• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 
44 #include "process.h"
45 
46 /*
47  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
48  * no more per-task TSS's. The TSS size is kept cacheline-aligned
49  * so they are allowed to end up in the .data..cacheline_aligned
50  * section. Since TSS's are completely CPU-local, we want them
51  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
52  */
53 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
54 	.x86_tss = {
55 		/*
56 		 * .sp0 is only used when entering ring 0 from a lower
57 		 * privilege level.  Since the init task never runs anything
58 		 * but ring 0 code, there is no need for a valid value here.
59 		 * Poison it.
60 		 */
61 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
62 
63 #ifdef CONFIG_X86_64
64 		/*
65 		 * .sp1 is cpu_current_top_of_stack.  The init task never
66 		 * runs user code, but cpu_current_top_of_stack should still
67 		 * be well defined before the first context switch.
68 		 */
69 		.sp1 = TOP_OF_INIT_STACK,
70 #endif
71 
72 #ifdef CONFIG_X86_32
73 		.ss0 = __KERNEL_DS,
74 		.ss1 = __KERNEL_CS,
75 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
76 #endif
77 	 },
78 #ifdef CONFIG_X86_32
79 	 /*
80 	  * Note that the .io_bitmap member must be extra-big. This is because
81 	  * the CPU will access an additional byte beyond the end of the IO
82 	  * permission bitmap. The extra byte must be all 1 bits, and must
83 	  * be within the limit.
84 	  */
85 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
87 };
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
89 
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
92 
93 /*
94  * this gets called so that we can store lazy state into memory and copy the
95  * current task into the new thread.
96  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
98 {
99 	memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 	dst->thread.vm86 = NULL;
102 #endif
103 
104 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
105 }
106 
107 /*
108  * Free current thread data structures etc..
109  */
exit_thread(struct task_struct * tsk)110 void exit_thread(struct task_struct *tsk)
111 {
112 	struct thread_struct *t = &tsk->thread;
113 	unsigned long *bp = t->io_bitmap_ptr;
114 	struct fpu *fpu = &t->fpu;
115 
116 	if (bp) {
117 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118 
119 		t->io_bitmap_ptr = NULL;
120 		clear_thread_flag(TIF_IO_BITMAP);
121 		/*
122 		 * Careful, clear this in the TSS too:
123 		 */
124 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 		t->io_bitmap_max = 0;
126 		put_cpu();
127 		kfree(bp);
128 	}
129 
130 	free_vm86(t);
131 
132 	fpu__drop(fpu);
133 }
134 
flush_thread(void)135 void flush_thread(void)
136 {
137 	struct task_struct *tsk = current;
138 
139 	flush_ptrace_hw_breakpoint(tsk);
140 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141 
142 	fpu__clear(&tsk->thread.fpu);
143 }
144 
disable_TSC(void)145 void disable_TSC(void)
146 {
147 	preempt_disable();
148 	if (!test_and_set_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		cr4_set_bits(X86_CR4_TSD);
154 	preempt_enable();
155 }
156 
enable_TSC(void)157 static void enable_TSC(void)
158 {
159 	preempt_disable();
160 	if (test_and_clear_thread_flag(TIF_NOTSC))
161 		/*
162 		 * Must flip the CPU state synchronously with
163 		 * TIF_NOTSC in the current running context.
164 		 */
165 		cr4_clear_bits(X86_CR4_TSD);
166 	preempt_enable();
167 }
168 
get_tsc_mode(unsigned long adr)169 int get_tsc_mode(unsigned long adr)
170 {
171 	unsigned int val;
172 
173 	if (test_thread_flag(TIF_NOTSC))
174 		val = PR_TSC_SIGSEGV;
175 	else
176 		val = PR_TSC_ENABLE;
177 
178 	return put_user(val, (unsigned int __user *)adr);
179 }
180 
set_tsc_mode(unsigned int val)181 int set_tsc_mode(unsigned int val)
182 {
183 	if (val == PR_TSC_SIGSEGV)
184 		disable_TSC();
185 	else if (val == PR_TSC_ENABLE)
186 		enable_TSC();
187 	else
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194 
set_cpuid_faulting(bool on)195 static void set_cpuid_faulting(bool on)
196 {
197 	u64 msrval;
198 
199 	msrval = this_cpu_read(msr_misc_features_shadow);
200 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 	this_cpu_write(msr_misc_features_shadow, msrval);
203 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204 }
205 
disable_cpuid(void)206 static void disable_cpuid(void)
207 {
208 	preempt_disable();
209 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210 		/*
211 		 * Must flip the CPU state synchronously with
212 		 * TIF_NOCPUID in the current running context.
213 		 */
214 		set_cpuid_faulting(true);
215 	}
216 	preempt_enable();
217 }
218 
enable_cpuid(void)219 static void enable_cpuid(void)
220 {
221 	preempt_disable();
222 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223 		/*
224 		 * Must flip the CPU state synchronously with
225 		 * TIF_NOCPUID in the current running context.
226 		 */
227 		set_cpuid_faulting(false);
228 	}
229 	preempt_enable();
230 }
231 
get_cpuid_mode(void)232 static int get_cpuid_mode(void)
233 {
234 	return !test_thread_flag(TIF_NOCPUID);
235 }
236 
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238 {
239 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
240 		return -ENODEV;
241 
242 	if (cpuid_enabled)
243 		enable_cpuid();
244 	else
245 		disable_cpuid();
246 
247 	return 0;
248 }
249 
250 /*
251  * Called immediately after a successful exec.
252  */
arch_setup_new_exec(void)253 void arch_setup_new_exec(void)
254 {
255 	/* If cpuid was previously disabled for this task, re-enable it. */
256 	if (test_thread_flag(TIF_NOCPUID))
257 		enable_cpuid();
258 }
259 
switch_to_bitmap(struct thread_struct * prev,struct thread_struct * next,unsigned long tifp,unsigned long tifn)260 static inline void switch_to_bitmap(struct thread_struct *prev,
261 				    struct thread_struct *next,
262 				    unsigned long tifp, unsigned long tifn)
263 {
264 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
265 
266 	if (tifn & _TIF_IO_BITMAP) {
267 		/*
268 		 * Copy the relevant range of the IO bitmap.
269 		 * Normally this is 128 bytes or less:
270 		 */
271 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
272 		       max(prev->io_bitmap_max, next->io_bitmap_max));
273 		/*
274 		 * Make sure that the TSS limit is correct for the CPU
275 		 * to notice the IO bitmap.
276 		 */
277 		refresh_tss_limit();
278 	} else if (tifp & _TIF_IO_BITMAP) {
279 		/*
280 		 * Clear any possible leftover bits:
281 		 */
282 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
283 	}
284 }
285 
286 #ifdef CONFIG_SMP
287 
288 struct ssb_state {
289 	struct ssb_state	*shared_state;
290 	raw_spinlock_t		lock;
291 	unsigned int		disable_state;
292 	unsigned long		local_state;
293 };
294 
295 #define LSTATE_SSB	0
296 
297 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
298 
speculative_store_bypass_ht_init(void)299 void speculative_store_bypass_ht_init(void)
300 {
301 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
302 	unsigned int this_cpu = smp_processor_id();
303 	unsigned int cpu;
304 
305 	st->local_state = 0;
306 
307 	/*
308 	 * Shared state setup happens once on the first bringup
309 	 * of the CPU. It's not destroyed on CPU hotunplug.
310 	 */
311 	if (st->shared_state)
312 		return;
313 
314 	raw_spin_lock_init(&st->lock);
315 
316 	/*
317 	 * Go over HT siblings and check whether one of them has set up the
318 	 * shared state pointer already.
319 	 */
320 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
321 		if (cpu == this_cpu)
322 			continue;
323 
324 		if (!per_cpu(ssb_state, cpu).shared_state)
325 			continue;
326 
327 		/* Link it to the state of the sibling: */
328 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
329 		return;
330 	}
331 
332 	/*
333 	 * First HT sibling to come up on the core.  Link shared state of
334 	 * the first HT sibling to itself. The siblings on the same core
335 	 * which come up later will see the shared state pointer and link
336 	 * themself to the state of this CPU.
337 	 */
338 	st->shared_state = st;
339 }
340 
341 /*
342  * Logic is: First HT sibling enables SSBD for both siblings in the core
343  * and last sibling to disable it, disables it for the whole core. This how
344  * MSR_SPEC_CTRL works in "hardware":
345  *
346  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
347  */
amd_set_core_ssb_state(unsigned long tifn)348 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
349 {
350 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
351 	u64 msr = x86_amd_ls_cfg_base;
352 
353 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
354 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
355 		wrmsrl(MSR_AMD64_LS_CFG, msr);
356 		return;
357 	}
358 
359 	if (tifn & _TIF_SSBD) {
360 		/*
361 		 * Since this can race with prctl(), block reentry on the
362 		 * same CPU.
363 		 */
364 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
365 			return;
366 
367 		msr |= x86_amd_ls_cfg_ssbd_mask;
368 
369 		raw_spin_lock(&st->shared_state->lock);
370 		/* First sibling enables SSBD: */
371 		if (!st->shared_state->disable_state)
372 			wrmsrl(MSR_AMD64_LS_CFG, msr);
373 		st->shared_state->disable_state++;
374 		raw_spin_unlock(&st->shared_state->lock);
375 	} else {
376 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
377 			return;
378 
379 		raw_spin_lock(&st->shared_state->lock);
380 		st->shared_state->disable_state--;
381 		if (!st->shared_state->disable_state)
382 			wrmsrl(MSR_AMD64_LS_CFG, msr);
383 		raw_spin_unlock(&st->shared_state->lock);
384 	}
385 }
386 #else
amd_set_core_ssb_state(unsigned long tifn)387 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
388 {
389 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
390 
391 	wrmsrl(MSR_AMD64_LS_CFG, msr);
392 }
393 #endif
394 
amd_set_ssb_virt_state(unsigned long tifn)395 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
396 {
397 	/*
398 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
399 	 * so ssbd_tif_to_spec_ctrl() just works.
400 	 */
401 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
402 }
403 
404 /*
405  * Update the MSRs managing speculation control, during context switch.
406  *
407  * tifp: Previous task's thread flags
408  * tifn: Next task's thread flags
409  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)410 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
411 						      unsigned long tifn)
412 {
413 	unsigned long tif_diff = tifp ^ tifn;
414 	u64 msr = x86_spec_ctrl_base;
415 	bool updmsr = false;
416 
417 	/*
418 	 * If TIF_SSBD is different, select the proper mitigation
419 	 * method. Note that if SSBD mitigation is disabled or permanentely
420 	 * enabled this branch can't be taken because nothing can set
421 	 * TIF_SSBD.
422 	 */
423 	if (tif_diff & _TIF_SSBD) {
424 		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
425 			amd_set_ssb_virt_state(tifn);
426 		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
427 			amd_set_core_ssb_state(tifn);
428 		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
429 			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
430 			msr |= ssbd_tif_to_spec_ctrl(tifn);
431 			updmsr  = true;
432 		}
433 	}
434 
435 	/*
436 	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
437 	 * otherwise avoid the MSR write.
438 	 */
439 	if (IS_ENABLED(CONFIG_SMP) &&
440 	    static_branch_unlikely(&switch_to_cond_stibp)) {
441 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
442 		msr |= stibp_tif_to_spec_ctrl(tifn);
443 	}
444 
445 	if (updmsr)
446 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
447 }
448 
speculation_ctrl_update_tif(struct task_struct * tsk)449 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
450 {
451 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
452 		if (task_spec_ssb_disable(tsk))
453 			set_tsk_thread_flag(tsk, TIF_SSBD);
454 		else
455 			clear_tsk_thread_flag(tsk, TIF_SSBD);
456 
457 		if (task_spec_ib_disable(tsk))
458 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
459 		else
460 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
461 	}
462 	/* Return the updated threadinfo flags*/
463 	return task_thread_info(tsk)->flags;
464 }
465 
speculation_ctrl_update(unsigned long tif)466 void speculation_ctrl_update(unsigned long tif)
467 {
468 	unsigned long flags;
469 
470 	/* Forced update. Make sure all relevant TIF flags are different */
471 	local_irq_save(flags);
472 	__speculation_ctrl_update(~tif, tif);
473 	local_irq_restore(flags);
474 }
475 
476 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)477 void speculation_ctrl_update_current(void)
478 {
479 	preempt_disable();
480 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
481 	preempt_enable();
482 }
483 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)484 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
485 {
486 	struct thread_struct *prev, *next;
487 	unsigned long tifp, tifn;
488 
489 	prev = &prev_p->thread;
490 	next = &next_p->thread;
491 
492 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
493 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
494 	switch_to_bitmap(prev, next, tifp, tifn);
495 
496 	propagate_user_return_notify(prev_p, next_p);
497 
498 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
499 	    arch_has_block_step()) {
500 		unsigned long debugctl, msk;
501 
502 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
503 		debugctl &= ~DEBUGCTLMSR_BTF;
504 		msk = tifn & _TIF_BLOCKSTEP;
505 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
506 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
507 	}
508 
509 	if ((tifp ^ tifn) & _TIF_NOTSC)
510 		cr4_toggle_bits(X86_CR4_TSD);
511 
512 	if ((tifp ^ tifn) & _TIF_NOCPUID)
513 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
514 
515 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
516 		__speculation_ctrl_update(tifp, tifn);
517 	} else {
518 		speculation_ctrl_update_tif(prev_p);
519 		tifn = speculation_ctrl_update_tif(next_p);
520 
521 		/* Enforce MSR update to ensure consistent state */
522 		__speculation_ctrl_update(~tifn, tifn);
523 	}
524 }
525 
526 /*
527  * Idle related variables and functions
528  */
529 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
530 EXPORT_SYMBOL(boot_option_idle_override);
531 
532 static void (*x86_idle)(void);
533 
534 #ifndef CONFIG_SMP
play_dead(void)535 static inline void play_dead(void)
536 {
537 	BUG();
538 }
539 #endif
540 
arch_cpu_idle_enter(void)541 void arch_cpu_idle_enter(void)
542 {
543 	tsc_verify_tsc_adjust(false);
544 	local_touch_nmi();
545 }
546 
arch_cpu_idle_dead(void)547 void arch_cpu_idle_dead(void)
548 {
549 	play_dead();
550 }
551 
552 /*
553  * Called from the generic idle code.
554  */
arch_cpu_idle(void)555 void arch_cpu_idle(void)
556 {
557 	x86_idle();
558 }
559 
560 /*
561  * We use this if we don't have any better idle routine..
562  */
default_idle(void)563 void __cpuidle default_idle(void)
564 {
565 	trace_cpu_idle_rcuidle(1, smp_processor_id());
566 	safe_halt();
567 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
568 }
569 #ifdef CONFIG_APM_MODULE
570 EXPORT_SYMBOL(default_idle);
571 #endif
572 
573 #ifdef CONFIG_XEN
xen_set_default_idle(void)574 bool xen_set_default_idle(void)
575 {
576 	bool ret = !!x86_idle;
577 
578 	x86_idle = default_idle;
579 
580 	return ret;
581 }
582 #endif
583 
stop_this_cpu(void * dummy)584 void stop_this_cpu(void *dummy)
585 {
586 	local_irq_disable();
587 	/*
588 	 * Remove this CPU:
589 	 */
590 	set_cpu_online(smp_processor_id(), false);
591 	disable_local_APIC();
592 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
593 
594 	/*
595 	 * Use wbinvd on processors that support SME. This provides support
596 	 * for performing a successful kexec when going from SME inactive
597 	 * to SME active (or vice-versa). The cache must be cleared so that
598 	 * if there are entries with the same physical address, both with and
599 	 * without the encryption bit, they don't race each other when flushed
600 	 * and potentially end up with the wrong entry being committed to
601 	 * memory.
602 	 */
603 	if (boot_cpu_has(X86_FEATURE_SME))
604 		native_wbinvd();
605 	for (;;) {
606 		/*
607 		 * Use native_halt() so that memory contents don't change
608 		 * (stack usage and variables) after possibly issuing the
609 		 * native_wbinvd() above.
610 		 */
611 		native_halt();
612 	}
613 }
614 
615 /*
616  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
617  * states (local apic timer and TSC stop).
618  */
amd_e400_idle(void)619 static void amd_e400_idle(void)
620 {
621 	/*
622 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
623 	 * gets set after static_cpu_has() places have been converted via
624 	 * alternatives.
625 	 */
626 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
627 		default_idle();
628 		return;
629 	}
630 
631 	tick_broadcast_enter();
632 
633 	default_idle();
634 
635 	/*
636 	 * The switch back from broadcast mode needs to be called with
637 	 * interrupts disabled.
638 	 */
639 	local_irq_disable();
640 	tick_broadcast_exit();
641 	local_irq_enable();
642 }
643 
644 /*
645  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
646  * We can't rely on cpuidle installing MWAIT, because it will not load
647  * on systems that support only C1 -- so the boot default must be MWAIT.
648  *
649  * Some AMD machines are the opposite, they depend on using HALT.
650  *
651  * So for default C1, which is used during boot until cpuidle loads,
652  * use MWAIT-C1 on Intel HW that has it, else use HALT.
653  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)654 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
655 {
656 	if (c->x86_vendor != X86_VENDOR_INTEL)
657 		return 0;
658 
659 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
660 		return 0;
661 
662 	return 1;
663 }
664 
665 /*
666  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
667  * with interrupts enabled and no flags, which is backwards compatible with the
668  * original MWAIT implementation.
669  */
mwait_idle(void)670 static __cpuidle void mwait_idle(void)
671 {
672 	if (!current_set_polling_and_test()) {
673 		trace_cpu_idle_rcuidle(1, smp_processor_id());
674 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
675 			mb(); /* quirk */
676 			clflush((void *)&current_thread_info()->flags);
677 			mb(); /* quirk */
678 		}
679 
680 		__monitor((void *)&current_thread_info()->flags, 0, 0);
681 		if (!need_resched())
682 			__sti_mwait(0, 0);
683 		else
684 			local_irq_enable();
685 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
686 	} else {
687 		local_irq_enable();
688 	}
689 	__current_clr_polling();
690 }
691 
select_idle_routine(const struct cpuinfo_x86 * c)692 void select_idle_routine(const struct cpuinfo_x86 *c)
693 {
694 #ifdef CONFIG_SMP
695 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
696 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
697 #endif
698 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
699 		return;
700 
701 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
702 		pr_info("using AMD E400 aware idle routine\n");
703 		x86_idle = amd_e400_idle;
704 	} else if (prefer_mwait_c1_over_halt(c)) {
705 		pr_info("using mwait in idle threads\n");
706 		x86_idle = mwait_idle;
707 	} else
708 		x86_idle = default_idle;
709 }
710 
amd_e400_c1e_apic_setup(void)711 void amd_e400_c1e_apic_setup(void)
712 {
713 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
714 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
715 		local_irq_disable();
716 		tick_broadcast_force();
717 		local_irq_enable();
718 	}
719 }
720 
arch_post_acpi_subsys_init(void)721 void __init arch_post_acpi_subsys_init(void)
722 {
723 	u32 lo, hi;
724 
725 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
726 		return;
727 
728 	/*
729 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
730 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
731 	 * MSR_K8_INT_PENDING_MSG.
732 	 */
733 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
734 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
735 		return;
736 
737 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
738 
739 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
740 		mark_tsc_unstable("TSC halt in AMD C1E");
741 	pr_info("System has AMD C1E enabled\n");
742 }
743 
idle_setup(char * str)744 static int __init idle_setup(char *str)
745 {
746 	if (!str)
747 		return -EINVAL;
748 
749 	if (!strcmp(str, "poll")) {
750 		pr_info("using polling idle threads\n");
751 		boot_option_idle_override = IDLE_POLL;
752 		cpu_idle_poll_ctrl(true);
753 	} else if (!strcmp(str, "halt")) {
754 		/*
755 		 * When the boot option of idle=halt is added, halt is
756 		 * forced to be used for CPU idle. In such case CPU C2/C3
757 		 * won't be used again.
758 		 * To continue to load the CPU idle driver, don't touch
759 		 * the boot_option_idle_override.
760 		 */
761 		x86_idle = default_idle;
762 		boot_option_idle_override = IDLE_HALT;
763 	} else if (!strcmp(str, "nomwait")) {
764 		/*
765 		 * If the boot option of "idle=nomwait" is added,
766 		 * it means that mwait will be disabled for CPU C2/C3
767 		 * states. In such case it won't touch the variable
768 		 * of boot_option_idle_override.
769 		 */
770 		boot_option_idle_override = IDLE_NOMWAIT;
771 	} else
772 		return -1;
773 
774 	return 0;
775 }
776 early_param("idle", idle_setup);
777 
arch_align_stack(unsigned long sp)778 unsigned long arch_align_stack(unsigned long sp)
779 {
780 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
781 		sp -= get_random_int() % 8192;
782 	return sp & ~0xf;
783 }
784 
arch_randomize_brk(struct mm_struct * mm)785 unsigned long arch_randomize_brk(struct mm_struct *mm)
786 {
787 	return randomize_page(mm->brk, 0x02000000);
788 }
789 
790 /*
791  * Called from fs/proc with a reference on @p to find the function
792  * which called into schedule(). This needs to be done carefully
793  * because the task might wake up and we might look at a stack
794  * changing under us.
795  */
get_wchan(struct task_struct * p)796 unsigned long get_wchan(struct task_struct *p)
797 {
798 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
799 	int count = 0;
800 
801 	if (!p || p == current || p->state == TASK_RUNNING)
802 		return 0;
803 
804 	if (!try_get_task_stack(p))
805 		return 0;
806 
807 	start = (unsigned long)task_stack_page(p);
808 	if (!start)
809 		goto out;
810 
811 	/*
812 	 * Layout of the stack page:
813 	 *
814 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
815 	 * PADDING
816 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
817 	 * stack
818 	 * ----------- bottom = start
819 	 *
820 	 * The tasks stack pointer points at the location where the
821 	 * framepointer is stored. The data on the stack is:
822 	 * ... IP FP ... IP FP
823 	 *
824 	 * We need to read FP and IP, so we need to adjust the upper
825 	 * bound by another unsigned long.
826 	 */
827 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
828 	top -= 2 * sizeof(unsigned long);
829 	bottom = start;
830 
831 	sp = READ_ONCE(p->thread.sp);
832 	if (sp < bottom || sp > top)
833 		goto out;
834 
835 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
836 	do {
837 		if (fp < bottom || fp > top)
838 			goto out;
839 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
840 		if (!in_sched_functions(ip)) {
841 			ret = ip;
842 			goto out;
843 		}
844 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
845 	} while (count++ < 16 && p->state != TASK_RUNNING);
846 
847 out:
848 	put_task_stack(p);
849 	return ret;
850 }
851 
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)852 long do_arch_prctl_common(struct task_struct *task, int option,
853 			  unsigned long cpuid_enabled)
854 {
855 	switch (option) {
856 	case ARCH_GET_CPUID:
857 		return get_cpuid_mode();
858 	case ARCH_SET_CPUID:
859 		return set_cpuid_mode(task, cpuid_enabled);
860 	}
861 
862 	return -EINVAL;
863 }
864