• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46 
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h"	/* audit_signal_info() */
53 
54 /*
55  * SLAB caches for signal bits.
56  */
57 
58 static struct kmem_cache *sigqueue_cachep;
59 
60 int print_fatal_signals __read_mostly;
61 
sig_handler(struct task_struct * t,int sig)62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 	return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66 
sig_handler_ignored(void __user * handler,int sig)67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 	/* Is it explicitly or implicitly ignored? */
70 	return handler == SIG_IGN ||
71 		(handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73 
sig_task_ignored(struct task_struct * t,int sig,bool force)74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 	void __user *handler;
77 
78 	handler = sig_handler(t, sig);
79 
80 	/* SIGKILL and SIGSTOP may not be sent to the global init */
81 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
82 		return true;
83 
84 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
85 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
86 		return 1;
87 
88 	/* Only allow kernel generated signals to this kthread */
89 	if (unlikely((t->flags & PF_KTHREAD) &&
90 		     (handler == SIG_KTHREAD_KERNEL) && !force))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
sig_ignored(struct task_struct * t,int sig,bool force)96 static int sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return 0;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return 0;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)121 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
recalc_sigpending_tsk(struct task_struct * t)149 static int recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
154 		set_tsk_thread_flag(t, TIF_SIGPENDING);
155 		return 1;
156 	}
157 	/*
158 	 * We must never clear the flag in another thread, or in current
159 	 * when it's possible the current syscall is returning -ERESTART*.
160 	 * So we don't clear it here, and only callers who know they should do.
161 	 */
162 	return 0;
163 }
164 
165 /*
166  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
167  * This is superfluous when called on current, the wakeup is a harmless no-op.
168  */
recalc_sigpending_and_wake(struct task_struct * t)169 void recalc_sigpending_and_wake(struct task_struct *t)
170 {
171 	if (recalc_sigpending_tsk(t))
172 		signal_wake_up(t, 0);
173 }
174 
recalc_sigpending(void)175 void recalc_sigpending(void)
176 {
177 	if (!recalc_sigpending_tsk(current) && !freezing(current))
178 		clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 
182 /* Given the mask, find the first available signal that should be serviced. */
183 
184 #define SYNCHRONOUS_MASK \
185 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
186 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
187 
next_signal(struct sigpending * pending,sigset_t * mask)188 int next_signal(struct sigpending *pending, sigset_t *mask)
189 {
190 	unsigned long i, *s, *m, x;
191 	int sig = 0;
192 
193 	s = pending->signal.sig;
194 	m = mask->sig;
195 
196 	/*
197 	 * Handle the first word specially: it contains the
198 	 * synchronous signals that need to be dequeued first.
199 	 */
200 	x = *s &~ *m;
201 	if (x) {
202 		if (x & SYNCHRONOUS_MASK)
203 			x &= SYNCHRONOUS_MASK;
204 		sig = ffz(~x) + 1;
205 		return sig;
206 	}
207 
208 	switch (_NSIG_WORDS) {
209 	default:
210 		for (i = 1; i < _NSIG_WORDS; ++i) {
211 			x = *++s &~ *++m;
212 			if (!x)
213 				continue;
214 			sig = ffz(~x) + i*_NSIG_BPW + 1;
215 			break;
216 		}
217 		break;
218 
219 	case 2:
220 		x = s[1] &~ m[1];
221 		if (!x)
222 			break;
223 		sig = ffz(~x) + _NSIG_BPW + 1;
224 		break;
225 
226 	case 1:
227 		/* Nothing to do */
228 		break;
229 	}
230 
231 	return sig;
232 }
233 
print_dropped_signal(int sig)234 static inline void print_dropped_signal(int sig)
235 {
236 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
237 
238 	if (!print_fatal_signals)
239 		return;
240 
241 	if (!__ratelimit(&ratelimit_state))
242 		return;
243 
244 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
245 				current->comm, current->pid, sig);
246 }
247 
248 /**
249  * task_set_jobctl_pending - set jobctl pending bits
250  * @task: target task
251  * @mask: pending bits to set
252  *
253  * Clear @mask from @task->jobctl.  @mask must be subset of
254  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
255  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
256  * cleared.  If @task is already being killed or exiting, this function
257  * becomes noop.
258  *
259  * CONTEXT:
260  * Must be called with @task->sighand->siglock held.
261  *
262  * RETURNS:
263  * %true if @mask is set, %false if made noop because @task was dying.
264  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)265 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
266 {
267 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
268 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
269 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
270 
271 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
272 		return false;
273 
274 	if (mask & JOBCTL_STOP_SIGMASK)
275 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
276 
277 	task->jobctl |= mask;
278 	return true;
279 }
280 
281 /**
282  * task_clear_jobctl_trapping - clear jobctl trapping bit
283  * @task: target task
284  *
285  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
286  * Clear it and wake up the ptracer.  Note that we don't need any further
287  * locking.  @task->siglock guarantees that @task->parent points to the
288  * ptracer.
289  *
290  * CONTEXT:
291  * Must be called with @task->sighand->siglock held.
292  */
task_clear_jobctl_trapping(struct task_struct * task)293 void task_clear_jobctl_trapping(struct task_struct *task)
294 {
295 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
296 		task->jobctl &= ~JOBCTL_TRAPPING;
297 		smp_mb();	/* advised by wake_up_bit() */
298 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
299 	}
300 }
301 
302 /**
303  * task_clear_jobctl_pending - clear jobctl pending bits
304  * @task: target task
305  * @mask: pending bits to clear
306  *
307  * Clear @mask from @task->jobctl.  @mask must be subset of
308  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
309  * STOP bits are cleared together.
310  *
311  * If clearing of @mask leaves no stop or trap pending, this function calls
312  * task_clear_jobctl_trapping().
313  *
314  * CONTEXT:
315  * Must be called with @task->sighand->siglock held.
316  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)317 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
318 {
319 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
320 
321 	if (mask & JOBCTL_STOP_PENDING)
322 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
323 
324 	task->jobctl &= ~mask;
325 
326 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
327 		task_clear_jobctl_trapping(task);
328 }
329 
330 /**
331  * task_participate_group_stop - participate in a group stop
332  * @task: task participating in a group stop
333  *
334  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
335  * Group stop states are cleared and the group stop count is consumed if
336  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
337  * stop, the appropriate %SIGNAL_* flags are set.
338  *
339  * CONTEXT:
340  * Must be called with @task->sighand->siglock held.
341  *
342  * RETURNS:
343  * %true if group stop completion should be notified to the parent, %false
344  * otherwise.
345  */
task_participate_group_stop(struct task_struct * task)346 static bool task_participate_group_stop(struct task_struct *task)
347 {
348 	struct signal_struct *sig = task->signal;
349 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
350 
351 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
352 
353 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
354 
355 	if (!consume)
356 		return false;
357 
358 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
359 		sig->group_stop_count--;
360 
361 	/*
362 	 * Tell the caller to notify completion iff we are entering into a
363 	 * fresh group stop.  Read comment in do_signal_stop() for details.
364 	 */
365 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
366 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
367 		return true;
368 	}
369 	return false;
370 }
371 
372 /*
373  * allocate a new signal queue record
374  * - this may be called without locks if and only if t == current, otherwise an
375  *   appropriate lock must be held to stop the target task from exiting
376  */
377 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)378 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
379 {
380 	struct sigqueue *q = NULL;
381 	struct user_struct *user;
382 	int sigpending;
383 
384 	/*
385 	 * Protect access to @t credentials. This can go away when all
386 	 * callers hold rcu read lock.
387 	 *
388 	 * NOTE! A pending signal will hold on to the user refcount,
389 	 * and we get/put the refcount only when the sigpending count
390 	 * changes from/to zero.
391 	 */
392 	rcu_read_lock();
393 	user = __task_cred(t)->user;
394 	sigpending = atomic_inc_return(&user->sigpending);
395 	if (sigpending == 1)
396 		get_uid(user);
397 	rcu_read_unlock();
398 
399 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
400 		q = kmem_cache_alloc(sigqueue_cachep, flags);
401 	} else {
402 		print_dropped_signal(sig);
403 	}
404 
405 	if (unlikely(q == NULL)) {
406 		if (atomic_dec_and_test(&user->sigpending))
407 			free_uid(user);
408 	} else {
409 		INIT_LIST_HEAD(&q->list);
410 		q->flags = 0;
411 		q->user = user;
412 	}
413 
414 	return q;
415 }
416 
__sigqueue_free(struct sigqueue * q)417 static void __sigqueue_free(struct sigqueue *q)
418 {
419 	if (q->flags & SIGQUEUE_PREALLOC)
420 		return;
421 	if (atomic_dec_and_test(&q->user->sigpending))
422 		free_uid(q->user);
423 	kmem_cache_free(sigqueue_cachep, q);
424 }
425 
flush_sigqueue(struct sigpending * queue)426 void flush_sigqueue(struct sigpending *queue)
427 {
428 	struct sigqueue *q;
429 
430 	sigemptyset(&queue->signal);
431 	while (!list_empty(&queue->list)) {
432 		q = list_entry(queue->list.next, struct sigqueue , list);
433 		list_del_init(&q->list);
434 		__sigqueue_free(q);
435 	}
436 }
437 
438 /*
439  * Flush all pending signals for this kthread.
440  */
flush_signals(struct task_struct * t)441 void flush_signals(struct task_struct *t)
442 {
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&t->sighand->siglock, flags);
446 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
447 	flush_sigqueue(&t->pending);
448 	flush_sigqueue(&t->signal->shared_pending);
449 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
450 }
451 
452 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)453 static void __flush_itimer_signals(struct sigpending *pending)
454 {
455 	sigset_t signal, retain;
456 	struct sigqueue *q, *n;
457 
458 	signal = pending->signal;
459 	sigemptyset(&retain);
460 
461 	list_for_each_entry_safe(q, n, &pending->list, list) {
462 		int sig = q->info.si_signo;
463 
464 		if (likely(q->info.si_code != SI_TIMER)) {
465 			sigaddset(&retain, sig);
466 		} else {
467 			sigdelset(&signal, sig);
468 			list_del_init(&q->list);
469 			__sigqueue_free(q);
470 		}
471 	}
472 
473 	sigorsets(&pending->signal, &signal, &retain);
474 }
475 
flush_itimer_signals(void)476 void flush_itimer_signals(void)
477 {
478 	struct task_struct *tsk = current;
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
482 	__flush_itimer_signals(&tsk->pending);
483 	__flush_itimer_signals(&tsk->signal->shared_pending);
484 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
485 }
486 #endif
487 
ignore_signals(struct task_struct * t)488 void ignore_signals(struct task_struct *t)
489 {
490 	int i;
491 
492 	for (i = 0; i < _NSIG; ++i)
493 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
494 
495 	flush_signals(t);
496 }
497 
498 /*
499  * Flush all handlers for a task.
500  */
501 
502 void
flush_signal_handlers(struct task_struct * t,int force_default)503 flush_signal_handlers(struct task_struct *t, int force_default)
504 {
505 	int i;
506 	struct k_sigaction *ka = &t->sighand->action[0];
507 	for (i = _NSIG ; i != 0 ; i--) {
508 		if (force_default || ka->sa.sa_handler != SIG_IGN)
509 			ka->sa.sa_handler = SIG_DFL;
510 		ka->sa.sa_flags = 0;
511 #ifdef __ARCH_HAS_SA_RESTORER
512 		ka->sa.sa_restorer = NULL;
513 #endif
514 		sigemptyset(&ka->sa.sa_mask);
515 		ka++;
516 	}
517 }
518 
unhandled_signal(struct task_struct * tsk,int sig)519 int unhandled_signal(struct task_struct *tsk, int sig)
520 {
521 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
522 	if (is_global_init(tsk))
523 		return 1;
524 	if (handler != SIG_IGN && handler != SIG_DFL)
525 		return 0;
526 	/* if ptraced, let the tracer determine */
527 	return !tsk->ptrace;
528 }
529 
collect_signal(int sig,struct sigpending * list,siginfo_t * info,bool * resched_timer)530 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
531 			   bool *resched_timer)
532 {
533 	struct sigqueue *q, *first = NULL;
534 
535 	/*
536 	 * Collect the siginfo appropriate to this signal.  Check if
537 	 * there is another siginfo for the same signal.
538 	*/
539 	list_for_each_entry(q, &list->list, list) {
540 		if (q->info.si_signo == sig) {
541 			if (first)
542 				goto still_pending;
543 			first = q;
544 		}
545 	}
546 
547 	sigdelset(&list->signal, sig);
548 
549 	if (first) {
550 still_pending:
551 		list_del_init(&first->list);
552 		copy_siginfo(info, &first->info);
553 
554 		*resched_timer =
555 			(first->flags & SIGQUEUE_PREALLOC) &&
556 			(info->si_code == SI_TIMER) &&
557 			(info->si_sys_private);
558 
559 		__sigqueue_free(first);
560 	} else {
561 		/*
562 		 * Ok, it wasn't in the queue.  This must be
563 		 * a fast-pathed signal or we must have been
564 		 * out of queue space.  So zero out the info.
565 		 */
566 		info->si_signo = sig;
567 		info->si_errno = 0;
568 		info->si_code = SI_USER;
569 		info->si_pid = 0;
570 		info->si_uid = 0;
571 	}
572 }
573 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info,bool * resched_timer)574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 			siginfo_t *info, bool *resched_timer)
576 {
577 	int sig = next_signal(pending, mask);
578 
579 	if (sig)
580 		collect_signal(sig, pending, info, resched_timer);
581 	return sig;
582 }
583 
584 /*
585  * Dequeue a signal and return the element to the caller, which is
586  * expected to free it.
587  *
588  * All callers have to hold the siglock.
589  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)590 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
591 {
592 	bool resched_timer = false;
593 	int signr;
594 
595 	/* We only dequeue private signals from ourselves, we don't let
596 	 * signalfd steal them
597 	 */
598 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
599 	if (!signr) {
600 		signr = __dequeue_signal(&tsk->signal->shared_pending,
601 					 mask, info, &resched_timer);
602 #ifdef CONFIG_POSIX_TIMERS
603 		/*
604 		 * itimer signal ?
605 		 *
606 		 * itimers are process shared and we restart periodic
607 		 * itimers in the signal delivery path to prevent DoS
608 		 * attacks in the high resolution timer case. This is
609 		 * compliant with the old way of self-restarting
610 		 * itimers, as the SIGALRM is a legacy signal and only
611 		 * queued once. Changing the restart behaviour to
612 		 * restart the timer in the signal dequeue path is
613 		 * reducing the timer noise on heavy loaded !highres
614 		 * systems too.
615 		 */
616 		if (unlikely(signr == SIGALRM)) {
617 			struct hrtimer *tmr = &tsk->signal->real_timer;
618 
619 			if (!hrtimer_is_queued(tmr) &&
620 			    tsk->signal->it_real_incr != 0) {
621 				hrtimer_forward(tmr, tmr->base->get_time(),
622 						tsk->signal->it_real_incr);
623 				hrtimer_restart(tmr);
624 			}
625 		}
626 #endif
627 	}
628 
629 	recalc_sigpending();
630 	if (!signr)
631 		return 0;
632 
633 	if (unlikely(sig_kernel_stop(signr))) {
634 		/*
635 		 * Set a marker that we have dequeued a stop signal.  Our
636 		 * caller might release the siglock and then the pending
637 		 * stop signal it is about to process is no longer in the
638 		 * pending bitmasks, but must still be cleared by a SIGCONT
639 		 * (and overruled by a SIGKILL).  So those cases clear this
640 		 * shared flag after we've set it.  Note that this flag may
641 		 * remain set after the signal we return is ignored or
642 		 * handled.  That doesn't matter because its only purpose
643 		 * is to alert stop-signal processing code when another
644 		 * processor has come along and cleared the flag.
645 		 */
646 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
647 	}
648 #ifdef CONFIG_POSIX_TIMERS
649 	if (resched_timer) {
650 		/*
651 		 * Release the siglock to ensure proper locking order
652 		 * of timer locks outside of siglocks.  Note, we leave
653 		 * irqs disabled here, since the posix-timers code is
654 		 * about to disable them again anyway.
655 		 */
656 		spin_unlock(&tsk->sighand->siglock);
657 		posixtimer_rearm(info);
658 		spin_lock(&tsk->sighand->siglock);
659 	}
660 #endif
661 	return signr;
662 }
663 
664 /*
665  * Tell a process that it has a new active signal..
666  *
667  * NOTE! we rely on the previous spin_lock to
668  * lock interrupts for us! We can only be called with
669  * "siglock" held, and the local interrupt must
670  * have been disabled when that got acquired!
671  *
672  * No need to set need_resched since signal event passing
673  * goes through ->blocked
674  */
signal_wake_up_state(struct task_struct * t,unsigned int state)675 void signal_wake_up_state(struct task_struct *t, unsigned int state)
676 {
677 	set_tsk_thread_flag(t, TIF_SIGPENDING);
678 	/*
679 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
680 	 * case. We don't check t->state here because there is a race with it
681 	 * executing another processor and just now entering stopped state.
682 	 * By using wake_up_state, we ensure the process will wake up and
683 	 * handle its death signal.
684 	 */
685 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
686 		kick_process(t);
687 }
688 
dequeue_synchronous_signal(siginfo_t * info)689 static int dequeue_synchronous_signal(siginfo_t *info)
690 {
691 	struct task_struct *tsk = current;
692 	struct sigpending *pending = &tsk->pending;
693 	struct sigqueue *q, *sync = NULL;
694 
695 	/*
696 	 * Might a synchronous signal be in the queue?
697 	 */
698 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
699 		return 0;
700 
701 	/*
702 	 * Return the first synchronous signal in the queue.
703 	 */
704 	list_for_each_entry(q, &pending->list, list) {
705 		/* Synchronous signals have a postive si_code */
706 		if ((q->info.si_code > SI_USER) &&
707 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
708 			sync = q;
709 			goto next;
710 		}
711 	}
712 	return 0;
713 next:
714 	/*
715 	 * Check if there is another siginfo for the same signal.
716 	 */
717 	list_for_each_entry_continue(q, &pending->list, list) {
718 		if (q->info.si_signo == sync->info.si_signo)
719 			goto still_pending;
720 	}
721 
722 	sigdelset(&pending->signal, sync->info.si_signo);
723 	recalc_sigpending();
724 still_pending:
725 	list_del_init(&sync->list);
726 	copy_siginfo(info, &sync->info);
727 	__sigqueue_free(sync);
728 	return info->si_signo;
729 }
730 
731 /*
732  * Remove signals in mask from the pending set and queue.
733  * Returns 1 if any signals were found.
734  *
735  * All callers must be holding the siglock.
736  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)737 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
738 {
739 	struct sigqueue *q, *n;
740 	sigset_t m;
741 
742 	sigandsets(&m, mask, &s->signal);
743 	if (sigisemptyset(&m))
744 		return 0;
745 
746 	sigandnsets(&s->signal, &s->signal, mask);
747 	list_for_each_entry_safe(q, n, &s->list, list) {
748 		if (sigismember(mask, q->info.si_signo)) {
749 			list_del_init(&q->list);
750 			__sigqueue_free(q);
751 		}
752 	}
753 	return 1;
754 }
755 
is_si_special(const struct siginfo * info)756 static inline int is_si_special(const struct siginfo *info)
757 {
758 	return info <= SEND_SIG_FORCED;
759 }
760 
si_fromuser(const struct siginfo * info)761 static inline bool si_fromuser(const struct siginfo *info)
762 {
763 	return info == SEND_SIG_NOINFO ||
764 		(!is_si_special(info) && SI_FROMUSER(info));
765 }
766 
767 /*
768  * called with RCU read lock from check_kill_permission()
769  */
kill_ok_by_cred(struct task_struct * t)770 static int kill_ok_by_cred(struct task_struct *t)
771 {
772 	const struct cred *cred = current_cred();
773 	const struct cred *tcred = __task_cred(t);
774 
775 	if (uid_eq(cred->euid, tcred->suid) ||
776 	    uid_eq(cred->euid, tcred->uid)  ||
777 	    uid_eq(cred->uid,  tcred->suid) ||
778 	    uid_eq(cred->uid,  tcred->uid))
779 		return 1;
780 
781 	if (ns_capable(tcred->user_ns, CAP_KILL))
782 		return 1;
783 
784 	return 0;
785 }
786 
787 /*
788  * Bad permissions for sending the signal
789  * - the caller must hold the RCU read lock
790  */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)791 static int check_kill_permission(int sig, struct siginfo *info,
792 				 struct task_struct *t)
793 {
794 	struct pid *sid;
795 	int error;
796 
797 	if (!valid_signal(sig))
798 		return -EINVAL;
799 
800 	if (!si_fromuser(info))
801 		return 0;
802 
803 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
804 	if (error)
805 		return error;
806 
807 	if (!same_thread_group(current, t) &&
808 	    !kill_ok_by_cred(t)) {
809 		switch (sig) {
810 		case SIGCONT:
811 			sid = task_session(t);
812 			/*
813 			 * We don't return the error if sid == NULL. The
814 			 * task was unhashed, the caller must notice this.
815 			 */
816 			if (!sid || sid == task_session(current))
817 				break;
818 		default:
819 			return -EPERM;
820 		}
821 	}
822 
823 	return security_task_kill(t, info, sig, 0);
824 }
825 
826 /**
827  * ptrace_trap_notify - schedule trap to notify ptracer
828  * @t: tracee wanting to notify tracer
829  *
830  * This function schedules sticky ptrace trap which is cleared on the next
831  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
832  * ptracer.
833  *
834  * If @t is running, STOP trap will be taken.  If trapped for STOP and
835  * ptracer is listening for events, tracee is woken up so that it can
836  * re-trap for the new event.  If trapped otherwise, STOP trap will be
837  * eventually taken without returning to userland after the existing traps
838  * are finished by PTRACE_CONT.
839  *
840  * CONTEXT:
841  * Must be called with @task->sighand->siglock held.
842  */
ptrace_trap_notify(struct task_struct * t)843 static void ptrace_trap_notify(struct task_struct *t)
844 {
845 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
846 	assert_spin_locked(&t->sighand->siglock);
847 
848 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
849 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
850 }
851 
852 /*
853  * Handle magic process-wide effects of stop/continue signals. Unlike
854  * the signal actions, these happen immediately at signal-generation
855  * time regardless of blocking, ignoring, or handling.  This does the
856  * actual continuing for SIGCONT, but not the actual stopping for stop
857  * signals. The process stop is done as a signal action for SIG_DFL.
858  *
859  * Returns true if the signal should be actually delivered, otherwise
860  * it should be dropped.
861  */
prepare_signal(int sig,struct task_struct * p,bool force)862 static bool prepare_signal(int sig, struct task_struct *p, bool force)
863 {
864 	struct signal_struct *signal = p->signal;
865 	struct task_struct *t;
866 	sigset_t flush;
867 
868 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
869 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
870 			return sig == SIGKILL;
871 		/*
872 		 * The process is in the middle of dying, nothing to do.
873 		 */
874 	} else if (sig_kernel_stop(sig)) {
875 		/*
876 		 * This is a stop signal.  Remove SIGCONT from all queues.
877 		 */
878 		siginitset(&flush, sigmask(SIGCONT));
879 		flush_sigqueue_mask(&flush, &signal->shared_pending);
880 		for_each_thread(p, t)
881 			flush_sigqueue_mask(&flush, &t->pending);
882 	} else if (sig == SIGCONT) {
883 		unsigned int why;
884 		/*
885 		 * Remove all stop signals from all queues, wake all threads.
886 		 */
887 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
888 		flush_sigqueue_mask(&flush, &signal->shared_pending);
889 		for_each_thread(p, t) {
890 			flush_sigqueue_mask(&flush, &t->pending);
891 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
892 			if (likely(!(t->ptrace & PT_SEIZED)))
893 				wake_up_state(t, __TASK_STOPPED);
894 			else
895 				ptrace_trap_notify(t);
896 		}
897 
898 		/*
899 		 * Notify the parent with CLD_CONTINUED if we were stopped.
900 		 *
901 		 * If we were in the middle of a group stop, we pretend it
902 		 * was already finished, and then continued. Since SIGCHLD
903 		 * doesn't queue we report only CLD_STOPPED, as if the next
904 		 * CLD_CONTINUED was dropped.
905 		 */
906 		why = 0;
907 		if (signal->flags & SIGNAL_STOP_STOPPED)
908 			why |= SIGNAL_CLD_CONTINUED;
909 		else if (signal->group_stop_count)
910 			why |= SIGNAL_CLD_STOPPED;
911 
912 		if (why) {
913 			/*
914 			 * The first thread which returns from do_signal_stop()
915 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
916 			 * notify its parent. See get_signal_to_deliver().
917 			 */
918 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
919 			signal->group_stop_count = 0;
920 			signal->group_exit_code = 0;
921 		}
922 	}
923 
924 	return !sig_ignored(p, sig, force);
925 }
926 
927 /*
928  * Test if P wants to take SIG.  After we've checked all threads with this,
929  * it's equivalent to finding no threads not blocking SIG.  Any threads not
930  * blocking SIG were ruled out because they are not running and already
931  * have pending signals.  Such threads will dequeue from the shared queue
932  * as soon as they're available, so putting the signal on the shared queue
933  * will be equivalent to sending it to one such thread.
934  */
wants_signal(int sig,struct task_struct * p)935 static inline int wants_signal(int sig, struct task_struct *p)
936 {
937 	if (sigismember(&p->blocked, sig))
938 		return 0;
939 	if (p->flags & PF_EXITING)
940 		return 0;
941 	if (sig == SIGKILL)
942 		return 1;
943 	if (task_is_stopped_or_traced(p))
944 		return 0;
945 	return task_curr(p) || !signal_pending(p);
946 }
947 
complete_signal(int sig,struct task_struct * p,int group)948 static void complete_signal(int sig, struct task_struct *p, int group)
949 {
950 	struct signal_struct *signal = p->signal;
951 	struct task_struct *t;
952 
953 	/*
954 	 * Now find a thread we can wake up to take the signal off the queue.
955 	 *
956 	 * If the main thread wants the signal, it gets first crack.
957 	 * Probably the least surprising to the average bear.
958 	 */
959 	if (wants_signal(sig, p))
960 		t = p;
961 	else if (!group || thread_group_empty(p))
962 		/*
963 		 * There is just one thread and it does not need to be woken.
964 		 * It will dequeue unblocked signals before it runs again.
965 		 */
966 		return;
967 	else {
968 		/*
969 		 * Otherwise try to find a suitable thread.
970 		 */
971 		t = signal->curr_target;
972 		while (!wants_signal(sig, t)) {
973 			t = next_thread(t);
974 			if (t == signal->curr_target)
975 				/*
976 				 * No thread needs to be woken.
977 				 * Any eligible threads will see
978 				 * the signal in the queue soon.
979 				 */
980 				return;
981 		}
982 		signal->curr_target = t;
983 	}
984 
985 	/*
986 	 * Found a killable thread.  If the signal will be fatal,
987 	 * then start taking the whole group down immediately.
988 	 */
989 	if (sig_fatal(p, sig) &&
990 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
991 	    !sigismember(&t->real_blocked, sig) &&
992 	    (sig == SIGKILL || !p->ptrace)) {
993 		/*
994 		 * This signal will be fatal to the whole group.
995 		 */
996 		if (!sig_kernel_coredump(sig)) {
997 			/*
998 			 * Start a group exit and wake everybody up.
999 			 * This way we don't have other threads
1000 			 * running and doing things after a slower
1001 			 * thread has the fatal signal pending.
1002 			 */
1003 			signal->flags = SIGNAL_GROUP_EXIT;
1004 			signal->group_exit_code = sig;
1005 			signal->group_stop_count = 0;
1006 			t = p;
1007 			do {
1008 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1009 				sigaddset(&t->pending.signal, SIGKILL);
1010 				signal_wake_up(t, 1);
1011 			} while_each_thread(p, t);
1012 			return;
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * The signal is already in the shared-pending queue.
1018 	 * Tell the chosen thread to wake up and dequeue it.
1019 	 */
1020 	signal_wake_up(t, sig == SIGKILL);
1021 	return;
1022 }
1023 
legacy_queue(struct sigpending * signals,int sig)1024 static inline int legacy_queue(struct sigpending *signals, int sig)
1025 {
1026 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1027 }
1028 
1029 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1030 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1031 {
1032 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1033 		return;
1034 
1035 	if (SI_FROMKERNEL(info))
1036 		return;
1037 
1038 	rcu_read_lock();
1039 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1040 					make_kuid(current_user_ns(), info->si_uid));
1041 	rcu_read_unlock();
1042 }
1043 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1044 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1045 {
1046 	return;
1047 }
1048 #endif
1049 
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1050 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1051 			int group, int from_ancestor_ns)
1052 {
1053 	struct sigpending *pending;
1054 	struct sigqueue *q;
1055 	int override_rlimit;
1056 	int ret = 0, result;
1057 
1058 	assert_spin_locked(&t->sighand->siglock);
1059 
1060 	result = TRACE_SIGNAL_IGNORED;
1061 	if (!prepare_signal(sig, t,
1062 			from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
1063 		goto ret;
1064 
1065 	pending = group ? &t->signal->shared_pending : &t->pending;
1066 	/*
1067 	 * Short-circuit ignored signals and support queuing
1068 	 * exactly one non-rt signal, so that we can get more
1069 	 * detailed information about the cause of the signal.
1070 	 */
1071 	result = TRACE_SIGNAL_ALREADY_PENDING;
1072 	if (legacy_queue(pending, sig))
1073 		goto ret;
1074 
1075 	result = TRACE_SIGNAL_DELIVERED;
1076 	/*
1077 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1078 	 * or SIGKILL.
1079 	 */
1080 	if (info == SEND_SIG_FORCED)
1081 		goto out_set;
1082 
1083 	/*
1084 	 * Real-time signals must be queued if sent by sigqueue, or
1085 	 * some other real-time mechanism.  It is implementation
1086 	 * defined whether kill() does so.  We attempt to do so, on
1087 	 * the principle of least surprise, but since kill is not
1088 	 * allowed to fail with EAGAIN when low on memory we just
1089 	 * make sure at least one signal gets delivered and don't
1090 	 * pass on the info struct.
1091 	 */
1092 	if (sig < SIGRTMIN)
1093 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1094 	else
1095 		override_rlimit = 0;
1096 
1097 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1098 	if (q) {
1099 		list_add_tail(&q->list, &pending->list);
1100 		switch ((unsigned long) info) {
1101 		case (unsigned long) SEND_SIG_NOINFO:
1102 			q->info.si_signo = sig;
1103 			q->info.si_errno = 0;
1104 			q->info.si_code = SI_USER;
1105 			q->info.si_pid = task_tgid_nr_ns(current,
1106 							task_active_pid_ns(t));
1107 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1108 			break;
1109 		case (unsigned long) SEND_SIG_PRIV:
1110 			q->info.si_signo = sig;
1111 			q->info.si_errno = 0;
1112 			q->info.si_code = SI_KERNEL;
1113 			q->info.si_pid = 0;
1114 			q->info.si_uid = 0;
1115 			break;
1116 		default:
1117 			copy_siginfo(&q->info, info);
1118 			if (from_ancestor_ns)
1119 				q->info.si_pid = 0;
1120 			break;
1121 		}
1122 
1123 		userns_fixup_signal_uid(&q->info, t);
1124 
1125 	} else if (!is_si_special(info)) {
1126 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1127 			/*
1128 			 * Queue overflow, abort.  We may abort if the
1129 			 * signal was rt and sent by user using something
1130 			 * other than kill().
1131 			 */
1132 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1133 			ret = -EAGAIN;
1134 			goto ret;
1135 		} else {
1136 			/*
1137 			 * This is a silent loss of information.  We still
1138 			 * send the signal, but the *info bits are lost.
1139 			 */
1140 			result = TRACE_SIGNAL_LOSE_INFO;
1141 		}
1142 	}
1143 
1144 out_set:
1145 	signalfd_notify(t, sig);
1146 	sigaddset(&pending->signal, sig);
1147 	complete_signal(sig, t, group);
1148 ret:
1149 	trace_signal_generate(sig, info, t, group, result);
1150 	return ret;
1151 }
1152 
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1153 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1154 			int group)
1155 {
1156 	int from_ancestor_ns = 0;
1157 
1158 #ifdef CONFIG_PID_NS
1159 	from_ancestor_ns = si_fromuser(info) &&
1160 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1161 #endif
1162 
1163 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1164 }
1165 
print_fatal_signal(int signr)1166 static void print_fatal_signal(int signr)
1167 {
1168 	struct pt_regs *regs = signal_pt_regs();
1169 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1170 
1171 #if defined(__i386__) && !defined(__arch_um__)
1172 	pr_info("code at %08lx: ", regs->ip);
1173 	{
1174 		int i;
1175 		for (i = 0; i < 16; i++) {
1176 			unsigned char insn;
1177 
1178 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1179 				break;
1180 			pr_cont("%02x ", insn);
1181 		}
1182 	}
1183 	pr_cont("\n");
1184 #endif
1185 	preempt_disable();
1186 	show_regs(regs);
1187 	preempt_enable();
1188 }
1189 
setup_print_fatal_signals(char * str)1190 static int __init setup_print_fatal_signals(char *str)
1191 {
1192 	get_option (&str, &print_fatal_signals);
1193 
1194 	return 1;
1195 }
1196 
1197 __setup("print-fatal-signals=", setup_print_fatal_signals);
1198 
1199 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1200 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1201 {
1202 	return send_signal(sig, info, p, 1);
1203 }
1204 
1205 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1206 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1207 {
1208 	return send_signal(sig, info, t, 0);
1209 }
1210 
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1211 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1212 			bool group)
1213 {
1214 	unsigned long flags;
1215 	int ret = -ESRCH;
1216 
1217 	if (lock_task_sighand(p, &flags)) {
1218 		ret = send_signal(sig, info, p, group);
1219 		unlock_task_sighand(p, &flags);
1220 	}
1221 
1222 	return ret;
1223 }
1224 
1225 /*
1226  * Force a signal that the process can't ignore: if necessary
1227  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1228  *
1229  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1230  * since we do not want to have a signal handler that was blocked
1231  * be invoked when user space had explicitly blocked it.
1232  *
1233  * We don't want to have recursive SIGSEGV's etc, for example,
1234  * that is why we also clear SIGNAL_UNKILLABLE.
1235  */
1236 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1237 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1238 {
1239 	unsigned long int flags;
1240 	int ret, blocked, ignored;
1241 	struct k_sigaction *action;
1242 
1243 	spin_lock_irqsave(&t->sighand->siglock, flags);
1244 	action = &t->sighand->action[sig-1];
1245 	ignored = action->sa.sa_handler == SIG_IGN;
1246 	blocked = sigismember(&t->blocked, sig);
1247 	if (blocked || ignored) {
1248 		action->sa.sa_handler = SIG_DFL;
1249 		if (blocked) {
1250 			sigdelset(&t->blocked, sig);
1251 			recalc_sigpending_and_wake(t);
1252 		}
1253 	}
1254 	/*
1255 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1256 	 * debugging to leave init killable.
1257 	 */
1258 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1259 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1260 	ret = specific_send_sig_info(sig, info, t);
1261 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1262 
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Nuke all other threads in the group.
1268  */
zap_other_threads(struct task_struct * p)1269 int zap_other_threads(struct task_struct *p)
1270 {
1271 	struct task_struct *t = p;
1272 	int count = 0;
1273 
1274 	p->signal->group_stop_count = 0;
1275 
1276 	while_each_thread(p, t) {
1277 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1278 		count++;
1279 
1280 		/* Don't bother with already dead threads */
1281 		if (t->exit_state)
1282 			continue;
1283 		sigaddset(&t->pending.signal, SIGKILL);
1284 		signal_wake_up(t, 1);
1285 	}
1286 
1287 	return count;
1288 }
1289 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1290 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1291 					   unsigned long *flags)
1292 {
1293 	struct sighand_struct *sighand;
1294 
1295 	for (;;) {
1296 		/*
1297 		 * Disable interrupts early to avoid deadlocks.
1298 		 * See rcu_read_unlock() comment header for details.
1299 		 */
1300 		local_irq_save(*flags);
1301 		rcu_read_lock();
1302 		sighand = rcu_dereference(tsk->sighand);
1303 		if (unlikely(sighand == NULL)) {
1304 			rcu_read_unlock();
1305 			local_irq_restore(*flags);
1306 			break;
1307 		}
1308 		/*
1309 		 * This sighand can be already freed and even reused, but
1310 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1311 		 * initializes ->siglock: this slab can't go away, it has
1312 		 * the same object type, ->siglock can't be reinitialized.
1313 		 *
1314 		 * We need to ensure that tsk->sighand is still the same
1315 		 * after we take the lock, we can race with de_thread() or
1316 		 * __exit_signal(). In the latter case the next iteration
1317 		 * must see ->sighand == NULL.
1318 		 */
1319 		spin_lock(&sighand->siglock);
1320 		if (likely(sighand == tsk->sighand)) {
1321 			rcu_read_unlock();
1322 			break;
1323 		}
1324 		spin_unlock(&sighand->siglock);
1325 		rcu_read_unlock();
1326 		local_irq_restore(*flags);
1327 	}
1328 
1329 	return sighand;
1330 }
1331 
1332 /*
1333  * send signal info to all the members of a group
1334  */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1335 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1336 {
1337 	int ret;
1338 
1339 	rcu_read_lock();
1340 	ret = check_kill_permission(sig, info, p);
1341 	rcu_read_unlock();
1342 
1343 	if (!ret && sig)
1344 		ret = do_send_sig_info(sig, info, p, true);
1345 
1346 	return ret;
1347 }
1348 
1349 /*
1350  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1351  * control characters do (^C, ^Z etc)
1352  * - the caller must hold at least a readlock on tasklist_lock
1353  */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1354 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1355 {
1356 	struct task_struct *p = NULL;
1357 	int retval, success;
1358 
1359 	success = 0;
1360 	retval = -ESRCH;
1361 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1362 		int err = group_send_sig_info(sig, info, p);
1363 		success |= !err;
1364 		retval = err;
1365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1366 	return success ? 0 : retval;
1367 }
1368 
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1369 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1370 {
1371 	int error = -ESRCH;
1372 	struct task_struct *p;
1373 
1374 	for (;;) {
1375 		rcu_read_lock();
1376 		p = pid_task(pid, PIDTYPE_PID);
1377 		if (p)
1378 			error = group_send_sig_info(sig, info, p);
1379 		rcu_read_unlock();
1380 		if (likely(!p || error != -ESRCH))
1381 			return error;
1382 
1383 		/*
1384 		 * The task was unhashed in between, try again.  If it
1385 		 * is dead, pid_task() will return NULL, if we race with
1386 		 * de_thread() it will find the new leader.
1387 		 */
1388 	}
1389 }
1390 
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1391 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1392 {
1393 	int error;
1394 	rcu_read_lock();
1395 	error = kill_pid_info(sig, info, find_vpid(pid));
1396 	rcu_read_unlock();
1397 	return error;
1398 }
1399 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1400 static int kill_as_cred_perm(const struct cred *cred,
1401 			     struct task_struct *target)
1402 {
1403 	const struct cred *pcred = __task_cred(target);
1404 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1405 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1406 		return 0;
1407 	return 1;
1408 }
1409 
1410 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1411 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1412 			 const struct cred *cred, u32 secid)
1413 {
1414 	int ret = -EINVAL;
1415 	struct task_struct *p;
1416 	unsigned long flags;
1417 
1418 	if (!valid_signal(sig))
1419 		return ret;
1420 
1421 	rcu_read_lock();
1422 	p = pid_task(pid, PIDTYPE_PID);
1423 	if (!p) {
1424 		ret = -ESRCH;
1425 		goto out_unlock;
1426 	}
1427 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1428 		ret = -EPERM;
1429 		goto out_unlock;
1430 	}
1431 	ret = security_task_kill(p, info, sig, secid);
1432 	if (ret)
1433 		goto out_unlock;
1434 
1435 	if (sig) {
1436 		if (lock_task_sighand(p, &flags)) {
1437 			ret = __send_signal(sig, info, p, 1, 0);
1438 			unlock_task_sighand(p, &flags);
1439 		} else
1440 			ret = -ESRCH;
1441 	}
1442 out_unlock:
1443 	rcu_read_unlock();
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1447 
1448 /*
1449  * kill_something_info() interprets pid in interesting ways just like kill(2).
1450  *
1451  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1452  * is probably wrong.  Should make it like BSD or SYSV.
1453  */
1454 
kill_something_info(int sig,struct siginfo * info,pid_t pid)1455 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1456 {
1457 	int ret;
1458 
1459 	if (pid > 0) {
1460 		rcu_read_lock();
1461 		ret = kill_pid_info(sig, info, find_vpid(pid));
1462 		rcu_read_unlock();
1463 		return ret;
1464 	}
1465 
1466 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1467 	if (pid == INT_MIN)
1468 		return -ESRCH;
1469 
1470 	read_lock(&tasklist_lock);
1471 	if (pid != -1) {
1472 		ret = __kill_pgrp_info(sig, info,
1473 				pid ? find_vpid(-pid) : task_pgrp(current));
1474 	} else {
1475 		int retval = 0, count = 0;
1476 		struct task_struct * p;
1477 
1478 		for_each_process(p) {
1479 			if (task_pid_vnr(p) > 1 &&
1480 					!same_thread_group(p, current)) {
1481 				int err = group_send_sig_info(sig, info, p);
1482 				++count;
1483 				if (err != -EPERM)
1484 					retval = err;
1485 			}
1486 		}
1487 		ret = count ? retval : -ESRCH;
1488 	}
1489 	read_unlock(&tasklist_lock);
1490 
1491 	return ret;
1492 }
1493 
1494 /*
1495  * These are for backward compatibility with the rest of the kernel source.
1496  */
1497 
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1498 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1499 {
1500 	/*
1501 	 * Make sure legacy kernel users don't send in bad values
1502 	 * (normal paths check this in check_kill_permission).
1503 	 */
1504 	if (!valid_signal(sig))
1505 		return -EINVAL;
1506 
1507 	return do_send_sig_info(sig, info, p, false);
1508 }
1509 
1510 #define __si_special(priv) \
1511 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1512 
1513 int
send_sig(int sig,struct task_struct * p,int priv)1514 send_sig(int sig, struct task_struct *p, int priv)
1515 {
1516 	return send_sig_info(sig, __si_special(priv), p);
1517 }
1518 
1519 void
force_sig(int sig,struct task_struct * p)1520 force_sig(int sig, struct task_struct *p)
1521 {
1522 	force_sig_info(sig, SEND_SIG_PRIV, p);
1523 }
1524 
1525 /*
1526  * When things go south during signal handling, we
1527  * will force a SIGSEGV. And if the signal that caused
1528  * the problem was already a SIGSEGV, we'll want to
1529  * make sure we don't even try to deliver the signal..
1530  */
1531 int
force_sigsegv(int sig,struct task_struct * p)1532 force_sigsegv(int sig, struct task_struct *p)
1533 {
1534 	if (sig == SIGSEGV) {
1535 		unsigned long flags;
1536 		spin_lock_irqsave(&p->sighand->siglock, flags);
1537 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1538 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1539 	}
1540 	force_sig(SIGSEGV, p);
1541 	return 0;
1542 }
1543 
kill_pgrp(struct pid * pid,int sig,int priv)1544 int kill_pgrp(struct pid *pid, int sig, int priv)
1545 {
1546 	int ret;
1547 
1548 	read_lock(&tasklist_lock);
1549 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1550 	read_unlock(&tasklist_lock);
1551 
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL(kill_pgrp);
1555 
kill_pid(struct pid * pid,int sig,int priv)1556 int kill_pid(struct pid *pid, int sig, int priv)
1557 {
1558 	return kill_pid_info(sig, __si_special(priv), pid);
1559 }
1560 EXPORT_SYMBOL(kill_pid);
1561 
1562 /*
1563  * These functions support sending signals using preallocated sigqueue
1564  * structures.  This is needed "because realtime applications cannot
1565  * afford to lose notifications of asynchronous events, like timer
1566  * expirations or I/O completions".  In the case of POSIX Timers
1567  * we allocate the sigqueue structure from the timer_create.  If this
1568  * allocation fails we are able to report the failure to the application
1569  * with an EAGAIN error.
1570  */
sigqueue_alloc(void)1571 struct sigqueue *sigqueue_alloc(void)
1572 {
1573 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1574 
1575 	if (q)
1576 		q->flags |= SIGQUEUE_PREALLOC;
1577 
1578 	return q;
1579 }
1580 
sigqueue_free(struct sigqueue * q)1581 void sigqueue_free(struct sigqueue *q)
1582 {
1583 	unsigned long flags;
1584 	spinlock_t *lock = &current->sighand->siglock;
1585 
1586 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1587 	/*
1588 	 * We must hold ->siglock while testing q->list
1589 	 * to serialize with collect_signal() or with
1590 	 * __exit_signal()->flush_sigqueue().
1591 	 */
1592 	spin_lock_irqsave(lock, flags);
1593 	q->flags &= ~SIGQUEUE_PREALLOC;
1594 	/*
1595 	 * If it is queued it will be freed when dequeued,
1596 	 * like the "regular" sigqueue.
1597 	 */
1598 	if (!list_empty(&q->list))
1599 		q = NULL;
1600 	spin_unlock_irqrestore(lock, flags);
1601 
1602 	if (q)
1603 		__sigqueue_free(q);
1604 }
1605 
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1606 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1607 {
1608 	int sig = q->info.si_signo;
1609 	struct sigpending *pending;
1610 	unsigned long flags;
1611 	int ret, result;
1612 
1613 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1614 
1615 	ret = -1;
1616 	if (!likely(lock_task_sighand(t, &flags)))
1617 		goto ret;
1618 
1619 	ret = 1; /* the signal is ignored */
1620 	result = TRACE_SIGNAL_IGNORED;
1621 	if (!prepare_signal(sig, t, false))
1622 		goto out;
1623 
1624 	ret = 0;
1625 	if (unlikely(!list_empty(&q->list))) {
1626 		/*
1627 		 * If an SI_TIMER entry is already queue just increment
1628 		 * the overrun count.
1629 		 */
1630 		BUG_ON(q->info.si_code != SI_TIMER);
1631 		q->info.si_overrun++;
1632 		result = TRACE_SIGNAL_ALREADY_PENDING;
1633 		goto out;
1634 	}
1635 	q->info.si_overrun = 0;
1636 
1637 	signalfd_notify(t, sig);
1638 	pending = group ? &t->signal->shared_pending : &t->pending;
1639 	list_add_tail(&q->list, &pending->list);
1640 	sigaddset(&pending->signal, sig);
1641 	complete_signal(sig, t, group);
1642 	result = TRACE_SIGNAL_DELIVERED;
1643 out:
1644 	trace_signal_generate(sig, &q->info, t, group, result);
1645 	unlock_task_sighand(t, &flags);
1646 ret:
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Let a parent know about the death of a child.
1652  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1653  *
1654  * Returns true if our parent ignored us and so we've switched to
1655  * self-reaping.
1656  */
do_notify_parent(struct task_struct * tsk,int sig)1657 bool do_notify_parent(struct task_struct *tsk, int sig)
1658 {
1659 	struct siginfo info;
1660 	unsigned long flags;
1661 	struct sighand_struct *psig;
1662 	bool autoreap = false;
1663 	u64 utime, stime;
1664 
1665 	BUG_ON(sig == -1);
1666 
1667  	/* do_notify_parent_cldstop should have been called instead.  */
1668  	BUG_ON(task_is_stopped_or_traced(tsk));
1669 
1670 	BUG_ON(!tsk->ptrace &&
1671 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1672 
1673 	if (sig != SIGCHLD) {
1674 		/*
1675 		 * This is only possible if parent == real_parent.
1676 		 * Check if it has changed security domain.
1677 		 */
1678 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1679 			sig = SIGCHLD;
1680 	}
1681 
1682 	info.si_signo = sig;
1683 	info.si_errno = 0;
1684 	/*
1685 	 * We are under tasklist_lock here so our parent is tied to
1686 	 * us and cannot change.
1687 	 *
1688 	 * task_active_pid_ns will always return the same pid namespace
1689 	 * until a task passes through release_task.
1690 	 *
1691 	 * write_lock() currently calls preempt_disable() which is the
1692 	 * same as rcu_read_lock(), but according to Oleg, this is not
1693 	 * correct to rely on this
1694 	 */
1695 	rcu_read_lock();
1696 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1697 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1698 				       task_uid(tsk));
1699 	rcu_read_unlock();
1700 
1701 	task_cputime(tsk, &utime, &stime);
1702 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1703 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1704 
1705 	info.si_status = tsk->exit_code & 0x7f;
1706 	if (tsk->exit_code & 0x80)
1707 		info.si_code = CLD_DUMPED;
1708 	else if (tsk->exit_code & 0x7f)
1709 		info.si_code = CLD_KILLED;
1710 	else {
1711 		info.si_code = CLD_EXITED;
1712 		info.si_status = tsk->exit_code >> 8;
1713 	}
1714 
1715 	psig = tsk->parent->sighand;
1716 	spin_lock_irqsave(&psig->siglock, flags);
1717 	if (!tsk->ptrace && sig == SIGCHLD &&
1718 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1719 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1720 		/*
1721 		 * We are exiting and our parent doesn't care.  POSIX.1
1722 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1723 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1724 		 * automatically and not left for our parent's wait4 call.
1725 		 * Rather than having the parent do it as a magic kind of
1726 		 * signal handler, we just set this to tell do_exit that we
1727 		 * can be cleaned up without becoming a zombie.  Note that
1728 		 * we still call __wake_up_parent in this case, because a
1729 		 * blocked sys_wait4 might now return -ECHILD.
1730 		 *
1731 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1732 		 * is implementation-defined: we do (if you don't want
1733 		 * it, just use SIG_IGN instead).
1734 		 */
1735 		autoreap = true;
1736 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1737 			sig = 0;
1738 	}
1739 	if (valid_signal(sig) && sig)
1740 		__group_send_sig_info(sig, &info, tsk->parent);
1741 	__wake_up_parent(tsk, tsk->parent);
1742 	spin_unlock_irqrestore(&psig->siglock, flags);
1743 
1744 	return autoreap;
1745 }
1746 
1747 /**
1748  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1749  * @tsk: task reporting the state change
1750  * @for_ptracer: the notification is for ptracer
1751  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1752  *
1753  * Notify @tsk's parent that the stopped/continued state has changed.  If
1754  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1755  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1756  *
1757  * CONTEXT:
1758  * Must be called with tasklist_lock at least read locked.
1759  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1760 static void do_notify_parent_cldstop(struct task_struct *tsk,
1761 				     bool for_ptracer, int why)
1762 {
1763 	struct siginfo info;
1764 	unsigned long flags;
1765 	struct task_struct *parent;
1766 	struct sighand_struct *sighand;
1767 	u64 utime, stime;
1768 
1769 	if (for_ptracer) {
1770 		parent = tsk->parent;
1771 	} else {
1772 		tsk = tsk->group_leader;
1773 		parent = tsk->real_parent;
1774 	}
1775 
1776 	info.si_signo = SIGCHLD;
1777 	info.si_errno = 0;
1778 	/*
1779 	 * see comment in do_notify_parent() about the following 4 lines
1780 	 */
1781 	rcu_read_lock();
1782 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1783 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1784 	rcu_read_unlock();
1785 
1786 	task_cputime(tsk, &utime, &stime);
1787 	info.si_utime = nsec_to_clock_t(utime);
1788 	info.si_stime = nsec_to_clock_t(stime);
1789 
1790  	info.si_code = why;
1791  	switch (why) {
1792  	case CLD_CONTINUED:
1793  		info.si_status = SIGCONT;
1794  		break;
1795  	case CLD_STOPPED:
1796  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1797  		break;
1798  	case CLD_TRAPPED:
1799  		info.si_status = tsk->exit_code & 0x7f;
1800  		break;
1801  	default:
1802  		BUG();
1803  	}
1804 
1805 	sighand = parent->sighand;
1806 	spin_lock_irqsave(&sighand->siglock, flags);
1807 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1808 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1809 		__group_send_sig_info(SIGCHLD, &info, parent);
1810 	/*
1811 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1812 	 */
1813 	__wake_up_parent(tsk, parent);
1814 	spin_unlock_irqrestore(&sighand->siglock, flags);
1815 }
1816 
may_ptrace_stop(void)1817 static inline int may_ptrace_stop(void)
1818 {
1819 	if (!likely(current->ptrace))
1820 		return 0;
1821 	/*
1822 	 * Are we in the middle of do_coredump?
1823 	 * If so and our tracer is also part of the coredump stopping
1824 	 * is a deadlock situation, and pointless because our tracer
1825 	 * is dead so don't allow us to stop.
1826 	 * If SIGKILL was already sent before the caller unlocked
1827 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1828 	 * is safe to enter schedule().
1829 	 *
1830 	 * This is almost outdated, a task with the pending SIGKILL can't
1831 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1832 	 * after SIGKILL was already dequeued.
1833 	 */
1834 	if (unlikely(current->mm->core_state) &&
1835 	    unlikely(current->mm == current->parent->mm))
1836 		return 0;
1837 
1838 	return 1;
1839 }
1840 
1841 /*
1842  * Return non-zero if there is a SIGKILL that should be waking us up.
1843  * Called with the siglock held.
1844  */
sigkill_pending(struct task_struct * tsk)1845 static int sigkill_pending(struct task_struct *tsk)
1846 {
1847 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1848 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1849 }
1850 
1851 /*
1852  * This must be called with current->sighand->siglock held.
1853  *
1854  * This should be the path for all ptrace stops.
1855  * We always set current->last_siginfo while stopped here.
1856  * That makes it a way to test a stopped process for
1857  * being ptrace-stopped vs being job-control-stopped.
1858  *
1859  * If we actually decide not to stop at all because the tracer
1860  * is gone, we keep current->exit_code unless clear_code.
1861  */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1862 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1863 	__releases(&current->sighand->siglock)
1864 	__acquires(&current->sighand->siglock)
1865 {
1866 	bool gstop_done = false;
1867 
1868 	if (arch_ptrace_stop_needed(exit_code, info)) {
1869 		/*
1870 		 * The arch code has something special to do before a
1871 		 * ptrace stop.  This is allowed to block, e.g. for faults
1872 		 * on user stack pages.  We can't keep the siglock while
1873 		 * calling arch_ptrace_stop, so we must release it now.
1874 		 * To preserve proper semantics, we must do this before
1875 		 * any signal bookkeeping like checking group_stop_count.
1876 		 * Meanwhile, a SIGKILL could come in before we retake the
1877 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1878 		 * So after regaining the lock, we must check for SIGKILL.
1879 		 */
1880 		spin_unlock_irq(&current->sighand->siglock);
1881 		arch_ptrace_stop(exit_code, info);
1882 		spin_lock_irq(&current->sighand->siglock);
1883 		if (sigkill_pending(current))
1884 			return;
1885 	}
1886 
1887 	set_special_state(TASK_TRACED);
1888 
1889 	/*
1890 	 * We're committing to trapping.  TRACED should be visible before
1891 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1892 	 * Also, transition to TRACED and updates to ->jobctl should be
1893 	 * atomic with respect to siglock and should be done after the arch
1894 	 * hook as siglock is released and regrabbed across it.
1895 	 *
1896 	 *     TRACER				    TRACEE
1897 	 *
1898 	 *     ptrace_attach()
1899 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1900 	 *     do_wait()
1901 	 *       set_current_state()                smp_wmb();
1902 	 *       ptrace_do_wait()
1903 	 *         wait_task_stopped()
1904 	 *           task_stopped_code()
1905 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1906 	 */
1907 	smp_wmb();
1908 
1909 	current->last_siginfo = info;
1910 	current->exit_code = exit_code;
1911 
1912 	/*
1913 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1914 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1915 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1916 	 * could be clear now.  We act as if SIGCONT is received after
1917 	 * TASK_TRACED is entered - ignore it.
1918 	 */
1919 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1920 		gstop_done = task_participate_group_stop(current);
1921 
1922 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1923 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1924 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1925 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1926 
1927 	/* entering a trap, clear TRAPPING */
1928 	task_clear_jobctl_trapping(current);
1929 
1930 	spin_unlock_irq(&current->sighand->siglock);
1931 	read_lock(&tasklist_lock);
1932 	if (may_ptrace_stop()) {
1933 		/*
1934 		 * Notify parents of the stop.
1935 		 *
1936 		 * While ptraced, there are two parents - the ptracer and
1937 		 * the real_parent of the group_leader.  The ptracer should
1938 		 * know about every stop while the real parent is only
1939 		 * interested in the completion of group stop.  The states
1940 		 * for the two don't interact with each other.  Notify
1941 		 * separately unless they're gonna be duplicates.
1942 		 */
1943 		do_notify_parent_cldstop(current, true, why);
1944 		if (gstop_done && ptrace_reparented(current))
1945 			do_notify_parent_cldstop(current, false, why);
1946 
1947 		/*
1948 		 * Don't want to allow preemption here, because
1949 		 * sys_ptrace() needs this task to be inactive.
1950 		 *
1951 		 * XXX: implement read_unlock_no_resched().
1952 		 */
1953 		preempt_disable();
1954 		read_unlock(&tasklist_lock);
1955 		preempt_enable_no_resched();
1956 		freezable_schedule();
1957 	} else {
1958 		/*
1959 		 * By the time we got the lock, our tracer went away.
1960 		 * Don't drop the lock yet, another tracer may come.
1961 		 *
1962 		 * If @gstop_done, the ptracer went away between group stop
1963 		 * completion and here.  During detach, it would have set
1964 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1965 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1966 		 * the real parent of the group stop completion is enough.
1967 		 */
1968 		if (gstop_done)
1969 			do_notify_parent_cldstop(current, false, why);
1970 
1971 		/* tasklist protects us from ptrace_freeze_traced() */
1972 		__set_current_state(TASK_RUNNING);
1973 		if (clear_code)
1974 			current->exit_code = 0;
1975 		read_unlock(&tasklist_lock);
1976 	}
1977 
1978 	/*
1979 	 * We are back.  Now reacquire the siglock before touching
1980 	 * last_siginfo, so that we are sure to have synchronized with
1981 	 * any signal-sending on another CPU that wants to examine it.
1982 	 */
1983 	spin_lock_irq(&current->sighand->siglock);
1984 	current->last_siginfo = NULL;
1985 
1986 	/* LISTENING can be set only during STOP traps, clear it */
1987 	current->jobctl &= ~JOBCTL_LISTENING;
1988 
1989 	/*
1990 	 * Queued signals ignored us while we were stopped for tracing.
1991 	 * So check for any that we should take before resuming user mode.
1992 	 * This sets TIF_SIGPENDING, but never clears it.
1993 	 */
1994 	recalc_sigpending_tsk(current);
1995 }
1996 
ptrace_do_notify(int signr,int exit_code,int why)1997 static void ptrace_do_notify(int signr, int exit_code, int why)
1998 {
1999 	siginfo_t info;
2000 
2001 	memset(&info, 0, sizeof info);
2002 	info.si_signo = signr;
2003 	info.si_code = exit_code;
2004 	info.si_pid = task_pid_vnr(current);
2005 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2006 
2007 	/* Let the debugger run.  */
2008 	ptrace_stop(exit_code, why, 1, &info);
2009 }
2010 
ptrace_notify(int exit_code)2011 void ptrace_notify(int exit_code)
2012 {
2013 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2014 	if (unlikely(current->task_works))
2015 		task_work_run();
2016 
2017 	spin_lock_irq(&current->sighand->siglock);
2018 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2019 	spin_unlock_irq(&current->sighand->siglock);
2020 }
2021 
2022 /**
2023  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2024  * @signr: signr causing group stop if initiating
2025  *
2026  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2027  * and participate in it.  If already set, participate in the existing
2028  * group stop.  If participated in a group stop (and thus slept), %true is
2029  * returned with siglock released.
2030  *
2031  * If ptraced, this function doesn't handle stop itself.  Instead,
2032  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2033  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2034  * places afterwards.
2035  *
2036  * CONTEXT:
2037  * Must be called with @current->sighand->siglock held, which is released
2038  * on %true return.
2039  *
2040  * RETURNS:
2041  * %false if group stop is already cancelled or ptrace trap is scheduled.
2042  * %true if participated in group stop.
2043  */
do_signal_stop(int signr)2044 static bool do_signal_stop(int signr)
2045 	__releases(&current->sighand->siglock)
2046 {
2047 	struct signal_struct *sig = current->signal;
2048 
2049 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2050 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2051 		struct task_struct *t;
2052 
2053 		/* signr will be recorded in task->jobctl for retries */
2054 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2055 
2056 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2057 		    unlikely(signal_group_exit(sig)))
2058 			return false;
2059 		/*
2060 		 * There is no group stop already in progress.  We must
2061 		 * initiate one now.
2062 		 *
2063 		 * While ptraced, a task may be resumed while group stop is
2064 		 * still in effect and then receive a stop signal and
2065 		 * initiate another group stop.  This deviates from the
2066 		 * usual behavior as two consecutive stop signals can't
2067 		 * cause two group stops when !ptraced.  That is why we
2068 		 * also check !task_is_stopped(t) below.
2069 		 *
2070 		 * The condition can be distinguished by testing whether
2071 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2072 		 * group_exit_code in such case.
2073 		 *
2074 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2075 		 * an intervening stop signal is required to cause two
2076 		 * continued events regardless of ptrace.
2077 		 */
2078 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2079 			sig->group_exit_code = signr;
2080 
2081 		sig->group_stop_count = 0;
2082 
2083 		if (task_set_jobctl_pending(current, signr | gstop))
2084 			sig->group_stop_count++;
2085 
2086 		t = current;
2087 		while_each_thread(current, t) {
2088 			/*
2089 			 * Setting state to TASK_STOPPED for a group
2090 			 * stop is always done with the siglock held,
2091 			 * so this check has no races.
2092 			 */
2093 			if (!task_is_stopped(t) &&
2094 			    task_set_jobctl_pending(t, signr | gstop)) {
2095 				sig->group_stop_count++;
2096 				if (likely(!(t->ptrace & PT_SEIZED)))
2097 					signal_wake_up(t, 0);
2098 				else
2099 					ptrace_trap_notify(t);
2100 			}
2101 		}
2102 	}
2103 
2104 	if (likely(!current->ptrace)) {
2105 		int notify = 0;
2106 
2107 		/*
2108 		 * If there are no other threads in the group, or if there
2109 		 * is a group stop in progress and we are the last to stop,
2110 		 * report to the parent.
2111 		 */
2112 		if (task_participate_group_stop(current))
2113 			notify = CLD_STOPPED;
2114 
2115 		set_special_state(TASK_STOPPED);
2116 		spin_unlock_irq(&current->sighand->siglock);
2117 
2118 		/*
2119 		 * Notify the parent of the group stop completion.  Because
2120 		 * we're not holding either the siglock or tasklist_lock
2121 		 * here, ptracer may attach inbetween; however, this is for
2122 		 * group stop and should always be delivered to the real
2123 		 * parent of the group leader.  The new ptracer will get
2124 		 * its notification when this task transitions into
2125 		 * TASK_TRACED.
2126 		 */
2127 		if (notify) {
2128 			read_lock(&tasklist_lock);
2129 			do_notify_parent_cldstop(current, false, notify);
2130 			read_unlock(&tasklist_lock);
2131 		}
2132 
2133 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2134 		freezable_schedule();
2135 		return true;
2136 	} else {
2137 		/*
2138 		 * While ptraced, group stop is handled by STOP trap.
2139 		 * Schedule it and let the caller deal with it.
2140 		 */
2141 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2142 		return false;
2143 	}
2144 }
2145 
2146 /**
2147  * do_jobctl_trap - take care of ptrace jobctl traps
2148  *
2149  * When PT_SEIZED, it's used for both group stop and explicit
2150  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2151  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2152  * the stop signal; otherwise, %SIGTRAP.
2153  *
2154  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2155  * number as exit_code and no siginfo.
2156  *
2157  * CONTEXT:
2158  * Must be called with @current->sighand->siglock held, which may be
2159  * released and re-acquired before returning with intervening sleep.
2160  */
do_jobctl_trap(void)2161 static void do_jobctl_trap(void)
2162 {
2163 	struct signal_struct *signal = current->signal;
2164 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2165 
2166 	if (current->ptrace & PT_SEIZED) {
2167 		if (!signal->group_stop_count &&
2168 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2169 			signr = SIGTRAP;
2170 		WARN_ON_ONCE(!signr);
2171 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2172 				 CLD_STOPPED);
2173 	} else {
2174 		WARN_ON_ONCE(!signr);
2175 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2176 		current->exit_code = 0;
2177 	}
2178 }
2179 
ptrace_signal(int signr,siginfo_t * info)2180 static int ptrace_signal(int signr, siginfo_t *info)
2181 {
2182 	/*
2183 	 * We do not check sig_kernel_stop(signr) but set this marker
2184 	 * unconditionally because we do not know whether debugger will
2185 	 * change signr. This flag has no meaning unless we are going
2186 	 * to stop after return from ptrace_stop(). In this case it will
2187 	 * be checked in do_signal_stop(), we should only stop if it was
2188 	 * not cleared by SIGCONT while we were sleeping. See also the
2189 	 * comment in dequeue_signal().
2190 	 */
2191 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2192 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2193 
2194 	/* We're back.  Did the debugger cancel the sig?  */
2195 	signr = current->exit_code;
2196 	if (signr == 0)
2197 		return signr;
2198 
2199 	current->exit_code = 0;
2200 
2201 	/*
2202 	 * Update the siginfo structure if the signal has
2203 	 * changed.  If the debugger wanted something
2204 	 * specific in the siginfo structure then it should
2205 	 * have updated *info via PTRACE_SETSIGINFO.
2206 	 */
2207 	if (signr != info->si_signo) {
2208 		info->si_signo = signr;
2209 		info->si_errno = 0;
2210 		info->si_code = SI_USER;
2211 		rcu_read_lock();
2212 		info->si_pid = task_pid_vnr(current->parent);
2213 		info->si_uid = from_kuid_munged(current_user_ns(),
2214 						task_uid(current->parent));
2215 		rcu_read_unlock();
2216 	}
2217 
2218 	/* If the (new) signal is now blocked, requeue it.  */
2219 	if (sigismember(&current->blocked, signr)) {
2220 		specific_send_sig_info(signr, info, current);
2221 		signr = 0;
2222 	}
2223 
2224 	return signr;
2225 }
2226 
get_signal(struct ksignal * ksig)2227 int get_signal(struct ksignal *ksig)
2228 {
2229 	struct sighand_struct *sighand = current->sighand;
2230 	struct signal_struct *signal = current->signal;
2231 	int signr;
2232 
2233 	if (unlikely(current->task_works))
2234 		task_work_run();
2235 
2236 	if (unlikely(uprobe_deny_signal()))
2237 		return 0;
2238 
2239 	/*
2240 	 * Do this once, we can't return to user-mode if freezing() == T.
2241 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2242 	 * thus do not need another check after return.
2243 	 */
2244 	try_to_freeze();
2245 
2246 relock:
2247 	spin_lock_irq(&sighand->siglock);
2248 	/*
2249 	 * Every stopped thread goes here after wakeup. Check to see if
2250 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2251 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2252 	 */
2253 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2254 		int why;
2255 
2256 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2257 			why = CLD_CONTINUED;
2258 		else
2259 			why = CLD_STOPPED;
2260 
2261 		signal->flags &= ~SIGNAL_CLD_MASK;
2262 
2263 		spin_unlock_irq(&sighand->siglock);
2264 
2265 		/*
2266 		 * Notify the parent that we're continuing.  This event is
2267 		 * always per-process and doesn't make whole lot of sense
2268 		 * for ptracers, who shouldn't consume the state via
2269 		 * wait(2) either, but, for backward compatibility, notify
2270 		 * the ptracer of the group leader too unless it's gonna be
2271 		 * a duplicate.
2272 		 */
2273 		read_lock(&tasklist_lock);
2274 		do_notify_parent_cldstop(current, false, why);
2275 
2276 		if (ptrace_reparented(current->group_leader))
2277 			do_notify_parent_cldstop(current->group_leader,
2278 						true, why);
2279 		read_unlock(&tasklist_lock);
2280 
2281 		goto relock;
2282 	}
2283 
2284 	/* Has this task already been marked for death? */
2285 	if (signal_group_exit(signal)) {
2286 		ksig->info.si_signo = signr = SIGKILL;
2287 		sigdelset(&current->pending.signal, SIGKILL);
2288 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2289 				&sighand->action[SIGKILL - 1]);
2290 		recalc_sigpending();
2291 		goto fatal;
2292 	}
2293 
2294 	for (;;) {
2295 		struct k_sigaction *ka;
2296 
2297 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2298 		    do_signal_stop(0))
2299 			goto relock;
2300 
2301 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2302 			do_jobctl_trap();
2303 			spin_unlock_irq(&sighand->siglock);
2304 			goto relock;
2305 		}
2306 
2307 		/*
2308 		 * Signals generated by the execution of an instruction
2309 		 * need to be delivered before any other pending signals
2310 		 * so that the instruction pointer in the signal stack
2311 		 * frame points to the faulting instruction.
2312 		 */
2313 		signr = dequeue_synchronous_signal(&ksig->info);
2314 		if (!signr)
2315 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2316 
2317 		if (!signr)
2318 			break; /* will return 0 */
2319 
2320 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2321 			signr = ptrace_signal(signr, &ksig->info);
2322 			if (!signr)
2323 				continue;
2324 		}
2325 
2326 		ka = &sighand->action[signr-1];
2327 
2328 		/* Trace actually delivered signals. */
2329 		trace_signal_deliver(signr, &ksig->info, ka);
2330 
2331 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2332 			continue;
2333 		if (ka->sa.sa_handler != SIG_DFL) {
2334 			/* Run the handler.  */
2335 			ksig->ka = *ka;
2336 
2337 			if (ka->sa.sa_flags & SA_ONESHOT)
2338 				ka->sa.sa_handler = SIG_DFL;
2339 
2340 			break; /* will return non-zero "signr" value */
2341 		}
2342 
2343 		/*
2344 		 * Now we are doing the default action for this signal.
2345 		 */
2346 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2347 			continue;
2348 
2349 		/*
2350 		 * Global init gets no signals it doesn't want.
2351 		 * Container-init gets no signals it doesn't want from same
2352 		 * container.
2353 		 *
2354 		 * Note that if global/container-init sees a sig_kernel_only()
2355 		 * signal here, the signal must have been generated internally
2356 		 * or must have come from an ancestor namespace. In either
2357 		 * case, the signal cannot be dropped.
2358 		 */
2359 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2360 				!sig_kernel_only(signr))
2361 			continue;
2362 
2363 		if (sig_kernel_stop(signr)) {
2364 			/*
2365 			 * The default action is to stop all threads in
2366 			 * the thread group.  The job control signals
2367 			 * do nothing in an orphaned pgrp, but SIGSTOP
2368 			 * always works.  Note that siglock needs to be
2369 			 * dropped during the call to is_orphaned_pgrp()
2370 			 * because of lock ordering with tasklist_lock.
2371 			 * This allows an intervening SIGCONT to be posted.
2372 			 * We need to check for that and bail out if necessary.
2373 			 */
2374 			if (signr != SIGSTOP) {
2375 				spin_unlock_irq(&sighand->siglock);
2376 
2377 				/* signals can be posted during this window */
2378 
2379 				if (is_current_pgrp_orphaned())
2380 					goto relock;
2381 
2382 				spin_lock_irq(&sighand->siglock);
2383 			}
2384 
2385 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2386 				/* It released the siglock.  */
2387 				goto relock;
2388 			}
2389 
2390 			/*
2391 			 * We didn't actually stop, due to a race
2392 			 * with SIGCONT or something like that.
2393 			 */
2394 			continue;
2395 		}
2396 
2397 	fatal:
2398 		spin_unlock_irq(&sighand->siglock);
2399 
2400 		/*
2401 		 * Anything else is fatal, maybe with a core dump.
2402 		 */
2403 		current->flags |= PF_SIGNALED;
2404 
2405 		if (sig_kernel_coredump(signr)) {
2406 			if (print_fatal_signals)
2407 				print_fatal_signal(ksig->info.si_signo);
2408 			proc_coredump_connector(current);
2409 			/*
2410 			 * If it was able to dump core, this kills all
2411 			 * other threads in the group and synchronizes with
2412 			 * their demise.  If we lost the race with another
2413 			 * thread getting here, it set group_exit_code
2414 			 * first and our do_group_exit call below will use
2415 			 * that value and ignore the one we pass it.
2416 			 */
2417 			do_coredump(&ksig->info);
2418 		}
2419 
2420 		/*
2421 		 * Death signals, no core dump.
2422 		 */
2423 		do_group_exit(ksig->info.si_signo);
2424 		/* NOTREACHED */
2425 	}
2426 	spin_unlock_irq(&sighand->siglock);
2427 
2428 	ksig->sig = signr;
2429 	return ksig->sig > 0;
2430 }
2431 
2432 /**
2433  * signal_delivered -
2434  * @ksig:		kernel signal struct
2435  * @stepping:		nonzero if debugger single-step or block-step in use
2436  *
2437  * This function should be called when a signal has successfully been
2438  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2439  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2440  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2441  */
signal_delivered(struct ksignal * ksig,int stepping)2442 static void signal_delivered(struct ksignal *ksig, int stepping)
2443 {
2444 	sigset_t blocked;
2445 
2446 	/* A signal was successfully delivered, and the
2447 	   saved sigmask was stored on the signal frame,
2448 	   and will be restored by sigreturn.  So we can
2449 	   simply clear the restore sigmask flag.  */
2450 	clear_restore_sigmask();
2451 
2452 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2453 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2454 		sigaddset(&blocked, ksig->sig);
2455 	set_current_blocked(&blocked);
2456 	tracehook_signal_handler(stepping);
2457 }
2458 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2459 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2460 {
2461 	if (failed)
2462 		force_sigsegv(ksig->sig, current);
2463 	else
2464 		signal_delivered(ksig, stepping);
2465 }
2466 
2467 /*
2468  * It could be that complete_signal() picked us to notify about the
2469  * group-wide signal. Other threads should be notified now to take
2470  * the shared signals in @which since we will not.
2471  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2472 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2473 {
2474 	sigset_t retarget;
2475 	struct task_struct *t;
2476 
2477 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2478 	if (sigisemptyset(&retarget))
2479 		return;
2480 
2481 	t = tsk;
2482 	while_each_thread(tsk, t) {
2483 		if (t->flags & PF_EXITING)
2484 			continue;
2485 
2486 		if (!has_pending_signals(&retarget, &t->blocked))
2487 			continue;
2488 		/* Remove the signals this thread can handle. */
2489 		sigandsets(&retarget, &retarget, &t->blocked);
2490 
2491 		if (!signal_pending(t))
2492 			signal_wake_up(t, 0);
2493 
2494 		if (sigisemptyset(&retarget))
2495 			break;
2496 	}
2497 }
2498 
exit_signals(struct task_struct * tsk)2499 void exit_signals(struct task_struct *tsk)
2500 {
2501 	int group_stop = 0;
2502 	sigset_t unblocked;
2503 
2504 	/*
2505 	 * @tsk is about to have PF_EXITING set - lock out users which
2506 	 * expect stable threadgroup.
2507 	 */
2508 	cgroup_threadgroup_change_begin(tsk);
2509 
2510 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2511 		tsk->flags |= PF_EXITING;
2512 		cgroup_threadgroup_change_end(tsk);
2513 		return;
2514 	}
2515 
2516 	spin_lock_irq(&tsk->sighand->siglock);
2517 	/*
2518 	 * From now this task is not visible for group-wide signals,
2519 	 * see wants_signal(), do_signal_stop().
2520 	 */
2521 	tsk->flags |= PF_EXITING;
2522 
2523 	cgroup_threadgroup_change_end(tsk);
2524 
2525 	if (!signal_pending(tsk))
2526 		goto out;
2527 
2528 	unblocked = tsk->blocked;
2529 	signotset(&unblocked);
2530 	retarget_shared_pending(tsk, &unblocked);
2531 
2532 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2533 	    task_participate_group_stop(tsk))
2534 		group_stop = CLD_STOPPED;
2535 out:
2536 	spin_unlock_irq(&tsk->sighand->siglock);
2537 
2538 	/*
2539 	 * If group stop has completed, deliver the notification.  This
2540 	 * should always go to the real parent of the group leader.
2541 	 */
2542 	if (unlikely(group_stop)) {
2543 		read_lock(&tasklist_lock);
2544 		do_notify_parent_cldstop(tsk, false, group_stop);
2545 		read_unlock(&tasklist_lock);
2546 	}
2547 }
2548 
2549 EXPORT_SYMBOL(recalc_sigpending);
2550 EXPORT_SYMBOL_GPL(dequeue_signal);
2551 EXPORT_SYMBOL(flush_signals);
2552 EXPORT_SYMBOL(force_sig);
2553 EXPORT_SYMBOL(send_sig);
2554 EXPORT_SYMBOL(send_sig_info);
2555 EXPORT_SYMBOL(sigprocmask);
2556 
2557 /*
2558  * System call entry points.
2559  */
2560 
2561 /**
2562  *  sys_restart_syscall - restart a system call
2563  */
SYSCALL_DEFINE0(restart_syscall)2564 SYSCALL_DEFINE0(restart_syscall)
2565 {
2566 	struct restart_block *restart = &current->restart_block;
2567 	return restart->fn(restart);
2568 }
2569 
do_no_restart_syscall(struct restart_block * param)2570 long do_no_restart_syscall(struct restart_block *param)
2571 {
2572 	return -EINTR;
2573 }
2574 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2575 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2576 {
2577 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2578 		sigset_t newblocked;
2579 		/* A set of now blocked but previously unblocked signals. */
2580 		sigandnsets(&newblocked, newset, &current->blocked);
2581 		retarget_shared_pending(tsk, &newblocked);
2582 	}
2583 	tsk->blocked = *newset;
2584 	recalc_sigpending();
2585 }
2586 
2587 /**
2588  * set_current_blocked - change current->blocked mask
2589  * @newset: new mask
2590  *
2591  * It is wrong to change ->blocked directly, this helper should be used
2592  * to ensure the process can't miss a shared signal we are going to block.
2593  */
set_current_blocked(sigset_t * newset)2594 void set_current_blocked(sigset_t *newset)
2595 {
2596 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2597 	__set_current_blocked(newset);
2598 }
2599 
__set_current_blocked(const sigset_t * newset)2600 void __set_current_blocked(const sigset_t *newset)
2601 {
2602 	struct task_struct *tsk = current;
2603 
2604 	/*
2605 	 * In case the signal mask hasn't changed, there is nothing we need
2606 	 * to do. The current->blocked shouldn't be modified by other task.
2607 	 */
2608 	if (sigequalsets(&tsk->blocked, newset))
2609 		return;
2610 
2611 	spin_lock_irq(&tsk->sighand->siglock);
2612 	__set_task_blocked(tsk, newset);
2613 	spin_unlock_irq(&tsk->sighand->siglock);
2614 }
2615 
2616 /*
2617  * This is also useful for kernel threads that want to temporarily
2618  * (or permanently) block certain signals.
2619  *
2620  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2621  * interface happily blocks "unblockable" signals like SIGKILL
2622  * and friends.
2623  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2624 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2625 {
2626 	struct task_struct *tsk = current;
2627 	sigset_t newset;
2628 
2629 	/* Lockless, only current can change ->blocked, never from irq */
2630 	if (oldset)
2631 		*oldset = tsk->blocked;
2632 
2633 	switch (how) {
2634 	case SIG_BLOCK:
2635 		sigorsets(&newset, &tsk->blocked, set);
2636 		break;
2637 	case SIG_UNBLOCK:
2638 		sigandnsets(&newset, &tsk->blocked, set);
2639 		break;
2640 	case SIG_SETMASK:
2641 		newset = *set;
2642 		break;
2643 	default:
2644 		return -EINVAL;
2645 	}
2646 
2647 	__set_current_blocked(&newset);
2648 	return 0;
2649 }
2650 
2651 /**
2652  *  sys_rt_sigprocmask - change the list of currently blocked signals
2653  *  @how: whether to add, remove, or set signals
2654  *  @nset: stores pending signals
2655  *  @oset: previous value of signal mask if non-null
2656  *  @sigsetsize: size of sigset_t type
2657  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2658 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2659 		sigset_t __user *, oset, size_t, sigsetsize)
2660 {
2661 	sigset_t old_set, new_set;
2662 	int error;
2663 
2664 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2665 	if (sigsetsize != sizeof(sigset_t))
2666 		return -EINVAL;
2667 
2668 	old_set = current->blocked;
2669 
2670 	if (nset) {
2671 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2672 			return -EFAULT;
2673 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2674 
2675 		error = sigprocmask(how, &new_set, NULL);
2676 		if (error)
2677 			return error;
2678 	}
2679 
2680 	if (oset) {
2681 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2682 			return -EFAULT;
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)2689 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2690 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2691 {
2692 #ifdef __BIG_ENDIAN
2693 	sigset_t old_set = current->blocked;
2694 
2695 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2696 	if (sigsetsize != sizeof(sigset_t))
2697 		return -EINVAL;
2698 
2699 	if (nset) {
2700 		compat_sigset_t new32;
2701 		sigset_t new_set;
2702 		int error;
2703 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2704 			return -EFAULT;
2705 
2706 		sigset_from_compat(&new_set, &new32);
2707 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2708 
2709 		error = sigprocmask(how, &new_set, NULL);
2710 		if (error)
2711 			return error;
2712 	}
2713 	if (oset) {
2714 		compat_sigset_t old32;
2715 		sigset_to_compat(&old32, &old_set);
2716 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2717 			return -EFAULT;
2718 	}
2719 	return 0;
2720 #else
2721 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2722 				  (sigset_t __user *)oset, sigsetsize);
2723 #endif
2724 }
2725 #endif
2726 
do_sigpending(void * set,unsigned long sigsetsize)2727 static int do_sigpending(void *set, unsigned long sigsetsize)
2728 {
2729 	if (sigsetsize > sizeof(sigset_t))
2730 		return -EINVAL;
2731 
2732 	spin_lock_irq(&current->sighand->siglock);
2733 	sigorsets(set, &current->pending.signal,
2734 		  &current->signal->shared_pending.signal);
2735 	spin_unlock_irq(&current->sighand->siglock);
2736 
2737 	/* Outside the lock because only this thread touches it.  */
2738 	sigandsets(set, &current->blocked, set);
2739 	return 0;
2740 }
2741 
2742 /**
2743  *  sys_rt_sigpending - examine a pending signal that has been raised
2744  *			while blocked
2745  *  @uset: stores pending signals
2746  *  @sigsetsize: size of sigset_t type or larger
2747  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)2748 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2749 {
2750 	sigset_t set;
2751 	int err = do_sigpending(&set, sigsetsize);
2752 	if (!err && copy_to_user(uset, &set, sigsetsize))
2753 		err = -EFAULT;
2754 	return err;
2755 }
2756 
2757 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)2758 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2759 		compat_size_t, sigsetsize)
2760 {
2761 #ifdef __BIG_ENDIAN
2762 	sigset_t set;
2763 	int err = do_sigpending(&set, sigsetsize);
2764 	if (!err) {
2765 		compat_sigset_t set32;
2766 		sigset_to_compat(&set32, &set);
2767 		/* we can get here only if sigsetsize <= sizeof(set) */
2768 		if (copy_to_user(uset, &set32, sigsetsize))
2769 			err = -EFAULT;
2770 	}
2771 	return err;
2772 #else
2773 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2774 #endif
2775 }
2776 #endif
2777 
siginfo_layout(unsigned sig,int si_code)2778 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
2779 {
2780 	enum siginfo_layout layout = SIL_KILL;
2781 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2782 		static const struct {
2783 			unsigned char limit, layout;
2784 		} filter[] = {
2785 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2786 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2787 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2788 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2789 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2790 #if defined(SIGEMT) && defined(NSIGEMT)
2791 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2792 #endif
2793 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2794 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2795 #ifdef __ARCH_SIGSYS
2796 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2797 #endif
2798 		};
2799 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2800 			layout = filter[sig].layout;
2801 		else if (si_code <= NSIGPOLL)
2802 			layout = SIL_POLL;
2803 	} else {
2804 		if (si_code == SI_TIMER)
2805 			layout = SIL_TIMER;
2806 		else if (si_code == SI_SIGIO)
2807 			layout = SIL_POLL;
2808 		else if (si_code < 0)
2809 			layout = SIL_RT;
2810 		/* Tests to support buggy kernel ABIs */
2811 #ifdef TRAP_FIXME
2812 		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2813 			layout = SIL_FAULT;
2814 #endif
2815 #ifdef FPE_FIXME
2816 		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2817 			layout = SIL_FAULT;
2818 #endif
2819 	}
2820 	return layout;
2821 }
2822 
2823 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2824 
copy_siginfo_to_user(siginfo_t __user * to,const siginfo_t * from)2825 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2826 {
2827 	int err;
2828 
2829 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2830 		return -EFAULT;
2831 	if (from->si_code < 0)
2832 		return __copy_to_user(to, from, sizeof(siginfo_t))
2833 			? -EFAULT : 0;
2834 	/*
2835 	 * If you change siginfo_t structure, please be sure
2836 	 * this code is fixed accordingly.
2837 	 * Please remember to update the signalfd_copyinfo() function
2838 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2839 	 * It should never copy any pad contained in the structure
2840 	 * to avoid security leaks, but must copy the generic
2841 	 * 3 ints plus the relevant union member.
2842 	 */
2843 	err = __put_user(from->si_signo, &to->si_signo);
2844 	err |= __put_user(from->si_errno, &to->si_errno);
2845 	err |= __put_user(from->si_code, &to->si_code);
2846 	switch (siginfo_layout(from->si_signo, from->si_code)) {
2847 	case SIL_KILL:
2848 		err |= __put_user(from->si_pid, &to->si_pid);
2849 		err |= __put_user(from->si_uid, &to->si_uid);
2850 		break;
2851 	case SIL_TIMER:
2852 		/* Unreached SI_TIMER is negative */
2853 		break;
2854 	case SIL_POLL:
2855 		err |= __put_user(from->si_band, &to->si_band);
2856 		err |= __put_user(from->si_fd, &to->si_fd);
2857 		break;
2858 	case SIL_FAULT:
2859 		err |= __put_user(from->si_addr, &to->si_addr);
2860 #ifdef __ARCH_SI_TRAPNO
2861 		err |= __put_user(from->si_trapno, &to->si_trapno);
2862 #endif
2863 #ifdef BUS_MCEERR_AO
2864 		/*
2865 		 * Other callers might not initialize the si_lsb field,
2866 		 * so check explicitly for the right codes here.
2867 		 */
2868 		if (from->si_signo == SIGBUS &&
2869 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2870 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2871 #endif
2872 #ifdef SEGV_BNDERR
2873 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2874 			err |= __put_user(from->si_lower, &to->si_lower);
2875 			err |= __put_user(from->si_upper, &to->si_upper);
2876 		}
2877 #endif
2878 #ifdef SEGV_PKUERR
2879 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2880 			err |= __put_user(from->si_pkey, &to->si_pkey);
2881 #endif
2882 		break;
2883 	case SIL_CHLD:
2884 		err |= __put_user(from->si_pid, &to->si_pid);
2885 		err |= __put_user(from->si_uid, &to->si_uid);
2886 		err |= __put_user(from->si_status, &to->si_status);
2887 		err |= __put_user(from->si_utime, &to->si_utime);
2888 		err |= __put_user(from->si_stime, &to->si_stime);
2889 		break;
2890 	case SIL_RT:
2891 		err |= __put_user(from->si_pid, &to->si_pid);
2892 		err |= __put_user(from->si_uid, &to->si_uid);
2893 		err |= __put_user(from->si_ptr, &to->si_ptr);
2894 		break;
2895 #ifdef __ARCH_SIGSYS
2896 	case SIL_SYS:
2897 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2898 		err |= __put_user(from->si_syscall, &to->si_syscall);
2899 		err |= __put_user(from->si_arch, &to->si_arch);
2900 		break;
2901 #endif
2902 	}
2903 	return err;
2904 }
2905 
2906 #endif
2907 
2908 /**
2909  *  do_sigtimedwait - wait for queued signals specified in @which
2910  *  @which: queued signals to wait for
2911  *  @info: if non-null, the signal's siginfo is returned here
2912  *  @ts: upper bound on process time suspension
2913  */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2914 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2915 		    const struct timespec *ts)
2916 {
2917 	ktime_t *to = NULL, timeout = KTIME_MAX;
2918 	struct task_struct *tsk = current;
2919 	sigset_t mask = *which;
2920 	int sig, ret = 0;
2921 
2922 	if (ts) {
2923 		if (!timespec_valid(ts))
2924 			return -EINVAL;
2925 		timeout = timespec_to_ktime(*ts);
2926 		to = &timeout;
2927 	}
2928 
2929 	/*
2930 	 * Invert the set of allowed signals to get those we want to block.
2931 	 */
2932 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2933 	signotset(&mask);
2934 
2935 	spin_lock_irq(&tsk->sighand->siglock);
2936 	sig = dequeue_signal(tsk, &mask, info);
2937 	if (!sig && timeout) {
2938 		/*
2939 		 * None ready, temporarily unblock those we're interested
2940 		 * while we are sleeping in so that we'll be awakened when
2941 		 * they arrive. Unblocking is always fine, we can avoid
2942 		 * set_current_blocked().
2943 		 */
2944 		tsk->real_blocked = tsk->blocked;
2945 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2946 		recalc_sigpending();
2947 		spin_unlock_irq(&tsk->sighand->siglock);
2948 
2949 		__set_current_state(TASK_INTERRUPTIBLE);
2950 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2951 							 HRTIMER_MODE_REL);
2952 		spin_lock_irq(&tsk->sighand->siglock);
2953 		__set_task_blocked(tsk, &tsk->real_blocked);
2954 		sigemptyset(&tsk->real_blocked);
2955 		sig = dequeue_signal(tsk, &mask, info);
2956 	}
2957 	spin_unlock_irq(&tsk->sighand->siglock);
2958 
2959 	if (sig)
2960 		return sig;
2961 	return ret ? -EINTR : -EAGAIN;
2962 }
2963 
2964 /**
2965  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2966  *			in @uthese
2967  *  @uthese: queued signals to wait for
2968  *  @uinfo: if non-null, the signal's siginfo is returned here
2969  *  @uts: upper bound on process time suspension
2970  *  @sigsetsize: size of sigset_t type
2971  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2972 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2973 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2974 		size_t, sigsetsize)
2975 {
2976 	sigset_t these;
2977 	struct timespec ts;
2978 	siginfo_t info;
2979 	int ret;
2980 
2981 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2982 	if (sigsetsize != sizeof(sigset_t))
2983 		return -EINVAL;
2984 
2985 	if (copy_from_user(&these, uthese, sizeof(these)))
2986 		return -EFAULT;
2987 
2988 	if (uts) {
2989 		if (copy_from_user(&ts, uts, sizeof(ts)))
2990 			return -EFAULT;
2991 	}
2992 
2993 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2994 
2995 	if (ret > 0 && uinfo) {
2996 		if (copy_siginfo_to_user(uinfo, &info))
2997 			ret = -EFAULT;
2998 	}
2999 
3000 	return ret;
3001 }
3002 
3003 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct compat_timespec __user *,uts,compat_size_t,sigsetsize)3004 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3005 		struct compat_siginfo __user *, uinfo,
3006 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3007 {
3008 	compat_sigset_t s32;
3009 	sigset_t s;
3010 	struct timespec t;
3011 	siginfo_t info;
3012 	long ret;
3013 
3014 	if (sigsetsize != sizeof(sigset_t))
3015 		return -EINVAL;
3016 
3017 	if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
3018 		return -EFAULT;
3019 	sigset_from_compat(&s, &s32);
3020 
3021 	if (uts) {
3022 		if (compat_get_timespec(&t, uts))
3023 			return -EFAULT;
3024 	}
3025 
3026 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3027 
3028 	if (ret > 0 && uinfo) {
3029 		if (copy_siginfo_to_user32(uinfo, &info))
3030 			ret = -EFAULT;
3031 	}
3032 
3033 	return ret;
3034 }
3035 #endif
3036 
3037 /**
3038  *  sys_kill - send a signal to a process
3039  *  @pid: the PID of the process
3040  *  @sig: signal to be sent
3041  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3042 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3043 {
3044 	struct siginfo info;
3045 
3046 	info.si_signo = sig;
3047 	info.si_errno = 0;
3048 	info.si_code = SI_USER;
3049 	info.si_pid = task_tgid_vnr(current);
3050 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3051 
3052 	return kill_something_info(sig, &info, pid);
3053 }
3054 
3055 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)3056 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3057 {
3058 	struct task_struct *p;
3059 	int error = -ESRCH;
3060 
3061 	rcu_read_lock();
3062 	p = find_task_by_vpid(pid);
3063 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3064 		error = check_kill_permission(sig, info, p);
3065 		/*
3066 		 * The null signal is a permissions and process existence
3067 		 * probe.  No signal is actually delivered.
3068 		 */
3069 		if (!error && sig) {
3070 			error = do_send_sig_info(sig, info, p, false);
3071 			/*
3072 			 * If lock_task_sighand() failed we pretend the task
3073 			 * dies after receiving the signal. The window is tiny,
3074 			 * and the signal is private anyway.
3075 			 */
3076 			if (unlikely(error == -ESRCH))
3077 				error = 0;
3078 		}
3079 	}
3080 	rcu_read_unlock();
3081 
3082 	return error;
3083 }
3084 
do_tkill(pid_t tgid,pid_t pid,int sig)3085 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3086 {
3087 	struct siginfo info = {};
3088 
3089 	info.si_signo = sig;
3090 	info.si_errno = 0;
3091 	info.si_code = SI_TKILL;
3092 	info.si_pid = task_tgid_vnr(current);
3093 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3094 
3095 	return do_send_specific(tgid, pid, sig, &info);
3096 }
3097 
3098 /**
3099  *  sys_tgkill - send signal to one specific thread
3100  *  @tgid: the thread group ID of the thread
3101  *  @pid: the PID of the thread
3102  *  @sig: signal to be sent
3103  *
3104  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3105  *  exists but it's not belonging to the target process anymore. This
3106  *  method solves the problem of threads exiting and PIDs getting reused.
3107  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3108 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3109 {
3110 	/* This is only valid for single tasks */
3111 	if (pid <= 0 || tgid <= 0)
3112 		return -EINVAL;
3113 
3114 	return do_tkill(tgid, pid, sig);
3115 }
3116 
3117 /**
3118  *  sys_tkill - send signal to one specific task
3119  *  @pid: the PID of the task
3120  *  @sig: signal to be sent
3121  *
3122  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3123  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)3124 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3125 {
3126 	/* This is only valid for single tasks */
3127 	if (pid <= 0)
3128 		return -EINVAL;
3129 
3130 	return do_tkill(0, pid, sig);
3131 }
3132 
do_rt_sigqueueinfo(pid_t pid,int sig,siginfo_t * info)3133 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3134 {
3135 	/* Not even root can pretend to send signals from the kernel.
3136 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3137 	 */
3138 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3139 	    (task_pid_vnr(current) != pid))
3140 		return -EPERM;
3141 
3142 	info->si_signo = sig;
3143 
3144 	/* POSIX.1b doesn't mention process groups.  */
3145 	return kill_proc_info(sig, info, pid);
3146 }
3147 
3148 /**
3149  *  sys_rt_sigqueueinfo - send signal information to a signal
3150  *  @pid: the PID of the thread
3151  *  @sig: signal to be sent
3152  *  @uinfo: signal info to be sent
3153  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3154 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3155 		siginfo_t __user *, uinfo)
3156 {
3157 	siginfo_t info;
3158 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3159 		return -EFAULT;
3160 	return do_rt_sigqueueinfo(pid, sig, &info);
3161 }
3162 
3163 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3164 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3165 			compat_pid_t, pid,
3166 			int, sig,
3167 			struct compat_siginfo __user *, uinfo)
3168 {
3169 	siginfo_t info = {};
3170 	int ret = copy_siginfo_from_user32(&info, uinfo);
3171 	if (unlikely(ret))
3172 		return ret;
3173 	return do_rt_sigqueueinfo(pid, sig, &info);
3174 }
3175 #endif
3176 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)3177 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3178 {
3179 	/* This is only valid for single tasks */
3180 	if (pid <= 0 || tgid <= 0)
3181 		return -EINVAL;
3182 
3183 	/* Not even root can pretend to send signals from the kernel.
3184 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3185 	 */
3186 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3187 	    (task_pid_vnr(current) != pid))
3188 		return -EPERM;
3189 
3190 	info->si_signo = sig;
3191 
3192 	return do_send_specific(tgid, pid, sig, info);
3193 }
3194 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3195 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3196 		siginfo_t __user *, uinfo)
3197 {
3198 	siginfo_t info;
3199 
3200 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3201 		return -EFAULT;
3202 
3203 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3204 }
3205 
3206 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3207 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3208 			compat_pid_t, tgid,
3209 			compat_pid_t, pid,
3210 			int, sig,
3211 			struct compat_siginfo __user *, uinfo)
3212 {
3213 	siginfo_t info = {};
3214 
3215 	if (copy_siginfo_from_user32(&info, uinfo))
3216 		return -EFAULT;
3217 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3218 }
3219 #endif
3220 
3221 /*
3222  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3223  */
kernel_sigaction(int sig,__sighandler_t action)3224 void kernel_sigaction(int sig, __sighandler_t action)
3225 {
3226 	spin_lock_irq(&current->sighand->siglock);
3227 	current->sighand->action[sig - 1].sa.sa_handler = action;
3228 	if (action == SIG_IGN) {
3229 		sigset_t mask;
3230 
3231 		sigemptyset(&mask);
3232 		sigaddset(&mask, sig);
3233 
3234 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3235 		flush_sigqueue_mask(&mask, &current->pending);
3236 		recalc_sigpending();
3237 	}
3238 	spin_unlock_irq(&current->sighand->siglock);
3239 }
3240 EXPORT_SYMBOL(kernel_sigaction);
3241 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)3242 void __weak sigaction_compat_abi(struct k_sigaction *act,
3243 		struct k_sigaction *oact)
3244 {
3245 }
3246 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3247 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3248 {
3249 	struct task_struct *p = current, *t;
3250 	struct k_sigaction *k;
3251 	sigset_t mask;
3252 
3253 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3254 		return -EINVAL;
3255 
3256 	k = &p->sighand->action[sig-1];
3257 
3258 	spin_lock_irq(&p->sighand->siglock);
3259 	if (oact)
3260 		*oact = *k;
3261 
3262 	sigaction_compat_abi(act, oact);
3263 
3264 	if (act) {
3265 		sigdelsetmask(&act->sa.sa_mask,
3266 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3267 		*k = *act;
3268 		/*
3269 		 * POSIX 3.3.1.3:
3270 		 *  "Setting a signal action to SIG_IGN for a signal that is
3271 		 *   pending shall cause the pending signal to be discarded,
3272 		 *   whether or not it is blocked."
3273 		 *
3274 		 *  "Setting a signal action to SIG_DFL for a signal that is
3275 		 *   pending and whose default action is to ignore the signal
3276 		 *   (for example, SIGCHLD), shall cause the pending signal to
3277 		 *   be discarded, whether or not it is blocked"
3278 		 */
3279 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3280 			sigemptyset(&mask);
3281 			sigaddset(&mask, sig);
3282 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3283 			for_each_thread(p, t)
3284 				flush_sigqueue_mask(&mask, &t->pending);
3285 		}
3286 	}
3287 
3288 	spin_unlock_irq(&p->sighand->siglock);
3289 	return 0;
3290 }
3291 
3292 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)3293 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3294 		size_t min_ss_size)
3295 {
3296 	struct task_struct *t = current;
3297 
3298 	if (oss) {
3299 		memset(oss, 0, sizeof(stack_t));
3300 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3301 		oss->ss_size = t->sas_ss_size;
3302 		oss->ss_flags = sas_ss_flags(sp) |
3303 			(current->sas_ss_flags & SS_FLAG_BITS);
3304 	}
3305 
3306 	if (ss) {
3307 		void __user *ss_sp = ss->ss_sp;
3308 		size_t ss_size = ss->ss_size;
3309 		unsigned ss_flags = ss->ss_flags;
3310 		int ss_mode;
3311 
3312 		if (unlikely(on_sig_stack(sp)))
3313 			return -EPERM;
3314 
3315 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3316 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3317 				ss_mode != 0))
3318 			return -EINVAL;
3319 
3320 		if (ss_mode == SS_DISABLE) {
3321 			ss_size = 0;
3322 			ss_sp = NULL;
3323 		} else {
3324 			if (unlikely(ss_size < min_ss_size))
3325 				return -ENOMEM;
3326 		}
3327 
3328 		t->sas_ss_sp = (unsigned long) ss_sp;
3329 		t->sas_ss_size = ss_size;
3330 		t->sas_ss_flags = ss_flags;
3331 	}
3332 	return 0;
3333 }
3334 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)3335 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3336 {
3337 	stack_t new, old;
3338 	int err;
3339 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3340 		return -EFAULT;
3341 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3342 			      current_user_stack_pointer(),
3343 			      MINSIGSTKSZ);
3344 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3345 		err = -EFAULT;
3346 	return err;
3347 }
3348 
restore_altstack(const stack_t __user * uss)3349 int restore_altstack(const stack_t __user *uss)
3350 {
3351 	stack_t new;
3352 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3353 		return -EFAULT;
3354 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3355 			     MINSIGSTKSZ);
3356 	/* squash all but EFAULT for now */
3357 	return 0;
3358 }
3359 
__save_altstack(stack_t __user * uss,unsigned long sp)3360 int __save_altstack(stack_t __user *uss, unsigned long sp)
3361 {
3362 	struct task_struct *t = current;
3363 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3364 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3365 		__put_user(t->sas_ss_size, &uss->ss_size);
3366 	if (err)
3367 		return err;
3368 	if (t->sas_ss_flags & SS_AUTODISARM)
3369 		sas_ss_reset(t);
3370 	return 0;
3371 }
3372 
3373 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)3374 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3375 			const compat_stack_t __user *, uss_ptr,
3376 			compat_stack_t __user *, uoss_ptr)
3377 {
3378 	stack_t uss, uoss;
3379 	int ret;
3380 
3381 	if (uss_ptr) {
3382 		compat_stack_t uss32;
3383 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3384 			return -EFAULT;
3385 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3386 		uss.ss_flags = uss32.ss_flags;
3387 		uss.ss_size = uss32.ss_size;
3388 	}
3389 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3390 			     compat_user_stack_pointer(),
3391 			     COMPAT_MINSIGSTKSZ);
3392 	if (ret >= 0 && uoss_ptr)  {
3393 		compat_stack_t old;
3394 		memset(&old, 0, sizeof(old));
3395 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3396 		old.ss_flags = uoss.ss_flags;
3397 		old.ss_size = uoss.ss_size;
3398 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3399 			ret = -EFAULT;
3400 	}
3401 	return ret;
3402 }
3403 
compat_restore_altstack(const compat_stack_t __user * uss)3404 int compat_restore_altstack(const compat_stack_t __user *uss)
3405 {
3406 	int err = compat_sys_sigaltstack(uss, NULL);
3407 	/* squash all but -EFAULT for now */
3408 	return err == -EFAULT ? err : 0;
3409 }
3410 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)3411 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3412 {
3413 	int err;
3414 	struct task_struct *t = current;
3415 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3416 			 &uss->ss_sp) |
3417 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3418 		__put_user(t->sas_ss_size, &uss->ss_size);
3419 	if (err)
3420 		return err;
3421 	if (t->sas_ss_flags & SS_AUTODISARM)
3422 		sas_ss_reset(t);
3423 	return 0;
3424 }
3425 #endif
3426 
3427 #ifdef __ARCH_WANT_SYS_SIGPENDING
3428 
3429 /**
3430  *  sys_sigpending - examine pending signals
3431  *  @set: where mask of pending signal is returned
3432  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3433 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3434 {
3435 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3436 }
3437 
3438 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)3439 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3440 {
3441 #ifdef __BIG_ENDIAN
3442 	sigset_t set;
3443 	int err = do_sigpending(&set, sizeof(set.sig[0]));
3444 	if (!err)
3445 		err = put_user(set.sig[0], set32);
3446 	return err;
3447 #else
3448 	return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32));
3449 #endif
3450 }
3451 #endif
3452 
3453 #endif
3454 
3455 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3456 /**
3457  *  sys_sigprocmask - examine and change blocked signals
3458  *  @how: whether to add, remove, or set signals
3459  *  @nset: signals to add or remove (if non-null)
3460  *  @oset: previous value of signal mask if non-null
3461  *
3462  * Some platforms have their own version with special arguments;
3463  * others support only sys_rt_sigprocmask.
3464  */
3465 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3466 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3467 		old_sigset_t __user *, oset)
3468 {
3469 	old_sigset_t old_set, new_set;
3470 	sigset_t new_blocked;
3471 
3472 	old_set = current->blocked.sig[0];
3473 
3474 	if (nset) {
3475 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3476 			return -EFAULT;
3477 
3478 		new_blocked = current->blocked;
3479 
3480 		switch (how) {
3481 		case SIG_BLOCK:
3482 			sigaddsetmask(&new_blocked, new_set);
3483 			break;
3484 		case SIG_UNBLOCK:
3485 			sigdelsetmask(&new_blocked, new_set);
3486 			break;
3487 		case SIG_SETMASK:
3488 			new_blocked.sig[0] = new_set;
3489 			break;
3490 		default:
3491 			return -EINVAL;
3492 		}
3493 
3494 		set_current_blocked(&new_blocked);
3495 	}
3496 
3497 	if (oset) {
3498 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3499 			return -EFAULT;
3500 	}
3501 
3502 	return 0;
3503 }
3504 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3505 
3506 #ifndef CONFIG_ODD_RT_SIGACTION
3507 /**
3508  *  sys_rt_sigaction - alter an action taken by a process
3509  *  @sig: signal to be sent
3510  *  @act: new sigaction
3511  *  @oact: used to save the previous sigaction
3512  *  @sigsetsize: size of sigset_t type
3513  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3514 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3515 		const struct sigaction __user *, act,
3516 		struct sigaction __user *, oact,
3517 		size_t, sigsetsize)
3518 {
3519 	struct k_sigaction new_sa, old_sa;
3520 	int ret = -EINVAL;
3521 
3522 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3523 	if (sigsetsize != sizeof(sigset_t))
3524 		goto out;
3525 
3526 	if (act) {
3527 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3528 			return -EFAULT;
3529 	}
3530 
3531 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3532 
3533 	if (!ret && oact) {
3534 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3535 			return -EFAULT;
3536 	}
3537 out:
3538 	return ret;
3539 }
3540 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)3541 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3542 		const struct compat_sigaction __user *, act,
3543 		struct compat_sigaction __user *, oact,
3544 		compat_size_t, sigsetsize)
3545 {
3546 	struct k_sigaction new_ka, old_ka;
3547 	compat_sigset_t mask;
3548 #ifdef __ARCH_HAS_SA_RESTORER
3549 	compat_uptr_t restorer;
3550 #endif
3551 	int ret;
3552 
3553 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3554 	if (sigsetsize != sizeof(compat_sigset_t))
3555 		return -EINVAL;
3556 
3557 	if (act) {
3558 		compat_uptr_t handler;
3559 		ret = get_user(handler, &act->sa_handler);
3560 		new_ka.sa.sa_handler = compat_ptr(handler);
3561 #ifdef __ARCH_HAS_SA_RESTORER
3562 		ret |= get_user(restorer, &act->sa_restorer);
3563 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3564 #endif
3565 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3566 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3567 		if (ret)
3568 			return -EFAULT;
3569 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3570 	}
3571 
3572 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3573 	if (!ret && oact) {
3574 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3575 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3576 			       &oact->sa_handler);
3577 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3578 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3579 #ifdef __ARCH_HAS_SA_RESTORER
3580 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3581 				&oact->sa_restorer);
3582 #endif
3583 	}
3584 	return ret;
3585 }
3586 #endif
3587 #endif /* !CONFIG_ODD_RT_SIGACTION */
3588 
3589 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)3590 SYSCALL_DEFINE3(sigaction, int, sig,
3591 		const struct old_sigaction __user *, act,
3592 	        struct old_sigaction __user *, oact)
3593 {
3594 	struct k_sigaction new_ka, old_ka;
3595 	int ret;
3596 
3597 	if (act) {
3598 		old_sigset_t mask;
3599 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3600 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3601 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3602 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3603 		    __get_user(mask, &act->sa_mask))
3604 			return -EFAULT;
3605 #ifdef __ARCH_HAS_KA_RESTORER
3606 		new_ka.ka_restorer = NULL;
3607 #endif
3608 		siginitset(&new_ka.sa.sa_mask, mask);
3609 	}
3610 
3611 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3612 
3613 	if (!ret && oact) {
3614 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3615 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3616 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3617 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3618 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3619 			return -EFAULT;
3620 	}
3621 
3622 	return ret;
3623 }
3624 #endif
3625 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)3626 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3627 		const struct compat_old_sigaction __user *, act,
3628 	        struct compat_old_sigaction __user *, oact)
3629 {
3630 	struct k_sigaction new_ka, old_ka;
3631 	int ret;
3632 	compat_old_sigset_t mask;
3633 	compat_uptr_t handler, restorer;
3634 
3635 	if (act) {
3636 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3637 		    __get_user(handler, &act->sa_handler) ||
3638 		    __get_user(restorer, &act->sa_restorer) ||
3639 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3640 		    __get_user(mask, &act->sa_mask))
3641 			return -EFAULT;
3642 
3643 #ifdef __ARCH_HAS_KA_RESTORER
3644 		new_ka.ka_restorer = NULL;
3645 #endif
3646 		new_ka.sa.sa_handler = compat_ptr(handler);
3647 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3648 		siginitset(&new_ka.sa.sa_mask, mask);
3649 	}
3650 
3651 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3652 
3653 	if (!ret && oact) {
3654 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3655 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3656 			       &oact->sa_handler) ||
3657 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3658 			       &oact->sa_restorer) ||
3659 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3660 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3661 			return -EFAULT;
3662 	}
3663 	return ret;
3664 }
3665 #endif
3666 
3667 #ifdef CONFIG_SGETMASK_SYSCALL
3668 
3669 /*
3670  * For backwards compatibility.  Functionality superseded by sigprocmask.
3671  */
SYSCALL_DEFINE0(sgetmask)3672 SYSCALL_DEFINE0(sgetmask)
3673 {
3674 	/* SMP safe */
3675 	return current->blocked.sig[0];
3676 }
3677 
SYSCALL_DEFINE1(ssetmask,int,newmask)3678 SYSCALL_DEFINE1(ssetmask, int, newmask)
3679 {
3680 	int old = current->blocked.sig[0];
3681 	sigset_t newset;
3682 
3683 	siginitset(&newset, newmask);
3684 	set_current_blocked(&newset);
3685 
3686 	return old;
3687 }
3688 #endif /* CONFIG_SGETMASK_SYSCALL */
3689 
3690 #ifdef __ARCH_WANT_SYS_SIGNAL
3691 /*
3692  * For backwards compatibility.  Functionality superseded by sigaction.
3693  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3694 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3695 {
3696 	struct k_sigaction new_sa, old_sa;
3697 	int ret;
3698 
3699 	new_sa.sa.sa_handler = handler;
3700 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3701 	sigemptyset(&new_sa.sa.sa_mask);
3702 
3703 	ret = do_sigaction(sig, &new_sa, &old_sa);
3704 
3705 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3706 }
3707 #endif /* __ARCH_WANT_SYS_SIGNAL */
3708 
3709 #ifdef __ARCH_WANT_SYS_PAUSE
3710 
SYSCALL_DEFINE0(pause)3711 SYSCALL_DEFINE0(pause)
3712 {
3713 	while (!signal_pending(current)) {
3714 		__set_current_state(TASK_INTERRUPTIBLE);
3715 		schedule();
3716 	}
3717 	return -ERESTARTNOHAND;
3718 }
3719 
3720 #endif
3721 
sigsuspend(sigset_t * set)3722 static int sigsuspend(sigset_t *set)
3723 {
3724 	current->saved_sigmask = current->blocked;
3725 	set_current_blocked(set);
3726 
3727 	while (!signal_pending(current)) {
3728 		__set_current_state(TASK_INTERRUPTIBLE);
3729 		schedule();
3730 	}
3731 	set_restore_sigmask();
3732 	return -ERESTARTNOHAND;
3733 }
3734 
3735 /**
3736  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3737  *	@unewset value until a signal is received
3738  *  @unewset: new signal mask value
3739  *  @sigsetsize: size of sigset_t type
3740  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3741 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3742 {
3743 	sigset_t newset;
3744 
3745 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3746 	if (sigsetsize != sizeof(sigset_t))
3747 		return -EINVAL;
3748 
3749 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3750 		return -EFAULT;
3751 	return sigsuspend(&newset);
3752 }
3753 
3754 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)3755 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3756 {
3757 #ifdef __BIG_ENDIAN
3758 	sigset_t newset;
3759 	compat_sigset_t newset32;
3760 
3761 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3762 	if (sigsetsize != sizeof(sigset_t))
3763 		return -EINVAL;
3764 
3765 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3766 		return -EFAULT;
3767 	sigset_from_compat(&newset, &newset32);
3768 	return sigsuspend(&newset);
3769 #else
3770 	/* on little-endian bitmaps don't care about granularity */
3771 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3772 #endif
3773 }
3774 #endif
3775 
3776 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)3777 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3778 {
3779 	sigset_t blocked;
3780 	siginitset(&blocked, mask);
3781 	return sigsuspend(&blocked);
3782 }
3783 #endif
3784 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)3785 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3786 {
3787 	sigset_t blocked;
3788 	siginitset(&blocked, mask);
3789 	return sigsuspend(&blocked);
3790 }
3791 #endif
3792 
arch_vma_name(struct vm_area_struct * vma)3793 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3794 {
3795 	return NULL;
3796 }
3797 
signals_init(void)3798 void __init signals_init(void)
3799 {
3800 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3801 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3802 		!= offsetof(struct siginfo, _sifields._pad));
3803 
3804 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3805 }
3806 
3807 #ifdef CONFIG_KGDB_KDB
3808 #include <linux/kdb.h>
3809 /*
3810  * kdb_send_sig_info - Allows kdb to send signals without exposing
3811  * signal internals.  This function checks if the required locks are
3812  * available before calling the main signal code, to avoid kdb
3813  * deadlocks.
3814  */
3815 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3816 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3817 {
3818 	static struct task_struct *kdb_prev_t;
3819 	int sig, new_t;
3820 	if (!spin_trylock(&t->sighand->siglock)) {
3821 		kdb_printf("Can't do kill command now.\n"
3822 			   "The sigmask lock is held somewhere else in "
3823 			   "kernel, try again later\n");
3824 		return;
3825 	}
3826 	spin_unlock(&t->sighand->siglock);
3827 	new_t = kdb_prev_t != t;
3828 	kdb_prev_t = t;
3829 	if (t->state != TASK_RUNNING && new_t) {
3830 		kdb_printf("Process is not RUNNING, sending a signal from "
3831 			   "kdb risks deadlock\n"
3832 			   "on the run queue locks. "
3833 			   "The signal has _not_ been sent.\n"
3834 			   "Reissue the kill command if you want to risk "
3835 			   "the deadlock.\n");
3836 		return;
3837 	}
3838 	sig = info->si_signo;
3839 	if (send_sig_info(sig, info, t))
3840 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3841 			   sig, t->pid);
3842 	else
3843 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3844 }
3845 #endif	/* CONFIG_KGDB_KDB */
3846