• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1995  Linus Torvalds
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  *
5  *   This program is free software; you can redistribute it and/or
6  *   modify it under the terms of the GNU General Public License
7  *   as published by the Free Software Foundation, version 2.
8  *
9  *   This program is distributed in the hope that it will be useful, but
10  *   WITHOUT ANY WARRANTY; without even the implied warranty of
11  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *   NON INFRINGEMENT.  See the GNU General Public License for
13  *   more details.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
52 
53 #include "migrate.h"
54 
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56 
57 #ifndef __tilegx__
58 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
59 EXPORT_SYMBOL(VMALLOC_RESERVE);
60 #endif
61 
62 /* Create an L2 page table */
alloc_pte(void)63 static pte_t * __init alloc_pte(void)
64 {
65 	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
66 }
67 
68 /*
69  * L2 page tables per controller.  We allocate these all at once from
70  * the bootmem allocator and store them here.  This saves on kernel L2
71  * page table memory, compared to allocating a full 64K page per L2
72  * page table, and also means that in cases where we use huge pages,
73  * we are guaranteed to later be able to shatter those huge pages and
74  * switch to using these page tables instead, without requiring
75  * further allocation.  Each l2_ptes[] entry points to the first page
76  * table for the first hugepage-size piece of memory on the
77  * controller; other page tables are just indexed directly, i.e. the
78  * L2 page tables are contiguous in memory for each controller.
79  */
80 static pte_t *l2_ptes[MAX_NUMNODES];
81 static int num_l2_ptes[MAX_NUMNODES];
82 
init_prealloc_ptes(int node,int pages)83 static void init_prealloc_ptes(int node, int pages)
84 {
85 	BUG_ON(pages & (PTRS_PER_PTE - 1));
86 	if (pages) {
87 		num_l2_ptes[node] = pages;
88 		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
89 						HV_PAGE_TABLE_ALIGN, 0);
90 	}
91 }
92 
get_prealloc_pte(unsigned long pfn)93 pte_t *get_prealloc_pte(unsigned long pfn)
94 {
95 	int node = pfn_to_nid(pfn);
96 	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97 	BUG_ON(node >= MAX_NUMNODES);
98 	BUG_ON(pfn >= num_l2_ptes[node]);
99 	return &l2_ptes[node][pfn];
100 }
101 
102 /*
103  * What caching do we expect pages from the heap to have when
104  * they are allocated during bootup?  (Once we've installed the
105  * "real" swapper_pg_dir.)
106  */
initial_heap_home(void)107 static int initial_heap_home(void)
108 {
109 	if (hash_default)
110 		return PAGE_HOME_HASH;
111 	return smp_processor_id();
112 }
113 
114 /*
115  * Place a pointer to an L2 page table in a middle page
116  * directory entry.
117  */
assign_pte(pmd_t * pmd,pte_t * page_table)118 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
119 {
120 	phys_addr_t pa = __pa(page_table);
121 	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
122 	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
123 	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
124 	pteval = pte_set_home(pteval, initial_heap_home());
125 	*(pte_t *)pmd = pteval;
126 	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
127 		BUG();
128 }
129 
130 #ifdef __tilegx__
131 
alloc_pmd(void)132 static inline pmd_t *alloc_pmd(void)
133 {
134 	return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
135 }
136 
assign_pmd(pud_t * pud,pmd_t * pmd)137 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
138 {
139 	assign_pte((pmd_t *)pud, (pte_t *)pmd);
140 }
141 
142 #endif /* __tilegx__ */
143 
144 /* Replace the given pmd with a full PTE table. */
shatter_pmd(pmd_t * pmd)145 void __init shatter_pmd(pmd_t *pmd)
146 {
147 	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
148 	assign_pte(pmd, pte);
149 }
150 
151 #ifdef __tilegx__
get_pmd(pgd_t pgtables[],unsigned long va)152 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
153 {
154 	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
155 	if (pud_none(*pud))
156 		assign_pmd(pud, alloc_pmd());
157 	return pmd_offset(pud, va);
158 }
159 #else
get_pmd(pgd_t pgtables[],unsigned long va)160 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
161 {
162 	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
163 }
164 #endif
165 
166 /*
167  * This function initializes a certain range of kernel virtual memory
168  * with new bootmem page tables, everywhere page tables are missing in
169  * the given range.
170  */
171 
172 /*
173  * NOTE: The pagetables are allocated contiguous on the physical space
174  * so we can cache the place of the first one and move around without
175  * checking the pgd every time.
176  */
page_table_range_init(unsigned long start,unsigned long end,pgd_t * pgd)177 static void __init page_table_range_init(unsigned long start,
178 					 unsigned long end, pgd_t *pgd)
179 {
180 	unsigned long vaddr;
181 	start = round_down(start, PMD_SIZE);
182 	end = round_up(end, PMD_SIZE);
183 	for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
184 		pmd_t *pmd = get_pmd(pgd, vaddr);
185 		if (pmd_none(*pmd))
186 			assign_pte(pmd, alloc_pte());
187 	}
188 }
189 
190 
191 static int __initdata ktext_hash = 1;  /* .text pages */
192 static int __initdata kdata_hash = 1;  /* .data and .bss pages */
193 int __ro_after_init hash_default = 1;     /* kernel allocator pages */
194 EXPORT_SYMBOL(hash_default);
195 int __ro_after_init kstack_hash = 1;      /* if no homecaching, use h4h */
196 
197 /*
198  * CPUs to use to for striping the pages of kernel data.  If hash-for-home
199  * is available, this is only relevant if kcache_hash sets up the
200  * .data and .bss to be page-homed, and we don't want the default mode
201  * of using the full set of kernel cpus for the striping.
202  */
203 static __initdata struct cpumask kdata_mask;
204 static __initdata int kdata_arg_seen;
205 
206 int __ro_after_init kdata_huge;       /* if no homecaching, small pages */
207 
208 
209 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
construct_pgprot(pgprot_t prot,int home)210 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
211 {
212 	prot = pte_set_home(prot, home);
213 	if (home == PAGE_HOME_IMMUTABLE) {
214 		if (ktext_hash)
215 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
216 		else
217 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
218 	}
219 	return prot;
220 }
221 
222 /*
223  * For a given kernel data VA, how should it be cached?
224  * We return the complete pgprot_t with caching bits set.
225  */
init_pgprot(ulong address)226 static pgprot_t __init init_pgprot(ulong address)
227 {
228 	int cpu;
229 	unsigned long page;
230 	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
231 
232 	/* For kdata=huge, everything is just hash-for-home. */
233 	if (kdata_huge)
234 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
235 
236 	/*
237 	 * We map the aliased pages of permanent text so we can
238 	 * update them if necessary, for ftrace, etc.
239 	 */
240 	if (address < (ulong) _sinittext - CODE_DELTA)
241 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242 
243 	/* We map read-only data non-coherent for performance. */
244 	if ((address >= (ulong) __start_rodata &&
245 	     address < (ulong) __end_rodata) ||
246 	    address == (ulong) empty_zero_page) {
247 		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
248 	}
249 
250 #ifndef __tilegx__
251 	/* Force the atomic_locks[] array page to be hash-for-home. */
252 	if (address == (ulong) atomic_locks)
253 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
254 #endif
255 
256 	/*
257 	 * Everything else that isn't data or bss is heap, so mark it
258 	 * with the initial heap home (hash-for-home, or this cpu).  This
259 	 * includes any addresses after the loaded image and any address before
260 	 * __init_end, since we already captured the case of text before
261 	 * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
262 	 *
263 	 * All the LOWMEM pages that we mark this way will get their
264 	 * struct page homecache properly marked later, in set_page_homes().
265 	 * The HIGHMEM pages we leave with a default zero for their
266 	 * homes, but with a zero free_time we don't have to actually
267 	 * do a flush action the first time we use them, either.
268 	 */
269 	if (address >= (ulong) _end || address < (ulong) __init_end)
270 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
271 
272 	/* Use hash-for-home if requested for data/bss. */
273 	if (kdata_hash)
274 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
275 
276 	/*
277 	 * Otherwise we just hand out consecutive cpus.  To avoid
278 	 * requiring this function to hold state, we just walk forward from
279 	 * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
280 	 * reach the requested address, while walking cpu home around
281 	 * kdata_mask. This is typically no more than a dozen or so iterations.
282 	 */
283 	page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
284 	BUG_ON(address < page || address >= (ulong)_end);
285 	cpu = cpumask_first(&kdata_mask);
286 	for (; page < address; page += PAGE_SIZE) {
287 		if (page >= (ulong)&init_thread_union &&
288 		    page < (ulong)&init_thread_union + THREAD_SIZE)
289 			continue;
290 		if (page == (ulong)empty_zero_page)
291 			continue;
292 #ifndef __tilegx__
293 		if (page == (ulong)atomic_locks)
294 			continue;
295 #endif
296 		cpu = cpumask_next(cpu, &kdata_mask);
297 		if (cpu == NR_CPUS)
298 			cpu = cpumask_first(&kdata_mask);
299 	}
300 	return construct_pgprot(PAGE_KERNEL, cpu);
301 }
302 
303 /*
304  * This function sets up how we cache the kernel text.  If we have
305  * hash-for-home support, normally that is used instead (see the
306  * kcache_hash boot flag for more information).  But if we end up
307  * using a page-based caching technique, this option sets up the
308  * details of that.  In addition, the "ktext=nocache" option may
309  * always be used to disable local caching of text pages, if desired.
310  */
311 
312 static int __initdata ktext_arg_seen;
313 static int __initdata ktext_small;
314 static int __initdata ktext_local;
315 static int __initdata ktext_all;
316 static int __initdata ktext_nondataplane;
317 static int __initdata ktext_nocache;
318 static struct cpumask __initdata ktext_mask;
319 
setup_ktext(char * str)320 static int __init setup_ktext(char *str)
321 {
322 	if (str == NULL)
323 		return -EINVAL;
324 
325 	/* If you have a leading "nocache", turn off ktext caching */
326 	if (strncmp(str, "nocache", 7) == 0) {
327 		ktext_nocache = 1;
328 		pr_info("ktext: disabling local caching of kernel text\n");
329 		str += 7;
330 		if (*str == ',')
331 			++str;
332 		if (*str == '\0')
333 			return 0;
334 	}
335 
336 	ktext_arg_seen = 1;
337 
338 	/* Default setting: use a huge page */
339 	if (strcmp(str, "huge") == 0)
340 		pr_info("ktext: using one huge locally cached page\n");
341 
342 	/* Pay TLB cost but get no cache benefit: cache small pages locally */
343 	else if (strcmp(str, "local") == 0) {
344 		ktext_small = 1;
345 		ktext_local = 1;
346 		pr_info("ktext: using small pages with local caching\n");
347 	}
348 
349 	/* Neighborhood cache ktext pages on all cpus. */
350 	else if (strcmp(str, "all") == 0) {
351 		ktext_small = 1;
352 		ktext_all = 1;
353 		pr_info("ktext: using maximal caching neighborhood\n");
354 	}
355 
356 
357 	/* Neighborhood ktext pages on specified mask */
358 	else if (cpulist_parse(str, &ktext_mask) == 0) {
359 		if (cpumask_weight(&ktext_mask) > 1) {
360 			ktext_small = 1;
361 			pr_info("ktext: using caching neighborhood %*pbl with small pages\n",
362 				cpumask_pr_args(&ktext_mask));
363 		} else {
364 			pr_info("ktext: caching on cpu %*pbl with one huge page\n",
365 				cpumask_pr_args(&ktext_mask));
366 		}
367 	}
368 
369 	else if (*str)
370 		return -EINVAL;
371 
372 	return 0;
373 }
374 
375 early_param("ktext", setup_ktext);
376 
377 
ktext_set_nocache(pgprot_t prot)378 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
379 {
380 	if (!ktext_nocache)
381 		prot = hv_pte_set_nc(prot);
382 	else
383 		prot = hv_pte_set_no_alloc_l2(prot);
384 	return prot;
385 }
386 
387 /* Temporary page table we use for staging. */
388 static pgd_t pgtables[PTRS_PER_PGD]
389  __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
390 
391 /*
392  * This maps the physical memory to kernel virtual address space, a total
393  * of max_low_pfn pages, by creating page tables starting from address
394  * PAGE_OFFSET.
395  *
396  * This routine transitions us from using a set of compiled-in large
397  * pages to using some more precise caching, including removing access
398  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
399  * marking read-only data as locally cacheable, striping the remaining
400  * .data and .bss across all the available tiles, and removing access
401  * to pages above the top of RAM (thus ensuring a page fault from a bad
402  * virtual address rather than a hypervisor shoot down for accessing
403  * memory outside the assigned limits).
404  */
kernel_physical_mapping_init(pgd_t * pgd_base)405 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
406 {
407 	unsigned long long irqmask;
408 	unsigned long address, pfn;
409 	pmd_t *pmd;
410 	pte_t *pte;
411 	int pte_ofs;
412 	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
413 	struct cpumask kstripe_mask;
414 	int rc, i;
415 
416 	if (ktext_arg_seen && ktext_hash) {
417 		pr_warn("warning: \"ktext\" boot argument ignored if \"kcache_hash\" sets up text hash-for-home\n");
418 		ktext_small = 0;
419 	}
420 
421 	if (kdata_arg_seen && kdata_hash) {
422 		pr_warn("warning: \"kdata\" boot argument ignored if \"kcache_hash\" sets up data hash-for-home\n");
423 	}
424 
425 	if (kdata_huge && !hash_default) {
426 		pr_warn("warning: disabling \"kdata=huge\"; requires kcache_hash=all or =allbutstack\n");
427 		kdata_huge = 0;
428 	}
429 
430 	/*
431 	 * Set up a mask for cpus to use for kernel striping.
432 	 * This is normally all cpus, but minus dataplane cpus if any.
433 	 * If the dataplane covers the whole chip, we stripe over
434 	 * the whole chip too.
435 	 */
436 	cpumask_copy(&kstripe_mask, cpu_possible_mask);
437 	if (!kdata_arg_seen)
438 		kdata_mask = kstripe_mask;
439 
440 	/* Allocate and fill in L2 page tables */
441 	for (i = 0; i < MAX_NUMNODES; ++i) {
442 #ifdef CONFIG_HIGHMEM
443 		unsigned long end_pfn = node_lowmem_end_pfn[i];
444 #else
445 		unsigned long end_pfn = node_end_pfn[i];
446 #endif
447 		unsigned long end_huge_pfn = 0;
448 
449 		/* Pre-shatter the last huge page to allow per-cpu pages. */
450 		if (kdata_huge)
451 			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
452 
453 		pfn = node_start_pfn[i];
454 
455 		/* Allocate enough memory to hold L2 page tables for node. */
456 		init_prealloc_ptes(i, end_pfn - pfn);
457 
458 		address = (unsigned long) pfn_to_kaddr(pfn);
459 		while (pfn < end_pfn) {
460 			BUG_ON(address & (HPAGE_SIZE-1));
461 			pmd = get_pmd(pgtables, address);
462 			pte = get_prealloc_pte(pfn);
463 			if (pfn < end_huge_pfn) {
464 				pgprot_t prot = init_pgprot(address);
465 				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
466 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
467 				     pfn++, pte_ofs++, address += PAGE_SIZE)
468 					pte[pte_ofs] = pfn_pte(pfn, prot);
469 			} else {
470 				if (kdata_huge)
471 					printk(KERN_DEBUG "pre-shattered huge page at %#lx\n",
472 					       address);
473 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
474 				     pfn++, pte_ofs++, address += PAGE_SIZE) {
475 					pgprot_t prot = init_pgprot(address);
476 					pte[pte_ofs] = pfn_pte(pfn, prot);
477 				}
478 				assign_pte(pmd, pte);
479 			}
480 		}
481 	}
482 
483 	/*
484 	 * Set or check ktext_map now that we have cpu_possible_mask
485 	 * and kstripe_mask to work with.
486 	 */
487 	if (ktext_all)
488 		cpumask_copy(&ktext_mask, cpu_possible_mask);
489 	else if (ktext_nondataplane)
490 		ktext_mask = kstripe_mask;
491 	else if (!cpumask_empty(&ktext_mask)) {
492 		/* Sanity-check any mask that was requested */
493 		struct cpumask bad;
494 		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
495 		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
496 		if (!cpumask_empty(&bad))
497 			pr_info("ktext: not using unavailable cpus %*pbl\n",
498 				cpumask_pr_args(&bad));
499 		if (cpumask_empty(&ktext_mask)) {
500 			pr_warn("ktext: no valid cpus; caching on %d\n",
501 				smp_processor_id());
502 			cpumask_copy(&ktext_mask,
503 				     cpumask_of(smp_processor_id()));
504 		}
505 	}
506 
507 	address = MEM_SV_START;
508 	pmd = get_pmd(pgtables, address);
509 	pfn = 0;  /* code starts at PA 0 */
510 	if (ktext_small) {
511 		/* Allocate an L2 PTE for the kernel text */
512 		int cpu = 0;
513 		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
514 						 PAGE_HOME_IMMUTABLE);
515 
516 		if (ktext_local) {
517 			if (ktext_nocache)
518 				prot = hv_pte_set_mode(prot,
519 						       HV_PTE_MODE_UNCACHED);
520 			else
521 				prot = hv_pte_set_mode(prot,
522 						       HV_PTE_MODE_CACHE_NO_L3);
523 		} else {
524 			prot = hv_pte_set_mode(prot,
525 					       HV_PTE_MODE_CACHE_TILE_L3);
526 			cpu = cpumask_first(&ktext_mask);
527 
528 			prot = ktext_set_nocache(prot);
529 		}
530 
531 		BUG_ON(address != (unsigned long)_text);
532 		pte = NULL;
533 		for (; address < (unsigned long)_einittext;
534 		     pfn++, address += PAGE_SIZE) {
535 			pte_ofs = pte_index(address);
536 			if (pte_ofs == 0) {
537 				if (pte)
538 					assign_pte(pmd++, pte);
539 				pte = alloc_pte();
540 			}
541 			if (!ktext_local) {
542 				prot = set_remote_cache_cpu(prot, cpu);
543 				cpu = cpumask_next(cpu, &ktext_mask);
544 				if (cpu == NR_CPUS)
545 					cpu = cpumask_first(&ktext_mask);
546 			}
547 			pte[pte_ofs] = pfn_pte(pfn, prot);
548 		}
549 		if (pte)
550 			assign_pte(pmd, pte);
551 	} else {
552 		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
553 		pteval = pte_mkhuge(pteval);
554 		if (ktext_hash) {
555 			pteval = hv_pte_set_mode(pteval,
556 						 HV_PTE_MODE_CACHE_HASH_L3);
557 			pteval = ktext_set_nocache(pteval);
558 		} else
559 		if (cpumask_weight(&ktext_mask) == 1) {
560 			pteval = set_remote_cache_cpu(pteval,
561 					      cpumask_first(&ktext_mask));
562 			pteval = hv_pte_set_mode(pteval,
563 						 HV_PTE_MODE_CACHE_TILE_L3);
564 			pteval = ktext_set_nocache(pteval);
565 		} else if (ktext_nocache)
566 			pteval = hv_pte_set_mode(pteval,
567 						 HV_PTE_MODE_UNCACHED);
568 		else
569 			pteval = hv_pte_set_mode(pteval,
570 						 HV_PTE_MODE_CACHE_NO_L3);
571 		for (; address < (unsigned long)_einittext;
572 		     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
573 			*(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
574 	}
575 
576 	/* Set swapper_pgprot here so it is flushed to memory right away. */
577 	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
578 
579 	/*
580 	 * Since we may be changing the caching of the stack and page
581 	 * table itself, we invoke an assembly helper to do the
582 	 * following steps:
583 	 *
584 	 *  - flush the cache so we start with an empty slate
585 	 *  - install pgtables[] as the real page table
586 	 *  - flush the TLB so the new page table takes effect
587 	 */
588 	irqmask = interrupt_mask_save_mask();
589 	interrupt_mask_set_mask(-1ULL);
590 	rc = flush_and_install_context(__pa(pgtables),
591 				       init_pgprot((unsigned long)pgtables),
592 				       __this_cpu_read(current_asid),
593 				       cpumask_bits(my_cpu_mask));
594 	interrupt_mask_restore_mask(irqmask);
595 	BUG_ON(rc != 0);
596 
597 	/* Copy the page table back to the normal swapper_pg_dir. */
598 	memcpy(pgd_base, pgtables, sizeof(pgtables));
599 	__install_page_table(pgd_base, __this_cpu_read(current_asid),
600 			     swapper_pgprot);
601 
602 	/*
603 	 * We just read swapper_pgprot and thus brought it into the cache,
604 	 * with its new home & caching mode.  When we start the other CPUs,
605 	 * they're going to reference swapper_pgprot via their initial fake
606 	 * VA-is-PA mappings, which cache everything locally.  At that
607 	 * time, if it's in our cache with a conflicting home, the
608 	 * simulator's coherence checker will complain.  So, flush it out
609 	 * of our cache; we're not going to ever use it again anyway.
610 	 */
611 	__insn_finv(&swapper_pgprot);
612 }
613 
614 /*
615  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
616  * is valid. The argument is a physical page number.
617  *
618  * On Tile, the only valid things for which we can just hand out unchecked
619  * PTEs are the kernel code and data.  Anything else might change its
620  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
621  * Note that init_thread_union is released to heap soon after boot,
622  * so we include it in the init data.
623  *
624  * For TILE-Gx, we might want to consider allowing access to PA
625  * regions corresponding to PCI space, etc.
626  */
devmem_is_allowed(unsigned long pagenr)627 int devmem_is_allowed(unsigned long pagenr)
628 {
629 	return pagenr < kaddr_to_pfn(_end) &&
630 		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
631 		  pagenr < kaddr_to_pfn(__init_end)) &&
632 		!(pagenr >= kaddr_to_pfn(_sinittext) ||
633 		  pagenr <= kaddr_to_pfn(_einittext-1));
634 }
635 
636 #ifdef CONFIG_HIGHMEM
permanent_kmaps_init(pgd_t * pgd_base)637 static void __init permanent_kmaps_init(pgd_t *pgd_base)
638 {
639 	pgd_t *pgd;
640 	pud_t *pud;
641 	pmd_t *pmd;
642 	pte_t *pte;
643 	unsigned long vaddr;
644 
645 	vaddr = PKMAP_BASE;
646 	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
647 
648 	pgd = swapper_pg_dir + pgd_index(vaddr);
649 	pud = pud_offset(pgd, vaddr);
650 	pmd = pmd_offset(pud, vaddr);
651 	pte = pte_offset_kernel(pmd, vaddr);
652 	pkmap_page_table = pte;
653 }
654 #endif /* CONFIG_HIGHMEM */
655 
656 
657 #ifndef CONFIG_64BIT
init_free_pfn_range(unsigned long start,unsigned long end)658 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
659 {
660 	unsigned long pfn;
661 	struct page *page = pfn_to_page(start);
662 
663 	for (pfn = start; pfn < end; ) {
664 		/* Optimize by freeing pages in large batches */
665 		int order = __ffs(pfn);
666 		int count, i;
667 		struct page *p;
668 
669 		if (order >= MAX_ORDER)
670 			order = MAX_ORDER-1;
671 		count = 1 << order;
672 		while (pfn + count > end) {
673 			count >>= 1;
674 			--order;
675 		}
676 		for (p = page, i = 0; i < count; ++i, ++p) {
677 			__ClearPageReserved(p);
678 			/*
679 			 * Hacky direct set to avoid unnecessary
680 			 * lock take/release for EVERY page here.
681 			 */
682 			p->_refcount.counter = 0;
683 			p->_mapcount.counter = -1;
684 		}
685 		init_page_count(page);
686 		__free_pages(page, order);
687 		adjust_managed_page_count(page, count);
688 
689 		page += count;
690 		pfn += count;
691 	}
692 }
693 
set_non_bootmem_pages_init(void)694 static void __init set_non_bootmem_pages_init(void)
695 {
696 	struct zone *z;
697 	for_each_zone(z) {
698 		unsigned long start, end;
699 		int nid = z->zone_pgdat->node_id;
700 #ifdef CONFIG_HIGHMEM
701 		int idx = zone_idx(z);
702 #endif
703 
704 		start = z->zone_start_pfn;
705 		end = start + z->spanned_pages;
706 		start = max(start, node_free_pfn[nid]);
707 		start = max(start, max_low_pfn);
708 
709 #ifdef CONFIG_HIGHMEM
710 		if (idx == ZONE_HIGHMEM)
711 			totalhigh_pages += z->spanned_pages;
712 #endif
713 		if (kdata_huge) {
714 			unsigned long percpu_pfn = node_percpu_pfn[nid];
715 			if (start < percpu_pfn && end > percpu_pfn)
716 				end = percpu_pfn;
717 		}
718 #ifdef CONFIG_PCI
719 		if (start <= pci_reserve_start_pfn &&
720 		    end > pci_reserve_start_pfn) {
721 			if (end > pci_reserve_end_pfn)
722 				init_free_pfn_range(pci_reserve_end_pfn, end);
723 			end = pci_reserve_start_pfn;
724 		}
725 #endif
726 		init_free_pfn_range(start, end);
727 	}
728 }
729 #endif
730 
731 /*
732  * paging_init() sets up the page tables - note that all of lowmem is
733  * already mapped by head.S.
734  */
paging_init(void)735 void __init paging_init(void)
736 {
737 #ifdef __tilegx__
738 	pud_t *pud;
739 #endif
740 	pgd_t *pgd_base = swapper_pg_dir;
741 
742 	kernel_physical_mapping_init(pgd_base);
743 
744 	/* Fixed mappings, only the page table structure has to be created. */
745 	page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
746 			      FIXADDR_TOP, pgd_base);
747 
748 #ifdef CONFIG_HIGHMEM
749 	permanent_kmaps_init(pgd_base);
750 #endif
751 
752 #ifdef __tilegx__
753 	/*
754 	 * Since GX allocates just one pmd_t array worth of vmalloc space,
755 	 * we go ahead and allocate it statically here, then share it
756 	 * globally.  As a result we don't have to worry about any task
757 	 * changing init_mm once we get up and running, and there's no
758 	 * need for e.g. vmalloc_sync_all().
759 	 */
760 	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
761 	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
762 	assign_pmd(pud, alloc_pmd());
763 #endif
764 }
765 
766 
767 /*
768  * Walk the kernel page tables and derive the page_home() from
769  * the PTEs, so that set_pte() can properly validate the caching
770  * of all PTEs it sees.
771  */
set_page_homes(void)772 void __init set_page_homes(void)
773 {
774 }
775 
set_max_mapnr_init(void)776 static void __init set_max_mapnr_init(void)
777 {
778 #ifdef CONFIG_FLATMEM
779 	max_mapnr = max_low_pfn;
780 #endif
781 }
782 
mem_init(void)783 void __init mem_init(void)
784 {
785 	int i;
786 #ifndef __tilegx__
787 	void *last;
788 #endif
789 
790 #ifdef CONFIG_FLATMEM
791 	BUG_ON(!mem_map);
792 #endif
793 
794 #ifdef CONFIG_HIGHMEM
795 	/* check that fixmap and pkmap do not overlap */
796 	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
797 		pr_err("fixmap and kmap areas overlap - this will crash\n");
798 		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
799 		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), FIXADDR_START);
800 		BUG();
801 	}
802 #endif
803 
804 	set_max_mapnr_init();
805 
806 	/* this will put all bootmem onto the freelists */
807 	free_all_bootmem();
808 
809 #ifndef CONFIG_64BIT
810 	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
811 	set_non_bootmem_pages_init();
812 #endif
813 
814 	mem_init_print_info(NULL);
815 
816 	/*
817 	 * In debug mode, dump some interesting memory mappings.
818 	 */
819 #ifdef CONFIG_HIGHMEM
820 	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
821 	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
822 	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
823 	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
824 #endif
825 	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
826 	       _VMALLOC_START, _VMALLOC_END - 1);
827 #ifdef __tilegx__
828 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
829 		struct pglist_data *node = &node_data[i];
830 		if (node->node_present_pages) {
831 			unsigned long start = (unsigned long)
832 				pfn_to_kaddr(node->node_start_pfn);
833 			unsigned long end = start +
834 				(node->node_present_pages << PAGE_SHIFT);
835 			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
836 			       i, start, end - 1);
837 		}
838 	}
839 #else
840 	last = high_memory;
841 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
842 		if ((unsigned long)vbase_map[i] != -1UL) {
843 			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
844 			       i, (unsigned long) (vbase_map[i]),
845 			       (unsigned long) (last-1));
846 			last = vbase_map[i];
847 		}
848 	}
849 #endif
850 
851 #ifndef __tilegx__
852 	/*
853 	 * Convert from using one lock for all atomic operations to
854 	 * one per cpu.
855 	 */
856 	__init_atomic_per_cpu();
857 #endif
858 }
859 
860 struct kmem_cache *pgd_cache;
861 
pgtable_cache_init(void)862 void __init pgtable_cache_init(void)
863 {
864 	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
865 	if (!pgd_cache)
866 		panic("pgtable_cache_init(): Cannot create pgd cache");
867 }
868 
869 static long __ro_after_init initfree = 1;
870 static bool __ro_after_init set_initfree_done;
871 
872 /* Select whether to free (1) or mark unusable (0) the __init pages. */
set_initfree(char * str)873 static int __init set_initfree(char *str)
874 {
875 	long val;
876 	if (kstrtol(str, 0, &val) == 0) {
877 		set_initfree_done = true;
878 		initfree = val;
879 		pr_info("initfree: %s free init pages\n",
880 			initfree ? "will" : "won't");
881 	}
882 	return 1;
883 }
884 __setup("initfree=", set_initfree);
885 
free_init_pages(char * what,unsigned long begin,unsigned long end)886 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
887 {
888 	unsigned long addr = (unsigned long) begin;
889 
890 	/* Prefer user request first */
891 	if (!set_initfree_done) {
892 		if (debug_pagealloc_enabled())
893 			initfree = 0;
894 	}
895 	if (kdata_huge && !initfree) {
896 		pr_warn("Warning: ignoring initfree=0: incompatible with kdata=huge\n");
897 		initfree = 1;
898 	}
899 	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
900 	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
901 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
902 		/*
903 		 * Note we just reset the home here directly in the
904 		 * page table.  We know this is safe because our caller
905 		 * just flushed the caches on all the other cpus,
906 		 * and they won't be touching any of these pages.
907 		 */
908 		int pfn = kaddr_to_pfn((void *)addr);
909 		struct page *page = pfn_to_page(pfn);
910 		pte_t *ptep = virt_to_kpte(addr);
911 		if (!initfree) {
912 			/*
913 			 * If debugging page accesses then do not free
914 			 * this memory but mark them not present - any
915 			 * buggy init-section access will create a
916 			 * kernel page fault:
917 			 */
918 			pte_clear(&init_mm, addr, ptep);
919 			continue;
920 		}
921 		if (pte_huge(*ptep))
922 			BUG_ON(!kdata_huge);
923 		else
924 			set_pte_at(&init_mm, addr, ptep,
925 				   pfn_pte(pfn, PAGE_KERNEL));
926 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
927 		free_reserved_page(page);
928 	}
929 	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
930 }
931 
free_initmem(void)932 void free_initmem(void)
933 {
934 	const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
935 
936 	/*
937 	 * Evict the cache on all cores to avoid incoherence.
938 	 * We are guaranteed that no one will touch the init pages any more.
939 	 */
940 	homecache_evict(&cpu_cacheable_map);
941 
942 	/* Free the data pages that we won't use again after init. */
943 	free_init_pages("unused kernel data",
944 			(unsigned long)__init_begin,
945 			(unsigned long)__init_end);
946 
947 	/*
948 	 * Free the pages mapped from 0xc0000000 that correspond to code
949 	 * pages from MEM_SV_START that we won't use again after init.
950 	 */
951 	free_init_pages("unused kernel text",
952 			(unsigned long)_sinittext - text_delta,
953 			(unsigned long)_einittext - text_delta);
954 	/* Do a global TLB flush so everyone sees the changes. */
955 	flush_tlb_all();
956 }
957