• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <linux/mm_types.h>
26 
27 #include <asm/udbg.h>
28 #include <asm/code-patching.h>
29 
30 enum slb_index {
31 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
32 	VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */
33 	KSTACK_INDEX	= 2, /* Kernel stack map */
34 };
35 
36 extern void slb_allocate(unsigned long ea);
37 
38 #define slb_esid_mask(ssize)	\
39 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
40 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)41 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
42 					 enum slb_index index)
43 {
44 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
45 }
46 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)47 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
48 					 unsigned long flags)
49 {
50 	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
51 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
52 }
53 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)54 static inline void slb_shadow_update(unsigned long ea, int ssize,
55 				     unsigned long flags,
56 				     enum slb_index index)
57 {
58 	struct slb_shadow *p = get_slb_shadow();
59 
60 	/*
61 	 * Clear the ESID first so the entry is not valid while we are
62 	 * updating it.  No write barriers are needed here, provided
63 	 * we only update the current CPU's SLB shadow buffer.
64 	 */
65 	WRITE_ONCE(p->save_area[index].esid, 0);
66 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
67 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
68 }
69 
slb_shadow_clear(enum slb_index index)70 static inline void slb_shadow_clear(enum slb_index index)
71 {
72 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, 0);
73 }
74 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)75 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
76 					unsigned long flags,
77 					enum slb_index index)
78 {
79 	/*
80 	 * Updating the shadow buffer before writing the SLB ensures
81 	 * we don't get a stale entry here if we get preempted by PHYP
82 	 * between these two statements.
83 	 */
84 	slb_shadow_update(ea, ssize, flags, index);
85 
86 	asm volatile("slbmte  %0,%1" :
87 		     : "r" (mk_vsid_data(ea, ssize, flags)),
88 		       "r" (mk_esid_data(ea, ssize, index))
89 		     : "memory" );
90 }
91 
__slb_flush_and_rebolt(void)92 static void __slb_flush_and_rebolt(void)
93 {
94 	/* If you change this make sure you change SLB_NUM_BOLTED
95 	 * and PR KVM appropriately too. */
96 	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
97 	unsigned long ksp_esid_data, ksp_vsid_data;
98 
99 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
100 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
101 	lflags = SLB_VSID_KERNEL | linear_llp;
102 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
103 
104 	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
105 	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
106 		ksp_esid_data &= ~SLB_ESID_V;
107 		ksp_vsid_data = 0;
108 		slb_shadow_clear(KSTACK_INDEX);
109 	} else {
110 		/* Update stack entry; others don't change */
111 		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
112 		ksp_vsid_data =
113 			be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
114 	}
115 
116 	/* We need to do this all in asm, so we're sure we don't touch
117 	 * the stack between the slbia and rebolting it. */
118 	asm volatile("isync\n"
119 		     "slbia\n"
120 		     /* Slot 1 - first VMALLOC segment */
121 		     "slbmte	%0,%1\n"
122 		     /* Slot 2 - kernel stack */
123 		     "slbmte	%2,%3\n"
124 		     "isync"
125 		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
126 		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
127 		        "r"(ksp_vsid_data),
128 		        "r"(ksp_esid_data)
129 		     : "memory");
130 }
131 
slb_flush_and_rebolt(void)132 void slb_flush_and_rebolt(void)
133 {
134 
135 	WARN_ON(!irqs_disabled());
136 
137 	/*
138 	 * We can't take a PMU exception in the following code, so hard
139 	 * disable interrupts.
140 	 */
141 	hard_irq_disable();
142 
143 	__slb_flush_and_rebolt();
144 	get_paca()->slb_cache_ptr = 0;
145 }
146 
slb_vmalloc_update(void)147 void slb_vmalloc_update(void)
148 {
149 	unsigned long vflags;
150 
151 	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
152 	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
153 	slb_flush_and_rebolt();
154 }
155 
156 /* Helper function to compare esids.  There are four cases to handle.
157  * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
158  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
159  * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
160  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
161  */
esids_match(unsigned long addr1,unsigned long addr2)162 static inline int esids_match(unsigned long addr1, unsigned long addr2)
163 {
164 	int esid_1t_count;
165 
166 	/* System is not 1T segment size capable. */
167 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
168 		return (GET_ESID(addr1) == GET_ESID(addr2));
169 
170 	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
171 				((addr2 >> SID_SHIFT_1T) != 0));
172 
173 	/* both addresses are < 1T */
174 	if (esid_1t_count == 0)
175 		return (GET_ESID(addr1) == GET_ESID(addr2));
176 
177 	/* One address < 1T, the other > 1T.  Not a match */
178 	if (esid_1t_count == 1)
179 		return 0;
180 
181 	/* Both addresses are > 1T. */
182 	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
183 }
184 
185 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)186 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
187 {
188 	unsigned long offset;
189 	unsigned long slbie_data = 0;
190 	unsigned long pc = KSTK_EIP(tsk);
191 	unsigned long stack = KSTK_ESP(tsk);
192 	unsigned long exec_base;
193 
194 	/*
195 	 * We need interrupts hard-disabled here, not just soft-disabled,
196 	 * so that a PMU interrupt can't occur, which might try to access
197 	 * user memory (to get a stack trace) and possible cause an SLB miss
198 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
199 	 */
200 	hard_irq_disable();
201 	offset = get_paca()->slb_cache_ptr;
202 	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
203 	    offset <= SLB_CACHE_ENTRIES) {
204 		int i;
205 		asm volatile("isync" : : : "memory");
206 		for (i = 0; i < offset; i++) {
207 			slbie_data = (unsigned long)get_paca()->slb_cache[i]
208 				<< SID_SHIFT; /* EA */
209 			slbie_data |= user_segment_size(slbie_data)
210 				<< SLBIE_SSIZE_SHIFT;
211 			slbie_data |= SLBIE_C; /* C set for user addresses */
212 			asm volatile("slbie %0" : : "r" (slbie_data));
213 		}
214 		asm volatile("isync" : : : "memory");
215 	} else {
216 		__slb_flush_and_rebolt();
217 	}
218 
219 	/* Workaround POWER5 < DD2.1 issue */
220 	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
221 		asm volatile("slbie %0" : : "r" (slbie_data));
222 
223 	get_paca()->slb_cache_ptr = 0;
224 	copy_mm_to_paca(mm);
225 
226 	/*
227 	 * preload some userspace segments into the SLB.
228 	 * Almost all 32 and 64bit PowerPC executables are linked at
229 	 * 0x10000000 so it makes sense to preload this segment.
230 	 */
231 	exec_base = 0x10000000;
232 
233 	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
234 	    is_kernel_addr(exec_base))
235 		return;
236 
237 	slb_allocate(pc);
238 
239 	if (!esids_match(pc, stack))
240 		slb_allocate(stack);
241 
242 	if (!esids_match(pc, exec_base) &&
243 	    !esids_match(stack, exec_base))
244 		slb_allocate(exec_base);
245 }
246 
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)247 static inline void patch_slb_encoding(unsigned int *insn_addr,
248 				      unsigned int immed)
249 {
250 
251 	/*
252 	 * This function patches either an li or a cmpldi instruction with
253 	 * a new immediate value. This relies on the fact that both li
254 	 * (which is actually addi) and cmpldi both take a 16-bit immediate
255 	 * value, and it is situated in the same location in the instruction,
256 	 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
257 	 * The signedness of the immediate operand differs between the two
258 	 * instructions however this code is only ever patching a small value,
259 	 * much less than 1 << 15, so we can get away with it.
260 	 * To patch the value we read the existing instruction, clear the
261 	 * immediate value, and or in our new value, then write the instruction
262 	 * back.
263 	 */
264 	unsigned int insn = (*insn_addr & 0xffff0000) | immed;
265 	patch_instruction(insn_addr, insn);
266 }
267 
268 extern u32 slb_miss_kernel_load_linear[];
269 extern u32 slb_miss_kernel_load_io[];
270 extern u32 slb_compare_rr_to_size[];
271 extern u32 slb_miss_kernel_load_vmemmap[];
272 
slb_set_size(u16 size)273 void slb_set_size(u16 size)
274 {
275 	if (mmu_slb_size == size)
276 		return;
277 
278 	mmu_slb_size = size;
279 	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
280 }
281 
slb_initialize(void)282 void slb_initialize(void)
283 {
284 	unsigned long linear_llp, vmalloc_llp, io_llp;
285 	unsigned long lflags, vflags;
286 	static int slb_encoding_inited;
287 #ifdef CONFIG_SPARSEMEM_VMEMMAP
288 	unsigned long vmemmap_llp;
289 #endif
290 
291 	/* Prepare our SLB miss handler based on our page size */
292 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
293 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
294 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
295 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
296 #ifdef CONFIG_SPARSEMEM_VMEMMAP
297 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
298 #endif
299 	if (!slb_encoding_inited) {
300 		slb_encoding_inited = 1;
301 		patch_slb_encoding(slb_miss_kernel_load_linear,
302 				   SLB_VSID_KERNEL | linear_llp);
303 		patch_slb_encoding(slb_miss_kernel_load_io,
304 				   SLB_VSID_KERNEL | io_llp);
305 		patch_slb_encoding(slb_compare_rr_to_size,
306 				   mmu_slb_size);
307 
308 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
309 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
310 
311 #ifdef CONFIG_SPARSEMEM_VMEMMAP
312 		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
313 				   SLB_VSID_KERNEL | vmemmap_llp);
314 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
315 #endif
316 	}
317 
318 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
319 
320 	lflags = SLB_VSID_KERNEL | linear_llp;
321 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
322 
323 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
324 	asm volatile("isync":::"memory");
325 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
326 	asm volatile("isync; slbia; isync":::"memory");
327 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
328 	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
329 
330 	/* For the boot cpu, we're running on the stack in init_thread_union,
331 	 * which is in the first segment of the linear mapping, and also
332 	 * get_paca()->kstack hasn't been initialized yet.
333 	 * For secondary cpus, we need to bolt the kernel stack entry now.
334 	 */
335 	slb_shadow_clear(KSTACK_INDEX);
336 	if (raw_smp_processor_id() != boot_cpuid &&
337 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
338 		create_shadowed_slbe(get_paca()->kstack,
339 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
340 
341 	asm volatile("isync":::"memory");
342 }
343