1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 /*
30 * The current flushing context - we pass it instead of 5 arguments:
31 */
32 struct cpa_data {
33 unsigned long *vaddr;
34 pgd_t *pgd;
35 pgprot_t mask_set;
36 pgprot_t mask_clr;
37 unsigned long numpages;
38 int flags;
39 unsigned long pfn;
40 unsigned force_split : 1;
41 int curpage;
42 struct page **pages;
43 };
44
45 /*
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
50 */
51 static DEFINE_SPINLOCK(cpa_lock);
52
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
update_page_count(int level,unsigned long pages)60 void update_page_count(int level, unsigned long pages)
61 {
62 /* Protect against CPA */
63 spin_lock(&pgd_lock);
64 direct_pages_count[level] += pages;
65 spin_unlock(&pgd_lock);
66 }
67
split_page_count(int level)68 static void split_page_count(int level)
69 {
70 if (direct_pages_count[level] == 0)
71 return;
72
73 direct_pages_count[level]--;
74 direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76
arch_report_meminfo(struct seq_file * m)77 void arch_report_meminfo(struct seq_file *m)
78 {
79 seq_printf(m, "DirectMap4k: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82 seq_printf(m, "DirectMap2M: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85 seq_printf(m, "DirectMap4M: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88 if (direct_gbpages)
89 seq_printf(m, "DirectMap1G: %8lu kB\n",
90 direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
split_page_count(int level)93 static inline void split_page_count(int level) { }
94 #endif
95
96 #ifdef CONFIG_X86_64
97
highmap_start_pfn(void)98 static inline unsigned long highmap_start_pfn(void)
99 {
100 return __pa_symbol(_text) >> PAGE_SHIFT;
101 }
102
highmap_end_pfn(void)103 static inline unsigned long highmap_end_pfn(void)
104 {
105 /* Do not reference physical address outside the kernel. */
106 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
107 }
108
109 #endif
110
111 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)112 within(unsigned long addr, unsigned long start, unsigned long end)
113 {
114 return addr >= start && addr < end;
115 }
116
117 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
119 {
120 return addr >= start && addr <= end;
121 }
122
123 /*
124 * Flushing functions
125 */
126
127 /**
128 * clflush_cache_range - flush a cache range with clflush
129 * @vaddr: virtual start address
130 * @size: number of bytes to flush
131 *
132 * clflushopt is an unordered instruction which needs fencing with mfence or
133 * sfence to avoid ordering issues.
134 */
clflush_cache_range(void * vaddr,unsigned int size)135 void clflush_cache_range(void *vaddr, unsigned int size)
136 {
137 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139 void *vend = vaddr + size;
140
141 if (p >= vend)
142 return;
143
144 mb();
145
146 for (; p < vend; p += clflush_size)
147 clflushopt(p);
148
149 mb();
150 }
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
152
arch_invalidate_pmem(void * addr,size_t size)153 void arch_invalidate_pmem(void *addr, size_t size)
154 {
155 clflush_cache_range(addr, size);
156 }
157 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
158
__cpa_flush_all(void * arg)159 static void __cpa_flush_all(void *arg)
160 {
161 unsigned long cache = (unsigned long)arg;
162
163 /*
164 * Flush all to work around Errata in early athlons regarding
165 * large page flushing.
166 */
167 __flush_tlb_all();
168
169 if (cache && boot_cpu_data.x86 >= 4)
170 wbinvd();
171 }
172
cpa_flush_all(unsigned long cache)173 static void cpa_flush_all(unsigned long cache)
174 {
175 BUG_ON(irqs_disabled());
176
177 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
178 }
179
__cpa_flush_range(void * arg)180 static void __cpa_flush_range(void *arg)
181 {
182 /*
183 * We could optimize that further and do individual per page
184 * tlb invalidates for a low number of pages. Caveat: we must
185 * flush the high aliases on 64bit as well.
186 */
187 __flush_tlb_all();
188 }
189
cpa_flush_range(unsigned long start,int numpages,int cache)190 static void cpa_flush_range(unsigned long start, int numpages, int cache)
191 {
192 unsigned int i, level;
193 unsigned long addr;
194
195 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
196 WARN_ON(PAGE_ALIGN(start) != start);
197
198 on_each_cpu(__cpa_flush_range, NULL, 1);
199
200 if (!cache)
201 return;
202
203 /*
204 * We only need to flush on one CPU,
205 * clflush is a MESI-coherent instruction that
206 * will cause all other CPUs to flush the same
207 * cachelines:
208 */
209 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
210 pte_t *pte = lookup_address(addr, &level);
211
212 /*
213 * Only flush present addresses:
214 */
215 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
216 clflush_cache_range((void *) addr, PAGE_SIZE);
217 }
218 }
219
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)220 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
221 int in_flags, struct page **pages)
222 {
223 unsigned int i, level;
224 #ifdef CONFIG_PREEMPT
225 /*
226 * Avoid wbinvd() because it causes latencies on all CPUs,
227 * regardless of any CPU isolation that may be in effect.
228 *
229 * This should be extended for CAT enabled systems independent of
230 * PREEMPT because wbinvd() does not respect the CAT partitions and
231 * this is exposed to unpriviledged users through the graphics
232 * subsystem.
233 */
234 unsigned long do_wbinvd = 0;
235 #else
236 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
237 #endif
238
239 BUG_ON(irqs_disabled());
240
241 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
242
243 if (!cache || do_wbinvd)
244 return;
245
246 /*
247 * We only need to flush on one CPU,
248 * clflush is a MESI-coherent instruction that
249 * will cause all other CPUs to flush the same
250 * cachelines:
251 */
252 for (i = 0; i < numpages; i++) {
253 unsigned long addr;
254 pte_t *pte;
255
256 if (in_flags & CPA_PAGES_ARRAY)
257 addr = (unsigned long)page_address(pages[i]);
258 else
259 addr = start[i];
260
261 pte = lookup_address(addr, &level);
262
263 /*
264 * Only flush present addresses:
265 */
266 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
267 clflush_cache_range((void *)addr, PAGE_SIZE);
268 }
269 }
270
271 /*
272 * Certain areas of memory on x86 require very specific protection flags,
273 * for example the BIOS area or kernel text. Callers don't always get this
274 * right (again, ioremap() on BIOS memory is not uncommon) so this function
275 * checks and fixes these known static required protection bits.
276 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)277 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
278 unsigned long pfn)
279 {
280 pgprot_t forbidden = __pgprot(0);
281
282 /*
283 * The BIOS area between 640k and 1Mb needs to be executable for
284 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
285 */
286 #ifdef CONFIG_PCI_BIOS
287 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
288 pgprot_val(forbidden) |= _PAGE_NX;
289 #endif
290
291 /*
292 * The kernel text needs to be executable for obvious reasons
293 * Does not cover __inittext since that is gone later on. On
294 * 64bit we do not enforce !NX on the low mapping
295 */
296 if (within(address, (unsigned long)_text, (unsigned long)_etext))
297 pgprot_val(forbidden) |= _PAGE_NX;
298
299 /*
300 * The .rodata section needs to be read-only. Using the pfn
301 * catches all aliases. This also includes __ro_after_init,
302 * so do not enforce until kernel_set_to_readonly is true.
303 */
304 if (kernel_set_to_readonly &&
305 within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
306 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
307 pgprot_val(forbidden) |= _PAGE_RW;
308
309 #if defined(CONFIG_X86_64)
310 /*
311 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
312 * kernel text mappings for the large page aligned text, rodata sections
313 * will be always read-only. For the kernel identity mappings covering
314 * the holes caused by this alignment can be anything that user asks.
315 *
316 * This will preserve the large page mappings for kernel text/data
317 * at no extra cost.
318 */
319 if (kernel_set_to_readonly &&
320 within(address, (unsigned long)_text,
321 (unsigned long)__end_rodata_hpage_align)) {
322 unsigned int level;
323
324 /*
325 * Don't enforce the !RW mapping for the kernel text mapping,
326 * if the current mapping is already using small page mapping.
327 * No need to work hard to preserve large page mappings in this
328 * case.
329 *
330 * This also fixes the Linux Xen paravirt guest boot failure
331 * (because of unexpected read-only mappings for kernel identity
332 * mappings). In this paravirt guest case, the kernel text
333 * mapping and the kernel identity mapping share the same
334 * page-table pages. Thus we can't really use different
335 * protections for the kernel text and identity mappings. Also,
336 * these shared mappings are made of small page mappings.
337 * Thus this don't enforce !RW mapping for small page kernel
338 * text mapping logic will help Linux Xen parvirt guest boot
339 * as well.
340 */
341 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
342 pgprot_val(forbidden) |= _PAGE_RW;
343 }
344 #endif
345
346 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
347
348 return prot;
349 }
350
351 /*
352 * Lookup the page table entry for a virtual address in a specific pgd.
353 * Return a pointer to the entry and the level of the mapping.
354 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)355 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
356 unsigned int *level)
357 {
358 p4d_t *p4d;
359 pud_t *pud;
360 pmd_t *pmd;
361
362 *level = PG_LEVEL_NONE;
363
364 if (pgd_none(*pgd))
365 return NULL;
366
367 p4d = p4d_offset(pgd, address);
368 if (p4d_none(*p4d))
369 return NULL;
370
371 *level = PG_LEVEL_512G;
372 if (p4d_large(*p4d) || !p4d_present(*p4d))
373 return (pte_t *)p4d;
374
375 pud = pud_offset(p4d, address);
376 if (pud_none(*pud))
377 return NULL;
378
379 *level = PG_LEVEL_1G;
380 if (pud_large(*pud) || !pud_present(*pud))
381 return (pte_t *)pud;
382
383 pmd = pmd_offset(pud, address);
384 if (pmd_none(*pmd))
385 return NULL;
386
387 *level = PG_LEVEL_2M;
388 if (pmd_large(*pmd) || !pmd_present(*pmd))
389 return (pte_t *)pmd;
390
391 *level = PG_LEVEL_4K;
392
393 return pte_offset_kernel(pmd, address);
394 }
395
396 /*
397 * Lookup the page table entry for a virtual address. Return a pointer
398 * to the entry and the level of the mapping.
399 *
400 * Note: We return pud and pmd either when the entry is marked large
401 * or when the present bit is not set. Otherwise we would return a
402 * pointer to a nonexisting mapping.
403 */
lookup_address(unsigned long address,unsigned int * level)404 pte_t *lookup_address(unsigned long address, unsigned int *level)
405 {
406 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
407 }
408 EXPORT_SYMBOL_GPL(lookup_address);
409
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)410 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
411 unsigned int *level)
412 {
413 if (cpa->pgd)
414 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
415 address, level);
416
417 return lookup_address(address, level);
418 }
419
420 /*
421 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
422 * or NULL if not present.
423 */
lookup_pmd_address(unsigned long address)424 pmd_t *lookup_pmd_address(unsigned long address)
425 {
426 pgd_t *pgd;
427 p4d_t *p4d;
428 pud_t *pud;
429
430 pgd = pgd_offset_k(address);
431 if (pgd_none(*pgd))
432 return NULL;
433
434 p4d = p4d_offset(pgd, address);
435 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
436 return NULL;
437
438 pud = pud_offset(p4d, address);
439 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
440 return NULL;
441
442 return pmd_offset(pud, address);
443 }
444
445 /*
446 * This is necessary because __pa() does not work on some
447 * kinds of memory, like vmalloc() or the alloc_remap()
448 * areas on 32-bit NUMA systems. The percpu areas can
449 * end up in this kind of memory, for instance.
450 *
451 * This could be optimized, but it is only intended to be
452 * used at inititalization time, and keeping it
453 * unoptimized should increase the testing coverage for
454 * the more obscure platforms.
455 */
slow_virt_to_phys(void * __virt_addr)456 phys_addr_t slow_virt_to_phys(void *__virt_addr)
457 {
458 unsigned long virt_addr = (unsigned long)__virt_addr;
459 phys_addr_t phys_addr;
460 unsigned long offset;
461 enum pg_level level;
462 pte_t *pte;
463
464 pte = lookup_address(virt_addr, &level);
465 BUG_ON(!pte);
466
467 /*
468 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
469 * before being left-shifted PAGE_SHIFT bits -- this trick is to
470 * make 32-PAE kernel work correctly.
471 */
472 switch (level) {
473 case PG_LEVEL_1G:
474 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
475 offset = virt_addr & ~PUD_PAGE_MASK;
476 break;
477 case PG_LEVEL_2M:
478 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
479 offset = virt_addr & ~PMD_PAGE_MASK;
480 break;
481 default:
482 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
483 offset = virt_addr & ~PAGE_MASK;
484 }
485
486 return (phys_addr_t)(phys_addr | offset);
487 }
488 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
489
490 /*
491 * Set the new pmd in all the pgds we know about:
492 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)493 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
494 {
495 /* change init_mm */
496 set_pte_atomic(kpte, pte);
497 #ifdef CONFIG_X86_32
498 if (!SHARED_KERNEL_PMD) {
499 struct page *page;
500
501 list_for_each_entry(page, &pgd_list, lru) {
502 pgd_t *pgd;
503 p4d_t *p4d;
504 pud_t *pud;
505 pmd_t *pmd;
506
507 pgd = (pgd_t *)page_address(page) + pgd_index(address);
508 p4d = p4d_offset(pgd, address);
509 pud = pud_offset(p4d, address);
510 pmd = pmd_offset(pud, address);
511 set_pte_atomic((pte_t *)pmd, pte);
512 }
513 }
514 #endif
515 }
516
517 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)518 try_preserve_large_page(pte_t *kpte, unsigned long address,
519 struct cpa_data *cpa)
520 {
521 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
522 pte_t new_pte, old_pte, *tmp;
523 pgprot_t old_prot, new_prot, req_prot;
524 int i, do_split = 1;
525 enum pg_level level;
526
527 if (cpa->force_split)
528 return 1;
529
530 spin_lock(&pgd_lock);
531 /*
532 * Check for races, another CPU might have split this page
533 * up already:
534 */
535 tmp = _lookup_address_cpa(cpa, address, &level);
536 if (tmp != kpte)
537 goto out_unlock;
538
539 switch (level) {
540 case PG_LEVEL_2M:
541 old_prot = pmd_pgprot(*(pmd_t *)kpte);
542 old_pfn = pmd_pfn(*(pmd_t *)kpte);
543 break;
544 case PG_LEVEL_1G:
545 old_prot = pud_pgprot(*(pud_t *)kpte);
546 old_pfn = pud_pfn(*(pud_t *)kpte);
547 break;
548 default:
549 do_split = -EINVAL;
550 goto out_unlock;
551 }
552
553 psize = page_level_size(level);
554 pmask = page_level_mask(level);
555
556 /*
557 * Calculate the number of pages, which fit into this large
558 * page starting at address:
559 */
560 nextpage_addr = (address + psize) & pmask;
561 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
562 if (numpages < cpa->numpages)
563 cpa->numpages = numpages;
564
565 /*
566 * We are safe now. Check whether the new pgprot is the same:
567 * Convert protection attributes to 4k-format, as cpa->mask* are set
568 * up accordingly.
569 */
570 old_pte = *kpte;
571 req_prot = pgprot_large_2_4k(old_prot);
572
573 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
574 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
575
576 /*
577 * req_prot is in format of 4k pages. It must be converted to large
578 * page format: the caching mode includes the PAT bit located at
579 * different bit positions in the two formats.
580 */
581 req_prot = pgprot_4k_2_large(req_prot);
582
583 /*
584 * Set the PSE and GLOBAL flags only if the PRESENT flag is
585 * set otherwise pmd_present/pmd_huge will return true even on
586 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
587 * for the ancient hardware that doesn't support it.
588 */
589 if (pgprot_val(req_prot) & _PAGE_PRESENT)
590 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
591 else
592 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
593
594 req_prot = canon_pgprot(req_prot);
595
596 /*
597 * old_pfn points to the large page base pfn. So we need
598 * to add the offset of the virtual address:
599 */
600 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
601 cpa->pfn = pfn;
602
603 new_prot = static_protections(req_prot, address, pfn);
604
605 /*
606 * We need to check the full range, whether
607 * static_protection() requires a different pgprot for one of
608 * the pages in the range we try to preserve:
609 */
610 addr = address & pmask;
611 pfn = old_pfn;
612 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
613 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
614
615 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
616 goto out_unlock;
617 }
618
619 /*
620 * If there are no changes, return. maxpages has been updated
621 * above:
622 */
623 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
624 do_split = 0;
625 goto out_unlock;
626 }
627
628 /*
629 * We need to change the attributes. Check, whether we can
630 * change the large page in one go. We request a split, when
631 * the address is not aligned and the number of pages is
632 * smaller than the number of pages in the large page. Note
633 * that we limited the number of possible pages already to
634 * the number of pages in the large page.
635 */
636 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
637 /*
638 * The address is aligned and the number of pages
639 * covers the full page.
640 */
641 new_pte = pfn_pte(old_pfn, new_prot);
642 __set_pmd_pte(kpte, address, new_pte);
643 cpa->flags |= CPA_FLUSHTLB;
644 do_split = 0;
645 }
646
647 out_unlock:
648 spin_unlock(&pgd_lock);
649
650 return do_split;
651 }
652
653 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)654 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
655 struct page *base)
656 {
657 pte_t *pbase = (pte_t *)page_address(base);
658 unsigned long ref_pfn, pfn, pfninc = 1;
659 unsigned int i, level;
660 pte_t *tmp;
661 pgprot_t ref_prot;
662
663 spin_lock(&pgd_lock);
664 /*
665 * Check for races, another CPU might have split this page
666 * up for us already:
667 */
668 tmp = _lookup_address_cpa(cpa, address, &level);
669 if (tmp != kpte) {
670 spin_unlock(&pgd_lock);
671 return 1;
672 }
673
674 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
675
676 switch (level) {
677 case PG_LEVEL_2M:
678 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
679 /* clear PSE and promote PAT bit to correct position */
680 ref_prot = pgprot_large_2_4k(ref_prot);
681 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
682 break;
683
684 case PG_LEVEL_1G:
685 ref_prot = pud_pgprot(*(pud_t *)kpte);
686 ref_pfn = pud_pfn(*(pud_t *)kpte);
687 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
688
689 /*
690 * Clear the PSE flags if the PRESENT flag is not set
691 * otherwise pmd_present/pmd_huge will return true
692 * even on a non present pmd.
693 */
694 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
695 pgprot_val(ref_prot) &= ~_PAGE_PSE;
696 break;
697
698 default:
699 spin_unlock(&pgd_lock);
700 return 1;
701 }
702
703 /*
704 * Set the GLOBAL flags only if the PRESENT flag is set
705 * otherwise pmd/pte_present will return true even on a non
706 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
707 * for the ancient hardware that doesn't support it.
708 */
709 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
710 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
711 else
712 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
713
714 /*
715 * Get the target pfn from the original entry:
716 */
717 pfn = ref_pfn;
718 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
719 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
720
721 if (virt_addr_valid(address)) {
722 unsigned long pfn = PFN_DOWN(__pa(address));
723
724 if (pfn_range_is_mapped(pfn, pfn + 1))
725 split_page_count(level);
726 }
727
728 /*
729 * Install the new, split up pagetable.
730 *
731 * We use the standard kernel pagetable protections for the new
732 * pagetable protections, the actual ptes set above control the
733 * primary protection behavior:
734 */
735 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
736
737 /*
738 * Intel Atom errata AAH41 workaround.
739 *
740 * The real fix should be in hw or in a microcode update, but
741 * we also probabilistically try to reduce the window of having
742 * a large TLB mixed with 4K TLBs while instruction fetches are
743 * going on.
744 */
745 __flush_tlb_all();
746 spin_unlock(&pgd_lock);
747
748 return 0;
749 }
750
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)751 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
752 unsigned long address)
753 {
754 struct page *base;
755
756 if (!debug_pagealloc_enabled())
757 spin_unlock(&cpa_lock);
758 base = alloc_pages(GFP_KERNEL, 0);
759 if (!debug_pagealloc_enabled())
760 spin_lock(&cpa_lock);
761 if (!base)
762 return -ENOMEM;
763
764 if (__split_large_page(cpa, kpte, address, base))
765 __free_page(base);
766
767 return 0;
768 }
769
try_to_free_pte_page(pte_t * pte)770 static bool try_to_free_pte_page(pte_t *pte)
771 {
772 int i;
773
774 for (i = 0; i < PTRS_PER_PTE; i++)
775 if (!pte_none(pte[i]))
776 return false;
777
778 free_page((unsigned long)pte);
779 return true;
780 }
781
try_to_free_pmd_page(pmd_t * pmd)782 static bool try_to_free_pmd_page(pmd_t *pmd)
783 {
784 int i;
785
786 for (i = 0; i < PTRS_PER_PMD; i++)
787 if (!pmd_none(pmd[i]))
788 return false;
789
790 free_page((unsigned long)pmd);
791 return true;
792 }
793
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)794 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
795 {
796 pte_t *pte = pte_offset_kernel(pmd, start);
797
798 while (start < end) {
799 set_pte(pte, __pte(0));
800
801 start += PAGE_SIZE;
802 pte++;
803 }
804
805 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
806 pmd_clear(pmd);
807 return true;
808 }
809 return false;
810 }
811
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)812 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
813 unsigned long start, unsigned long end)
814 {
815 if (unmap_pte_range(pmd, start, end))
816 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
817 pud_clear(pud);
818 }
819
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)820 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
821 {
822 pmd_t *pmd = pmd_offset(pud, start);
823
824 /*
825 * Not on a 2MB page boundary?
826 */
827 if (start & (PMD_SIZE - 1)) {
828 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
829 unsigned long pre_end = min_t(unsigned long, end, next_page);
830
831 __unmap_pmd_range(pud, pmd, start, pre_end);
832
833 start = pre_end;
834 pmd++;
835 }
836
837 /*
838 * Try to unmap in 2M chunks.
839 */
840 while (end - start >= PMD_SIZE) {
841 if (pmd_large(*pmd))
842 pmd_clear(pmd);
843 else
844 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
845
846 start += PMD_SIZE;
847 pmd++;
848 }
849
850 /*
851 * 4K leftovers?
852 */
853 if (start < end)
854 return __unmap_pmd_range(pud, pmd, start, end);
855
856 /*
857 * Try again to free the PMD page if haven't succeeded above.
858 */
859 if (!pud_none(*pud))
860 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
861 pud_clear(pud);
862 }
863
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)864 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
865 {
866 pud_t *pud = pud_offset(p4d, start);
867
868 /*
869 * Not on a GB page boundary?
870 */
871 if (start & (PUD_SIZE - 1)) {
872 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
873 unsigned long pre_end = min_t(unsigned long, end, next_page);
874
875 unmap_pmd_range(pud, start, pre_end);
876
877 start = pre_end;
878 pud++;
879 }
880
881 /*
882 * Try to unmap in 1G chunks?
883 */
884 while (end - start >= PUD_SIZE) {
885
886 if (pud_large(*pud))
887 pud_clear(pud);
888 else
889 unmap_pmd_range(pud, start, start + PUD_SIZE);
890
891 start += PUD_SIZE;
892 pud++;
893 }
894
895 /*
896 * 2M leftovers?
897 */
898 if (start < end)
899 unmap_pmd_range(pud, start, end);
900
901 /*
902 * No need to try to free the PUD page because we'll free it in
903 * populate_pgd's error path
904 */
905 }
906
alloc_pte_page(pmd_t * pmd)907 static int alloc_pte_page(pmd_t *pmd)
908 {
909 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
910 if (!pte)
911 return -1;
912
913 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
914 return 0;
915 }
916
alloc_pmd_page(pud_t * pud)917 static int alloc_pmd_page(pud_t *pud)
918 {
919 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
920 if (!pmd)
921 return -1;
922
923 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
924 return 0;
925 }
926
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)927 static void populate_pte(struct cpa_data *cpa,
928 unsigned long start, unsigned long end,
929 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
930 {
931 pte_t *pte;
932
933 pte = pte_offset_kernel(pmd, start);
934
935 /*
936 * Set the GLOBAL flags only if the PRESENT flag is
937 * set otherwise pte_present will return true even on
938 * a non present pte. The canon_pgprot will clear
939 * _PAGE_GLOBAL for the ancient hardware that doesn't
940 * support it.
941 */
942 if (pgprot_val(pgprot) & _PAGE_PRESENT)
943 pgprot_val(pgprot) |= _PAGE_GLOBAL;
944 else
945 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
946
947 pgprot = canon_pgprot(pgprot);
948
949 while (num_pages-- && start < end) {
950 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
951
952 start += PAGE_SIZE;
953 cpa->pfn++;
954 pte++;
955 }
956 }
957
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)958 static long populate_pmd(struct cpa_data *cpa,
959 unsigned long start, unsigned long end,
960 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
961 {
962 long cur_pages = 0;
963 pmd_t *pmd;
964 pgprot_t pmd_pgprot;
965
966 /*
967 * Not on a 2M boundary?
968 */
969 if (start & (PMD_SIZE - 1)) {
970 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
971 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
972
973 pre_end = min_t(unsigned long, pre_end, next_page);
974 cur_pages = (pre_end - start) >> PAGE_SHIFT;
975 cur_pages = min_t(unsigned int, num_pages, cur_pages);
976
977 /*
978 * Need a PTE page?
979 */
980 pmd = pmd_offset(pud, start);
981 if (pmd_none(*pmd))
982 if (alloc_pte_page(pmd))
983 return -1;
984
985 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
986
987 start = pre_end;
988 }
989
990 /*
991 * We mapped them all?
992 */
993 if (num_pages == cur_pages)
994 return cur_pages;
995
996 pmd_pgprot = pgprot_4k_2_large(pgprot);
997
998 while (end - start >= PMD_SIZE) {
999
1000 /*
1001 * We cannot use a 1G page so allocate a PMD page if needed.
1002 */
1003 if (pud_none(*pud))
1004 if (alloc_pmd_page(pud))
1005 return -1;
1006
1007 pmd = pmd_offset(pud, start);
1008
1009 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1010 canon_pgprot(pmd_pgprot))));
1011
1012 start += PMD_SIZE;
1013 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1014 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1015 }
1016
1017 /*
1018 * Map trailing 4K pages.
1019 */
1020 if (start < end) {
1021 pmd = pmd_offset(pud, start);
1022 if (pmd_none(*pmd))
1023 if (alloc_pte_page(pmd))
1024 return -1;
1025
1026 populate_pte(cpa, start, end, num_pages - cur_pages,
1027 pmd, pgprot);
1028 }
1029 return num_pages;
1030 }
1031
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1032 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1033 pgprot_t pgprot)
1034 {
1035 pud_t *pud;
1036 unsigned long end;
1037 long cur_pages = 0;
1038 pgprot_t pud_pgprot;
1039
1040 end = start + (cpa->numpages << PAGE_SHIFT);
1041
1042 /*
1043 * Not on a Gb page boundary? => map everything up to it with
1044 * smaller pages.
1045 */
1046 if (start & (PUD_SIZE - 1)) {
1047 unsigned long pre_end;
1048 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1049
1050 pre_end = min_t(unsigned long, end, next_page);
1051 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1052 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1053
1054 pud = pud_offset(p4d, start);
1055
1056 /*
1057 * Need a PMD page?
1058 */
1059 if (pud_none(*pud))
1060 if (alloc_pmd_page(pud))
1061 return -1;
1062
1063 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1064 pud, pgprot);
1065 if (cur_pages < 0)
1066 return cur_pages;
1067
1068 start = pre_end;
1069 }
1070
1071 /* We mapped them all? */
1072 if (cpa->numpages == cur_pages)
1073 return cur_pages;
1074
1075 pud = pud_offset(p4d, start);
1076 pud_pgprot = pgprot_4k_2_large(pgprot);
1077
1078 /*
1079 * Map everything starting from the Gb boundary, possibly with 1G pages
1080 */
1081 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1082 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1083 canon_pgprot(pud_pgprot))));
1084
1085 start += PUD_SIZE;
1086 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1087 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1088 pud++;
1089 }
1090
1091 /* Map trailing leftover */
1092 if (start < end) {
1093 long tmp;
1094
1095 pud = pud_offset(p4d, start);
1096 if (pud_none(*pud))
1097 if (alloc_pmd_page(pud))
1098 return -1;
1099
1100 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1101 pud, pgprot);
1102 if (tmp < 0)
1103 return cur_pages;
1104
1105 cur_pages += tmp;
1106 }
1107 return cur_pages;
1108 }
1109
1110 /*
1111 * Restrictions for kernel page table do not necessarily apply when mapping in
1112 * an alternate PGD.
1113 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1114 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1115 {
1116 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1117 pud_t *pud = NULL; /* shut up gcc */
1118 p4d_t *p4d;
1119 pgd_t *pgd_entry;
1120 long ret;
1121
1122 pgd_entry = cpa->pgd + pgd_index(addr);
1123
1124 if (pgd_none(*pgd_entry)) {
1125 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1126 if (!p4d)
1127 return -1;
1128
1129 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1130 }
1131
1132 /*
1133 * Allocate a PUD page and hand it down for mapping.
1134 */
1135 p4d = p4d_offset(pgd_entry, addr);
1136 if (p4d_none(*p4d)) {
1137 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1138 if (!pud)
1139 return -1;
1140
1141 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1142 }
1143
1144 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1145 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1146
1147 ret = populate_pud(cpa, addr, p4d, pgprot);
1148 if (ret < 0) {
1149 /*
1150 * Leave the PUD page in place in case some other CPU or thread
1151 * already found it, but remove any useless entries we just
1152 * added to it.
1153 */
1154 unmap_pud_range(p4d, addr,
1155 addr + (cpa->numpages << PAGE_SHIFT));
1156 return ret;
1157 }
1158
1159 cpa->numpages = ret;
1160 return 0;
1161 }
1162
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1163 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1164 int primary)
1165 {
1166 if (cpa->pgd) {
1167 /*
1168 * Right now, we only execute this code path when mapping
1169 * the EFI virtual memory map regions, no other users
1170 * provide a ->pgd value. This may change in the future.
1171 */
1172 return populate_pgd(cpa, vaddr);
1173 }
1174
1175 /*
1176 * Ignore all non primary paths.
1177 */
1178 if (!primary) {
1179 cpa->numpages = 1;
1180 return 0;
1181 }
1182
1183 /*
1184 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1185 * to have holes.
1186 * Also set numpages to '1' indicating that we processed cpa req for
1187 * one virtual address page and its pfn. TBD: numpages can be set based
1188 * on the initial value and the level returned by lookup_address().
1189 */
1190 if (within(vaddr, PAGE_OFFSET,
1191 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1192 cpa->numpages = 1;
1193 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1194 return 0;
1195 } else {
1196 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1197 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1198 *cpa->vaddr);
1199
1200 return -EFAULT;
1201 }
1202 }
1203
__change_page_attr(struct cpa_data * cpa,int primary)1204 static int __change_page_attr(struct cpa_data *cpa, int primary)
1205 {
1206 unsigned long address;
1207 int do_split, err;
1208 unsigned int level;
1209 pte_t *kpte, old_pte;
1210
1211 if (cpa->flags & CPA_PAGES_ARRAY) {
1212 struct page *page = cpa->pages[cpa->curpage];
1213 if (unlikely(PageHighMem(page)))
1214 return 0;
1215 address = (unsigned long)page_address(page);
1216 } else if (cpa->flags & CPA_ARRAY)
1217 address = cpa->vaddr[cpa->curpage];
1218 else
1219 address = *cpa->vaddr;
1220 repeat:
1221 kpte = _lookup_address_cpa(cpa, address, &level);
1222 if (!kpte)
1223 return __cpa_process_fault(cpa, address, primary);
1224
1225 old_pte = *kpte;
1226 if (pte_none(old_pte))
1227 return __cpa_process_fault(cpa, address, primary);
1228
1229 if (level == PG_LEVEL_4K) {
1230 pte_t new_pte;
1231 pgprot_t new_prot = pte_pgprot(old_pte);
1232 unsigned long pfn = pte_pfn(old_pte);
1233
1234 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1235 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1236
1237 new_prot = static_protections(new_prot, address, pfn);
1238
1239 /*
1240 * Set the GLOBAL flags only if the PRESENT flag is
1241 * set otherwise pte_present will return true even on
1242 * a non present pte. The canon_pgprot will clear
1243 * _PAGE_GLOBAL for the ancient hardware that doesn't
1244 * support it.
1245 */
1246 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1247 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1248 else
1249 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1250
1251 /*
1252 * We need to keep the pfn from the existing PTE,
1253 * after all we're only going to change it's attributes
1254 * not the memory it points to
1255 */
1256 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1257 cpa->pfn = pfn;
1258 /*
1259 * Do we really change anything ?
1260 */
1261 if (pte_val(old_pte) != pte_val(new_pte)) {
1262 set_pte_atomic(kpte, new_pte);
1263 cpa->flags |= CPA_FLUSHTLB;
1264 }
1265 cpa->numpages = 1;
1266 return 0;
1267 }
1268
1269 /*
1270 * Check, whether we can keep the large page intact
1271 * and just change the pte:
1272 */
1273 do_split = try_preserve_large_page(kpte, address, cpa);
1274 /*
1275 * When the range fits into the existing large page,
1276 * return. cp->numpages and cpa->tlbflush have been updated in
1277 * try_large_page:
1278 */
1279 if (do_split <= 0)
1280 return do_split;
1281
1282 /*
1283 * We have to split the large page:
1284 */
1285 err = split_large_page(cpa, kpte, address);
1286 if (!err) {
1287 /*
1288 * Do a global flush tlb after splitting the large page
1289 * and before we do the actual change page attribute in the PTE.
1290 *
1291 * With out this, we violate the TLB application note, that says
1292 * "The TLBs may contain both ordinary and large-page
1293 * translations for a 4-KByte range of linear addresses. This
1294 * may occur if software modifies the paging structures so that
1295 * the page size used for the address range changes. If the two
1296 * translations differ with respect to page frame or attributes
1297 * (e.g., permissions), processor behavior is undefined and may
1298 * be implementation-specific."
1299 *
1300 * We do this global tlb flush inside the cpa_lock, so that we
1301 * don't allow any other cpu, with stale tlb entries change the
1302 * page attribute in parallel, that also falls into the
1303 * just split large page entry.
1304 */
1305 flush_tlb_all();
1306 goto repeat;
1307 }
1308
1309 return err;
1310 }
1311
1312 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1313
cpa_process_alias(struct cpa_data * cpa)1314 static int cpa_process_alias(struct cpa_data *cpa)
1315 {
1316 struct cpa_data alias_cpa;
1317 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1318 unsigned long vaddr;
1319 int ret;
1320
1321 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1322 return 0;
1323
1324 /*
1325 * No need to redo, when the primary call touched the direct
1326 * mapping already:
1327 */
1328 if (cpa->flags & CPA_PAGES_ARRAY) {
1329 struct page *page = cpa->pages[cpa->curpage];
1330 if (unlikely(PageHighMem(page)))
1331 return 0;
1332 vaddr = (unsigned long)page_address(page);
1333 } else if (cpa->flags & CPA_ARRAY)
1334 vaddr = cpa->vaddr[cpa->curpage];
1335 else
1336 vaddr = *cpa->vaddr;
1337
1338 if (!(within(vaddr, PAGE_OFFSET,
1339 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1340
1341 alias_cpa = *cpa;
1342 alias_cpa.vaddr = &laddr;
1343 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1344
1345 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1346 if (ret)
1347 return ret;
1348 }
1349
1350 #ifdef CONFIG_X86_64
1351 /*
1352 * If the primary call didn't touch the high mapping already
1353 * and the physical address is inside the kernel map, we need
1354 * to touch the high mapped kernel as well:
1355 */
1356 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1357 within_inclusive(cpa->pfn, highmap_start_pfn(),
1358 highmap_end_pfn())) {
1359 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1360 __START_KERNEL_map - phys_base;
1361 alias_cpa = *cpa;
1362 alias_cpa.vaddr = &temp_cpa_vaddr;
1363 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1364
1365 /*
1366 * The high mapping range is imprecise, so ignore the
1367 * return value.
1368 */
1369 __change_page_attr_set_clr(&alias_cpa, 0);
1370 }
1371 #endif
1372
1373 return 0;
1374 }
1375
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1376 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1377 {
1378 unsigned long numpages = cpa->numpages;
1379 int ret;
1380
1381 while (numpages) {
1382 /*
1383 * Store the remaining nr of pages for the large page
1384 * preservation check.
1385 */
1386 cpa->numpages = numpages;
1387 /* for array changes, we can't use large page */
1388 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1389 cpa->numpages = 1;
1390
1391 if (!debug_pagealloc_enabled())
1392 spin_lock(&cpa_lock);
1393 ret = __change_page_attr(cpa, checkalias);
1394 if (!debug_pagealloc_enabled())
1395 spin_unlock(&cpa_lock);
1396 if (ret)
1397 return ret;
1398
1399 if (checkalias) {
1400 ret = cpa_process_alias(cpa);
1401 if (ret)
1402 return ret;
1403 }
1404
1405 /*
1406 * Adjust the number of pages with the result of the
1407 * CPA operation. Either a large page has been
1408 * preserved or a single page update happened.
1409 */
1410 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1411 numpages -= cpa->numpages;
1412 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1413 cpa->curpage++;
1414 else
1415 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1416
1417 }
1418 return 0;
1419 }
1420
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1421 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1422 pgprot_t mask_set, pgprot_t mask_clr,
1423 int force_split, int in_flag,
1424 struct page **pages)
1425 {
1426 struct cpa_data cpa;
1427 int ret, cache, checkalias;
1428 unsigned long baddr = 0;
1429
1430 memset(&cpa, 0, sizeof(cpa));
1431
1432 /*
1433 * Check, if we are requested to change a not supported
1434 * feature:
1435 */
1436 mask_set = canon_pgprot(mask_set);
1437 mask_clr = canon_pgprot(mask_clr);
1438 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1439 return 0;
1440
1441 /* Ensure we are PAGE_SIZE aligned */
1442 if (in_flag & CPA_ARRAY) {
1443 int i;
1444 for (i = 0; i < numpages; i++) {
1445 if (addr[i] & ~PAGE_MASK) {
1446 addr[i] &= PAGE_MASK;
1447 WARN_ON_ONCE(1);
1448 }
1449 }
1450 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1451 /*
1452 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1453 * No need to cehck in that case
1454 */
1455 if (*addr & ~PAGE_MASK) {
1456 *addr &= PAGE_MASK;
1457 /*
1458 * People should not be passing in unaligned addresses:
1459 */
1460 WARN_ON_ONCE(1);
1461 }
1462 /*
1463 * Save address for cache flush. *addr is modified in the call
1464 * to __change_page_attr_set_clr() below.
1465 */
1466 baddr = *addr;
1467 }
1468
1469 /* Must avoid aliasing mappings in the highmem code */
1470 kmap_flush_unused();
1471
1472 vm_unmap_aliases();
1473
1474 cpa.vaddr = addr;
1475 cpa.pages = pages;
1476 cpa.numpages = numpages;
1477 cpa.mask_set = mask_set;
1478 cpa.mask_clr = mask_clr;
1479 cpa.flags = 0;
1480 cpa.curpage = 0;
1481 cpa.force_split = force_split;
1482
1483 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1484 cpa.flags |= in_flag;
1485
1486 /* No alias checking for _NX bit modifications */
1487 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1488
1489 ret = __change_page_attr_set_clr(&cpa, checkalias);
1490
1491 /*
1492 * Check whether we really changed something:
1493 */
1494 if (!(cpa.flags & CPA_FLUSHTLB))
1495 goto out;
1496
1497 /*
1498 * No need to flush, when we did not set any of the caching
1499 * attributes:
1500 */
1501 cache = !!pgprot2cachemode(mask_set);
1502
1503 /*
1504 * On success we use CLFLUSH, when the CPU supports it to
1505 * avoid the WBINVD. If the CPU does not support it and in the
1506 * error case we fall back to cpa_flush_all (which uses
1507 * WBINVD):
1508 */
1509 if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1510 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1511 cpa_flush_array(addr, numpages, cache,
1512 cpa.flags, pages);
1513 } else
1514 cpa_flush_range(baddr, numpages, cache);
1515 } else
1516 cpa_flush_all(cache);
1517
1518 out:
1519 return ret;
1520 }
1521
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1522 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1523 pgprot_t mask, int array)
1524 {
1525 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1526 (array ? CPA_ARRAY : 0), NULL);
1527 }
1528
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1529 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1530 pgprot_t mask, int array)
1531 {
1532 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1533 (array ? CPA_ARRAY : 0), NULL);
1534 }
1535
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1536 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1537 pgprot_t mask)
1538 {
1539 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1540 CPA_PAGES_ARRAY, pages);
1541 }
1542
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1543 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1544 pgprot_t mask)
1545 {
1546 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1547 CPA_PAGES_ARRAY, pages);
1548 }
1549
_set_memory_uc(unsigned long addr,int numpages)1550 int _set_memory_uc(unsigned long addr, int numpages)
1551 {
1552 /*
1553 * for now UC MINUS. see comments in ioremap_nocache()
1554 * If you really need strong UC use ioremap_uc(), but note
1555 * that you cannot override IO areas with set_memory_*() as
1556 * these helpers cannot work with IO memory.
1557 */
1558 return change_page_attr_set(&addr, numpages,
1559 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1560 0);
1561 }
1562
set_memory_uc(unsigned long addr,int numpages)1563 int set_memory_uc(unsigned long addr, int numpages)
1564 {
1565 int ret;
1566
1567 /*
1568 * for now UC MINUS. see comments in ioremap_nocache()
1569 */
1570 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1571 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1572 if (ret)
1573 goto out_err;
1574
1575 ret = _set_memory_uc(addr, numpages);
1576 if (ret)
1577 goto out_free;
1578
1579 return 0;
1580
1581 out_free:
1582 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1583 out_err:
1584 return ret;
1585 }
1586 EXPORT_SYMBOL(set_memory_uc);
1587
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1588 static int _set_memory_array(unsigned long *addr, int addrinarray,
1589 enum page_cache_mode new_type)
1590 {
1591 enum page_cache_mode set_type;
1592 int i, j;
1593 int ret;
1594
1595 for (i = 0; i < addrinarray; i++) {
1596 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1597 new_type, NULL);
1598 if (ret)
1599 goto out_free;
1600 }
1601
1602 /* If WC, set to UC- first and then WC */
1603 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1604 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1605
1606 ret = change_page_attr_set(addr, addrinarray,
1607 cachemode2pgprot(set_type), 1);
1608
1609 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1610 ret = change_page_attr_set_clr(addr, addrinarray,
1611 cachemode2pgprot(
1612 _PAGE_CACHE_MODE_WC),
1613 __pgprot(_PAGE_CACHE_MASK),
1614 0, CPA_ARRAY, NULL);
1615 if (ret)
1616 goto out_free;
1617
1618 return 0;
1619
1620 out_free:
1621 for (j = 0; j < i; j++)
1622 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1623
1624 return ret;
1625 }
1626
set_memory_array_uc(unsigned long * addr,int addrinarray)1627 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1628 {
1629 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1630 }
1631 EXPORT_SYMBOL(set_memory_array_uc);
1632
set_memory_array_wc(unsigned long * addr,int addrinarray)1633 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1634 {
1635 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1636 }
1637 EXPORT_SYMBOL(set_memory_array_wc);
1638
set_memory_array_wt(unsigned long * addr,int addrinarray)1639 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1640 {
1641 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1642 }
1643 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1644
_set_memory_wc(unsigned long addr,int numpages)1645 int _set_memory_wc(unsigned long addr, int numpages)
1646 {
1647 int ret;
1648 unsigned long addr_copy = addr;
1649
1650 ret = change_page_attr_set(&addr, numpages,
1651 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1652 0);
1653 if (!ret) {
1654 ret = change_page_attr_set_clr(&addr_copy, numpages,
1655 cachemode2pgprot(
1656 _PAGE_CACHE_MODE_WC),
1657 __pgprot(_PAGE_CACHE_MASK),
1658 0, 0, NULL);
1659 }
1660 return ret;
1661 }
1662
set_memory_wc(unsigned long addr,int numpages)1663 int set_memory_wc(unsigned long addr, int numpages)
1664 {
1665 int ret;
1666
1667 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1668 _PAGE_CACHE_MODE_WC, NULL);
1669 if (ret)
1670 return ret;
1671
1672 ret = _set_memory_wc(addr, numpages);
1673 if (ret)
1674 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1675
1676 return ret;
1677 }
1678 EXPORT_SYMBOL(set_memory_wc);
1679
_set_memory_wt(unsigned long addr,int numpages)1680 int _set_memory_wt(unsigned long addr, int numpages)
1681 {
1682 return change_page_attr_set(&addr, numpages,
1683 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1684 }
1685
set_memory_wt(unsigned long addr,int numpages)1686 int set_memory_wt(unsigned long addr, int numpages)
1687 {
1688 int ret;
1689
1690 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1691 _PAGE_CACHE_MODE_WT, NULL);
1692 if (ret)
1693 return ret;
1694
1695 ret = _set_memory_wt(addr, numpages);
1696 if (ret)
1697 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1698
1699 return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(set_memory_wt);
1702
_set_memory_wb(unsigned long addr,int numpages)1703 int _set_memory_wb(unsigned long addr, int numpages)
1704 {
1705 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1706 return change_page_attr_clear(&addr, numpages,
1707 __pgprot(_PAGE_CACHE_MASK), 0);
1708 }
1709
set_memory_wb(unsigned long addr,int numpages)1710 int set_memory_wb(unsigned long addr, int numpages)
1711 {
1712 int ret;
1713
1714 ret = _set_memory_wb(addr, numpages);
1715 if (ret)
1716 return ret;
1717
1718 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1719 return 0;
1720 }
1721 EXPORT_SYMBOL(set_memory_wb);
1722
set_memory_array_wb(unsigned long * addr,int addrinarray)1723 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1724 {
1725 int i;
1726 int ret;
1727
1728 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1729 ret = change_page_attr_clear(addr, addrinarray,
1730 __pgprot(_PAGE_CACHE_MASK), 1);
1731 if (ret)
1732 return ret;
1733
1734 for (i = 0; i < addrinarray; i++)
1735 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1736
1737 return 0;
1738 }
1739 EXPORT_SYMBOL(set_memory_array_wb);
1740
set_memory_x(unsigned long addr,int numpages)1741 int set_memory_x(unsigned long addr, int numpages)
1742 {
1743 if (!(__supported_pte_mask & _PAGE_NX))
1744 return 0;
1745
1746 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1747 }
1748 EXPORT_SYMBOL(set_memory_x);
1749
set_memory_nx(unsigned long addr,int numpages)1750 int set_memory_nx(unsigned long addr, int numpages)
1751 {
1752 if (!(__supported_pte_mask & _PAGE_NX))
1753 return 0;
1754
1755 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1756 }
1757 EXPORT_SYMBOL(set_memory_nx);
1758
set_memory_ro(unsigned long addr,int numpages)1759 int set_memory_ro(unsigned long addr, int numpages)
1760 {
1761 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1762 }
1763
set_memory_rw(unsigned long addr,int numpages)1764 int set_memory_rw(unsigned long addr, int numpages)
1765 {
1766 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1767 }
1768
set_memory_np(unsigned long addr,int numpages)1769 int set_memory_np(unsigned long addr, int numpages)
1770 {
1771 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1772 }
1773
set_memory_4k(unsigned long addr,int numpages)1774 int set_memory_4k(unsigned long addr, int numpages)
1775 {
1776 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1777 __pgprot(0), 1, 0, NULL);
1778 }
1779
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1780 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1781 {
1782 struct cpa_data cpa;
1783 unsigned long start;
1784 int ret;
1785
1786 /* Nothing to do if the SME is not active */
1787 if (!sme_active())
1788 return 0;
1789
1790 /* Should not be working on unaligned addresses */
1791 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1792 addr &= PAGE_MASK;
1793
1794 start = addr;
1795
1796 memset(&cpa, 0, sizeof(cpa));
1797 cpa.vaddr = &addr;
1798 cpa.numpages = numpages;
1799 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1800 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1801 cpa.pgd = init_mm.pgd;
1802
1803 /* Must avoid aliasing mappings in the highmem code */
1804 kmap_flush_unused();
1805 vm_unmap_aliases();
1806
1807 /*
1808 * Before changing the encryption attribute, we need to flush caches.
1809 */
1810 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1811 cpa_flush_range(start, numpages, 1);
1812 else
1813 cpa_flush_all(1);
1814
1815 ret = __change_page_attr_set_clr(&cpa, 1);
1816
1817 /*
1818 * After changing the encryption attribute, we need to flush TLBs
1819 * again in case any speculative TLB caching occurred (but no need
1820 * to flush caches again). We could just use cpa_flush_all(), but
1821 * in case TLB flushing gets optimized in the cpa_flush_range()
1822 * path use the same logic as above.
1823 */
1824 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1825 cpa_flush_range(start, numpages, 0);
1826 else
1827 cpa_flush_all(0);
1828
1829 return ret;
1830 }
1831
set_memory_encrypted(unsigned long addr,int numpages)1832 int set_memory_encrypted(unsigned long addr, int numpages)
1833 {
1834 return __set_memory_enc_dec(addr, numpages, true);
1835 }
1836 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1837
set_memory_decrypted(unsigned long addr,int numpages)1838 int set_memory_decrypted(unsigned long addr, int numpages)
1839 {
1840 return __set_memory_enc_dec(addr, numpages, false);
1841 }
1842 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1843
set_pages_uc(struct page * page,int numpages)1844 int set_pages_uc(struct page *page, int numpages)
1845 {
1846 unsigned long addr = (unsigned long)page_address(page);
1847
1848 return set_memory_uc(addr, numpages);
1849 }
1850 EXPORT_SYMBOL(set_pages_uc);
1851
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1852 static int _set_pages_array(struct page **pages, int addrinarray,
1853 enum page_cache_mode new_type)
1854 {
1855 unsigned long start;
1856 unsigned long end;
1857 enum page_cache_mode set_type;
1858 int i;
1859 int free_idx;
1860 int ret;
1861
1862 for (i = 0; i < addrinarray; i++) {
1863 if (PageHighMem(pages[i]))
1864 continue;
1865 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1866 end = start + PAGE_SIZE;
1867 if (reserve_memtype(start, end, new_type, NULL))
1868 goto err_out;
1869 }
1870
1871 /* If WC, set to UC- first and then WC */
1872 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1873 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1874
1875 ret = cpa_set_pages_array(pages, addrinarray,
1876 cachemode2pgprot(set_type));
1877 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1878 ret = change_page_attr_set_clr(NULL, addrinarray,
1879 cachemode2pgprot(
1880 _PAGE_CACHE_MODE_WC),
1881 __pgprot(_PAGE_CACHE_MASK),
1882 0, CPA_PAGES_ARRAY, pages);
1883 if (ret)
1884 goto err_out;
1885 return 0; /* Success */
1886 err_out:
1887 free_idx = i;
1888 for (i = 0; i < free_idx; i++) {
1889 if (PageHighMem(pages[i]))
1890 continue;
1891 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1892 end = start + PAGE_SIZE;
1893 free_memtype(start, end);
1894 }
1895 return -EINVAL;
1896 }
1897
set_pages_array_uc(struct page ** pages,int addrinarray)1898 int set_pages_array_uc(struct page **pages, int addrinarray)
1899 {
1900 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1901 }
1902 EXPORT_SYMBOL(set_pages_array_uc);
1903
set_pages_array_wc(struct page ** pages,int addrinarray)1904 int set_pages_array_wc(struct page **pages, int addrinarray)
1905 {
1906 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1907 }
1908 EXPORT_SYMBOL(set_pages_array_wc);
1909
set_pages_array_wt(struct page ** pages,int addrinarray)1910 int set_pages_array_wt(struct page **pages, int addrinarray)
1911 {
1912 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1913 }
1914 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1915
set_pages_wb(struct page * page,int numpages)1916 int set_pages_wb(struct page *page, int numpages)
1917 {
1918 unsigned long addr = (unsigned long)page_address(page);
1919
1920 return set_memory_wb(addr, numpages);
1921 }
1922 EXPORT_SYMBOL(set_pages_wb);
1923
set_pages_array_wb(struct page ** pages,int addrinarray)1924 int set_pages_array_wb(struct page **pages, int addrinarray)
1925 {
1926 int retval;
1927 unsigned long start;
1928 unsigned long end;
1929 int i;
1930
1931 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1932 retval = cpa_clear_pages_array(pages, addrinarray,
1933 __pgprot(_PAGE_CACHE_MASK));
1934 if (retval)
1935 return retval;
1936
1937 for (i = 0; i < addrinarray; i++) {
1938 if (PageHighMem(pages[i]))
1939 continue;
1940 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1941 end = start + PAGE_SIZE;
1942 free_memtype(start, end);
1943 }
1944
1945 return 0;
1946 }
1947 EXPORT_SYMBOL(set_pages_array_wb);
1948
set_pages_x(struct page * page,int numpages)1949 int set_pages_x(struct page *page, int numpages)
1950 {
1951 unsigned long addr = (unsigned long)page_address(page);
1952
1953 return set_memory_x(addr, numpages);
1954 }
1955 EXPORT_SYMBOL(set_pages_x);
1956
set_pages_nx(struct page * page,int numpages)1957 int set_pages_nx(struct page *page, int numpages)
1958 {
1959 unsigned long addr = (unsigned long)page_address(page);
1960
1961 return set_memory_nx(addr, numpages);
1962 }
1963 EXPORT_SYMBOL(set_pages_nx);
1964
set_pages_ro(struct page * page,int numpages)1965 int set_pages_ro(struct page *page, int numpages)
1966 {
1967 unsigned long addr = (unsigned long)page_address(page);
1968
1969 return set_memory_ro(addr, numpages);
1970 }
1971
set_pages_rw(struct page * page,int numpages)1972 int set_pages_rw(struct page *page, int numpages)
1973 {
1974 unsigned long addr = (unsigned long)page_address(page);
1975
1976 return set_memory_rw(addr, numpages);
1977 }
1978
1979 #ifdef CONFIG_DEBUG_PAGEALLOC
1980
__set_pages_p(struct page * page,int numpages)1981 static int __set_pages_p(struct page *page, int numpages)
1982 {
1983 unsigned long tempaddr = (unsigned long) page_address(page);
1984 struct cpa_data cpa = { .vaddr = &tempaddr,
1985 .pgd = NULL,
1986 .numpages = numpages,
1987 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1988 .mask_clr = __pgprot(0),
1989 .flags = 0};
1990
1991 /*
1992 * No alias checking needed for setting present flag. otherwise,
1993 * we may need to break large pages for 64-bit kernel text
1994 * mappings (this adds to complexity if we want to do this from
1995 * atomic context especially). Let's keep it simple!
1996 */
1997 return __change_page_attr_set_clr(&cpa, 0);
1998 }
1999
__set_pages_np(struct page * page,int numpages)2000 static int __set_pages_np(struct page *page, int numpages)
2001 {
2002 unsigned long tempaddr = (unsigned long) page_address(page);
2003 struct cpa_data cpa = { .vaddr = &tempaddr,
2004 .pgd = NULL,
2005 .numpages = numpages,
2006 .mask_set = __pgprot(0),
2007 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2008 .flags = 0};
2009
2010 /*
2011 * No alias checking needed for setting not present flag. otherwise,
2012 * we may need to break large pages for 64-bit kernel text
2013 * mappings (this adds to complexity if we want to do this from
2014 * atomic context especially). Let's keep it simple!
2015 */
2016 return __change_page_attr_set_clr(&cpa, 0);
2017 }
2018
__kernel_map_pages(struct page * page,int numpages,int enable)2019 void __kernel_map_pages(struct page *page, int numpages, int enable)
2020 {
2021 if (PageHighMem(page))
2022 return;
2023 if (!enable) {
2024 debug_check_no_locks_freed(page_address(page),
2025 numpages * PAGE_SIZE);
2026 }
2027
2028 /*
2029 * The return value is ignored as the calls cannot fail.
2030 * Large pages for identity mappings are not used at boot time
2031 * and hence no memory allocations during large page split.
2032 */
2033 if (enable)
2034 __set_pages_p(page, numpages);
2035 else
2036 __set_pages_np(page, numpages);
2037
2038 /*
2039 * We should perform an IPI and flush all tlbs,
2040 * but that can deadlock->flush only current cpu.
2041 * Preemption needs to be disabled around __flush_tlb_all() due to
2042 * CR3 reload in __native_flush_tlb().
2043 */
2044 preempt_disable();
2045 __flush_tlb_all();
2046 preempt_enable();
2047
2048 arch_flush_lazy_mmu_mode();
2049 }
2050
2051 #ifdef CONFIG_HIBERNATION
2052
kernel_page_present(struct page * page)2053 bool kernel_page_present(struct page *page)
2054 {
2055 unsigned int level;
2056 pte_t *pte;
2057
2058 if (PageHighMem(page))
2059 return false;
2060
2061 pte = lookup_address((unsigned long)page_address(page), &level);
2062 return (pte_val(*pte) & _PAGE_PRESENT);
2063 }
2064
2065 #endif /* CONFIG_HIBERNATION */
2066
2067 #endif /* CONFIG_DEBUG_PAGEALLOC */
2068
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2069 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2070 unsigned numpages, unsigned long page_flags)
2071 {
2072 int retval = -EINVAL;
2073
2074 struct cpa_data cpa = {
2075 .vaddr = &address,
2076 .pfn = pfn,
2077 .pgd = pgd,
2078 .numpages = numpages,
2079 .mask_set = __pgprot(0),
2080 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2081 .flags = 0,
2082 };
2083
2084 if (!(__supported_pte_mask & _PAGE_NX))
2085 goto out;
2086
2087 if (!(page_flags & _PAGE_ENC))
2088 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2089
2090 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2091
2092 retval = __change_page_attr_set_clr(&cpa, 0);
2093 __flush_tlb_all();
2094
2095 out:
2096 return retval;
2097 }
2098
2099 /*
2100 * The testcases use internal knowledge of the implementation that shouldn't
2101 * be exposed to the rest of the kernel. Include these directly here.
2102 */
2103 #ifdef CONFIG_CPA_DEBUG
2104 #include "pageattr-test.c"
2105 #endif
2106