• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
__vfs_msg(struct super_block * sb,const char * prefix,const char * fmt,...)57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 	struct va_format vaf;
60 	va_list args;
61 
62 	va_start(args, fmt);
63 	vaf.fmt = fmt;
64 	vaf.va = &args;
65 	printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 	va_end(args);
67 }
68 
bdev_write_inode(struct block_device * bdev)69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 	struct inode *inode = bdev->bd_inode;
72 	int ret;
73 
74 	spin_lock(&inode->i_lock);
75 	while (inode->i_state & I_DIRTY) {
76 		spin_unlock(&inode->i_lock);
77 		ret = write_inode_now(inode, true);
78 		if (ret) {
79 			char name[BDEVNAME_SIZE];
80 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 					    "for block device %s (err=%d).\n",
82 					    bdevname(bdev, name), ret);
83 		}
84 		spin_lock(&inode->i_lock);
85 	}
86 	spin_unlock(&inode->i_lock);
87 }
88 
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)90 void kill_bdev(struct block_device *bdev)
91 {
92 	struct address_space *mapping = bdev->bd_inode->i_mapping;
93 
94 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 		return;
96 
97 	invalidate_bh_lrus();
98 	truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101 
102 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)103 void invalidate_bdev(struct block_device *bdev)
104 {
105 	struct address_space *mapping = bdev->bd_inode->i_mapping;
106 
107 	if (mapping->nrpages) {
108 		invalidate_bh_lrus();
109 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
110 		invalidate_mapping_pages(mapping, 0, -1);
111 	}
112 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
113 	 * But, for the strange corners, lets be cautious
114 	 */
115 	cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118 
set_init_blocksize(struct block_device * bdev)119 static void set_init_blocksize(struct block_device *bdev)
120 {
121 	unsigned bsize = bdev_logical_block_size(bdev);
122 	loff_t size = i_size_read(bdev->bd_inode);
123 
124 	while (bsize < PAGE_SIZE) {
125 		if (size & bsize)
126 			break;
127 		bsize <<= 1;
128 	}
129 	bdev->bd_block_size = bsize;
130 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
131 }
132 
set_blocksize(struct block_device * bdev,int size)133 int set_blocksize(struct block_device *bdev, int size)
134 {
135 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
136 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
137 		return -EINVAL;
138 
139 	/* Size cannot be smaller than the size supported by the device */
140 	if (size < bdev_logical_block_size(bdev))
141 		return -EINVAL;
142 
143 	/* Don't change the size if it is same as current */
144 	if (bdev->bd_block_size != size) {
145 		sync_blockdev(bdev);
146 		bdev->bd_block_size = size;
147 		bdev->bd_inode->i_blkbits = blksize_bits(size);
148 		kill_bdev(bdev);
149 	}
150 	return 0;
151 }
152 
153 EXPORT_SYMBOL(set_blocksize);
154 
sb_set_blocksize(struct super_block * sb,int size)155 int sb_set_blocksize(struct super_block *sb, int size)
156 {
157 	if (set_blocksize(sb->s_bdev, size))
158 		return 0;
159 	/* If we get here, we know size is power of two
160 	 * and it's value is between 512 and PAGE_SIZE */
161 	sb->s_blocksize = size;
162 	sb->s_blocksize_bits = blksize_bits(size);
163 	return sb->s_blocksize;
164 }
165 
166 EXPORT_SYMBOL(sb_set_blocksize);
167 
sb_min_blocksize(struct super_block * sb,int size)168 int sb_min_blocksize(struct super_block *sb, int size)
169 {
170 	int minsize = bdev_logical_block_size(sb->s_bdev);
171 	if (size < minsize)
172 		size = minsize;
173 	return sb_set_blocksize(sb, size);
174 }
175 
176 EXPORT_SYMBOL(sb_min_blocksize);
177 
178 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)179 blkdev_get_block(struct inode *inode, sector_t iblock,
180 		struct buffer_head *bh, int create)
181 {
182 	bh->b_bdev = I_BDEV(inode);
183 	bh->b_blocknr = iblock;
184 	set_buffer_mapped(bh);
185 	return 0;
186 }
187 
bdev_file_inode(struct file * file)188 static struct inode *bdev_file_inode(struct file *file)
189 {
190 	return file->f_mapping->host;
191 }
192 
dio_bio_write_op(struct kiocb * iocb)193 static unsigned int dio_bio_write_op(struct kiocb *iocb)
194 {
195 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
196 
197 	/* avoid the need for a I/O completion work item */
198 	if (iocb->ki_flags & IOCB_DSYNC)
199 		op |= REQ_FUA;
200 	return op;
201 }
202 
203 #define DIO_INLINE_BIO_VECS 4
204 
blkdev_bio_end_io_simple(struct bio * bio)205 static void blkdev_bio_end_io_simple(struct bio *bio)
206 {
207 	struct task_struct *waiter = bio->bi_private;
208 
209 	WRITE_ONCE(bio->bi_private, NULL);
210 	wake_up_process(waiter);
211 }
212 
213 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)214 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
215 		int nr_pages)
216 {
217 	struct file *file = iocb->ki_filp;
218 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
219 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
220 	loff_t pos = iocb->ki_pos;
221 	bool should_dirty = false;
222 	struct bio bio;
223 	ssize_t ret;
224 	blk_qc_t qc;
225 	int i;
226 
227 	if ((pos | iov_iter_alignment(iter)) &
228 	    (bdev_logical_block_size(bdev) - 1))
229 		return -EINVAL;
230 
231 	if (nr_pages <= DIO_INLINE_BIO_VECS)
232 		vecs = inline_vecs;
233 	else {
234 		vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
235 		if (!vecs)
236 			return -ENOMEM;
237 	}
238 
239 	bio_init(&bio, vecs, nr_pages);
240 	bio_set_dev(&bio, bdev);
241 	bio.bi_iter.bi_sector = pos >> 9;
242 	bio.bi_write_hint = iocb->ki_hint;
243 	bio.bi_private = current;
244 	bio.bi_end_io = blkdev_bio_end_io_simple;
245 
246 	ret = bio_iov_iter_get_pages(&bio, iter);
247 	if (unlikely(ret))
248 		goto out;
249 	ret = bio.bi_iter.bi_size;
250 
251 	if (iov_iter_rw(iter) == READ) {
252 		bio.bi_opf = REQ_OP_READ;
253 		if (iter_is_iovec(iter))
254 			should_dirty = true;
255 	} else {
256 		bio.bi_opf = dio_bio_write_op(iocb);
257 		task_io_account_write(ret);
258 	}
259 
260 	qc = submit_bio(&bio);
261 	for (;;) {
262 		set_current_state(TASK_UNINTERRUPTIBLE);
263 		if (!READ_ONCE(bio.bi_private))
264 			break;
265 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
266 		    !blk_mq_poll(bdev_get_queue(bdev), qc))
267 			io_schedule();
268 	}
269 	__set_current_state(TASK_RUNNING);
270 
271 	bio_for_each_segment_all(bvec, &bio, i) {
272 		if (should_dirty && !PageCompound(bvec->bv_page))
273 			set_page_dirty_lock(bvec->bv_page);
274 		put_page(bvec->bv_page);
275 	}
276 
277 	if (unlikely(bio.bi_status))
278 		ret = blk_status_to_errno(bio.bi_status);
279 
280 out:
281 	if (vecs != inline_vecs)
282 		kfree(vecs);
283 
284 	bio_uninit(&bio);
285 
286 	return ret;
287 }
288 
289 struct blkdev_dio {
290 	union {
291 		struct kiocb		*iocb;
292 		struct task_struct	*waiter;
293 	};
294 	size_t			size;
295 	atomic_t		ref;
296 	bool			multi_bio : 1;
297 	bool			should_dirty : 1;
298 	bool			is_sync : 1;
299 	struct bio		bio;
300 };
301 
302 static struct bio_set *blkdev_dio_pool __read_mostly;
303 
blkdev_bio_end_io(struct bio * bio)304 static void blkdev_bio_end_io(struct bio *bio)
305 {
306 	struct blkdev_dio *dio = bio->bi_private;
307 	bool should_dirty = dio->should_dirty;
308 
309 	if (bio->bi_status && !dio->bio.bi_status)
310 		dio->bio.bi_status = bio->bi_status;
311 
312 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
313 		if (!dio->is_sync) {
314 			struct kiocb *iocb = dio->iocb;
315 			ssize_t ret;
316 
317 			if (likely(!dio->bio.bi_status)) {
318 				ret = dio->size;
319 				iocb->ki_pos += ret;
320 			} else {
321 				ret = blk_status_to_errno(dio->bio.bi_status);
322 			}
323 
324 			dio->iocb->ki_complete(iocb, ret, 0);
325 			bio_put(&dio->bio);
326 		} else {
327 			struct task_struct *waiter = dio->waiter;
328 
329 			WRITE_ONCE(dio->waiter, NULL);
330 			wake_up_process(waiter);
331 		}
332 	}
333 
334 	if (should_dirty) {
335 		bio_check_pages_dirty(bio);
336 	} else {
337 		struct bio_vec *bvec;
338 		int i;
339 
340 		bio_for_each_segment_all(bvec, bio, i)
341 			put_page(bvec->bv_page);
342 		bio_put(bio);
343 	}
344 }
345 
346 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)347 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
348 {
349 	struct file *file = iocb->ki_filp;
350 	struct inode *inode = bdev_file_inode(file);
351 	struct block_device *bdev = I_BDEV(inode);
352 	struct blk_plug plug;
353 	struct blkdev_dio *dio;
354 	struct bio *bio;
355 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
356 	loff_t pos = iocb->ki_pos;
357 	blk_qc_t qc = BLK_QC_T_NONE;
358 	int ret = 0;
359 
360 	if ((pos | iov_iter_alignment(iter)) &
361 	    (bdev_logical_block_size(bdev) - 1))
362 		return -EINVAL;
363 
364 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
365 	bio_get(bio); /* extra ref for the completion handler */
366 
367 	dio = container_of(bio, struct blkdev_dio, bio);
368 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
369 	if (dio->is_sync)
370 		dio->waiter = current;
371 	else
372 		dio->iocb = iocb;
373 
374 	dio->size = 0;
375 	dio->multi_bio = false;
376 	dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
377 
378 	blk_start_plug(&plug);
379 	for (;;) {
380 		bio_set_dev(bio, bdev);
381 		bio->bi_iter.bi_sector = pos >> 9;
382 		bio->bi_write_hint = iocb->ki_hint;
383 		bio->bi_private = dio;
384 		bio->bi_end_io = blkdev_bio_end_io;
385 
386 		ret = bio_iov_iter_get_pages(bio, iter);
387 		if (unlikely(ret)) {
388 			bio->bi_status = BLK_STS_IOERR;
389 			bio_endio(bio);
390 			break;
391 		}
392 
393 		if (is_read) {
394 			bio->bi_opf = REQ_OP_READ;
395 			if (dio->should_dirty)
396 				bio_set_pages_dirty(bio);
397 		} else {
398 			bio->bi_opf = dio_bio_write_op(iocb);
399 			task_io_account_write(bio->bi_iter.bi_size);
400 		}
401 
402 		dio->size += bio->bi_iter.bi_size;
403 		pos += bio->bi_iter.bi_size;
404 
405 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
406 		if (!nr_pages) {
407 			qc = submit_bio(bio);
408 			break;
409 		}
410 
411 		if (!dio->multi_bio) {
412 			dio->multi_bio = true;
413 			atomic_set(&dio->ref, 2);
414 		} else {
415 			atomic_inc(&dio->ref);
416 		}
417 
418 		submit_bio(bio);
419 		bio = bio_alloc(GFP_KERNEL, nr_pages);
420 	}
421 	blk_finish_plug(&plug);
422 
423 	if (!is_sync)
424 		return -EIOCBQUEUED;
425 
426 	for (;;) {
427 		set_current_state(TASK_UNINTERRUPTIBLE);
428 		if (!READ_ONCE(dio->waiter))
429 			break;
430 
431 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
432 		    !blk_mq_poll(bdev_get_queue(bdev), qc))
433 			io_schedule();
434 	}
435 	__set_current_state(TASK_RUNNING);
436 
437 	if (!ret)
438 		ret = blk_status_to_errno(dio->bio.bi_status);
439 	if (likely(!ret))
440 		ret = dio->size;
441 
442 	bio_put(&dio->bio);
443 	return ret;
444 }
445 
446 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)447 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
448 {
449 	int nr_pages;
450 
451 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
452 	if (!nr_pages)
453 		return 0;
454 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
455 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
456 
457 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
458 }
459 
blkdev_init(void)460 static __init int blkdev_init(void)
461 {
462 	blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
463 	if (!blkdev_dio_pool)
464 		return -ENOMEM;
465 	return 0;
466 }
467 module_init(blkdev_init);
468 
__sync_blockdev(struct block_device * bdev,int wait)469 int __sync_blockdev(struct block_device *bdev, int wait)
470 {
471 	if (!bdev)
472 		return 0;
473 	if (!wait)
474 		return filemap_flush(bdev->bd_inode->i_mapping);
475 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
476 }
477 
478 /*
479  * Write out and wait upon all the dirty data associated with a block
480  * device via its mapping.  Does not take the superblock lock.
481  */
sync_blockdev(struct block_device * bdev)482 int sync_blockdev(struct block_device *bdev)
483 {
484 	return __sync_blockdev(bdev, 1);
485 }
486 EXPORT_SYMBOL(sync_blockdev);
487 
488 /*
489  * Write out and wait upon all dirty data associated with this
490  * device.   Filesystem data as well as the underlying block
491  * device.  Takes the superblock lock.
492  */
fsync_bdev(struct block_device * bdev)493 int fsync_bdev(struct block_device *bdev)
494 {
495 	struct super_block *sb = get_super(bdev);
496 	if (sb) {
497 		int res = sync_filesystem(sb);
498 		drop_super(sb);
499 		return res;
500 	}
501 	return sync_blockdev(bdev);
502 }
503 EXPORT_SYMBOL(fsync_bdev);
504 
505 /**
506  * freeze_bdev  --  lock a filesystem and force it into a consistent state
507  * @bdev:	blockdevice to lock
508  *
509  * If a superblock is found on this device, we take the s_umount semaphore
510  * on it to make sure nobody unmounts until the snapshot creation is done.
511  * The reference counter (bd_fsfreeze_count) guarantees that only the last
512  * unfreeze process can unfreeze the frozen filesystem actually when multiple
513  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
514  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
515  * actually.
516  */
freeze_bdev(struct block_device * bdev)517 struct super_block *freeze_bdev(struct block_device *bdev)
518 {
519 	struct super_block *sb;
520 	int error = 0;
521 
522 	mutex_lock(&bdev->bd_fsfreeze_mutex);
523 	if (++bdev->bd_fsfreeze_count > 1) {
524 		/*
525 		 * We don't even need to grab a reference - the first call
526 		 * to freeze_bdev grab an active reference and only the last
527 		 * thaw_bdev drops it.
528 		 */
529 		sb = get_super(bdev);
530 		if (sb)
531 			drop_super(sb);
532 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
533 		return sb;
534 	}
535 
536 	sb = get_active_super(bdev);
537 	if (!sb)
538 		goto out;
539 	if (sb->s_op->freeze_super)
540 		error = sb->s_op->freeze_super(sb);
541 	else
542 		error = freeze_super(sb);
543 	if (error) {
544 		deactivate_super(sb);
545 		bdev->bd_fsfreeze_count--;
546 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
547 		return ERR_PTR(error);
548 	}
549 	deactivate_super(sb);
550  out:
551 	sync_blockdev(bdev);
552 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
553 	return sb;	/* thaw_bdev releases s->s_umount */
554 }
555 EXPORT_SYMBOL(freeze_bdev);
556 
557 /**
558  * thaw_bdev  -- unlock filesystem
559  * @bdev:	blockdevice to unlock
560  * @sb:		associated superblock
561  *
562  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
563  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)564 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
565 {
566 	int error = -EINVAL;
567 
568 	mutex_lock(&bdev->bd_fsfreeze_mutex);
569 	if (!bdev->bd_fsfreeze_count)
570 		goto out;
571 
572 	error = 0;
573 	if (--bdev->bd_fsfreeze_count > 0)
574 		goto out;
575 
576 	if (!sb)
577 		goto out;
578 
579 	if (sb->s_op->thaw_super)
580 		error = sb->s_op->thaw_super(sb);
581 	else
582 		error = thaw_super(sb);
583 	if (error)
584 		bdev->bd_fsfreeze_count++;
585 out:
586 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
587 	return error;
588 }
589 EXPORT_SYMBOL(thaw_bdev);
590 
blkdev_writepage(struct page * page,struct writeback_control * wbc)591 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
592 {
593 	return block_write_full_page(page, blkdev_get_block, wbc);
594 }
595 
blkdev_readpage(struct file * file,struct page * page)596 static int blkdev_readpage(struct file * file, struct page * page)
597 {
598 	return block_read_full_page(page, blkdev_get_block);
599 }
600 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)601 static int blkdev_readpages(struct file *file, struct address_space *mapping,
602 			struct list_head *pages, unsigned nr_pages)
603 {
604 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
605 }
606 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)607 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
608 			loff_t pos, unsigned len, unsigned flags,
609 			struct page **pagep, void **fsdata)
610 {
611 	return block_write_begin(mapping, pos, len, flags, pagep,
612 				 blkdev_get_block);
613 }
614 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)615 static int blkdev_write_end(struct file *file, struct address_space *mapping,
616 			loff_t pos, unsigned len, unsigned copied,
617 			struct page *page, void *fsdata)
618 {
619 	int ret;
620 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
621 
622 	unlock_page(page);
623 	put_page(page);
624 
625 	return ret;
626 }
627 
628 /*
629  * private llseek:
630  * for a block special file file_inode(file)->i_size is zero
631  * so we compute the size by hand (just as in block_read/write above)
632  */
block_llseek(struct file * file,loff_t offset,int whence)633 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
634 {
635 	struct inode *bd_inode = bdev_file_inode(file);
636 	loff_t retval;
637 
638 	inode_lock(bd_inode);
639 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
640 	inode_unlock(bd_inode);
641 	return retval;
642 }
643 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)644 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
645 {
646 	struct inode *bd_inode = bdev_file_inode(filp);
647 	struct block_device *bdev = I_BDEV(bd_inode);
648 	int error;
649 
650 	error = file_write_and_wait_range(filp, start, end);
651 	if (error)
652 		return error;
653 
654 	/*
655 	 * There is no need to serialise calls to blkdev_issue_flush with
656 	 * i_mutex and doing so causes performance issues with concurrent
657 	 * O_SYNC writers to a block device.
658 	 */
659 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
660 	if (error == -EOPNOTSUPP)
661 		error = 0;
662 
663 	return error;
664 }
665 EXPORT_SYMBOL(blkdev_fsync);
666 
667 /**
668  * bdev_read_page() - Start reading a page from a block device
669  * @bdev: The device to read the page from
670  * @sector: The offset on the device to read the page to (need not be aligned)
671  * @page: The page to read
672  *
673  * On entry, the page should be locked.  It will be unlocked when the page
674  * has been read.  If the block driver implements rw_page synchronously,
675  * that will be true on exit from this function, but it need not be.
676  *
677  * Errors returned by this function are usually "soft", eg out of memory, or
678  * queue full; callers should try a different route to read this page rather
679  * than propagate an error back up the stack.
680  *
681  * Return: negative errno if an error occurs, 0 if submission was successful.
682  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)683 int bdev_read_page(struct block_device *bdev, sector_t sector,
684 			struct page *page)
685 {
686 	const struct block_device_operations *ops = bdev->bd_disk->fops;
687 	int result = -EOPNOTSUPP;
688 
689 	if (!ops->rw_page || bdev_get_integrity(bdev))
690 		return result;
691 
692 	result = blk_queue_enter(bdev->bd_queue, false);
693 	if (result)
694 		return result;
695 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
696 	blk_queue_exit(bdev->bd_queue);
697 	return result;
698 }
699 EXPORT_SYMBOL_GPL(bdev_read_page);
700 
701 /**
702  * bdev_write_page() - Start writing a page to a block device
703  * @bdev: The device to write the page to
704  * @sector: The offset on the device to write the page to (need not be aligned)
705  * @page: The page to write
706  * @wbc: The writeback_control for the write
707  *
708  * On entry, the page should be locked and not currently under writeback.
709  * On exit, if the write started successfully, the page will be unlocked and
710  * under writeback.  If the write failed already (eg the driver failed to
711  * queue the page to the device), the page will still be locked.  If the
712  * caller is a ->writepage implementation, it will need to unlock the page.
713  *
714  * Errors returned by this function are usually "soft", eg out of memory, or
715  * queue full; callers should try a different route to write this page rather
716  * than propagate an error back up the stack.
717  *
718  * Return: negative errno if an error occurs, 0 if submission was successful.
719  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)720 int bdev_write_page(struct block_device *bdev, sector_t sector,
721 			struct page *page, struct writeback_control *wbc)
722 {
723 	int result;
724 	const struct block_device_operations *ops = bdev->bd_disk->fops;
725 
726 	if (!ops->rw_page || bdev_get_integrity(bdev))
727 		return -EOPNOTSUPP;
728 	result = blk_queue_enter(bdev->bd_queue, false);
729 	if (result)
730 		return result;
731 
732 	set_page_writeback(page);
733 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
734 	if (result) {
735 		end_page_writeback(page);
736 	} else {
737 		clean_page_buffers(page);
738 		unlock_page(page);
739 	}
740 	blk_queue_exit(bdev->bd_queue);
741 	return result;
742 }
743 EXPORT_SYMBOL_GPL(bdev_write_page);
744 
745 /*
746  * pseudo-fs
747  */
748 
749 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
750 static struct kmem_cache * bdev_cachep __read_mostly;
751 
bdev_alloc_inode(struct super_block * sb)752 static struct inode *bdev_alloc_inode(struct super_block *sb)
753 {
754 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
755 	if (!ei)
756 		return NULL;
757 	return &ei->vfs_inode;
758 }
759 
bdev_i_callback(struct rcu_head * head)760 static void bdev_i_callback(struct rcu_head *head)
761 {
762 	struct inode *inode = container_of(head, struct inode, i_rcu);
763 	struct bdev_inode *bdi = BDEV_I(inode);
764 
765 	kmem_cache_free(bdev_cachep, bdi);
766 }
767 
bdev_destroy_inode(struct inode * inode)768 static void bdev_destroy_inode(struct inode *inode)
769 {
770 	call_rcu(&inode->i_rcu, bdev_i_callback);
771 }
772 
init_once(void * foo)773 static void init_once(void *foo)
774 {
775 	struct bdev_inode *ei = (struct bdev_inode *) foo;
776 	struct block_device *bdev = &ei->bdev;
777 
778 	memset(bdev, 0, sizeof(*bdev));
779 	mutex_init(&bdev->bd_mutex);
780 	INIT_LIST_HEAD(&bdev->bd_list);
781 #ifdef CONFIG_SYSFS
782 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
783 #endif
784 	bdev->bd_bdi = &noop_backing_dev_info;
785 	inode_init_once(&ei->vfs_inode);
786 	/* Initialize mutex for freeze. */
787 	mutex_init(&bdev->bd_fsfreeze_mutex);
788 }
789 
bdev_evict_inode(struct inode * inode)790 static void bdev_evict_inode(struct inode *inode)
791 {
792 	struct block_device *bdev = &BDEV_I(inode)->bdev;
793 	truncate_inode_pages_final(&inode->i_data);
794 	invalidate_inode_buffers(inode); /* is it needed here? */
795 	clear_inode(inode);
796 	spin_lock(&bdev_lock);
797 	list_del_init(&bdev->bd_list);
798 	spin_unlock(&bdev_lock);
799 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
800 	inode_detach_wb(inode);
801 	if (bdev->bd_bdi != &noop_backing_dev_info) {
802 		bdi_put(bdev->bd_bdi);
803 		bdev->bd_bdi = &noop_backing_dev_info;
804 	}
805 }
806 
807 static const struct super_operations bdev_sops = {
808 	.statfs = simple_statfs,
809 	.alloc_inode = bdev_alloc_inode,
810 	.destroy_inode = bdev_destroy_inode,
811 	.drop_inode = generic_delete_inode,
812 	.evict_inode = bdev_evict_inode,
813 };
814 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)815 static struct dentry *bd_mount(struct file_system_type *fs_type,
816 	int flags, const char *dev_name, void *data)
817 {
818 	struct dentry *dent;
819 	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
820 	if (!IS_ERR(dent))
821 		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
822 	return dent;
823 }
824 
825 static struct file_system_type bd_type = {
826 	.name		= "bdev",
827 	.mount		= bd_mount,
828 	.kill_sb	= kill_anon_super,
829 };
830 
831 struct super_block *blockdev_superblock __read_mostly;
832 EXPORT_SYMBOL_GPL(blockdev_superblock);
833 
bdev_cache_init(void)834 void __init bdev_cache_init(void)
835 {
836 	int err;
837 	static struct vfsmount *bd_mnt;
838 
839 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
840 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
841 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
842 			init_once);
843 	err = register_filesystem(&bd_type);
844 	if (err)
845 		panic("Cannot register bdev pseudo-fs");
846 	bd_mnt = kern_mount(&bd_type);
847 	if (IS_ERR(bd_mnt))
848 		panic("Cannot create bdev pseudo-fs");
849 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
850 }
851 
852 /*
853  * Most likely _very_ bad one - but then it's hardly critical for small
854  * /dev and can be fixed when somebody will need really large one.
855  * Keep in mind that it will be fed through icache hash function too.
856  */
hash(dev_t dev)857 static inline unsigned long hash(dev_t dev)
858 {
859 	return MAJOR(dev)+MINOR(dev);
860 }
861 
bdev_test(struct inode * inode,void * data)862 static int bdev_test(struct inode *inode, void *data)
863 {
864 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
865 }
866 
bdev_set(struct inode * inode,void * data)867 static int bdev_set(struct inode *inode, void *data)
868 {
869 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
870 	return 0;
871 }
872 
873 static LIST_HEAD(all_bdevs);
874 
875 /*
876  * If there is a bdev inode for this device, unhash it so that it gets evicted
877  * as soon as last inode reference is dropped.
878  */
bdev_unhash_inode(dev_t dev)879 void bdev_unhash_inode(dev_t dev)
880 {
881 	struct inode *inode;
882 
883 	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
884 	if (inode) {
885 		remove_inode_hash(inode);
886 		iput(inode);
887 	}
888 }
889 
bdget(dev_t dev)890 struct block_device *bdget(dev_t dev)
891 {
892 	struct block_device *bdev;
893 	struct inode *inode;
894 
895 	inode = iget5_locked(blockdev_superblock, hash(dev),
896 			bdev_test, bdev_set, &dev);
897 
898 	if (!inode)
899 		return NULL;
900 
901 	bdev = &BDEV_I(inode)->bdev;
902 
903 	if (inode->i_state & I_NEW) {
904 		bdev->bd_contains = NULL;
905 		bdev->bd_super = NULL;
906 		bdev->bd_inode = inode;
907 		bdev->bd_block_size = i_blocksize(inode);
908 		bdev->bd_part_count = 0;
909 		bdev->bd_invalidated = 0;
910 		inode->i_mode = S_IFBLK;
911 		inode->i_rdev = dev;
912 		inode->i_bdev = bdev;
913 		inode->i_data.a_ops = &def_blk_aops;
914 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
915 		spin_lock(&bdev_lock);
916 		list_add(&bdev->bd_list, &all_bdevs);
917 		spin_unlock(&bdev_lock);
918 		unlock_new_inode(inode);
919 	}
920 	return bdev;
921 }
922 
923 EXPORT_SYMBOL(bdget);
924 
925 /**
926  * bdgrab -- Grab a reference to an already referenced block device
927  * @bdev:	Block device to grab a reference to.
928  */
bdgrab(struct block_device * bdev)929 struct block_device *bdgrab(struct block_device *bdev)
930 {
931 	ihold(bdev->bd_inode);
932 	return bdev;
933 }
934 EXPORT_SYMBOL(bdgrab);
935 
nr_blockdev_pages(void)936 long nr_blockdev_pages(void)
937 {
938 	struct block_device *bdev;
939 	long ret = 0;
940 	spin_lock(&bdev_lock);
941 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
942 		ret += bdev->bd_inode->i_mapping->nrpages;
943 	}
944 	spin_unlock(&bdev_lock);
945 	return ret;
946 }
947 
bdput(struct block_device * bdev)948 void bdput(struct block_device *bdev)
949 {
950 	iput(bdev->bd_inode);
951 }
952 
953 EXPORT_SYMBOL(bdput);
954 
bd_acquire(struct inode * inode)955 static struct block_device *bd_acquire(struct inode *inode)
956 {
957 	struct block_device *bdev;
958 
959 	spin_lock(&bdev_lock);
960 	bdev = inode->i_bdev;
961 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
962 		bdgrab(bdev);
963 		spin_unlock(&bdev_lock);
964 		return bdev;
965 	}
966 	spin_unlock(&bdev_lock);
967 
968 	/*
969 	 * i_bdev references block device inode that was already shut down
970 	 * (corresponding device got removed).  Remove the reference and look
971 	 * up block device inode again just in case new device got
972 	 * reestablished under the same device number.
973 	 */
974 	if (bdev)
975 		bd_forget(inode);
976 
977 	bdev = bdget(inode->i_rdev);
978 	if (bdev) {
979 		spin_lock(&bdev_lock);
980 		if (!inode->i_bdev) {
981 			/*
982 			 * We take an additional reference to bd_inode,
983 			 * and it's released in clear_inode() of inode.
984 			 * So, we can access it via ->i_mapping always
985 			 * without igrab().
986 			 */
987 			bdgrab(bdev);
988 			inode->i_bdev = bdev;
989 			inode->i_mapping = bdev->bd_inode->i_mapping;
990 		}
991 		spin_unlock(&bdev_lock);
992 	}
993 	return bdev;
994 }
995 
996 /* Call when you free inode */
997 
bd_forget(struct inode * inode)998 void bd_forget(struct inode *inode)
999 {
1000 	struct block_device *bdev = NULL;
1001 
1002 	spin_lock(&bdev_lock);
1003 	if (!sb_is_blkdev_sb(inode->i_sb))
1004 		bdev = inode->i_bdev;
1005 	inode->i_bdev = NULL;
1006 	inode->i_mapping = &inode->i_data;
1007 	spin_unlock(&bdev_lock);
1008 
1009 	if (bdev)
1010 		bdput(bdev);
1011 }
1012 
1013 /**
1014  * bd_may_claim - test whether a block device can be claimed
1015  * @bdev: block device of interest
1016  * @whole: whole block device containing @bdev, may equal @bdev
1017  * @holder: holder trying to claim @bdev
1018  *
1019  * Test whether @bdev can be claimed by @holder.
1020  *
1021  * CONTEXT:
1022  * spin_lock(&bdev_lock).
1023  *
1024  * RETURNS:
1025  * %true if @bdev can be claimed, %false otherwise.
1026  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1027 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1028 			 void *holder)
1029 {
1030 	if (bdev->bd_holder == holder)
1031 		return true;	 /* already a holder */
1032 	else if (bdev->bd_holder != NULL)
1033 		return false; 	 /* held by someone else */
1034 	else if (whole == bdev)
1035 		return true;  	 /* is a whole device which isn't held */
1036 
1037 	else if (whole->bd_holder == bd_may_claim)
1038 		return true; 	 /* is a partition of a device that is being partitioned */
1039 	else if (whole->bd_holder != NULL)
1040 		return false;	 /* is a partition of a held device */
1041 	else
1042 		return true;	 /* is a partition of an un-held device */
1043 }
1044 
1045 /**
1046  * bd_prepare_to_claim - prepare to claim a block device
1047  * @bdev: block device of interest
1048  * @whole: the whole device containing @bdev, may equal @bdev
1049  * @holder: holder trying to claim @bdev
1050  *
1051  * Prepare to claim @bdev.  This function fails if @bdev is already
1052  * claimed by another holder and waits if another claiming is in
1053  * progress.  This function doesn't actually claim.  On successful
1054  * return, the caller has ownership of bd_claiming and bd_holder[s].
1055  *
1056  * CONTEXT:
1057  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1058  * it multiple times.
1059  *
1060  * RETURNS:
1061  * 0 if @bdev can be claimed, -EBUSY otherwise.
1062  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1063 static int bd_prepare_to_claim(struct block_device *bdev,
1064 			       struct block_device *whole, void *holder)
1065 {
1066 retry:
1067 	/* if someone else claimed, fail */
1068 	if (!bd_may_claim(bdev, whole, holder))
1069 		return -EBUSY;
1070 
1071 	/* if claiming is already in progress, wait for it to finish */
1072 	if (whole->bd_claiming) {
1073 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1074 		DEFINE_WAIT(wait);
1075 
1076 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1077 		spin_unlock(&bdev_lock);
1078 		schedule();
1079 		finish_wait(wq, &wait);
1080 		spin_lock(&bdev_lock);
1081 		goto retry;
1082 	}
1083 
1084 	/* yay, all mine */
1085 	return 0;
1086 }
1087 
1088 /**
1089  * bd_start_claiming - start claiming a block device
1090  * @bdev: block device of interest
1091  * @holder: holder trying to claim @bdev
1092  *
1093  * @bdev is about to be opened exclusively.  Check @bdev can be opened
1094  * exclusively and mark that an exclusive open is in progress.  Each
1095  * successful call to this function must be matched with a call to
1096  * either bd_finish_claiming() or bd_abort_claiming() (which do not
1097  * fail).
1098  *
1099  * This function is used to gain exclusive access to the block device
1100  * without actually causing other exclusive open attempts to fail. It
1101  * should be used when the open sequence itself requires exclusive
1102  * access but may subsequently fail.
1103  *
1104  * CONTEXT:
1105  * Might sleep.
1106  *
1107  * RETURNS:
1108  * Pointer to the block device containing @bdev on success, ERR_PTR()
1109  * value on failure.
1110  */
bd_start_claiming(struct block_device * bdev,void * holder)1111 static struct block_device *bd_start_claiming(struct block_device *bdev,
1112 					      void *holder)
1113 {
1114 	struct gendisk *disk;
1115 	struct block_device *whole;
1116 	int partno, err;
1117 
1118 	might_sleep();
1119 
1120 	/*
1121 	 * @bdev might not have been initialized properly yet, look up
1122 	 * and grab the outer block device the hard way.
1123 	 */
1124 	disk = get_gendisk(bdev->bd_dev, &partno);
1125 	if (!disk)
1126 		return ERR_PTR(-ENXIO);
1127 
1128 	/*
1129 	 * Normally, @bdev should equal what's returned from bdget_disk()
1130 	 * if partno is 0; however, some drivers (floppy) use multiple
1131 	 * bdev's for the same physical device and @bdev may be one of the
1132 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1133 	 * tracking is broken for those devices but it has always been that
1134 	 * way.
1135 	 */
1136 	if (partno)
1137 		whole = bdget_disk(disk, 0);
1138 	else
1139 		whole = bdgrab(bdev);
1140 
1141 	module_put(disk->fops->owner);
1142 	put_disk(disk);
1143 	if (!whole)
1144 		return ERR_PTR(-ENOMEM);
1145 
1146 	/* prepare to claim, if successful, mark claiming in progress */
1147 	spin_lock(&bdev_lock);
1148 
1149 	err = bd_prepare_to_claim(bdev, whole, holder);
1150 	if (err == 0) {
1151 		whole->bd_claiming = holder;
1152 		spin_unlock(&bdev_lock);
1153 		return whole;
1154 	} else {
1155 		spin_unlock(&bdev_lock);
1156 		bdput(whole);
1157 		return ERR_PTR(err);
1158 	}
1159 }
1160 
1161 #ifdef CONFIG_SYSFS
1162 struct bd_holder_disk {
1163 	struct list_head	list;
1164 	struct gendisk		*disk;
1165 	int			refcnt;
1166 };
1167 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1168 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1169 						  struct gendisk *disk)
1170 {
1171 	struct bd_holder_disk *holder;
1172 
1173 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1174 		if (holder->disk == disk)
1175 			return holder;
1176 	return NULL;
1177 }
1178 
add_symlink(struct kobject * from,struct kobject * to)1179 static int add_symlink(struct kobject *from, struct kobject *to)
1180 {
1181 	return sysfs_create_link(from, to, kobject_name(to));
1182 }
1183 
del_symlink(struct kobject * from,struct kobject * to)1184 static void del_symlink(struct kobject *from, struct kobject *to)
1185 {
1186 	sysfs_remove_link(from, kobject_name(to));
1187 }
1188 
1189 /**
1190  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1191  * @bdev: the claimed slave bdev
1192  * @disk: the holding disk
1193  *
1194  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1195  *
1196  * This functions creates the following sysfs symlinks.
1197  *
1198  * - from "slaves" directory of the holder @disk to the claimed @bdev
1199  * - from "holders" directory of the @bdev to the holder @disk
1200  *
1201  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1202  * passed to bd_link_disk_holder(), then:
1203  *
1204  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1205  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1206  *
1207  * The caller must have claimed @bdev before calling this function and
1208  * ensure that both @bdev and @disk are valid during the creation and
1209  * lifetime of these symlinks.
1210  *
1211  * CONTEXT:
1212  * Might sleep.
1213  *
1214  * RETURNS:
1215  * 0 on success, -errno on failure.
1216  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1217 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1218 {
1219 	struct bd_holder_disk *holder;
1220 	int ret = 0;
1221 
1222 	mutex_lock(&bdev->bd_mutex);
1223 
1224 	WARN_ON_ONCE(!bdev->bd_holder);
1225 
1226 	/* FIXME: remove the following once add_disk() handles errors */
1227 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1228 		goto out_unlock;
1229 
1230 	holder = bd_find_holder_disk(bdev, disk);
1231 	if (holder) {
1232 		holder->refcnt++;
1233 		goto out_unlock;
1234 	}
1235 
1236 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1237 	if (!holder) {
1238 		ret = -ENOMEM;
1239 		goto out_unlock;
1240 	}
1241 
1242 	INIT_LIST_HEAD(&holder->list);
1243 	holder->disk = disk;
1244 	holder->refcnt = 1;
1245 
1246 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1247 	if (ret)
1248 		goto out_free;
1249 
1250 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1251 	if (ret)
1252 		goto out_del;
1253 	/*
1254 	 * bdev could be deleted beneath us which would implicitly destroy
1255 	 * the holder directory.  Hold on to it.
1256 	 */
1257 	kobject_get(bdev->bd_part->holder_dir);
1258 
1259 	list_add(&holder->list, &bdev->bd_holder_disks);
1260 	goto out_unlock;
1261 
1262 out_del:
1263 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1264 out_free:
1265 	kfree(holder);
1266 out_unlock:
1267 	mutex_unlock(&bdev->bd_mutex);
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1271 
1272 /**
1273  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1274  * @bdev: the calimed slave bdev
1275  * @disk: the holding disk
1276  *
1277  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1278  *
1279  * CONTEXT:
1280  * Might sleep.
1281  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1282 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1283 {
1284 	struct bd_holder_disk *holder;
1285 
1286 	mutex_lock(&bdev->bd_mutex);
1287 
1288 	holder = bd_find_holder_disk(bdev, disk);
1289 
1290 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1291 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1292 		del_symlink(bdev->bd_part->holder_dir,
1293 			    &disk_to_dev(disk)->kobj);
1294 		kobject_put(bdev->bd_part->holder_dir);
1295 		list_del_init(&holder->list);
1296 		kfree(holder);
1297 	}
1298 
1299 	mutex_unlock(&bdev->bd_mutex);
1300 }
1301 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1302 #endif
1303 
1304 /**
1305  * flush_disk - invalidates all buffer-cache entries on a disk
1306  *
1307  * @bdev:      struct block device to be flushed
1308  * @kill_dirty: flag to guide handling of dirty inodes
1309  *
1310  * Invalidates all buffer-cache entries on a disk. It should be called
1311  * when a disk has been changed -- either by a media change or online
1312  * resize.
1313  */
flush_disk(struct block_device * bdev,bool kill_dirty)1314 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1315 {
1316 	if (__invalidate_device(bdev, kill_dirty)) {
1317 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1318 		       "resized disk %s\n",
1319 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1320 	}
1321 
1322 	if (!bdev->bd_disk)
1323 		return;
1324 	if (disk_part_scan_enabled(bdev->bd_disk))
1325 		bdev->bd_invalidated = 1;
1326 }
1327 
1328 /**
1329  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1330  * @disk: struct gendisk to check
1331  * @bdev: struct bdev to adjust.
1332  *
1333  * This routine checks to see if the bdev size does not match the disk size
1334  * and adjusts it if it differs.
1335  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1336 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1337 {
1338 	loff_t disk_size, bdev_size;
1339 
1340 	disk_size = (loff_t)get_capacity(disk) << 9;
1341 	bdev_size = i_size_read(bdev->bd_inode);
1342 	if (disk_size != bdev_size) {
1343 		printk(KERN_INFO
1344 		       "%s: detected capacity change from %lld to %lld\n",
1345 		       disk->disk_name, bdev_size, disk_size);
1346 		i_size_write(bdev->bd_inode, disk_size);
1347 		flush_disk(bdev, false);
1348 	}
1349 }
1350 EXPORT_SYMBOL(check_disk_size_change);
1351 
1352 /**
1353  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1354  * @disk: struct gendisk to be revalidated
1355  *
1356  * This routine is a wrapper for lower-level driver's revalidate_disk
1357  * call-backs.  It is used to do common pre and post operations needed
1358  * for all revalidate_disk operations.
1359  */
revalidate_disk(struct gendisk * disk)1360 int revalidate_disk(struct gendisk *disk)
1361 {
1362 	struct block_device *bdev;
1363 	int ret = 0;
1364 
1365 	if (disk->fops->revalidate_disk)
1366 		ret = disk->fops->revalidate_disk(disk);
1367 	bdev = bdget_disk(disk, 0);
1368 	if (!bdev)
1369 		return ret;
1370 
1371 	mutex_lock(&bdev->bd_mutex);
1372 	check_disk_size_change(disk, bdev);
1373 	bdev->bd_invalidated = 0;
1374 	mutex_unlock(&bdev->bd_mutex);
1375 	bdput(bdev);
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL(revalidate_disk);
1379 
1380 /*
1381  * This routine checks whether a removable media has been changed,
1382  * and invalidates all buffer-cache-entries in that case. This
1383  * is a relatively slow routine, so we have to try to minimize using
1384  * it. Thus it is called only upon a 'mount' or 'open'. This
1385  * is the best way of combining speed and utility, I think.
1386  * People changing diskettes in the middle of an operation deserve
1387  * to lose :-)
1388  */
check_disk_change(struct block_device * bdev)1389 int check_disk_change(struct block_device *bdev)
1390 {
1391 	struct gendisk *disk = bdev->bd_disk;
1392 	const struct block_device_operations *bdops = disk->fops;
1393 	unsigned int events;
1394 
1395 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1396 				   DISK_EVENT_EJECT_REQUEST);
1397 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1398 		return 0;
1399 
1400 	flush_disk(bdev, true);
1401 	if (bdops->revalidate_disk)
1402 		bdops->revalidate_disk(bdev->bd_disk);
1403 	return 1;
1404 }
1405 
1406 EXPORT_SYMBOL(check_disk_change);
1407 
bd_set_size(struct block_device * bdev,loff_t size)1408 void bd_set_size(struct block_device *bdev, loff_t size)
1409 {
1410 	inode_lock(bdev->bd_inode);
1411 	i_size_write(bdev->bd_inode, size);
1412 	inode_unlock(bdev->bd_inode);
1413 }
1414 EXPORT_SYMBOL(bd_set_size);
1415 
1416 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1417 
1418 /*
1419  * bd_mutex locking:
1420  *
1421  *  mutex_lock(part->bd_mutex)
1422  *    mutex_lock_nested(whole->bd_mutex, 1)
1423  */
1424 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1425 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1426 {
1427 	struct gendisk *disk;
1428 	struct module *owner;
1429 	int ret;
1430 	int partno;
1431 	int perm = 0;
1432 
1433 	if (mode & FMODE_READ)
1434 		perm |= MAY_READ;
1435 	if (mode & FMODE_WRITE)
1436 		perm |= MAY_WRITE;
1437 	/*
1438 	 * hooks: /n/, see "layering violations".
1439 	 */
1440 	if (!for_part) {
1441 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1442 		if (ret != 0) {
1443 			bdput(bdev);
1444 			return ret;
1445 		}
1446 	}
1447 
1448  restart:
1449 
1450 	ret = -ENXIO;
1451 	disk = get_gendisk(bdev->bd_dev, &partno);
1452 	if (!disk)
1453 		goto out;
1454 	owner = disk->fops->owner;
1455 
1456 	disk_block_events(disk);
1457 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1458 	if (!bdev->bd_openers) {
1459 		bdev->bd_disk = disk;
1460 		bdev->bd_queue = disk->queue;
1461 		bdev->bd_contains = bdev;
1462 		bdev->bd_partno = partno;
1463 
1464 		if (!partno) {
1465 			ret = -ENXIO;
1466 			bdev->bd_part = disk_get_part(disk, partno);
1467 			if (!bdev->bd_part)
1468 				goto out_clear;
1469 
1470 			ret = 0;
1471 			if (disk->fops->open) {
1472 				ret = disk->fops->open(bdev, mode);
1473 				if (ret == -ERESTARTSYS) {
1474 					/* Lost a race with 'disk' being
1475 					 * deleted, try again.
1476 					 * See md.c
1477 					 */
1478 					disk_put_part(bdev->bd_part);
1479 					bdev->bd_part = NULL;
1480 					bdev->bd_disk = NULL;
1481 					bdev->bd_queue = NULL;
1482 					mutex_unlock(&bdev->bd_mutex);
1483 					disk_unblock_events(disk);
1484 					put_disk(disk);
1485 					module_put(owner);
1486 					goto restart;
1487 				}
1488 			}
1489 
1490 			if (!ret) {
1491 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1492 				set_init_blocksize(bdev);
1493 			}
1494 
1495 			/*
1496 			 * If the device is invalidated, rescan partition
1497 			 * if open succeeded or failed with -ENOMEDIUM.
1498 			 * The latter is necessary to prevent ghost
1499 			 * partitions on a removed medium.
1500 			 */
1501 			if (bdev->bd_invalidated) {
1502 				if (!ret)
1503 					rescan_partitions(disk, bdev);
1504 				else if (ret == -ENOMEDIUM)
1505 					invalidate_partitions(disk, bdev);
1506 			}
1507 
1508 			if (ret)
1509 				goto out_clear;
1510 		} else {
1511 			struct block_device *whole;
1512 			whole = bdget_disk(disk, 0);
1513 			ret = -ENOMEM;
1514 			if (!whole)
1515 				goto out_clear;
1516 			BUG_ON(for_part);
1517 			ret = __blkdev_get(whole, mode, 1);
1518 			if (ret)
1519 				goto out_clear;
1520 			bdev->bd_contains = whole;
1521 			bdev->bd_part = disk_get_part(disk, partno);
1522 			if (!(disk->flags & GENHD_FL_UP) ||
1523 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1524 				ret = -ENXIO;
1525 				goto out_clear;
1526 			}
1527 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1528 			set_init_blocksize(bdev);
1529 		}
1530 
1531 		if (bdev->bd_bdi == &noop_backing_dev_info)
1532 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1533 	} else {
1534 		if (bdev->bd_contains == bdev) {
1535 			ret = 0;
1536 			if (bdev->bd_disk->fops->open)
1537 				ret = bdev->bd_disk->fops->open(bdev, mode);
1538 			/* the same as first opener case, read comment there */
1539 			if (bdev->bd_invalidated) {
1540 				if (!ret)
1541 					rescan_partitions(bdev->bd_disk, bdev);
1542 				else if (ret == -ENOMEDIUM)
1543 					invalidate_partitions(bdev->bd_disk, bdev);
1544 			}
1545 			if (ret)
1546 				goto out_unlock_bdev;
1547 		}
1548 		/* only one opener holds refs to the module and disk */
1549 		put_disk(disk);
1550 		module_put(owner);
1551 	}
1552 	bdev->bd_openers++;
1553 	if (for_part)
1554 		bdev->bd_part_count++;
1555 	mutex_unlock(&bdev->bd_mutex);
1556 	disk_unblock_events(disk);
1557 	return 0;
1558 
1559  out_clear:
1560 	disk_put_part(bdev->bd_part);
1561 	bdev->bd_disk = NULL;
1562 	bdev->bd_part = NULL;
1563 	bdev->bd_queue = NULL;
1564 	if (bdev != bdev->bd_contains)
1565 		__blkdev_put(bdev->bd_contains, mode, 1);
1566 	bdev->bd_contains = NULL;
1567  out_unlock_bdev:
1568 	mutex_unlock(&bdev->bd_mutex);
1569 	disk_unblock_events(disk);
1570 	put_disk(disk);
1571 	module_put(owner);
1572  out:
1573 	bdput(bdev);
1574 
1575 	return ret;
1576 }
1577 
1578 /**
1579  * blkdev_get - open a block device
1580  * @bdev: block_device to open
1581  * @mode: FMODE_* mask
1582  * @holder: exclusive holder identifier
1583  *
1584  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1585  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1586  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1587  *
1588  * On success, the reference count of @bdev is unchanged.  On failure,
1589  * @bdev is put.
1590  *
1591  * CONTEXT:
1592  * Might sleep.
1593  *
1594  * RETURNS:
1595  * 0 on success, -errno on failure.
1596  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1597 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1598 {
1599 	struct block_device *whole = NULL;
1600 	int res;
1601 
1602 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1603 
1604 	if ((mode & FMODE_EXCL) && holder) {
1605 		whole = bd_start_claiming(bdev, holder);
1606 		if (IS_ERR(whole)) {
1607 			bdput(bdev);
1608 			return PTR_ERR(whole);
1609 		}
1610 	}
1611 
1612 	res = __blkdev_get(bdev, mode, 0);
1613 
1614 	if (whole) {
1615 		struct gendisk *disk = whole->bd_disk;
1616 
1617 		/* finish claiming */
1618 		mutex_lock(&bdev->bd_mutex);
1619 		spin_lock(&bdev_lock);
1620 
1621 		if (!res) {
1622 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1623 			/*
1624 			 * Note that for a whole device bd_holders
1625 			 * will be incremented twice, and bd_holder
1626 			 * will be set to bd_may_claim before being
1627 			 * set to holder
1628 			 */
1629 			whole->bd_holders++;
1630 			whole->bd_holder = bd_may_claim;
1631 			bdev->bd_holders++;
1632 			bdev->bd_holder = holder;
1633 		}
1634 
1635 		/* tell others that we're done */
1636 		BUG_ON(whole->bd_claiming != holder);
1637 		whole->bd_claiming = NULL;
1638 		wake_up_bit(&whole->bd_claiming, 0);
1639 
1640 		spin_unlock(&bdev_lock);
1641 
1642 		/*
1643 		 * Block event polling for write claims if requested.  Any
1644 		 * write holder makes the write_holder state stick until
1645 		 * all are released.  This is good enough and tracking
1646 		 * individual writeable reference is too fragile given the
1647 		 * way @mode is used in blkdev_get/put().
1648 		 */
1649 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1650 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1651 			bdev->bd_write_holder = true;
1652 			disk_block_events(disk);
1653 		}
1654 
1655 		mutex_unlock(&bdev->bd_mutex);
1656 		bdput(whole);
1657 	}
1658 
1659 	return res;
1660 }
1661 EXPORT_SYMBOL(blkdev_get);
1662 
1663 /**
1664  * blkdev_get_by_path - open a block device by name
1665  * @path: path to the block device to open
1666  * @mode: FMODE_* mask
1667  * @holder: exclusive holder identifier
1668  *
1669  * Open the blockdevice described by the device file at @path.  @mode
1670  * and @holder are identical to blkdev_get().
1671  *
1672  * On success, the returned block_device has reference count of one.
1673  *
1674  * CONTEXT:
1675  * Might sleep.
1676  *
1677  * RETURNS:
1678  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1679  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1680 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1681 					void *holder)
1682 {
1683 	struct block_device *bdev;
1684 	int err;
1685 
1686 	bdev = lookup_bdev(path);
1687 	if (IS_ERR(bdev))
1688 		return bdev;
1689 
1690 	err = blkdev_get(bdev, mode, holder);
1691 	if (err)
1692 		return ERR_PTR(err);
1693 
1694 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1695 		blkdev_put(bdev, mode);
1696 		return ERR_PTR(-EACCES);
1697 	}
1698 
1699 	return bdev;
1700 }
1701 EXPORT_SYMBOL(blkdev_get_by_path);
1702 
1703 /**
1704  * blkdev_get_by_dev - open a block device by device number
1705  * @dev: device number of block device to open
1706  * @mode: FMODE_* mask
1707  * @holder: exclusive holder identifier
1708  *
1709  * Open the blockdevice described by device number @dev.  @mode and
1710  * @holder are identical to blkdev_get().
1711  *
1712  * Use it ONLY if you really do not have anything better - i.e. when
1713  * you are behind a truly sucky interface and all you are given is a
1714  * device number.  _Never_ to be used for internal purposes.  If you
1715  * ever need it - reconsider your API.
1716  *
1717  * On success, the returned block_device has reference count of one.
1718  *
1719  * CONTEXT:
1720  * Might sleep.
1721  *
1722  * RETURNS:
1723  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1724  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1725 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1726 {
1727 	struct block_device *bdev;
1728 	int err;
1729 
1730 	bdev = bdget(dev);
1731 	if (!bdev)
1732 		return ERR_PTR(-ENOMEM);
1733 
1734 	err = blkdev_get(bdev, mode, holder);
1735 	if (err)
1736 		return ERR_PTR(err);
1737 
1738 	return bdev;
1739 }
1740 EXPORT_SYMBOL(blkdev_get_by_dev);
1741 
blkdev_open(struct inode * inode,struct file * filp)1742 static int blkdev_open(struct inode * inode, struct file * filp)
1743 {
1744 	struct block_device *bdev;
1745 
1746 	/*
1747 	 * Preserve backwards compatibility and allow large file access
1748 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1749 	 * binary needs it. We might want to drop this workaround
1750 	 * during an unstable branch.
1751 	 */
1752 	filp->f_flags |= O_LARGEFILE;
1753 
1754 	filp->f_mode |= FMODE_NOWAIT;
1755 
1756 	if (filp->f_flags & O_NDELAY)
1757 		filp->f_mode |= FMODE_NDELAY;
1758 	if (filp->f_flags & O_EXCL)
1759 		filp->f_mode |= FMODE_EXCL;
1760 	if ((filp->f_flags & O_ACCMODE) == 3)
1761 		filp->f_mode |= FMODE_WRITE_IOCTL;
1762 
1763 	bdev = bd_acquire(inode);
1764 	if (bdev == NULL)
1765 		return -ENOMEM;
1766 
1767 	filp->f_mapping = bdev->bd_inode->i_mapping;
1768 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1769 
1770 	return blkdev_get(bdev, filp->f_mode, filp);
1771 }
1772 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1773 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1774 {
1775 	struct gendisk *disk = bdev->bd_disk;
1776 	struct block_device *victim = NULL;
1777 
1778 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1779 	if (for_part)
1780 		bdev->bd_part_count--;
1781 
1782 	if (!--bdev->bd_openers) {
1783 		WARN_ON_ONCE(bdev->bd_holders);
1784 		sync_blockdev(bdev);
1785 		kill_bdev(bdev);
1786 
1787 		bdev_write_inode(bdev);
1788 	}
1789 	if (bdev->bd_contains == bdev) {
1790 		if (disk->fops->release)
1791 			disk->fops->release(disk, mode);
1792 	}
1793 	if (!bdev->bd_openers) {
1794 		struct module *owner = disk->fops->owner;
1795 
1796 		disk_put_part(bdev->bd_part);
1797 		bdev->bd_part = NULL;
1798 		bdev->bd_disk = NULL;
1799 		if (bdev != bdev->bd_contains)
1800 			victim = bdev->bd_contains;
1801 		bdev->bd_contains = NULL;
1802 
1803 		put_disk(disk);
1804 		module_put(owner);
1805 	}
1806 	mutex_unlock(&bdev->bd_mutex);
1807 	bdput(bdev);
1808 	if (victim)
1809 		__blkdev_put(victim, mode, 1);
1810 }
1811 
blkdev_put(struct block_device * bdev,fmode_t mode)1812 void blkdev_put(struct block_device *bdev, fmode_t mode)
1813 {
1814 	mutex_lock(&bdev->bd_mutex);
1815 
1816 	if (mode & FMODE_EXCL) {
1817 		bool bdev_free;
1818 
1819 		/*
1820 		 * Release a claim on the device.  The holder fields
1821 		 * are protected with bdev_lock.  bd_mutex is to
1822 		 * synchronize disk_holder unlinking.
1823 		 */
1824 		spin_lock(&bdev_lock);
1825 
1826 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1827 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1828 
1829 		/* bd_contains might point to self, check in a separate step */
1830 		if ((bdev_free = !bdev->bd_holders))
1831 			bdev->bd_holder = NULL;
1832 		if (!bdev->bd_contains->bd_holders)
1833 			bdev->bd_contains->bd_holder = NULL;
1834 
1835 		spin_unlock(&bdev_lock);
1836 
1837 		/*
1838 		 * If this was the last claim, remove holder link and
1839 		 * unblock evpoll if it was a write holder.
1840 		 */
1841 		if (bdev_free && bdev->bd_write_holder) {
1842 			disk_unblock_events(bdev->bd_disk);
1843 			bdev->bd_write_holder = false;
1844 		}
1845 	}
1846 
1847 	/*
1848 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1849 	 * event.  This is to ensure detection of media removal commanded
1850 	 * from userland - e.g. eject(1).
1851 	 */
1852 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1853 
1854 	mutex_unlock(&bdev->bd_mutex);
1855 
1856 	__blkdev_put(bdev, mode, 0);
1857 }
1858 EXPORT_SYMBOL(blkdev_put);
1859 
blkdev_close(struct inode * inode,struct file * filp)1860 static int blkdev_close(struct inode * inode, struct file * filp)
1861 {
1862 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1863 	blkdev_put(bdev, filp->f_mode);
1864 	return 0;
1865 }
1866 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1867 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1868 {
1869 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1870 	fmode_t mode = file->f_mode;
1871 
1872 	/*
1873 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1874 	 * to updated it before every ioctl.
1875 	 */
1876 	if (file->f_flags & O_NDELAY)
1877 		mode |= FMODE_NDELAY;
1878 	else
1879 		mode &= ~FMODE_NDELAY;
1880 
1881 	return blkdev_ioctl(bdev, mode, cmd, arg);
1882 }
1883 
1884 /*
1885  * Write data to the block device.  Only intended for the block device itself
1886  * and the raw driver which basically is a fake block device.
1887  *
1888  * Does not take i_mutex for the write and thus is not for general purpose
1889  * use.
1890  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1891 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1892 {
1893 	struct file *file = iocb->ki_filp;
1894 	struct inode *bd_inode = bdev_file_inode(file);
1895 	loff_t size = i_size_read(bd_inode);
1896 	struct blk_plug plug;
1897 	ssize_t ret;
1898 
1899 	if (bdev_read_only(I_BDEV(bd_inode)))
1900 		return -EPERM;
1901 
1902 	if (!iov_iter_count(from))
1903 		return 0;
1904 
1905 	if (iocb->ki_pos >= size)
1906 		return -ENOSPC;
1907 
1908 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1909 		return -EOPNOTSUPP;
1910 
1911 	iov_iter_truncate(from, size - iocb->ki_pos);
1912 
1913 	blk_start_plug(&plug);
1914 	ret = __generic_file_write_iter(iocb, from);
1915 	if (ret > 0)
1916 		ret = generic_write_sync(iocb, ret);
1917 	blk_finish_plug(&plug);
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1921 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1922 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1923 {
1924 	struct file *file = iocb->ki_filp;
1925 	struct inode *bd_inode = bdev_file_inode(file);
1926 	loff_t size = i_size_read(bd_inode);
1927 	loff_t pos = iocb->ki_pos;
1928 
1929 	if (pos >= size)
1930 		return 0;
1931 
1932 	size -= pos;
1933 	iov_iter_truncate(to, size);
1934 	return generic_file_read_iter(iocb, to);
1935 }
1936 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1937 
1938 /*
1939  * Try to release a page associated with block device when the system
1940  * is under memory pressure.
1941  */
blkdev_releasepage(struct page * page,gfp_t wait)1942 static int blkdev_releasepage(struct page *page, gfp_t wait)
1943 {
1944 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1945 
1946 	if (super && super->s_op->bdev_try_to_free_page)
1947 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1948 
1949 	return try_to_free_buffers(page);
1950 }
1951 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1952 static int blkdev_writepages(struct address_space *mapping,
1953 			     struct writeback_control *wbc)
1954 {
1955 	if (dax_mapping(mapping)) {
1956 		struct block_device *bdev = I_BDEV(mapping->host);
1957 
1958 		return dax_writeback_mapping_range(mapping, bdev, wbc);
1959 	}
1960 	return generic_writepages(mapping, wbc);
1961 }
1962 
1963 static const struct address_space_operations def_blk_aops = {
1964 	.readpage	= blkdev_readpage,
1965 	.readpages	= blkdev_readpages,
1966 	.writepage	= blkdev_writepage,
1967 	.write_begin	= blkdev_write_begin,
1968 	.write_end	= blkdev_write_end,
1969 	.writepages	= blkdev_writepages,
1970 	.releasepage	= blkdev_releasepage,
1971 	.direct_IO	= blkdev_direct_IO,
1972 	.is_dirty_writeback = buffer_check_dirty_writeback,
1973 };
1974 
1975 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
1976 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1977 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1978 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1979 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1980 			     loff_t len)
1981 {
1982 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1983 	struct address_space *mapping;
1984 	loff_t end = start + len - 1;
1985 	loff_t isize;
1986 	int error;
1987 
1988 	/* Fail if we don't recognize the flags. */
1989 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1990 		return -EOPNOTSUPP;
1991 
1992 	/* Don't go off the end of the device. */
1993 	isize = i_size_read(bdev->bd_inode);
1994 	if (start >= isize)
1995 		return -EINVAL;
1996 	if (end >= isize) {
1997 		if (mode & FALLOC_FL_KEEP_SIZE) {
1998 			len = isize - start;
1999 			end = start + len - 1;
2000 		} else
2001 			return -EINVAL;
2002 	}
2003 
2004 	/*
2005 	 * Don't allow IO that isn't aligned to logical block size.
2006 	 */
2007 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2008 		return -EINVAL;
2009 
2010 	/* Invalidate the page cache, including dirty pages. */
2011 	mapping = bdev->bd_inode->i_mapping;
2012 	truncate_inode_pages_range(mapping, start, end);
2013 
2014 	switch (mode) {
2015 	case FALLOC_FL_ZERO_RANGE:
2016 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2017 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2018 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2019 		break;
2020 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2021 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2022 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2023 		break;
2024 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2025 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2026 					     GFP_KERNEL, 0);
2027 		break;
2028 	default:
2029 		return -EOPNOTSUPP;
2030 	}
2031 	if (error)
2032 		return error;
2033 
2034 	/*
2035 	 * Invalidate again; if someone wandered in and dirtied a page,
2036 	 * the caller will be given -EBUSY.  The third argument is
2037 	 * inclusive, so the rounding here is safe.
2038 	 */
2039 	return invalidate_inode_pages2_range(mapping,
2040 					     start >> PAGE_SHIFT,
2041 					     end >> PAGE_SHIFT);
2042 }
2043 
2044 const struct file_operations def_blk_fops = {
2045 	.open		= blkdev_open,
2046 	.release	= blkdev_close,
2047 	.llseek		= block_llseek,
2048 	.read_iter	= blkdev_read_iter,
2049 	.write_iter	= blkdev_write_iter,
2050 	.mmap		= generic_file_mmap,
2051 	.fsync		= blkdev_fsync,
2052 	.unlocked_ioctl	= block_ioctl,
2053 #ifdef CONFIG_COMPAT
2054 	.compat_ioctl	= compat_blkdev_ioctl,
2055 #endif
2056 	.splice_read	= generic_file_splice_read,
2057 	.splice_write	= iter_file_splice_write,
2058 	.fallocate	= blkdev_fallocate,
2059 };
2060 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2061 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2062 {
2063 	int res;
2064 	mm_segment_t old_fs = get_fs();
2065 	set_fs(KERNEL_DS);
2066 	res = blkdev_ioctl(bdev, 0, cmd, arg);
2067 	set_fs(old_fs);
2068 	return res;
2069 }
2070 
2071 EXPORT_SYMBOL(ioctl_by_bdev);
2072 
2073 /**
2074  * lookup_bdev  - lookup a struct block_device by name
2075  * @pathname:	special file representing the block device
2076  *
2077  * Get a reference to the blockdevice at @pathname in the current
2078  * namespace if possible and return it.  Return ERR_PTR(error)
2079  * otherwise.
2080  */
lookup_bdev(const char * pathname)2081 struct block_device *lookup_bdev(const char *pathname)
2082 {
2083 	struct block_device *bdev;
2084 	struct inode *inode;
2085 	struct path path;
2086 	int error;
2087 
2088 	if (!pathname || !*pathname)
2089 		return ERR_PTR(-EINVAL);
2090 
2091 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2092 	if (error)
2093 		return ERR_PTR(error);
2094 
2095 	inode = d_backing_inode(path.dentry);
2096 	error = -ENOTBLK;
2097 	if (!S_ISBLK(inode->i_mode))
2098 		goto fail;
2099 	error = -EACCES;
2100 	if (!may_open_dev(&path))
2101 		goto fail;
2102 	error = -ENOMEM;
2103 	bdev = bd_acquire(inode);
2104 	if (!bdev)
2105 		goto fail;
2106 out:
2107 	path_put(&path);
2108 	return bdev;
2109 fail:
2110 	bdev = ERR_PTR(error);
2111 	goto out;
2112 }
2113 EXPORT_SYMBOL(lookup_bdev);
2114 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2115 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2116 {
2117 	struct super_block *sb = get_super(bdev);
2118 	int res = 0;
2119 
2120 	if (sb) {
2121 		/*
2122 		 * no need to lock the super, get_super holds the
2123 		 * read mutex so the filesystem cannot go away
2124 		 * under us (->put_super runs with the write lock
2125 		 * hold).
2126 		 */
2127 		shrink_dcache_sb(sb);
2128 		res = invalidate_inodes(sb, kill_dirty);
2129 		drop_super(sb);
2130 	}
2131 	invalidate_bdev(bdev);
2132 	return res;
2133 }
2134 EXPORT_SYMBOL(__invalidate_device);
2135 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2136 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2137 {
2138 	struct inode *inode, *old_inode = NULL;
2139 
2140 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2141 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2142 		struct address_space *mapping = inode->i_mapping;
2143 		struct block_device *bdev;
2144 
2145 		spin_lock(&inode->i_lock);
2146 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2147 		    mapping->nrpages == 0) {
2148 			spin_unlock(&inode->i_lock);
2149 			continue;
2150 		}
2151 		__iget(inode);
2152 		spin_unlock(&inode->i_lock);
2153 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2154 		/*
2155 		 * We hold a reference to 'inode' so it couldn't have been
2156 		 * removed from s_inodes list while we dropped the
2157 		 * s_inode_list_lock  We cannot iput the inode now as we can
2158 		 * be holding the last reference and we cannot iput it under
2159 		 * s_inode_list_lock. So we keep the reference and iput it
2160 		 * later.
2161 		 */
2162 		iput(old_inode);
2163 		old_inode = inode;
2164 		bdev = I_BDEV(inode);
2165 
2166 		mutex_lock(&bdev->bd_mutex);
2167 		if (bdev->bd_openers)
2168 			func(bdev, arg);
2169 		mutex_unlock(&bdev->bd_mutex);
2170 
2171 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2172 	}
2173 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2174 	iput(old_inode);
2175 }
2176