• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/irq.h>
20 #include <linux/mmzone.h>
21 #include <linux/module.h>
22 #include <linux/bitops.h>
23 #include <linux/nodemask.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 
27 #include <asm/processor.h>
28 #include <asm/irq.h>
29 #include <asm/sal.h>
30 #include <asm/delay.h>
31 #include <asm/io.h>
32 #include <asm/smp.h>
33 #include <asm/tlb.h>
34 #include <asm/numa.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
43 #include <asm/sn/sn_feature_sets.h>
44 
45 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
46 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47 
48 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49 
50 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51 static int sn2_flush_opt = 0;
52 
53 extern unsigned long
54 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55 			       volatile unsigned long *, unsigned long,
56 			       volatile unsigned long *, unsigned long);
57 void
58 sn2_ptc_deadlock_recovery(nodemask_t, short, short, int,
59 			  volatile unsigned long *, unsigned long,
60 			  volatile unsigned long *, unsigned long);
61 
62 /*
63  * Note: some is the following is captured here to make degugging easier
64  * (the macros make more sense if you see the debug patch - not posted)
65  */
66 #define sn2_ptctest	0
67 #define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
68 #define max_active_pio(sh1)		((sh1) ? 32 : 7)
69 #define reset_max_active_on_deadlock()	1
70 #define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71 
72 struct ptc_stats {
73 	unsigned long ptc_l;
74 	unsigned long change_rid;
75 	unsigned long shub_ptc_flushes;
76 	unsigned long nodes_flushed;
77 	unsigned long deadlocks;
78 	unsigned long deadlocks2;
79 	unsigned long lock_itc_clocks;
80 	unsigned long shub_itc_clocks;
81 	unsigned long shub_itc_clocks_max;
82 	unsigned long shub_ptc_flushes_not_my_mm;
83 	unsigned long shub_ipi_flushes;
84 	unsigned long shub_ipi_flushes_itc_clocks;
85 };
86 
87 #define sn2_ptctest	0
88 
wait_piowc(void)89 static inline unsigned long wait_piowc(void)
90 {
91 	volatile unsigned long *piows;
92 	unsigned long zeroval, ws;
93 
94 	piows = pda->pio_write_status_addr;
95 	zeroval = pda->pio_write_status_val;
96 	do {
97 		cpu_relax();
98 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
99 	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
100 }
101 
102 /**
103  * sn_migrate - SN-specific task migration actions
104  * @task: Task being migrated to new CPU
105  *
106  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107  * Context switching user threads which have memory-mapped MMIO may cause
108  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
109  * from the previous CPU's Shub before execution resumes on the new CPU.
110  */
sn_migrate(struct task_struct * task)111 void sn_migrate(struct task_struct *task)
112 {
113 	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
114 	volatile unsigned long *adr = last_pda->pio_write_status_addr;
115 	unsigned long val = last_pda->pio_write_status_val;
116 
117 	/* Drain PIO writes from old CPU's Shub */
118 	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
119 			!= val))
120 		cpu_relax();
121 }
122 
sn_tlb_migrate_finish(struct mm_struct * mm)123 void sn_tlb_migrate_finish(struct mm_struct *mm)
124 {
125 	/* flush_tlb_mm is inefficient if more than 1 users of mm */
126 	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
127 		flush_tlb_mm(mm);
128 }
129 
130 static void
sn2_ipi_flush_all_tlb(struct mm_struct * mm)131 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132 {
133 	unsigned long itc;
134 
135 	itc = ia64_get_itc();
136 	smp_flush_tlb_cpumask(*mm_cpumask(mm));
137 	itc = ia64_get_itc() - itc;
138 	__this_cpu_add(ptcstats.shub_ipi_flushes_itc_clocks, itc);
139 	__this_cpu_inc(ptcstats.shub_ipi_flushes);
140 }
141 
142 /**
143  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
144  * @mm: mm_struct containing virtual address range
145  * @start: start of virtual address range
146  * @end: end of virtual address range
147  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148  *
149  * Purges the translation caches of all processors of the given virtual address
150  * range.
151  *
152  * Note:
153  * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154  * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
155  * 	  cpus in cpu_vm_mask.
156  *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
157  *	  process is purging its own virtual address range, then only the
158  *	  local TLB needs to be flushed. This flushing can be done using
159  *	  ptc.l. This is the common case & avoids the global spinlock.
160  *	- if multiple cpus have loaded the context, then flushing has to be
161  *	  done with ptc.g/MMRs under protection of the global ptc_lock.
162  */
163 
164 void
sn2_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)165 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
166 		     unsigned long end, unsigned long nbits)
167 {
168 	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
169 	int mymm = (mm == current->active_mm && mm == current->mm);
170 	int use_cpu_ptcga;
171 	volatile unsigned long *ptc0, *ptc1;
172 	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
173 	short nix;
174 	nodemask_t nodes_flushed;
175 	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176 
177 	if (flush_opt > 2) {
178 		sn2_ipi_flush_all_tlb(mm);
179 		return;
180 	}
181 
182 	nodes_clear(nodes_flushed);
183 	i = 0;
184 
185 	for_each_cpu(cpu, mm_cpumask(mm)) {
186 		cnode = cpu_to_node(cpu);
187 		node_set(cnode, nodes_flushed);
188 		lcpu = cpu;
189 		i++;
190 	}
191 
192 	if (i == 0)
193 		return;
194 
195 	preempt_disable();
196 
197 	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
198 		do {
199 			ia64_ptcl(start, nbits << 2);
200 			start += (1UL << nbits);
201 		} while (start < end);
202 		ia64_srlz_i();
203 		__this_cpu_inc(ptcstats.ptc_l);
204 		preempt_enable();
205 		return;
206 	}
207 
208 	if (atomic_read(&mm->mm_users) == 1 && mymm) {
209 		flush_tlb_mm(mm);
210 		__this_cpu_inc(ptcstats.change_rid);
211 		preempt_enable();
212 		return;
213 	}
214 
215 	if (flush_opt == 2) {
216 		sn2_ipi_flush_all_tlb(mm);
217 		preempt_enable();
218 		return;
219 	}
220 
221 	itc = ia64_get_itc();
222 	nix = nodes_weight(nodes_flushed);
223 
224 	rr_value = (mm->context << 3) | REGION_NUMBER(start);
225 
226 	shub1 = is_shub1();
227 	if (shub1) {
228 		data0 = (1UL << SH1_PTC_0_A_SHFT) |
229 		    	(nbits << SH1_PTC_0_PS_SHFT) |
230 			(rr_value << SH1_PTC_0_RID_SHFT) |
231 		    	(1UL << SH1_PTC_0_START_SHFT);
232 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
233 		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
234 	} else {
235 		data0 = (1UL << SH2_PTC_A_SHFT) |
236 			(nbits << SH2_PTC_PS_SHFT) |
237 		    	(1UL << SH2_PTC_START_SHFT);
238 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
239 			(rr_value << SH2_PTC_RID_SHFT));
240 		ptc1 = NULL;
241 	}
242 
243 
244 	mynasid = get_nasid();
245 	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
246 	max_active = max_active_pio(shub1);
247 
248 	itc = ia64_get_itc();
249 	spin_lock_irqsave(PTC_LOCK(shub1), flags);
250 	itc2 = ia64_get_itc();
251 
252 	__this_cpu_add(ptcstats.lock_itc_clocks, itc2 - itc);
253 	__this_cpu_inc(ptcstats.shub_ptc_flushes);
254 	__this_cpu_add(ptcstats.nodes_flushed, nix);
255 	if (!mymm)
256 		 __this_cpu_inc(ptcstats.shub_ptc_flushes_not_my_mm);
257 
258 	if (use_cpu_ptcga && !mymm) {
259 		old_rr = ia64_get_rr(start);
260 		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
261 		ia64_srlz_d();
262 	}
263 
264 	wait_piowc();
265 	do {
266 		if (shub1)
267 			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
268 		else
269 			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
270 		deadlock = 0;
271 		active = 0;
272 		ibegin = 0;
273 		i = 0;
274 		for_each_node_mask(cnode, nodes_flushed) {
275 			nasid = cnodeid_to_nasid(cnode);
276 			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
277 				ia64_ptcga(start, nbits << 2);
278 				ia64_srlz_i();
279 			} else {
280 				ptc0 = CHANGE_NASID(nasid, ptc0);
281 				if (ptc1)
282 					ptc1 = CHANGE_NASID(nasid, ptc1);
283 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
284 				active++;
285 			}
286 			if (active >= max_active || i == (nix - 1)) {
287 				if ((deadlock = wait_piowc())) {
288 					if (flush_opt == 1)
289 						goto done;
290 					sn2_ptc_deadlock_recovery(nodes_flushed, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
291 					if (reset_max_active_on_deadlock())
292 						max_active = 1;
293 				}
294 				active = 0;
295 				ibegin = i + 1;
296 			}
297 			i++;
298 		}
299 		start += (1UL << nbits);
300 	} while (start < end);
301 
302 done:
303 	itc2 = ia64_get_itc() - itc2;
304 	__this_cpu_add(ptcstats.shub_itc_clocks, itc2);
305 	if (itc2 > __this_cpu_read(ptcstats.shub_itc_clocks_max))
306 		__this_cpu_write(ptcstats.shub_itc_clocks_max, itc2);
307 
308 	if (old_rr) {
309 		ia64_set_rr(start, old_rr);
310 		ia64_srlz_d();
311 	}
312 
313 	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
314 
315 	if (flush_opt == 1 && deadlock) {
316 		__this_cpu_inc(ptcstats.deadlocks);
317 		sn2_ipi_flush_all_tlb(mm);
318 	}
319 
320 	preempt_enable();
321 }
322 
323 /*
324  * sn2_ptc_deadlock_recovery
325  *
326  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
327  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
328  * coded in assembly language.
329  */
330 
331 void
sn2_ptc_deadlock_recovery(nodemask_t nodes,short ib,short ie,int mynasid,volatile unsigned long * ptc0,unsigned long data0,volatile unsigned long * ptc1,unsigned long data1)332 sn2_ptc_deadlock_recovery(nodemask_t nodes, short ib, short ie, int mynasid,
333 			  volatile unsigned long *ptc0, unsigned long data0,
334 			  volatile unsigned long *ptc1, unsigned long data1)
335 {
336 	short nasid, i;
337 	int cnode;
338 	unsigned long *piows, zeroval, n;
339 
340 	__this_cpu_inc(ptcstats.deadlocks);
341 
342 	piows = (unsigned long *) pda->pio_write_status_addr;
343 	zeroval = pda->pio_write_status_val;
344 
345 	i = 0;
346 	for_each_node_mask(cnode, nodes) {
347 		if (i < ib)
348 			goto next;
349 
350 		if (i > ie)
351 			break;
352 
353 		nasid = cnodeid_to_nasid(cnode);
354 		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
355 			goto next;
356 
357 		ptc0 = CHANGE_NASID(nasid, ptc0);
358 		if (ptc1)
359 			ptc1 = CHANGE_NASID(nasid, ptc1);
360 
361 		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
362 		__this_cpu_add(ptcstats.deadlocks2, n);
363 next:
364 		i++;
365 	}
366 
367 }
368 
369 /**
370  * sn_send_IPI_phys - send an IPI to a Nasid and slice
371  * @nasid: nasid to receive the interrupt (may be outside partition)
372  * @physid: physical cpuid to receive the interrupt.
373  * @vector: command to send
374  * @delivery_mode: delivery mechanism
375  *
376  * Sends an IPI (interprocessor interrupt) to the processor specified by
377  * @physid
378  *
379  * @delivery_mode can be one of the following
380  *
381  * %IA64_IPI_DM_INT - pend an interrupt
382  * %IA64_IPI_DM_PMI - pend a PMI
383  * %IA64_IPI_DM_NMI - pend an NMI
384  * %IA64_IPI_DM_INIT - pend an INIT interrupt
385  */
sn_send_IPI_phys(int nasid,long physid,int vector,int delivery_mode)386 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
387 {
388 	long val;
389 	unsigned long flags = 0;
390 	volatile long *p;
391 
392 	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
393 	val = (1UL << SH_IPI_INT_SEND_SHFT) |
394 	    (physid << SH_IPI_INT_PID_SHFT) |
395 	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
396 	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
397 	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
398 
399 	mb();
400 	if (enable_shub_wars_1_1()) {
401 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
402 	}
403 	pio_phys_write_mmr(p, val);
404 	if (enable_shub_wars_1_1()) {
405 		wait_piowc();
406 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
407 	}
408 
409 }
410 
411 EXPORT_SYMBOL(sn_send_IPI_phys);
412 
413 /**
414  * sn2_send_IPI - send an IPI to a processor
415  * @cpuid: target of the IPI
416  * @vector: command to send
417  * @delivery_mode: delivery mechanism
418  * @redirect: redirect the IPI?
419  *
420  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
421  * @cpuid.  @vector specifies the command to send, while @delivery_mode can
422  * be one of the following
423  *
424  * %IA64_IPI_DM_INT - pend an interrupt
425  * %IA64_IPI_DM_PMI - pend a PMI
426  * %IA64_IPI_DM_NMI - pend an NMI
427  * %IA64_IPI_DM_INIT - pend an INIT interrupt
428  */
sn2_send_IPI(int cpuid,int vector,int delivery_mode,int redirect)429 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
430 {
431 	long physid;
432 	int nasid;
433 
434 	physid = cpu_physical_id(cpuid);
435 	nasid = cpuid_to_nasid(cpuid);
436 
437 	/* the following is used only when starting cpus at boot time */
438 	if (unlikely(nasid == -1))
439 		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
440 
441 	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
442 }
443 
444 #ifdef CONFIG_HOTPLUG_CPU
445 /**
446  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
447  * @cpu - CPU that is requested to be disabled.
448  *
449  * CPU disable is only allowed on SHub2 systems running with a PROM
450  * that supports CPU disable. It is not permitted to disable the boot processor.
451  */
sn_cpu_disable_allowed(int cpu)452 bool sn_cpu_disable_allowed(int cpu)
453 {
454 	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
455 		if (cpu != 0)
456 			return true;
457 		else
458 			printk(KERN_WARNING
459 			      "Disabling the boot processor is not allowed.\n");
460 
461 	} else
462 		printk(KERN_WARNING
463 		       "CPU disable is not supported on this system.\n");
464 
465 	return false;
466 }
467 #endif /* CONFIG_HOTPLUG_CPU */
468 
469 #ifdef CONFIG_PROC_FS
470 
471 #define PTC_BASENAME	"sgi_sn/ptc_statistics"
472 
sn2_ptc_seq_start(struct seq_file * file,loff_t * offset)473 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
474 {
475 	if (*offset < nr_cpu_ids)
476 		return offset;
477 	return NULL;
478 }
479 
sn2_ptc_seq_next(struct seq_file * file,void * data,loff_t * offset)480 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
481 {
482 	(*offset)++;
483 	if (*offset < nr_cpu_ids)
484 		return offset;
485 	return NULL;
486 }
487 
sn2_ptc_seq_stop(struct seq_file * file,void * data)488 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
489 {
490 }
491 
sn2_ptc_seq_show(struct seq_file * file,void * data)492 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
493 {
494 	struct ptc_stats *stat;
495 	int cpu;
496 
497 	cpu = *(loff_t *) data;
498 
499 	if (!cpu) {
500 		seq_printf(file,
501 			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
502 		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
503 	}
504 
505 	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
506 		stat = &per_cpu(ptcstats, cpu);
507 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
508 				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
509 				stat->deadlocks,
510 				1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
511 				1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
512 				1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
513 				stat->shub_ptc_flushes_not_my_mm,
514 				stat->deadlocks2,
515 				stat->shub_ipi_flushes,
516 				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
517 	}
518 	return 0;
519 }
520 
sn2_ptc_proc_write(struct file * file,const char __user * user,size_t count,loff_t * data)521 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
522 {
523 	int cpu;
524 	char optstr[64];
525 
526 	if (count == 0 || count > sizeof(optstr))
527 		return -EINVAL;
528 	if (copy_from_user(optstr, user, count))
529 		return -EFAULT;
530 	optstr[count - 1] = '\0';
531 	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
532 
533 	for_each_online_cpu(cpu)
534 		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
535 
536 	return count;
537 }
538 
539 static const struct seq_operations sn2_ptc_seq_ops = {
540 	.start = sn2_ptc_seq_start,
541 	.next = sn2_ptc_seq_next,
542 	.stop = sn2_ptc_seq_stop,
543 	.show = sn2_ptc_seq_show
544 };
545 
sn2_ptc_proc_open(struct inode * inode,struct file * file)546 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
547 {
548 	return seq_open(file, &sn2_ptc_seq_ops);
549 }
550 
551 static const struct file_operations proc_sn2_ptc_operations = {
552 	.open = sn2_ptc_proc_open,
553 	.read = seq_read,
554 	.write = sn2_ptc_proc_write,
555 	.llseek = seq_lseek,
556 	.release = seq_release,
557 };
558 
559 static struct proc_dir_entry *proc_sn2_ptc;
560 
sn2_ptc_init(void)561 static int __init sn2_ptc_init(void)
562 {
563 	if (!ia64_platform_is("sn2"))
564 		return 0;
565 
566 	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
567 				   NULL, &proc_sn2_ptc_operations);
568 	if (!proc_sn2_ptc) {
569 		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
570 		return -EINVAL;
571 	}
572 	spin_lock_init(&sn2_global_ptc_lock);
573 	return 0;
574 }
575 
sn2_ptc_exit(void)576 static void __exit sn2_ptc_exit(void)
577 {
578 	remove_proc_entry(PTC_BASENAME, NULL);
579 }
580 
581 module_init(sn2_ptc_init);
582 module_exit(sn2_ptc_exit);
583 #endif /* CONFIG_PROC_FS */
584 
585