• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17 
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28 
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33 	unsigned long	*vaddr;
34 	pgd_t		*pgd;
35 	pgprot_t	mask_set;
36 	pgprot_t	mask_clr;
37 	unsigned long	numpages;
38 	int		flags;
39 	unsigned long	pfn;
40 	unsigned	force_split : 1;
41 	int		curpage;
42 	struct page	**pages;
43 };
44 
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52 
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56 
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59 
update_page_count(int level,unsigned long pages)60 void update_page_count(int level, unsigned long pages)
61 {
62 	/* Protect against CPA */
63 	spin_lock(&pgd_lock);
64 	direct_pages_count[level] += pages;
65 	spin_unlock(&pgd_lock);
66 }
67 
split_page_count(int level)68 static void split_page_count(int level)
69 {
70 	if (direct_pages_count[level] == 0)
71 		return;
72 
73 	direct_pages_count[level]--;
74 	direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76 
arch_report_meminfo(struct seq_file * m)77 void arch_report_meminfo(struct seq_file *m)
78 {
79 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
80 			direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
83 			direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
86 			direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88 	if (direct_gbpages)
89 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
90 			direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
split_page_count(int level)93 static inline void split_page_count(int level) { }
94 #endif
95 
96 #ifdef CONFIG_X86_64
97 
highmap_start_pfn(void)98 static inline unsigned long highmap_start_pfn(void)
99 {
100 	return __pa_symbol(_text) >> PAGE_SHIFT;
101 }
102 
highmap_end_pfn(void)103 static inline unsigned long highmap_end_pfn(void)
104 {
105 	/* Do not reference physical address outside the kernel. */
106 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
107 }
108 
109 #endif
110 
111 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)112 within(unsigned long addr, unsigned long start, unsigned long end)
113 {
114 	return addr >= start && addr < end;
115 }
116 
117 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
119 {
120 	return addr >= start && addr <= end;
121 }
122 
123 /*
124  * Flushing functions
125  */
126 
127 /**
128  * clflush_cache_range - flush a cache range with clflush
129  * @vaddr:	virtual start address
130  * @size:	number of bytes to flush
131  *
132  * clflushopt is an unordered instruction which needs fencing with mfence or
133  * sfence to avoid ordering issues.
134  */
clflush_cache_range(void * vaddr,unsigned int size)135 void clflush_cache_range(void *vaddr, unsigned int size)
136 {
137 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139 	void *vend = vaddr + size;
140 
141 	if (p >= vend)
142 		return;
143 
144 	mb();
145 
146 	for (; p < vend; p += clflush_size)
147 		clflushopt(p);
148 
149 	mb();
150 }
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
152 
arch_invalidate_pmem(void * addr,size_t size)153 void arch_invalidate_pmem(void *addr, size_t size)
154 {
155 	clflush_cache_range(addr, size);
156 }
157 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
158 
__cpa_flush_all(void * arg)159 static void __cpa_flush_all(void *arg)
160 {
161 	unsigned long cache = (unsigned long)arg;
162 
163 	/*
164 	 * Flush all to work around Errata in early athlons regarding
165 	 * large page flushing.
166 	 */
167 	__flush_tlb_all();
168 
169 	if (cache && boot_cpu_data.x86 >= 4)
170 		wbinvd();
171 }
172 
cpa_flush_all(unsigned long cache)173 static void cpa_flush_all(unsigned long cache)
174 {
175 	BUG_ON(irqs_disabled());
176 
177 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
178 }
179 
__cpa_flush_range(void * arg)180 static void __cpa_flush_range(void *arg)
181 {
182 	/*
183 	 * We could optimize that further and do individual per page
184 	 * tlb invalidates for a low number of pages. Caveat: we must
185 	 * flush the high aliases on 64bit as well.
186 	 */
187 	__flush_tlb_all();
188 }
189 
cpa_flush_range(unsigned long start,int numpages,int cache)190 static void cpa_flush_range(unsigned long start, int numpages, int cache)
191 {
192 	unsigned int i, level;
193 	unsigned long addr;
194 
195 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
196 	WARN_ON(PAGE_ALIGN(start) != start);
197 
198 	on_each_cpu(__cpa_flush_range, NULL, 1);
199 
200 	if (!cache)
201 		return;
202 
203 	/*
204 	 * We only need to flush on one CPU,
205 	 * clflush is a MESI-coherent instruction that
206 	 * will cause all other CPUs to flush the same
207 	 * cachelines:
208 	 */
209 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
210 		pte_t *pte = lookup_address(addr, &level);
211 
212 		/*
213 		 * Only flush present addresses:
214 		 */
215 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
216 			clflush_cache_range((void *) addr, PAGE_SIZE);
217 	}
218 }
219 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)220 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
221 			    int in_flags, struct page **pages)
222 {
223 	unsigned int i, level;
224 #ifdef CONFIG_PREEMPT
225 	/*
226 	 * Avoid wbinvd() because it causes latencies on all CPUs,
227 	 * regardless of any CPU isolation that may be in effect.
228 	 *
229 	 * This should be extended for CAT enabled systems independent of
230 	 * PREEMPT because wbinvd() does not respect the CAT partitions and
231 	 * this is exposed to unpriviledged users through the graphics
232 	 * subsystem.
233 	 */
234 	unsigned long do_wbinvd = 0;
235 #else
236 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
237 #endif
238 
239 	BUG_ON(irqs_disabled());
240 
241 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
242 
243 	if (!cache || do_wbinvd)
244 		return;
245 
246 	/*
247 	 * We only need to flush on one CPU,
248 	 * clflush is a MESI-coherent instruction that
249 	 * will cause all other CPUs to flush the same
250 	 * cachelines:
251 	 */
252 	for (i = 0; i < numpages; i++) {
253 		unsigned long addr;
254 		pte_t *pte;
255 
256 		if (in_flags & CPA_PAGES_ARRAY)
257 			addr = (unsigned long)page_address(pages[i]);
258 		else
259 			addr = start[i];
260 
261 		pte = lookup_address(addr, &level);
262 
263 		/*
264 		 * Only flush present addresses:
265 		 */
266 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
267 			clflush_cache_range((void *)addr, PAGE_SIZE);
268 	}
269 }
270 
271 /*
272  * Certain areas of memory on x86 require very specific protection flags,
273  * for example the BIOS area or kernel text. Callers don't always get this
274  * right (again, ioremap() on BIOS memory is not uncommon) so this function
275  * checks and fixes these known static required protection bits.
276  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)277 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
278 				   unsigned long pfn)
279 {
280 	pgprot_t forbidden = __pgprot(0);
281 
282 	/*
283 	 * The BIOS area between 640k and 1Mb needs to be executable for
284 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
285 	 */
286 #ifdef CONFIG_PCI_BIOS
287 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
288 		pgprot_val(forbidden) |= _PAGE_NX;
289 #endif
290 
291 	/*
292 	 * The kernel text needs to be executable for obvious reasons
293 	 * Does not cover __inittext since that is gone later on. On
294 	 * 64bit we do not enforce !NX on the low mapping
295 	 */
296 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
297 		pgprot_val(forbidden) |= _PAGE_NX;
298 
299 	/*
300 	 * The .rodata section needs to be read-only. Using the pfn
301 	 * catches all aliases.  This also includes __ro_after_init,
302 	 * so do not enforce until kernel_set_to_readonly is true.
303 	 */
304 	if (kernel_set_to_readonly &&
305 	    within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
306 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
307 		pgprot_val(forbidden) |= _PAGE_RW;
308 
309 #if defined(CONFIG_X86_64)
310 	/*
311 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
312 	 * kernel text mappings for the large page aligned text, rodata sections
313 	 * will be always read-only. For the kernel identity mappings covering
314 	 * the holes caused by this alignment can be anything that user asks.
315 	 *
316 	 * This will preserve the large page mappings for kernel text/data
317 	 * at no extra cost.
318 	 */
319 	if (kernel_set_to_readonly &&
320 	    within(address, (unsigned long)_text,
321 		   (unsigned long)__end_rodata_hpage_align)) {
322 		unsigned int level;
323 
324 		/*
325 		 * Don't enforce the !RW mapping for the kernel text mapping,
326 		 * if the current mapping is already using small page mapping.
327 		 * No need to work hard to preserve large page mappings in this
328 		 * case.
329 		 *
330 		 * This also fixes the Linux Xen paravirt guest boot failure
331 		 * (because of unexpected read-only mappings for kernel identity
332 		 * mappings). In this paravirt guest case, the kernel text
333 		 * mapping and the kernel identity mapping share the same
334 		 * page-table pages. Thus we can't really use different
335 		 * protections for the kernel text and identity mappings. Also,
336 		 * these shared mappings are made of small page mappings.
337 		 * Thus this don't enforce !RW mapping for small page kernel
338 		 * text mapping logic will help Linux Xen parvirt guest boot
339 		 * as well.
340 		 */
341 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
342 			pgprot_val(forbidden) |= _PAGE_RW;
343 	}
344 #endif
345 
346 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
347 
348 	return prot;
349 }
350 
351 /*
352  * Lookup the page table entry for a virtual address in a specific pgd.
353  * Return a pointer to the entry and the level of the mapping.
354  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)355 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
356 			     unsigned int *level)
357 {
358 	p4d_t *p4d;
359 	pud_t *pud;
360 	pmd_t *pmd;
361 
362 	*level = PG_LEVEL_NONE;
363 
364 	if (pgd_none(*pgd))
365 		return NULL;
366 
367 	p4d = p4d_offset(pgd, address);
368 	if (p4d_none(*p4d))
369 		return NULL;
370 
371 	*level = PG_LEVEL_512G;
372 	if (p4d_large(*p4d) || !p4d_present(*p4d))
373 		return (pte_t *)p4d;
374 
375 	pud = pud_offset(p4d, address);
376 	if (pud_none(*pud))
377 		return NULL;
378 
379 	*level = PG_LEVEL_1G;
380 	if (pud_large(*pud) || !pud_present(*pud))
381 		return (pte_t *)pud;
382 
383 	pmd = pmd_offset(pud, address);
384 	if (pmd_none(*pmd))
385 		return NULL;
386 
387 	*level = PG_LEVEL_2M;
388 	if (pmd_large(*pmd) || !pmd_present(*pmd))
389 		return (pte_t *)pmd;
390 
391 	*level = PG_LEVEL_4K;
392 
393 	return pte_offset_kernel(pmd, address);
394 }
395 
396 /*
397  * Lookup the page table entry for a virtual address. Return a pointer
398  * to the entry and the level of the mapping.
399  *
400  * Note: We return pud and pmd either when the entry is marked large
401  * or when the present bit is not set. Otherwise we would return a
402  * pointer to a nonexisting mapping.
403  */
lookup_address(unsigned long address,unsigned int * level)404 pte_t *lookup_address(unsigned long address, unsigned int *level)
405 {
406         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
407 }
408 EXPORT_SYMBOL_GPL(lookup_address);
409 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)410 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
411 				  unsigned int *level)
412 {
413         if (cpa->pgd)
414 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
415 					       address, level);
416 
417         return lookup_address(address, level);
418 }
419 
420 /*
421  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
422  * or NULL if not present.
423  */
lookup_pmd_address(unsigned long address)424 pmd_t *lookup_pmd_address(unsigned long address)
425 {
426 	pgd_t *pgd;
427 	p4d_t *p4d;
428 	pud_t *pud;
429 
430 	pgd = pgd_offset_k(address);
431 	if (pgd_none(*pgd))
432 		return NULL;
433 
434 	p4d = p4d_offset(pgd, address);
435 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
436 		return NULL;
437 
438 	pud = pud_offset(p4d, address);
439 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
440 		return NULL;
441 
442 	return pmd_offset(pud, address);
443 }
444 
445 /*
446  * This is necessary because __pa() does not work on some
447  * kinds of memory, like vmalloc() or the alloc_remap()
448  * areas on 32-bit NUMA systems.  The percpu areas can
449  * end up in this kind of memory, for instance.
450  *
451  * This could be optimized, but it is only intended to be
452  * used at inititalization time, and keeping it
453  * unoptimized should increase the testing coverage for
454  * the more obscure platforms.
455  */
slow_virt_to_phys(void * __virt_addr)456 phys_addr_t slow_virt_to_phys(void *__virt_addr)
457 {
458 	unsigned long virt_addr = (unsigned long)__virt_addr;
459 	phys_addr_t phys_addr;
460 	unsigned long offset;
461 	enum pg_level level;
462 	pte_t *pte;
463 
464 	pte = lookup_address(virt_addr, &level);
465 	BUG_ON(!pte);
466 
467 	/*
468 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
469 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
470 	 * make 32-PAE kernel work correctly.
471 	 */
472 	switch (level) {
473 	case PG_LEVEL_1G:
474 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
475 		offset = virt_addr & ~PUD_PAGE_MASK;
476 		break;
477 	case PG_LEVEL_2M:
478 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
479 		offset = virt_addr & ~PMD_PAGE_MASK;
480 		break;
481 	default:
482 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
483 		offset = virt_addr & ~PAGE_MASK;
484 	}
485 
486 	return (phys_addr_t)(phys_addr | offset);
487 }
488 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
489 
490 /*
491  * Set the new pmd in all the pgds we know about:
492  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)493 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
494 {
495 	/* change init_mm */
496 	set_pte_atomic(kpte, pte);
497 #ifdef CONFIG_X86_32
498 	if (!SHARED_KERNEL_PMD) {
499 		struct page *page;
500 
501 		list_for_each_entry(page, &pgd_list, lru) {
502 			pgd_t *pgd;
503 			p4d_t *p4d;
504 			pud_t *pud;
505 			pmd_t *pmd;
506 
507 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
508 			p4d = p4d_offset(pgd, address);
509 			pud = pud_offset(p4d, address);
510 			pmd = pmd_offset(pud, address);
511 			set_pte_atomic((pte_t *)pmd, pte);
512 		}
513 	}
514 #endif
515 }
516 
517 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)518 try_preserve_large_page(pte_t *kpte, unsigned long address,
519 			struct cpa_data *cpa)
520 {
521 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
522 	pte_t new_pte, old_pte, *tmp;
523 	pgprot_t old_prot, new_prot, req_prot;
524 	int i, do_split = 1;
525 	enum pg_level level;
526 
527 	if (cpa->force_split)
528 		return 1;
529 
530 	spin_lock(&pgd_lock);
531 	/*
532 	 * Check for races, another CPU might have split this page
533 	 * up already:
534 	 */
535 	tmp = _lookup_address_cpa(cpa, address, &level);
536 	if (tmp != kpte)
537 		goto out_unlock;
538 
539 	switch (level) {
540 	case PG_LEVEL_2M:
541 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
542 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
543 		break;
544 	case PG_LEVEL_1G:
545 		old_prot = pud_pgprot(*(pud_t *)kpte);
546 		old_pfn = pud_pfn(*(pud_t *)kpte);
547 		break;
548 	default:
549 		do_split = -EINVAL;
550 		goto out_unlock;
551 	}
552 
553 	psize = page_level_size(level);
554 	pmask = page_level_mask(level);
555 
556 	/*
557 	 * Calculate the number of pages, which fit into this large
558 	 * page starting at address:
559 	 */
560 	nextpage_addr = (address + psize) & pmask;
561 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
562 	if (numpages < cpa->numpages)
563 		cpa->numpages = numpages;
564 
565 	/*
566 	 * We are safe now. Check whether the new pgprot is the same:
567 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
568 	 * up accordingly.
569 	 */
570 	old_pte = *kpte;
571 	req_prot = pgprot_large_2_4k(old_prot);
572 
573 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
574 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
575 
576 	/*
577 	 * req_prot is in format of 4k pages. It must be converted to large
578 	 * page format: the caching mode includes the PAT bit located at
579 	 * different bit positions in the two formats.
580 	 */
581 	req_prot = pgprot_4k_2_large(req_prot);
582 
583 	/*
584 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
585 	 * set otherwise pmd_present/pmd_huge will return true even on
586 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
587 	 * for the ancient hardware that doesn't support it.
588 	 */
589 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
590 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
591 	else
592 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
593 
594 	req_prot = canon_pgprot(req_prot);
595 
596 	/*
597 	 * old_pfn points to the large page base pfn. So we need
598 	 * to add the offset of the virtual address:
599 	 */
600 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
601 	cpa->pfn = pfn;
602 
603 	new_prot = static_protections(req_prot, address, pfn);
604 
605 	/*
606 	 * We need to check the full range, whether
607 	 * static_protection() requires a different pgprot for one of
608 	 * the pages in the range we try to preserve:
609 	 */
610 	addr = address & pmask;
611 	pfn = old_pfn;
612 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
613 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
614 
615 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
616 			goto out_unlock;
617 	}
618 
619 	/*
620 	 * If there are no changes, return. maxpages has been updated
621 	 * above:
622 	 */
623 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
624 		do_split = 0;
625 		goto out_unlock;
626 	}
627 
628 	/*
629 	 * We need to change the attributes. Check, whether we can
630 	 * change the large page in one go. We request a split, when
631 	 * the address is not aligned and the number of pages is
632 	 * smaller than the number of pages in the large page. Note
633 	 * that we limited the number of possible pages already to
634 	 * the number of pages in the large page.
635 	 */
636 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
637 		/*
638 		 * The address is aligned and the number of pages
639 		 * covers the full page.
640 		 */
641 		new_pte = pfn_pte(old_pfn, new_prot);
642 		__set_pmd_pte(kpte, address, new_pte);
643 		cpa->flags |= CPA_FLUSHTLB;
644 		do_split = 0;
645 	}
646 
647 out_unlock:
648 	spin_unlock(&pgd_lock);
649 
650 	return do_split;
651 }
652 
653 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)654 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
655 		   struct page *base)
656 {
657 	pte_t *pbase = (pte_t *)page_address(base);
658 	unsigned long ref_pfn, pfn, pfninc = 1;
659 	unsigned int i, level;
660 	pte_t *tmp;
661 	pgprot_t ref_prot;
662 
663 	spin_lock(&pgd_lock);
664 	/*
665 	 * Check for races, another CPU might have split this page
666 	 * up for us already:
667 	 */
668 	tmp = _lookup_address_cpa(cpa, address, &level);
669 	if (tmp != kpte) {
670 		spin_unlock(&pgd_lock);
671 		return 1;
672 	}
673 
674 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
675 
676 	switch (level) {
677 	case PG_LEVEL_2M:
678 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
679 		/* clear PSE and promote PAT bit to correct position */
680 		ref_prot = pgprot_large_2_4k(ref_prot);
681 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
682 		break;
683 
684 	case PG_LEVEL_1G:
685 		ref_prot = pud_pgprot(*(pud_t *)kpte);
686 		ref_pfn = pud_pfn(*(pud_t *)kpte);
687 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
688 
689 		/*
690 		 * Clear the PSE flags if the PRESENT flag is not set
691 		 * otherwise pmd_present/pmd_huge will return true
692 		 * even on a non present pmd.
693 		 */
694 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
695 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
696 		break;
697 
698 	default:
699 		spin_unlock(&pgd_lock);
700 		return 1;
701 	}
702 
703 	/*
704 	 * Set the GLOBAL flags only if the PRESENT flag is set
705 	 * otherwise pmd/pte_present will return true even on a non
706 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
707 	 * for the ancient hardware that doesn't support it.
708 	 */
709 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
710 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
711 	else
712 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
713 
714 	/*
715 	 * Get the target pfn from the original entry:
716 	 */
717 	pfn = ref_pfn;
718 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
719 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
720 
721 	if (virt_addr_valid(address)) {
722 		unsigned long pfn = PFN_DOWN(__pa(address));
723 
724 		if (pfn_range_is_mapped(pfn, pfn + 1))
725 			split_page_count(level);
726 	}
727 
728 	/*
729 	 * Install the new, split up pagetable.
730 	 *
731 	 * We use the standard kernel pagetable protections for the new
732 	 * pagetable protections, the actual ptes set above control the
733 	 * primary protection behavior:
734 	 */
735 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
736 
737 	/*
738 	 * Intel Atom errata AAH41 workaround.
739 	 *
740 	 * The real fix should be in hw or in a microcode update, but
741 	 * we also probabilistically try to reduce the window of having
742 	 * a large TLB mixed with 4K TLBs while instruction fetches are
743 	 * going on.
744 	 */
745 	__flush_tlb_all();
746 	spin_unlock(&pgd_lock);
747 
748 	return 0;
749 }
750 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)751 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
752 			    unsigned long address)
753 {
754 	struct page *base;
755 
756 	if (!debug_pagealloc_enabled())
757 		spin_unlock(&cpa_lock);
758 	base = alloc_pages(GFP_KERNEL, 0);
759 	if (!debug_pagealloc_enabled())
760 		spin_lock(&cpa_lock);
761 	if (!base)
762 		return -ENOMEM;
763 
764 	if (__split_large_page(cpa, kpte, address, base))
765 		__free_page(base);
766 
767 	return 0;
768 }
769 
try_to_free_pte_page(pte_t * pte)770 static bool try_to_free_pte_page(pte_t *pte)
771 {
772 	int i;
773 
774 	for (i = 0; i < PTRS_PER_PTE; i++)
775 		if (!pte_none(pte[i]))
776 			return false;
777 
778 	free_page((unsigned long)pte);
779 	return true;
780 }
781 
try_to_free_pmd_page(pmd_t * pmd)782 static bool try_to_free_pmd_page(pmd_t *pmd)
783 {
784 	int i;
785 
786 	for (i = 0; i < PTRS_PER_PMD; i++)
787 		if (!pmd_none(pmd[i]))
788 			return false;
789 
790 	free_page((unsigned long)pmd);
791 	return true;
792 }
793 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)794 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
795 {
796 	pte_t *pte = pte_offset_kernel(pmd, start);
797 
798 	while (start < end) {
799 		set_pte(pte, __pte(0));
800 
801 		start += PAGE_SIZE;
802 		pte++;
803 	}
804 
805 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
806 		pmd_clear(pmd);
807 		return true;
808 	}
809 	return false;
810 }
811 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)812 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
813 			      unsigned long start, unsigned long end)
814 {
815 	if (unmap_pte_range(pmd, start, end))
816 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
817 			pud_clear(pud);
818 }
819 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)820 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
821 {
822 	pmd_t *pmd = pmd_offset(pud, start);
823 
824 	/*
825 	 * Not on a 2MB page boundary?
826 	 */
827 	if (start & (PMD_SIZE - 1)) {
828 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
829 		unsigned long pre_end = min_t(unsigned long, end, next_page);
830 
831 		__unmap_pmd_range(pud, pmd, start, pre_end);
832 
833 		start = pre_end;
834 		pmd++;
835 	}
836 
837 	/*
838 	 * Try to unmap in 2M chunks.
839 	 */
840 	while (end - start >= PMD_SIZE) {
841 		if (pmd_large(*pmd))
842 			pmd_clear(pmd);
843 		else
844 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
845 
846 		start += PMD_SIZE;
847 		pmd++;
848 	}
849 
850 	/*
851 	 * 4K leftovers?
852 	 */
853 	if (start < end)
854 		return __unmap_pmd_range(pud, pmd, start, end);
855 
856 	/*
857 	 * Try again to free the PMD page if haven't succeeded above.
858 	 */
859 	if (!pud_none(*pud))
860 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
861 			pud_clear(pud);
862 }
863 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)864 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
865 {
866 	pud_t *pud = pud_offset(p4d, start);
867 
868 	/*
869 	 * Not on a GB page boundary?
870 	 */
871 	if (start & (PUD_SIZE - 1)) {
872 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
873 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
874 
875 		unmap_pmd_range(pud, start, pre_end);
876 
877 		start = pre_end;
878 		pud++;
879 	}
880 
881 	/*
882 	 * Try to unmap in 1G chunks?
883 	 */
884 	while (end - start >= PUD_SIZE) {
885 
886 		if (pud_large(*pud))
887 			pud_clear(pud);
888 		else
889 			unmap_pmd_range(pud, start, start + PUD_SIZE);
890 
891 		start += PUD_SIZE;
892 		pud++;
893 	}
894 
895 	/*
896 	 * 2M leftovers?
897 	 */
898 	if (start < end)
899 		unmap_pmd_range(pud, start, end);
900 
901 	/*
902 	 * No need to try to free the PUD page because we'll free it in
903 	 * populate_pgd's error path
904 	 */
905 }
906 
alloc_pte_page(pmd_t * pmd)907 static int alloc_pte_page(pmd_t *pmd)
908 {
909 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
910 	if (!pte)
911 		return -1;
912 
913 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
914 	return 0;
915 }
916 
alloc_pmd_page(pud_t * pud)917 static int alloc_pmd_page(pud_t *pud)
918 {
919 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
920 	if (!pmd)
921 		return -1;
922 
923 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
924 	return 0;
925 }
926 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)927 static void populate_pte(struct cpa_data *cpa,
928 			 unsigned long start, unsigned long end,
929 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
930 {
931 	pte_t *pte;
932 
933 	pte = pte_offset_kernel(pmd, start);
934 
935 	/*
936 	 * Set the GLOBAL flags only if the PRESENT flag is
937 	 * set otherwise pte_present will return true even on
938 	 * a non present pte. The canon_pgprot will clear
939 	 * _PAGE_GLOBAL for the ancient hardware that doesn't
940 	 * support it.
941 	 */
942 	if (pgprot_val(pgprot) & _PAGE_PRESENT)
943 		pgprot_val(pgprot) |= _PAGE_GLOBAL;
944 	else
945 		pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
946 
947 	pgprot = canon_pgprot(pgprot);
948 
949 	while (num_pages-- && start < end) {
950 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
951 
952 		start	 += PAGE_SIZE;
953 		cpa->pfn++;
954 		pte++;
955 	}
956 }
957 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)958 static long populate_pmd(struct cpa_data *cpa,
959 			 unsigned long start, unsigned long end,
960 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
961 {
962 	long cur_pages = 0;
963 	pmd_t *pmd;
964 	pgprot_t pmd_pgprot;
965 
966 	/*
967 	 * Not on a 2M boundary?
968 	 */
969 	if (start & (PMD_SIZE - 1)) {
970 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
971 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
972 
973 		pre_end   = min_t(unsigned long, pre_end, next_page);
974 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
975 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
976 
977 		/*
978 		 * Need a PTE page?
979 		 */
980 		pmd = pmd_offset(pud, start);
981 		if (pmd_none(*pmd))
982 			if (alloc_pte_page(pmd))
983 				return -1;
984 
985 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
986 
987 		start = pre_end;
988 	}
989 
990 	/*
991 	 * We mapped them all?
992 	 */
993 	if (num_pages == cur_pages)
994 		return cur_pages;
995 
996 	pmd_pgprot = pgprot_4k_2_large(pgprot);
997 
998 	while (end - start >= PMD_SIZE) {
999 
1000 		/*
1001 		 * We cannot use a 1G page so allocate a PMD page if needed.
1002 		 */
1003 		if (pud_none(*pud))
1004 			if (alloc_pmd_page(pud))
1005 				return -1;
1006 
1007 		pmd = pmd_offset(pud, start);
1008 
1009 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1010 					canon_pgprot(pmd_pgprot))));
1011 
1012 		start	  += PMD_SIZE;
1013 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1014 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1015 	}
1016 
1017 	/*
1018 	 * Map trailing 4K pages.
1019 	 */
1020 	if (start < end) {
1021 		pmd = pmd_offset(pud, start);
1022 		if (pmd_none(*pmd))
1023 			if (alloc_pte_page(pmd))
1024 				return -1;
1025 
1026 		populate_pte(cpa, start, end, num_pages - cur_pages,
1027 			     pmd, pgprot);
1028 	}
1029 	return num_pages;
1030 }
1031 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1032 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1033 			pgprot_t pgprot)
1034 {
1035 	pud_t *pud;
1036 	unsigned long end;
1037 	long cur_pages = 0;
1038 	pgprot_t pud_pgprot;
1039 
1040 	end = start + (cpa->numpages << PAGE_SHIFT);
1041 
1042 	/*
1043 	 * Not on a Gb page boundary? => map everything up to it with
1044 	 * smaller pages.
1045 	 */
1046 	if (start & (PUD_SIZE - 1)) {
1047 		unsigned long pre_end;
1048 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1049 
1050 		pre_end   = min_t(unsigned long, end, next_page);
1051 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1052 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1053 
1054 		pud = pud_offset(p4d, start);
1055 
1056 		/*
1057 		 * Need a PMD page?
1058 		 */
1059 		if (pud_none(*pud))
1060 			if (alloc_pmd_page(pud))
1061 				return -1;
1062 
1063 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1064 					 pud, pgprot);
1065 		if (cur_pages < 0)
1066 			return cur_pages;
1067 
1068 		start = pre_end;
1069 	}
1070 
1071 	/* We mapped them all? */
1072 	if (cpa->numpages == cur_pages)
1073 		return cur_pages;
1074 
1075 	pud = pud_offset(p4d, start);
1076 	pud_pgprot = pgprot_4k_2_large(pgprot);
1077 
1078 	/*
1079 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1080 	 */
1081 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1082 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1083 				   canon_pgprot(pud_pgprot))));
1084 
1085 		start	  += PUD_SIZE;
1086 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1087 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1088 		pud++;
1089 	}
1090 
1091 	/* Map trailing leftover */
1092 	if (start < end) {
1093 		long tmp;
1094 
1095 		pud = pud_offset(p4d, start);
1096 		if (pud_none(*pud))
1097 			if (alloc_pmd_page(pud))
1098 				return -1;
1099 
1100 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1101 				   pud, pgprot);
1102 		if (tmp < 0)
1103 			return cur_pages;
1104 
1105 		cur_pages += tmp;
1106 	}
1107 	return cur_pages;
1108 }
1109 
1110 /*
1111  * Restrictions for kernel page table do not necessarily apply when mapping in
1112  * an alternate PGD.
1113  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1114 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1115 {
1116 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1117 	pud_t *pud = NULL;	/* shut up gcc */
1118 	p4d_t *p4d;
1119 	pgd_t *pgd_entry;
1120 	long ret;
1121 
1122 	pgd_entry = cpa->pgd + pgd_index(addr);
1123 
1124 	if (pgd_none(*pgd_entry)) {
1125 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1126 		if (!p4d)
1127 			return -1;
1128 
1129 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1130 	}
1131 
1132 	/*
1133 	 * Allocate a PUD page and hand it down for mapping.
1134 	 */
1135 	p4d = p4d_offset(pgd_entry, addr);
1136 	if (p4d_none(*p4d)) {
1137 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1138 		if (!pud)
1139 			return -1;
1140 
1141 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1142 	}
1143 
1144 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1145 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1146 
1147 	ret = populate_pud(cpa, addr, p4d, pgprot);
1148 	if (ret < 0) {
1149 		/*
1150 		 * Leave the PUD page in place in case some other CPU or thread
1151 		 * already found it, but remove any useless entries we just
1152 		 * added to it.
1153 		 */
1154 		unmap_pud_range(p4d, addr,
1155 				addr + (cpa->numpages << PAGE_SHIFT));
1156 		return ret;
1157 	}
1158 
1159 	cpa->numpages = ret;
1160 	return 0;
1161 }
1162 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1163 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1164 			       int primary)
1165 {
1166 	if (cpa->pgd) {
1167 		/*
1168 		 * Right now, we only execute this code path when mapping
1169 		 * the EFI virtual memory map regions, no other users
1170 		 * provide a ->pgd value. This may change in the future.
1171 		 */
1172 		return populate_pgd(cpa, vaddr);
1173 	}
1174 
1175 	/*
1176 	 * Ignore all non primary paths.
1177 	 */
1178 	if (!primary) {
1179 		cpa->numpages = 1;
1180 		return 0;
1181 	}
1182 
1183 	/*
1184 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1185 	 * to have holes.
1186 	 * Also set numpages to '1' indicating that we processed cpa req for
1187 	 * one virtual address page and its pfn. TBD: numpages can be set based
1188 	 * on the initial value and the level returned by lookup_address().
1189 	 */
1190 	if (within(vaddr, PAGE_OFFSET,
1191 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1192 		cpa->numpages = 1;
1193 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1194 		return 0;
1195 	} else {
1196 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1197 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1198 			*cpa->vaddr);
1199 
1200 		return -EFAULT;
1201 	}
1202 }
1203 
__change_page_attr(struct cpa_data * cpa,int primary)1204 static int __change_page_attr(struct cpa_data *cpa, int primary)
1205 {
1206 	unsigned long address;
1207 	int do_split, err;
1208 	unsigned int level;
1209 	pte_t *kpte, old_pte;
1210 
1211 	if (cpa->flags & CPA_PAGES_ARRAY) {
1212 		struct page *page = cpa->pages[cpa->curpage];
1213 		if (unlikely(PageHighMem(page)))
1214 			return 0;
1215 		address = (unsigned long)page_address(page);
1216 	} else if (cpa->flags & CPA_ARRAY)
1217 		address = cpa->vaddr[cpa->curpage];
1218 	else
1219 		address = *cpa->vaddr;
1220 repeat:
1221 	kpte = _lookup_address_cpa(cpa, address, &level);
1222 	if (!kpte)
1223 		return __cpa_process_fault(cpa, address, primary);
1224 
1225 	old_pte = *kpte;
1226 	if (pte_none(old_pte))
1227 		return __cpa_process_fault(cpa, address, primary);
1228 
1229 	if (level == PG_LEVEL_4K) {
1230 		pte_t new_pte;
1231 		pgprot_t new_prot = pte_pgprot(old_pte);
1232 		unsigned long pfn = pte_pfn(old_pte);
1233 
1234 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1235 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1236 
1237 		new_prot = static_protections(new_prot, address, pfn);
1238 
1239 		/*
1240 		 * Set the GLOBAL flags only if the PRESENT flag is
1241 		 * set otherwise pte_present will return true even on
1242 		 * a non present pte. The canon_pgprot will clear
1243 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1244 		 * support it.
1245 		 */
1246 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1247 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1248 		else
1249 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1250 
1251 		/*
1252 		 * We need to keep the pfn from the existing PTE,
1253 		 * after all we're only going to change it's attributes
1254 		 * not the memory it points to
1255 		 */
1256 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1257 		cpa->pfn = pfn;
1258 		/*
1259 		 * Do we really change anything ?
1260 		 */
1261 		if (pte_val(old_pte) != pte_val(new_pte)) {
1262 			set_pte_atomic(kpte, new_pte);
1263 			cpa->flags |= CPA_FLUSHTLB;
1264 		}
1265 		cpa->numpages = 1;
1266 		return 0;
1267 	}
1268 
1269 	/*
1270 	 * Check, whether we can keep the large page intact
1271 	 * and just change the pte:
1272 	 */
1273 	do_split = try_preserve_large_page(kpte, address, cpa);
1274 	/*
1275 	 * When the range fits into the existing large page,
1276 	 * return. cp->numpages and cpa->tlbflush have been updated in
1277 	 * try_large_page:
1278 	 */
1279 	if (do_split <= 0)
1280 		return do_split;
1281 
1282 	/*
1283 	 * We have to split the large page:
1284 	 */
1285 	err = split_large_page(cpa, kpte, address);
1286 	if (!err) {
1287 		/*
1288 	 	 * Do a global flush tlb after splitting the large page
1289 	 	 * and before we do the actual change page attribute in the PTE.
1290 	 	 *
1291 	 	 * With out this, we violate the TLB application note, that says
1292 	 	 * "The TLBs may contain both ordinary and large-page
1293 		 *  translations for a 4-KByte range of linear addresses. This
1294 		 *  may occur if software modifies the paging structures so that
1295 		 *  the page size used for the address range changes. If the two
1296 		 *  translations differ with respect to page frame or attributes
1297 		 *  (e.g., permissions), processor behavior is undefined and may
1298 		 *  be implementation-specific."
1299 	 	 *
1300 	 	 * We do this global tlb flush inside the cpa_lock, so that we
1301 		 * don't allow any other cpu, with stale tlb entries change the
1302 		 * page attribute in parallel, that also falls into the
1303 		 * just split large page entry.
1304 	 	 */
1305 		flush_tlb_all();
1306 		goto repeat;
1307 	}
1308 
1309 	return err;
1310 }
1311 
1312 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1313 
cpa_process_alias(struct cpa_data * cpa)1314 static int cpa_process_alias(struct cpa_data *cpa)
1315 {
1316 	struct cpa_data alias_cpa;
1317 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1318 	unsigned long vaddr;
1319 	int ret;
1320 
1321 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1322 		return 0;
1323 
1324 	/*
1325 	 * No need to redo, when the primary call touched the direct
1326 	 * mapping already:
1327 	 */
1328 	if (cpa->flags & CPA_PAGES_ARRAY) {
1329 		struct page *page = cpa->pages[cpa->curpage];
1330 		if (unlikely(PageHighMem(page)))
1331 			return 0;
1332 		vaddr = (unsigned long)page_address(page);
1333 	} else if (cpa->flags & CPA_ARRAY)
1334 		vaddr = cpa->vaddr[cpa->curpage];
1335 	else
1336 		vaddr = *cpa->vaddr;
1337 
1338 	if (!(within(vaddr, PAGE_OFFSET,
1339 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1340 
1341 		alias_cpa = *cpa;
1342 		alias_cpa.vaddr = &laddr;
1343 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1344 
1345 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1346 		if (ret)
1347 			return ret;
1348 	}
1349 
1350 #ifdef CONFIG_X86_64
1351 	/*
1352 	 * If the primary call didn't touch the high mapping already
1353 	 * and the physical address is inside the kernel map, we need
1354 	 * to touch the high mapped kernel as well:
1355 	 */
1356 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1357 	    within_inclusive(cpa->pfn, highmap_start_pfn(),
1358 			     highmap_end_pfn())) {
1359 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1360 					       __START_KERNEL_map - phys_base;
1361 		alias_cpa = *cpa;
1362 		alias_cpa.vaddr = &temp_cpa_vaddr;
1363 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1364 
1365 		/*
1366 		 * The high mapping range is imprecise, so ignore the
1367 		 * return value.
1368 		 */
1369 		__change_page_attr_set_clr(&alias_cpa, 0);
1370 	}
1371 #endif
1372 
1373 	return 0;
1374 }
1375 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1376 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1377 {
1378 	unsigned long numpages = cpa->numpages;
1379 	int ret;
1380 
1381 	while (numpages) {
1382 		/*
1383 		 * Store the remaining nr of pages for the large page
1384 		 * preservation check.
1385 		 */
1386 		cpa->numpages = numpages;
1387 		/* for array changes, we can't use large page */
1388 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1389 			cpa->numpages = 1;
1390 
1391 		if (!debug_pagealloc_enabled())
1392 			spin_lock(&cpa_lock);
1393 		ret = __change_page_attr(cpa, checkalias);
1394 		if (!debug_pagealloc_enabled())
1395 			spin_unlock(&cpa_lock);
1396 		if (ret)
1397 			return ret;
1398 
1399 		if (checkalias) {
1400 			ret = cpa_process_alias(cpa);
1401 			if (ret)
1402 				return ret;
1403 		}
1404 
1405 		/*
1406 		 * Adjust the number of pages with the result of the
1407 		 * CPA operation. Either a large page has been
1408 		 * preserved or a single page update happened.
1409 		 */
1410 		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1411 		numpages -= cpa->numpages;
1412 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1413 			cpa->curpage++;
1414 		else
1415 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1416 
1417 	}
1418 	return 0;
1419 }
1420 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1421 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1422 				    pgprot_t mask_set, pgprot_t mask_clr,
1423 				    int force_split, int in_flag,
1424 				    struct page **pages)
1425 {
1426 	struct cpa_data cpa;
1427 	int ret, cache, checkalias;
1428 	unsigned long baddr = 0;
1429 
1430 	memset(&cpa, 0, sizeof(cpa));
1431 
1432 	/*
1433 	 * Check, if we are requested to change a not supported
1434 	 * feature:
1435 	 */
1436 	mask_set = canon_pgprot(mask_set);
1437 	mask_clr = canon_pgprot(mask_clr);
1438 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1439 		return 0;
1440 
1441 	/* Ensure we are PAGE_SIZE aligned */
1442 	if (in_flag & CPA_ARRAY) {
1443 		int i;
1444 		for (i = 0; i < numpages; i++) {
1445 			if (addr[i] & ~PAGE_MASK) {
1446 				addr[i] &= PAGE_MASK;
1447 				WARN_ON_ONCE(1);
1448 			}
1449 		}
1450 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1451 		/*
1452 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1453 		 * No need to cehck in that case
1454 		 */
1455 		if (*addr & ~PAGE_MASK) {
1456 			*addr &= PAGE_MASK;
1457 			/*
1458 			 * People should not be passing in unaligned addresses:
1459 			 */
1460 			WARN_ON_ONCE(1);
1461 		}
1462 		/*
1463 		 * Save address for cache flush. *addr is modified in the call
1464 		 * to __change_page_attr_set_clr() below.
1465 		 */
1466 		baddr = *addr;
1467 	}
1468 
1469 	/* Must avoid aliasing mappings in the highmem code */
1470 	kmap_flush_unused();
1471 
1472 	vm_unmap_aliases();
1473 
1474 	cpa.vaddr = addr;
1475 	cpa.pages = pages;
1476 	cpa.numpages = numpages;
1477 	cpa.mask_set = mask_set;
1478 	cpa.mask_clr = mask_clr;
1479 	cpa.flags = 0;
1480 	cpa.curpage = 0;
1481 	cpa.force_split = force_split;
1482 
1483 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1484 		cpa.flags |= in_flag;
1485 
1486 	/* No alias checking for _NX bit modifications */
1487 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1488 
1489 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1490 
1491 	/*
1492 	 * Check whether we really changed something:
1493 	 */
1494 	if (!(cpa.flags & CPA_FLUSHTLB))
1495 		goto out;
1496 
1497 	/*
1498 	 * No need to flush, when we did not set any of the caching
1499 	 * attributes:
1500 	 */
1501 	cache = !!pgprot2cachemode(mask_set);
1502 
1503 	/*
1504 	 * On success we use CLFLUSH, when the CPU supports it to
1505 	 * avoid the WBINVD. If the CPU does not support it and in the
1506 	 * error case we fall back to cpa_flush_all (which uses
1507 	 * WBINVD):
1508 	 */
1509 	if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1510 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1511 			cpa_flush_array(addr, numpages, cache,
1512 					cpa.flags, pages);
1513 		} else
1514 			cpa_flush_range(baddr, numpages, cache);
1515 	} else
1516 		cpa_flush_all(cache);
1517 
1518 out:
1519 	return ret;
1520 }
1521 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1522 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1523 				       pgprot_t mask, int array)
1524 {
1525 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1526 		(array ? CPA_ARRAY : 0), NULL);
1527 }
1528 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1529 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1530 					 pgprot_t mask, int array)
1531 {
1532 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1533 		(array ? CPA_ARRAY : 0), NULL);
1534 }
1535 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1536 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1537 				       pgprot_t mask)
1538 {
1539 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1540 		CPA_PAGES_ARRAY, pages);
1541 }
1542 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1543 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1544 					 pgprot_t mask)
1545 {
1546 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1547 		CPA_PAGES_ARRAY, pages);
1548 }
1549 
_set_memory_uc(unsigned long addr,int numpages)1550 int _set_memory_uc(unsigned long addr, int numpages)
1551 {
1552 	/*
1553 	 * for now UC MINUS. see comments in ioremap_nocache()
1554 	 * If you really need strong UC use ioremap_uc(), but note
1555 	 * that you cannot override IO areas with set_memory_*() as
1556 	 * these helpers cannot work with IO memory.
1557 	 */
1558 	return change_page_attr_set(&addr, numpages,
1559 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1560 				    0);
1561 }
1562 
set_memory_uc(unsigned long addr,int numpages)1563 int set_memory_uc(unsigned long addr, int numpages)
1564 {
1565 	int ret;
1566 
1567 	/*
1568 	 * for now UC MINUS. see comments in ioremap_nocache()
1569 	 */
1570 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1571 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1572 	if (ret)
1573 		goto out_err;
1574 
1575 	ret = _set_memory_uc(addr, numpages);
1576 	if (ret)
1577 		goto out_free;
1578 
1579 	return 0;
1580 
1581 out_free:
1582 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1583 out_err:
1584 	return ret;
1585 }
1586 EXPORT_SYMBOL(set_memory_uc);
1587 
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1588 static int _set_memory_array(unsigned long *addr, int addrinarray,
1589 		enum page_cache_mode new_type)
1590 {
1591 	enum page_cache_mode set_type;
1592 	int i, j;
1593 	int ret;
1594 
1595 	for (i = 0; i < addrinarray; i++) {
1596 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1597 					new_type, NULL);
1598 		if (ret)
1599 			goto out_free;
1600 	}
1601 
1602 	/* If WC, set to UC- first and then WC */
1603 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1604 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1605 
1606 	ret = change_page_attr_set(addr, addrinarray,
1607 				   cachemode2pgprot(set_type), 1);
1608 
1609 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1610 		ret = change_page_attr_set_clr(addr, addrinarray,
1611 					       cachemode2pgprot(
1612 						_PAGE_CACHE_MODE_WC),
1613 					       __pgprot(_PAGE_CACHE_MASK),
1614 					       0, CPA_ARRAY, NULL);
1615 	if (ret)
1616 		goto out_free;
1617 
1618 	return 0;
1619 
1620 out_free:
1621 	for (j = 0; j < i; j++)
1622 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1623 
1624 	return ret;
1625 }
1626 
set_memory_array_uc(unsigned long * addr,int addrinarray)1627 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1628 {
1629 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1630 }
1631 EXPORT_SYMBOL(set_memory_array_uc);
1632 
set_memory_array_wc(unsigned long * addr,int addrinarray)1633 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1634 {
1635 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1636 }
1637 EXPORT_SYMBOL(set_memory_array_wc);
1638 
set_memory_array_wt(unsigned long * addr,int addrinarray)1639 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1640 {
1641 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1642 }
1643 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1644 
_set_memory_wc(unsigned long addr,int numpages)1645 int _set_memory_wc(unsigned long addr, int numpages)
1646 {
1647 	int ret;
1648 	unsigned long addr_copy = addr;
1649 
1650 	ret = change_page_attr_set(&addr, numpages,
1651 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1652 				   0);
1653 	if (!ret) {
1654 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1655 					       cachemode2pgprot(
1656 						_PAGE_CACHE_MODE_WC),
1657 					       __pgprot(_PAGE_CACHE_MASK),
1658 					       0, 0, NULL);
1659 	}
1660 	return ret;
1661 }
1662 
set_memory_wc(unsigned long addr,int numpages)1663 int set_memory_wc(unsigned long addr, int numpages)
1664 {
1665 	int ret;
1666 
1667 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1668 		_PAGE_CACHE_MODE_WC, NULL);
1669 	if (ret)
1670 		return ret;
1671 
1672 	ret = _set_memory_wc(addr, numpages);
1673 	if (ret)
1674 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1675 
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL(set_memory_wc);
1679 
_set_memory_wt(unsigned long addr,int numpages)1680 int _set_memory_wt(unsigned long addr, int numpages)
1681 {
1682 	return change_page_attr_set(&addr, numpages,
1683 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1684 }
1685 
set_memory_wt(unsigned long addr,int numpages)1686 int set_memory_wt(unsigned long addr, int numpages)
1687 {
1688 	int ret;
1689 
1690 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1691 			      _PAGE_CACHE_MODE_WT, NULL);
1692 	if (ret)
1693 		return ret;
1694 
1695 	ret = _set_memory_wt(addr, numpages);
1696 	if (ret)
1697 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(set_memory_wt);
1702 
_set_memory_wb(unsigned long addr,int numpages)1703 int _set_memory_wb(unsigned long addr, int numpages)
1704 {
1705 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1706 	return change_page_attr_clear(&addr, numpages,
1707 				      __pgprot(_PAGE_CACHE_MASK), 0);
1708 }
1709 
set_memory_wb(unsigned long addr,int numpages)1710 int set_memory_wb(unsigned long addr, int numpages)
1711 {
1712 	int ret;
1713 
1714 	ret = _set_memory_wb(addr, numpages);
1715 	if (ret)
1716 		return ret;
1717 
1718 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL(set_memory_wb);
1722 
set_memory_array_wb(unsigned long * addr,int addrinarray)1723 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1724 {
1725 	int i;
1726 	int ret;
1727 
1728 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1729 	ret = change_page_attr_clear(addr, addrinarray,
1730 				      __pgprot(_PAGE_CACHE_MASK), 1);
1731 	if (ret)
1732 		return ret;
1733 
1734 	for (i = 0; i < addrinarray; i++)
1735 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1736 
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(set_memory_array_wb);
1740 
set_memory_x(unsigned long addr,int numpages)1741 int set_memory_x(unsigned long addr, int numpages)
1742 {
1743 	if (!(__supported_pte_mask & _PAGE_NX))
1744 		return 0;
1745 
1746 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1747 }
1748 EXPORT_SYMBOL(set_memory_x);
1749 
set_memory_nx(unsigned long addr,int numpages)1750 int set_memory_nx(unsigned long addr, int numpages)
1751 {
1752 	if (!(__supported_pte_mask & _PAGE_NX))
1753 		return 0;
1754 
1755 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1756 }
1757 EXPORT_SYMBOL(set_memory_nx);
1758 
set_memory_ro(unsigned long addr,int numpages)1759 int set_memory_ro(unsigned long addr, int numpages)
1760 {
1761 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1762 }
1763 
set_memory_rw(unsigned long addr,int numpages)1764 int set_memory_rw(unsigned long addr, int numpages)
1765 {
1766 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1767 }
1768 
set_memory_np(unsigned long addr,int numpages)1769 int set_memory_np(unsigned long addr, int numpages)
1770 {
1771 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1772 }
1773 
set_memory_4k(unsigned long addr,int numpages)1774 int set_memory_4k(unsigned long addr, int numpages)
1775 {
1776 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1777 					__pgprot(0), 1, 0, NULL);
1778 }
1779 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1780 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1781 {
1782 	struct cpa_data cpa;
1783 	unsigned long start;
1784 	int ret;
1785 
1786 	/* Nothing to do if the SME is not active */
1787 	if (!sme_active())
1788 		return 0;
1789 
1790 	/* Should not be working on unaligned addresses */
1791 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1792 		addr &= PAGE_MASK;
1793 
1794 	start = addr;
1795 
1796 	memset(&cpa, 0, sizeof(cpa));
1797 	cpa.vaddr = &addr;
1798 	cpa.numpages = numpages;
1799 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1800 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1801 	cpa.pgd = init_mm.pgd;
1802 
1803 	/* Must avoid aliasing mappings in the highmem code */
1804 	kmap_flush_unused();
1805 	vm_unmap_aliases();
1806 
1807 	/*
1808 	 * Before changing the encryption attribute, we need to flush caches.
1809 	 */
1810 	if (static_cpu_has(X86_FEATURE_CLFLUSH))
1811 		cpa_flush_range(start, numpages, 1);
1812 	else
1813 		cpa_flush_all(1);
1814 
1815 	ret = __change_page_attr_set_clr(&cpa, 1);
1816 
1817 	/*
1818 	 * After changing the encryption attribute, we need to flush TLBs
1819 	 * again in case any speculative TLB caching occurred (but no need
1820 	 * to flush caches again).  We could just use cpa_flush_all(), but
1821 	 * in case TLB flushing gets optimized in the cpa_flush_range()
1822 	 * path use the same logic as above.
1823 	 */
1824 	if (static_cpu_has(X86_FEATURE_CLFLUSH))
1825 		cpa_flush_range(start, numpages, 0);
1826 	else
1827 		cpa_flush_all(0);
1828 
1829 	return ret;
1830 }
1831 
set_memory_encrypted(unsigned long addr,int numpages)1832 int set_memory_encrypted(unsigned long addr, int numpages)
1833 {
1834 	return __set_memory_enc_dec(addr, numpages, true);
1835 }
1836 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1837 
set_memory_decrypted(unsigned long addr,int numpages)1838 int set_memory_decrypted(unsigned long addr, int numpages)
1839 {
1840 	return __set_memory_enc_dec(addr, numpages, false);
1841 }
1842 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1843 
set_pages_uc(struct page * page,int numpages)1844 int set_pages_uc(struct page *page, int numpages)
1845 {
1846 	unsigned long addr = (unsigned long)page_address(page);
1847 
1848 	return set_memory_uc(addr, numpages);
1849 }
1850 EXPORT_SYMBOL(set_pages_uc);
1851 
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1852 static int _set_pages_array(struct page **pages, int addrinarray,
1853 		enum page_cache_mode new_type)
1854 {
1855 	unsigned long start;
1856 	unsigned long end;
1857 	enum page_cache_mode set_type;
1858 	int i;
1859 	int free_idx;
1860 	int ret;
1861 
1862 	for (i = 0; i < addrinarray; i++) {
1863 		if (PageHighMem(pages[i]))
1864 			continue;
1865 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1866 		end = start + PAGE_SIZE;
1867 		if (reserve_memtype(start, end, new_type, NULL))
1868 			goto err_out;
1869 	}
1870 
1871 	/* If WC, set to UC- first and then WC */
1872 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1873 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1874 
1875 	ret = cpa_set_pages_array(pages, addrinarray,
1876 				  cachemode2pgprot(set_type));
1877 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1878 		ret = change_page_attr_set_clr(NULL, addrinarray,
1879 					       cachemode2pgprot(
1880 						_PAGE_CACHE_MODE_WC),
1881 					       __pgprot(_PAGE_CACHE_MASK),
1882 					       0, CPA_PAGES_ARRAY, pages);
1883 	if (ret)
1884 		goto err_out;
1885 	return 0; /* Success */
1886 err_out:
1887 	free_idx = i;
1888 	for (i = 0; i < free_idx; i++) {
1889 		if (PageHighMem(pages[i]))
1890 			continue;
1891 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1892 		end = start + PAGE_SIZE;
1893 		free_memtype(start, end);
1894 	}
1895 	return -EINVAL;
1896 }
1897 
set_pages_array_uc(struct page ** pages,int addrinarray)1898 int set_pages_array_uc(struct page **pages, int addrinarray)
1899 {
1900 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1901 }
1902 EXPORT_SYMBOL(set_pages_array_uc);
1903 
set_pages_array_wc(struct page ** pages,int addrinarray)1904 int set_pages_array_wc(struct page **pages, int addrinarray)
1905 {
1906 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1907 }
1908 EXPORT_SYMBOL(set_pages_array_wc);
1909 
set_pages_array_wt(struct page ** pages,int addrinarray)1910 int set_pages_array_wt(struct page **pages, int addrinarray)
1911 {
1912 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1913 }
1914 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1915 
set_pages_wb(struct page * page,int numpages)1916 int set_pages_wb(struct page *page, int numpages)
1917 {
1918 	unsigned long addr = (unsigned long)page_address(page);
1919 
1920 	return set_memory_wb(addr, numpages);
1921 }
1922 EXPORT_SYMBOL(set_pages_wb);
1923 
set_pages_array_wb(struct page ** pages,int addrinarray)1924 int set_pages_array_wb(struct page **pages, int addrinarray)
1925 {
1926 	int retval;
1927 	unsigned long start;
1928 	unsigned long end;
1929 	int i;
1930 
1931 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1932 	retval = cpa_clear_pages_array(pages, addrinarray,
1933 			__pgprot(_PAGE_CACHE_MASK));
1934 	if (retval)
1935 		return retval;
1936 
1937 	for (i = 0; i < addrinarray; i++) {
1938 		if (PageHighMem(pages[i]))
1939 			continue;
1940 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1941 		end = start + PAGE_SIZE;
1942 		free_memtype(start, end);
1943 	}
1944 
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(set_pages_array_wb);
1948 
set_pages_x(struct page * page,int numpages)1949 int set_pages_x(struct page *page, int numpages)
1950 {
1951 	unsigned long addr = (unsigned long)page_address(page);
1952 
1953 	return set_memory_x(addr, numpages);
1954 }
1955 EXPORT_SYMBOL(set_pages_x);
1956 
set_pages_nx(struct page * page,int numpages)1957 int set_pages_nx(struct page *page, int numpages)
1958 {
1959 	unsigned long addr = (unsigned long)page_address(page);
1960 
1961 	return set_memory_nx(addr, numpages);
1962 }
1963 EXPORT_SYMBOL(set_pages_nx);
1964 
set_pages_ro(struct page * page,int numpages)1965 int set_pages_ro(struct page *page, int numpages)
1966 {
1967 	unsigned long addr = (unsigned long)page_address(page);
1968 
1969 	return set_memory_ro(addr, numpages);
1970 }
1971 
set_pages_rw(struct page * page,int numpages)1972 int set_pages_rw(struct page *page, int numpages)
1973 {
1974 	unsigned long addr = (unsigned long)page_address(page);
1975 
1976 	return set_memory_rw(addr, numpages);
1977 }
1978 
1979 #ifdef CONFIG_DEBUG_PAGEALLOC
1980 
__set_pages_p(struct page * page,int numpages)1981 static int __set_pages_p(struct page *page, int numpages)
1982 {
1983 	unsigned long tempaddr = (unsigned long) page_address(page);
1984 	struct cpa_data cpa = { .vaddr = &tempaddr,
1985 				.pgd = NULL,
1986 				.numpages = numpages,
1987 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1988 				.mask_clr = __pgprot(0),
1989 				.flags = 0};
1990 
1991 	/*
1992 	 * No alias checking needed for setting present flag. otherwise,
1993 	 * we may need to break large pages for 64-bit kernel text
1994 	 * mappings (this adds to complexity if we want to do this from
1995 	 * atomic context especially). Let's keep it simple!
1996 	 */
1997 	return __change_page_attr_set_clr(&cpa, 0);
1998 }
1999 
__set_pages_np(struct page * page,int numpages)2000 static int __set_pages_np(struct page *page, int numpages)
2001 {
2002 	unsigned long tempaddr = (unsigned long) page_address(page);
2003 	struct cpa_data cpa = { .vaddr = &tempaddr,
2004 				.pgd = NULL,
2005 				.numpages = numpages,
2006 				.mask_set = __pgprot(0),
2007 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2008 				.flags = 0};
2009 
2010 	/*
2011 	 * No alias checking needed for setting not present flag. otherwise,
2012 	 * we may need to break large pages for 64-bit kernel text
2013 	 * mappings (this adds to complexity if we want to do this from
2014 	 * atomic context especially). Let's keep it simple!
2015 	 */
2016 	return __change_page_attr_set_clr(&cpa, 0);
2017 }
2018 
__kernel_map_pages(struct page * page,int numpages,int enable)2019 void __kernel_map_pages(struct page *page, int numpages, int enable)
2020 {
2021 	if (PageHighMem(page))
2022 		return;
2023 	if (!enable) {
2024 		debug_check_no_locks_freed(page_address(page),
2025 					   numpages * PAGE_SIZE);
2026 	}
2027 
2028 	/*
2029 	 * The return value is ignored as the calls cannot fail.
2030 	 * Large pages for identity mappings are not used at boot time
2031 	 * and hence no memory allocations during large page split.
2032 	 */
2033 	if (enable)
2034 		__set_pages_p(page, numpages);
2035 	else
2036 		__set_pages_np(page, numpages);
2037 
2038 	/*
2039 	 * We should perform an IPI and flush all tlbs,
2040 	 * but that can deadlock->flush only current cpu.
2041 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2042 	 * CR3 reload in __native_flush_tlb().
2043 	 */
2044 	preempt_disable();
2045 	__flush_tlb_all();
2046 	preempt_enable();
2047 
2048 	arch_flush_lazy_mmu_mode();
2049 }
2050 
2051 #ifdef CONFIG_HIBERNATION
2052 
kernel_page_present(struct page * page)2053 bool kernel_page_present(struct page *page)
2054 {
2055 	unsigned int level;
2056 	pte_t *pte;
2057 
2058 	if (PageHighMem(page))
2059 		return false;
2060 
2061 	pte = lookup_address((unsigned long)page_address(page), &level);
2062 	return (pte_val(*pte) & _PAGE_PRESENT);
2063 }
2064 
2065 #endif /* CONFIG_HIBERNATION */
2066 
2067 #endif /* CONFIG_DEBUG_PAGEALLOC */
2068 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2069 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2070 			    unsigned numpages, unsigned long page_flags)
2071 {
2072 	int retval = -EINVAL;
2073 
2074 	struct cpa_data cpa = {
2075 		.vaddr = &address,
2076 		.pfn = pfn,
2077 		.pgd = pgd,
2078 		.numpages = numpages,
2079 		.mask_set = __pgprot(0),
2080 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2081 		.flags = 0,
2082 	};
2083 
2084 	if (!(__supported_pte_mask & _PAGE_NX))
2085 		goto out;
2086 
2087 	if (!(page_flags & _PAGE_ENC))
2088 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2089 
2090 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2091 
2092 	retval = __change_page_attr_set_clr(&cpa, 0);
2093 	__flush_tlb_all();
2094 
2095 out:
2096 	return retval;
2097 }
2098 
2099 /*
2100  * The testcases use internal knowledge of the implementation that shouldn't
2101  * be exposed to the rest of the kernel. Include these directly here.
2102  */
2103 #ifdef CONFIG_CPA_DEBUG
2104 #include "pageattr-test.c"
2105 #endif
2106