1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43
44 #include "process.h"
45
46 /*
47 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
48 * no more per-task TSS's. The TSS size is kept cacheline-aligned
49 * so they are allowed to end up in the .data..cacheline_aligned
50 * section. Since TSS's are completely CPU-local, we want them
51 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
52 */
53 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
54 .x86_tss = {
55 /*
56 * .sp0 is only used when entering ring 0 from a lower
57 * privilege level. Since the init task never runs anything
58 * but ring 0 code, there is no need for a valid value here.
59 * Poison it.
60 */
61 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
62
63 #ifdef CONFIG_X86_64
64 /*
65 * .sp1 is cpu_current_top_of_stack. The init task never
66 * runs user code, but cpu_current_top_of_stack should still
67 * be well defined before the first context switch.
68 */
69 .sp1 = TOP_OF_INIT_STACK,
70 #endif
71
72 #ifdef CONFIG_X86_32
73 .ss0 = __KERNEL_DS,
74 .ss1 = __KERNEL_CS,
75 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
76 #endif
77 },
78 #ifdef CONFIG_X86_32
79 /*
80 * Note that the .io_bitmap member must be extra-big. This is because
81 * the CPU will access an additional byte beyond the end of the IO
82 * permission bitmap. The extra byte must be all 1 bits, and must
83 * be within the limit.
84 */
85 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
87 };
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
89
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
92
93 /*
94 * this gets called so that we can store lazy state into memory and copy the
95 * current task into the new thread.
96 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
98 {
99 memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 dst->thread.vm86 = NULL;
102 #endif
103
104 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
105 }
106
107 /*
108 * Free current thread data structures etc..
109 */
exit_thread(struct task_struct * tsk)110 void exit_thread(struct task_struct *tsk)
111 {
112 struct thread_struct *t = &tsk->thread;
113 unsigned long *bp = t->io_bitmap_ptr;
114 struct fpu *fpu = &t->fpu;
115
116 if (bp) {
117 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118
119 t->io_bitmap_ptr = NULL;
120 clear_thread_flag(TIF_IO_BITMAP);
121 /*
122 * Careful, clear this in the TSS too:
123 */
124 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 t->io_bitmap_max = 0;
126 put_cpu();
127 kfree(bp);
128 }
129
130 free_vm86(t);
131
132 fpu__drop(fpu);
133 }
134
flush_thread(void)135 void flush_thread(void)
136 {
137 struct task_struct *tsk = current;
138
139 flush_ptrace_hw_breakpoint(tsk);
140 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141
142 fpu__clear(&tsk->thread.fpu);
143 }
144
disable_TSC(void)145 void disable_TSC(void)
146 {
147 preempt_disable();
148 if (!test_and_set_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 cr4_set_bits(X86_CR4_TSD);
154 preempt_enable();
155 }
156
enable_TSC(void)157 static void enable_TSC(void)
158 {
159 preempt_disable();
160 if (test_and_clear_thread_flag(TIF_NOTSC))
161 /*
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
164 */
165 cr4_clear_bits(X86_CR4_TSD);
166 preempt_enable();
167 }
168
get_tsc_mode(unsigned long adr)169 int get_tsc_mode(unsigned long adr)
170 {
171 unsigned int val;
172
173 if (test_thread_flag(TIF_NOTSC))
174 val = PR_TSC_SIGSEGV;
175 else
176 val = PR_TSC_ENABLE;
177
178 return put_user(val, (unsigned int __user *)adr);
179 }
180
set_tsc_mode(unsigned int val)181 int set_tsc_mode(unsigned int val)
182 {
183 if (val == PR_TSC_SIGSEGV)
184 disable_TSC();
185 else if (val == PR_TSC_ENABLE)
186 enable_TSC();
187 else
188 return -EINVAL;
189
190 return 0;
191 }
192
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
set_cpuid_faulting(bool on)195 static void set_cpuid_faulting(bool on)
196 {
197 u64 msrval;
198
199 msrval = this_cpu_read(msr_misc_features_shadow);
200 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 this_cpu_write(msr_misc_features_shadow, msrval);
203 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204 }
205
disable_cpuid(void)206 static void disable_cpuid(void)
207 {
208 preempt_disable();
209 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210 /*
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
213 */
214 set_cpuid_faulting(true);
215 }
216 preempt_enable();
217 }
218
enable_cpuid(void)219 static void enable_cpuid(void)
220 {
221 preempt_disable();
222 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223 /*
224 * Must flip the CPU state synchronously with
225 * TIF_NOCPUID in the current running context.
226 */
227 set_cpuid_faulting(false);
228 }
229 preempt_enable();
230 }
231
get_cpuid_mode(void)232 static int get_cpuid_mode(void)
233 {
234 return !test_thread_flag(TIF_NOCPUID);
235 }
236
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238 {
239 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
240 return -ENODEV;
241
242 if (cpuid_enabled)
243 enable_cpuid();
244 else
245 disable_cpuid();
246
247 return 0;
248 }
249
250 /*
251 * Called immediately after a successful exec.
252 */
arch_setup_new_exec(void)253 void arch_setup_new_exec(void)
254 {
255 /* If cpuid was previously disabled for this task, re-enable it. */
256 if (test_thread_flag(TIF_NOCPUID))
257 enable_cpuid();
258 }
259
switch_to_bitmap(struct thread_struct * prev,struct thread_struct * next,unsigned long tifp,unsigned long tifn)260 static inline void switch_to_bitmap(struct thread_struct *prev,
261 struct thread_struct *next,
262 unsigned long tifp, unsigned long tifn)
263 {
264 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
265
266 if (tifn & _TIF_IO_BITMAP) {
267 /*
268 * Copy the relevant range of the IO bitmap.
269 * Normally this is 128 bytes or less:
270 */
271 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
272 max(prev->io_bitmap_max, next->io_bitmap_max));
273 /*
274 * Make sure that the TSS limit is correct for the CPU
275 * to notice the IO bitmap.
276 */
277 refresh_tss_limit();
278 } else if (tifp & _TIF_IO_BITMAP) {
279 /*
280 * Clear any possible leftover bits:
281 */
282 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
283 }
284 }
285
286 #ifdef CONFIG_SMP
287
288 struct ssb_state {
289 struct ssb_state *shared_state;
290 raw_spinlock_t lock;
291 unsigned int disable_state;
292 unsigned long local_state;
293 };
294
295 #define LSTATE_SSB 0
296
297 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
298
speculative_store_bypass_ht_init(void)299 void speculative_store_bypass_ht_init(void)
300 {
301 struct ssb_state *st = this_cpu_ptr(&ssb_state);
302 unsigned int this_cpu = smp_processor_id();
303 unsigned int cpu;
304
305 st->local_state = 0;
306
307 /*
308 * Shared state setup happens once on the first bringup
309 * of the CPU. It's not destroyed on CPU hotunplug.
310 */
311 if (st->shared_state)
312 return;
313
314 raw_spin_lock_init(&st->lock);
315
316 /*
317 * Go over HT siblings and check whether one of them has set up the
318 * shared state pointer already.
319 */
320 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
321 if (cpu == this_cpu)
322 continue;
323
324 if (!per_cpu(ssb_state, cpu).shared_state)
325 continue;
326
327 /* Link it to the state of the sibling: */
328 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
329 return;
330 }
331
332 /*
333 * First HT sibling to come up on the core. Link shared state of
334 * the first HT sibling to itself. The siblings on the same core
335 * which come up later will see the shared state pointer and link
336 * themself to the state of this CPU.
337 */
338 st->shared_state = st;
339 }
340
341 /*
342 * Logic is: First HT sibling enables SSBD for both siblings in the core
343 * and last sibling to disable it, disables it for the whole core. This how
344 * MSR_SPEC_CTRL works in "hardware":
345 *
346 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
347 */
amd_set_core_ssb_state(unsigned long tifn)348 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
349 {
350 struct ssb_state *st = this_cpu_ptr(&ssb_state);
351 u64 msr = x86_amd_ls_cfg_base;
352
353 if (!static_cpu_has(X86_FEATURE_ZEN)) {
354 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
355 wrmsrl(MSR_AMD64_LS_CFG, msr);
356 return;
357 }
358
359 if (tifn & _TIF_SSBD) {
360 /*
361 * Since this can race with prctl(), block reentry on the
362 * same CPU.
363 */
364 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
365 return;
366
367 msr |= x86_amd_ls_cfg_ssbd_mask;
368
369 raw_spin_lock(&st->shared_state->lock);
370 /* First sibling enables SSBD: */
371 if (!st->shared_state->disable_state)
372 wrmsrl(MSR_AMD64_LS_CFG, msr);
373 st->shared_state->disable_state++;
374 raw_spin_unlock(&st->shared_state->lock);
375 } else {
376 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
377 return;
378
379 raw_spin_lock(&st->shared_state->lock);
380 st->shared_state->disable_state--;
381 if (!st->shared_state->disable_state)
382 wrmsrl(MSR_AMD64_LS_CFG, msr);
383 raw_spin_unlock(&st->shared_state->lock);
384 }
385 }
386 #else
amd_set_core_ssb_state(unsigned long tifn)387 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
388 {
389 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
390
391 wrmsrl(MSR_AMD64_LS_CFG, msr);
392 }
393 #endif
394
amd_set_ssb_virt_state(unsigned long tifn)395 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
396 {
397 /*
398 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
399 * so ssbd_tif_to_spec_ctrl() just works.
400 */
401 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
402 }
403
404 /*
405 * Update the MSRs managing speculation control, during context switch.
406 *
407 * tifp: Previous task's thread flags
408 * tifn: Next task's thread flags
409 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)410 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
411 unsigned long tifn)
412 {
413 unsigned long tif_diff = tifp ^ tifn;
414 u64 msr = x86_spec_ctrl_base;
415 bool updmsr = false;
416
417 /*
418 * If TIF_SSBD is different, select the proper mitigation
419 * method. Note that if SSBD mitigation is disabled or permanentely
420 * enabled this branch can't be taken because nothing can set
421 * TIF_SSBD.
422 */
423 if (tif_diff & _TIF_SSBD) {
424 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
425 amd_set_ssb_virt_state(tifn);
426 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
427 amd_set_core_ssb_state(tifn);
428 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
429 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
430 msr |= ssbd_tif_to_spec_ctrl(tifn);
431 updmsr = true;
432 }
433 }
434
435 /*
436 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
437 * otherwise avoid the MSR write.
438 */
439 if (IS_ENABLED(CONFIG_SMP) &&
440 static_branch_unlikely(&switch_to_cond_stibp)) {
441 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
442 msr |= stibp_tif_to_spec_ctrl(tifn);
443 }
444
445 if (updmsr)
446 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
447 }
448
speculation_ctrl_update_tif(struct task_struct * tsk)449 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
450 {
451 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
452 if (task_spec_ssb_disable(tsk))
453 set_tsk_thread_flag(tsk, TIF_SSBD);
454 else
455 clear_tsk_thread_flag(tsk, TIF_SSBD);
456
457 if (task_spec_ib_disable(tsk))
458 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
459 else
460 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
461 }
462 /* Return the updated threadinfo flags*/
463 return task_thread_info(tsk)->flags;
464 }
465
speculation_ctrl_update(unsigned long tif)466 void speculation_ctrl_update(unsigned long tif)
467 {
468 unsigned long flags;
469
470 /* Forced update. Make sure all relevant TIF flags are different */
471 local_irq_save(flags);
472 __speculation_ctrl_update(~tif, tif);
473 local_irq_restore(flags);
474 }
475
476 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)477 void speculation_ctrl_update_current(void)
478 {
479 preempt_disable();
480 speculation_ctrl_update(speculation_ctrl_update_tif(current));
481 preempt_enable();
482 }
483
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)484 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
485 {
486 struct thread_struct *prev, *next;
487 unsigned long tifp, tifn;
488
489 prev = &prev_p->thread;
490 next = &next_p->thread;
491
492 tifn = READ_ONCE(task_thread_info(next_p)->flags);
493 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
494 switch_to_bitmap(prev, next, tifp, tifn);
495
496 propagate_user_return_notify(prev_p, next_p);
497
498 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
499 arch_has_block_step()) {
500 unsigned long debugctl, msk;
501
502 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
503 debugctl &= ~DEBUGCTLMSR_BTF;
504 msk = tifn & _TIF_BLOCKSTEP;
505 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
506 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
507 }
508
509 if ((tifp ^ tifn) & _TIF_NOTSC)
510 cr4_toggle_bits(X86_CR4_TSD);
511
512 if ((tifp ^ tifn) & _TIF_NOCPUID)
513 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
514
515 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
516 __speculation_ctrl_update(tifp, tifn);
517 } else {
518 speculation_ctrl_update_tif(prev_p);
519 tifn = speculation_ctrl_update_tif(next_p);
520
521 /* Enforce MSR update to ensure consistent state */
522 __speculation_ctrl_update(~tifn, tifn);
523 }
524 }
525
526 /*
527 * Idle related variables and functions
528 */
529 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
530 EXPORT_SYMBOL(boot_option_idle_override);
531
532 static void (*x86_idle)(void);
533
534 #ifndef CONFIG_SMP
play_dead(void)535 static inline void play_dead(void)
536 {
537 BUG();
538 }
539 #endif
540
arch_cpu_idle_enter(void)541 void arch_cpu_idle_enter(void)
542 {
543 tsc_verify_tsc_adjust(false);
544 local_touch_nmi();
545 }
546
arch_cpu_idle_dead(void)547 void arch_cpu_idle_dead(void)
548 {
549 play_dead();
550 }
551
552 /*
553 * Called from the generic idle code.
554 */
arch_cpu_idle(void)555 void arch_cpu_idle(void)
556 {
557 x86_idle();
558 }
559
560 /*
561 * We use this if we don't have any better idle routine..
562 */
default_idle(void)563 void __cpuidle default_idle(void)
564 {
565 trace_cpu_idle_rcuidle(1, smp_processor_id());
566 safe_halt();
567 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
568 }
569 #ifdef CONFIG_APM_MODULE
570 EXPORT_SYMBOL(default_idle);
571 #endif
572
573 #ifdef CONFIG_XEN
xen_set_default_idle(void)574 bool xen_set_default_idle(void)
575 {
576 bool ret = !!x86_idle;
577
578 x86_idle = default_idle;
579
580 return ret;
581 }
582 #endif
583
stop_this_cpu(void * dummy)584 void stop_this_cpu(void *dummy)
585 {
586 local_irq_disable();
587 /*
588 * Remove this CPU:
589 */
590 set_cpu_online(smp_processor_id(), false);
591 disable_local_APIC();
592 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
593
594 /*
595 * Use wbinvd on processors that support SME. This provides support
596 * for performing a successful kexec when going from SME inactive
597 * to SME active (or vice-versa). The cache must be cleared so that
598 * if there are entries with the same physical address, both with and
599 * without the encryption bit, they don't race each other when flushed
600 * and potentially end up with the wrong entry being committed to
601 * memory.
602 */
603 if (boot_cpu_has(X86_FEATURE_SME))
604 native_wbinvd();
605 for (;;) {
606 /*
607 * Use native_halt() so that memory contents don't change
608 * (stack usage and variables) after possibly issuing the
609 * native_wbinvd() above.
610 */
611 native_halt();
612 }
613 }
614
615 /*
616 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
617 * states (local apic timer and TSC stop).
618 */
amd_e400_idle(void)619 static void amd_e400_idle(void)
620 {
621 /*
622 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
623 * gets set after static_cpu_has() places have been converted via
624 * alternatives.
625 */
626 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
627 default_idle();
628 return;
629 }
630
631 tick_broadcast_enter();
632
633 default_idle();
634
635 /*
636 * The switch back from broadcast mode needs to be called with
637 * interrupts disabled.
638 */
639 local_irq_disable();
640 tick_broadcast_exit();
641 local_irq_enable();
642 }
643
644 /*
645 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
646 * We can't rely on cpuidle installing MWAIT, because it will not load
647 * on systems that support only C1 -- so the boot default must be MWAIT.
648 *
649 * Some AMD machines are the opposite, they depend on using HALT.
650 *
651 * So for default C1, which is used during boot until cpuidle loads,
652 * use MWAIT-C1 on Intel HW that has it, else use HALT.
653 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)654 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
655 {
656 if (c->x86_vendor != X86_VENDOR_INTEL)
657 return 0;
658
659 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
660 return 0;
661
662 return 1;
663 }
664
665 /*
666 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
667 * with interrupts enabled and no flags, which is backwards compatible with the
668 * original MWAIT implementation.
669 */
mwait_idle(void)670 static __cpuidle void mwait_idle(void)
671 {
672 if (!current_set_polling_and_test()) {
673 trace_cpu_idle_rcuidle(1, smp_processor_id());
674 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
675 mb(); /* quirk */
676 clflush((void *)¤t_thread_info()->flags);
677 mb(); /* quirk */
678 }
679
680 __monitor((void *)¤t_thread_info()->flags, 0, 0);
681 if (!need_resched())
682 __sti_mwait(0, 0);
683 else
684 local_irq_enable();
685 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
686 } else {
687 local_irq_enable();
688 }
689 __current_clr_polling();
690 }
691
select_idle_routine(const struct cpuinfo_x86 * c)692 void select_idle_routine(const struct cpuinfo_x86 *c)
693 {
694 #ifdef CONFIG_SMP
695 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
696 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
697 #endif
698 if (x86_idle || boot_option_idle_override == IDLE_POLL)
699 return;
700
701 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
702 pr_info("using AMD E400 aware idle routine\n");
703 x86_idle = amd_e400_idle;
704 } else if (prefer_mwait_c1_over_halt(c)) {
705 pr_info("using mwait in idle threads\n");
706 x86_idle = mwait_idle;
707 } else
708 x86_idle = default_idle;
709 }
710
amd_e400_c1e_apic_setup(void)711 void amd_e400_c1e_apic_setup(void)
712 {
713 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
714 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
715 local_irq_disable();
716 tick_broadcast_force();
717 local_irq_enable();
718 }
719 }
720
arch_post_acpi_subsys_init(void)721 void __init arch_post_acpi_subsys_init(void)
722 {
723 u32 lo, hi;
724
725 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
726 return;
727
728 /*
729 * AMD E400 detection needs to happen after ACPI has been enabled. If
730 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
731 * MSR_K8_INT_PENDING_MSG.
732 */
733 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
734 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
735 return;
736
737 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
738
739 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
740 mark_tsc_unstable("TSC halt in AMD C1E");
741 pr_info("System has AMD C1E enabled\n");
742 }
743
idle_setup(char * str)744 static int __init idle_setup(char *str)
745 {
746 if (!str)
747 return -EINVAL;
748
749 if (!strcmp(str, "poll")) {
750 pr_info("using polling idle threads\n");
751 boot_option_idle_override = IDLE_POLL;
752 cpu_idle_poll_ctrl(true);
753 } else if (!strcmp(str, "halt")) {
754 /*
755 * When the boot option of idle=halt is added, halt is
756 * forced to be used for CPU idle. In such case CPU C2/C3
757 * won't be used again.
758 * To continue to load the CPU idle driver, don't touch
759 * the boot_option_idle_override.
760 */
761 x86_idle = default_idle;
762 boot_option_idle_override = IDLE_HALT;
763 } else if (!strcmp(str, "nomwait")) {
764 /*
765 * If the boot option of "idle=nomwait" is added,
766 * it means that mwait will be disabled for CPU C2/C3
767 * states. In such case it won't touch the variable
768 * of boot_option_idle_override.
769 */
770 boot_option_idle_override = IDLE_NOMWAIT;
771 } else
772 return -1;
773
774 return 0;
775 }
776 early_param("idle", idle_setup);
777
arch_align_stack(unsigned long sp)778 unsigned long arch_align_stack(unsigned long sp)
779 {
780 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
781 sp -= get_random_int() % 8192;
782 return sp & ~0xf;
783 }
784
arch_randomize_brk(struct mm_struct * mm)785 unsigned long arch_randomize_brk(struct mm_struct *mm)
786 {
787 return randomize_page(mm->brk, 0x02000000);
788 }
789
790 /*
791 * Called from fs/proc with a reference on @p to find the function
792 * which called into schedule(). This needs to be done carefully
793 * because the task might wake up and we might look at a stack
794 * changing under us.
795 */
get_wchan(struct task_struct * p)796 unsigned long get_wchan(struct task_struct *p)
797 {
798 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
799 int count = 0;
800
801 if (!p || p == current || p->state == TASK_RUNNING)
802 return 0;
803
804 if (!try_get_task_stack(p))
805 return 0;
806
807 start = (unsigned long)task_stack_page(p);
808 if (!start)
809 goto out;
810
811 /*
812 * Layout of the stack page:
813 *
814 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
815 * PADDING
816 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
817 * stack
818 * ----------- bottom = start
819 *
820 * The tasks stack pointer points at the location where the
821 * framepointer is stored. The data on the stack is:
822 * ... IP FP ... IP FP
823 *
824 * We need to read FP and IP, so we need to adjust the upper
825 * bound by another unsigned long.
826 */
827 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
828 top -= 2 * sizeof(unsigned long);
829 bottom = start;
830
831 sp = READ_ONCE(p->thread.sp);
832 if (sp < bottom || sp > top)
833 goto out;
834
835 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
836 do {
837 if (fp < bottom || fp > top)
838 goto out;
839 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
840 if (!in_sched_functions(ip)) {
841 ret = ip;
842 goto out;
843 }
844 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
845 } while (count++ < 16 && p->state != TASK_RUNNING);
846
847 out:
848 put_task_stack(p);
849 return ret;
850 }
851
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)852 long do_arch_prctl_common(struct task_struct *task, int option,
853 unsigned long cpuid_enabled)
854 {
855 switch (option) {
856 case ARCH_GET_CPUID:
857 return get_cpuid_mode();
858 case ARCH_SET_CPUID:
859 return set_cpuid_mode(task, cpuid_enabled);
860 }
861
862 return -EINVAL;
863 }
864