheduler is at all times free to pick the calling task as the most
4970 * eligible task to run, if removing the yield() call from your code breaks
4971 * it, its already broken.
4972 *
4973 * Typical broken usage is:
4974 *
4975 * while (!event)
4976 * yield();
4977 *
4978 * where one assumes that yield() will let 'the other' process run that will
4979 * make event true. If the current task is a SCHED_FIFO task that will never
4980 * happen. Never use yield() as a progress guarantee!!
4981 *
4982 * If you want to use yield() to wait for something, use wait_event().
4983 * If you want to use yield() to be 'nice' for others, use cond_resched().
4984 * If you still want to use yield(), do not!
4985 */
yield(void)4986 void __sched yield(void)
4987 {
4988 set_current_state(TASK_RUNNING);
4989 sys_sched_yield();
4990 }
4991 EXPORT_SYMBOL(yield);
4992
4993 /**
4994 * yield_to - yield the current processor to another thread in
4995 * your thread group, or accelerate that thread toward the
4996 * processor it's on.
4997 * @p: target task
4998 * @preempt: whether task preemption is allowed or not
4999 *
5000 * It's the caller's job to ensure that the target task struct
5001 * can't go away on us before we can do any checks.
5002 *
5003 * Return:
5004 * true (>0) if we indeed boosted the target task.
5005 * false (0) if we failed to boost the target.
5006 * -ESRCH if there's no task to yield to.
5007 */
yield_to(struct task_struct * p,bool preempt)5008 int __sched yield_to(struct task_struct *p, bool preempt)
5009 {
5010 struct task_struct *curr = current;
5011 struct rq *rq, *p_rq;
5012 unsigned long flags;
5013 int yielded = 0;
5014
5015 local_irq_save(flags);
5016 rq = this_rq();
5017
5018 again:
5019 p_rq = task_rq(p);
5020 /*
5021 * If we're the only runnable task on the rq and target rq also
5022 * has only one task, there's absolutely no point in yielding.
5023 */
5024 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5025 yielded = -ESRCH;
5026 goto out_irq;
5027 }
5028
5029 double_rq_lock(rq, p_rq);
5030 if (task_rq(p) != p_rq) {
5031 double_rq_unlock(rq, p_rq);
5032 goto again;
5033 }
5034
5035 if (!curr->sched_class->yield_to_task)
5036 goto out_unlock;
5037
5038 if (curr->sched_class != p->sched_class)
5039 goto out_unlock;
5040
5041 if (task_running(p_rq, p) || p->state)
5042 goto out_unlock;
5043
5044 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5045 if (yielded) {
5046 schedstat_inc(rq->yld_count);
5047 /*
5048 * Make p's CPU reschedule; pick_next_entity takes care of
5049 * fairness.
5050 */
5051 if (preempt && rq != p_rq)
5052 resched_curr(p_rq);
5053 }
5054
5055 out_unlock:
5056 double_rq_unlock(rq, p_rq);
5057 out_irq:
5058 local_irq_restore(flags);
5059
5060 if (yielded > 0)
5061 schedule();
5062
5063 return yielded;
5064 }
5065 EXPORT_SYMBOL_GPL(yield_to);
5066
io_schedule_prepare(void)5067 int io_schedule_prepare(void)
5068 {
5069 int old_iowait = current->in_iowait;
5070
5071 current->in_iowait = 1;
5072 blk_schedule_flush_plug(current);
5073
5074 return old_iowait;
5075 }
5076
io_schedule_finish(int token)5077 void io_schedule_finish(int token)
5078 {
5079 current->in_iowait = token;
5080 }
5081
5082 /*
5083 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5084 * that process accounting knows that this is a task in IO wait state.
5085 */
io_schedule_timeout(long timeout)5086 long __sched io_schedule_timeout(long timeout)
5087 {
5088 int token;
5089 long ret;
5090
5091 token = io_schedule_prepare();
5092 ret = schedule_timeout(timeout);
5093 io_schedule_finish(token);
5094
5095 return ret;
5096 }
5097 EXPORT_SYMBOL(io_schedule_timeout);
5098
io_schedule(void)5099 void __sched io_schedule(void)
5100 {
5101 int token;
5102
5103 token = io_schedule_prepare();
5104 schedule();
5105 io_schedule_finish(token);
5106 }
5107 EXPORT_SYMBOL(io_schedule);
5108
5109 /**
5110 * sys_sched_get_priority_max - return maximum RT priority.
5111 * @policy: scheduling class.
5112 *
5113 * Return: On success, this syscall returns the maximum
5114 * rt_priority that can be used by a given scheduling class.
5115 * On failure, a negative error code is returned.
5116 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5117 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5118 {
5119 int ret = -EINVAL;
5120
5121 switch (policy) {
5122 case SCHED_FIFO:
5123 case SCHED_RR:
5124 ret = MAX_USER_RT_PRIO-1;
5125 break;
5126 case SCHED_DEADLINE:
5127 case SCHED_NORMAL:
5128 case SCHED_BATCH:
5129 case SCHED_IDLE:
5130 ret = 0;
5131 break;
5132 }
5133 return ret;
5134 }
5135
5136 /**
5137 * sys_sched_get_priority_min - return minimum RT priority.
5138 * @policy: scheduling class.
5139 *
5140 * Return: On success, this syscall returns the minimum
5141 * rt_priority that can be used by a given scheduling class.
5142 * On failure, a negative error code is returned.
5143 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5144 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5145 {
5146 int ret = -EINVAL;
5147
5148 switch (policy) {
5149 case SCHED_FIFO:
5150 case SCHED_RR:
5151 ret = 1;
5152 break;
5153 case SCHED_DEADLINE:
5154 case SCHED_NORMAL:
5155 case SCHED_BATCH:
5156 case SCHED_IDLE:
5157 ret = 0;
5158 }
5159 return ret;
5160 }
5161
5162 /**
5163 * sys_sched_rr_get_interval - return the default timeslice of a process.
5164 * @pid: pid of the process.
5165 * @interval: userspace pointer to the timeslice value.
5166 *
5167 * this syscall writes the default timeslice value of a given process
5168 * into the user-space timespec buffer. A value of '0' means infinity.
5169 *
5170 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5171 * an error code.
5172 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5173 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5174 struct timespec __user *, interval)
5175 {
5176 struct task_struct *p;
5177 unsigned int time_slice;
5178 struct rq_flags rf;
5179 struct timespec t;
5180 struct rq *rq;
5181 int retval;
5182
5183 if (pid < 0)
5184 return -EINVAL;
5185
5186 retval = -ESRCH;
5187 rcu_read_lock();
5188 p = find_process_by_pid(pid);
5189 if (!p)
5190 goto out_unlock;
5191
5192 retval = security_task_getscheduler(p);
5193 if (retval)
5194 goto out_unlock;
5195
5196 rq = task_rq_lock(p, &rf);
5197 time_slice = 0;
5198 if (p->sched_class->get_rr_interval)
5199 time_slice = p->sched_class->get_rr_interval(rq, p);
5200 task_rq_unlock(rq, p, &rf);
5201
5202 rcu_read_unlock();
5203 jiffies_to_timespec(time_slice, &t);
5204 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5205 return retval;
5206
5207 out_unlock:
5208 rcu_read_unlock();
5209 return retval;
5210 }
5211
sched_show_task(struct task_struct * p)5212 void sched_show_task(struct task_struct *p)
5213 {
5214 unsigned long free = 0;
5215 int ppid;
5216
5217 if (!try_get_task_stack(p))
5218 return;
5219
5220 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5221
5222 if (p->state == TASK_RUNNING)
5223 printk(KERN_CONT " running task ");
5224 #ifdef CONFIG_DEBUG_STACK_USAGE
5225 free = stack_not_used(p);
5226 #endif
5227 ppid = 0;
5228 rcu_read_lock();
5229 if (pid_alive(p))
5230 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5231 rcu_read_unlock();
5232 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5233 task_pid_nr(p), ppid,
5234 (unsigned long)task_thread_info(p)->flags);
5235
5236 print_worker_info(KERN_INFO, p);
5237 show_stack(p, NULL);
5238 put_task_stack(p);
5239 }
5240
5241 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)5242 state_filter_match(unsigned long state_filter, struct task_struct *p)
5243 {
5244 /* no filter, everything matches */
5245 if (!state_filter)
5246 return true;
5247
5248 /* filter, but doesn't match */
5249 if (!(p->state & state_filter))
5250 return false;
5251
5252 /*
5253 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5254 * TASK_KILLABLE).
5255 */
5256 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5257 return false;
5258
5259 return true;
5260 }
5261
5262
show_state_filter(unsigned long state_filter)5263 void show_state_filter(unsigned long state_filter)
5264 {
5265 struct task_struct *g, *p;
5266
5267 #if BITS_PER_LONG == 32
5268 printk(KERN_INFO
5269 " task PC stack pid father\n");
5270 #else
5271 printk(KERN_INFO
5272 " task PC stack pid father\n");
5273 #endif
5274 rcu_read_lock();
5275 for_each_process_thread(g, p) {
5276 /*
5277 * reset the NMI-timeout, listing all files on a slow
5278 * console might take a lot of time:
5279 * Also, reset softlockup watchdogs on all CPUs, because
5280 * another CPU might be blocked waiting for us to process
5281 * an IPI.
5282 */
5283 touch_nmi_watchdog();
5284 touch_all_softlockup_watchdogs();
5285 if (state_filter_match(state_filter, p))
5286 sched_show_task(p);
5287 }
5288
5289 #ifdef CONFIG_SCHED_DEBUG
5290 if (!state_filter)
5291 sysrq_sched_debug_show();
5292 #endif
5293 rcu_read_unlock();
5294 /*
5295 * Only show locks if all tasks are dumped:
5296 */
5297 if (!state_filter)
5298 debug_show_all_locks();
5299 }
5300
5301 /**
5302 * init_idle - set up an idle thread for a given CPU
5303 * @idle: task in question
5304 * @cpu: CPU the idle task belongs to
5305 *
5306 * NOTE: this function does not set the idle thread's NEED_RESCHED
5307 * flag, to make booting more robust.
5308 */
init_idle(struct task_struct * idle,int cpu)5309 void init_idle(struct task_struct *idle, int cpu)
5310 {
5311 struct rq *rq = cpu_rq(cpu);
5312 unsigned long flags;
5313
5314 __sched_fork(0, idle);
5315
5316 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5317 raw_spin_lock(&rq->lock);
5318
5319 idle->state = TASK_RUNNING;
5320 idle->se.exec_start = sched_clock();
5321 idle->flags |= PF_IDLE;
5322
5323 kasan_unpoison_task_stack(idle);
5324
5325 #ifdef CONFIG_SMP
5326 /*
5327 * Its possible that init_idle() gets called multiple times on a task,
5328 * in that case do_set_cpus_allowed() will not do the right thing.
5329 *
5330 * And since this is boot we can forgo the serialization.
5331 */
5332 set_cpus_allowed_common(idle, cpumask_of(cpu));
5333 #endif
5334 /*
5335 * We're having a chicken and egg problem, even though we are
5336 * holding rq->lock, the CPU isn't yet set to this CPU so the
5337 * lockdep check in task_group() will fail.
5338 *
5339 * Similar case to sched_fork(). / Alternatively we could
5340 * use task_rq_lock() here and obtain the other rq->lock.
5341 *
5342 * Silence PROVE_RCU
5343 */
5344 rcu_read_lock();
5345 __set_task_cpu(idle, cpu);
5346 rcu_read_unlock();
5347
5348 rq->curr = rq->idle = idle;
5349 idle->on_rq = TASK_ON_RQ_QUEUED;
5350 #ifdef CONFIG_SMP
5351 idle->on_cpu = 1;
5352 #endif
5353 raw_spin_unlock(&rq->lock);
5354 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5355
5356 /* Set the preempt count _outside_ the spinlocks! */
5357 init_idle_preempt_count(idle, cpu);
5358
5359 /*
5360 * The idle tasks have their own, simple scheduling class:
5361 */
5362 idle->sched_class = &idle_sched_class;
5363 ftrace_graph_init_idle_task(idle, cpu);
5364 vtime_init_idle(idle, cpu);
5365 #ifdef CONFIG_SMP
5366 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5367 #endif
5368 }
5369
5370 #ifdef CONFIG_SMP
5371
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5372 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5373 const struct cpumask *trial)
5374 {
5375 int ret = 1;
5376
5377 if (!cpumask_weight(cur))
5378 return ret;
5379
5380 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5381
5382 return ret;
5383 }
5384
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5385 int task_can_attach(struct task_struct *p,
5386 const struct cpumask *cs_cpus_allowed)
5387 {
5388 int ret = 0;
5389
5390 /*
5391 * Kthreads which disallow setaffinity shouldn't be moved
5392 * to a new cpuset; we don't want to change their CPU
5393 * affinity and isolating such threads by their set of
5394 * allowed nodes is unnecessary. Thus, cpusets are not
5395 * applicable for such threads. This prevents checking for
5396 * success of set_cpus_allowed_ptr() on all attached tasks
5397 * before cpus_allowed may be changed.
5398 */
5399 if (p->flags & PF_NO_SETAFFINITY) {
5400 ret = -EINVAL;
5401 goto out;
5402 }
5403
5404 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5405 cs_cpus_allowed))
5406 ret = dl_task_can_attach(p, cs_cpus_allowed);
5407
5408 out:
5409 return ret;
5410 }
5411
5412 bool sched_smp_initialized __read_mostly;
5413
5414 #ifdef CONFIG_NUMA_BALANCING
5415 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5416 int migrate_task_to(struct task_struct *p, int target_cpu)
5417 {
5418 struct migration_arg arg = { p, target_cpu };
5419 int curr_cpu = task_cpu(p);
5420
5421 if (curr_cpu == target_cpu)
5422 return 0;
5423
5424 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5425 return -EINVAL;
5426
5427 /* TODO: This is not properly updating schedstats */
5428
5429 trace_sched_move_numa(p, curr_cpu, target_cpu);
5430 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5431 }
5432
5433 /*
5434 * Requeue a task on a given node and accurately track the number of NUMA
5435 * tasks on the runqueues
5436 */
sched_setnuma(struct task_struct * p,int nid)5437 void sched_setnuma(struct task_struct *p, int nid)
5438 {
5439 bool queued, running;
5440 struct rq_flags rf;
5441 struct rq *rq;
5442
5443 rq = task_rq_lock(p, &rf);
5444 queued = task_on_rq_queued(p);
5445 running = task_current(rq, p);
5446
5447 if (queued)
5448 dequeue_task(rq, p, DEQUEUE_SAVE);
5449 if (running)
5450 put_prev_task(rq, p);
5451
5452 p->numa_preferred_nid = nid;
5453
5454 if (queued)
5455 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5456 if (running)
5457 set_curr_task(rq, p);
5458 task_rq_unlock(rq, p, &rf);
5459 }
5460 #endif /* CONFIG_NUMA_BALANCING */
5461
5462 #ifdef CONFIG_HOTPLUG_CPU
5463 /*
5464 * Ensure that the idle task is using init_mm right before its CPU goes
5465 * offline.
5466 */
idle_task_exit(void)5467 void idle_task_exit(void)
5468 {
5469 struct mm_struct *mm = current->active_mm;
5470
5471 BUG_ON(cpu_online(smp_processor_id()));
5472
5473 if (mm != &init_mm) {
5474 switch_mm(mm, &init_mm, current);
5475 finish_arch_post_lock_switch();
5476 }
5477 mmdrop(mm);
5478 }
5479
5480 /*
5481 * Since this CPU is going 'away' for a while, fold any nr_active delta
5482 * we might have. Assumes we're called after migrate_tasks() so that the
5483 * nr_active count is stable. We need to take the teardown thread which
5484 * is calling this into account, so we hand in adjust = 1 to the load
5485 * calculation.
5486 *
5487 * Also see the comment "Global load-average calculations".
5488 */
calc_load_migrate(struct rq * rq)5489 static void calc_load_migrate(struct rq *rq)
5490 {
5491 long delta = calc_load_fold_active(rq, 1);
5492 if (delta)
5493 atomic_long_add(delta, &calc_load_tasks);
5494 }
5495
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5496 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5497 {
5498 }
5499
5500 static const struct sched_class fake_sched_class = {
5501 .put_prev_task = put_prev_task_fake,
5502 };
5503
5504 static struct task_struct fake_task = {
5505 /*
5506 * Avoid pull_{rt,dl}_task()
5507 */
5508 .prio = MAX_PRIO + 1,
5509 .sched_class = &fake_sched_class,
5510 };
5511
5512 /*
5513 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5514 * try_to_wake_up()->select_task_rq().
5515 *
5516 * Called with rq->lock held even though we'er in stop_machine() and
5517 * there's no concurrency possible, we hold the required locks anyway
5518 * because of lock validation efforts.
5519 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)5520 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5521 {
5522 struct rq *rq = dead_rq;
5523 struct task_struct *next, *stop = rq->stop;
5524 struct rq_flags orf = *rf;
5525 int dest_cpu;
5526
5527 /*
5528 * Fudge the rq selection such that the below task selection loop
5529 * doesn't get stuck on the currently eligible stop task.
5530 *
5531 * We're currently inside stop_machine() and the rq is either stuck
5532 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5533 * either way we should never end up calling schedule() until we're
5534 * done here.
5535 */
5536 rq->stop = NULL;
5537
5538 /*
5539 * put_prev_task() and pick_next_task() sched
5540 * class method both need to have an up-to-date
5541 * value of rq->clock[_task]
5542 */
5543 update_rq_clock(rq);
5544
5545 for (;;) {
5546 /*
5547 * There's this thread running, bail when that's the only
5548 * remaining thread:
5549 */
5550 if (rq->nr_running == 1)
5551 break;
5552
5553 /*
5554 * pick_next_task() assumes pinned rq->lock:
5555 */
5556 next = pick_next_task(rq, &fake_task, rf);
5557 BUG_ON(!next);
5558 put_prev_task(rq, next);
5559
5560 /*
5561 * Rules for changing task_struct::cpus_allowed are holding
5562 * both pi_lock and rq->lock, such that holding either
5563 * stabilizes the mask.
5564 *
5565 * Drop rq->lock is not quite as disastrous as it usually is
5566 * because !cpu_active at this point, which means load-balance
5567 * will not interfere. Also, stop-machine.
5568 */
5569 rq_unlock(rq, rf);
5570 raw_spin_lock(&next->pi_lock);
5571 rq_relock(rq, rf);
5572
5573 /*
5574 * Since we're inside stop-machine, _nothing_ should have
5575 * changed the task, WARN if weird stuff happened, because in
5576 * that case the above rq->lock drop is a fail too.
5577 */
5578 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5579 raw_spin_unlock(&next->pi_lock);
5580 continue;
5581 }
5582
5583 /* Find suitable destination for @next, with force if needed. */
5584 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5585 rq = __migrate_task(rq, rf, next, dest_cpu);
5586 if (rq != dead_rq) {
5587 rq_unlock(rq, rf);
5588 rq = dead_rq;
5589 *rf = orf;
5590 rq_relock(rq, rf);
5591 }
5592 raw_spin_unlock(&next->pi_lock);
5593 }
5594
5595 rq->stop = stop;
5596 }
5597 #endif /* CONFIG_HOTPLUG_CPU */
5598
set_rq_online(struct rq * rq)5599 void set_rq_online(struct rq *rq)
5600 {
5601 if (!rq->online) {
5602 const struct sched_class *class;
5603
5604 cpumask_set_cpu(rq->cpu, rq->rd->online);
5605 rq->online = 1;
5606
5607 for_each_class(class) {
5608 if (class->rq_online)
5609 class->rq_online(rq);
5610 }
5611 }
5612 }
5613
set_rq_offline(struct rq * rq)5614 void set_rq_offline(struct rq *rq)
5615 {
5616 if (rq->online) {
5617 const struct sched_class *class;
5618
5619 for_each_class(class) {
5620 if (class->rq_offline)
5621 class->rq_offline(rq);
5622 }
5623
5624 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5625 rq->online = 0;
5626 }
5627 }
5628
set_cpu_rq_start_time(unsigned int cpu)5629 static void set_cpu_rq_start_time(unsigned int cpu)
5630 {
5631 struct rq *rq = cpu_rq(cpu);
5632
5633 rq->age_stamp = sched_clock_cpu(cpu);
5634 }
5635
5636 /*
5637 * used to mark begin/end of suspend/resume:
5638 */
5639 static int num_cpus_frozen;
5640
5641 /*
5642 * Update cpusets according to cpu_active mask. If cpusets are
5643 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5644 * around partition_sched_domains().
5645 *
5646 * If we come here as part of a suspend/resume, don't touch cpusets because we
5647 * want to restore it back to its original state upon resume anyway.
5648 */
cpuset_cpu_active(void)5649 static void cpuset_cpu_active(void)
5650 {
5651 if (cpuhp_tasks_frozen) {
5652 /*
5653 * num_cpus_frozen tracks how many CPUs are involved in suspend
5654 * resume sequence. As long as this is not the last online
5655 * operation in the resume sequence, just build a single sched
5656 * domain, ignoring cpusets.
5657 */
5658 partition_sched_domains(1, NULL, NULL);
5659 if (--num_cpus_frozen)
5660 return;
5661 /*
5662 * This is the last CPU online operation. So fall through and
5663 * restore the original sched domains by considering the
5664 * cpuset configurations.
5665 */
5666 cpuset_force_rebuild();
5667 }
5668 cpuset_update_active_cpus();
5669 }
5670
cpuset_cpu_inactive(unsigned int cpu)5671 static int cpuset_cpu_inactive(unsigned int cpu)
5672 {
5673 if (!cpuhp_tasks_frozen) {
5674 if (dl_cpu_busy(cpu))
5675 return -EBUSY;
5676 cpuset_update_active_cpus();
5677 } else {
5678 num_cpus_frozen++;
5679 partition_sched_domains(1, NULL, NULL);
5680 }
5681 return 0;
5682 }
5683
sched_cpu_activate(unsigned int cpu)5684 int sched_cpu_activate(unsigned int cpu)
5685 {
5686 struct rq *rq = cpu_rq(cpu);
5687 struct rq_flags rf;
5688
5689 #ifdef CONFIG_SCHED_SMT
5690 /*
5691 * When going up, increment the number of cores with SMT present.
5692 */
5693 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5694 static_branch_inc_cpuslocked(&sched_smt_present);
5695 #endif
5696 set_cpu_active(cpu, true);
5697
5698 if (sched_smp_initialized) {
5699 sched_domains_numa_masks_set(cpu);
5700 cpuset_cpu_active();
5701 }
5702
5703 /*
5704 * Put the rq online, if not already. This happens:
5705 *
5706 * 1) In the early boot process, because we build the real domains
5707 * after all CPUs have been brought up.
5708 *
5709 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5710 * domains.
5711 */
5712 rq_lock_irqsave(rq, &rf);
5713 if (rq->rd) {
5714 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5715 set_rq_online(rq);
5716 }
5717 rq_unlock_irqrestore(rq, &rf);
5718
5719 update_max_interval();
5720
5721 return 0;
5722 }
5723
sched_cpu_deactivate(unsigned int cpu)5724 int sched_cpu_deactivate(unsigned int cpu)
5725 {
5726 int ret;
5727
5728 set_cpu_active(cpu, false);
5729 /*
5730 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5731 * users of this state to go away such that all new such users will
5732 * observe it.
5733 *
5734 * Do sync before park smpboot threads to take care the rcu boost case.
5735 */
5736 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5737
5738 #ifdef CONFIG_SCHED_SMT
5739 /*
5740 * When going down, decrement the number of cores with SMT present.
5741 */
5742 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5743 static_branch_dec_cpuslocked(&sched_smt_present);
5744 #endif
5745
5746 if (!sched_smp_initialized)
5747 return 0;
5748
5749 ret = cpuset_cpu_inactive(cpu);
5750 if (ret) {
5751 set_cpu_active(cpu, true);
5752 return ret;
5753 }
5754 sched_domains_numa_masks_clear(cpu);
5755 return 0;
5756 }
5757
sched_rq_cpu_starting(unsigned int cpu)5758 static void sched_rq_cpu_starting(unsigned int cpu)
5759 {
5760 struct rq *rq = cpu_rq(cpu);
5761
5762 rq->calc_load_update = calc_load_update;
5763 update_max_interval();
5764 }
5765
sched_cpu_starting(unsigned int cpu)5766 int sched_cpu_starting(unsigned int cpu)
5767 {
5768 set_cpu_rq_start_time(cpu);
5769 sched_rq_cpu_starting(cpu);
5770 return 0;
5771 }
5772
5773 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)5774 int sched_cpu_dying(unsigned int cpu)
5775 {
5776 struct rq *rq = cpu_rq(cpu);
5777 struct rq_flags rf;
5778
5779 /* Handle pending wakeups and then migrate everything off */
5780 sched_ttwu_pending();
5781
5782 rq_lock_irqsave(rq, &rf);
5783
5784 walt_migrate_sync_cpu(cpu);
5785
5786 if (rq->rd) {
5787 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5788 set_rq_offline(rq);
5789 }
5790 migrate_tasks(rq, &rf);
5791 BUG_ON(rq->nr_running != 1);
5792 rq_unlock_irqrestore(rq, &rf);
5793
5794 calc_load_migrate(rq);
5795 update_max_interval();
5796 nohz_balance_exit_idle(cpu);
5797 hrtick_clear(rq);
5798 return 0;
5799 }
5800 #endif
5801
sched_init_smp(void)5802 void __init sched_init_smp(void)
5803 {
5804 cpumask_var_t non_isolated_cpus;
5805
5806 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5807
5808 sched_init_numa();
5809
5810 /*
5811 * There's no userspace yet to cause hotplug operations; hence all the
5812 * CPU masks are stable and all blatant races in the below code cannot
5813 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5814 * but there won't be any contention on it.
5815 */
5816 cpus_read_lock();
5817 mutex_lock(&sched_domains_mutex);
5818 sched_init_domains(cpu_active_mask);
5819 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5820 if (cpumask_empty(non_isolated_cpus))
5821 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5822 mutex_unlock(&sched_domains_mutex);
5823 cpus_read_unlock();
5824
5825 /* Move init over to a non-isolated CPU */
5826 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5827 BUG();
5828 sched_init_granularity();
5829 free_cpumask_var(non_isolated_cpus);
5830
5831 init_sched_rt_class();
5832 init_sched_dl_class();
5833
5834 sched_smp_initialized = true;
5835 }
5836
migration_init(void)5837 static int __init migration_init(void)
5838 {
5839 sched_rq_cpu_starting(smp_processor_id());
5840 return 0;
5841 }
5842 early_initcall(migration_init);
5843
5844 #else
sched_init_smp(void)5845 void __init sched_init_smp(void)
5846 {
5847 sched_init_granularity();
5848 }
5849 #endif /* CONFIG_SMP */
5850
in_sched_functions(unsigned long addr)5851 int in_sched_functions(unsigned long addr)
5852 {
5853 return in_lock_functions(addr) ||
5854 (addr >= (unsigned long)__sched_text_start
5855 && addr < (unsigned long)__sched_text_end);
5856 }
5857
5858 #ifdef CONFIG_CGROUP_SCHED
5859 /*
5860 * Default task group.
5861 * Every task in system belongs to this group at bootup.
5862 */
5863 struct task_group root_task_group;
5864 LIST_HEAD(task_groups);
5865
5866 /* Cacheline aligned slab cache for task_group */
5867 static struct kmem_cache *task_group_cache __read_mostly;
5868 #endif
5869
5870 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5871 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5872
sched_init(void)5873 void __init sched_init(void)
5874 {
5875 int i, j;
5876 unsigned long alloc_size = 0, ptr;
5877
5878 sched_clock_init();
5879 wait_bit_init();
5880
5881 #ifdef CONFIG_FAIR_GROUP_SCHED
5882 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5883 #endif
5884 #ifdef CONFIG_RT_GROUP_SCHED
5885 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5886 #endif
5887 if (alloc_size) {
5888 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5889
5890 #ifdef CONFIG_FAIR_GROUP_SCHED
5891 root_task_group.se = (struct sched_entity **)ptr;
5892 ptr += nr_cpu_ids * sizeof(void **);
5893
5894 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5895 ptr += nr_cpu_ids * sizeof(void **);
5896
5897 #endif /* CONFIG_FAIR_GROUP_SCHED */
5898 #ifdef CONFIG_RT_GROUP_SCHED
5899 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5900 ptr += nr_cpu_ids * sizeof(void **);
5901
5902 root_task_group.rt_rq = (struct rt_rq **)ptr;
5903 ptr += nr_cpu_ids * sizeof(void **);
5904
5905 #endif /* CONFIG_RT_GROUP_SCHED */
5906 }
5907 #ifdef CONFIG_CPUMASK_OFFSTACK
5908 for_each_possible_cpu(i) {
5909 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5910 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5911 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5912 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5913 }
5914 #endif /* CONFIG_CPUMASK_OFFSTACK */
5915
5916 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5917 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5918
5919 #ifdef CONFIG_SMP
5920 init_defrootdomain();
5921 #endif
5922
5923 #ifdef CONFIG_RT_GROUP_SCHED
5924 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5925 global_rt_period(), global_rt_runtime());
5926 #endif /* CONFIG_RT_GROUP_SCHED */
5927
5928 #ifdef CONFIG_CGROUP_SCHED
5929 task_group_cache = KMEM_CACHE(task_group, 0);
5930
5931 list_add(&root_task_group.list, &task_groups);
5932 INIT_LIST_HEAD(&root_task_group.children);
5933 INIT_LIST_HEAD(&root_task_group.siblings);
5934 autogroup_init(&init_task);
5935 #endif /* CONFIG_CGROUP_SCHED */
5936
5937 for_each_possible_cpu(i) {
5938 struct rq *rq;
5939
5940 rq = cpu_rq(i);
5941 raw_spin_lock_init(&rq->lock);
5942 rq->nr_running = 0;
5943 rq->calc_load_active = 0;
5944 rq->calc_load_update = jiffies + LOAD_FREQ;
5945 init_cfs_rq(&rq->cfs);
5946 init_rt_rq(&rq->rt);
5947 init_dl_rq(&rq->dl);
5948 #ifdef CONFIG_FAIR_GROUP_SCHED
5949 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5950 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5951 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5952 /*
5953 * How much CPU bandwidth does root_task_group get?
5954 *
5955 * In case of task-groups formed thr' the cgroup filesystem, it
5956 * gets 100% of the CPU resources in the system. This overall
5957 * system CPU resource is divided among the tasks of
5958 * root_task_group and its child task-groups in a fair manner,
5959 * based on each entity's (task or task-group's) weight
5960 * (se->load.weight).
5961 *
5962 * In other words, if root_task_group has 10 tasks of weight
5963 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5964 * then A0's share of the CPU resource is:
5965 *
5966 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5967 *
5968 * We achieve this by letting root_task_group's tasks sit
5969 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5970 */
5971 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5973 #endif /* CONFIG_FAIR_GROUP_SCHED */
5974
5975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5976 #ifdef CONFIG_RT_GROUP_SCHED
5977 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5978 #endif
5979
5980 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5981 rq->cpu_load[j] = 0;
5982
5983 #ifdef CONFIG_SMP
5984 rq->sd = NULL;
5985 rq->rd = NULL;
5986 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5987 rq->balance_callback = NULL;
5988 rq->active_balance = 0;
5989 rq->next_balance = jiffies;
5990 rq->push_cpu = 0;
5991 rq->cpu = i;
5992 rq->online = 0;
5993 rq->idle_stamp = 0;
5994 rq->avg_idle = 2*sysctl_sched_migration_cost;
5995 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5996 #ifdef CONFIG_SCHED_WALT
5997 rq->cur_irqload = 0;
5998 rq->avg_irqload = 0;
5999 rq->irqload_ts = 0;
6000 #endif
6001
6002 INIT_LIST_HEAD(&rq->cfs_tasks);
6003
6004 rq_attach_root(rq, &def_root_domain);
6005 #ifdef CONFIG_NO_HZ_COMMON
6006 rq->last_load_update_tick = jiffies;
6007 rq->last_blocked_load_update_tick = jiffies;
6008 rq->nohz_flags = 0;
6009 #endif
6010 #ifdef CONFIG_NO_HZ_FULL
6011 rq->last_sched_tick = 0;
6012 #endif
6013 #endif /* CONFIG_SMP */
6014 init_rq_hrtick(rq);
6015 atomic_set(&rq->nr_iowait, 0);
6016 }
6017
6018 set_load_weight(&init_task);
6019
6020 /*
6021 * The boot idle thread does lazy MMU switching as well:
6022 */
6023 mmgrab(&init_mm);
6024 enter_lazy_tlb(&init_mm, current);
6025
6026 /*
6027 * Make us the idle thread. Technically, schedule() should not be
6028 * called from this thread, however somewhere below it might be,
6029 * but because we are the idle thread, we just pick up running again
6030 * when this runqueue becomes "idle".
6031 */
6032 init_idle(current, smp_processor_id());
6033
6034 calc_load_update = jiffies + LOAD_FREQ;
6035
6036 #ifdef CONFIG_SMP
6037 /* May be allocated at isolcpus cmdline parse time */
6038 if (cpu_isolated_map == NULL)
6039 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6040 idle_thread_set_boot_cpu();
6041 set_cpu_rq_start_time(smp_processor_id());
6042 #endif
6043 init_sched_fair_class();
6044
6045 init_schedstats();
6046
6047 psi_init();
6048
6049 scheduler_running = 1;
6050 }
6051
6052 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)6053 static inline int preempt_count_equals(int preempt_offset)
6054 {
6055 int nested = preempt_count() + rcu_preempt_depth();
6056
6057 return (nested == preempt_offset);
6058 }
6059
__might_sleep(const char * file,int line,int preempt_offset)6060 void __might_sleep(const char *file, int line, int preempt_offset)
6061 {
6062 /*
6063 * Blocking primitives will set (and therefore destroy) current->state,
6064 * since we will exit with TASK_RUNNING make sure we enter with it,
6065 * otherwise we will destroy state.
6066 */
6067 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6068 "do not call blocking ops when !TASK_RUNNING; "
6069 "state=%lx set at [<%p>] %pS\n",
6070 current->state,
6071 (void *)current->task_state_change,
6072 (void *)current->task_state_change);
6073
6074 ___might_sleep(file, line, preempt_offset);
6075 }
6076 EXPORT_SYMBOL(__might_sleep);
6077
___might_sleep(const char * file,int line,int preempt_offset)6078 void ___might_sleep(const char *file, int line, int preempt_offset)
6079 {
6080 /* Ratelimiting timestamp: */
6081 static unsigned long prev_jiffy;
6082
6083 unsigned long preempt_disable_ip;
6084
6085 /* WARN_ON_ONCE() by default, no rate limit required: */
6086 rcu_sleep_check();
6087
6088 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6089 !is_idle_task(current)) ||
6090 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6091 oops_in_progress)
6092 return;
6093
6094 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6095 return;
6096 prev_jiffy = jiffies;
6097
6098 /* Save this before calling printk(), since that will clobber it: */
6099 preempt_disable_ip = get_preempt_disable_ip(current);
6100
6101 printk(KERN_ERR
6102 "BUG: sleeping function called from invalid context at %s:%d\n",
6103 file, line);
6104 printk(KERN_ERR
6105 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6106 in_atomic(), irqs_disabled(),
6107 current->pid, current->comm);
6108
6109 if (task_stack_end_corrupted(current))
6110 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6111
6112 debug_show_held_locks(current);
6113 if (irqs_disabled())
6114 print_irqtrace_events(current);
6115 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6116 && !preempt_count_equals(preempt_offset)) {
6117 pr_err("Preemption disabled at:");
6118 print_ip_sym(preempt_disable_ip);
6119 pr_cont("\n");
6120 }
6121 dump_stack();
6122 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6123 }
6124 EXPORT_SYMBOL(___might_sleep);
6125 #endif
6126
6127 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)6128 void normalize_rt_tasks(void)
6129 {
6130 struct task_struct *g, *p;
6131 struct sched_attr attr = {
6132 .sched_policy = SCHED_NORMAL,
6133 };
6134
6135 read_lock(&tasklist_lock);
6136 for_each_process_thread(g, p) {
6137 /*
6138 * Only normalize user tasks:
6139 */
6140 if (p->flags & PF_KTHREAD)
6141 continue;
6142
6143 p->se.exec_start = 0;
6144 schedstat_set(p->se.statistics.wait_start, 0);
6145 schedstat_set(p->se.statistics.sleep_start, 0);
6146 schedstat_set(p->se.statistics.block_start, 0);
6147
6148 if (!dl_task(p) && !rt_task(p)) {
6149 /*
6150 * Renice negative nice level userspace
6151 * tasks back to 0:
6152 */
6153 if (task_nice(p) < 0)
6154 set_user_nice(p, 0);
6155 continue;
6156 }
6157
6158 __sched_setscheduler(p, &attr, false, false);
6159 }
6160 read_unlock(&tasklist_lock);
6161 }
6162
6163 #endif /* CONFIG_MAGIC_SYSRQ */
6164
6165 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6166 /*
6167 * These functions are only useful for the IA64 MCA handling, or kdb.
6168 *
6169 * They can only be called when the whole system has been
6170 * stopped - every CPU needs to be quiescent, and no scheduling
6171 * activity can take place. Using them for anything else would
6172 * be a serious bug, and as a result, they aren't even visible
6173 * under any other configuration.
6174 */
6175
6176 /**
6177 * curr_task - return the current task for a given CPU.
6178 * @cpu: the processor in question.
6179 *
6180 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6181 *
6182 * Return: The current task for @cpu.
6183 */
curr_task(int cpu)6184 struct task_struct *curr_task(int cpu)
6185 {
6186 return cpu_curr(cpu);
6187 }
6188
6189 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6190
6191 #ifdef CONFIG_IA64
6192 /**
6193 * set_curr_task - set the current task for a given CPU.
6194 * @cpu: the processor in question.
6195 * @p: the task pointer to set.
6196 *
6197 * Description: This function must only be used when non-maskable interrupts
6198 * are serviced on a separate stack. It allows the architecture to switch the
6199 * notion of the current task on a CPU in a non-blocking manner. This function
6200 * must be called with all CPU's synchronized, and interrupts disabled, the
6201 * and caller must save the original value of the current task (see
6202 * curr_task() above) and restore that value before reenabling interrupts and
6203 * re-starting the system.
6204 *
6205 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6206 */
ia64_set_curr_task(int cpu,struct task_struct * p)6207 void ia64_set_curr_task(int cpu, struct task_struct *p)
6208 {
6209 cpu_curr(cpu) = p;
6210 }
6211
6212 #endif
6213
6214 #ifdef CONFIG_CGROUP_SCHED
6215 /* task_group_lock serializes the addition/removal of task groups */
6216 static DEFINE_SPINLOCK(task_group_lock);
6217
sched_free_group(struct task_group * tg)6218 static void sched_free_group(struct task_group *tg)
6219 {
6220 free_fair_sched_group(tg);
6221 free_rt_sched_group(tg);
6222 autogroup_free(tg);
6223 kmem_cache_free(task_group_cache, tg);
6224 }
6225
6226 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)6227 struct task_group *sched_create_group(struct task_group *parent)
6228 {
6229 struct task_group *tg;
6230
6231 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6232 if (!tg)
6233 return ERR_PTR(-ENOMEM);
6234
6235 if (!alloc_fair_sched_group(tg, parent))
6236 goto err;
6237
6238 if (!alloc_rt_sched_group(tg, parent))
6239 goto err;
6240
6241 return tg;
6242
6243 err:
6244 sched_free_group(tg);
6245 return ERR_PTR(-ENOMEM);
6246 }
6247
sched_online_group(struct task_group * tg,struct task_group * parent)6248 void sched_online_group(struct task_group *tg, struct task_group *parent)
6249 {
6250 unsigned long flags;
6251
6252 spin_lock_irqsave(&task_group_lock, flags);
6253 list_add_rcu(&tg->list, &task_groups);
6254
6255 /* Root should already exist: */
6256 WARN_ON(!parent);
6257
6258 tg->parent = parent;
6259 INIT_LIST_HEAD(&tg->children);
6260 list_add_rcu(&tg->siblings, &parent->children);
6261 spin_unlock_irqrestore(&task_group_lock, flags);
6262
6263 online_fair_sched_group(tg);
6264 }
6265
6266 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)6267 static void sched_free_group_rcu(struct rcu_head *rhp)
6268 {
6269 /* Now it should be safe to free those cfs_rqs: */
6270 sched_free_group(container_of(rhp, struct task_group, rcu));
6271 }
6272
sched_destroy_group(struct task_group * tg)6273 void sched_destroy_group(struct task_group *tg)
6274 {
6275 /* Wait for possible concurrent references to cfs_rqs complete: */
6276 call_rcu(&tg->rcu, sched_free_group_rcu);
6277 }
6278
sched_offline_group(struct task_group * tg)6279 void sched_offline_group(struct task_group *tg)
6280 {
6281 unsigned long flags;
6282
6283 /* End participation in shares distribution: */
6284 unregister_fair_sched_group(tg);
6285
6286 spin_lock_irqsave(&task_group_lock, flags);
6287 list_del_rcu(&tg->list);
6288 list_del_rcu(&tg->siblings);
6289 spin_unlock_irqrestore(&task_group_lock, flags);
6290 }
6291
sched_change_group(struct task_struct * tsk,int type)6292 static void sched_change_group(struct task_struct *tsk, int type)
6293 {
6294 struct task_group *tg;
6295
6296 /*
6297 * All callers are synchronized by task_rq_lock(); we do not use RCU
6298 * which is pointless here. Thus, we pass "true" to task_css_check()
6299 * to prevent lockdep warnings.
6300 */
6301 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6302 struct task_group, css);
6303 tg = autogroup_task_group(tsk, tg);
6304 tsk->sched_task_group = tg;
6305
6306 #ifdef CONFIG_FAIR_GROUP_SCHED
6307 if (tsk->sched_class->task_change_group)
6308 tsk->sched_class->task_change_group(tsk, type);
6309 else
6310 #endif
6311 set_task_rq(tsk, task_cpu(tsk));
6312 }
6313
6314 /*
6315 * Change task's runqueue when it moves between groups.
6316 *
6317 * The caller of this function should have put the task in its new group by
6318 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6319 * its new group.
6320 */
sched_move_task(struct task_struct * tsk)6321 void sched_move_task(struct task_struct *tsk)
6322 {
6323 int queued, running, queue_flags =
6324 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6325 struct rq_flags rf;
6326 struct rq *rq;
6327
6328 rq = task_rq_lock(tsk, &rf);
6329 update_rq_clock(rq);
6330
6331 running = task_current(rq, tsk);
6332 queued = task_on_rq_queued(tsk);
6333
6334 if (queued)
6335 dequeue_task(rq, tsk, queue_flags);
6336 if (running)
6337 put_prev_task(rq, tsk);
6338
6339 sched_change_group(tsk, TASK_MOVE_GROUP);
6340
6341 if (queued)
6342 enqueue_task(rq, tsk, queue_flags);
6343 if (running)
6344 set_curr_task(rq, tsk);
6345
6346 task_rq_unlock(rq, tsk, &rf);
6347 }
6348
css_tg(struct cgroup_subsys_state * css)6349 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6350 {
6351 return css ? container_of(css, struct task_group, css) : NULL;
6352 }
6353
6354 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)6355 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6356 {
6357 struct task_group *parent = css_tg(parent_css);
6358 struct task_group *tg;
6359
6360 if (!parent) {
6361 /* This is early initialization for the top cgroup */
6362 return &root_task_group.css;
6363 }
6364
6365 tg = sched_create_group(parent);
6366 if (IS_ERR(tg))
6367 return ERR_PTR(-ENOMEM);
6368
6369 return &tg->css;
6370 }
6371
6372 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)6373 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6374 {
6375 struct task_group *tg = css_tg(css);
6376 struct task_group *parent = css_tg(css->parent);
6377
6378 if (parent)
6379 sched_online_group(tg, parent);
6380 return 0;
6381 }
6382
cpu_cgroup_css_released(struct cgroup_subsys_state * css)6383 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6384 {
6385 struct task_group *tg = css_tg(css);
6386
6387 sched_offline_group(tg);
6388 }
6389
cpu_cgroup_css_free(struct cgroup_subsys_state * css)6390 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6391 {
6392 struct task_group *tg = css_tg(css);
6393
6394 /*
6395 * Relies on the RCU grace period between css_released() and this.
6396 */
6397 sched_free_group(tg);
6398 }
6399
6400 /*
6401 * This is called before wake_up_new_task(), therefore we really only
6402 * have to set its group bits, all the other stuff does not apply.
6403 */
cpu_cgroup_fork(struct task_struct * task)6404 static void cpu_cgroup_fork(struct task_struct *task)
6405 {
6406 struct rq_flags rf;
6407 struct rq *rq;
6408
6409 rq = task_rq_lock(task, &rf);
6410
6411 update_rq_clock(rq);
6412 sched_change_group(task, TASK_SET_GROUP);
6413
6414 task_rq_unlock(rq, task, &rf);
6415 }
6416
cpu_cgroup_can_attach(struct cgroup_taskset * tset)6417 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6418 {
6419 struct task_struct *task;
6420 struct cgroup_subsys_state *css;
6421 int ret = 0;
6422
6423 cgroup_taskset_for_each(task, css, tset) {
6424 #ifdef CONFIG_RT_GROUP_SCHED
6425 if (!sched_rt_can_attach(css_tg(css), task))
6426 return -EINVAL;
6427 #endif
6428 /*
6429 * Serialize against wake_up_new_task() such that if its
6430 * running, we're sure to observe its full state.
6431 */
6432 raw_spin_lock_irq(&task->pi_lock);
6433 /*
6434 * Avoid calling sched_move_task() before wake_up_new_task()
6435 * has happened. This would lead to problems with PELT, due to
6436 * move wanting to detach+attach while we're not attached yet.
6437 */
6438 if (task->state == TASK_NEW)
6439 ret = -EINVAL;
6440 raw_spin_unlock_irq(&task->pi_lock);
6441
6442 if (ret)
6443 break;
6444 }
6445 return ret;
6446 }
6447
cpu_cgroup_attach(struct cgroup_taskset * tset)6448 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6449 {
6450 struct task_struct *task;
6451 struct cgroup_subsys_state *css;
6452
6453 cgroup_taskset_for_each(task, css, tset)
6454 sched_move_task(task);
6455 }
6456
6457 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)6458 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6459 struct cftype *cftype, u64 shareval)
6460 {
6461 if (shareval > scale_load_down(ULONG_MAX))
6462 shareval = MAX_SHARES;
6463 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6464 }
6465
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)6466 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6467 struct cftype *cft)
6468 {
6469 struct task_group *tg = css_tg(css);
6470
6471 return (u64) scale_load_down(tg->shares);
6472 }
6473
6474 #ifdef CONFIG_CFS_BANDWIDTH
6475 static DEFINE_MUTEX(cfs_constraints_mutex);
6476
6477 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6478 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6479
6480 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6481
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)6482 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6483 {
6484 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6485 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6486
6487 if (tg == &root_task_group)
6488 return -EINVAL;
6489
6490 /*
6491 * Ensure we have at some amount of bandwidth every period. This is
6492 * to prevent reaching a state of large arrears when throttled via
6493 * entity_tick() resulting in prolonged exit starvation.
6494 */
6495 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6496 return -EINVAL;
6497
6498 /*
6499 * Likewise, bound things on the otherside by preventing insane quota
6500 * periods. This also allows us to normalize in computing quota
6501 * feasibility.
6502 */
6503 if (period > max_cfs_quota_period)
6504 return -EINVAL;
6505
6506 /*
6507 * Prevent race between setting of cfs_rq->runtime_enabled and
6508 * unthrottle_offline_cfs_rqs().
6509 */
6510 get_online_cpus();
6511 mutex_lock(&cfs_constraints_mutex);
6512 ret = __cfs_schedulable(tg, period, quota);
6513 if (ret)
6514 goto out_unlock;
6515
6516 runtime_enabled = quota != RUNTIME_INF;
6517 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6518 /*
6519 * If we need to toggle cfs_bandwidth_used, off->on must occur
6520 * before making related changes, and on->off must occur afterwards
6521 */
6522 if (runtime_enabled && !runtime_was_enabled)
6523 cfs_bandwidth_usage_inc();
6524 raw_spin_lock_irq(&cfs_b->lock);
6525 cfs_b->period = ns_to_ktime(period);
6526 cfs_b->quota = quota;
6527
6528 __refill_cfs_bandwidth_runtime(cfs_b);
6529
6530 /* Restart the period timer (if active) to handle new period expiry: */
6531 if (runtime_enabled)
6532 start_cfs_bandwidth(cfs_b);
6533
6534 raw_spin_unlock_irq(&cfs_b->lock);
6535
6536 for_each_online_cpu(i) {
6537 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6538 struct rq *rq = cfs_rq->rq;
6539 struct rq_flags rf;
6540
6541 rq_lock_irq(rq, &rf);
6542 cfs_rq->runtime_enabled = runtime_enabled;
6543 cfs_rq->runtime_remaining = 0;
6544
6545 if (cfs_rq->throttled)
6546 unthrottle_cfs_rq(cfs_rq);
6547 rq_unlock_irq(rq, &rf);
6548 }
6549 if (runtime_was_enabled && !runtime_enabled)
6550 cfs_bandwidth_usage_dec();
6551 out_unlock:
6552 mutex_unlock(&cfs_constraints_mutex);
6553 put_online_cpus();
6554
6555 return ret;
6556 }
6557
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)6558 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6559 {
6560 u64 quota, period;
6561
6562 period = ktime_to_ns(tg->cfs_bandwidth.period);
6563 if (cfs_quota_us < 0)
6564 quota = RUNTIME_INF;
6565 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
6566 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6567 else
6568 return -EINVAL;
6569
6570 return tg_set_cfs_bandwidth(tg, period, quota);
6571 }
6572
tg_get_cfs_quota(struct task_group * tg)6573 long tg_get_cfs_quota(struct task_group *tg)
6574 {
6575 u64 quota_us;
6576
6577 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6578 return -1;
6579
6580 quota_us = tg->cfs_bandwidth.quota;
6581 do_div(quota_us, NSEC_PER_USEC);
6582
6583 return quota_us;
6584 }
6585
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)6586 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6587 {
6588 u64 quota, period;
6589
6590 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
6591 return -EINVAL;
6592
6593 period = (u64)cfs_period_us * NSEC_PER_USEC;
6594 quota = tg->cfs_bandwidth.quota;
6595
6596 return tg_set_cfs_bandwidth(tg, period, quota);
6597 }
6598
tg_get_cfs_period(struct task_group * tg)6599 long tg_get_cfs_period(struct task_group *tg)
6600 {
6601 u64 cfs_period_us;
6602
6603 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6604 do_div(cfs_period_us, NSEC_PER_USEC);
6605
6606 return cfs_period_us;
6607 }
6608
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)6609 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6610 struct cftype *cft)
6611 {
6612 return tg_get_cfs_quota(css_tg(css));
6613 }
6614
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)6615 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6616 struct cftype *cftype, s64 cfs_quota_us)
6617 {
6618 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6619 }
6620
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)6621 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6622 struct cftype *cft)
6623 {
6624 return tg_get_cfs_period(css_tg(css));
6625 }
6626
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)6627 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6628 struct cftype *cftype, u64 cfs_period_us)
6629 {
6630 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6631 }
6632
6633 struct cfs_schedulable_data {
6634 struct task_group *tg;
6635 u64 period, quota;
6636 };
6637
6638 /*
6639 * normalize group quota/period to be quota/max_period
6640 * note: units are usecs
6641 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)6642 static u64 normalize_cfs_quota(struct task_group *tg,
6643 struct cfs_schedulable_data *d)
6644 {
6645 u64 quota, period;
6646
6647 if (tg == d->tg) {
6648 period = d->period;
6649 quota = d->quota;
6650 } else {
6651 period = tg_get_cfs_period(tg);
6652 quota = tg_get_cfs_quota(tg);
6653 }
6654
6655 /* note: these should typically be equivalent */
6656 if (quota == RUNTIME_INF || quota == -1)
6657 return RUNTIME_INF;
6658
6659 return to_ratio(period, quota);
6660 }
6661
tg_cfs_schedulable_down(struct task_group * tg,void * data)6662 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6663 {
6664 struct cfs_schedulable_data *d = data;
6665 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6666 s64 quota = 0, parent_quota = -1;
6667
6668 if (!tg->parent) {
6669 quota = RUNTIME_INF;
6670 } else {
6671 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6672
6673 quota = normalize_cfs_quota(tg, d);
6674 parent_quota = parent_b->hierarchical_quota;
6675
6676 /*
6677 * Ensure max(child_quota) <= parent_quota, inherit when no
6678 * limit is set:
6679 */
6680 if (quota == RUNTIME_INF)
6681 quota = parent_quota;
6682 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6683 return -EINVAL;
6684 }
6685 cfs_b->hierarchical_quota = quota;
6686
6687 return 0;
6688 }
6689
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)6690 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6691 {
6692 int ret;
6693 struct cfs_schedulable_data data = {
6694 .tg = tg,
6695 .period = period,
6696 .quota = quota,
6697 };
6698
6699 if (quota != RUNTIME_INF) {
6700 do_div(data.period, NSEC_PER_USEC);
6701 do_div(data.quota, NSEC_PER_USEC);
6702 }
6703
6704 rcu_read_lock();
6705 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6706 rcu_read_unlock();
6707
6708 return ret;
6709 }
6710
cpu_stats_show(struct seq_file * sf,void * v)6711 static int cpu_stats_show(struct seq_file *sf, void *v)
6712 {
6713 struct task_group *tg = css_tg(seq_css(sf));
6714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6715
6716 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6717 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6718 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6719
6720 return 0;
6721 }
6722 #endif /* CONFIG_CFS_BANDWIDTH */
6723 #endif /* CONFIG_FAIR_GROUP_SCHED */
6724
6725 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)6726 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6727 struct cftype *cft, s64 val)
6728 {
6729 return sched_group_set_rt_runtime(css_tg(css), val);
6730 }
6731
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)6732 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6733 struct cftype *cft)
6734 {
6735 return sched_group_rt_runtime(css_tg(css));
6736 }
6737
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)6738 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6739 struct cftype *cftype, u64 rt_period_us)
6740 {
6741 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6742 }
6743
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)6744 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6745 struct cftype *cft)
6746 {
6747 return sched_group_rt_period(css_tg(css));
6748 }
6749 #endif /* CONFIG_RT_GROUP_SCHED */
6750
6751 static struct cftype cpu_files[] = {
6752 #ifdef CONFIG_FAIR_GROUP_SCHED
6753 {
6754 .name = "shares",
6755 .read_u64 = cpu_shares_read_u64,
6756 .write_u64 = cpu_shares_write_u64,
6757 },
6758 #endif
6759 #ifdef CONFIG_CFS_BANDWIDTH
6760 {
6761 .name = "cfs_quota_us",
6762 .read_s64 = cpu_cfs_quota_read_s64,
6763 .write_s64 = cpu_cfs_quota_write_s64,
6764 },
6765 {
6766 .name = "cfs_period_us",
6767 .read_u64 = cpu_cfs_period_read_u64,
6768 .write_u64 = cpu_cfs_period_write_u64,
6769 },
6770 {
6771 .name = "stat",
6772 .seq_show = cpu_stats_show,
6773 },
6774 #endif
6775 #ifdef CONFIG_RT_GROUP_SCHED
6776 {
6777 .name = "rt_runtime_us",
6778 .read_s64 = cpu_rt_runtime_read,
6779 .write_s64 = cpu_rt_runtime_write,
6780 },
6781 {
6782 .name = "rt_period_us",
6783 .read_u64 = cpu_rt_period_read_uint,
6784 .write_u64 = cpu_rt_period_write_uint,
6785 },
6786 #endif
6787 { } /* Terminate */
6788 };
6789
6790 struct cgroup_subsys cpu_cgrp_subsys = {
6791 .css_alloc = cpu_cgroup_css_alloc,
6792 .css_online = cpu_cgroup_css_online,
6793 .css_released = cpu_cgroup_css_released,
6794 .css_free = cpu_cgroup_css_free,
6795 .fork = cpu_cgroup_fork,
6796 .can_attach = cpu_cgroup_can_attach,
6797 .attach = cpu_cgroup_attach,
6798 .legacy_cftypes = cpu_files,
6799 .early_init = true,
6800 };
6801
6802 #endif /* CONFIG_CGROUP_SCHED */
6803
dump_cpu_task(int cpu)6804 void dump_cpu_task(int cpu)
6805 {
6806 pr_info("Task dump for CPU %d:\n", cpu);
6807 sched_show_task(cpu_curr(cpu));
6808 }
6809
6810 /*
6811 * Nice levels are multiplicative, with a gentle 10% change for every
6812 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6813 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6814 * that remained on nice 0.
6815 *
6816 * The "10% effect" is relative and cumulative: from _any_ nice level,
6817 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6818 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6819 * If a task goes up by ~10% and another task goes down by ~10% then
6820 * the relative distance between them is ~25%.)
6821 */
6822 const int sched_prio_to_weight[40] = {
6823 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6824 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6825 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6826 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6827 /* 0 */ 1024, 820, 655, 526, 423,
6828 /* 5 */ 335, 272, 215, 172, 137,
6829 /* 10 */ 110, 87, 70, 56, 45,
6830 /* 15 */ 36, 29, 23, 18, 15,
6831 };
6832
6833 /*
6834 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6835 *
6836 * In cases where the weight does not change often, we can use the
6837 * precalculated inverse to speed up arithmetics by turning divisions
6838 * into multiplications:
6839 */
6840 const u32 sched_prio_to_wmult[40] = {
6841 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6842 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6843 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6844 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6845 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6846 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6847 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6848 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6849 };
6850