• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
__build_skb(void * data,unsigned int frag_size)275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
build_skb(void * data,unsigned int frag_size)310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
netdev_alloc_frag(unsigned int fragsz)354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	fragsz = SKB_DATA_ALIGN(fragsz);
357 
358 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
359 }
360 EXPORT_SYMBOL(netdev_alloc_frag);
361 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)362 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
363 {
364 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
365 
366 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
367 }
368 
napi_alloc_frag(unsigned int fragsz)369 void *napi_alloc_frag(unsigned int fragsz)
370 {
371 	fragsz = SKB_DATA_ALIGN(fragsz);
372 
373 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374 }
375 EXPORT_SYMBOL(napi_alloc_frag);
376 
377 /**
378  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
379  *	@dev: network device to receive on
380  *	@len: length to allocate
381  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
382  *
383  *	Allocate a new &sk_buff and assign it a usage count of one. The
384  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
385  *	the headroom they think they need without accounting for the
386  *	built in space. The built in space is used for optimisations.
387  *
388  *	%NULL is returned if there is no free memory.
389  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 				   gfp_t gfp_mask)
392 {
393 	struct page_frag_cache *nc;
394 	unsigned long flags;
395 	struct sk_buff *skb;
396 	bool pfmemalloc;
397 	void *data;
398 
399 	len += NET_SKB_PAD;
400 
401 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 		if (!skb)
405 			goto skb_fail;
406 		goto skb_success;
407 	}
408 
409 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 	len = SKB_DATA_ALIGN(len);
411 
412 	if (sk_memalloc_socks())
413 		gfp_mask |= __GFP_MEMALLOC;
414 
415 	local_irq_save(flags);
416 
417 	nc = this_cpu_ptr(&netdev_alloc_cache);
418 	data = page_frag_alloc(nc, len, gfp_mask);
419 	pfmemalloc = nc->pfmemalloc;
420 
421 	local_irq_restore(flags);
422 
423 	if (unlikely(!data))
424 		return NULL;
425 
426 	skb = __build_skb(data, len);
427 	if (unlikely(!skb)) {
428 		skb_free_frag(data);
429 		return NULL;
430 	}
431 
432 	/* use OR instead of assignment to avoid clearing of bits in mask */
433 	if (pfmemalloc)
434 		skb->pfmemalloc = 1;
435 	skb->head_frag = 1;
436 
437 skb_success:
438 	skb_reserve(skb, NET_SKB_PAD);
439 	skb->dev = dev;
440 
441 skb_fail:
442 	return skb;
443 }
444 EXPORT_SYMBOL(__netdev_alloc_skb);
445 
446 /**
447  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448  *	@napi: napi instance this buffer was allocated for
449  *	@len: length to allocate
450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451  *
452  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
453  *	attempt to allocate the head from a special reserved region used
454  *	only for NAPI Rx allocation.  By doing this we can save several
455  *	CPU cycles by avoiding having to disable and re-enable IRQs.
456  *
457  *	%NULL is returned if there is no free memory.
458  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 				 gfp_t gfp_mask)
461 {
462 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 	struct sk_buff *skb;
464 	void *data;
465 
466 	len += NET_SKB_PAD + NET_IP_ALIGN;
467 
468 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 		if (!skb)
472 			goto skb_fail;
473 		goto skb_success;
474 	}
475 
476 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 	len = SKB_DATA_ALIGN(len);
478 
479 	if (sk_memalloc_socks())
480 		gfp_mask |= __GFP_MEMALLOC;
481 
482 	data = page_frag_alloc(&nc->page, len, gfp_mask);
483 	if (unlikely(!data))
484 		return NULL;
485 
486 	skb = __build_skb(data, len);
487 	if (unlikely(!skb)) {
488 		skb_free_frag(data);
489 		return NULL;
490 	}
491 
492 	/* use OR instead of assignment to avoid clearing of bits in mask */
493 	if (nc->page.pfmemalloc)
494 		skb->pfmemalloc = 1;
495 	skb->head_frag = 1;
496 
497 skb_success:
498 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 	skb->dev = napi->dev;
500 
501 skb_fail:
502 	return skb;
503 }
504 EXPORT_SYMBOL(__napi_alloc_skb);
505 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 		     int size, unsigned int truesize)
508 {
509 	skb_fill_page_desc(skb, i, page, off, size);
510 	skb->len += size;
511 	skb->data_len += size;
512 	skb->truesize += truesize;
513 }
514 EXPORT_SYMBOL(skb_add_rx_frag);
515 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 			  unsigned int truesize)
518 {
519 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 
521 	skb_frag_size_add(frag, size);
522 	skb->len += size;
523 	skb->data_len += size;
524 	skb->truesize += truesize;
525 }
526 EXPORT_SYMBOL(skb_coalesce_rx_frag);
527 
skb_drop_list(struct sk_buff ** listp)528 static void skb_drop_list(struct sk_buff **listp)
529 {
530 	kfree_skb_list(*listp);
531 	*listp = NULL;
532 }
533 
skb_drop_fraglist(struct sk_buff * skb)534 static inline void skb_drop_fraglist(struct sk_buff *skb)
535 {
536 	skb_drop_list(&skb_shinfo(skb)->frag_list);
537 }
538 
skb_clone_fraglist(struct sk_buff * skb)539 static void skb_clone_fraglist(struct sk_buff *skb)
540 {
541 	struct sk_buff *list;
542 
543 	skb_walk_frags(skb, list)
544 		skb_get(list);
545 }
546 
skb_free_head(struct sk_buff * skb)547 static void skb_free_head(struct sk_buff *skb)
548 {
549 	unsigned char *head = skb->head;
550 
551 	if (skb->head_frag)
552 		skb_free_frag(head);
553 	else
554 		kfree(head);
555 }
556 
skb_release_data(struct sk_buff * skb)557 static void skb_release_data(struct sk_buff *skb)
558 {
559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
560 	int i;
561 
562 	if (skb->cloned &&
563 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 			      &shinfo->dataref))
565 		return;
566 
567 	for (i = 0; i < shinfo->nr_frags; i++)
568 		__skb_frag_unref(&shinfo->frags[i]);
569 
570 	if (shinfo->frag_list)
571 		kfree_skb_list(shinfo->frag_list);
572 
573 	skb_zcopy_clear(skb, true);
574 	skb_free_head(skb);
575 }
576 
577 /*
578  *	Free an skbuff by memory without cleaning the state.
579  */
kfree_skbmem(struct sk_buff * skb)580 static void kfree_skbmem(struct sk_buff *skb)
581 {
582 	struct sk_buff_fclones *fclones;
583 
584 	switch (skb->fclone) {
585 	case SKB_FCLONE_UNAVAILABLE:
586 		kmem_cache_free(skbuff_head_cache, skb);
587 		return;
588 
589 	case SKB_FCLONE_ORIG:
590 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
591 
592 		/* We usually free the clone (TX completion) before original skb
593 		 * This test would have no chance to be true for the clone,
594 		 * while here, branch prediction will be good.
595 		 */
596 		if (refcount_read(&fclones->fclone_ref) == 1)
597 			goto fastpath;
598 		break;
599 
600 	default: /* SKB_FCLONE_CLONE */
601 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 		break;
603 	}
604 	if (!refcount_dec_and_test(&fclones->fclone_ref))
605 		return;
606 fastpath:
607 	kmem_cache_free(skbuff_fclone_cache, fclones);
608 }
609 
skb_release_head_state(struct sk_buff * skb)610 void skb_release_head_state(struct sk_buff *skb)
611 {
612 	skb_dst_drop(skb);
613 	secpath_reset(skb);
614 	if (skb->destructor) {
615 		WARN_ON(in_irq());
616 		skb->destructor(skb);
617 	}
618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 	nf_conntrack_put(skb_nfct(skb));
620 #endif
621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 	nf_bridge_put(skb->nf_bridge);
623 #endif
624 }
625 
626 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
__kfree_skb(struct sk_buff * skb)643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
kfree_skb(struct sk_buff * skb)657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
kfree_skb_list(struct sk_buff * segs)667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
skb_tx_error(struct sk_buff * skb)685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
consume_skb(struct sk_buff * skb)699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Alike consume_skb(), but this variant assumes that this is the last
714  *	skb reference and all the head states have been already dropped
715  */
__consume_stateless_skb(struct sk_buff * skb)716 void __consume_stateless_skb(struct sk_buff *skb)
717 {
718 	trace_consume_skb(skb);
719 	skb_release_data(skb);
720 	kfree_skbmem(skb);
721 }
722 
__kfree_skb_flush(void)723 void __kfree_skb_flush(void)
724 {
725 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726 
727 	/* flush skb_cache if containing objects */
728 	if (nc->skb_count) {
729 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 				     nc->skb_cache);
731 		nc->skb_count = 0;
732 	}
733 }
734 
_kfree_skb_defer(struct sk_buff * skb)735 static inline void _kfree_skb_defer(struct sk_buff *skb)
736 {
737 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738 
739 	/* drop skb->head and call any destructors for packet */
740 	skb_release_all(skb);
741 
742 	/* record skb to CPU local list */
743 	nc->skb_cache[nc->skb_count++] = skb;
744 
745 #ifdef CONFIG_SLUB
746 	/* SLUB writes into objects when freeing */
747 	prefetchw(skb);
748 #endif
749 
750 	/* flush skb_cache if it is filled */
751 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 				     nc->skb_cache);
754 		nc->skb_count = 0;
755 	}
756 }
__kfree_skb_defer(struct sk_buff * skb)757 void __kfree_skb_defer(struct sk_buff *skb)
758 {
759 	_kfree_skb_defer(skb);
760 }
761 
napi_consume_skb(struct sk_buff * skb,int budget)762 void napi_consume_skb(struct sk_buff *skb, int budget)
763 {
764 	if (unlikely(!skb))
765 		return;
766 
767 	/* Zero budget indicate non-NAPI context called us, like netpoll */
768 	if (unlikely(!budget)) {
769 		dev_consume_skb_any(skb);
770 		return;
771 	}
772 
773 	if (!skb_unref(skb))
774 		return;
775 
776 	/* if reaching here SKB is ready to free */
777 	trace_consume_skb(skb);
778 
779 	/* if SKB is a clone, don't handle this case */
780 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 		__kfree_skb(skb);
782 		return;
783 	}
784 
785 	_kfree_skb_defer(skb);
786 }
787 EXPORT_SYMBOL(napi_consume_skb);
788 
789 /* Make sure a field is enclosed inside headers_start/headers_end section */
790 #define CHECK_SKB_FIELD(field) \
791 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
792 		     offsetof(struct sk_buff, headers_start));	\
793 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
794 		     offsetof(struct sk_buff, headers_end));	\
795 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797 {
798 	new->tstamp		= old->tstamp;
799 	/* We do not copy old->sk */
800 	new->dev		= old->dev;
801 	memcpy(new->cb, old->cb, sizeof(old->cb));
802 	skb_dst_copy(new, old);
803 #ifdef CONFIG_XFRM
804 	new->sp			= secpath_get(old->sp);
805 #endif
806 	__nf_copy(new, old, false);
807 
808 	/* Note : this field could be in headers_start/headers_end section
809 	 * It is not yet because we do not want to have a 16 bit hole
810 	 */
811 	new->queue_mapping = old->queue_mapping;
812 
813 	memcpy(&new->headers_start, &old->headers_start,
814 	       offsetof(struct sk_buff, headers_end) -
815 	       offsetof(struct sk_buff, headers_start));
816 	CHECK_SKB_FIELD(protocol);
817 	CHECK_SKB_FIELD(csum);
818 	CHECK_SKB_FIELD(hash);
819 	CHECK_SKB_FIELD(priority);
820 	CHECK_SKB_FIELD(skb_iif);
821 	CHECK_SKB_FIELD(vlan_proto);
822 	CHECK_SKB_FIELD(vlan_tci);
823 	CHECK_SKB_FIELD(transport_header);
824 	CHECK_SKB_FIELD(network_header);
825 	CHECK_SKB_FIELD(mac_header);
826 	CHECK_SKB_FIELD(inner_protocol);
827 	CHECK_SKB_FIELD(inner_transport_header);
828 	CHECK_SKB_FIELD(inner_network_header);
829 	CHECK_SKB_FIELD(inner_mac_header);
830 	CHECK_SKB_FIELD(mark);
831 #ifdef CONFIG_NETWORK_SECMARK
832 	CHECK_SKB_FIELD(secmark);
833 #endif
834 #ifdef CONFIG_NET_RX_BUSY_POLL
835 	CHECK_SKB_FIELD(napi_id);
836 #endif
837 #ifdef CONFIG_XPS
838 	CHECK_SKB_FIELD(sender_cpu);
839 #endif
840 #ifdef CONFIG_NET_SCHED
841 	CHECK_SKB_FIELD(tc_index);
842 #endif
843 
844 }
845 
846 /*
847  * You should not add any new code to this function.  Add it to
848  * __copy_skb_header above instead.
849  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851 {
852 #define C(x) n->x = skb->x
853 
854 	n->next = n->prev = NULL;
855 	n->sk = NULL;
856 	__copy_skb_header(n, skb);
857 
858 	C(len);
859 	C(data_len);
860 	C(mac_len);
861 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 	n->cloned = 1;
863 	n->nohdr = 0;
864 	n->peeked = 0;
865 	C(pfmemalloc);
866 	n->destructor = NULL;
867 	C(tail);
868 	C(end);
869 	C(head);
870 	C(head_frag);
871 	C(data);
872 	C(truesize);
873 	refcount_set(&n->users, 1);
874 
875 	atomic_inc(&(skb_shinfo(skb)->dataref));
876 	skb->cloned = 1;
877 
878 	return n;
879 #undef C
880 }
881 
882 /**
883  *	skb_morph	-	morph one skb into another
884  *	@dst: the skb to receive the contents
885  *	@src: the skb to supply the contents
886  *
887  *	This is identical to skb_clone except that the target skb is
888  *	supplied by the user.
889  *
890  *	The target skb is returned upon exit.
891  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)892 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
893 {
894 	skb_release_all(dst);
895 	return __skb_clone(dst, src);
896 }
897 EXPORT_SYMBOL_GPL(skb_morph);
898 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)899 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
900 {
901 	unsigned long max_pg, num_pg, new_pg, old_pg;
902 	struct user_struct *user;
903 
904 	if (capable(CAP_IPC_LOCK) || !size)
905 		return 0;
906 
907 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
908 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
909 	user = mmp->user ? : current_user();
910 
911 	do {
912 		old_pg = atomic_long_read(&user->locked_vm);
913 		new_pg = old_pg + num_pg;
914 		if (new_pg > max_pg)
915 			return -ENOBUFS;
916 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
917 		 old_pg);
918 
919 	if (!mmp->user) {
920 		mmp->user = get_uid(user);
921 		mmp->num_pg = num_pg;
922 	} else {
923 		mmp->num_pg += num_pg;
924 	}
925 
926 	return 0;
927 }
928 
mm_unaccount_pinned_pages(struct mmpin * mmp)929 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
930 {
931 	if (mmp->user) {
932 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
933 		free_uid(mmp->user);
934 	}
935 }
936 
sock_zerocopy_alloc(struct sock * sk,size_t size)937 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
938 {
939 	struct ubuf_info *uarg;
940 	struct sk_buff *skb;
941 
942 	WARN_ON_ONCE(!in_task());
943 
944 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 	if (!skb)
946 		return NULL;
947 
948 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 	uarg = (void *)skb->cb;
950 	uarg->mmp.user = NULL;
951 
952 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 		kfree_skb(skb);
954 		return NULL;
955 	}
956 
957 	uarg->callback = sock_zerocopy_callback;
958 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 	uarg->len = 1;
960 	uarg->bytelen = size;
961 	uarg->zerocopy = 1;
962 	refcount_set(&uarg->refcnt, 1);
963 	sock_hold(sk);
964 
965 	return uarg;
966 }
967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968 
skb_from_uarg(struct ubuf_info * uarg)969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970 {
971 	return container_of((void *)uarg, struct sk_buff, cb);
972 }
973 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 					struct ubuf_info *uarg)
976 {
977 	if (uarg) {
978 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
979 		u32 bytelen, next;
980 
981 		/* realloc only when socket is locked (TCP, UDP cork),
982 		 * so uarg->len and sk_zckey access is serialized
983 		 */
984 		if (!sock_owned_by_user(sk)) {
985 			WARN_ON_ONCE(1);
986 			return NULL;
987 		}
988 
989 		bytelen = uarg->bytelen + size;
990 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 			/* TCP can create new skb to attach new uarg */
992 			if (sk->sk_type == SOCK_STREAM)
993 				goto new_alloc;
994 			return NULL;
995 		}
996 
997 		next = (u32)atomic_read(&sk->sk_zckey);
998 		if ((u32)(uarg->id + uarg->len) == next) {
999 			if (mm_account_pinned_pages(&uarg->mmp, size))
1000 				return NULL;
1001 			uarg->len++;
1002 			uarg->bytelen = bytelen;
1003 			atomic_set(&sk->sk_zckey, ++next);
1004 			sock_zerocopy_get(uarg);
1005 			return uarg;
1006 		}
1007 	}
1008 
1009 new_alloc:
1010 	return sock_zerocopy_alloc(sk, size);
1011 }
1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015 {
1016 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 	u32 old_lo, old_hi;
1018 	u64 sum_len;
1019 
1020 	old_lo = serr->ee.ee_info;
1021 	old_hi = serr->ee.ee_data;
1022 	sum_len = old_hi - old_lo + 1ULL + len;
1023 
1024 	if (sum_len >= (1ULL << 32))
1025 		return false;
1026 
1027 	if (lo != old_hi + 1)
1028 		return false;
1029 
1030 	serr->ee.ee_data += len;
1031 	return true;
1032 }
1033 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035 {
1036 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 	struct sock_exterr_skb *serr;
1038 	struct sock *sk = skb->sk;
1039 	struct sk_buff_head *q;
1040 	unsigned long flags;
1041 	u32 lo, hi;
1042 	u16 len;
1043 
1044 	mm_unaccount_pinned_pages(&uarg->mmp);
1045 
1046 	/* if !len, there was only 1 call, and it was aborted
1047 	 * so do not queue a completion notification
1048 	 */
1049 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 		goto release;
1051 
1052 	len = uarg->len;
1053 	lo = uarg->id;
1054 	hi = uarg->id + len - 1;
1055 
1056 	serr = SKB_EXT_ERR(skb);
1057 	memset(serr, 0, sizeof(*serr));
1058 	serr->ee.ee_errno = 0;
1059 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 	serr->ee.ee_data = hi;
1061 	serr->ee.ee_info = lo;
1062 	if (!success)
1063 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064 
1065 	q = &sk->sk_error_queue;
1066 	spin_lock_irqsave(&q->lock, flags);
1067 	tail = skb_peek_tail(q);
1068 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 		__skb_queue_tail(q, skb);
1071 		skb = NULL;
1072 	}
1073 	spin_unlock_irqrestore(&q->lock, flags);
1074 
1075 	sk->sk_error_report(sk);
1076 
1077 release:
1078 	consume_skb(skb);
1079 	sock_put(sk);
1080 }
1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082 
sock_zerocopy_put(struct ubuf_info * uarg)1083 void sock_zerocopy_put(struct ubuf_info *uarg)
1084 {
1085 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 		if (uarg->callback)
1087 			uarg->callback(uarg, uarg->zerocopy);
1088 		else
1089 			consume_skb(skb_from_uarg(uarg));
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093 
sock_zerocopy_put_abort(struct ubuf_info * uarg)1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095 {
1096 	if (uarg) {
1097 		struct sock *sk = skb_from_uarg(uarg)->sk;
1098 
1099 		atomic_dec(&sk->sk_zckey);
1100 		uarg->len--;
1101 
1102 		sock_zerocopy_put(uarg);
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106 
1107 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108 				   struct iov_iter *from, size_t length);
1109 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1110 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111 			     struct msghdr *msg, int len,
1112 			     struct ubuf_info *uarg)
1113 {
1114 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115 	struct iov_iter orig_iter = msg->msg_iter;
1116 	int err, orig_len = skb->len;
1117 
1118 	/* An skb can only point to one uarg. This edge case happens when
1119 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120 	 */
1121 	if (orig_uarg && uarg != orig_uarg)
1122 		return -EEXIST;
1123 
1124 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126 		struct sock *save_sk = skb->sk;
1127 
1128 		/* Streams do not free skb on error. Reset to prev state. */
1129 		msg->msg_iter = orig_iter;
1130 		skb->sk = sk;
1131 		___pskb_trim(skb, orig_len);
1132 		skb->sk = save_sk;
1133 		return err;
1134 	}
1135 
1136 	skb_zcopy_set(skb, uarg);
1137 	return skb->len - orig_len;
1138 }
1139 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1141 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142 			      gfp_t gfp_mask)
1143 {
1144 	if (skb_zcopy(orig)) {
1145 		if (skb_zcopy(nskb)) {
1146 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147 			if (!gfp_mask) {
1148 				WARN_ON_ONCE(1);
1149 				return -ENOMEM;
1150 			}
1151 			if (skb_uarg(nskb) == skb_uarg(orig))
1152 				return 0;
1153 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154 				return -EIO;
1155 		}
1156 		skb_zcopy_set(nskb, skb_uarg(orig));
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1163  *	@skb: the skb to modify
1164  *	@gfp_mask: allocation priority
1165  *
1166  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1167  *	It will copy all frags into kernel and drop the reference
1168  *	to userspace pages.
1169  *
1170  *	If this function is called from an interrupt gfp_mask() must be
1171  *	%GFP_ATOMIC.
1172  *
1173  *	Returns 0 on success or a negative error code on failure
1174  *	to allocate kernel memory to copy to.
1175  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1176 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177 {
1178 	int num_frags = skb_shinfo(skb)->nr_frags;
1179 	struct page *page, *head = NULL;
1180 	int i, new_frags;
1181 	u32 d_off;
1182 
1183 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 		return -EINVAL;
1185 
1186 	if (!num_frags)
1187 		goto release;
1188 
1189 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 	for (i = 0; i < new_frags; i++) {
1191 		page = alloc_page(gfp_mask);
1192 		if (!page) {
1193 			while (head) {
1194 				struct page *next = (struct page *)page_private(head);
1195 				put_page(head);
1196 				head = next;
1197 			}
1198 			return -ENOMEM;
1199 		}
1200 		set_page_private(page, (unsigned long)head);
1201 		head = page;
1202 	}
1203 
1204 	page = head;
1205 	d_off = 0;
1206 	for (i = 0; i < num_frags; i++) {
1207 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208 		u32 p_off, p_len, copied;
1209 		struct page *p;
1210 		u8 *vaddr;
1211 
1212 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213 				      p, p_off, p_len, copied) {
1214 			u32 copy, done = 0;
1215 			vaddr = kmap_atomic(p);
1216 
1217 			while (done < p_len) {
1218 				if (d_off == PAGE_SIZE) {
1219 					d_off = 0;
1220 					page = (struct page *)page_private(page);
1221 				}
1222 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223 				memcpy(page_address(page) + d_off,
1224 				       vaddr + p_off + done, copy);
1225 				done += copy;
1226 				d_off += copy;
1227 			}
1228 			kunmap_atomic(vaddr);
1229 		}
1230 	}
1231 
1232 	/* skb frags release userspace buffers */
1233 	for (i = 0; i < num_frags; i++)
1234 		skb_frag_unref(skb, i);
1235 
1236 	/* skb frags point to kernel buffers */
1237 	for (i = 0; i < new_frags - 1; i++) {
1238 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239 		head = (struct page *)page_private(head);
1240 	}
1241 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1242 	skb_shinfo(skb)->nr_frags = new_frags;
1243 
1244 release:
1245 	skb_zcopy_clear(skb, false);
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249 
1250 /**
1251  *	skb_clone	-	duplicate an sk_buff
1252  *	@skb: buffer to clone
1253  *	@gfp_mask: allocation priority
1254  *
1255  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256  *	copies share the same packet data but not structure. The new
1257  *	buffer has a reference count of 1. If the allocation fails the
1258  *	function returns %NULL otherwise the new buffer is returned.
1259  *
1260  *	If this function is called from an interrupt gfp_mask() must be
1261  *	%GFP_ATOMIC.
1262  */
1263 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265 {
1266 	struct sk_buff_fclones *fclones = container_of(skb,
1267 						       struct sk_buff_fclones,
1268 						       skb1);
1269 	struct sk_buff *n;
1270 
1271 	if (skb_orphan_frags(skb, gfp_mask))
1272 		return NULL;
1273 
1274 	if (skb->fclone == SKB_FCLONE_ORIG &&
1275 	    refcount_read(&fclones->fclone_ref) == 1) {
1276 		n = &fclones->skb2;
1277 		refcount_set(&fclones->fclone_ref, 2);
1278 	} else {
1279 		if (skb_pfmemalloc(skb))
1280 			gfp_mask |= __GFP_MEMALLOC;
1281 
1282 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 		if (!n)
1284 			return NULL;
1285 
1286 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 	}
1288 
1289 	return __skb_clone(n, skb);
1290 }
1291 EXPORT_SYMBOL(skb_clone);
1292 
skb_headers_offset_update(struct sk_buff * skb,int off)1293 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294 {
1295 	/* Only adjust this if it actually is csum_start rather than csum */
1296 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1297 		skb->csum_start += off;
1298 	/* {transport,network,mac}_header and tail are relative to skb->head */
1299 	skb->transport_header += off;
1300 	skb->network_header   += off;
1301 	if (skb_mac_header_was_set(skb))
1302 		skb->mac_header += off;
1303 	skb->inner_transport_header += off;
1304 	skb->inner_network_header += off;
1305 	skb->inner_mac_header += off;
1306 }
1307 
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1308 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1309 {
1310 	__copy_skb_header(new, old);
1311 
1312 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315 }
1316 
skb_alloc_rx_flag(const struct sk_buff * skb)1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318 {
1319 	if (skb_pfmemalloc(skb))
1320 		return SKB_ALLOC_RX;
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_copy	-	create private copy of an sk_buff
1326  *	@skb: buffer to copy
1327  *	@gfp_mask: allocation priority
1328  *
1329  *	Make a copy of both an &sk_buff and its data. This is used when the
1330  *	caller wishes to modify the data and needs a private copy of the
1331  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332  *	on success. The returned buffer has a reference count of 1.
1333  *
1334  *	As by-product this function converts non-linear &sk_buff to linear
1335  *	one, so that &sk_buff becomes completely private and caller is allowed
1336  *	to modify all the data of returned buffer. This means that this
1337  *	function is not recommended for use in circumstances when only
1338  *	header is going to be modified. Use pskb_copy() instead.
1339  */
1340 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 	int headerlen = skb_headroom(skb);
1344 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347 
1348 	if (!n)
1349 		return NULL;
1350 
1351 	/* Set the data pointer */
1352 	skb_reserve(n, headerlen);
1353 	/* Set the tail pointer and length */
1354 	skb_put(n, skb->len);
1355 
1356 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1357 		BUG();
1358 
1359 	copy_skb_header(n, skb);
1360 	return n;
1361 }
1362 EXPORT_SYMBOL(skb_copy);
1363 
1364 /**
1365  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1366  *	@skb: buffer to copy
1367  *	@headroom: headroom of new skb
1368  *	@gfp_mask: allocation priority
1369  *	@fclone: if true allocate the copy of the skb from the fclone
1370  *	cache instead of the head cache; it is recommended to set this
1371  *	to true for the cases where the copy will likely be cloned
1372  *
1373  *	Make a copy of both an &sk_buff and part of its data, located
1374  *	in header. Fragmented data remain shared. This is used when
1375  *	the caller wishes to modify only header of &sk_buff and needs
1376  *	private copy of the header to alter. Returns %NULL on failure
1377  *	or the pointer to the buffer on success.
1378  *	The returned buffer has a reference count of 1.
1379  */
1380 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1381 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1382 				   gfp_t gfp_mask, bool fclone)
1383 {
1384 	unsigned int size = skb_headlen(skb) + headroom;
1385 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1386 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1387 
1388 	if (!n)
1389 		goto out;
1390 
1391 	/* Set the data pointer */
1392 	skb_reserve(n, headroom);
1393 	/* Set the tail pointer and length */
1394 	skb_put(n, skb_headlen(skb));
1395 	/* Copy the bytes */
1396 	skb_copy_from_linear_data(skb, n->data, n->len);
1397 
1398 	n->truesize += skb->data_len;
1399 	n->data_len  = skb->data_len;
1400 	n->len	     = skb->len;
1401 
1402 	if (skb_shinfo(skb)->nr_frags) {
1403 		int i;
1404 
1405 		if (skb_orphan_frags(skb, gfp_mask) ||
1406 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1407 			kfree_skb(n);
1408 			n = NULL;
1409 			goto out;
1410 		}
1411 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1412 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1413 			skb_frag_ref(skb, i);
1414 		}
1415 		skb_shinfo(n)->nr_frags = i;
1416 	}
1417 
1418 	if (skb_has_frag_list(skb)) {
1419 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1420 		skb_clone_fraglist(n);
1421 	}
1422 
1423 	copy_skb_header(n, skb);
1424 out:
1425 	return n;
1426 }
1427 EXPORT_SYMBOL(__pskb_copy_fclone);
1428 
1429 /**
1430  *	pskb_expand_head - reallocate header of &sk_buff
1431  *	@skb: buffer to reallocate
1432  *	@nhead: room to add at head
1433  *	@ntail: room to add at tail
1434  *	@gfp_mask: allocation priority
1435  *
1436  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1437  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1438  *	reference count of 1. Returns zero in the case of success or error,
1439  *	if expansion failed. In the last case, &sk_buff is not changed.
1440  *
1441  *	All the pointers pointing into skb header may change and must be
1442  *	reloaded after call to this function.
1443  */
1444 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1445 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1446 		     gfp_t gfp_mask)
1447 {
1448 	int i, osize = skb_end_offset(skb);
1449 	int size = osize + nhead + ntail;
1450 	long off;
1451 	u8 *data;
1452 
1453 	BUG_ON(nhead < 0);
1454 
1455 	if (skb_shared(skb))
1456 		BUG();
1457 
1458 	size = SKB_DATA_ALIGN(size);
1459 
1460 	if (skb_pfmemalloc(skb))
1461 		gfp_mask |= __GFP_MEMALLOC;
1462 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1463 			       gfp_mask, NUMA_NO_NODE, NULL);
1464 	if (!data)
1465 		goto nodata;
1466 	size = SKB_WITH_OVERHEAD(ksize(data));
1467 
1468 	/* Copy only real data... and, alas, header. This should be
1469 	 * optimized for the cases when header is void.
1470 	 */
1471 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1472 
1473 	memcpy((struct skb_shared_info *)(data + size),
1474 	       skb_shinfo(skb),
1475 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1476 
1477 	/*
1478 	 * if shinfo is shared we must drop the old head gracefully, but if it
1479 	 * is not we can just drop the old head and let the existing refcount
1480 	 * be since all we did is relocate the values
1481 	 */
1482 	if (skb_cloned(skb)) {
1483 		if (skb_orphan_frags(skb, gfp_mask))
1484 			goto nofrags;
1485 		if (skb_zcopy(skb))
1486 			refcount_inc(&skb_uarg(skb)->refcnt);
1487 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1488 			skb_frag_ref(skb, i);
1489 
1490 		if (skb_has_frag_list(skb))
1491 			skb_clone_fraglist(skb);
1492 
1493 		skb_release_data(skb);
1494 	} else {
1495 		skb_free_head(skb);
1496 	}
1497 	off = (data + nhead) - skb->head;
1498 
1499 	skb->head     = data;
1500 	skb->head_frag = 0;
1501 	skb->data    += off;
1502 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1503 	skb->end      = size;
1504 	off           = nhead;
1505 #else
1506 	skb->end      = skb->head + size;
1507 #endif
1508 	skb->tail	      += off;
1509 	skb_headers_offset_update(skb, nhead);
1510 	skb->cloned   = 0;
1511 	skb->hdr_len  = 0;
1512 	skb->nohdr    = 0;
1513 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1514 
1515 	/* It is not generally safe to change skb->truesize.
1516 	 * For the moment, we really care of rx path, or
1517 	 * when skb is orphaned (not attached to a socket).
1518 	 */
1519 	if (!skb->sk || skb->destructor == sock_edemux)
1520 		skb->truesize += size - osize;
1521 
1522 	return 0;
1523 
1524 nofrags:
1525 	kfree(data);
1526 nodata:
1527 	return -ENOMEM;
1528 }
1529 EXPORT_SYMBOL(pskb_expand_head);
1530 
1531 /* Make private copy of skb with writable head and some headroom */
1532 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534 {
1535 	struct sk_buff *skb2;
1536 	int delta = headroom - skb_headroom(skb);
1537 
1538 	if (delta <= 0)
1539 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 	else {
1541 		skb2 = skb_clone(skb, GFP_ATOMIC);
1542 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 					     GFP_ATOMIC)) {
1544 			kfree_skb(skb2);
1545 			skb2 = NULL;
1546 		}
1547 	}
1548 	return skb2;
1549 }
1550 EXPORT_SYMBOL(skb_realloc_headroom);
1551 
1552 /**
1553  *	skb_copy_expand	-	copy and expand sk_buff
1554  *	@skb: buffer to copy
1555  *	@newheadroom: new free bytes at head
1556  *	@newtailroom: new free bytes at tail
1557  *	@gfp_mask: allocation priority
1558  *
1559  *	Make a copy of both an &sk_buff and its data and while doing so
1560  *	allocate additional space.
1561  *
1562  *	This is used when the caller wishes to modify the data and needs a
1563  *	private copy of the data to alter as well as more space for new fields.
1564  *	Returns %NULL on failure or the pointer to the buffer
1565  *	on success. The returned buffer has a reference count of 1.
1566  *
1567  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568  *	is called from an interrupt.
1569  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 				int newheadroom, int newtailroom,
1572 				gfp_t gfp_mask)
1573 {
1574 	/*
1575 	 *	Allocate the copy buffer
1576 	 */
1577 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 					gfp_mask, skb_alloc_rx_flag(skb),
1579 					NUMA_NO_NODE);
1580 	int oldheadroom = skb_headroom(skb);
1581 	int head_copy_len, head_copy_off;
1582 
1583 	if (!n)
1584 		return NULL;
1585 
1586 	skb_reserve(n, newheadroom);
1587 
1588 	/* Set the tail pointer and length */
1589 	skb_put(n, skb->len);
1590 
1591 	head_copy_len = oldheadroom;
1592 	head_copy_off = 0;
1593 	if (newheadroom <= head_copy_len)
1594 		head_copy_len = newheadroom;
1595 	else
1596 		head_copy_off = newheadroom - head_copy_len;
1597 
1598 	/* Copy the linear header and data. */
1599 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 			  skb->len + head_copy_len))
1601 		BUG();
1602 
1603 	copy_skb_header(n, skb);
1604 
1605 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1606 
1607 	return n;
1608 }
1609 EXPORT_SYMBOL(skb_copy_expand);
1610 
1611 /**
1612  *	__skb_pad		-	zero pad the tail of an skb
1613  *	@skb: buffer to pad
1614  *	@pad: space to pad
1615  *	@free_on_error: free buffer on error
1616  *
1617  *	Ensure that a buffer is followed by a padding area that is zero
1618  *	filled. Used by network drivers which may DMA or transfer data
1619  *	beyond the buffer end onto the wire.
1620  *
1621  *	May return error in out of memory cases. The skb is freed on error
1622  *	if @free_on_error is true.
1623  */
1624 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1625 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1626 {
1627 	int err;
1628 	int ntail;
1629 
1630 	/* If the skbuff is non linear tailroom is always zero.. */
1631 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1632 		memset(skb->data+skb->len, 0, pad);
1633 		return 0;
1634 	}
1635 
1636 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1637 	if (likely(skb_cloned(skb) || ntail > 0)) {
1638 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1639 		if (unlikely(err))
1640 			goto free_skb;
1641 	}
1642 
1643 	/* FIXME: The use of this function with non-linear skb's really needs
1644 	 * to be audited.
1645 	 */
1646 	err = skb_linearize(skb);
1647 	if (unlikely(err))
1648 		goto free_skb;
1649 
1650 	memset(skb->data + skb->len, 0, pad);
1651 	return 0;
1652 
1653 free_skb:
1654 	if (free_on_error)
1655 		kfree_skb(skb);
1656 	return err;
1657 }
1658 EXPORT_SYMBOL(__skb_pad);
1659 
1660 /**
1661  *	pskb_put - add data to the tail of a potentially fragmented buffer
1662  *	@skb: start of the buffer to use
1663  *	@tail: tail fragment of the buffer to use
1664  *	@len: amount of data to add
1665  *
1666  *	This function extends the used data area of the potentially
1667  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1668  *	@skb itself. If this would exceed the total buffer size the kernel
1669  *	will panic. A pointer to the first byte of the extra data is
1670  *	returned.
1671  */
1672 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1673 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1674 {
1675 	if (tail != skb) {
1676 		skb->data_len += len;
1677 		skb->len += len;
1678 	}
1679 	return skb_put(tail, len);
1680 }
1681 EXPORT_SYMBOL_GPL(pskb_put);
1682 
1683 /**
1684  *	skb_put - add data to a buffer
1685  *	@skb: buffer to use
1686  *	@len: amount of data to add
1687  *
1688  *	This function extends the used data area of the buffer. If this would
1689  *	exceed the total buffer size the kernel will panic. A pointer to the
1690  *	first byte of the extra data is returned.
1691  */
skb_put(struct sk_buff * skb,unsigned int len)1692 void *skb_put(struct sk_buff *skb, unsigned int len)
1693 {
1694 	void *tmp = skb_tail_pointer(skb);
1695 	SKB_LINEAR_ASSERT(skb);
1696 	skb->tail += len;
1697 	skb->len  += len;
1698 	if (unlikely(skb->tail > skb->end))
1699 		skb_over_panic(skb, len, __builtin_return_address(0));
1700 	return tmp;
1701 }
1702 EXPORT_SYMBOL(skb_put);
1703 
1704 /**
1705  *	skb_push - add data to the start of a buffer
1706  *	@skb: buffer to use
1707  *	@len: amount of data to add
1708  *
1709  *	This function extends the used data area of the buffer at the buffer
1710  *	start. If this would exceed the total buffer headroom the kernel will
1711  *	panic. A pointer to the first byte of the extra data is returned.
1712  */
skb_push(struct sk_buff * skb,unsigned int len)1713 void *skb_push(struct sk_buff *skb, unsigned int len)
1714 {
1715 	skb->data -= len;
1716 	skb->len  += len;
1717 	if (unlikely(skb->data<skb->head))
1718 		skb_under_panic(skb, len, __builtin_return_address(0));
1719 	return skb->data;
1720 }
1721 EXPORT_SYMBOL(skb_push);
1722 
1723 /**
1724  *	skb_pull - remove data from the start of a buffer
1725  *	@skb: buffer to use
1726  *	@len: amount of data to remove
1727  *
1728  *	This function removes data from the start of a buffer, returning
1729  *	the memory to the headroom. A pointer to the next data in the buffer
1730  *	is returned. Once the data has been pulled future pushes will overwrite
1731  *	the old data.
1732  */
skb_pull(struct sk_buff * skb,unsigned int len)1733 void *skb_pull(struct sk_buff *skb, unsigned int len)
1734 {
1735 	return skb_pull_inline(skb, len);
1736 }
1737 EXPORT_SYMBOL(skb_pull);
1738 
1739 /**
1740  *	skb_trim - remove end from a buffer
1741  *	@skb: buffer to alter
1742  *	@len: new length
1743  *
1744  *	Cut the length of a buffer down by removing data from the tail. If
1745  *	the buffer is already under the length specified it is not modified.
1746  *	The skb must be linear.
1747  */
skb_trim(struct sk_buff * skb,unsigned int len)1748 void skb_trim(struct sk_buff *skb, unsigned int len)
1749 {
1750 	if (skb->len > len)
1751 		__skb_trim(skb, len);
1752 }
1753 EXPORT_SYMBOL(skb_trim);
1754 
1755 /* Trims skb to length len. It can change skb pointers.
1756  */
1757 
___pskb_trim(struct sk_buff * skb,unsigned int len)1758 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1759 {
1760 	struct sk_buff **fragp;
1761 	struct sk_buff *frag;
1762 	int offset = skb_headlen(skb);
1763 	int nfrags = skb_shinfo(skb)->nr_frags;
1764 	int i;
1765 	int err;
1766 
1767 	if (skb_cloned(skb) &&
1768 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1769 		return err;
1770 
1771 	i = 0;
1772 	if (offset >= len)
1773 		goto drop_pages;
1774 
1775 	for (; i < nfrags; i++) {
1776 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1777 
1778 		if (end < len) {
1779 			offset = end;
1780 			continue;
1781 		}
1782 
1783 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1784 
1785 drop_pages:
1786 		skb_shinfo(skb)->nr_frags = i;
1787 
1788 		for (; i < nfrags; i++)
1789 			skb_frag_unref(skb, i);
1790 
1791 		if (skb_has_frag_list(skb))
1792 			skb_drop_fraglist(skb);
1793 		goto done;
1794 	}
1795 
1796 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1797 	     fragp = &frag->next) {
1798 		int end = offset + frag->len;
1799 
1800 		if (skb_shared(frag)) {
1801 			struct sk_buff *nfrag;
1802 
1803 			nfrag = skb_clone(frag, GFP_ATOMIC);
1804 			if (unlikely(!nfrag))
1805 				return -ENOMEM;
1806 
1807 			nfrag->next = frag->next;
1808 			consume_skb(frag);
1809 			frag = nfrag;
1810 			*fragp = frag;
1811 		}
1812 
1813 		if (end < len) {
1814 			offset = end;
1815 			continue;
1816 		}
1817 
1818 		if (end > len &&
1819 		    unlikely((err = pskb_trim(frag, len - offset))))
1820 			return err;
1821 
1822 		if (frag->next)
1823 			skb_drop_list(&frag->next);
1824 		break;
1825 	}
1826 
1827 done:
1828 	if (len > skb_headlen(skb)) {
1829 		skb->data_len -= skb->len - len;
1830 		skb->len       = len;
1831 	} else {
1832 		skb->len       = len;
1833 		skb->data_len  = 0;
1834 		skb_set_tail_pointer(skb, len);
1835 	}
1836 
1837 	if (!skb->sk || skb->destructor == sock_edemux)
1838 		skb_condense(skb);
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(___pskb_trim);
1842 
1843 /* Note : use pskb_trim_rcsum() instead of calling this directly
1844  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)1845 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1846 {
1847 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1848 		int delta = skb->len - len;
1849 
1850 		skb->csum = csum_block_sub(skb->csum,
1851 					   skb_checksum(skb, len, delta, 0),
1852 					   len);
1853 	}
1854 	return __pskb_trim(skb, len);
1855 }
1856 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1857 
1858 /**
1859  *	__pskb_pull_tail - advance tail of skb header
1860  *	@skb: buffer to reallocate
1861  *	@delta: number of bytes to advance tail
1862  *
1863  *	The function makes a sense only on a fragmented &sk_buff,
1864  *	it expands header moving its tail forward and copying necessary
1865  *	data from fragmented part.
1866  *
1867  *	&sk_buff MUST have reference count of 1.
1868  *
1869  *	Returns %NULL (and &sk_buff does not change) if pull failed
1870  *	or value of new tail of skb in the case of success.
1871  *
1872  *	All the pointers pointing into skb header may change and must be
1873  *	reloaded after call to this function.
1874  */
1875 
1876 /* Moves tail of skb head forward, copying data from fragmented part,
1877  * when it is necessary.
1878  * 1. It may fail due to malloc failure.
1879  * 2. It may change skb pointers.
1880  *
1881  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1882  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1883 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1884 {
1885 	/* If skb has not enough free space at tail, get new one
1886 	 * plus 128 bytes for future expansions. If we have enough
1887 	 * room at tail, reallocate without expansion only if skb is cloned.
1888 	 */
1889 	int i, k, eat = (skb->tail + delta) - skb->end;
1890 
1891 	if (eat > 0 || skb_cloned(skb)) {
1892 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1893 				     GFP_ATOMIC))
1894 			return NULL;
1895 	}
1896 
1897 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1898 		BUG();
1899 
1900 	/* Optimization: no fragments, no reasons to preestimate
1901 	 * size of pulled pages. Superb.
1902 	 */
1903 	if (!skb_has_frag_list(skb))
1904 		goto pull_pages;
1905 
1906 	/* Estimate size of pulled pages. */
1907 	eat = delta;
1908 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1909 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1910 
1911 		if (size >= eat)
1912 			goto pull_pages;
1913 		eat -= size;
1914 	}
1915 
1916 	/* If we need update frag list, we are in troubles.
1917 	 * Certainly, it is possible to add an offset to skb data,
1918 	 * but taking into account that pulling is expected to
1919 	 * be very rare operation, it is worth to fight against
1920 	 * further bloating skb head and crucify ourselves here instead.
1921 	 * Pure masohism, indeed. 8)8)
1922 	 */
1923 	if (eat) {
1924 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1925 		struct sk_buff *clone = NULL;
1926 		struct sk_buff *insp = NULL;
1927 
1928 		do {
1929 			BUG_ON(!list);
1930 
1931 			if (list->len <= eat) {
1932 				/* Eaten as whole. */
1933 				eat -= list->len;
1934 				list = list->next;
1935 				insp = list;
1936 			} else {
1937 				/* Eaten partially. */
1938 
1939 				if (skb_shared(list)) {
1940 					/* Sucks! We need to fork list. :-( */
1941 					clone = skb_clone(list, GFP_ATOMIC);
1942 					if (!clone)
1943 						return NULL;
1944 					insp = list->next;
1945 					list = clone;
1946 				} else {
1947 					/* This may be pulled without
1948 					 * problems. */
1949 					insp = list;
1950 				}
1951 				if (!pskb_pull(list, eat)) {
1952 					kfree_skb(clone);
1953 					return NULL;
1954 				}
1955 				break;
1956 			}
1957 		} while (eat);
1958 
1959 		/* Free pulled out fragments. */
1960 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1961 			skb_shinfo(skb)->frag_list = list->next;
1962 			kfree_skb(list);
1963 		}
1964 		/* And insert new clone at head. */
1965 		if (clone) {
1966 			clone->next = list;
1967 			skb_shinfo(skb)->frag_list = clone;
1968 		}
1969 	}
1970 	/* Success! Now we may commit changes to skb data. */
1971 
1972 pull_pages:
1973 	eat = delta;
1974 	k = 0;
1975 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1976 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1977 
1978 		if (size <= eat) {
1979 			skb_frag_unref(skb, i);
1980 			eat -= size;
1981 		} else {
1982 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1983 			if (eat) {
1984 				skb_shinfo(skb)->frags[k].page_offset += eat;
1985 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1986 				if (!i)
1987 					goto end;
1988 				eat = 0;
1989 			}
1990 			k++;
1991 		}
1992 	}
1993 	skb_shinfo(skb)->nr_frags = k;
1994 
1995 end:
1996 	skb->tail     += delta;
1997 	skb->data_len -= delta;
1998 
1999 	if (!skb->data_len)
2000 		skb_zcopy_clear(skb, false);
2001 
2002 	return skb_tail_pointer(skb);
2003 }
2004 EXPORT_SYMBOL(__pskb_pull_tail);
2005 
2006 /**
2007  *	skb_copy_bits - copy bits from skb to kernel buffer
2008  *	@skb: source skb
2009  *	@offset: offset in source
2010  *	@to: destination buffer
2011  *	@len: number of bytes to copy
2012  *
2013  *	Copy the specified number of bytes from the source skb to the
2014  *	destination buffer.
2015  *
2016  *	CAUTION ! :
2017  *		If its prototype is ever changed,
2018  *		check arch/{*}/net/{*}.S files,
2019  *		since it is called from BPF assembly code.
2020  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2022 {
2023 	int start = skb_headlen(skb);
2024 	struct sk_buff *frag_iter;
2025 	int i, copy;
2026 
2027 	if (offset > (int)skb->len - len)
2028 		goto fault;
2029 
2030 	/* Copy header. */
2031 	if ((copy = start - offset) > 0) {
2032 		if (copy > len)
2033 			copy = len;
2034 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2035 		if ((len -= copy) == 0)
2036 			return 0;
2037 		offset += copy;
2038 		to     += copy;
2039 	}
2040 
2041 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2042 		int end;
2043 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + skb_frag_size(f);
2048 		if ((copy = end - offset) > 0) {
2049 			u32 p_off, p_len, copied;
2050 			struct page *p;
2051 			u8 *vaddr;
2052 
2053 			if (copy > len)
2054 				copy = len;
2055 
2056 			skb_frag_foreach_page(f,
2057 					      f->page_offset + offset - start,
2058 					      copy, p, p_off, p_len, copied) {
2059 				vaddr = kmap_atomic(p);
2060 				memcpy(to + copied, vaddr + p_off, p_len);
2061 				kunmap_atomic(vaddr);
2062 			}
2063 
2064 			if ((len -= copy) == 0)
2065 				return 0;
2066 			offset += copy;
2067 			to     += copy;
2068 		}
2069 		start = end;
2070 	}
2071 
2072 	skb_walk_frags(skb, frag_iter) {
2073 		int end;
2074 
2075 		WARN_ON(start > offset + len);
2076 
2077 		end = start + frag_iter->len;
2078 		if ((copy = end - offset) > 0) {
2079 			if (copy > len)
2080 				copy = len;
2081 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2082 				goto fault;
2083 			if ((len -= copy) == 0)
2084 				return 0;
2085 			offset += copy;
2086 			to     += copy;
2087 		}
2088 		start = end;
2089 	}
2090 
2091 	if (!len)
2092 		return 0;
2093 
2094 fault:
2095 	return -EFAULT;
2096 }
2097 EXPORT_SYMBOL(skb_copy_bits);
2098 
2099 /*
2100  * Callback from splice_to_pipe(), if we need to release some pages
2101  * at the end of the spd in case we error'ed out in filling the pipe.
2102  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2103 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2104 {
2105 	put_page(spd->pages[i]);
2106 }
2107 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2108 static struct page *linear_to_page(struct page *page, unsigned int *len,
2109 				   unsigned int *offset,
2110 				   struct sock *sk)
2111 {
2112 	struct page_frag *pfrag = sk_page_frag(sk);
2113 
2114 	if (!sk_page_frag_refill(sk, pfrag))
2115 		return NULL;
2116 
2117 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2118 
2119 	memcpy(page_address(pfrag->page) + pfrag->offset,
2120 	       page_address(page) + *offset, *len);
2121 	*offset = pfrag->offset;
2122 	pfrag->offset += *len;
2123 
2124 	return pfrag->page;
2125 }
2126 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2127 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2128 			     struct page *page,
2129 			     unsigned int offset)
2130 {
2131 	return	spd->nr_pages &&
2132 		spd->pages[spd->nr_pages - 1] == page &&
2133 		(spd->partial[spd->nr_pages - 1].offset +
2134 		 spd->partial[spd->nr_pages - 1].len == offset);
2135 }
2136 
2137 /*
2138  * Fill page/offset/length into spd, if it can hold more pages.
2139  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2140 static bool spd_fill_page(struct splice_pipe_desc *spd,
2141 			  struct pipe_inode_info *pipe, struct page *page,
2142 			  unsigned int *len, unsigned int offset,
2143 			  bool linear,
2144 			  struct sock *sk)
2145 {
2146 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2147 		return true;
2148 
2149 	if (linear) {
2150 		page = linear_to_page(page, len, &offset, sk);
2151 		if (!page)
2152 			return true;
2153 	}
2154 	if (spd_can_coalesce(spd, page, offset)) {
2155 		spd->partial[spd->nr_pages - 1].len += *len;
2156 		return false;
2157 	}
2158 	get_page(page);
2159 	spd->pages[spd->nr_pages] = page;
2160 	spd->partial[spd->nr_pages].len = *len;
2161 	spd->partial[spd->nr_pages].offset = offset;
2162 	spd->nr_pages++;
2163 
2164 	return false;
2165 }
2166 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2167 static bool __splice_segment(struct page *page, unsigned int poff,
2168 			     unsigned int plen, unsigned int *off,
2169 			     unsigned int *len,
2170 			     struct splice_pipe_desc *spd, bool linear,
2171 			     struct sock *sk,
2172 			     struct pipe_inode_info *pipe)
2173 {
2174 	if (!*len)
2175 		return true;
2176 
2177 	/* skip this segment if already processed */
2178 	if (*off >= plen) {
2179 		*off -= plen;
2180 		return false;
2181 	}
2182 
2183 	/* ignore any bits we already processed */
2184 	poff += *off;
2185 	plen -= *off;
2186 	*off = 0;
2187 
2188 	do {
2189 		unsigned int flen = min(*len, plen);
2190 
2191 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2192 				  linear, sk))
2193 			return true;
2194 		poff += flen;
2195 		plen -= flen;
2196 		*len -= flen;
2197 	} while (*len && plen);
2198 
2199 	return false;
2200 }
2201 
2202 /*
2203  * Map linear and fragment data from the skb to spd. It reports true if the
2204  * pipe is full or if we already spliced the requested length.
2205  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2206 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2207 			      unsigned int *offset, unsigned int *len,
2208 			      struct splice_pipe_desc *spd, struct sock *sk)
2209 {
2210 	int seg;
2211 	struct sk_buff *iter;
2212 
2213 	/* map the linear part :
2214 	 * If skb->head_frag is set, this 'linear' part is backed by a
2215 	 * fragment, and if the head is not shared with any clones then
2216 	 * we can avoid a copy since we own the head portion of this page.
2217 	 */
2218 	if (__splice_segment(virt_to_page(skb->data),
2219 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2220 			     skb_headlen(skb),
2221 			     offset, len, spd,
2222 			     skb_head_is_locked(skb),
2223 			     sk, pipe))
2224 		return true;
2225 
2226 	/*
2227 	 * then map the fragments
2228 	 */
2229 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2230 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2231 
2232 		if (__splice_segment(skb_frag_page(f),
2233 				     f->page_offset, skb_frag_size(f),
2234 				     offset, len, spd, false, sk, pipe))
2235 			return true;
2236 	}
2237 
2238 	skb_walk_frags(skb, iter) {
2239 		if (*offset >= iter->len) {
2240 			*offset -= iter->len;
2241 			continue;
2242 		}
2243 		/* __skb_splice_bits() only fails if the output has no room
2244 		 * left, so no point in going over the frag_list for the error
2245 		 * case.
2246 		 */
2247 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2248 			return true;
2249 	}
2250 
2251 	return false;
2252 }
2253 
2254 /*
2255  * Map data from the skb to a pipe. Should handle both the linear part,
2256  * the fragments, and the frag list.
2257  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2258 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2259 		    struct pipe_inode_info *pipe, unsigned int tlen,
2260 		    unsigned int flags)
2261 {
2262 	struct partial_page partial[MAX_SKB_FRAGS];
2263 	struct page *pages[MAX_SKB_FRAGS];
2264 	struct splice_pipe_desc spd = {
2265 		.pages = pages,
2266 		.partial = partial,
2267 		.nr_pages_max = MAX_SKB_FRAGS,
2268 		.ops = &nosteal_pipe_buf_ops,
2269 		.spd_release = sock_spd_release,
2270 	};
2271 	int ret = 0;
2272 
2273 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2274 
2275 	if (spd.nr_pages)
2276 		ret = splice_to_pipe(pipe, &spd);
2277 
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(skb_splice_bits);
2281 
2282 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2283 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2284 			 int len)
2285 {
2286 	unsigned int orig_len = len;
2287 	struct sk_buff *head = skb;
2288 	unsigned short fragidx;
2289 	int slen, ret;
2290 
2291 do_frag_list:
2292 
2293 	/* Deal with head data */
2294 	while (offset < skb_headlen(skb) && len) {
2295 		struct kvec kv;
2296 		struct msghdr msg;
2297 
2298 		slen = min_t(int, len, skb_headlen(skb) - offset);
2299 		kv.iov_base = skb->data + offset;
2300 		kv.iov_len = slen;
2301 		memset(&msg, 0, sizeof(msg));
2302 		msg.msg_flags = MSG_DONTWAIT;
2303 
2304 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2305 		if (ret <= 0)
2306 			goto error;
2307 
2308 		offset += ret;
2309 		len -= ret;
2310 	}
2311 
2312 	/* All the data was skb head? */
2313 	if (!len)
2314 		goto out;
2315 
2316 	/* Make offset relative to start of frags */
2317 	offset -= skb_headlen(skb);
2318 
2319 	/* Find where we are in frag list */
2320 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2321 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2322 
2323 		if (offset < frag->size)
2324 			break;
2325 
2326 		offset -= frag->size;
2327 	}
2328 
2329 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2330 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2331 
2332 		slen = min_t(size_t, len, frag->size - offset);
2333 
2334 		while (slen) {
2335 			ret = kernel_sendpage_locked(sk, frag->page.p,
2336 						     frag->page_offset + offset,
2337 						     slen, MSG_DONTWAIT);
2338 			if (ret <= 0)
2339 				goto error;
2340 
2341 			len -= ret;
2342 			offset += ret;
2343 			slen -= ret;
2344 		}
2345 
2346 		offset = 0;
2347 	}
2348 
2349 	if (len) {
2350 		/* Process any frag lists */
2351 
2352 		if (skb == head) {
2353 			if (skb_has_frag_list(skb)) {
2354 				skb = skb_shinfo(skb)->frag_list;
2355 				goto do_frag_list;
2356 			}
2357 		} else if (skb->next) {
2358 			skb = skb->next;
2359 			goto do_frag_list;
2360 		}
2361 	}
2362 
2363 out:
2364 	return orig_len - len;
2365 
2366 error:
2367 	return orig_len == len ? ret : orig_len - len;
2368 }
2369 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2370 
2371 /* Send skb data on a socket. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2372 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2373 {
2374 	int ret = 0;
2375 
2376 	lock_sock(sk);
2377 	ret = skb_send_sock_locked(sk, skb, offset, len);
2378 	release_sock(sk);
2379 
2380 	return ret;
2381 }
2382 EXPORT_SYMBOL_GPL(skb_send_sock);
2383 
2384 /**
2385  *	skb_store_bits - store bits from kernel buffer to skb
2386  *	@skb: destination buffer
2387  *	@offset: offset in destination
2388  *	@from: source buffer
2389  *	@len: number of bytes to copy
2390  *
2391  *	Copy the specified number of bytes from the source buffer to the
2392  *	destination skb.  This function handles all the messy bits of
2393  *	traversing fragment lists and such.
2394  */
2395 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2396 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2397 {
2398 	int start = skb_headlen(skb);
2399 	struct sk_buff *frag_iter;
2400 	int i, copy;
2401 
2402 	if (offset > (int)skb->len - len)
2403 		goto fault;
2404 
2405 	if ((copy = start - offset) > 0) {
2406 		if (copy > len)
2407 			copy = len;
2408 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2409 		if ((len -= copy) == 0)
2410 			return 0;
2411 		offset += copy;
2412 		from += copy;
2413 	}
2414 
2415 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2416 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2417 		int end;
2418 
2419 		WARN_ON(start > offset + len);
2420 
2421 		end = start + skb_frag_size(frag);
2422 		if ((copy = end - offset) > 0) {
2423 			u32 p_off, p_len, copied;
2424 			struct page *p;
2425 			u8 *vaddr;
2426 
2427 			if (copy > len)
2428 				copy = len;
2429 
2430 			skb_frag_foreach_page(frag,
2431 					      frag->page_offset + offset - start,
2432 					      copy, p, p_off, p_len, copied) {
2433 				vaddr = kmap_atomic(p);
2434 				memcpy(vaddr + p_off, from + copied, p_len);
2435 				kunmap_atomic(vaddr);
2436 			}
2437 
2438 			if ((len -= copy) == 0)
2439 				return 0;
2440 			offset += copy;
2441 			from += copy;
2442 		}
2443 		start = end;
2444 	}
2445 
2446 	skb_walk_frags(skb, frag_iter) {
2447 		int end;
2448 
2449 		WARN_ON(start > offset + len);
2450 
2451 		end = start + frag_iter->len;
2452 		if ((copy = end - offset) > 0) {
2453 			if (copy > len)
2454 				copy = len;
2455 			if (skb_store_bits(frag_iter, offset - start,
2456 					   from, copy))
2457 				goto fault;
2458 			if ((len -= copy) == 0)
2459 				return 0;
2460 			offset += copy;
2461 			from += copy;
2462 		}
2463 		start = end;
2464 	}
2465 	if (!len)
2466 		return 0;
2467 
2468 fault:
2469 	return -EFAULT;
2470 }
2471 EXPORT_SYMBOL(skb_store_bits);
2472 
2473 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2474 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2475 		      __wsum csum, const struct skb_checksum_ops *ops)
2476 {
2477 	int start = skb_headlen(skb);
2478 	int i, copy = start - offset;
2479 	struct sk_buff *frag_iter;
2480 	int pos = 0;
2481 
2482 	/* Checksum header. */
2483 	if (copy > 0) {
2484 		if (copy > len)
2485 			copy = len;
2486 		csum = ops->update(skb->data + offset, copy, csum);
2487 		if ((len -= copy) == 0)
2488 			return csum;
2489 		offset += copy;
2490 		pos	= copy;
2491 	}
2492 
2493 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2494 		int end;
2495 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2496 
2497 		WARN_ON(start > offset + len);
2498 
2499 		end = start + skb_frag_size(frag);
2500 		if ((copy = end - offset) > 0) {
2501 			u32 p_off, p_len, copied;
2502 			struct page *p;
2503 			__wsum csum2;
2504 			u8 *vaddr;
2505 
2506 			if (copy > len)
2507 				copy = len;
2508 
2509 			skb_frag_foreach_page(frag,
2510 					      frag->page_offset + offset - start,
2511 					      copy, p, p_off, p_len, copied) {
2512 				vaddr = kmap_atomic(p);
2513 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2514 				kunmap_atomic(vaddr);
2515 				csum = ops->combine(csum, csum2, pos, p_len);
2516 				pos += p_len;
2517 			}
2518 
2519 			if (!(len -= copy))
2520 				return csum;
2521 			offset += copy;
2522 		}
2523 		start = end;
2524 	}
2525 
2526 	skb_walk_frags(skb, frag_iter) {
2527 		int end;
2528 
2529 		WARN_ON(start > offset + len);
2530 
2531 		end = start + frag_iter->len;
2532 		if ((copy = end - offset) > 0) {
2533 			__wsum csum2;
2534 			if (copy > len)
2535 				copy = len;
2536 			csum2 = __skb_checksum(frag_iter, offset - start,
2537 					       copy, 0, ops);
2538 			csum = ops->combine(csum, csum2, pos, copy);
2539 			if ((len -= copy) == 0)
2540 				return csum;
2541 			offset += copy;
2542 			pos    += copy;
2543 		}
2544 		start = end;
2545 	}
2546 	BUG_ON(len);
2547 
2548 	return csum;
2549 }
2550 EXPORT_SYMBOL(__skb_checksum);
2551 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2552 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2553 		    int len, __wsum csum)
2554 {
2555 	const struct skb_checksum_ops ops = {
2556 		.update  = csum_partial_ext,
2557 		.combine = csum_block_add_ext,
2558 	};
2559 
2560 	return __skb_checksum(skb, offset, len, csum, &ops);
2561 }
2562 EXPORT_SYMBOL(skb_checksum);
2563 
2564 /* Both of above in one bottle. */
2565 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2566 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2567 				    u8 *to, int len, __wsum csum)
2568 {
2569 	int start = skb_headlen(skb);
2570 	int i, copy = start - offset;
2571 	struct sk_buff *frag_iter;
2572 	int pos = 0;
2573 
2574 	/* Copy header. */
2575 	if (copy > 0) {
2576 		if (copy > len)
2577 			copy = len;
2578 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2579 						 copy, csum);
2580 		if ((len -= copy) == 0)
2581 			return csum;
2582 		offset += copy;
2583 		to     += copy;
2584 		pos	= copy;
2585 	}
2586 
2587 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2588 		int end;
2589 
2590 		WARN_ON(start > offset + len);
2591 
2592 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2593 		if ((copy = end - offset) > 0) {
2594 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2595 			u32 p_off, p_len, copied;
2596 			struct page *p;
2597 			__wsum csum2;
2598 			u8 *vaddr;
2599 
2600 			if (copy > len)
2601 				copy = len;
2602 
2603 			skb_frag_foreach_page(frag,
2604 					      frag->page_offset + offset - start,
2605 					      copy, p, p_off, p_len, copied) {
2606 				vaddr = kmap_atomic(p);
2607 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2608 								  to + copied,
2609 								  p_len, 0);
2610 				kunmap_atomic(vaddr);
2611 				csum = csum_block_add(csum, csum2, pos);
2612 				pos += p_len;
2613 			}
2614 
2615 			if (!(len -= copy))
2616 				return csum;
2617 			offset += copy;
2618 			to     += copy;
2619 		}
2620 		start = end;
2621 	}
2622 
2623 	skb_walk_frags(skb, frag_iter) {
2624 		__wsum csum2;
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + frag_iter->len;
2630 		if ((copy = end - offset) > 0) {
2631 			if (copy > len)
2632 				copy = len;
2633 			csum2 = skb_copy_and_csum_bits(frag_iter,
2634 						       offset - start,
2635 						       to, copy, 0);
2636 			csum = csum_block_add(csum, csum2, pos);
2637 			if ((len -= copy) == 0)
2638 				return csum;
2639 			offset += copy;
2640 			to     += copy;
2641 			pos    += copy;
2642 		}
2643 		start = end;
2644 	}
2645 	BUG_ON(len);
2646 	return csum;
2647 }
2648 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2649 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2650 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2651 {
2652 	net_warn_ratelimited(
2653 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2654 		__func__);
2655 	return 0;
2656 }
2657 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2658 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2659 				       int offset, int len)
2660 {
2661 	net_warn_ratelimited(
2662 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2663 		__func__);
2664 	return 0;
2665 }
2666 
2667 static const struct skb_checksum_ops default_crc32c_ops = {
2668 	.update  = warn_crc32c_csum_update,
2669 	.combine = warn_crc32c_csum_combine,
2670 };
2671 
2672 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2673 	&default_crc32c_ops;
2674 EXPORT_SYMBOL(crc32c_csum_stub);
2675 
2676  /**
2677  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2678  *	@from: source buffer
2679  *
2680  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2681  *	into skb_zerocopy().
2682  */
2683 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2684 skb_zerocopy_headlen(const struct sk_buff *from)
2685 {
2686 	unsigned int hlen = 0;
2687 
2688 	if (!from->head_frag ||
2689 	    skb_headlen(from) < L1_CACHE_BYTES ||
2690 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2691 		hlen = skb_headlen(from);
2692 
2693 	if (skb_has_frag_list(from))
2694 		hlen = from->len;
2695 
2696 	return hlen;
2697 }
2698 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2699 
2700 /**
2701  *	skb_zerocopy - Zero copy skb to skb
2702  *	@to: destination buffer
2703  *	@from: source buffer
2704  *	@len: number of bytes to copy from source buffer
2705  *	@hlen: size of linear headroom in destination buffer
2706  *
2707  *	Copies up to `len` bytes from `from` to `to` by creating references
2708  *	to the frags in the source buffer.
2709  *
2710  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2711  *	headroom in the `to` buffer.
2712  *
2713  *	Return value:
2714  *	0: everything is OK
2715  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2716  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2717  */
2718 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2719 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2720 {
2721 	int i, j = 0;
2722 	int plen = 0; /* length of skb->head fragment */
2723 	int ret;
2724 	struct page *page;
2725 	unsigned int offset;
2726 
2727 	BUG_ON(!from->head_frag && !hlen);
2728 
2729 	/* dont bother with small payloads */
2730 	if (len <= skb_tailroom(to))
2731 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2732 
2733 	if (hlen) {
2734 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2735 		if (unlikely(ret))
2736 			return ret;
2737 		len -= hlen;
2738 	} else {
2739 		plen = min_t(int, skb_headlen(from), len);
2740 		if (plen) {
2741 			page = virt_to_head_page(from->head);
2742 			offset = from->data - (unsigned char *)page_address(page);
2743 			__skb_fill_page_desc(to, 0, page, offset, plen);
2744 			get_page(page);
2745 			j = 1;
2746 			len -= plen;
2747 		}
2748 	}
2749 
2750 	to->truesize += len + plen;
2751 	to->len += len + plen;
2752 	to->data_len += len + plen;
2753 
2754 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2755 		skb_tx_error(from);
2756 		return -ENOMEM;
2757 	}
2758 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2759 
2760 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2761 		if (!len)
2762 			break;
2763 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2764 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2765 		len -= skb_shinfo(to)->frags[j].size;
2766 		skb_frag_ref(to, j);
2767 		j++;
2768 	}
2769 	skb_shinfo(to)->nr_frags = j;
2770 
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL_GPL(skb_zerocopy);
2774 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2775 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2776 {
2777 	__wsum csum;
2778 	long csstart;
2779 
2780 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2781 		csstart = skb_checksum_start_offset(skb);
2782 	else
2783 		csstart = skb_headlen(skb);
2784 
2785 	BUG_ON(csstart > skb_headlen(skb));
2786 
2787 	skb_copy_from_linear_data(skb, to, csstart);
2788 
2789 	csum = 0;
2790 	if (csstart != skb->len)
2791 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2792 					      skb->len - csstart, 0);
2793 
2794 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2795 		long csstuff = csstart + skb->csum_offset;
2796 
2797 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2798 	}
2799 }
2800 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2801 
2802 /**
2803  *	skb_dequeue - remove from the head of the queue
2804  *	@list: list to dequeue from
2805  *
2806  *	Remove the head of the list. The list lock is taken so the function
2807  *	may be used safely with other locking list functions. The head item is
2808  *	returned or %NULL if the list is empty.
2809  */
2810 
skb_dequeue(struct sk_buff_head * list)2811 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2812 {
2813 	unsigned long flags;
2814 	struct sk_buff *result;
2815 
2816 	spin_lock_irqsave(&list->lock, flags);
2817 	result = __skb_dequeue(list);
2818 	spin_unlock_irqrestore(&list->lock, flags);
2819 	return result;
2820 }
2821 EXPORT_SYMBOL(skb_dequeue);
2822 
2823 /**
2824  *	skb_dequeue_tail - remove from the tail of the queue
2825  *	@list: list to dequeue from
2826  *
2827  *	Remove the tail of the list. The list lock is taken so the function
2828  *	may be used safely with other locking list functions. The tail item is
2829  *	returned or %NULL if the list is empty.
2830  */
skb_dequeue_tail(struct sk_buff_head * list)2831 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2832 {
2833 	unsigned long flags;
2834 	struct sk_buff *result;
2835 
2836 	spin_lock_irqsave(&list->lock, flags);
2837 	result = __skb_dequeue_tail(list);
2838 	spin_unlock_irqrestore(&list->lock, flags);
2839 	return result;
2840 }
2841 EXPORT_SYMBOL(skb_dequeue_tail);
2842 
2843 /**
2844  *	skb_queue_purge - empty a list
2845  *	@list: list to empty
2846  *
2847  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2848  *	the list and one reference dropped. This function takes the list
2849  *	lock and is atomic with respect to other list locking functions.
2850  */
skb_queue_purge(struct sk_buff_head * list)2851 void skb_queue_purge(struct sk_buff_head *list)
2852 {
2853 	struct sk_buff *skb;
2854 	while ((skb = skb_dequeue(list)) != NULL)
2855 		kfree_skb(skb);
2856 }
2857 EXPORT_SYMBOL(skb_queue_purge);
2858 
2859 /**
2860  *	skb_rbtree_purge - empty a skb rbtree
2861  *	@root: root of the rbtree to empty
2862  *	Return value: the sum of truesizes of all purged skbs.
2863  *
2864  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2865  *	the list and one reference dropped. This function does not take
2866  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2867  *	out-of-order queue is protected by the socket lock).
2868  */
skb_rbtree_purge(struct rb_root * root)2869 unsigned int skb_rbtree_purge(struct rb_root *root)
2870 {
2871 	struct rb_node *p = rb_first(root);
2872 	unsigned int sum = 0;
2873 
2874 	while (p) {
2875 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2876 
2877 		p = rb_next(p);
2878 		rb_erase(&skb->rbnode, root);
2879 		sum += skb->truesize;
2880 		kfree_skb(skb);
2881 	}
2882 	return sum;
2883 }
2884 
2885 /**
2886  *	skb_queue_head - queue a buffer at the list head
2887  *	@list: list to use
2888  *	@newsk: buffer to queue
2889  *
2890  *	Queue a buffer at the start of the list. This function takes the
2891  *	list lock and can be used safely with other locking &sk_buff functions
2892  *	safely.
2893  *
2894  *	A buffer cannot be placed on two lists at the same time.
2895  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2896 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2897 {
2898 	unsigned long flags;
2899 
2900 	spin_lock_irqsave(&list->lock, flags);
2901 	__skb_queue_head(list, newsk);
2902 	spin_unlock_irqrestore(&list->lock, flags);
2903 }
2904 EXPORT_SYMBOL(skb_queue_head);
2905 
2906 /**
2907  *	skb_queue_tail - queue a buffer at the list tail
2908  *	@list: list to use
2909  *	@newsk: buffer to queue
2910  *
2911  *	Queue a buffer at the tail of the list. This function takes the
2912  *	list lock and can be used safely with other locking &sk_buff functions
2913  *	safely.
2914  *
2915  *	A buffer cannot be placed on two lists at the same time.
2916  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2917 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2918 {
2919 	unsigned long flags;
2920 
2921 	spin_lock_irqsave(&list->lock, flags);
2922 	__skb_queue_tail(list, newsk);
2923 	spin_unlock_irqrestore(&list->lock, flags);
2924 }
2925 EXPORT_SYMBOL(skb_queue_tail);
2926 
2927 /**
2928  *	skb_unlink	-	remove a buffer from a list
2929  *	@skb: buffer to remove
2930  *	@list: list to use
2931  *
2932  *	Remove a packet from a list. The list locks are taken and this
2933  *	function is atomic with respect to other list locked calls
2934  *
2935  *	You must know what list the SKB is on.
2936  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2937 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2938 {
2939 	unsigned long flags;
2940 
2941 	spin_lock_irqsave(&list->lock, flags);
2942 	__skb_unlink(skb, list);
2943 	spin_unlock_irqrestore(&list->lock, flags);
2944 }
2945 EXPORT_SYMBOL(skb_unlink);
2946 
2947 /**
2948  *	skb_append	-	append a buffer
2949  *	@old: buffer to insert after
2950  *	@newsk: buffer to insert
2951  *	@list: list to use
2952  *
2953  *	Place a packet after a given packet in a list. The list locks are taken
2954  *	and this function is atomic with respect to other list locked calls.
2955  *	A buffer cannot be placed on two lists at the same time.
2956  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2957 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958 {
2959 	unsigned long flags;
2960 
2961 	spin_lock_irqsave(&list->lock, flags);
2962 	__skb_queue_after(list, old, newsk);
2963 	spin_unlock_irqrestore(&list->lock, flags);
2964 }
2965 EXPORT_SYMBOL(skb_append);
2966 
2967 /**
2968  *	skb_insert	-	insert a buffer
2969  *	@old: buffer to insert before
2970  *	@newsk: buffer to insert
2971  *	@list: list to use
2972  *
2973  *	Place a packet before a given packet in a list. The list locks are
2974  * 	taken and this function is atomic with respect to other list locked
2975  *	calls.
2976  *
2977  *	A buffer cannot be placed on two lists at the same time.
2978  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2979 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2980 {
2981 	unsigned long flags;
2982 
2983 	spin_lock_irqsave(&list->lock, flags);
2984 	__skb_insert(newsk, old->prev, old, list);
2985 	spin_unlock_irqrestore(&list->lock, flags);
2986 }
2987 EXPORT_SYMBOL(skb_insert);
2988 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2989 static inline void skb_split_inside_header(struct sk_buff *skb,
2990 					   struct sk_buff* skb1,
2991 					   const u32 len, const int pos)
2992 {
2993 	int i;
2994 
2995 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2996 					 pos - len);
2997 	/* And move data appendix as is. */
2998 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2999 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3000 
3001 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3002 	skb_shinfo(skb)->nr_frags  = 0;
3003 	skb1->data_len		   = skb->data_len;
3004 	skb1->len		   += skb1->data_len;
3005 	skb->data_len		   = 0;
3006 	skb->len		   = len;
3007 	skb_set_tail_pointer(skb, len);
3008 }
3009 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3010 static inline void skb_split_no_header(struct sk_buff *skb,
3011 				       struct sk_buff* skb1,
3012 				       const u32 len, int pos)
3013 {
3014 	int i, k = 0;
3015 	const int nfrags = skb_shinfo(skb)->nr_frags;
3016 
3017 	skb_shinfo(skb)->nr_frags = 0;
3018 	skb1->len		  = skb1->data_len = skb->len - len;
3019 	skb->len		  = len;
3020 	skb->data_len		  = len - pos;
3021 
3022 	for (i = 0; i < nfrags; i++) {
3023 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3024 
3025 		if (pos + size > len) {
3026 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3027 
3028 			if (pos < len) {
3029 				/* Split frag.
3030 				 * We have two variants in this case:
3031 				 * 1. Move all the frag to the second
3032 				 *    part, if it is possible. F.e.
3033 				 *    this approach is mandatory for TUX,
3034 				 *    where splitting is expensive.
3035 				 * 2. Split is accurately. We make this.
3036 				 */
3037 				skb_frag_ref(skb, i);
3038 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3039 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3040 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3041 				skb_shinfo(skb)->nr_frags++;
3042 			}
3043 			k++;
3044 		} else
3045 			skb_shinfo(skb)->nr_frags++;
3046 		pos += size;
3047 	}
3048 	skb_shinfo(skb1)->nr_frags = k;
3049 }
3050 
3051 /**
3052  * skb_split - Split fragmented skb to two parts at length len.
3053  * @skb: the buffer to split
3054  * @skb1: the buffer to receive the second part
3055  * @len: new length for skb
3056  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3057 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3058 {
3059 	int pos = skb_headlen(skb);
3060 
3061 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3062 				      SKBTX_SHARED_FRAG;
3063 	skb_zerocopy_clone(skb1, skb, 0);
3064 	if (len < pos)	/* Split line is inside header. */
3065 		skb_split_inside_header(skb, skb1, len, pos);
3066 	else		/* Second chunk has no header, nothing to copy. */
3067 		skb_split_no_header(skb, skb1, len, pos);
3068 }
3069 EXPORT_SYMBOL(skb_split);
3070 
3071 /* Shifting from/to a cloned skb is a no-go.
3072  *
3073  * Caller cannot keep skb_shinfo related pointers past calling here!
3074  */
skb_prepare_for_shift(struct sk_buff * skb)3075 static int skb_prepare_for_shift(struct sk_buff *skb)
3076 {
3077 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3078 }
3079 
3080 /**
3081  * skb_shift - Shifts paged data partially from skb to another
3082  * @tgt: buffer into which tail data gets added
3083  * @skb: buffer from which the paged data comes from
3084  * @shiftlen: shift up to this many bytes
3085  *
3086  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3087  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3088  * It's up to caller to free skb if everything was shifted.
3089  *
3090  * If @tgt runs out of frags, the whole operation is aborted.
3091  *
3092  * Skb cannot include anything else but paged data while tgt is allowed
3093  * to have non-paged data as well.
3094  *
3095  * TODO: full sized shift could be optimized but that would need
3096  * specialized skb free'er to handle frags without up-to-date nr_frags.
3097  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3098 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3099 {
3100 	int from, to, merge, todo;
3101 	struct skb_frag_struct *fragfrom, *fragto;
3102 
3103 	BUG_ON(shiftlen > skb->len);
3104 
3105 	if (skb_headlen(skb))
3106 		return 0;
3107 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3108 		return 0;
3109 
3110 	todo = shiftlen;
3111 	from = 0;
3112 	to = skb_shinfo(tgt)->nr_frags;
3113 	fragfrom = &skb_shinfo(skb)->frags[from];
3114 
3115 	/* Actual merge is delayed until the point when we know we can
3116 	 * commit all, so that we don't have to undo partial changes
3117 	 */
3118 	if (!to ||
3119 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3120 			      fragfrom->page_offset)) {
3121 		merge = -1;
3122 	} else {
3123 		merge = to - 1;
3124 
3125 		todo -= skb_frag_size(fragfrom);
3126 		if (todo < 0) {
3127 			if (skb_prepare_for_shift(skb) ||
3128 			    skb_prepare_for_shift(tgt))
3129 				return 0;
3130 
3131 			/* All previous frag pointers might be stale! */
3132 			fragfrom = &skb_shinfo(skb)->frags[from];
3133 			fragto = &skb_shinfo(tgt)->frags[merge];
3134 
3135 			skb_frag_size_add(fragto, shiftlen);
3136 			skb_frag_size_sub(fragfrom, shiftlen);
3137 			fragfrom->page_offset += shiftlen;
3138 
3139 			goto onlymerged;
3140 		}
3141 
3142 		from++;
3143 	}
3144 
3145 	/* Skip full, not-fitting skb to avoid expensive operations */
3146 	if ((shiftlen == skb->len) &&
3147 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3148 		return 0;
3149 
3150 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3151 		return 0;
3152 
3153 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3154 		if (to == MAX_SKB_FRAGS)
3155 			return 0;
3156 
3157 		fragfrom = &skb_shinfo(skb)->frags[from];
3158 		fragto = &skb_shinfo(tgt)->frags[to];
3159 
3160 		if (todo >= skb_frag_size(fragfrom)) {
3161 			*fragto = *fragfrom;
3162 			todo -= skb_frag_size(fragfrom);
3163 			from++;
3164 			to++;
3165 
3166 		} else {
3167 			__skb_frag_ref(fragfrom);
3168 			fragto->page = fragfrom->page;
3169 			fragto->page_offset = fragfrom->page_offset;
3170 			skb_frag_size_set(fragto, todo);
3171 
3172 			fragfrom->page_offset += todo;
3173 			skb_frag_size_sub(fragfrom, todo);
3174 			todo = 0;
3175 
3176 			to++;
3177 			break;
3178 		}
3179 	}
3180 
3181 	/* Ready to "commit" this state change to tgt */
3182 	skb_shinfo(tgt)->nr_frags = to;
3183 
3184 	if (merge >= 0) {
3185 		fragfrom = &skb_shinfo(skb)->frags[0];
3186 		fragto = &skb_shinfo(tgt)->frags[merge];
3187 
3188 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3189 		__skb_frag_unref(fragfrom);
3190 	}
3191 
3192 	/* Reposition in the original skb */
3193 	to = 0;
3194 	while (from < skb_shinfo(skb)->nr_frags)
3195 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3196 	skb_shinfo(skb)->nr_frags = to;
3197 
3198 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3199 
3200 onlymerged:
3201 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3202 	 * the other hand might need it if it needs to be resent
3203 	 */
3204 	tgt->ip_summed = CHECKSUM_PARTIAL;
3205 	skb->ip_summed = CHECKSUM_PARTIAL;
3206 
3207 	/* Yak, is it really working this way? Some helper please? */
3208 	skb->len -= shiftlen;
3209 	skb->data_len -= shiftlen;
3210 	skb->truesize -= shiftlen;
3211 	tgt->len += shiftlen;
3212 	tgt->data_len += shiftlen;
3213 	tgt->truesize += shiftlen;
3214 
3215 	return shiftlen;
3216 }
3217 
3218 /**
3219  * skb_prepare_seq_read - Prepare a sequential read of skb data
3220  * @skb: the buffer to read
3221  * @from: lower offset of data to be read
3222  * @to: upper offset of data to be read
3223  * @st: state variable
3224  *
3225  * Initializes the specified state variable. Must be called before
3226  * invoking skb_seq_read() for the first time.
3227  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3228 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3229 			  unsigned int to, struct skb_seq_state *st)
3230 {
3231 	st->lower_offset = from;
3232 	st->upper_offset = to;
3233 	st->root_skb = st->cur_skb = skb;
3234 	st->frag_idx = st->stepped_offset = 0;
3235 	st->frag_data = NULL;
3236 }
3237 EXPORT_SYMBOL(skb_prepare_seq_read);
3238 
3239 /**
3240  * skb_seq_read - Sequentially read skb data
3241  * @consumed: number of bytes consumed by the caller so far
3242  * @data: destination pointer for data to be returned
3243  * @st: state variable
3244  *
3245  * Reads a block of skb data at @consumed relative to the
3246  * lower offset specified to skb_prepare_seq_read(). Assigns
3247  * the head of the data block to @data and returns the length
3248  * of the block or 0 if the end of the skb data or the upper
3249  * offset has been reached.
3250  *
3251  * The caller is not required to consume all of the data
3252  * returned, i.e. @consumed is typically set to the number
3253  * of bytes already consumed and the next call to
3254  * skb_seq_read() will return the remaining part of the block.
3255  *
3256  * Note 1: The size of each block of data returned can be arbitrary,
3257  *       this limitation is the cost for zerocopy sequential
3258  *       reads of potentially non linear data.
3259  *
3260  * Note 2: Fragment lists within fragments are not implemented
3261  *       at the moment, state->root_skb could be replaced with
3262  *       a stack for this purpose.
3263  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3264 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3265 			  struct skb_seq_state *st)
3266 {
3267 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3268 	skb_frag_t *frag;
3269 
3270 	if (unlikely(abs_offset >= st->upper_offset)) {
3271 		if (st->frag_data) {
3272 			kunmap_atomic(st->frag_data);
3273 			st->frag_data = NULL;
3274 		}
3275 		return 0;
3276 	}
3277 
3278 next_skb:
3279 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3280 
3281 	if (abs_offset < block_limit && !st->frag_data) {
3282 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3283 		return block_limit - abs_offset;
3284 	}
3285 
3286 	if (st->frag_idx == 0 && !st->frag_data)
3287 		st->stepped_offset += skb_headlen(st->cur_skb);
3288 
3289 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3290 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3291 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3292 
3293 		if (abs_offset < block_limit) {
3294 			if (!st->frag_data)
3295 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3296 
3297 			*data = (u8 *) st->frag_data + frag->page_offset +
3298 				(abs_offset - st->stepped_offset);
3299 
3300 			return block_limit - abs_offset;
3301 		}
3302 
3303 		if (st->frag_data) {
3304 			kunmap_atomic(st->frag_data);
3305 			st->frag_data = NULL;
3306 		}
3307 
3308 		st->frag_idx++;
3309 		st->stepped_offset += skb_frag_size(frag);
3310 	}
3311 
3312 	if (st->frag_data) {
3313 		kunmap_atomic(st->frag_data);
3314 		st->frag_data = NULL;
3315 	}
3316 
3317 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3318 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3319 		st->frag_idx = 0;
3320 		goto next_skb;
3321 	} else if (st->cur_skb->next) {
3322 		st->cur_skb = st->cur_skb->next;
3323 		st->frag_idx = 0;
3324 		goto next_skb;
3325 	}
3326 
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL(skb_seq_read);
3330 
3331 /**
3332  * skb_abort_seq_read - Abort a sequential read of skb data
3333  * @st: state variable
3334  *
3335  * Must be called if skb_seq_read() was not called until it
3336  * returned 0.
3337  */
skb_abort_seq_read(struct skb_seq_state * st)3338 void skb_abort_seq_read(struct skb_seq_state *st)
3339 {
3340 	if (st->frag_data)
3341 		kunmap_atomic(st->frag_data);
3342 }
3343 EXPORT_SYMBOL(skb_abort_seq_read);
3344 
3345 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3346 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3347 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3348 					  struct ts_config *conf,
3349 					  struct ts_state *state)
3350 {
3351 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3352 }
3353 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3354 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3355 {
3356 	skb_abort_seq_read(TS_SKB_CB(state));
3357 }
3358 
3359 /**
3360  * skb_find_text - Find a text pattern in skb data
3361  * @skb: the buffer to look in
3362  * @from: search offset
3363  * @to: search limit
3364  * @config: textsearch configuration
3365  *
3366  * Finds a pattern in the skb data according to the specified
3367  * textsearch configuration. Use textsearch_next() to retrieve
3368  * subsequent occurrences of the pattern. Returns the offset
3369  * to the first occurrence or UINT_MAX if no match was found.
3370  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3371 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3372 			   unsigned int to, struct ts_config *config)
3373 {
3374 	struct ts_state state;
3375 	unsigned int ret;
3376 
3377 	config->get_next_block = skb_ts_get_next_block;
3378 	config->finish = skb_ts_finish;
3379 
3380 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3381 
3382 	ret = textsearch_find(config, &state);
3383 	return (ret <= to - from ? ret : UINT_MAX);
3384 }
3385 EXPORT_SYMBOL(skb_find_text);
3386 
3387 /**
3388  * skb_append_datato_frags - append the user data to a skb
3389  * @sk: sock  structure
3390  * @skb: skb structure to be appended with user data.
3391  * @getfrag: call back function to be used for getting the user data
3392  * @from: pointer to user message iov
3393  * @length: length of the iov message
3394  *
3395  * Description: This procedure append the user data in the fragment part
3396  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3397  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)3398 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3399 			int (*getfrag)(void *from, char *to, int offset,
3400 					int len, int odd, struct sk_buff *skb),
3401 			void *from, int length)
3402 {
3403 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3404 	int copy;
3405 	int offset = 0;
3406 	int ret;
3407 	struct page_frag *pfrag = &current->task_frag;
3408 
3409 	do {
3410 		/* Return error if we don't have space for new frag */
3411 		if (frg_cnt >= MAX_SKB_FRAGS)
3412 			return -EMSGSIZE;
3413 
3414 		if (!sk_page_frag_refill(sk, pfrag))
3415 			return -ENOMEM;
3416 
3417 		/* copy the user data to page */
3418 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3419 
3420 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3421 			      offset, copy, 0, skb);
3422 		if (ret < 0)
3423 			return -EFAULT;
3424 
3425 		/* copy was successful so update the size parameters */
3426 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3427 				   copy);
3428 		frg_cnt++;
3429 		pfrag->offset += copy;
3430 		get_page(pfrag->page);
3431 
3432 		skb->truesize += copy;
3433 		refcount_add(copy, &sk->sk_wmem_alloc);
3434 		skb->len += copy;
3435 		skb->data_len += copy;
3436 		offset += copy;
3437 		length -= copy;
3438 
3439 	} while (length > 0);
3440 
3441 	return 0;
3442 }
3443 EXPORT_SYMBOL(skb_append_datato_frags);
3444 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3445 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3446 			 int offset, size_t size)
3447 {
3448 	int i = skb_shinfo(skb)->nr_frags;
3449 
3450 	if (skb_can_coalesce(skb, i, page, offset)) {
3451 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3452 	} else if (i < MAX_SKB_FRAGS) {
3453 		get_page(page);
3454 		skb_fill_page_desc(skb, i, page, offset, size);
3455 	} else {
3456 		return -EMSGSIZE;
3457 	}
3458 
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3462 
3463 /**
3464  *	skb_pull_rcsum - pull skb and update receive checksum
3465  *	@skb: buffer to update
3466  *	@len: length of data pulled
3467  *
3468  *	This function performs an skb_pull on the packet and updates
3469  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3470  *	receive path processing instead of skb_pull unless you know
3471  *	that the checksum difference is zero (e.g., a valid IP header)
3472  *	or you are setting ip_summed to CHECKSUM_NONE.
3473  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3474 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3475 {
3476 	unsigned char *data = skb->data;
3477 
3478 	BUG_ON(len > skb->len);
3479 	__skb_pull(skb, len);
3480 	skb_postpull_rcsum(skb, data, len);
3481 	return skb->data;
3482 }
3483 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3484 
3485 /**
3486  *	skb_segment - Perform protocol segmentation on skb.
3487  *	@head_skb: buffer to segment
3488  *	@features: features for the output path (see dev->features)
3489  *
3490  *	This function performs segmentation on the given skb.  It returns
3491  *	a pointer to the first in a list of new skbs for the segments.
3492  *	In case of error it returns ERR_PTR(err).
3493  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3494 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3495 			    netdev_features_t features)
3496 {
3497 	struct sk_buff *segs = NULL;
3498 	struct sk_buff *tail = NULL;
3499 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3500 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3501 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3502 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3503 	struct sk_buff *frag_skb = head_skb;
3504 	unsigned int offset = doffset;
3505 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3506 	unsigned int partial_segs = 0;
3507 	unsigned int headroom;
3508 	unsigned int len = head_skb->len;
3509 	__be16 proto;
3510 	bool csum, sg;
3511 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3512 	int err = -ENOMEM;
3513 	int i = 0;
3514 	int pos;
3515 	int dummy;
3516 
3517 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3518 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3519 		/* gso_size is untrusted, and we have a frag_list with a linear
3520 		 * non head_frag head.
3521 		 *
3522 		 * (we assume checking the first list_skb member suffices;
3523 		 * i.e if either of the list_skb members have non head_frag
3524 		 * head, then the first one has too).
3525 		 *
3526 		 * If head_skb's headlen does not fit requested gso_size, it
3527 		 * means that the frag_list members do NOT terminate on exact
3528 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3529 		 * sharing. Therefore we must fallback to copying the frag_list
3530 		 * skbs; we do so by disabling SG.
3531 		 */
3532 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3533 			features &= ~NETIF_F_SG;
3534 	}
3535 
3536 	__skb_push(head_skb, doffset);
3537 	proto = skb_network_protocol(head_skb, &dummy);
3538 	if (unlikely(!proto))
3539 		return ERR_PTR(-EINVAL);
3540 
3541 	sg = !!(features & NETIF_F_SG);
3542 	csum = !!can_checksum_protocol(features, proto);
3543 
3544 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3545 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3546 			struct sk_buff *iter;
3547 			unsigned int frag_len;
3548 
3549 			if (!list_skb ||
3550 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3551 				goto normal;
3552 
3553 			/* If we get here then all the required
3554 			 * GSO features except frag_list are supported.
3555 			 * Try to split the SKB to multiple GSO SKBs
3556 			 * with no frag_list.
3557 			 * Currently we can do that only when the buffers don't
3558 			 * have a linear part and all the buffers except
3559 			 * the last are of the same length.
3560 			 */
3561 			frag_len = list_skb->len;
3562 			skb_walk_frags(head_skb, iter) {
3563 				if (frag_len != iter->len && iter->next)
3564 					goto normal;
3565 				if (skb_headlen(iter) && !iter->head_frag)
3566 					goto normal;
3567 
3568 				len -= iter->len;
3569 			}
3570 
3571 			if (len != frag_len)
3572 				goto normal;
3573 		}
3574 
3575 		/* GSO partial only requires that we trim off any excess that
3576 		 * doesn't fit into an MSS sized block, so take care of that
3577 		 * now.
3578 		 */
3579 		partial_segs = len / mss;
3580 		if (partial_segs > 1)
3581 			mss *= partial_segs;
3582 		else
3583 			partial_segs = 0;
3584 	}
3585 
3586 normal:
3587 	headroom = skb_headroom(head_skb);
3588 	pos = skb_headlen(head_skb);
3589 
3590 	do {
3591 		struct sk_buff *nskb;
3592 		skb_frag_t *nskb_frag;
3593 		int hsize;
3594 		int size;
3595 
3596 		if (unlikely(mss == GSO_BY_FRAGS)) {
3597 			len = list_skb->len;
3598 		} else {
3599 			len = head_skb->len - offset;
3600 			if (len > mss)
3601 				len = mss;
3602 		}
3603 
3604 		hsize = skb_headlen(head_skb) - offset;
3605 		if (hsize < 0)
3606 			hsize = 0;
3607 		if (hsize > len || !sg)
3608 			hsize = len;
3609 
3610 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3611 		    (skb_headlen(list_skb) == len || sg)) {
3612 			BUG_ON(skb_headlen(list_skb) > len);
3613 
3614 			i = 0;
3615 			nfrags = skb_shinfo(list_skb)->nr_frags;
3616 			frag = skb_shinfo(list_skb)->frags;
3617 			frag_skb = list_skb;
3618 			pos += skb_headlen(list_skb);
3619 
3620 			while (pos < offset + len) {
3621 				BUG_ON(i >= nfrags);
3622 
3623 				size = skb_frag_size(frag);
3624 				if (pos + size > offset + len)
3625 					break;
3626 
3627 				i++;
3628 				pos += size;
3629 				frag++;
3630 			}
3631 
3632 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3633 			list_skb = list_skb->next;
3634 
3635 			if (unlikely(!nskb))
3636 				goto err;
3637 
3638 			if (unlikely(pskb_trim(nskb, len))) {
3639 				kfree_skb(nskb);
3640 				goto err;
3641 			}
3642 
3643 			hsize = skb_end_offset(nskb);
3644 			if (skb_cow_head(nskb, doffset + headroom)) {
3645 				kfree_skb(nskb);
3646 				goto err;
3647 			}
3648 
3649 			nskb->truesize += skb_end_offset(nskb) - hsize;
3650 			skb_release_head_state(nskb);
3651 			__skb_push(nskb, doffset);
3652 		} else {
3653 			nskb = __alloc_skb(hsize + doffset + headroom,
3654 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3655 					   NUMA_NO_NODE);
3656 
3657 			if (unlikely(!nskb))
3658 				goto err;
3659 
3660 			skb_reserve(nskb, headroom);
3661 			__skb_put(nskb, doffset);
3662 		}
3663 
3664 		if (segs)
3665 			tail->next = nskb;
3666 		else
3667 			segs = nskb;
3668 		tail = nskb;
3669 
3670 		__copy_skb_header(nskb, head_skb);
3671 
3672 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3673 		skb_reset_mac_len(nskb);
3674 
3675 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3676 						 nskb->data - tnl_hlen,
3677 						 doffset + tnl_hlen);
3678 
3679 		if (nskb->len == len + doffset)
3680 			goto perform_csum_check;
3681 
3682 		if (!sg) {
3683 			if (!nskb->remcsum_offload)
3684 				nskb->ip_summed = CHECKSUM_NONE;
3685 			SKB_GSO_CB(nskb)->csum =
3686 				skb_copy_and_csum_bits(head_skb, offset,
3687 						       skb_put(nskb, len),
3688 						       len, 0);
3689 			SKB_GSO_CB(nskb)->csum_start =
3690 				skb_headroom(nskb) + doffset;
3691 			continue;
3692 		}
3693 
3694 		nskb_frag = skb_shinfo(nskb)->frags;
3695 
3696 		skb_copy_from_linear_data_offset(head_skb, offset,
3697 						 skb_put(nskb, hsize), hsize);
3698 
3699 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3700 					      SKBTX_SHARED_FRAG;
3701 
3702 		while (pos < offset + len) {
3703 			if (i >= nfrags) {
3704 				BUG_ON(skb_headlen(list_skb));
3705 
3706 				i = 0;
3707 				nfrags = skb_shinfo(list_skb)->nr_frags;
3708 				frag = skb_shinfo(list_skb)->frags;
3709 				frag_skb = list_skb;
3710 
3711 				BUG_ON(!nfrags);
3712 
3713 				list_skb = list_skb->next;
3714 			}
3715 
3716 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3717 				     MAX_SKB_FRAGS)) {
3718 				net_warn_ratelimited(
3719 					"skb_segment: too many frags: %u %u\n",
3720 					pos, mss);
3721 				err = -EINVAL;
3722 				goto err;
3723 			}
3724 
3725 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3726 				goto err;
3727 			if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3728 				goto err;
3729 
3730 			*nskb_frag = *frag;
3731 			__skb_frag_ref(nskb_frag);
3732 			size = skb_frag_size(nskb_frag);
3733 
3734 			if (pos < offset) {
3735 				nskb_frag->page_offset += offset - pos;
3736 				skb_frag_size_sub(nskb_frag, offset - pos);
3737 			}
3738 
3739 			skb_shinfo(nskb)->nr_frags++;
3740 
3741 			if (pos + size <= offset + len) {
3742 				i++;
3743 				frag++;
3744 				pos += size;
3745 			} else {
3746 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3747 				goto skip_fraglist;
3748 			}
3749 
3750 			nskb_frag++;
3751 		}
3752 
3753 skip_fraglist:
3754 		nskb->data_len = len - hsize;
3755 		nskb->len += nskb->data_len;
3756 		nskb->truesize += nskb->data_len;
3757 
3758 perform_csum_check:
3759 		if (!csum) {
3760 			if (skb_has_shared_frag(nskb) &&
3761 			    __skb_linearize(nskb))
3762 				goto err;
3763 
3764 			if (!nskb->remcsum_offload)
3765 				nskb->ip_summed = CHECKSUM_NONE;
3766 			SKB_GSO_CB(nskb)->csum =
3767 				skb_checksum(nskb, doffset,
3768 					     nskb->len - doffset, 0);
3769 			SKB_GSO_CB(nskb)->csum_start =
3770 				skb_headroom(nskb) + doffset;
3771 		}
3772 	} while ((offset += len) < head_skb->len);
3773 
3774 	/* Some callers want to get the end of the list.
3775 	 * Put it in segs->prev to avoid walking the list.
3776 	 * (see validate_xmit_skb_list() for example)
3777 	 */
3778 	segs->prev = tail;
3779 
3780 	if (partial_segs) {
3781 		struct sk_buff *iter;
3782 		int type = skb_shinfo(head_skb)->gso_type;
3783 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3784 
3785 		/* Update type to add partial and then remove dodgy if set */
3786 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3787 		type &= ~SKB_GSO_DODGY;
3788 
3789 		/* Update GSO info and prepare to start updating headers on
3790 		 * our way back down the stack of protocols.
3791 		 */
3792 		for (iter = segs; iter; iter = iter->next) {
3793 			skb_shinfo(iter)->gso_size = gso_size;
3794 			skb_shinfo(iter)->gso_segs = partial_segs;
3795 			skb_shinfo(iter)->gso_type = type;
3796 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3797 		}
3798 
3799 		if (tail->len - doffset <= gso_size)
3800 			skb_shinfo(tail)->gso_size = 0;
3801 		else if (tail != segs)
3802 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3803 	}
3804 
3805 	/* Following permits correct backpressure, for protocols
3806 	 * using skb_set_owner_w().
3807 	 * Idea is to tranfert ownership from head_skb to last segment.
3808 	 */
3809 	if (head_skb->destructor == sock_wfree) {
3810 		swap(tail->truesize, head_skb->truesize);
3811 		swap(tail->destructor, head_skb->destructor);
3812 		swap(tail->sk, head_skb->sk);
3813 	}
3814 	return segs;
3815 
3816 err:
3817 	kfree_skb_list(segs);
3818 	return ERR_PTR(err);
3819 }
3820 EXPORT_SYMBOL_GPL(skb_segment);
3821 
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3822 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3823 {
3824 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3825 	unsigned int offset = skb_gro_offset(skb);
3826 	unsigned int headlen = skb_headlen(skb);
3827 	unsigned int len = skb_gro_len(skb);
3828 	struct sk_buff *lp, *p = *head;
3829 	unsigned int delta_truesize;
3830 
3831 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3832 		return -E2BIG;
3833 
3834 	lp = NAPI_GRO_CB(p)->last;
3835 	pinfo = skb_shinfo(lp);
3836 
3837 	if (headlen <= offset) {
3838 		skb_frag_t *frag;
3839 		skb_frag_t *frag2;
3840 		int i = skbinfo->nr_frags;
3841 		int nr_frags = pinfo->nr_frags + i;
3842 
3843 		if (nr_frags > MAX_SKB_FRAGS)
3844 			goto merge;
3845 
3846 		offset -= headlen;
3847 		pinfo->nr_frags = nr_frags;
3848 		skbinfo->nr_frags = 0;
3849 
3850 		frag = pinfo->frags + nr_frags;
3851 		frag2 = skbinfo->frags + i;
3852 		do {
3853 			*--frag = *--frag2;
3854 		} while (--i);
3855 
3856 		frag->page_offset += offset;
3857 		skb_frag_size_sub(frag, offset);
3858 
3859 		/* all fragments truesize : remove (head size + sk_buff) */
3860 		delta_truesize = skb->truesize -
3861 				 SKB_TRUESIZE(skb_end_offset(skb));
3862 
3863 		skb->truesize -= skb->data_len;
3864 		skb->len -= skb->data_len;
3865 		skb->data_len = 0;
3866 
3867 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3868 		goto done;
3869 	} else if (skb->head_frag) {
3870 		int nr_frags = pinfo->nr_frags;
3871 		skb_frag_t *frag = pinfo->frags + nr_frags;
3872 		struct page *page = virt_to_head_page(skb->head);
3873 		unsigned int first_size = headlen - offset;
3874 		unsigned int first_offset;
3875 
3876 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3877 			goto merge;
3878 
3879 		first_offset = skb->data -
3880 			       (unsigned char *)page_address(page) +
3881 			       offset;
3882 
3883 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3884 
3885 		frag->page.p	  = page;
3886 		frag->page_offset = first_offset;
3887 		skb_frag_size_set(frag, first_size);
3888 
3889 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3890 		/* We dont need to clear skbinfo->nr_frags here */
3891 
3892 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3893 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3894 		goto done;
3895 	}
3896 
3897 merge:
3898 	delta_truesize = skb->truesize;
3899 	if (offset > headlen) {
3900 		unsigned int eat = offset - headlen;
3901 
3902 		skbinfo->frags[0].page_offset += eat;
3903 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3904 		skb->data_len -= eat;
3905 		skb->len -= eat;
3906 		offset = headlen;
3907 	}
3908 
3909 	__skb_pull(skb, offset);
3910 
3911 	if (NAPI_GRO_CB(p)->last == p)
3912 		skb_shinfo(p)->frag_list = skb;
3913 	else
3914 		NAPI_GRO_CB(p)->last->next = skb;
3915 	NAPI_GRO_CB(p)->last = skb;
3916 	__skb_header_release(skb);
3917 	lp = p;
3918 
3919 done:
3920 	NAPI_GRO_CB(p)->count++;
3921 	p->data_len += len;
3922 	p->truesize += delta_truesize;
3923 	p->len += len;
3924 	if (lp != p) {
3925 		lp->data_len += len;
3926 		lp->truesize += delta_truesize;
3927 		lp->len += len;
3928 	}
3929 	NAPI_GRO_CB(skb)->same_flow = 1;
3930 	return 0;
3931 }
3932 EXPORT_SYMBOL_GPL(skb_gro_receive);
3933 
skb_init(void)3934 void __init skb_init(void)
3935 {
3936 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3937 					      sizeof(struct sk_buff),
3938 					      0,
3939 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3940 					      NULL);
3941 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3942 						sizeof(struct sk_buff_fclones),
3943 						0,
3944 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3945 						NULL);
3946 }
3947 
3948 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)3949 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3950 	       unsigned int recursion_level)
3951 {
3952 	int start = skb_headlen(skb);
3953 	int i, copy = start - offset;
3954 	struct sk_buff *frag_iter;
3955 	int elt = 0;
3956 
3957 	if (unlikely(recursion_level >= 24))
3958 		return -EMSGSIZE;
3959 
3960 	if (copy > 0) {
3961 		if (copy > len)
3962 			copy = len;
3963 		sg_set_buf(sg, skb->data + offset, copy);
3964 		elt++;
3965 		if ((len -= copy) == 0)
3966 			return elt;
3967 		offset += copy;
3968 	}
3969 
3970 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3971 		int end;
3972 
3973 		WARN_ON(start > offset + len);
3974 
3975 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3976 		if ((copy = end - offset) > 0) {
3977 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3978 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3979 				return -EMSGSIZE;
3980 
3981 			if (copy > len)
3982 				copy = len;
3983 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3984 					frag->page_offset+offset-start);
3985 			elt++;
3986 			if (!(len -= copy))
3987 				return elt;
3988 			offset += copy;
3989 		}
3990 		start = end;
3991 	}
3992 
3993 	skb_walk_frags(skb, frag_iter) {
3994 		int end, ret;
3995 
3996 		WARN_ON(start > offset + len);
3997 
3998 		end = start + frag_iter->len;
3999 		if ((copy = end - offset) > 0) {
4000 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4001 				return -EMSGSIZE;
4002 
4003 			if (copy > len)
4004 				copy = len;
4005 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4006 					      copy, recursion_level + 1);
4007 			if (unlikely(ret < 0))
4008 				return ret;
4009 			elt += ret;
4010 			if ((len -= copy) == 0)
4011 				return elt;
4012 			offset += copy;
4013 		}
4014 		start = end;
4015 	}
4016 	BUG_ON(len);
4017 	return elt;
4018 }
4019 
4020 /**
4021  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4022  *	@skb: Socket buffer containing the buffers to be mapped
4023  *	@sg: The scatter-gather list to map into
4024  *	@offset: The offset into the buffer's contents to start mapping
4025  *	@len: Length of buffer space to be mapped
4026  *
4027  *	Fill the specified scatter-gather list with mappings/pointers into a
4028  *	region of the buffer space attached to a socket buffer. Returns either
4029  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4030  *	could not fit.
4031  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4032 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4033 {
4034 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4035 
4036 	if (nsg <= 0)
4037 		return nsg;
4038 
4039 	sg_mark_end(&sg[nsg - 1]);
4040 
4041 	return nsg;
4042 }
4043 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4044 
4045 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4046  * sglist without mark the sg which contain last skb data as the end.
4047  * So the caller can mannipulate sg list as will when padding new data after
4048  * the first call without calling sg_unmark_end to expend sg list.
4049  *
4050  * Scenario to use skb_to_sgvec_nomark:
4051  * 1. sg_init_table
4052  * 2. skb_to_sgvec_nomark(payload1)
4053  * 3. skb_to_sgvec_nomark(payload2)
4054  *
4055  * This is equivalent to:
4056  * 1. sg_init_table
4057  * 2. skb_to_sgvec(payload1)
4058  * 3. sg_unmark_end
4059  * 4. skb_to_sgvec(payload2)
4060  *
4061  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4062  * is more preferable.
4063  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4064 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4065 			int offset, int len)
4066 {
4067 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4068 }
4069 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4070 
4071 
4072 
4073 /**
4074  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4075  *	@skb: The socket buffer to check.
4076  *	@tailbits: Amount of trailing space to be added
4077  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4078  *
4079  *	Make sure that the data buffers attached to a socket buffer are
4080  *	writable. If they are not, private copies are made of the data buffers
4081  *	and the socket buffer is set to use these instead.
4082  *
4083  *	If @tailbits is given, make sure that there is space to write @tailbits
4084  *	bytes of data beyond current end of socket buffer.  @trailer will be
4085  *	set to point to the skb in which this space begins.
4086  *
4087  *	The number of scatterlist elements required to completely map the
4088  *	COW'd and extended socket buffer will be returned.
4089  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4090 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4091 {
4092 	int copyflag;
4093 	int elt;
4094 	struct sk_buff *skb1, **skb_p;
4095 
4096 	/* If skb is cloned or its head is paged, reallocate
4097 	 * head pulling out all the pages (pages are considered not writable
4098 	 * at the moment even if they are anonymous).
4099 	 */
4100 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4101 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4102 		return -ENOMEM;
4103 
4104 	/* Easy case. Most of packets will go this way. */
4105 	if (!skb_has_frag_list(skb)) {
4106 		/* A little of trouble, not enough of space for trailer.
4107 		 * This should not happen, when stack is tuned to generate
4108 		 * good frames. OK, on miss we reallocate and reserve even more
4109 		 * space, 128 bytes is fair. */
4110 
4111 		if (skb_tailroom(skb) < tailbits &&
4112 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4113 			return -ENOMEM;
4114 
4115 		/* Voila! */
4116 		*trailer = skb;
4117 		return 1;
4118 	}
4119 
4120 	/* Misery. We are in troubles, going to mincer fragments... */
4121 
4122 	elt = 1;
4123 	skb_p = &skb_shinfo(skb)->frag_list;
4124 	copyflag = 0;
4125 
4126 	while ((skb1 = *skb_p) != NULL) {
4127 		int ntail = 0;
4128 
4129 		/* The fragment is partially pulled by someone,
4130 		 * this can happen on input. Copy it and everything
4131 		 * after it. */
4132 
4133 		if (skb_shared(skb1))
4134 			copyflag = 1;
4135 
4136 		/* If the skb is the last, worry about trailer. */
4137 
4138 		if (skb1->next == NULL && tailbits) {
4139 			if (skb_shinfo(skb1)->nr_frags ||
4140 			    skb_has_frag_list(skb1) ||
4141 			    skb_tailroom(skb1) < tailbits)
4142 				ntail = tailbits + 128;
4143 		}
4144 
4145 		if (copyflag ||
4146 		    skb_cloned(skb1) ||
4147 		    ntail ||
4148 		    skb_shinfo(skb1)->nr_frags ||
4149 		    skb_has_frag_list(skb1)) {
4150 			struct sk_buff *skb2;
4151 
4152 			/* Fuck, we are miserable poor guys... */
4153 			if (ntail == 0)
4154 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4155 			else
4156 				skb2 = skb_copy_expand(skb1,
4157 						       skb_headroom(skb1),
4158 						       ntail,
4159 						       GFP_ATOMIC);
4160 			if (unlikely(skb2 == NULL))
4161 				return -ENOMEM;
4162 
4163 			if (skb1->sk)
4164 				skb_set_owner_w(skb2, skb1->sk);
4165 
4166 			/* Looking around. Are we still alive?
4167 			 * OK, link new skb, drop old one */
4168 
4169 			skb2->next = skb1->next;
4170 			*skb_p = skb2;
4171 			kfree_skb(skb1);
4172 			skb1 = skb2;
4173 		}
4174 		elt++;
4175 		*trailer = skb1;
4176 		skb_p = &skb1->next;
4177 	}
4178 
4179 	return elt;
4180 }
4181 EXPORT_SYMBOL_GPL(skb_cow_data);
4182 
sock_rmem_free(struct sk_buff * skb)4183 static void sock_rmem_free(struct sk_buff *skb)
4184 {
4185 	struct sock *sk = skb->sk;
4186 
4187 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4188 }
4189 
skb_set_err_queue(struct sk_buff * skb)4190 static void skb_set_err_queue(struct sk_buff *skb)
4191 {
4192 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4193 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4194 	 */
4195 	skb->pkt_type = PACKET_OUTGOING;
4196 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4197 }
4198 
4199 /*
4200  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4201  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4202 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4203 {
4204 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4205 	    (unsigned int)sk->sk_rcvbuf)
4206 		return -ENOMEM;
4207 
4208 	skb_orphan(skb);
4209 	skb->sk = sk;
4210 	skb->destructor = sock_rmem_free;
4211 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4212 	skb_set_err_queue(skb);
4213 
4214 	/* before exiting rcu section, make sure dst is refcounted */
4215 	skb_dst_force(skb);
4216 
4217 	skb_queue_tail(&sk->sk_error_queue, skb);
4218 	if (!sock_flag(sk, SOCK_DEAD))
4219 		sk->sk_error_report(sk);
4220 	return 0;
4221 }
4222 EXPORT_SYMBOL(sock_queue_err_skb);
4223 
is_icmp_err_skb(const struct sk_buff * skb)4224 static bool is_icmp_err_skb(const struct sk_buff *skb)
4225 {
4226 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4227 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4228 }
4229 
sock_dequeue_err_skb(struct sock * sk)4230 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4231 {
4232 	struct sk_buff_head *q = &sk->sk_error_queue;
4233 	struct sk_buff *skb, *skb_next = NULL;
4234 	bool icmp_next = false;
4235 	unsigned long flags;
4236 
4237 	spin_lock_irqsave(&q->lock, flags);
4238 	skb = __skb_dequeue(q);
4239 	if (skb && (skb_next = skb_peek(q))) {
4240 		icmp_next = is_icmp_err_skb(skb_next);
4241 		if (icmp_next)
4242 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4243 	}
4244 	spin_unlock_irqrestore(&q->lock, flags);
4245 
4246 	if (is_icmp_err_skb(skb) && !icmp_next)
4247 		sk->sk_err = 0;
4248 
4249 	if (skb_next)
4250 		sk->sk_error_report(sk);
4251 
4252 	return skb;
4253 }
4254 EXPORT_SYMBOL(sock_dequeue_err_skb);
4255 
4256 /**
4257  * skb_clone_sk - create clone of skb, and take reference to socket
4258  * @skb: the skb to clone
4259  *
4260  * This function creates a clone of a buffer that holds a reference on
4261  * sk_refcnt.  Buffers created via this function are meant to be
4262  * returned using sock_queue_err_skb, or free via kfree_skb.
4263  *
4264  * When passing buffers allocated with this function to sock_queue_err_skb
4265  * it is necessary to wrap the call with sock_hold/sock_put in order to
4266  * prevent the socket from being released prior to being enqueued on
4267  * the sk_error_queue.
4268  */
skb_clone_sk(struct sk_buff * skb)4269 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4270 {
4271 	struct sock *sk = skb->sk;
4272 	struct sk_buff *clone;
4273 
4274 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4275 		return NULL;
4276 
4277 	clone = skb_clone(skb, GFP_ATOMIC);
4278 	if (!clone) {
4279 		sock_put(sk);
4280 		return NULL;
4281 	}
4282 
4283 	clone->sk = sk;
4284 	clone->destructor = sock_efree;
4285 
4286 	return clone;
4287 }
4288 EXPORT_SYMBOL(skb_clone_sk);
4289 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4290 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4291 					struct sock *sk,
4292 					int tstype,
4293 					bool opt_stats)
4294 {
4295 	struct sock_exterr_skb *serr;
4296 	int err;
4297 
4298 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4299 
4300 	serr = SKB_EXT_ERR(skb);
4301 	memset(serr, 0, sizeof(*serr));
4302 	serr->ee.ee_errno = ENOMSG;
4303 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4304 	serr->ee.ee_info = tstype;
4305 	serr->opt_stats = opt_stats;
4306 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4307 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4308 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4309 		if (sk->sk_protocol == IPPROTO_TCP &&
4310 		    sk->sk_type == SOCK_STREAM)
4311 			serr->ee.ee_data -= sk->sk_tskey;
4312 	}
4313 
4314 	err = sock_queue_err_skb(sk, skb);
4315 
4316 	if (err)
4317 		kfree_skb(skb);
4318 }
4319 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4320 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4321 {
4322 	bool ret;
4323 
4324 	if (likely(sysctl_tstamp_allow_data || tsonly))
4325 		return true;
4326 
4327 	read_lock_bh(&sk->sk_callback_lock);
4328 	ret = sk->sk_socket && sk->sk_socket->file &&
4329 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4330 	read_unlock_bh(&sk->sk_callback_lock);
4331 	return ret;
4332 }
4333 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4334 void skb_complete_tx_timestamp(struct sk_buff *skb,
4335 			       struct skb_shared_hwtstamps *hwtstamps)
4336 {
4337 	struct sock *sk = skb->sk;
4338 
4339 	if (!skb_may_tx_timestamp(sk, false))
4340 		goto err;
4341 
4342 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4343 	 * but only if the socket refcount is not zero.
4344 	 */
4345 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4346 		*skb_hwtstamps(skb) = *hwtstamps;
4347 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4348 		sock_put(sk);
4349 		return;
4350 	}
4351 
4352 err:
4353 	kfree_skb(skb);
4354 }
4355 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4356 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4357 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4358 		     struct skb_shared_hwtstamps *hwtstamps,
4359 		     struct sock *sk, int tstype)
4360 {
4361 	struct sk_buff *skb;
4362 	bool tsonly, opt_stats = false;
4363 
4364 	if (!sk)
4365 		return;
4366 
4367 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4368 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4369 		return;
4370 
4371 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4372 	if (!skb_may_tx_timestamp(sk, tsonly))
4373 		return;
4374 
4375 	if (tsonly) {
4376 #ifdef CONFIG_INET
4377 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4378 		    sk->sk_protocol == IPPROTO_TCP &&
4379 		    sk->sk_type == SOCK_STREAM) {
4380 			skb = tcp_get_timestamping_opt_stats(sk);
4381 			opt_stats = true;
4382 		} else
4383 #endif
4384 			skb = alloc_skb(0, GFP_ATOMIC);
4385 	} else {
4386 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4387 	}
4388 	if (!skb)
4389 		return;
4390 
4391 	if (tsonly) {
4392 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4393 					     SKBTX_ANY_TSTAMP;
4394 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4395 	}
4396 
4397 	if (hwtstamps)
4398 		*skb_hwtstamps(skb) = *hwtstamps;
4399 	else
4400 		skb->tstamp = ktime_get_real();
4401 
4402 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4403 }
4404 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4405 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4406 void skb_tstamp_tx(struct sk_buff *orig_skb,
4407 		   struct skb_shared_hwtstamps *hwtstamps)
4408 {
4409 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4410 			       SCM_TSTAMP_SND);
4411 }
4412 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4413 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4414 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4415 {
4416 	struct sock *sk = skb->sk;
4417 	struct sock_exterr_skb *serr;
4418 	int err = 1;
4419 
4420 	skb->wifi_acked_valid = 1;
4421 	skb->wifi_acked = acked;
4422 
4423 	serr = SKB_EXT_ERR(skb);
4424 	memset(serr, 0, sizeof(*serr));
4425 	serr->ee.ee_errno = ENOMSG;
4426 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4427 
4428 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4429 	 * but only if the socket refcount is not zero.
4430 	 */
4431 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4432 		err = sock_queue_err_skb(sk, skb);
4433 		sock_put(sk);
4434 	}
4435 	if (err)
4436 		kfree_skb(skb);
4437 }
4438 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4439 
4440 /**
4441  * skb_partial_csum_set - set up and verify partial csum values for packet
4442  * @skb: the skb to set
4443  * @start: the number of bytes after skb->data to start checksumming.
4444  * @off: the offset from start to place the checksum.
4445  *
4446  * For untrusted partially-checksummed packets, we need to make sure the values
4447  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4448  *
4449  * This function checks and sets those values and skb->ip_summed: if this
4450  * returns false you should drop the packet.
4451  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4452 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4453 {
4454 	if (unlikely(start > skb_headlen(skb)) ||
4455 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4456 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4457 				     start, off, skb_headlen(skb));
4458 		return false;
4459 	}
4460 	skb->ip_summed = CHECKSUM_PARTIAL;
4461 	skb->csum_start = skb_headroom(skb) + start;
4462 	skb->csum_offset = off;
4463 	skb_set_transport_header(skb, start);
4464 	return true;
4465 }
4466 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4467 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4468 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4469 			       unsigned int max)
4470 {
4471 	if (skb_headlen(skb) >= len)
4472 		return 0;
4473 
4474 	/* If we need to pullup then pullup to the max, so we
4475 	 * won't need to do it again.
4476 	 */
4477 	if (max > skb->len)
4478 		max = skb->len;
4479 
4480 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4481 		return -ENOMEM;
4482 
4483 	if (skb_headlen(skb) < len)
4484 		return -EPROTO;
4485 
4486 	return 0;
4487 }
4488 
4489 #define MAX_TCP_HDR_LEN (15 * 4)
4490 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4491 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4492 				      typeof(IPPROTO_IP) proto,
4493 				      unsigned int off)
4494 {
4495 	switch (proto) {
4496 		int err;
4497 
4498 	case IPPROTO_TCP:
4499 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4500 					  off + MAX_TCP_HDR_LEN);
4501 		if (!err && !skb_partial_csum_set(skb, off,
4502 						  offsetof(struct tcphdr,
4503 							   check)))
4504 			err = -EPROTO;
4505 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4506 
4507 	case IPPROTO_UDP:
4508 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4509 					  off + sizeof(struct udphdr));
4510 		if (!err && !skb_partial_csum_set(skb, off,
4511 						  offsetof(struct udphdr,
4512 							   check)))
4513 			err = -EPROTO;
4514 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4515 	}
4516 
4517 	return ERR_PTR(-EPROTO);
4518 }
4519 
4520 /* This value should be large enough to cover a tagged ethernet header plus
4521  * maximally sized IP and TCP or UDP headers.
4522  */
4523 #define MAX_IP_HDR_LEN 128
4524 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4525 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4526 {
4527 	unsigned int off;
4528 	bool fragment;
4529 	__sum16 *csum;
4530 	int err;
4531 
4532 	fragment = false;
4533 
4534 	err = skb_maybe_pull_tail(skb,
4535 				  sizeof(struct iphdr),
4536 				  MAX_IP_HDR_LEN);
4537 	if (err < 0)
4538 		goto out;
4539 
4540 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4541 		fragment = true;
4542 
4543 	off = ip_hdrlen(skb);
4544 
4545 	err = -EPROTO;
4546 
4547 	if (fragment)
4548 		goto out;
4549 
4550 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4551 	if (IS_ERR(csum))
4552 		return PTR_ERR(csum);
4553 
4554 	if (recalculate)
4555 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4556 					   ip_hdr(skb)->daddr,
4557 					   skb->len - off,
4558 					   ip_hdr(skb)->protocol, 0);
4559 	err = 0;
4560 
4561 out:
4562 	return err;
4563 }
4564 
4565 /* This value should be large enough to cover a tagged ethernet header plus
4566  * an IPv6 header, all options, and a maximal TCP or UDP header.
4567  */
4568 #define MAX_IPV6_HDR_LEN 256
4569 
4570 #define OPT_HDR(type, skb, off) \
4571 	(type *)(skb_network_header(skb) + (off))
4572 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4573 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4574 {
4575 	int err;
4576 	u8 nexthdr;
4577 	unsigned int off;
4578 	unsigned int len;
4579 	bool fragment;
4580 	bool done;
4581 	__sum16 *csum;
4582 
4583 	fragment = false;
4584 	done = false;
4585 
4586 	off = sizeof(struct ipv6hdr);
4587 
4588 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4589 	if (err < 0)
4590 		goto out;
4591 
4592 	nexthdr = ipv6_hdr(skb)->nexthdr;
4593 
4594 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4595 	while (off <= len && !done) {
4596 		switch (nexthdr) {
4597 		case IPPROTO_DSTOPTS:
4598 		case IPPROTO_HOPOPTS:
4599 		case IPPROTO_ROUTING: {
4600 			struct ipv6_opt_hdr *hp;
4601 
4602 			err = skb_maybe_pull_tail(skb,
4603 						  off +
4604 						  sizeof(struct ipv6_opt_hdr),
4605 						  MAX_IPV6_HDR_LEN);
4606 			if (err < 0)
4607 				goto out;
4608 
4609 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4610 			nexthdr = hp->nexthdr;
4611 			off += ipv6_optlen(hp);
4612 			break;
4613 		}
4614 		case IPPROTO_AH: {
4615 			struct ip_auth_hdr *hp;
4616 
4617 			err = skb_maybe_pull_tail(skb,
4618 						  off +
4619 						  sizeof(struct ip_auth_hdr),
4620 						  MAX_IPV6_HDR_LEN);
4621 			if (err < 0)
4622 				goto out;
4623 
4624 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4625 			nexthdr = hp->nexthdr;
4626 			off += ipv6_authlen(hp);
4627 			break;
4628 		}
4629 		case IPPROTO_FRAGMENT: {
4630 			struct frag_hdr *hp;
4631 
4632 			err = skb_maybe_pull_tail(skb,
4633 						  off +
4634 						  sizeof(struct frag_hdr),
4635 						  MAX_IPV6_HDR_LEN);
4636 			if (err < 0)
4637 				goto out;
4638 
4639 			hp = OPT_HDR(struct frag_hdr, skb, off);
4640 
4641 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4642 				fragment = true;
4643 
4644 			nexthdr = hp->nexthdr;
4645 			off += sizeof(struct frag_hdr);
4646 			break;
4647 		}
4648 		default:
4649 			done = true;
4650 			break;
4651 		}
4652 	}
4653 
4654 	err = -EPROTO;
4655 
4656 	if (!done || fragment)
4657 		goto out;
4658 
4659 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4660 	if (IS_ERR(csum))
4661 		return PTR_ERR(csum);
4662 
4663 	if (recalculate)
4664 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4665 					 &ipv6_hdr(skb)->daddr,
4666 					 skb->len - off, nexthdr, 0);
4667 	err = 0;
4668 
4669 out:
4670 	return err;
4671 }
4672 
4673 /**
4674  * skb_checksum_setup - set up partial checksum offset
4675  * @skb: the skb to set up
4676  * @recalculate: if true the pseudo-header checksum will be recalculated
4677  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4678 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4679 {
4680 	int err;
4681 
4682 	switch (skb->protocol) {
4683 	case htons(ETH_P_IP):
4684 		err = skb_checksum_setup_ipv4(skb, recalculate);
4685 		break;
4686 
4687 	case htons(ETH_P_IPV6):
4688 		err = skb_checksum_setup_ipv6(skb, recalculate);
4689 		break;
4690 
4691 	default:
4692 		err = -EPROTO;
4693 		break;
4694 	}
4695 
4696 	return err;
4697 }
4698 EXPORT_SYMBOL(skb_checksum_setup);
4699 
4700 /**
4701  * skb_checksum_maybe_trim - maybe trims the given skb
4702  * @skb: the skb to check
4703  * @transport_len: the data length beyond the network header
4704  *
4705  * Checks whether the given skb has data beyond the given transport length.
4706  * If so, returns a cloned skb trimmed to this transport length.
4707  * Otherwise returns the provided skb. Returns NULL in error cases
4708  * (e.g. transport_len exceeds skb length or out-of-memory).
4709  *
4710  * Caller needs to set the skb transport header and free any returned skb if it
4711  * differs from the provided skb.
4712  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4713 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4714 					       unsigned int transport_len)
4715 {
4716 	struct sk_buff *skb_chk;
4717 	unsigned int len = skb_transport_offset(skb) + transport_len;
4718 	int ret;
4719 
4720 	if (skb->len < len)
4721 		return NULL;
4722 	else if (skb->len == len)
4723 		return skb;
4724 
4725 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4726 	if (!skb_chk)
4727 		return NULL;
4728 
4729 	ret = pskb_trim_rcsum(skb_chk, len);
4730 	if (ret) {
4731 		kfree_skb(skb_chk);
4732 		return NULL;
4733 	}
4734 
4735 	return skb_chk;
4736 }
4737 
4738 /**
4739  * skb_checksum_trimmed - validate checksum of an skb
4740  * @skb: the skb to check
4741  * @transport_len: the data length beyond the network header
4742  * @skb_chkf: checksum function to use
4743  *
4744  * Applies the given checksum function skb_chkf to the provided skb.
4745  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4746  *
4747  * If the skb has data beyond the given transport length, then a
4748  * trimmed & cloned skb is checked and returned.
4749  *
4750  * Caller needs to set the skb transport header and free any returned skb if it
4751  * differs from the provided skb.
4752  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4753 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4754 				     unsigned int transport_len,
4755 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4756 {
4757 	struct sk_buff *skb_chk;
4758 	unsigned int offset = skb_transport_offset(skb);
4759 	__sum16 ret;
4760 
4761 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4762 	if (!skb_chk)
4763 		goto err;
4764 
4765 	if (!pskb_may_pull(skb_chk, offset))
4766 		goto err;
4767 
4768 	skb_pull_rcsum(skb_chk, offset);
4769 	ret = skb_chkf(skb_chk);
4770 	skb_push_rcsum(skb_chk, offset);
4771 
4772 	if (ret)
4773 		goto err;
4774 
4775 	return skb_chk;
4776 
4777 err:
4778 	if (skb_chk && skb_chk != skb)
4779 		kfree_skb(skb_chk);
4780 
4781 	return NULL;
4782 
4783 }
4784 EXPORT_SYMBOL(skb_checksum_trimmed);
4785 
__skb_warn_lro_forwarding(const struct sk_buff * skb)4786 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4787 {
4788 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4789 			     skb->dev->name);
4790 }
4791 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4792 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4793 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4794 {
4795 	if (head_stolen) {
4796 		skb_release_head_state(skb);
4797 		kmem_cache_free(skbuff_head_cache, skb);
4798 	} else {
4799 		__kfree_skb(skb);
4800 	}
4801 }
4802 EXPORT_SYMBOL(kfree_skb_partial);
4803 
4804 /**
4805  * skb_try_coalesce - try to merge skb to prior one
4806  * @to: prior buffer
4807  * @from: buffer to add
4808  * @fragstolen: pointer to boolean
4809  * @delta_truesize: how much more was allocated than was requested
4810  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4811 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4812 		      bool *fragstolen, int *delta_truesize)
4813 {
4814 	int i, delta, len = from->len;
4815 
4816 	*fragstolen = false;
4817 
4818 	if (skb_cloned(to))
4819 		return false;
4820 
4821 	if (len <= skb_tailroom(to)) {
4822 		if (len)
4823 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4824 		*delta_truesize = 0;
4825 		return true;
4826 	}
4827 
4828 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4829 		return false;
4830 	if (skb_zcopy(to) || skb_zcopy(from))
4831 		return false;
4832 
4833 	if (skb_headlen(from) != 0) {
4834 		struct page *page;
4835 		unsigned int offset;
4836 
4837 		if (skb_shinfo(to)->nr_frags +
4838 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4839 			return false;
4840 
4841 		if (skb_head_is_locked(from))
4842 			return false;
4843 
4844 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4845 
4846 		page = virt_to_head_page(from->head);
4847 		offset = from->data - (unsigned char *)page_address(page);
4848 
4849 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4850 				   page, offset, skb_headlen(from));
4851 		*fragstolen = true;
4852 	} else {
4853 		if (skb_shinfo(to)->nr_frags +
4854 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4855 			return false;
4856 
4857 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4858 	}
4859 
4860 	WARN_ON_ONCE(delta < len);
4861 
4862 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4863 	       skb_shinfo(from)->frags,
4864 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4865 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4866 
4867 	if (!skb_cloned(from))
4868 		skb_shinfo(from)->nr_frags = 0;
4869 
4870 	/* if the skb is not cloned this does nothing
4871 	 * since we set nr_frags to 0.
4872 	 */
4873 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4874 		skb_frag_ref(from, i);
4875 
4876 	to->truesize += delta;
4877 	to->len += len;
4878 	to->data_len += len;
4879 
4880 	*delta_truesize = delta;
4881 	return true;
4882 }
4883 EXPORT_SYMBOL(skb_try_coalesce);
4884 
4885 /**
4886  * skb_scrub_packet - scrub an skb
4887  *
4888  * @skb: buffer to clean
4889  * @xnet: packet is crossing netns
4890  *
4891  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4892  * into/from a tunnel. Some information have to be cleared during these
4893  * operations.
4894  * skb_scrub_packet can also be used to clean a skb before injecting it in
4895  * another namespace (@xnet == true). We have to clear all information in the
4896  * skb that could impact namespace isolation.
4897  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4898 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4899 {
4900 	skb->tstamp = 0;
4901 	skb->pkt_type = PACKET_HOST;
4902 	skb->skb_iif = 0;
4903 	skb->ignore_df = 0;
4904 	skb_dst_drop(skb);
4905 	secpath_reset(skb);
4906 	nf_reset(skb);
4907 	nf_reset_trace(skb);
4908 
4909 #ifdef CONFIG_NET_SWITCHDEV
4910 	skb->offload_fwd_mark = 0;
4911 #endif
4912 
4913 	if (!xnet)
4914 		return;
4915 
4916 	ipvs_reset(skb);
4917 	skb_orphan(skb);
4918 	skb->mark = 0;
4919 }
4920 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4921 
4922 /**
4923  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4924  *
4925  * @skb: GSO skb
4926  *
4927  * skb_gso_transport_seglen is used to determine the real size of the
4928  * individual segments, including Layer4 headers (TCP/UDP).
4929  *
4930  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4931  */
skb_gso_transport_seglen(const struct sk_buff * skb)4932 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4933 {
4934 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4935 	unsigned int thlen = 0;
4936 
4937 	if (skb->encapsulation) {
4938 		thlen = skb_inner_transport_header(skb) -
4939 			skb_transport_header(skb);
4940 
4941 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4942 			thlen += inner_tcp_hdrlen(skb);
4943 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4944 		thlen = tcp_hdrlen(skb);
4945 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4946 		thlen = sizeof(struct sctphdr);
4947 	}
4948 	/* UFO sets gso_size to the size of the fragmentation
4949 	 * payload, i.e. the size of the L4 (UDP) header is already
4950 	 * accounted for.
4951 	 */
4952 	return thlen + shinfo->gso_size;
4953 }
4954 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4955 
4956 /**
4957  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4958  *
4959  * There are a couple of instances where we have a GSO skb, and we
4960  * want to determine what size it would be after it is segmented.
4961  *
4962  * We might want to check:
4963  * -    L3+L4+payload size (e.g. IP forwarding)
4964  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4965  *
4966  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4967  *
4968  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4969  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4970  *
4971  * @max_len: The maximum permissible length.
4972  *
4973  * Returns true if the segmented length <= max length.
4974  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)4975 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4976 				      unsigned int seg_len,
4977 				      unsigned int max_len) {
4978 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4979 	const struct sk_buff *iter;
4980 
4981 	if (shinfo->gso_size != GSO_BY_FRAGS)
4982 		return seg_len <= max_len;
4983 
4984 	/* Undo this so we can re-use header sizes */
4985 	seg_len -= GSO_BY_FRAGS;
4986 
4987 	skb_walk_frags(skb, iter) {
4988 		if (seg_len + skb_headlen(iter) > max_len)
4989 			return false;
4990 	}
4991 
4992 	return true;
4993 }
4994 
4995 /**
4996  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4997  *
4998  * @skb: GSO skb
4999  * @mtu: MTU to validate against
5000  *
5001  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
5002  * once split.
5003  */
skb_gso_validate_mtu(const struct sk_buff * skb,unsigned int mtu)5004 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
5005 {
5006 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5007 }
5008 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
5009 
5010 /**
5011  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5012  *
5013  * @skb: GSO skb
5014  * @len: length to validate against
5015  *
5016  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5017  * length once split, including L2, L3 and L4 headers and the payload.
5018  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5019 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5020 {
5021 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5022 }
5023 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5024 
skb_reorder_vlan_header(struct sk_buff * skb)5025 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5026 {
5027 	int mac_len;
5028 
5029 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5030 		kfree_skb(skb);
5031 		return NULL;
5032 	}
5033 
5034 	mac_len = skb->data - skb_mac_header(skb);
5035 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5036 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5037 			mac_len - VLAN_HLEN - ETH_TLEN);
5038 	}
5039 	skb->mac_header += VLAN_HLEN;
5040 	return skb;
5041 }
5042 
skb_vlan_untag(struct sk_buff * skb)5043 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5044 {
5045 	struct vlan_hdr *vhdr;
5046 	u16 vlan_tci;
5047 
5048 	if (unlikely(skb_vlan_tag_present(skb))) {
5049 		/* vlan_tci is already set-up so leave this for another time */
5050 		return skb;
5051 	}
5052 
5053 	skb = skb_share_check(skb, GFP_ATOMIC);
5054 	if (unlikely(!skb))
5055 		goto err_free;
5056 
5057 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5058 		goto err_free;
5059 
5060 	vhdr = (struct vlan_hdr *)skb->data;
5061 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5062 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5063 
5064 	skb_pull_rcsum(skb, VLAN_HLEN);
5065 	vlan_set_encap_proto(skb, vhdr);
5066 
5067 	skb = skb_reorder_vlan_header(skb);
5068 	if (unlikely(!skb))
5069 		goto err_free;
5070 
5071 	skb_reset_network_header(skb);
5072 	skb_reset_transport_header(skb);
5073 	skb_reset_mac_len(skb);
5074 
5075 	return skb;
5076 
5077 err_free:
5078 	kfree_skb(skb);
5079 	return NULL;
5080 }
5081 EXPORT_SYMBOL(skb_vlan_untag);
5082 
skb_ensure_writable(struct sk_buff * skb,int write_len)5083 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5084 {
5085 	if (!pskb_may_pull(skb, write_len))
5086 		return -ENOMEM;
5087 
5088 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5089 		return 0;
5090 
5091 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5092 }
5093 EXPORT_SYMBOL(skb_ensure_writable);
5094 
5095 /* remove VLAN header from packet and update csum accordingly.
5096  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5097  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5098 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5099 {
5100 	struct vlan_hdr *vhdr;
5101 	int offset = skb->data - skb_mac_header(skb);
5102 	int err;
5103 
5104 	if (WARN_ONCE(offset,
5105 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5106 		      offset)) {
5107 		return -EINVAL;
5108 	}
5109 
5110 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5111 	if (unlikely(err))
5112 		return err;
5113 
5114 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5115 
5116 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5117 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5118 
5119 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5120 	__skb_pull(skb, VLAN_HLEN);
5121 
5122 	vlan_set_encap_proto(skb, vhdr);
5123 	skb->mac_header += VLAN_HLEN;
5124 
5125 	if (skb_network_offset(skb) < ETH_HLEN)
5126 		skb_set_network_header(skb, ETH_HLEN);
5127 
5128 	skb_reset_mac_len(skb);
5129 
5130 	return err;
5131 }
5132 EXPORT_SYMBOL(__skb_vlan_pop);
5133 
5134 /* Pop a vlan tag either from hwaccel or from payload.
5135  * Expects skb->data at mac header.
5136  */
skb_vlan_pop(struct sk_buff * skb)5137 int skb_vlan_pop(struct sk_buff *skb)
5138 {
5139 	u16 vlan_tci;
5140 	__be16 vlan_proto;
5141 	int err;
5142 
5143 	if (likely(skb_vlan_tag_present(skb))) {
5144 		skb->vlan_tci = 0;
5145 	} else {
5146 		if (unlikely(!eth_type_vlan(skb->protocol)))
5147 			return 0;
5148 
5149 		err = __skb_vlan_pop(skb, &vlan_tci);
5150 		if (err)
5151 			return err;
5152 	}
5153 	/* move next vlan tag to hw accel tag */
5154 	if (likely(!eth_type_vlan(skb->protocol)))
5155 		return 0;
5156 
5157 	vlan_proto = skb->protocol;
5158 	err = __skb_vlan_pop(skb, &vlan_tci);
5159 	if (unlikely(err))
5160 		return err;
5161 
5162 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5163 	return 0;
5164 }
5165 EXPORT_SYMBOL(skb_vlan_pop);
5166 
5167 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5168  * Expects skb->data at mac header.
5169  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5170 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5171 {
5172 	if (skb_vlan_tag_present(skb)) {
5173 		int offset = skb->data - skb_mac_header(skb);
5174 		int err;
5175 
5176 		if (WARN_ONCE(offset,
5177 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5178 			      offset)) {
5179 			return -EINVAL;
5180 		}
5181 
5182 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5183 					skb_vlan_tag_get(skb));
5184 		if (err)
5185 			return err;
5186 
5187 		skb->protocol = skb->vlan_proto;
5188 		skb->mac_len += VLAN_HLEN;
5189 
5190 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5191 	}
5192 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5193 	return 0;
5194 }
5195 EXPORT_SYMBOL(skb_vlan_push);
5196 
5197 /**
5198  * alloc_skb_with_frags - allocate skb with page frags
5199  *
5200  * @header_len: size of linear part
5201  * @data_len: needed length in frags
5202  * @max_page_order: max page order desired.
5203  * @errcode: pointer to error code if any
5204  * @gfp_mask: allocation mask
5205  *
5206  * This can be used to allocate a paged skb, given a maximal order for frags.
5207  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5208 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5209 				     unsigned long data_len,
5210 				     int max_page_order,
5211 				     int *errcode,
5212 				     gfp_t gfp_mask)
5213 {
5214 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5215 	unsigned long chunk;
5216 	struct sk_buff *skb;
5217 	struct page *page;
5218 	int i;
5219 
5220 	*errcode = -EMSGSIZE;
5221 	/* Note this test could be relaxed, if we succeed to allocate
5222 	 * high order pages...
5223 	 */
5224 	if (npages > MAX_SKB_FRAGS)
5225 		return NULL;
5226 
5227 	*errcode = -ENOBUFS;
5228 	skb = alloc_skb(header_len, gfp_mask);
5229 	if (!skb)
5230 		return NULL;
5231 
5232 	skb->truesize += npages << PAGE_SHIFT;
5233 
5234 	for (i = 0; npages > 0; i++) {
5235 		int order = max_page_order;
5236 
5237 		while (order) {
5238 			if (npages >= 1 << order) {
5239 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5240 						   __GFP_COMP |
5241 						   __GFP_NOWARN |
5242 						   __GFP_NORETRY,
5243 						   order);
5244 				if (page)
5245 					goto fill_page;
5246 				/* Do not retry other high order allocations */
5247 				order = 1;
5248 				max_page_order = 0;
5249 			}
5250 			order--;
5251 		}
5252 		page = alloc_page(gfp_mask);
5253 		if (!page)
5254 			goto failure;
5255 fill_page:
5256 		chunk = min_t(unsigned long, data_len,
5257 			      PAGE_SIZE << order);
5258 		skb_fill_page_desc(skb, i, page, 0, chunk);
5259 		data_len -= chunk;
5260 		npages -= 1 << order;
5261 	}
5262 	return skb;
5263 
5264 failure:
5265 	kfree_skb(skb);
5266 	return NULL;
5267 }
5268 EXPORT_SYMBOL(alloc_skb_with_frags);
5269 
5270 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5271 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5272 				    const int headlen, gfp_t gfp_mask)
5273 {
5274 	int i;
5275 	int size = skb_end_offset(skb);
5276 	int new_hlen = headlen - off;
5277 	u8 *data;
5278 
5279 	size = SKB_DATA_ALIGN(size);
5280 
5281 	if (skb_pfmemalloc(skb))
5282 		gfp_mask |= __GFP_MEMALLOC;
5283 	data = kmalloc_reserve(size +
5284 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5285 			       gfp_mask, NUMA_NO_NODE, NULL);
5286 	if (!data)
5287 		return -ENOMEM;
5288 
5289 	size = SKB_WITH_OVERHEAD(ksize(data));
5290 
5291 	/* Copy real data, and all frags */
5292 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5293 	skb->len -= off;
5294 
5295 	memcpy((struct skb_shared_info *)(data + size),
5296 	       skb_shinfo(skb),
5297 	       offsetof(struct skb_shared_info,
5298 			frags[skb_shinfo(skb)->nr_frags]));
5299 	if (skb_cloned(skb)) {
5300 		/* drop the old head gracefully */
5301 		if (skb_orphan_frags(skb, gfp_mask)) {
5302 			kfree(data);
5303 			return -ENOMEM;
5304 		}
5305 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5306 			skb_frag_ref(skb, i);
5307 		if (skb_has_frag_list(skb))
5308 			skb_clone_fraglist(skb);
5309 		skb_release_data(skb);
5310 	} else {
5311 		/* we can reuse existing recount- all we did was
5312 		 * relocate values
5313 		 */
5314 		skb_free_head(skb);
5315 	}
5316 
5317 	skb->head = data;
5318 	skb->data = data;
5319 	skb->head_frag = 0;
5320 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5321 	skb->end = size;
5322 #else
5323 	skb->end = skb->head + size;
5324 #endif
5325 	skb_set_tail_pointer(skb, skb_headlen(skb));
5326 	skb_headers_offset_update(skb, 0);
5327 	skb->cloned = 0;
5328 	skb->hdr_len = 0;
5329 	skb->nohdr = 0;
5330 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5331 
5332 	return 0;
5333 }
5334 
5335 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5336 
5337 /* carve out the first eat bytes from skb's frag_list. May recurse into
5338  * pskb_carve()
5339  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)5340 static int pskb_carve_frag_list(struct sk_buff *skb,
5341 				struct skb_shared_info *shinfo, int eat,
5342 				gfp_t gfp_mask)
5343 {
5344 	struct sk_buff *list = shinfo->frag_list;
5345 	struct sk_buff *clone = NULL;
5346 	struct sk_buff *insp = NULL;
5347 
5348 	do {
5349 		if (!list) {
5350 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5351 			return -EFAULT;
5352 		}
5353 		if (list->len <= eat) {
5354 			/* Eaten as whole. */
5355 			eat -= list->len;
5356 			list = list->next;
5357 			insp = list;
5358 		} else {
5359 			/* Eaten partially. */
5360 			if (skb_shared(list)) {
5361 				clone = skb_clone(list, gfp_mask);
5362 				if (!clone)
5363 					return -ENOMEM;
5364 				insp = list->next;
5365 				list = clone;
5366 			} else {
5367 				/* This may be pulled without problems. */
5368 				insp = list;
5369 			}
5370 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5371 				kfree_skb(clone);
5372 				return -ENOMEM;
5373 			}
5374 			break;
5375 		}
5376 	} while (eat);
5377 
5378 	/* Free pulled out fragments. */
5379 	while ((list = shinfo->frag_list) != insp) {
5380 		shinfo->frag_list = list->next;
5381 		kfree_skb(list);
5382 	}
5383 	/* And insert new clone at head. */
5384 	if (clone) {
5385 		clone->next = list;
5386 		shinfo->frag_list = clone;
5387 	}
5388 	return 0;
5389 }
5390 
5391 /* carve off first len bytes from skb. Split line (off) is in the
5392  * non-linear part of skb
5393  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)5394 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5395 				       int pos, gfp_t gfp_mask)
5396 {
5397 	int i, k = 0;
5398 	int size = skb_end_offset(skb);
5399 	u8 *data;
5400 	const int nfrags = skb_shinfo(skb)->nr_frags;
5401 	struct skb_shared_info *shinfo;
5402 
5403 	size = SKB_DATA_ALIGN(size);
5404 
5405 	if (skb_pfmemalloc(skb))
5406 		gfp_mask |= __GFP_MEMALLOC;
5407 	data = kmalloc_reserve(size +
5408 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5409 			       gfp_mask, NUMA_NO_NODE, NULL);
5410 	if (!data)
5411 		return -ENOMEM;
5412 
5413 	size = SKB_WITH_OVERHEAD(ksize(data));
5414 
5415 	memcpy((struct skb_shared_info *)(data + size),
5416 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5417 					 frags[skb_shinfo(skb)->nr_frags]));
5418 	if (skb_orphan_frags(skb, gfp_mask)) {
5419 		kfree(data);
5420 		return -ENOMEM;
5421 	}
5422 	shinfo = (struct skb_shared_info *)(data + size);
5423 	for (i = 0; i < nfrags; i++) {
5424 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5425 
5426 		if (pos + fsize > off) {
5427 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5428 
5429 			if (pos < off) {
5430 				/* Split frag.
5431 				 * We have two variants in this case:
5432 				 * 1. Move all the frag to the second
5433 				 *    part, if it is possible. F.e.
5434 				 *    this approach is mandatory for TUX,
5435 				 *    where splitting is expensive.
5436 				 * 2. Split is accurately. We make this.
5437 				 */
5438 				shinfo->frags[0].page_offset += off - pos;
5439 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5440 			}
5441 			skb_frag_ref(skb, i);
5442 			k++;
5443 		}
5444 		pos += fsize;
5445 	}
5446 	shinfo->nr_frags = k;
5447 	if (skb_has_frag_list(skb))
5448 		skb_clone_fraglist(skb);
5449 
5450 	if (k == 0) {
5451 		/* split line is in frag list */
5452 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5453 	}
5454 	skb_release_data(skb);
5455 
5456 	skb->head = data;
5457 	skb->head_frag = 0;
5458 	skb->data = data;
5459 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5460 	skb->end = size;
5461 #else
5462 	skb->end = skb->head + size;
5463 #endif
5464 	skb_reset_tail_pointer(skb);
5465 	skb_headers_offset_update(skb, 0);
5466 	skb->cloned   = 0;
5467 	skb->hdr_len  = 0;
5468 	skb->nohdr    = 0;
5469 	skb->len -= off;
5470 	skb->data_len = skb->len;
5471 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5472 	return 0;
5473 }
5474 
5475 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)5476 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5477 {
5478 	int headlen = skb_headlen(skb);
5479 
5480 	if (len < headlen)
5481 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5482 	else
5483 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5484 }
5485 
5486 /* Extract to_copy bytes starting at off from skb, and return this in
5487  * a new skb
5488  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)5489 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5490 			     int to_copy, gfp_t gfp)
5491 {
5492 	struct sk_buff  *clone = skb_clone(skb, gfp);
5493 
5494 	if (!clone)
5495 		return NULL;
5496 
5497 	if (pskb_carve(clone, off, gfp) < 0 ||
5498 	    pskb_trim(clone, to_copy)) {
5499 		kfree_skb(clone);
5500 		return NULL;
5501 	}
5502 	return clone;
5503 }
5504 EXPORT_SYMBOL(pskb_extract);
5505 
5506 /**
5507  * skb_condense - try to get rid of fragments/frag_list if possible
5508  * @skb: buffer
5509  *
5510  * Can be used to save memory before skb is added to a busy queue.
5511  * If packet has bytes in frags and enough tail room in skb->head,
5512  * pull all of them, so that we can free the frags right now and adjust
5513  * truesize.
5514  * Notes:
5515  *	We do not reallocate skb->head thus can not fail.
5516  *	Caller must re-evaluate skb->truesize if needed.
5517  */
skb_condense(struct sk_buff * skb)5518 void skb_condense(struct sk_buff *skb)
5519 {
5520 	if (skb->data_len) {
5521 		if (skb->data_len > skb->end - skb->tail ||
5522 		    skb_cloned(skb))
5523 			return;
5524 
5525 		/* Nice, we can free page frag(s) right now */
5526 		__pskb_pull_tail(skb, skb->data_len);
5527 	}
5528 	/* At this point, skb->truesize might be over estimated,
5529 	 * because skb had a fragment, and fragments do not tell
5530 	 * their truesize.
5531 	 * When we pulled its content into skb->head, fragment
5532 	 * was freed, but __pskb_pull_tail() could not possibly
5533 	 * adjust skb->truesize, not knowing the frag truesize.
5534 	 */
5535 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5536 }
5537