• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/vdso.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/topology.h>
58 #include "entry.h"
59 
60 enum {
61 	ec_schedule = 0,
62 	ec_call_function_single,
63 	ec_stop_cpu,
64 };
65 
66 enum {
67 	CPU_STATE_STANDBY,
68 	CPU_STATE_CONFIGURED,
69 };
70 
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72 
73 struct pcpu {
74 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
75 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
76 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
77 	signed char state;		/* physical cpu state */
78 	signed char polarization;	/* physical polarization */
79 	u16 address;			/* physical cpu address */
80 };
81 
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84 
85 static struct kmem_cache *pcpu_mcesa_cache;
86 
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92 
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96 
97 static unsigned int smp_max_threads __initdata = -1U;
98 
early_nosmt(char * s)99 static int __init early_nosmt(char *s)
100 {
101 	smp_max_threads = 1;
102 	return 0;
103 }
104 early_param("nosmt", early_nosmt);
105 
early_smt(char * s)106 static int __init early_smt(char *s)
107 {
108 	get_option(&s, &smp_max_threads);
109 	return 0;
110 }
111 early_param("smt", early_smt);
112 
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118 
119 /*
120  * Signal processor helper functions.
121  */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, NULL);
128 		if (cc != SIGP_CC_BUSY)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 		if (cc != SIGP_CC_BUSY)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
pcpu_stopped(struct pcpu * pcpu)148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	u32 uninitialized_var(status);
151 
152 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 			0, &status) != SIGP_CC_STATUS_STORED)
154 		return 0;
155 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157 
pcpu_running(struct pcpu * pcpu)158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 			0, NULL) != SIGP_CC_STATUS_STORED)
162 		return 1;
163 	/* Status stored condition code is equivalent to cpu not running. */
164 	return 0;
165 }
166 
167 /*
168  * Find struct pcpu by cpu address.
169  */
pcpu_find_address(const struct cpumask * mask,u16 address)170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		if (pcpu_devices[cpu].address == address)
176 			return pcpu_devices + cpu;
177 	return NULL;
178 }
179 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 	int order;
183 
184 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 		return;
186 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 	pcpu->ec_clk = get_tod_clock_fast();
188 	pcpu_sigp_retry(pcpu, order, 0);
189 }
190 
191 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
192 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
193 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)194 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 {
196 	unsigned long async_stack, panic_stack;
197 	unsigned long mcesa_origin, mcesa_bits;
198 	struct lowcore *lc;
199 
200 	mcesa_origin = mcesa_bits = 0;
201 	if (pcpu != &pcpu_devices[0]) {
202 		pcpu->lowcore =	(struct lowcore *)
203 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
204 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
205 		panic_stack = __get_free_page(GFP_KERNEL);
206 		if (!pcpu->lowcore || !panic_stack || !async_stack)
207 			goto out;
208 		if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
209 			mcesa_origin = (unsigned long)
210 				kmem_cache_alloc(pcpu_mcesa_cache, GFP_KERNEL);
211 			if (!mcesa_origin)
212 				goto out;
213 			/* The pointer is stored with mcesa_bits ORed in */
214 			kmemleak_not_leak((void *) mcesa_origin);
215 			mcesa_bits = MACHINE_HAS_GS ? 11 : 0;
216 		}
217 	} else {
218 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
219 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
220 		mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
221 		mcesa_bits = pcpu->lowcore->mcesad & MCESA_LC_MASK;
222 	}
223 	lc = pcpu->lowcore;
224 	memcpy(lc, &S390_lowcore, 512);
225 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
226 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
227 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
228 	lc->mcesad = mcesa_origin | mcesa_bits;
229 	lc->cpu_nr = cpu;
230 	lc->spinlock_lockval = arch_spin_lockval(cpu);
231 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
232 	if (vdso_alloc_per_cpu(lc))
233 		goto out;
234 	lowcore_ptr[cpu] = lc;
235 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
236 	return 0;
237 out:
238 	if (pcpu != &pcpu_devices[0]) {
239 		if (mcesa_origin)
240 			kmem_cache_free(pcpu_mcesa_cache,
241 					(void *) mcesa_origin);
242 		free_page(panic_stack);
243 		free_pages(async_stack, ASYNC_ORDER);
244 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
245 	}
246 	return -ENOMEM;
247 }
248 
249 #ifdef CONFIG_HOTPLUG_CPU
250 
pcpu_free_lowcore(struct pcpu * pcpu)251 static void pcpu_free_lowcore(struct pcpu *pcpu)
252 {
253 	unsigned long mcesa_origin;
254 
255 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
256 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
257 	vdso_free_per_cpu(pcpu->lowcore);
258 	if (pcpu == &pcpu_devices[0])
259 		return;
260 	if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
261 		mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
262 		kmem_cache_free(pcpu_mcesa_cache, (void *) mcesa_origin);
263 	}
264 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
265 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
266 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
267 }
268 
269 #endif /* CONFIG_HOTPLUG_CPU */
270 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)271 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
272 {
273 	struct lowcore *lc = pcpu->lowcore;
274 
275 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
276 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
277 	lc->cpu_nr = cpu;
278 	lc->spinlock_lockval = arch_spin_lockval(cpu);
279 	lc->percpu_offset = __per_cpu_offset[cpu];
280 	lc->kernel_asce = S390_lowcore.kernel_asce;
281 	lc->machine_flags = S390_lowcore.machine_flags;
282 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
283 	__ctl_store(lc->cregs_save_area, 0, 15);
284 	save_access_regs((unsigned int *) lc->access_regs_save_area);
285 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
286 	       sizeof(lc->stfle_fac_list));
287 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
288 	       sizeof(lc->alt_stfle_fac_list));
289 }
290 
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)291 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
292 {
293 	struct lowcore *lc = pcpu->lowcore;
294 
295 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
296 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
297 	lc->current_task = (unsigned long) tsk;
298 	lc->lpp = LPP_MAGIC;
299 	lc->current_pid = tsk->pid;
300 	lc->user_timer = tsk->thread.user_timer;
301 	lc->guest_timer = tsk->thread.guest_timer;
302 	lc->system_timer = tsk->thread.system_timer;
303 	lc->hardirq_timer = tsk->thread.hardirq_timer;
304 	lc->softirq_timer = tsk->thread.softirq_timer;
305 	lc->steal_timer = 0;
306 }
307 
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)308 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
309 {
310 	struct lowcore *lc = pcpu->lowcore;
311 
312 	lc->restart_stack = lc->kernel_stack;
313 	lc->restart_fn = (unsigned long) func;
314 	lc->restart_data = (unsigned long) data;
315 	lc->restart_source = -1UL;
316 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
317 }
318 
319 /*
320  * Call function via PSW restart on pcpu and stop the current cpu.
321  */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)322 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
323 			  void *data, unsigned long stack)
324 {
325 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326 	unsigned long source_cpu = stap();
327 
328 	__load_psw_mask(PSW_KERNEL_BITS);
329 	if (pcpu->address == source_cpu)
330 		func(data);	/* should not return */
331 	/* Stop target cpu (if func returns this stops the current cpu). */
332 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 	/* Restart func on the target cpu and stop the current cpu. */
334 	mem_assign_absolute(lc->restart_stack, stack);
335 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
337 	mem_assign_absolute(lc->restart_source, source_cpu);
338 	__bpon();
339 	asm volatile(
340 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
341 		"	brc	2,0b	# busy, try again\n"
342 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
343 		"	brc	2,1b	# busy, try again\n"
344 		: : "d" (pcpu->address), "d" (source_cpu),
345 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
346 		: "0", "1", "cc");
347 	for (;;) ;
348 }
349 
350 /*
351  * Enable additional logical cpus for multi-threading.
352  */
pcpu_set_smt(unsigned int mtid)353 static int pcpu_set_smt(unsigned int mtid)
354 {
355 	int cc;
356 
357 	if (smp_cpu_mtid == mtid)
358 		return 0;
359 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360 	if (cc == 0) {
361 		smp_cpu_mtid = mtid;
362 		smp_cpu_mt_shift = 0;
363 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364 			smp_cpu_mt_shift++;
365 		pcpu_devices[0].address = stap();
366 	}
367 	return cc;
368 }
369 
370 /*
371  * Call function on an online CPU.
372  */
smp_call_online_cpu(void (* func)(void *),void * data)373 void smp_call_online_cpu(void (*func)(void *), void *data)
374 {
375 	struct pcpu *pcpu;
376 
377 	/* Use the current cpu if it is online. */
378 	pcpu = pcpu_find_address(cpu_online_mask, stap());
379 	if (!pcpu)
380 		/* Use the first online cpu. */
381 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
383 }
384 
385 /*
386  * Call function on the ipl CPU.
387  */
smp_call_ipl_cpu(void (* func)(void *),void * data)388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
389 {
390 	struct lowcore *lc = pcpu_devices->lowcore;
391 
392 	if (pcpu_devices[0].address == stap())
393 		lc = &S390_lowcore;
394 
395 	pcpu_delegate(&pcpu_devices[0], func, data,
396 		      lc->panic_stack - PANIC_FRAME_OFFSET + PAGE_SIZE);
397 }
398 
smp_find_processor_id(u16 address)399 int smp_find_processor_id(u16 address)
400 {
401 	int cpu;
402 
403 	for_each_present_cpu(cpu)
404 		if (pcpu_devices[cpu].address == address)
405 			return cpu;
406 	return -1;
407 }
408 
arch_vcpu_is_preempted(int cpu)409 bool arch_vcpu_is_preempted(int cpu)
410 {
411 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
412 		return false;
413 	if (pcpu_running(pcpu_devices + cpu))
414 		return false;
415 	return true;
416 }
417 EXPORT_SYMBOL(arch_vcpu_is_preempted);
418 
smp_yield_cpu(int cpu)419 void smp_yield_cpu(int cpu)
420 {
421 	if (MACHINE_HAS_DIAG9C) {
422 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
423 		asm volatile("diag %0,0,0x9c"
424 			     : : "d" (pcpu_devices[cpu].address));
425 	} else if (MACHINE_HAS_DIAG44) {
426 		diag_stat_inc_norecursion(DIAG_STAT_X044);
427 		asm volatile("diag 0,0,0x44");
428 	}
429 }
430 
431 /*
432  * Send cpus emergency shutdown signal. This gives the cpus the
433  * opportunity to complete outstanding interrupts.
434  */
smp_emergency_stop(cpumask_t * cpumask)435 static void smp_emergency_stop(cpumask_t *cpumask)
436 {
437 	u64 end;
438 	int cpu;
439 
440 	end = get_tod_clock() + (1000000UL << 12);
441 	for_each_cpu(cpu, cpumask) {
442 		struct pcpu *pcpu = pcpu_devices + cpu;
443 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
444 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
445 				   0, NULL) == SIGP_CC_BUSY &&
446 		       get_tod_clock() < end)
447 			cpu_relax();
448 	}
449 	while (get_tod_clock() < end) {
450 		for_each_cpu(cpu, cpumask)
451 			if (pcpu_stopped(pcpu_devices + cpu))
452 				cpumask_clear_cpu(cpu, cpumask);
453 		if (cpumask_empty(cpumask))
454 			break;
455 		cpu_relax();
456 	}
457 }
458 
459 /*
460  * Stop all cpus but the current one.
461  */
smp_send_stop(void)462 void smp_send_stop(void)
463 {
464 	cpumask_t cpumask;
465 	int cpu;
466 
467 	/* Disable all interrupts/machine checks */
468 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
469 	trace_hardirqs_off();
470 
471 	debug_set_critical();
472 	cpumask_copy(&cpumask, cpu_online_mask);
473 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
474 
475 	if (oops_in_progress)
476 		smp_emergency_stop(&cpumask);
477 
478 	/* stop all processors */
479 	for_each_cpu(cpu, &cpumask) {
480 		struct pcpu *pcpu = pcpu_devices + cpu;
481 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
482 		while (!pcpu_stopped(pcpu))
483 			cpu_relax();
484 	}
485 }
486 
487 /*
488  * This is the main routine where commands issued by other
489  * cpus are handled.
490  */
smp_handle_ext_call(void)491 static void smp_handle_ext_call(void)
492 {
493 	unsigned long bits;
494 
495 	/* handle bit signal external calls */
496 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
497 	if (test_bit(ec_stop_cpu, &bits))
498 		smp_stop_cpu();
499 	if (test_bit(ec_schedule, &bits))
500 		scheduler_ipi();
501 	if (test_bit(ec_call_function_single, &bits))
502 		generic_smp_call_function_single_interrupt();
503 }
504 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)505 static void do_ext_call_interrupt(struct ext_code ext_code,
506 				  unsigned int param32, unsigned long param64)
507 {
508 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
509 	smp_handle_ext_call();
510 }
511 
arch_send_call_function_ipi_mask(const struct cpumask * mask)512 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
513 {
514 	int cpu;
515 
516 	for_each_cpu(cpu, mask)
517 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
518 }
519 
arch_send_call_function_single_ipi(int cpu)520 void arch_send_call_function_single_ipi(int cpu)
521 {
522 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
523 }
524 
525 /*
526  * this function sends a 'reschedule' IPI to another CPU.
527  * it goes straight through and wastes no time serializing
528  * anything. Worst case is that we lose a reschedule ...
529  */
smp_send_reschedule(int cpu)530 void smp_send_reschedule(int cpu)
531 {
532 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
533 }
534 
535 /*
536  * parameter area for the set/clear control bit callbacks
537  */
538 struct ec_creg_mask_parms {
539 	unsigned long orval;
540 	unsigned long andval;
541 	int cr;
542 };
543 
544 /*
545  * callback for setting/clearing control bits
546  */
smp_ctl_bit_callback(void * info)547 static void smp_ctl_bit_callback(void *info)
548 {
549 	struct ec_creg_mask_parms *pp = info;
550 	unsigned long cregs[16];
551 
552 	__ctl_store(cregs, 0, 15);
553 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
554 	__ctl_load(cregs, 0, 15);
555 }
556 
557 /*
558  * Set a bit in a control register of all cpus
559  */
smp_ctl_set_bit(int cr,int bit)560 void smp_ctl_set_bit(int cr, int bit)
561 {
562 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
563 
564 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
565 }
566 EXPORT_SYMBOL(smp_ctl_set_bit);
567 
568 /*
569  * Clear a bit in a control register of all cpus
570  */
smp_ctl_clear_bit(int cr,int bit)571 void smp_ctl_clear_bit(int cr, int bit)
572 {
573 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
574 
575 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
576 }
577 EXPORT_SYMBOL(smp_ctl_clear_bit);
578 
579 #ifdef CONFIG_CRASH_DUMP
580 
smp_store_status(int cpu)581 int smp_store_status(int cpu)
582 {
583 	struct pcpu *pcpu = pcpu_devices + cpu;
584 	unsigned long pa;
585 
586 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
587 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
588 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
589 		return -EIO;
590 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
591 		return 0;
592 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
593 	if (MACHINE_HAS_GS)
594 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
595 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
596 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
597 		return -EIO;
598 	return 0;
599 }
600 
601 /*
602  * Collect CPU state of the previous, crashed system.
603  * There are four cases:
604  * 1) standard zfcp dump
605  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The boot CPU state is located in
608  *    the absolute lowcore of the memory stored in the HSA. The zcore code
609  *    will copy the boot CPU state from the HSA.
610  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
611  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
612  *    The state for all CPUs except the boot CPU needs to be collected
613  *    with sigp stop-and-store-status. The firmware or the boot-loader
614  *    stored the registers of the boot CPU in the absolute lowcore in the
615  *    memory of the old system.
616  * 3) kdump and the old kernel did not store the CPU state,
617  *    or stand-alone kdump for DASD
618  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
619  *    The state for all CPUs except the boot CPU needs to be collected
620  *    with sigp stop-and-store-status. The kexec code or the boot-loader
621  *    stored the registers of the boot CPU in the memory of the old system.
622  * 4) kdump and the old kernel stored the CPU state
623  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
624  *    This case does not exist for s390 anymore, setup_arch explicitly
625  *    deactivates the elfcorehdr= kernel parameter
626  */
smp_save_cpu_vxrs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)627 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
628 				     bool is_boot_cpu, unsigned long page)
629 {
630 	__vector128 *vxrs = (__vector128 *) page;
631 
632 	if (is_boot_cpu)
633 		vxrs = boot_cpu_vector_save_area;
634 	else
635 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
636 	save_area_add_vxrs(sa, vxrs);
637 }
638 
smp_save_cpu_regs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)639 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
640 				     bool is_boot_cpu, unsigned long page)
641 {
642 	void *regs = (void *) page;
643 
644 	if (is_boot_cpu)
645 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
646 	else
647 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
648 	save_area_add_regs(sa, regs);
649 }
650 
smp_save_dump_cpus(void)651 void __init smp_save_dump_cpus(void)
652 {
653 	int addr, boot_cpu_addr, max_cpu_addr;
654 	struct save_area *sa;
655 	unsigned long page;
656 	bool is_boot_cpu;
657 
658 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
659 		/* No previous system present, normal boot. */
660 		return;
661 	/* Allocate a page as dumping area for the store status sigps */
662 	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
663 	/* Set multi-threading state to the previous system. */
664 	pcpu_set_smt(sclp.mtid_prev);
665 	boot_cpu_addr = stap();
666 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
667 	for (addr = 0; addr <= max_cpu_addr; addr++) {
668 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
669 		    SIGP_CC_NOT_OPERATIONAL)
670 			continue;
671 		is_boot_cpu = (addr == boot_cpu_addr);
672 		/* Allocate save area */
673 		sa = save_area_alloc(is_boot_cpu);
674 		if (!sa)
675 			panic("could not allocate memory for save area\n");
676 		if (MACHINE_HAS_VX)
677 			/* Get the vector registers */
678 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
679 		/*
680 		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
681 		 * of the boot CPU are stored in the HSA. To retrieve
682 		 * these registers an SCLP request is required which is
683 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
684 		 */
685 		if (!is_boot_cpu || OLDMEM_BASE)
686 			/* Get the CPU registers */
687 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
688 	}
689 	memblock_free(page, PAGE_SIZE);
690 	diag308_reset();
691 	pcpu_set_smt(0);
692 }
693 #endif /* CONFIG_CRASH_DUMP */
694 
smp_cpu_set_polarization(int cpu,int val)695 void smp_cpu_set_polarization(int cpu, int val)
696 {
697 	pcpu_devices[cpu].polarization = val;
698 }
699 
smp_cpu_get_polarization(int cpu)700 int smp_cpu_get_polarization(int cpu)
701 {
702 	return pcpu_devices[cpu].polarization;
703 }
704 
smp_get_core_info(struct sclp_core_info * info,int early)705 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
706 {
707 	static int use_sigp_detection;
708 	int address;
709 
710 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
711 		use_sigp_detection = 1;
712 		for (address = 0;
713 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
714 		     address += (1U << smp_cpu_mt_shift)) {
715 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
716 			    SIGP_CC_NOT_OPERATIONAL)
717 				continue;
718 			info->core[info->configured].core_id =
719 				address >> smp_cpu_mt_shift;
720 			info->configured++;
721 		}
722 		info->combined = info->configured;
723 	}
724 }
725 
726 static int smp_add_present_cpu(int cpu);
727 
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)728 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
729 			bool configured, bool early)
730 {
731 	struct pcpu *pcpu;
732 	int cpu, nr, i;
733 	u16 address;
734 
735 	nr = 0;
736 	if (sclp.has_core_type && core->type != boot_core_type)
737 		return nr;
738 	cpu = cpumask_first(avail);
739 	address = core->core_id << smp_cpu_mt_shift;
740 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
741 		if (pcpu_find_address(cpu_present_mask, address + i))
742 			continue;
743 		pcpu = pcpu_devices + cpu;
744 		pcpu->address = address + i;
745 		if (configured)
746 			pcpu->state = CPU_STATE_CONFIGURED;
747 		else
748 			pcpu->state = CPU_STATE_STANDBY;
749 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
750 		set_cpu_present(cpu, true);
751 		if (!early && smp_add_present_cpu(cpu) != 0)
752 			set_cpu_present(cpu, false);
753 		else
754 			nr++;
755 		cpumask_clear_cpu(cpu, avail);
756 		cpu = cpumask_next(cpu, avail);
757 	}
758 	return nr;
759 }
760 
__smp_rescan_cpus(struct sclp_core_info * info,bool early)761 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
762 {
763 	struct sclp_core_entry *core;
764 	cpumask_t avail;
765 	bool configured;
766 	u16 core_id;
767 	int nr, i;
768 
769 	nr = 0;
770 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
771 	/*
772 	 * Add IPL core first (which got logical CPU number 0) to make sure
773 	 * that all SMT threads get subsequent logical CPU numbers.
774 	 */
775 	if (early) {
776 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
777 		for (i = 0; i < info->configured; i++) {
778 			core = &info->core[i];
779 			if (core->core_id == core_id) {
780 				nr += smp_add_core(core, &avail, true, early);
781 				break;
782 			}
783 		}
784 	}
785 	for (i = 0; i < info->combined; i++) {
786 		configured = i < info->configured;
787 		nr += smp_add_core(&info->core[i], &avail, configured, early);
788 	}
789 	return nr;
790 }
791 
smp_detect_cpus(void)792 void __init smp_detect_cpus(void)
793 {
794 	unsigned int cpu, mtid, c_cpus, s_cpus;
795 	struct sclp_core_info *info;
796 	u16 address;
797 
798 	/* Get CPU information */
799 	info = memblock_virt_alloc(sizeof(*info), 8);
800 	smp_get_core_info(info, 1);
801 	/* Find boot CPU type */
802 	if (sclp.has_core_type) {
803 		address = stap();
804 		for (cpu = 0; cpu < info->combined; cpu++)
805 			if (info->core[cpu].core_id == address) {
806 				/* The boot cpu dictates the cpu type. */
807 				boot_core_type = info->core[cpu].type;
808 				break;
809 			}
810 		if (cpu >= info->combined)
811 			panic("Could not find boot CPU type");
812 	}
813 
814 	/* Set multi-threading state for the current system */
815 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
816 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
817 	pcpu_set_smt(mtid);
818 
819 	/* Print number of CPUs */
820 	c_cpus = s_cpus = 0;
821 	for (cpu = 0; cpu < info->combined; cpu++) {
822 		if (sclp.has_core_type &&
823 		    info->core[cpu].type != boot_core_type)
824 			continue;
825 		if (cpu < info->configured)
826 			c_cpus += smp_cpu_mtid + 1;
827 		else
828 			s_cpus += smp_cpu_mtid + 1;
829 	}
830 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
831 
832 	/* Add CPUs present at boot */
833 	get_online_cpus();
834 	__smp_rescan_cpus(info, true);
835 	put_online_cpus();
836 	memblock_free_early((unsigned long)info, sizeof(*info));
837 }
838 
839 /*
840  *	Activate a secondary processor.
841  */
smp_start_secondary(void * cpuvoid)842 static void smp_start_secondary(void *cpuvoid)
843 {
844 	S390_lowcore.last_update_clock = get_tod_clock();
845 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
846 	S390_lowcore.restart_fn = (unsigned long) do_restart;
847 	S390_lowcore.restart_data = 0;
848 	S390_lowcore.restart_source = -1UL;
849 	restore_access_regs(S390_lowcore.access_regs_save_area);
850 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
851 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
852 	cpu_init();
853 	preempt_disable();
854 	init_cpu_timer();
855 	vtime_init();
856 	pfault_init();
857 	notify_cpu_starting(smp_processor_id());
858 	set_cpu_online(smp_processor_id(), true);
859 	inc_irq_stat(CPU_RST);
860 	local_irq_enable();
861 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
862 }
863 
864 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)865 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
866 {
867 	struct pcpu *pcpu;
868 	int base, i, rc;
869 
870 	pcpu = pcpu_devices + cpu;
871 	if (pcpu->state != CPU_STATE_CONFIGURED)
872 		return -EIO;
873 	base = smp_get_base_cpu(cpu);
874 	for (i = 0; i <= smp_cpu_mtid; i++) {
875 		if (base + i < nr_cpu_ids)
876 			if (cpu_online(base + i))
877 				break;
878 	}
879 	/*
880 	 * If this is the first CPU of the core to get online
881 	 * do an initial CPU reset.
882 	 */
883 	if (i > smp_cpu_mtid &&
884 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
885 	    SIGP_CC_ORDER_CODE_ACCEPTED)
886 		return -EIO;
887 
888 	rc = pcpu_alloc_lowcore(pcpu, cpu);
889 	if (rc)
890 		return rc;
891 	pcpu_prepare_secondary(pcpu, cpu);
892 	pcpu_attach_task(pcpu, tidle);
893 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
894 	/* Wait until cpu puts itself in the online & active maps */
895 	while (!cpu_online(cpu))
896 		cpu_relax();
897 	return 0;
898 }
899 
900 static unsigned int setup_possible_cpus __initdata;
901 
_setup_possible_cpus(char * s)902 static int __init _setup_possible_cpus(char *s)
903 {
904 	get_option(&s, &setup_possible_cpus);
905 	return 0;
906 }
907 early_param("possible_cpus", _setup_possible_cpus);
908 
909 #ifdef CONFIG_HOTPLUG_CPU
910 
__cpu_disable(void)911 int __cpu_disable(void)
912 {
913 	unsigned long cregs[16];
914 
915 	/* Handle possible pending IPIs */
916 	smp_handle_ext_call();
917 	set_cpu_online(smp_processor_id(), false);
918 	/* Disable pseudo page faults on this cpu. */
919 	pfault_fini();
920 	/* Disable interrupt sources via control register. */
921 	__ctl_store(cregs, 0, 15);
922 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
923 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
924 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
925 	__ctl_load(cregs, 0, 15);
926 	clear_cpu_flag(CIF_NOHZ_DELAY);
927 	return 0;
928 }
929 
__cpu_die(unsigned int cpu)930 void __cpu_die(unsigned int cpu)
931 {
932 	struct pcpu *pcpu;
933 
934 	/* Wait until target cpu is down */
935 	pcpu = pcpu_devices + cpu;
936 	while (!pcpu_stopped(pcpu))
937 		cpu_relax();
938 	pcpu_free_lowcore(pcpu);
939 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
940 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
941 }
942 
cpu_die(void)943 void __noreturn cpu_die(void)
944 {
945 	idle_task_exit();
946 	__bpon();
947 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
948 	for (;;) ;
949 }
950 
951 #endif /* CONFIG_HOTPLUG_CPU */
952 
smp_fill_possible_mask(void)953 void __init smp_fill_possible_mask(void)
954 {
955 	unsigned int possible, sclp_max, cpu;
956 
957 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
958 	sclp_max = min(smp_max_threads, sclp_max);
959 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
960 	possible = setup_possible_cpus ?: nr_cpu_ids;
961 	possible = min(possible, sclp_max);
962 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
963 		set_cpu_possible(cpu, true);
964 }
965 
smp_prepare_cpus(unsigned int max_cpus)966 void __init smp_prepare_cpus(unsigned int max_cpus)
967 {
968 	unsigned long size;
969 
970 	/* request the 0x1201 emergency signal external interrupt */
971 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
972 		panic("Couldn't request external interrupt 0x1201");
973 	/* request the 0x1202 external call external interrupt */
974 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
975 		panic("Couldn't request external interrupt 0x1202");
976 	/* create slab cache for the machine-check-extended-save-areas */
977 	if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
978 		size = 1UL << (MACHINE_HAS_GS ? 11 : 10);
979 		pcpu_mcesa_cache = kmem_cache_create("nmi_save_areas",
980 						     size, size, 0, NULL);
981 		if (!pcpu_mcesa_cache)
982 			panic("Couldn't create nmi save area cache");
983 	}
984 }
985 
smp_prepare_boot_cpu(void)986 void __init smp_prepare_boot_cpu(void)
987 {
988 	struct pcpu *pcpu = pcpu_devices;
989 
990 	WARN_ON(!cpu_present(0) || !cpu_online(0));
991 	pcpu->state = CPU_STATE_CONFIGURED;
992 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
993 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
994 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
995 }
996 
smp_cpus_done(unsigned int max_cpus)997 void __init smp_cpus_done(unsigned int max_cpus)
998 {
999 }
1000 
smp_setup_processor_id(void)1001 void __init smp_setup_processor_id(void)
1002 {
1003 	pcpu_devices[0].address = stap();
1004 	S390_lowcore.cpu_nr = 0;
1005 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1006 }
1007 
1008 /*
1009  * the frequency of the profiling timer can be changed
1010  * by writing a multiplier value into /proc/profile.
1011  *
1012  * usually you want to run this on all CPUs ;)
1013  */
setup_profiling_timer(unsigned int multiplier)1014 int setup_profiling_timer(unsigned int multiplier)
1015 {
1016 	return 0;
1017 }
1018 
1019 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)1020 static ssize_t cpu_configure_show(struct device *dev,
1021 				  struct device_attribute *attr, char *buf)
1022 {
1023 	ssize_t count;
1024 
1025 	mutex_lock(&smp_cpu_state_mutex);
1026 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1027 	mutex_unlock(&smp_cpu_state_mutex);
1028 	return count;
1029 }
1030 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1031 static ssize_t cpu_configure_store(struct device *dev,
1032 				   struct device_attribute *attr,
1033 				   const char *buf, size_t count)
1034 {
1035 	struct pcpu *pcpu;
1036 	int cpu, val, rc, i;
1037 	char delim;
1038 
1039 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1040 		return -EINVAL;
1041 	if (val != 0 && val != 1)
1042 		return -EINVAL;
1043 	get_online_cpus();
1044 	mutex_lock(&smp_cpu_state_mutex);
1045 	rc = -EBUSY;
1046 	/* disallow configuration changes of online cpus and cpu 0 */
1047 	cpu = dev->id;
1048 	cpu = smp_get_base_cpu(cpu);
1049 	if (cpu == 0)
1050 		goto out;
1051 	for (i = 0; i <= smp_cpu_mtid; i++)
1052 		if (cpu_online(cpu + i))
1053 			goto out;
1054 	pcpu = pcpu_devices + cpu;
1055 	rc = 0;
1056 	switch (val) {
1057 	case 0:
1058 		if (pcpu->state != CPU_STATE_CONFIGURED)
1059 			break;
1060 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1061 		if (rc)
1062 			break;
1063 		for (i = 0; i <= smp_cpu_mtid; i++) {
1064 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1065 				continue;
1066 			pcpu[i].state = CPU_STATE_STANDBY;
1067 			smp_cpu_set_polarization(cpu + i,
1068 						 POLARIZATION_UNKNOWN);
1069 		}
1070 		topology_expect_change();
1071 		break;
1072 	case 1:
1073 		if (pcpu->state != CPU_STATE_STANDBY)
1074 			break;
1075 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1076 		if (rc)
1077 			break;
1078 		for (i = 0; i <= smp_cpu_mtid; i++) {
1079 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1080 				continue;
1081 			pcpu[i].state = CPU_STATE_CONFIGURED;
1082 			smp_cpu_set_polarization(cpu + i,
1083 						 POLARIZATION_UNKNOWN);
1084 		}
1085 		topology_expect_change();
1086 		break;
1087 	default:
1088 		break;
1089 	}
1090 out:
1091 	mutex_unlock(&smp_cpu_state_mutex);
1092 	put_online_cpus();
1093 	return rc ? rc : count;
1094 }
1095 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1096 #endif /* CONFIG_HOTPLUG_CPU */
1097 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1098 static ssize_t show_cpu_address(struct device *dev,
1099 				struct device_attribute *attr, char *buf)
1100 {
1101 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1102 }
1103 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1104 
1105 static struct attribute *cpu_common_attrs[] = {
1106 #ifdef CONFIG_HOTPLUG_CPU
1107 	&dev_attr_configure.attr,
1108 #endif
1109 	&dev_attr_address.attr,
1110 	NULL,
1111 };
1112 
1113 static struct attribute_group cpu_common_attr_group = {
1114 	.attrs = cpu_common_attrs,
1115 };
1116 
1117 static struct attribute *cpu_online_attrs[] = {
1118 	&dev_attr_idle_count.attr,
1119 	&dev_attr_idle_time_us.attr,
1120 	NULL,
1121 };
1122 
1123 static struct attribute_group cpu_online_attr_group = {
1124 	.attrs = cpu_online_attrs,
1125 };
1126 
smp_cpu_online(unsigned int cpu)1127 static int smp_cpu_online(unsigned int cpu)
1128 {
1129 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1130 
1131 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1132 }
smp_cpu_pre_down(unsigned int cpu)1133 static int smp_cpu_pre_down(unsigned int cpu)
1134 {
1135 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1136 
1137 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1138 	return 0;
1139 }
1140 
smp_add_present_cpu(int cpu)1141 static int smp_add_present_cpu(int cpu)
1142 {
1143 	struct device *s;
1144 	struct cpu *c;
1145 	int rc;
1146 
1147 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1148 	if (!c)
1149 		return -ENOMEM;
1150 	per_cpu(cpu_device, cpu) = c;
1151 	s = &c->dev;
1152 	c->hotpluggable = 1;
1153 	rc = register_cpu(c, cpu);
1154 	if (rc)
1155 		goto out;
1156 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1157 	if (rc)
1158 		goto out_cpu;
1159 	rc = topology_cpu_init(c);
1160 	if (rc)
1161 		goto out_topology;
1162 	return 0;
1163 
1164 out_topology:
1165 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1166 out_cpu:
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 	unregister_cpu(c);
1169 #endif
1170 out:
1171 	return rc;
1172 }
1173 
1174 #ifdef CONFIG_HOTPLUG_CPU
1175 
smp_rescan_cpus(void)1176 int __ref smp_rescan_cpus(void)
1177 {
1178 	struct sclp_core_info *info;
1179 	int nr;
1180 
1181 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1182 	if (!info)
1183 		return -ENOMEM;
1184 	smp_get_core_info(info, 0);
1185 	get_online_cpus();
1186 	mutex_lock(&smp_cpu_state_mutex);
1187 	nr = __smp_rescan_cpus(info, false);
1188 	mutex_unlock(&smp_cpu_state_mutex);
1189 	put_online_cpus();
1190 	kfree(info);
1191 	if (nr)
1192 		topology_schedule_update();
1193 	return 0;
1194 }
1195 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1196 static ssize_t __ref rescan_store(struct device *dev,
1197 				  struct device_attribute *attr,
1198 				  const char *buf,
1199 				  size_t count)
1200 {
1201 	int rc;
1202 
1203 	rc = lock_device_hotplug_sysfs();
1204 	if (rc)
1205 		return rc;
1206 	rc = smp_rescan_cpus();
1207 	unlock_device_hotplug();
1208 	return rc ? rc : count;
1209 }
1210 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1211 #endif /* CONFIG_HOTPLUG_CPU */
1212 
s390_smp_init(void)1213 static int __init s390_smp_init(void)
1214 {
1215 	int cpu, rc = 0;
1216 
1217 #ifdef CONFIG_HOTPLUG_CPU
1218 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1219 	if (rc)
1220 		return rc;
1221 #endif
1222 	for_each_present_cpu(cpu) {
1223 		rc = smp_add_present_cpu(cpu);
1224 		if (rc)
1225 			goto out;
1226 	}
1227 
1228 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1229 			       smp_cpu_online, smp_cpu_pre_down);
1230 	rc = rc <= 0 ? rc : 0;
1231 out:
1232 	return rc;
1233 }
1234 subsys_initcall(s390_smp_init);
1235