1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
9 *
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
13 *
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
17 */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/vdso.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/topology.h>
58 #include "entry.h"
59
60 enum {
61 ec_schedule = 0,
62 ec_call_function_single,
63 ec_stop_cpu,
64 };
65
66 enum {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
69 };
70
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72
73 struct pcpu {
74 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
75 unsigned long ec_mask; /* bit mask for ec_xxx functions */
76 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
77 signed char state; /* physical cpu state */
78 signed char polarization; /* physical polarization */
79 u16 address; /* physical cpu address */
80 };
81
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84
85 static struct kmem_cache *pcpu_mcesa_cache;
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98
early_nosmt(char * s)99 static int __init early_nosmt(char *s)
100 {
101 smp_max_threads = 1;
102 return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
early_smt(char * s)106 static int __init early_smt(char *s)
107 {
108 get_option(&s, &smp_max_threads);
109 return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114 * The smp_cpu_state_mutex must be held when changing the state or polarization
115 * member of a pcpu data structure within the pcpu_devices arreay.
116 */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120 * Signal processor helper functions.
121 */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 int cc;
125
126 while (1) {
127 cc = __pcpu_sigp(addr, order, parm, NULL);
128 if (cc != SIGP_CC_BUSY)
129 return cc;
130 cpu_relax();
131 }
132 }
133
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 int cc, retry;
137
138 for (retry = 0; ; retry++) {
139 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 if (cc != SIGP_CC_BUSY)
141 break;
142 if (retry >= 3)
143 udelay(10);
144 }
145 return cc;
146 }
147
pcpu_stopped(struct pcpu * pcpu)148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 u32 uninitialized_var(status);
151
152 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 0, &status) != SIGP_CC_STATUS_STORED)
154 return 0;
155 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
pcpu_running(struct pcpu * pcpu)158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 0, NULL) != SIGP_CC_STATUS_STORED)
162 return 1;
163 /* Status stored condition code is equivalent to cpu not running. */
164 return 0;
165 }
166
167 /*
168 * Find struct pcpu by cpu address.
169 */
pcpu_find_address(const struct cpumask * mask,u16 address)170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 int cpu;
173
174 for_each_cpu(cpu, mask)
175 if (pcpu_devices[cpu].address == address)
176 return pcpu_devices + cpu;
177 return NULL;
178 }
179
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 int order;
183
184 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 return;
186 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 pcpu->ec_clk = get_tod_clock_fast();
188 pcpu_sigp_retry(pcpu, order, 0);
189 }
190
191 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
192 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
193
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)194 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 {
196 unsigned long async_stack, panic_stack;
197 unsigned long mcesa_origin, mcesa_bits;
198 struct lowcore *lc;
199
200 mcesa_origin = mcesa_bits = 0;
201 if (pcpu != &pcpu_devices[0]) {
202 pcpu->lowcore = (struct lowcore *)
203 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
204 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
205 panic_stack = __get_free_page(GFP_KERNEL);
206 if (!pcpu->lowcore || !panic_stack || !async_stack)
207 goto out;
208 if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
209 mcesa_origin = (unsigned long)
210 kmem_cache_alloc(pcpu_mcesa_cache, GFP_KERNEL);
211 if (!mcesa_origin)
212 goto out;
213 /* The pointer is stored with mcesa_bits ORed in */
214 kmemleak_not_leak((void *) mcesa_origin);
215 mcesa_bits = MACHINE_HAS_GS ? 11 : 0;
216 }
217 } else {
218 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
219 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
220 mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
221 mcesa_bits = pcpu->lowcore->mcesad & MCESA_LC_MASK;
222 }
223 lc = pcpu->lowcore;
224 memcpy(lc, &S390_lowcore, 512);
225 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
226 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
227 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
228 lc->mcesad = mcesa_origin | mcesa_bits;
229 lc->cpu_nr = cpu;
230 lc->spinlock_lockval = arch_spin_lockval(cpu);
231 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
232 if (vdso_alloc_per_cpu(lc))
233 goto out;
234 lowcore_ptr[cpu] = lc;
235 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
236 return 0;
237 out:
238 if (pcpu != &pcpu_devices[0]) {
239 if (mcesa_origin)
240 kmem_cache_free(pcpu_mcesa_cache,
241 (void *) mcesa_origin);
242 free_page(panic_stack);
243 free_pages(async_stack, ASYNC_ORDER);
244 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
245 }
246 return -ENOMEM;
247 }
248
249 #ifdef CONFIG_HOTPLUG_CPU
250
pcpu_free_lowcore(struct pcpu * pcpu)251 static void pcpu_free_lowcore(struct pcpu *pcpu)
252 {
253 unsigned long mcesa_origin;
254
255 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
256 lowcore_ptr[pcpu - pcpu_devices] = NULL;
257 vdso_free_per_cpu(pcpu->lowcore);
258 if (pcpu == &pcpu_devices[0])
259 return;
260 if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
261 mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
262 kmem_cache_free(pcpu_mcesa_cache, (void *) mcesa_origin);
263 }
264 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
265 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
266 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
267 }
268
269 #endif /* CONFIG_HOTPLUG_CPU */
270
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)271 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
272 {
273 struct lowcore *lc = pcpu->lowcore;
274
275 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
276 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
277 lc->cpu_nr = cpu;
278 lc->spinlock_lockval = arch_spin_lockval(cpu);
279 lc->percpu_offset = __per_cpu_offset[cpu];
280 lc->kernel_asce = S390_lowcore.kernel_asce;
281 lc->machine_flags = S390_lowcore.machine_flags;
282 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
283 __ctl_store(lc->cregs_save_area, 0, 15);
284 save_access_regs((unsigned int *) lc->access_regs_save_area);
285 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
286 sizeof(lc->stfle_fac_list));
287 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
288 sizeof(lc->alt_stfle_fac_list));
289 }
290
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)291 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
292 {
293 struct lowcore *lc = pcpu->lowcore;
294
295 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
296 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
297 lc->current_task = (unsigned long) tsk;
298 lc->lpp = LPP_MAGIC;
299 lc->current_pid = tsk->pid;
300 lc->user_timer = tsk->thread.user_timer;
301 lc->guest_timer = tsk->thread.guest_timer;
302 lc->system_timer = tsk->thread.system_timer;
303 lc->hardirq_timer = tsk->thread.hardirq_timer;
304 lc->softirq_timer = tsk->thread.softirq_timer;
305 lc->steal_timer = 0;
306 }
307
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)308 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
309 {
310 struct lowcore *lc = pcpu->lowcore;
311
312 lc->restart_stack = lc->kernel_stack;
313 lc->restart_fn = (unsigned long) func;
314 lc->restart_data = (unsigned long) data;
315 lc->restart_source = -1UL;
316 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
317 }
318
319 /*
320 * Call function via PSW restart on pcpu and stop the current cpu.
321 */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)322 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
323 void *data, unsigned long stack)
324 {
325 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326 unsigned long source_cpu = stap();
327
328 __load_psw_mask(PSW_KERNEL_BITS);
329 if (pcpu->address == source_cpu)
330 func(data); /* should not return */
331 /* Stop target cpu (if func returns this stops the current cpu). */
332 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 /* Restart func on the target cpu and stop the current cpu. */
334 mem_assign_absolute(lc->restart_stack, stack);
335 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336 mem_assign_absolute(lc->restart_data, (unsigned long) data);
337 mem_assign_absolute(lc->restart_source, source_cpu);
338 __bpon();
339 asm volatile(
340 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
341 " brc 2,0b # busy, try again\n"
342 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
343 " brc 2,1b # busy, try again\n"
344 : : "d" (pcpu->address), "d" (source_cpu),
345 "K" (SIGP_RESTART), "K" (SIGP_STOP)
346 : "0", "1", "cc");
347 for (;;) ;
348 }
349
350 /*
351 * Enable additional logical cpus for multi-threading.
352 */
pcpu_set_smt(unsigned int mtid)353 static int pcpu_set_smt(unsigned int mtid)
354 {
355 int cc;
356
357 if (smp_cpu_mtid == mtid)
358 return 0;
359 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360 if (cc == 0) {
361 smp_cpu_mtid = mtid;
362 smp_cpu_mt_shift = 0;
363 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364 smp_cpu_mt_shift++;
365 pcpu_devices[0].address = stap();
366 }
367 return cc;
368 }
369
370 /*
371 * Call function on an online CPU.
372 */
smp_call_online_cpu(void (* func)(void *),void * data)373 void smp_call_online_cpu(void (*func)(void *), void *data)
374 {
375 struct pcpu *pcpu;
376
377 /* Use the current cpu if it is online. */
378 pcpu = pcpu_find_address(cpu_online_mask, stap());
379 if (!pcpu)
380 /* Use the first online cpu. */
381 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
383 }
384
385 /*
386 * Call function on the ipl CPU.
387 */
smp_call_ipl_cpu(void (* func)(void *),void * data)388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
389 {
390 struct lowcore *lc = pcpu_devices->lowcore;
391
392 if (pcpu_devices[0].address == stap())
393 lc = &S390_lowcore;
394
395 pcpu_delegate(&pcpu_devices[0], func, data,
396 lc->panic_stack - PANIC_FRAME_OFFSET + PAGE_SIZE);
397 }
398
smp_find_processor_id(u16 address)399 int smp_find_processor_id(u16 address)
400 {
401 int cpu;
402
403 for_each_present_cpu(cpu)
404 if (pcpu_devices[cpu].address == address)
405 return cpu;
406 return -1;
407 }
408
arch_vcpu_is_preempted(int cpu)409 bool arch_vcpu_is_preempted(int cpu)
410 {
411 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
412 return false;
413 if (pcpu_running(pcpu_devices + cpu))
414 return false;
415 return true;
416 }
417 EXPORT_SYMBOL(arch_vcpu_is_preempted);
418
smp_yield_cpu(int cpu)419 void smp_yield_cpu(int cpu)
420 {
421 if (MACHINE_HAS_DIAG9C) {
422 diag_stat_inc_norecursion(DIAG_STAT_X09C);
423 asm volatile("diag %0,0,0x9c"
424 : : "d" (pcpu_devices[cpu].address));
425 } else if (MACHINE_HAS_DIAG44) {
426 diag_stat_inc_norecursion(DIAG_STAT_X044);
427 asm volatile("diag 0,0,0x44");
428 }
429 }
430
431 /*
432 * Send cpus emergency shutdown signal. This gives the cpus the
433 * opportunity to complete outstanding interrupts.
434 */
smp_emergency_stop(cpumask_t * cpumask)435 static void smp_emergency_stop(cpumask_t *cpumask)
436 {
437 u64 end;
438 int cpu;
439
440 end = get_tod_clock() + (1000000UL << 12);
441 for_each_cpu(cpu, cpumask) {
442 struct pcpu *pcpu = pcpu_devices + cpu;
443 set_bit(ec_stop_cpu, &pcpu->ec_mask);
444 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
445 0, NULL) == SIGP_CC_BUSY &&
446 get_tod_clock() < end)
447 cpu_relax();
448 }
449 while (get_tod_clock() < end) {
450 for_each_cpu(cpu, cpumask)
451 if (pcpu_stopped(pcpu_devices + cpu))
452 cpumask_clear_cpu(cpu, cpumask);
453 if (cpumask_empty(cpumask))
454 break;
455 cpu_relax();
456 }
457 }
458
459 /*
460 * Stop all cpus but the current one.
461 */
smp_send_stop(void)462 void smp_send_stop(void)
463 {
464 cpumask_t cpumask;
465 int cpu;
466
467 /* Disable all interrupts/machine checks */
468 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
469 trace_hardirqs_off();
470
471 debug_set_critical();
472 cpumask_copy(&cpumask, cpu_online_mask);
473 cpumask_clear_cpu(smp_processor_id(), &cpumask);
474
475 if (oops_in_progress)
476 smp_emergency_stop(&cpumask);
477
478 /* stop all processors */
479 for_each_cpu(cpu, &cpumask) {
480 struct pcpu *pcpu = pcpu_devices + cpu;
481 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
482 while (!pcpu_stopped(pcpu))
483 cpu_relax();
484 }
485 }
486
487 /*
488 * This is the main routine where commands issued by other
489 * cpus are handled.
490 */
smp_handle_ext_call(void)491 static void smp_handle_ext_call(void)
492 {
493 unsigned long bits;
494
495 /* handle bit signal external calls */
496 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
497 if (test_bit(ec_stop_cpu, &bits))
498 smp_stop_cpu();
499 if (test_bit(ec_schedule, &bits))
500 scheduler_ipi();
501 if (test_bit(ec_call_function_single, &bits))
502 generic_smp_call_function_single_interrupt();
503 }
504
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)505 static void do_ext_call_interrupt(struct ext_code ext_code,
506 unsigned int param32, unsigned long param64)
507 {
508 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
509 smp_handle_ext_call();
510 }
511
arch_send_call_function_ipi_mask(const struct cpumask * mask)512 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
513 {
514 int cpu;
515
516 for_each_cpu(cpu, mask)
517 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
518 }
519
arch_send_call_function_single_ipi(int cpu)520 void arch_send_call_function_single_ipi(int cpu)
521 {
522 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
523 }
524
525 /*
526 * this function sends a 'reschedule' IPI to another CPU.
527 * it goes straight through and wastes no time serializing
528 * anything. Worst case is that we lose a reschedule ...
529 */
smp_send_reschedule(int cpu)530 void smp_send_reschedule(int cpu)
531 {
532 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
533 }
534
535 /*
536 * parameter area for the set/clear control bit callbacks
537 */
538 struct ec_creg_mask_parms {
539 unsigned long orval;
540 unsigned long andval;
541 int cr;
542 };
543
544 /*
545 * callback for setting/clearing control bits
546 */
smp_ctl_bit_callback(void * info)547 static void smp_ctl_bit_callback(void *info)
548 {
549 struct ec_creg_mask_parms *pp = info;
550 unsigned long cregs[16];
551
552 __ctl_store(cregs, 0, 15);
553 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
554 __ctl_load(cregs, 0, 15);
555 }
556
557 /*
558 * Set a bit in a control register of all cpus
559 */
smp_ctl_set_bit(int cr,int bit)560 void smp_ctl_set_bit(int cr, int bit)
561 {
562 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
563
564 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
565 }
566 EXPORT_SYMBOL(smp_ctl_set_bit);
567
568 /*
569 * Clear a bit in a control register of all cpus
570 */
smp_ctl_clear_bit(int cr,int bit)571 void smp_ctl_clear_bit(int cr, int bit)
572 {
573 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
574
575 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
576 }
577 EXPORT_SYMBOL(smp_ctl_clear_bit);
578
579 #ifdef CONFIG_CRASH_DUMP
580
smp_store_status(int cpu)581 int smp_store_status(int cpu)
582 {
583 struct pcpu *pcpu = pcpu_devices + cpu;
584 unsigned long pa;
585
586 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
587 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
588 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
589 return -EIO;
590 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
591 return 0;
592 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
593 if (MACHINE_HAS_GS)
594 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
595 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
596 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
597 return -EIO;
598 return 0;
599 }
600
601 /*
602 * Collect CPU state of the previous, crashed system.
603 * There are four cases:
604 * 1) standard zfcp dump
605 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
606 * The state for all CPUs except the boot CPU needs to be collected
607 * with sigp stop-and-store-status. The boot CPU state is located in
608 * the absolute lowcore of the memory stored in the HSA. The zcore code
609 * will copy the boot CPU state from the HSA.
610 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
611 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
612 * The state for all CPUs except the boot CPU needs to be collected
613 * with sigp stop-and-store-status. The firmware or the boot-loader
614 * stored the registers of the boot CPU in the absolute lowcore in the
615 * memory of the old system.
616 * 3) kdump and the old kernel did not store the CPU state,
617 * or stand-alone kdump for DASD
618 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
619 * The state for all CPUs except the boot CPU needs to be collected
620 * with sigp stop-and-store-status. The kexec code or the boot-loader
621 * stored the registers of the boot CPU in the memory of the old system.
622 * 4) kdump and the old kernel stored the CPU state
623 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
624 * This case does not exist for s390 anymore, setup_arch explicitly
625 * deactivates the elfcorehdr= kernel parameter
626 */
smp_save_cpu_vxrs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)627 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
628 bool is_boot_cpu, unsigned long page)
629 {
630 __vector128 *vxrs = (__vector128 *) page;
631
632 if (is_boot_cpu)
633 vxrs = boot_cpu_vector_save_area;
634 else
635 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
636 save_area_add_vxrs(sa, vxrs);
637 }
638
smp_save_cpu_regs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)639 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
640 bool is_boot_cpu, unsigned long page)
641 {
642 void *regs = (void *) page;
643
644 if (is_boot_cpu)
645 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
646 else
647 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
648 save_area_add_regs(sa, regs);
649 }
650
smp_save_dump_cpus(void)651 void __init smp_save_dump_cpus(void)
652 {
653 int addr, boot_cpu_addr, max_cpu_addr;
654 struct save_area *sa;
655 unsigned long page;
656 bool is_boot_cpu;
657
658 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
659 /* No previous system present, normal boot. */
660 return;
661 /* Allocate a page as dumping area for the store status sigps */
662 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
663 /* Set multi-threading state to the previous system. */
664 pcpu_set_smt(sclp.mtid_prev);
665 boot_cpu_addr = stap();
666 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
667 for (addr = 0; addr <= max_cpu_addr; addr++) {
668 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
669 SIGP_CC_NOT_OPERATIONAL)
670 continue;
671 is_boot_cpu = (addr == boot_cpu_addr);
672 /* Allocate save area */
673 sa = save_area_alloc(is_boot_cpu);
674 if (!sa)
675 panic("could not allocate memory for save area\n");
676 if (MACHINE_HAS_VX)
677 /* Get the vector registers */
678 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
679 /*
680 * For a zfcp dump OLDMEM_BASE == NULL and the registers
681 * of the boot CPU are stored in the HSA. To retrieve
682 * these registers an SCLP request is required which is
683 * done by drivers/s390/char/zcore.c:init_cpu_info()
684 */
685 if (!is_boot_cpu || OLDMEM_BASE)
686 /* Get the CPU registers */
687 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
688 }
689 memblock_free(page, PAGE_SIZE);
690 diag308_reset();
691 pcpu_set_smt(0);
692 }
693 #endif /* CONFIG_CRASH_DUMP */
694
smp_cpu_set_polarization(int cpu,int val)695 void smp_cpu_set_polarization(int cpu, int val)
696 {
697 pcpu_devices[cpu].polarization = val;
698 }
699
smp_cpu_get_polarization(int cpu)700 int smp_cpu_get_polarization(int cpu)
701 {
702 return pcpu_devices[cpu].polarization;
703 }
704
smp_get_core_info(struct sclp_core_info * info,int early)705 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
706 {
707 static int use_sigp_detection;
708 int address;
709
710 if (use_sigp_detection || sclp_get_core_info(info, early)) {
711 use_sigp_detection = 1;
712 for (address = 0;
713 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
714 address += (1U << smp_cpu_mt_shift)) {
715 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
716 SIGP_CC_NOT_OPERATIONAL)
717 continue;
718 info->core[info->configured].core_id =
719 address >> smp_cpu_mt_shift;
720 info->configured++;
721 }
722 info->combined = info->configured;
723 }
724 }
725
726 static int smp_add_present_cpu(int cpu);
727
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)728 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
729 bool configured, bool early)
730 {
731 struct pcpu *pcpu;
732 int cpu, nr, i;
733 u16 address;
734
735 nr = 0;
736 if (sclp.has_core_type && core->type != boot_core_type)
737 return nr;
738 cpu = cpumask_first(avail);
739 address = core->core_id << smp_cpu_mt_shift;
740 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
741 if (pcpu_find_address(cpu_present_mask, address + i))
742 continue;
743 pcpu = pcpu_devices + cpu;
744 pcpu->address = address + i;
745 if (configured)
746 pcpu->state = CPU_STATE_CONFIGURED;
747 else
748 pcpu->state = CPU_STATE_STANDBY;
749 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
750 set_cpu_present(cpu, true);
751 if (!early && smp_add_present_cpu(cpu) != 0)
752 set_cpu_present(cpu, false);
753 else
754 nr++;
755 cpumask_clear_cpu(cpu, avail);
756 cpu = cpumask_next(cpu, avail);
757 }
758 return nr;
759 }
760
__smp_rescan_cpus(struct sclp_core_info * info,bool early)761 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
762 {
763 struct sclp_core_entry *core;
764 cpumask_t avail;
765 bool configured;
766 u16 core_id;
767 int nr, i;
768
769 nr = 0;
770 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
771 /*
772 * Add IPL core first (which got logical CPU number 0) to make sure
773 * that all SMT threads get subsequent logical CPU numbers.
774 */
775 if (early) {
776 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
777 for (i = 0; i < info->configured; i++) {
778 core = &info->core[i];
779 if (core->core_id == core_id) {
780 nr += smp_add_core(core, &avail, true, early);
781 break;
782 }
783 }
784 }
785 for (i = 0; i < info->combined; i++) {
786 configured = i < info->configured;
787 nr += smp_add_core(&info->core[i], &avail, configured, early);
788 }
789 return nr;
790 }
791
smp_detect_cpus(void)792 void __init smp_detect_cpus(void)
793 {
794 unsigned int cpu, mtid, c_cpus, s_cpus;
795 struct sclp_core_info *info;
796 u16 address;
797
798 /* Get CPU information */
799 info = memblock_virt_alloc(sizeof(*info), 8);
800 smp_get_core_info(info, 1);
801 /* Find boot CPU type */
802 if (sclp.has_core_type) {
803 address = stap();
804 for (cpu = 0; cpu < info->combined; cpu++)
805 if (info->core[cpu].core_id == address) {
806 /* The boot cpu dictates the cpu type. */
807 boot_core_type = info->core[cpu].type;
808 break;
809 }
810 if (cpu >= info->combined)
811 panic("Could not find boot CPU type");
812 }
813
814 /* Set multi-threading state for the current system */
815 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
816 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
817 pcpu_set_smt(mtid);
818
819 /* Print number of CPUs */
820 c_cpus = s_cpus = 0;
821 for (cpu = 0; cpu < info->combined; cpu++) {
822 if (sclp.has_core_type &&
823 info->core[cpu].type != boot_core_type)
824 continue;
825 if (cpu < info->configured)
826 c_cpus += smp_cpu_mtid + 1;
827 else
828 s_cpus += smp_cpu_mtid + 1;
829 }
830 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
831
832 /* Add CPUs present at boot */
833 get_online_cpus();
834 __smp_rescan_cpus(info, true);
835 put_online_cpus();
836 memblock_free_early((unsigned long)info, sizeof(*info));
837 }
838
839 /*
840 * Activate a secondary processor.
841 */
smp_start_secondary(void * cpuvoid)842 static void smp_start_secondary(void *cpuvoid)
843 {
844 S390_lowcore.last_update_clock = get_tod_clock();
845 S390_lowcore.restart_stack = (unsigned long) restart_stack;
846 S390_lowcore.restart_fn = (unsigned long) do_restart;
847 S390_lowcore.restart_data = 0;
848 S390_lowcore.restart_source = -1UL;
849 restore_access_regs(S390_lowcore.access_regs_save_area);
850 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
851 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
852 cpu_init();
853 preempt_disable();
854 init_cpu_timer();
855 vtime_init();
856 pfault_init();
857 notify_cpu_starting(smp_processor_id());
858 set_cpu_online(smp_processor_id(), true);
859 inc_irq_stat(CPU_RST);
860 local_irq_enable();
861 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
862 }
863
864 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)865 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
866 {
867 struct pcpu *pcpu;
868 int base, i, rc;
869
870 pcpu = pcpu_devices + cpu;
871 if (pcpu->state != CPU_STATE_CONFIGURED)
872 return -EIO;
873 base = smp_get_base_cpu(cpu);
874 for (i = 0; i <= smp_cpu_mtid; i++) {
875 if (base + i < nr_cpu_ids)
876 if (cpu_online(base + i))
877 break;
878 }
879 /*
880 * If this is the first CPU of the core to get online
881 * do an initial CPU reset.
882 */
883 if (i > smp_cpu_mtid &&
884 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
885 SIGP_CC_ORDER_CODE_ACCEPTED)
886 return -EIO;
887
888 rc = pcpu_alloc_lowcore(pcpu, cpu);
889 if (rc)
890 return rc;
891 pcpu_prepare_secondary(pcpu, cpu);
892 pcpu_attach_task(pcpu, tidle);
893 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
894 /* Wait until cpu puts itself in the online & active maps */
895 while (!cpu_online(cpu))
896 cpu_relax();
897 return 0;
898 }
899
900 static unsigned int setup_possible_cpus __initdata;
901
_setup_possible_cpus(char * s)902 static int __init _setup_possible_cpus(char *s)
903 {
904 get_option(&s, &setup_possible_cpus);
905 return 0;
906 }
907 early_param("possible_cpus", _setup_possible_cpus);
908
909 #ifdef CONFIG_HOTPLUG_CPU
910
__cpu_disable(void)911 int __cpu_disable(void)
912 {
913 unsigned long cregs[16];
914
915 /* Handle possible pending IPIs */
916 smp_handle_ext_call();
917 set_cpu_online(smp_processor_id(), false);
918 /* Disable pseudo page faults on this cpu. */
919 pfault_fini();
920 /* Disable interrupt sources via control register. */
921 __ctl_store(cregs, 0, 15);
922 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
923 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
924 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
925 __ctl_load(cregs, 0, 15);
926 clear_cpu_flag(CIF_NOHZ_DELAY);
927 return 0;
928 }
929
__cpu_die(unsigned int cpu)930 void __cpu_die(unsigned int cpu)
931 {
932 struct pcpu *pcpu;
933
934 /* Wait until target cpu is down */
935 pcpu = pcpu_devices + cpu;
936 while (!pcpu_stopped(pcpu))
937 cpu_relax();
938 pcpu_free_lowcore(pcpu);
939 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
940 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
941 }
942
cpu_die(void)943 void __noreturn cpu_die(void)
944 {
945 idle_task_exit();
946 __bpon();
947 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
948 for (;;) ;
949 }
950
951 #endif /* CONFIG_HOTPLUG_CPU */
952
smp_fill_possible_mask(void)953 void __init smp_fill_possible_mask(void)
954 {
955 unsigned int possible, sclp_max, cpu;
956
957 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
958 sclp_max = min(smp_max_threads, sclp_max);
959 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
960 possible = setup_possible_cpus ?: nr_cpu_ids;
961 possible = min(possible, sclp_max);
962 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
963 set_cpu_possible(cpu, true);
964 }
965
smp_prepare_cpus(unsigned int max_cpus)966 void __init smp_prepare_cpus(unsigned int max_cpus)
967 {
968 unsigned long size;
969
970 /* request the 0x1201 emergency signal external interrupt */
971 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
972 panic("Couldn't request external interrupt 0x1201");
973 /* request the 0x1202 external call external interrupt */
974 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
975 panic("Couldn't request external interrupt 0x1202");
976 /* create slab cache for the machine-check-extended-save-areas */
977 if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
978 size = 1UL << (MACHINE_HAS_GS ? 11 : 10);
979 pcpu_mcesa_cache = kmem_cache_create("nmi_save_areas",
980 size, size, 0, NULL);
981 if (!pcpu_mcesa_cache)
982 panic("Couldn't create nmi save area cache");
983 }
984 }
985
smp_prepare_boot_cpu(void)986 void __init smp_prepare_boot_cpu(void)
987 {
988 struct pcpu *pcpu = pcpu_devices;
989
990 WARN_ON(!cpu_present(0) || !cpu_online(0));
991 pcpu->state = CPU_STATE_CONFIGURED;
992 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
993 S390_lowcore.percpu_offset = __per_cpu_offset[0];
994 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
995 }
996
smp_cpus_done(unsigned int max_cpus)997 void __init smp_cpus_done(unsigned int max_cpus)
998 {
999 }
1000
smp_setup_processor_id(void)1001 void __init smp_setup_processor_id(void)
1002 {
1003 pcpu_devices[0].address = stap();
1004 S390_lowcore.cpu_nr = 0;
1005 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1006 }
1007
1008 /*
1009 * the frequency of the profiling timer can be changed
1010 * by writing a multiplier value into /proc/profile.
1011 *
1012 * usually you want to run this on all CPUs ;)
1013 */
setup_profiling_timer(unsigned int multiplier)1014 int setup_profiling_timer(unsigned int multiplier)
1015 {
1016 return 0;
1017 }
1018
1019 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)1020 static ssize_t cpu_configure_show(struct device *dev,
1021 struct device_attribute *attr, char *buf)
1022 {
1023 ssize_t count;
1024
1025 mutex_lock(&smp_cpu_state_mutex);
1026 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1027 mutex_unlock(&smp_cpu_state_mutex);
1028 return count;
1029 }
1030
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1031 static ssize_t cpu_configure_store(struct device *dev,
1032 struct device_attribute *attr,
1033 const char *buf, size_t count)
1034 {
1035 struct pcpu *pcpu;
1036 int cpu, val, rc, i;
1037 char delim;
1038
1039 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1040 return -EINVAL;
1041 if (val != 0 && val != 1)
1042 return -EINVAL;
1043 get_online_cpus();
1044 mutex_lock(&smp_cpu_state_mutex);
1045 rc = -EBUSY;
1046 /* disallow configuration changes of online cpus and cpu 0 */
1047 cpu = dev->id;
1048 cpu = smp_get_base_cpu(cpu);
1049 if (cpu == 0)
1050 goto out;
1051 for (i = 0; i <= smp_cpu_mtid; i++)
1052 if (cpu_online(cpu + i))
1053 goto out;
1054 pcpu = pcpu_devices + cpu;
1055 rc = 0;
1056 switch (val) {
1057 case 0:
1058 if (pcpu->state != CPU_STATE_CONFIGURED)
1059 break;
1060 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1061 if (rc)
1062 break;
1063 for (i = 0; i <= smp_cpu_mtid; i++) {
1064 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1065 continue;
1066 pcpu[i].state = CPU_STATE_STANDBY;
1067 smp_cpu_set_polarization(cpu + i,
1068 POLARIZATION_UNKNOWN);
1069 }
1070 topology_expect_change();
1071 break;
1072 case 1:
1073 if (pcpu->state != CPU_STATE_STANDBY)
1074 break;
1075 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1076 if (rc)
1077 break;
1078 for (i = 0; i <= smp_cpu_mtid; i++) {
1079 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1080 continue;
1081 pcpu[i].state = CPU_STATE_CONFIGURED;
1082 smp_cpu_set_polarization(cpu + i,
1083 POLARIZATION_UNKNOWN);
1084 }
1085 topology_expect_change();
1086 break;
1087 default:
1088 break;
1089 }
1090 out:
1091 mutex_unlock(&smp_cpu_state_mutex);
1092 put_online_cpus();
1093 return rc ? rc : count;
1094 }
1095 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1096 #endif /* CONFIG_HOTPLUG_CPU */
1097
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1098 static ssize_t show_cpu_address(struct device *dev,
1099 struct device_attribute *attr, char *buf)
1100 {
1101 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1102 }
1103 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1104
1105 static struct attribute *cpu_common_attrs[] = {
1106 #ifdef CONFIG_HOTPLUG_CPU
1107 &dev_attr_configure.attr,
1108 #endif
1109 &dev_attr_address.attr,
1110 NULL,
1111 };
1112
1113 static struct attribute_group cpu_common_attr_group = {
1114 .attrs = cpu_common_attrs,
1115 };
1116
1117 static struct attribute *cpu_online_attrs[] = {
1118 &dev_attr_idle_count.attr,
1119 &dev_attr_idle_time_us.attr,
1120 NULL,
1121 };
1122
1123 static struct attribute_group cpu_online_attr_group = {
1124 .attrs = cpu_online_attrs,
1125 };
1126
smp_cpu_online(unsigned int cpu)1127 static int smp_cpu_online(unsigned int cpu)
1128 {
1129 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1130
1131 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1132 }
smp_cpu_pre_down(unsigned int cpu)1133 static int smp_cpu_pre_down(unsigned int cpu)
1134 {
1135 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1136
1137 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1138 return 0;
1139 }
1140
smp_add_present_cpu(int cpu)1141 static int smp_add_present_cpu(int cpu)
1142 {
1143 struct device *s;
1144 struct cpu *c;
1145 int rc;
1146
1147 c = kzalloc(sizeof(*c), GFP_KERNEL);
1148 if (!c)
1149 return -ENOMEM;
1150 per_cpu(cpu_device, cpu) = c;
1151 s = &c->dev;
1152 c->hotpluggable = 1;
1153 rc = register_cpu(c, cpu);
1154 if (rc)
1155 goto out;
1156 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1157 if (rc)
1158 goto out_cpu;
1159 rc = topology_cpu_init(c);
1160 if (rc)
1161 goto out_topology;
1162 return 0;
1163
1164 out_topology:
1165 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1166 out_cpu:
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 unregister_cpu(c);
1169 #endif
1170 out:
1171 return rc;
1172 }
1173
1174 #ifdef CONFIG_HOTPLUG_CPU
1175
smp_rescan_cpus(void)1176 int __ref smp_rescan_cpus(void)
1177 {
1178 struct sclp_core_info *info;
1179 int nr;
1180
1181 info = kzalloc(sizeof(*info), GFP_KERNEL);
1182 if (!info)
1183 return -ENOMEM;
1184 smp_get_core_info(info, 0);
1185 get_online_cpus();
1186 mutex_lock(&smp_cpu_state_mutex);
1187 nr = __smp_rescan_cpus(info, false);
1188 mutex_unlock(&smp_cpu_state_mutex);
1189 put_online_cpus();
1190 kfree(info);
1191 if (nr)
1192 topology_schedule_update();
1193 return 0;
1194 }
1195
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1196 static ssize_t __ref rescan_store(struct device *dev,
1197 struct device_attribute *attr,
1198 const char *buf,
1199 size_t count)
1200 {
1201 int rc;
1202
1203 rc = lock_device_hotplug_sysfs();
1204 if (rc)
1205 return rc;
1206 rc = smp_rescan_cpus();
1207 unlock_device_hotplug();
1208 return rc ? rc : count;
1209 }
1210 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1211 #endif /* CONFIG_HOTPLUG_CPU */
1212
s390_smp_init(void)1213 static int __init s390_smp_init(void)
1214 {
1215 int cpu, rc = 0;
1216
1217 #ifdef CONFIG_HOTPLUG_CPU
1218 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1219 if (rc)
1220 return rc;
1221 #endif
1222 for_each_present_cpu(cpu) {
1223 rc = smp_add_present_cpu(cpu);
1224 if (rc)
1225 goto out;
1226 }
1227
1228 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1229 smp_cpu_online, smp_cpu_pre_down);
1230 rc = rc <= 0 ? rc : 0;
1231 out:
1232 return rc;
1233 }
1234 subsys_initcall(s390_smp_init);
1235