1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48
49 static DEFINE_IDR(spi_master_idr);
50
spidev_release(struct device * dev)51 static void spidev_release(struct device *dev)
52 {
53 struct spi_device *spi = to_spi_device(dev);
54
55 /* spi controllers may cleanup for released devices */
56 if (spi->controller->cleanup)
57 spi->controller->cleanup(spi);
58
59 spi_controller_put(spi->controller);
60 kfree(spi);
61 }
62
63 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 const struct spi_device *spi = to_spi_device(dev);
67 int len;
68
69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 if (len != -ENODEV)
71 return len;
72
73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76
77 #define SPI_STATISTICS_ATTRS(field, file) \
78 static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
80 char *buf) \
81 { \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
85 } \
86 static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
89 }; \
90 static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
92 char *buf) \
93 { \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
96 } \
97 static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
100 }
101
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 char *buf) \
105 { \
106 unsigned long flags; \
107 ssize_t len; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
111 return len; \
112 } \
113 SPI_STATISTICS_ATTRS(name, file)
114
115 #define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
118
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155
156 static struct attribute *spi_dev_attrs[] = {
157 &dev_attr_modalias.attr,
158 NULL,
159 };
160
161 static const struct attribute_group spi_dev_group = {
162 .attrs = spi_dev_attrs,
163 };
164
165 static struct attribute *spi_device_statistics_attrs[] = {
166 &dev_attr_spi_device_messages.attr,
167 &dev_attr_spi_device_transfers.attr,
168 &dev_attr_spi_device_errors.attr,
169 &dev_attr_spi_device_timedout.attr,
170 &dev_attr_spi_device_spi_sync.attr,
171 &dev_attr_spi_device_spi_sync_immediate.attr,
172 &dev_attr_spi_device_spi_async.attr,
173 &dev_attr_spi_device_bytes.attr,
174 &dev_attr_spi_device_bytes_rx.attr,
175 &dev_attr_spi_device_bytes_tx.attr,
176 &dev_attr_spi_device_transfer_bytes_histo0.attr,
177 &dev_attr_spi_device_transfer_bytes_histo1.attr,
178 &dev_attr_spi_device_transfer_bytes_histo2.attr,
179 &dev_attr_spi_device_transfer_bytes_histo3.attr,
180 &dev_attr_spi_device_transfer_bytes_histo4.attr,
181 &dev_attr_spi_device_transfer_bytes_histo5.attr,
182 &dev_attr_spi_device_transfer_bytes_histo6.attr,
183 &dev_attr_spi_device_transfer_bytes_histo7.attr,
184 &dev_attr_spi_device_transfer_bytes_histo8.attr,
185 &dev_attr_spi_device_transfer_bytes_histo9.attr,
186 &dev_attr_spi_device_transfer_bytes_histo10.attr,
187 &dev_attr_spi_device_transfer_bytes_histo11.attr,
188 &dev_attr_spi_device_transfer_bytes_histo12.attr,
189 &dev_attr_spi_device_transfer_bytes_histo13.attr,
190 &dev_attr_spi_device_transfer_bytes_histo14.attr,
191 &dev_attr_spi_device_transfer_bytes_histo15.attr,
192 &dev_attr_spi_device_transfer_bytes_histo16.attr,
193 &dev_attr_spi_device_transfers_split_maxsize.attr,
194 NULL,
195 };
196
197 static const struct attribute_group spi_device_statistics_group = {
198 .name = "statistics",
199 .attrs = spi_device_statistics_attrs,
200 };
201
202 static const struct attribute_group *spi_dev_groups[] = {
203 &spi_dev_group,
204 &spi_device_statistics_group,
205 NULL,
206 };
207
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 &dev_attr_spi_controller_messages.attr,
210 &dev_attr_spi_controller_transfers.attr,
211 &dev_attr_spi_controller_errors.attr,
212 &dev_attr_spi_controller_timedout.attr,
213 &dev_attr_spi_controller_spi_sync.attr,
214 &dev_attr_spi_controller_spi_sync_immediate.attr,
215 &dev_attr_spi_controller_spi_async.attr,
216 &dev_attr_spi_controller_bytes.attr,
217 &dev_attr_spi_controller_bytes_rx.attr,
218 &dev_attr_spi_controller_bytes_tx.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 &dev_attr_spi_controller_transfers_split_maxsize.attr,
237 NULL,
238 };
239
240 static const struct attribute_group spi_controller_statistics_group = {
241 .name = "statistics",
242 .attrs = spi_controller_statistics_attrs,
243 };
244
245 static const struct attribute_group *spi_master_groups[] = {
246 &spi_controller_statistics_group,
247 NULL,
248 };
249
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 struct spi_transfer *xfer,
252 struct spi_controller *ctlr)
253 {
254 unsigned long flags;
255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256
257 if (l2len < 0)
258 l2len = 0;
259
260 spin_lock_irqsave(&stats->lock, flags);
261
262 stats->transfers++;
263 stats->transfer_bytes_histo[l2len]++;
264
265 stats->bytes += xfer->len;
266 if ((xfer->tx_buf) &&
267 (xfer->tx_buf != ctlr->dummy_tx))
268 stats->bytes_tx += xfer->len;
269 if ((xfer->rx_buf) &&
270 (xfer->rx_buf != ctlr->dummy_rx))
271 stats->bytes_rx += xfer->len;
272
273 spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
279 */
280
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 const struct spi_device *sdev)
283 {
284 while (id->name[0]) {
285 if (!strcmp(sdev->modalias, id->name))
286 return id;
287 id++;
288 }
289 return NULL;
290 }
291
spi_get_device_id(const struct spi_device * sdev)292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295
296 return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299
spi_match_device(struct device * dev,struct device_driver * drv)300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 const struct spi_device *spi = to_spi_device(dev);
303 const struct spi_driver *sdrv = to_spi_driver(drv);
304
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev, drv))
307 return 1;
308
309 /* Then try ACPI */
310 if (acpi_driver_match_device(dev, drv))
311 return 1;
312
313 if (sdrv->id_table)
314 return !!spi_match_id(sdrv->id_table, spi);
315
316 return strcmp(spi->modalias, drv->name) == 0;
317 }
318
spi_uevent(struct device * dev,struct kobj_uevent_env * env)319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 const struct spi_device *spi = to_spi_device(dev);
322 int rc;
323
324 rc = acpi_device_uevent_modalias(dev, env);
325 if (rc != -ENODEV)
326 return rc;
327
328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330
331 struct bus_type spi_bus_type = {
332 .name = "spi",
333 .dev_groups = spi_dev_groups,
334 .match = spi_match_device,
335 .uevent = spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338
339
spi_drv_probe(struct device * dev)340 static int spi_drv_probe(struct device *dev)
341 {
342 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
343 struct spi_device *spi = to_spi_device(dev);
344 int ret;
345
346 ret = of_clk_set_defaults(dev->of_node, false);
347 if (ret)
348 return ret;
349
350 if (dev->of_node) {
351 spi->irq = of_irq_get(dev->of_node, 0);
352 if (spi->irq == -EPROBE_DEFER)
353 return -EPROBE_DEFER;
354 if (spi->irq < 0)
355 spi->irq = 0;
356 }
357
358 ret = dev_pm_domain_attach(dev, true);
359 if (ret != -EPROBE_DEFER) {
360 ret = sdrv->probe(spi);
361 if (ret)
362 dev_pm_domain_detach(dev, true);
363 }
364
365 return ret;
366 }
367
spi_drv_remove(struct device * dev)368 static int spi_drv_remove(struct device *dev)
369 {
370 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
371 int ret;
372
373 ret = sdrv->remove(to_spi_device(dev));
374 dev_pm_domain_detach(dev, true);
375
376 return ret;
377 }
378
spi_drv_shutdown(struct device * dev)379 static void spi_drv_shutdown(struct device *dev)
380 {
381 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
382
383 sdrv->shutdown(to_spi_device(dev));
384 }
385
386 /**
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
390 * Context: can sleep
391 *
392 * Return: zero on success, else a negative error code.
393 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 sdrv->driver.owner = owner;
397 sdrv->driver.bus = &spi_bus_type;
398 if (sdrv->probe)
399 sdrv->driver.probe = spi_drv_probe;
400 if (sdrv->remove)
401 sdrv->driver.remove = spi_drv_remove;
402 if (sdrv->shutdown)
403 sdrv->driver.shutdown = spi_drv_shutdown;
404 return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407
408 /*-------------------------------------------------------------------------*/
409
410 /* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
414 */
415
416 struct boardinfo {
417 struct list_head list;
418 struct spi_board_info board_info;
419 };
420
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423
424 /*
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
428 */
429 static DEFINE_MUTEX(board_lock);
430
431 /**
432 * spi_alloc_device - Allocate a new SPI device
433 * @ctlr: Controller to which device is connected
434 * Context: can sleep
435 *
436 * Allows a driver to allocate and initialize a spi_device without
437 * registering it immediately. This allows a driver to directly
438 * fill the spi_device with device parameters before calling
439 * spi_add_device() on it.
440 *
441 * Caller is responsible to call spi_add_device() on the returned
442 * spi_device structure to add it to the SPI controller. If the caller
443 * needs to discard the spi_device without adding it, then it should
444 * call spi_dev_put() on it.
445 *
446 * Return: a pointer to the new device, or NULL.
447 */
spi_alloc_device(struct spi_controller * ctlr)448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 struct spi_device *spi;
451
452 if (!spi_controller_get(ctlr))
453 return NULL;
454
455 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 if (!spi) {
457 spi_controller_put(ctlr);
458 return NULL;
459 }
460
461 spi->master = spi->controller = ctlr;
462 spi->dev.parent = &ctlr->dev;
463 spi->dev.bus = &spi_bus_type;
464 spi->dev.release = spidev_release;
465 spi->cs_gpio = -ENOENT;
466
467 spin_lock_init(&spi->statistics.lock);
468
469 device_initialize(&spi->dev);
470 return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473
spi_dev_set_name(struct spi_device * spi)474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477
478 if (adev) {
479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 return;
481 }
482
483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 spi->chip_select);
485 }
486
spi_dev_check(struct device * dev,void * data)487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 struct spi_device *spi = to_spi_device(dev);
490 struct spi_device *new_spi = data;
491
492 if (spi->controller == new_spi->controller &&
493 spi->chip_select == new_spi->chip_select)
494 return -EBUSY;
495 return 0;
496 }
497
498 /**
499 * spi_add_device - Add spi_device allocated with spi_alloc_device
500 * @spi: spi_device to register
501 *
502 * Companion function to spi_alloc_device. Devices allocated with
503 * spi_alloc_device can be added onto the spi bus with this function.
504 *
505 * Return: 0 on success; negative errno on failure
506 */
spi_add_device(struct spi_device * spi)507 int spi_add_device(struct spi_device *spi)
508 {
509 static DEFINE_MUTEX(spi_add_lock);
510 struct spi_controller *ctlr = spi->controller;
511 struct device *dev = ctlr->dev.parent;
512 int status;
513
514 /* Chipselects are numbered 0..max; validate. */
515 if (spi->chip_select >= ctlr->num_chipselect) {
516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 ctlr->num_chipselect);
518 return -EINVAL;
519 }
520
521 /* Set the bus ID string */
522 spi_dev_set_name(spi);
523
524 /* We need to make sure there's no other device with this
525 * chipselect **BEFORE** we call setup(), else we'll trash
526 * its configuration. Lock against concurrent add() calls.
527 */
528 mutex_lock(&spi_add_lock);
529
530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 if (status) {
532 dev_err(dev, "chipselect %d already in use\n",
533 spi->chip_select);
534 goto done;
535 }
536
537 if (ctlr->cs_gpios)
538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539
540 /* Drivers may modify this initial i/o setup, but will
541 * normally rely on the device being setup. Devices
542 * using SPI_CS_HIGH can't coexist well otherwise...
543 */
544 status = spi_setup(spi);
545 if (status < 0) {
546 dev_err(dev, "can't setup %s, status %d\n",
547 dev_name(&spi->dev), status);
548 goto done;
549 }
550
551 /* Device may be bound to an active driver when this returns */
552 status = device_add(&spi->dev);
553 if (status < 0)
554 dev_err(dev, "can't add %s, status %d\n",
555 dev_name(&spi->dev), status);
556 else
557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558
559 done:
560 mutex_unlock(&spi_add_lock);
561 return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564
565 /**
566 * spi_new_device - instantiate one new SPI device
567 * @ctlr: Controller to which device is connected
568 * @chip: Describes the SPI device
569 * Context: can sleep
570 *
571 * On typical mainboards, this is purely internal; and it's not needed
572 * after board init creates the hard-wired devices. Some development
573 * platforms may not be able to use spi_register_board_info though, and
574 * this is exported so that for example a USB or parport based adapter
575 * driver could add devices (which it would learn about out-of-band).
576 *
577 * Return: the new device, or NULL.
578 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 struct spi_board_info *chip)
581 {
582 struct spi_device *proxy;
583 int status;
584
585 /* NOTE: caller did any chip->bus_num checks necessary.
586 *
587 * Also, unless we change the return value convention to use
588 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 * suggests syslogged diagnostics are best here (ugh).
590 */
591
592 proxy = spi_alloc_device(ctlr);
593 if (!proxy)
594 return NULL;
595
596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597
598 proxy->chip_select = chip->chip_select;
599 proxy->max_speed_hz = chip->max_speed_hz;
600 proxy->mode = chip->mode;
601 proxy->irq = chip->irq;
602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 proxy->dev.platform_data = (void *) chip->platform_data;
604 proxy->controller_data = chip->controller_data;
605 proxy->controller_state = NULL;
606
607 if (chip->properties) {
608 status = device_add_properties(&proxy->dev, chip->properties);
609 if (status) {
610 dev_err(&ctlr->dev,
611 "failed to add properties to '%s': %d\n",
612 chip->modalias, status);
613 goto err_dev_put;
614 }
615 }
616
617 status = spi_add_device(proxy);
618 if (status < 0)
619 goto err_remove_props;
620
621 return proxy;
622
623 err_remove_props:
624 if (chip->properties)
625 device_remove_properties(&proxy->dev);
626 err_dev_put:
627 spi_dev_put(proxy);
628 return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631
632 /**
633 * spi_unregister_device - unregister a single SPI device
634 * @spi: spi_device to unregister
635 *
636 * Start making the passed SPI device vanish. Normally this would be handled
637 * by spi_unregister_controller().
638 */
spi_unregister_device(struct spi_device * spi)639 void spi_unregister_device(struct spi_device *spi)
640 {
641 if (!spi)
642 return;
643
644 if (spi->dev.of_node) {
645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 of_node_put(spi->dev.of_node);
647 }
648 if (ACPI_COMPANION(&spi->dev))
649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 struct spi_board_info *bi)
656 {
657 struct spi_device *dev;
658
659 if (ctlr->bus_num != bi->bus_num)
660 return;
661
662 dev = spi_new_device(ctlr, bi);
663 if (!dev)
664 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 bi->modalias);
666 }
667
668 /**
669 * spi_register_board_info - register SPI devices for a given board
670 * @info: array of chip descriptors
671 * @n: how many descriptors are provided
672 * Context: can sleep
673 *
674 * Board-specific early init code calls this (probably during arch_initcall)
675 * with segments of the SPI device table. Any device nodes are created later,
676 * after the relevant parent SPI controller (bus_num) is defined. We keep
677 * this table of devices forever, so that reloading a controller driver will
678 * not make Linux forget about these hard-wired devices.
679 *
680 * Other code can also call this, e.g. a particular add-on board might provide
681 * SPI devices through its expansion connector, so code initializing that board
682 * would naturally declare its SPI devices.
683 *
684 * The board info passed can safely be __initdata ... but be careful of
685 * any embedded pointers (platform_data, etc), they're copied as-is.
686 * Device properties are deep-copied though.
687 *
688 * Return: zero on success, else a negative error code.
689 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 struct boardinfo *bi;
693 int i;
694
695 if (!n)
696 return 0;
697
698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 if (!bi)
700 return -ENOMEM;
701
702 for (i = 0; i < n; i++, bi++, info++) {
703 struct spi_controller *ctlr;
704
705 memcpy(&bi->board_info, info, sizeof(*info));
706 if (info->properties) {
707 bi->board_info.properties =
708 property_entries_dup(info->properties);
709 if (IS_ERR(bi->board_info.properties))
710 return PTR_ERR(bi->board_info.properties);
711 }
712
713 mutex_lock(&board_lock);
714 list_add_tail(&bi->list, &board_list);
715 list_for_each_entry(ctlr, &spi_controller_list, list)
716 spi_match_controller_to_boardinfo(ctlr,
717 &bi->board_info);
718 mutex_unlock(&board_lock);
719 }
720
721 return 0;
722 }
723
724 /*-------------------------------------------------------------------------*/
725
spi_set_cs(struct spi_device * spi,bool enable)726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 if (spi->mode & SPI_CS_HIGH)
729 enable = !enable;
730
731 if (gpio_is_valid(spi->cs_gpio)) {
732 gpio_set_value(spi->cs_gpio, !enable);
733 /* Some SPI masters need both GPIO CS & slave_select */
734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 spi->controller->set_cs)
736 spi->controller->set_cs(spi, !enable);
737 } else if (spi->controller->set_cs) {
738 spi->controller->set_cs(spi, !enable);
739 }
740 }
741
742 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 struct sg_table *sgt, void *buf, size_t len,
745 enum dma_data_direction dir)
746 {
747 const bool vmalloced_buf = is_vmalloc_addr(buf);
748 unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 (unsigned long)buf < (PKMAP_BASE +
752 (LAST_PKMAP * PAGE_SIZE)));
753 #else
754 const bool kmap_buf = false;
755 #endif
756 int desc_len;
757 int sgs;
758 struct page *vm_page;
759 struct scatterlist *sg;
760 void *sg_buf;
761 size_t min;
762 int i, ret;
763
764 if (vmalloced_buf || kmap_buf) {
765 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 } else if (virt_addr_valid(buf)) {
768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 sgs = DIV_ROUND_UP(len, desc_len);
770 } else {
771 return -EINVAL;
772 }
773
774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 if (ret != 0)
776 return ret;
777
778 sg = &sgt->sgl[0];
779 for (i = 0; i < sgs; i++) {
780
781 if (vmalloced_buf || kmap_buf) {
782 /*
783 * Next scatterlist entry size is the minimum between
784 * the desc_len and the remaining buffer length that
785 * fits in a page.
786 */
787 min = min_t(size_t, desc_len,
788 min_t(size_t, len,
789 PAGE_SIZE - offset_in_page(buf)));
790 if (vmalloced_buf)
791 vm_page = vmalloc_to_page(buf);
792 else
793 vm_page = kmap_to_page(buf);
794 if (!vm_page) {
795 sg_free_table(sgt);
796 return -ENOMEM;
797 }
798 sg_set_page(sg, vm_page,
799 min, offset_in_page(buf));
800 } else {
801 min = min_t(size_t, len, desc_len);
802 sg_buf = buf;
803 sg_set_buf(sg, sg_buf, min);
804 }
805
806 buf += min;
807 len -= min;
808 sg = sg_next(sg);
809 }
810
811 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
812 if (!ret)
813 ret = -ENOMEM;
814 if (ret < 0) {
815 sg_free_table(sgt);
816 return ret;
817 }
818
819 sgt->nents = ret;
820
821 return 0;
822 }
823
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)824 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
825 struct sg_table *sgt, enum dma_data_direction dir)
826 {
827 if (sgt->orig_nents) {
828 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829 sg_free_table(sgt);
830 }
831 }
832
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)833 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
834 {
835 struct device *tx_dev, *rx_dev;
836 struct spi_transfer *xfer;
837 int ret;
838
839 if (!ctlr->can_dma)
840 return 0;
841
842 if (ctlr->dma_tx)
843 tx_dev = ctlr->dma_tx->device->dev;
844 else
845 tx_dev = ctlr->dev.parent;
846
847 if (ctlr->dma_rx)
848 rx_dev = ctlr->dma_rx->device->dev;
849 else
850 rx_dev = ctlr->dev.parent;
851
852 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
853 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
854 continue;
855
856 if (xfer->tx_buf != NULL) {
857 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
858 (void *)xfer->tx_buf, xfer->len,
859 DMA_TO_DEVICE);
860 if (ret != 0)
861 return ret;
862 }
863
864 if (xfer->rx_buf != NULL) {
865 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
866 xfer->rx_buf, xfer->len,
867 DMA_FROM_DEVICE);
868 if (ret != 0) {
869 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
870 DMA_TO_DEVICE);
871 return ret;
872 }
873 }
874 }
875
876 ctlr->cur_msg_mapped = true;
877
878 return 0;
879 }
880
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)881 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
882 {
883 struct spi_transfer *xfer;
884 struct device *tx_dev, *rx_dev;
885
886 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
887 return 0;
888
889 if (ctlr->dma_tx)
890 tx_dev = ctlr->dma_tx->device->dev;
891 else
892 tx_dev = ctlr->dev.parent;
893
894 if (ctlr->dma_rx)
895 rx_dev = ctlr->dma_rx->device->dev;
896 else
897 rx_dev = ctlr->dev.parent;
898
899 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
900 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
901 continue;
902
903 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
904 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
905 }
906
907 return 0;
908 }
909 #else /* !CONFIG_HAS_DMA */
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)910 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
911 struct sg_table *sgt, void *buf, size_t len,
912 enum dma_data_direction dir)
913 {
914 return -EINVAL;
915 }
916
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)917 static inline void spi_unmap_buf(struct spi_controller *ctlr,
918 struct device *dev, struct sg_table *sgt,
919 enum dma_data_direction dir)
920 {
921 }
922
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)923 static inline int __spi_map_msg(struct spi_controller *ctlr,
924 struct spi_message *msg)
925 {
926 return 0;
927 }
928
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)929 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
930 struct spi_message *msg)
931 {
932 return 0;
933 }
934 #endif /* !CONFIG_HAS_DMA */
935
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)936 static inline int spi_unmap_msg(struct spi_controller *ctlr,
937 struct spi_message *msg)
938 {
939 struct spi_transfer *xfer;
940
941 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942 /*
943 * Restore the original value of tx_buf or rx_buf if they are
944 * NULL.
945 */
946 if (xfer->tx_buf == ctlr->dummy_tx)
947 xfer->tx_buf = NULL;
948 if (xfer->rx_buf == ctlr->dummy_rx)
949 xfer->rx_buf = NULL;
950 }
951
952 return __spi_unmap_msg(ctlr, msg);
953 }
954
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)955 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
956 {
957 struct spi_transfer *xfer;
958 void *tmp;
959 unsigned int max_tx, max_rx;
960
961 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
962 max_tx = 0;
963 max_rx = 0;
964
965 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
967 !xfer->tx_buf)
968 max_tx = max(xfer->len, max_tx);
969 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
970 !xfer->rx_buf)
971 max_rx = max(xfer->len, max_rx);
972 }
973
974 if (max_tx) {
975 tmp = krealloc(ctlr->dummy_tx, max_tx,
976 GFP_KERNEL | GFP_DMA);
977 if (!tmp)
978 return -ENOMEM;
979 ctlr->dummy_tx = tmp;
980 memset(tmp, 0, max_tx);
981 }
982
983 if (max_rx) {
984 tmp = krealloc(ctlr->dummy_rx, max_rx,
985 GFP_KERNEL | GFP_DMA);
986 if (!tmp)
987 return -ENOMEM;
988 ctlr->dummy_rx = tmp;
989 }
990
991 if (max_tx || max_rx) {
992 list_for_each_entry(xfer, &msg->transfers,
993 transfer_list) {
994 if (!xfer->len)
995 continue;
996 if (!xfer->tx_buf)
997 xfer->tx_buf = ctlr->dummy_tx;
998 if (!xfer->rx_buf)
999 xfer->rx_buf = ctlr->dummy_rx;
1000 }
1001 }
1002 }
1003
1004 return __spi_map_msg(ctlr, msg);
1005 }
1006
1007 /*
1008 * spi_transfer_one_message - Default implementation of transfer_one_message()
1009 *
1010 * This is a standard implementation of transfer_one_message() for
1011 * drivers which implement a transfer_one() operation. It provides
1012 * standard handling of delays and chip select management.
1013 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1014 static int spi_transfer_one_message(struct spi_controller *ctlr,
1015 struct spi_message *msg)
1016 {
1017 struct spi_transfer *xfer;
1018 bool keep_cs = false;
1019 int ret = 0;
1020 unsigned long long ms = 1;
1021 struct spi_statistics *statm = &ctlr->statistics;
1022 struct spi_statistics *stats = &msg->spi->statistics;
1023
1024 spi_set_cs(msg->spi, true);
1025
1026 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1027 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1028
1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 trace_spi_transfer_start(msg, xfer);
1031
1032 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1033 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1034
1035 if (xfer->tx_buf || xfer->rx_buf) {
1036 reinit_completion(&ctlr->xfer_completion);
1037
1038 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1039 if (ret < 0) {
1040 SPI_STATISTICS_INCREMENT_FIELD(statm,
1041 errors);
1042 SPI_STATISTICS_INCREMENT_FIELD(stats,
1043 errors);
1044 dev_err(&msg->spi->dev,
1045 "SPI transfer failed: %d\n", ret);
1046 goto out;
1047 }
1048
1049 if (ret > 0) {
1050 ret = 0;
1051 ms = 8LL * 1000LL * xfer->len;
1052 do_div(ms, xfer->speed_hz);
1053 ms += ms + 200; /* some tolerance */
1054
1055 if (ms > UINT_MAX)
1056 ms = UINT_MAX;
1057
1058 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1059 msecs_to_jiffies(ms));
1060 }
1061
1062 if (ms == 0) {
1063 SPI_STATISTICS_INCREMENT_FIELD(statm,
1064 timedout);
1065 SPI_STATISTICS_INCREMENT_FIELD(stats,
1066 timedout);
1067 dev_err(&msg->spi->dev,
1068 "SPI transfer timed out\n");
1069 msg->status = -ETIMEDOUT;
1070 }
1071 } else {
1072 if (xfer->len)
1073 dev_err(&msg->spi->dev,
1074 "Bufferless transfer has length %u\n",
1075 xfer->len);
1076 }
1077
1078 trace_spi_transfer_stop(msg, xfer);
1079
1080 if (msg->status != -EINPROGRESS)
1081 goto out;
1082
1083 if (xfer->delay_usecs) {
1084 u16 us = xfer->delay_usecs;
1085
1086 if (us <= 10)
1087 udelay(us);
1088 else
1089 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1090 }
1091
1092 if (xfer->cs_change) {
1093 if (list_is_last(&xfer->transfer_list,
1094 &msg->transfers)) {
1095 keep_cs = true;
1096 } else {
1097 spi_set_cs(msg->spi, false);
1098 udelay(10);
1099 spi_set_cs(msg->spi, true);
1100 }
1101 }
1102
1103 msg->actual_length += xfer->len;
1104 }
1105
1106 out:
1107 if (ret != 0 || !keep_cs)
1108 spi_set_cs(msg->spi, false);
1109
1110 if (msg->status == -EINPROGRESS)
1111 msg->status = ret;
1112
1113 if (msg->status && ctlr->handle_err)
1114 ctlr->handle_err(ctlr, msg);
1115
1116 spi_res_release(ctlr, msg);
1117
1118 spi_finalize_current_message(ctlr);
1119
1120 return ret;
1121 }
1122
1123 /**
1124 * spi_finalize_current_transfer - report completion of a transfer
1125 * @ctlr: the controller reporting completion
1126 *
1127 * Called by SPI drivers using the core transfer_one_message()
1128 * implementation to notify it that the current interrupt driven
1129 * transfer has finished and the next one may be scheduled.
1130 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1131 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1132 {
1133 complete(&ctlr->xfer_completion);
1134 }
1135 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1136
1137 /**
1138 * __spi_pump_messages - function which processes spi message queue
1139 * @ctlr: controller to process queue for
1140 * @in_kthread: true if we are in the context of the message pump thread
1141 *
1142 * This function checks if there is any spi message in the queue that
1143 * needs processing and if so call out to the driver to initialize hardware
1144 * and transfer each message.
1145 *
1146 * Note that it is called both from the kthread itself and also from
1147 * inside spi_sync(); the queue extraction handling at the top of the
1148 * function should deal with this safely.
1149 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1150 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1151 {
1152 unsigned long flags;
1153 bool was_busy = false;
1154 int ret;
1155
1156 /* Lock queue */
1157 spin_lock_irqsave(&ctlr->queue_lock, flags);
1158
1159 /* Make sure we are not already running a message */
1160 if (ctlr->cur_msg) {
1161 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1162 return;
1163 }
1164
1165 /* If another context is idling the device then defer */
1166 if (ctlr->idling) {
1167 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1168 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1169 return;
1170 }
1171
1172 /* Check if the queue is idle */
1173 if (list_empty(&ctlr->queue) || !ctlr->running) {
1174 if (!ctlr->busy) {
1175 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176 return;
1177 }
1178
1179 /* Only do teardown in the thread */
1180 if (!in_kthread) {
1181 kthread_queue_work(&ctlr->kworker,
1182 &ctlr->pump_messages);
1183 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1184 return;
1185 }
1186
1187 ctlr->busy = false;
1188 ctlr->idling = true;
1189 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1190
1191 kfree(ctlr->dummy_rx);
1192 ctlr->dummy_rx = NULL;
1193 kfree(ctlr->dummy_tx);
1194 ctlr->dummy_tx = NULL;
1195 if (ctlr->unprepare_transfer_hardware &&
1196 ctlr->unprepare_transfer_hardware(ctlr))
1197 dev_err(&ctlr->dev,
1198 "failed to unprepare transfer hardware\n");
1199 if (ctlr->auto_runtime_pm) {
1200 pm_runtime_mark_last_busy(ctlr->dev.parent);
1201 pm_runtime_put_autosuspend(ctlr->dev.parent);
1202 }
1203 trace_spi_controller_idle(ctlr);
1204
1205 spin_lock_irqsave(&ctlr->queue_lock, flags);
1206 ctlr->idling = false;
1207 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1208 return;
1209 }
1210
1211 /* Extract head of queue */
1212 ctlr->cur_msg =
1213 list_first_entry(&ctlr->queue, struct spi_message, queue);
1214
1215 list_del_init(&ctlr->cur_msg->queue);
1216 if (ctlr->busy)
1217 was_busy = true;
1218 else
1219 ctlr->busy = true;
1220 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1221
1222 mutex_lock(&ctlr->io_mutex);
1223
1224 if (!was_busy && ctlr->auto_runtime_pm) {
1225 ret = pm_runtime_get_sync(ctlr->dev.parent);
1226 if (ret < 0) {
1227 pm_runtime_put_noidle(ctlr->dev.parent);
1228 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1229 ret);
1230 mutex_unlock(&ctlr->io_mutex);
1231 return;
1232 }
1233 }
1234
1235 if (!was_busy)
1236 trace_spi_controller_busy(ctlr);
1237
1238 if (!was_busy && ctlr->prepare_transfer_hardware) {
1239 ret = ctlr->prepare_transfer_hardware(ctlr);
1240 if (ret) {
1241 dev_err(&ctlr->dev,
1242 "failed to prepare transfer hardware\n");
1243
1244 if (ctlr->auto_runtime_pm)
1245 pm_runtime_put(ctlr->dev.parent);
1246 mutex_unlock(&ctlr->io_mutex);
1247 return;
1248 }
1249 }
1250
1251 trace_spi_message_start(ctlr->cur_msg);
1252
1253 if (ctlr->prepare_message) {
1254 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1255 if (ret) {
1256 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1257 ret);
1258 ctlr->cur_msg->status = ret;
1259 spi_finalize_current_message(ctlr);
1260 goto out;
1261 }
1262 ctlr->cur_msg_prepared = true;
1263 }
1264
1265 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1266 if (ret) {
1267 ctlr->cur_msg->status = ret;
1268 spi_finalize_current_message(ctlr);
1269 goto out;
1270 }
1271
1272 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1273 if (ret) {
1274 dev_err(&ctlr->dev,
1275 "failed to transfer one message from queue\n");
1276 goto out;
1277 }
1278
1279 out:
1280 mutex_unlock(&ctlr->io_mutex);
1281
1282 /* Prod the scheduler in case transfer_one() was busy waiting */
1283 if (!ret)
1284 cond_resched();
1285 }
1286
1287 /**
1288 * spi_pump_messages - kthread work function which processes spi message queue
1289 * @work: pointer to kthread work struct contained in the controller struct
1290 */
spi_pump_messages(struct kthread_work * work)1291 static void spi_pump_messages(struct kthread_work *work)
1292 {
1293 struct spi_controller *ctlr =
1294 container_of(work, struct spi_controller, pump_messages);
1295
1296 __spi_pump_messages(ctlr, true);
1297 }
1298
spi_init_queue(struct spi_controller * ctlr)1299 static int spi_init_queue(struct spi_controller *ctlr)
1300 {
1301 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1302
1303 ctlr->running = false;
1304 ctlr->busy = false;
1305
1306 kthread_init_worker(&ctlr->kworker);
1307 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1308 "%s", dev_name(&ctlr->dev));
1309 if (IS_ERR(ctlr->kworker_task)) {
1310 dev_err(&ctlr->dev, "failed to create message pump task\n");
1311 return PTR_ERR(ctlr->kworker_task);
1312 }
1313 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1314
1315 /*
1316 * Controller config will indicate if this controller should run the
1317 * message pump with high (realtime) priority to reduce the transfer
1318 * latency on the bus by minimising the delay between a transfer
1319 * request and the scheduling of the message pump thread. Without this
1320 * setting the message pump thread will remain at default priority.
1321 */
1322 if (ctlr->rt) {
1323 dev_info(&ctlr->dev,
1324 "will run message pump with realtime priority\n");
1325 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1326 }
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * spi_get_next_queued_message() - called by driver to check for queued
1333 * messages
1334 * @ctlr: the controller to check for queued messages
1335 *
1336 * If there are more messages in the queue, the next message is returned from
1337 * this call.
1338 *
1339 * Return: the next message in the queue, else NULL if the queue is empty.
1340 */
spi_get_next_queued_message(struct spi_controller * ctlr)1341 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1342 {
1343 struct spi_message *next;
1344 unsigned long flags;
1345
1346 /* get a pointer to the next message, if any */
1347 spin_lock_irqsave(&ctlr->queue_lock, flags);
1348 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1349 queue);
1350 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1351
1352 return next;
1353 }
1354 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1355
1356 /**
1357 * spi_finalize_current_message() - the current message is complete
1358 * @ctlr: the controller to return the message to
1359 *
1360 * Called by the driver to notify the core that the message in the front of the
1361 * queue is complete and can be removed from the queue.
1362 */
spi_finalize_current_message(struct spi_controller * ctlr)1363 void spi_finalize_current_message(struct spi_controller *ctlr)
1364 {
1365 struct spi_message *mesg;
1366 unsigned long flags;
1367 int ret;
1368
1369 spin_lock_irqsave(&ctlr->queue_lock, flags);
1370 mesg = ctlr->cur_msg;
1371 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1372
1373 spi_unmap_msg(ctlr, mesg);
1374
1375 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1376 ret = ctlr->unprepare_message(ctlr, mesg);
1377 if (ret) {
1378 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1379 ret);
1380 }
1381 }
1382
1383 spin_lock_irqsave(&ctlr->queue_lock, flags);
1384 ctlr->cur_msg = NULL;
1385 ctlr->cur_msg_prepared = false;
1386 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1387 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1388
1389 trace_spi_message_done(mesg);
1390
1391 mesg->state = NULL;
1392 if (mesg->complete)
1393 mesg->complete(mesg->context);
1394 }
1395 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1396
spi_start_queue(struct spi_controller * ctlr)1397 static int spi_start_queue(struct spi_controller *ctlr)
1398 {
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&ctlr->queue_lock, flags);
1402
1403 if (ctlr->running || ctlr->busy) {
1404 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1405 return -EBUSY;
1406 }
1407
1408 ctlr->running = true;
1409 ctlr->cur_msg = NULL;
1410 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1411
1412 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1413
1414 return 0;
1415 }
1416
spi_stop_queue(struct spi_controller * ctlr)1417 static int spi_stop_queue(struct spi_controller *ctlr)
1418 {
1419 unsigned long flags;
1420 unsigned limit = 500;
1421 int ret = 0;
1422
1423 spin_lock_irqsave(&ctlr->queue_lock, flags);
1424
1425 /*
1426 * This is a bit lame, but is optimized for the common execution path.
1427 * A wait_queue on the ctlr->busy could be used, but then the common
1428 * execution path (pump_messages) would be required to call wake_up or
1429 * friends on every SPI message. Do this instead.
1430 */
1431 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1432 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1433 usleep_range(10000, 11000);
1434 spin_lock_irqsave(&ctlr->queue_lock, flags);
1435 }
1436
1437 if (!list_empty(&ctlr->queue) || ctlr->busy)
1438 ret = -EBUSY;
1439 else
1440 ctlr->running = false;
1441
1442 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1443
1444 if (ret) {
1445 dev_warn(&ctlr->dev, "could not stop message queue\n");
1446 return ret;
1447 }
1448 return ret;
1449 }
1450
spi_destroy_queue(struct spi_controller * ctlr)1451 static int spi_destroy_queue(struct spi_controller *ctlr)
1452 {
1453 int ret;
1454
1455 ret = spi_stop_queue(ctlr);
1456
1457 /*
1458 * kthread_flush_worker will block until all work is done.
1459 * If the reason that stop_queue timed out is that the work will never
1460 * finish, then it does no good to call flush/stop thread, so
1461 * return anyway.
1462 */
1463 if (ret) {
1464 dev_err(&ctlr->dev, "problem destroying queue\n");
1465 return ret;
1466 }
1467
1468 kthread_flush_worker(&ctlr->kworker);
1469 kthread_stop(ctlr->kworker_task);
1470
1471 return 0;
1472 }
1473
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1474 static int __spi_queued_transfer(struct spi_device *spi,
1475 struct spi_message *msg,
1476 bool need_pump)
1477 {
1478 struct spi_controller *ctlr = spi->controller;
1479 unsigned long flags;
1480
1481 spin_lock_irqsave(&ctlr->queue_lock, flags);
1482
1483 if (!ctlr->running) {
1484 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1485 return -ESHUTDOWN;
1486 }
1487 msg->actual_length = 0;
1488 msg->status = -EINPROGRESS;
1489
1490 list_add_tail(&msg->queue, &ctlr->queue);
1491 if (!ctlr->busy && need_pump)
1492 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1493
1494 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1495 return 0;
1496 }
1497
1498 /**
1499 * spi_queued_transfer - transfer function for queued transfers
1500 * @spi: spi device which is requesting transfer
1501 * @msg: spi message which is to handled is queued to driver queue
1502 *
1503 * Return: zero on success, else a negative error code.
1504 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1505 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1506 {
1507 return __spi_queued_transfer(spi, msg, true);
1508 }
1509
spi_controller_initialize_queue(struct spi_controller * ctlr)1510 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1511 {
1512 int ret;
1513
1514 ctlr->transfer = spi_queued_transfer;
1515 if (!ctlr->transfer_one_message)
1516 ctlr->transfer_one_message = spi_transfer_one_message;
1517
1518 /* Initialize and start queue */
1519 ret = spi_init_queue(ctlr);
1520 if (ret) {
1521 dev_err(&ctlr->dev, "problem initializing queue\n");
1522 goto err_init_queue;
1523 }
1524 ctlr->queued = true;
1525 ret = spi_start_queue(ctlr);
1526 if (ret) {
1527 dev_err(&ctlr->dev, "problem starting queue\n");
1528 goto err_start_queue;
1529 }
1530
1531 return 0;
1532
1533 err_start_queue:
1534 spi_destroy_queue(ctlr);
1535 err_init_queue:
1536 return ret;
1537 }
1538
1539 /*-------------------------------------------------------------------------*/
1540
1541 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1542 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1543 struct device_node *nc)
1544 {
1545 u32 value;
1546 int rc;
1547
1548 /* Mode (clock phase/polarity/etc.) */
1549 if (of_property_read_bool(nc, "spi-cpha"))
1550 spi->mode |= SPI_CPHA;
1551 if (of_property_read_bool(nc, "spi-cpol"))
1552 spi->mode |= SPI_CPOL;
1553 if (of_property_read_bool(nc, "spi-cs-high"))
1554 spi->mode |= SPI_CS_HIGH;
1555 if (of_property_read_bool(nc, "spi-3wire"))
1556 spi->mode |= SPI_3WIRE;
1557 if (of_property_read_bool(nc, "spi-lsb-first"))
1558 spi->mode |= SPI_LSB_FIRST;
1559
1560 /* Device DUAL/QUAD mode */
1561 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1562 switch (value) {
1563 case 1:
1564 break;
1565 case 2:
1566 spi->mode |= SPI_TX_DUAL;
1567 break;
1568 case 4:
1569 spi->mode |= SPI_TX_QUAD;
1570 break;
1571 default:
1572 dev_warn(&ctlr->dev,
1573 "spi-tx-bus-width %d not supported\n",
1574 value);
1575 break;
1576 }
1577 }
1578
1579 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1580 switch (value) {
1581 case 1:
1582 break;
1583 case 2:
1584 spi->mode |= SPI_RX_DUAL;
1585 break;
1586 case 4:
1587 spi->mode |= SPI_RX_QUAD;
1588 break;
1589 default:
1590 dev_warn(&ctlr->dev,
1591 "spi-rx-bus-width %d not supported\n",
1592 value);
1593 break;
1594 }
1595 }
1596
1597 if (spi_controller_is_slave(ctlr)) {
1598 if (strcmp(nc->name, "slave")) {
1599 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1600 nc);
1601 return -EINVAL;
1602 }
1603 return 0;
1604 }
1605
1606 /* Device address */
1607 rc = of_property_read_u32(nc, "reg", &value);
1608 if (rc) {
1609 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1610 nc, rc);
1611 return rc;
1612 }
1613 spi->chip_select = value;
1614
1615 /* Device speed */
1616 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1617 if (rc) {
1618 dev_err(&ctlr->dev,
1619 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1620 return rc;
1621 }
1622 spi->max_speed_hz = value;
1623
1624 return 0;
1625 }
1626
1627 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)1628 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1629 {
1630 struct spi_device *spi;
1631 int rc;
1632
1633 /* Alloc an spi_device */
1634 spi = spi_alloc_device(ctlr);
1635 if (!spi) {
1636 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1637 rc = -ENOMEM;
1638 goto err_out;
1639 }
1640
1641 /* Select device driver */
1642 rc = of_modalias_node(nc, spi->modalias,
1643 sizeof(spi->modalias));
1644 if (rc < 0) {
1645 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1646 goto err_out;
1647 }
1648
1649 rc = of_spi_parse_dt(ctlr, spi, nc);
1650 if (rc)
1651 goto err_out;
1652
1653 /* Store a pointer to the node in the device structure */
1654 of_node_get(nc);
1655 spi->dev.of_node = nc;
1656
1657 /* Register the new device */
1658 rc = spi_add_device(spi);
1659 if (rc) {
1660 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1661 goto err_of_node_put;
1662 }
1663
1664 return spi;
1665
1666 err_of_node_put:
1667 of_node_put(nc);
1668 err_out:
1669 spi_dev_put(spi);
1670 return ERR_PTR(rc);
1671 }
1672
1673 /**
1674 * of_register_spi_devices() - Register child devices onto the SPI bus
1675 * @ctlr: Pointer to spi_controller device
1676 *
1677 * Registers an spi_device for each child node of controller node which
1678 * represents a valid SPI slave.
1679 */
of_register_spi_devices(struct spi_controller * ctlr)1680 static void of_register_spi_devices(struct spi_controller *ctlr)
1681 {
1682 struct spi_device *spi;
1683 struct device_node *nc;
1684
1685 if (!ctlr->dev.of_node)
1686 return;
1687
1688 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1689 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1690 continue;
1691 spi = of_register_spi_device(ctlr, nc);
1692 if (IS_ERR(spi)) {
1693 dev_warn(&ctlr->dev,
1694 "Failed to create SPI device for %pOF\n", nc);
1695 of_node_clear_flag(nc, OF_POPULATED);
1696 }
1697 }
1698 }
1699 #else
of_register_spi_devices(struct spi_controller * ctlr)1700 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1701 #endif
1702
1703 #ifdef CONFIG_ACPI
acpi_spi_parse_apple_properties(struct spi_device * spi)1704 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1705 {
1706 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1707 const union acpi_object *obj;
1708
1709 if (!x86_apple_machine)
1710 return;
1711
1712 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1713 && obj->buffer.length >= 4)
1714 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1715
1716 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1717 && obj->buffer.length == 8)
1718 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1719
1720 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1721 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1722 spi->mode |= SPI_LSB_FIRST;
1723
1724 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1725 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1726 spi->mode |= SPI_CPOL;
1727
1728 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1729 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1730 spi->mode |= SPI_CPHA;
1731 }
1732
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1733 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1734 {
1735 struct spi_device *spi = data;
1736 struct spi_controller *ctlr = spi->controller;
1737
1738 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1739 struct acpi_resource_spi_serialbus *sb;
1740
1741 sb = &ares->data.spi_serial_bus;
1742 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1743 /*
1744 * ACPI DeviceSelection numbering is handled by the
1745 * host controller driver in Windows and can vary
1746 * from driver to driver. In Linux we always expect
1747 * 0 .. max - 1 so we need to ask the driver to
1748 * translate between the two schemes.
1749 */
1750 if (ctlr->fw_translate_cs) {
1751 int cs = ctlr->fw_translate_cs(ctlr,
1752 sb->device_selection);
1753 if (cs < 0)
1754 return cs;
1755 spi->chip_select = cs;
1756 } else {
1757 spi->chip_select = sb->device_selection;
1758 }
1759
1760 spi->max_speed_hz = sb->connection_speed;
1761
1762 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1763 spi->mode |= SPI_CPHA;
1764 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1765 spi->mode |= SPI_CPOL;
1766 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1767 spi->mode |= SPI_CS_HIGH;
1768 }
1769 } else if (spi->irq < 0) {
1770 struct resource r;
1771
1772 if (acpi_dev_resource_interrupt(ares, 0, &r))
1773 spi->irq = r.start;
1774 }
1775
1776 /* Always tell the ACPI core to skip this resource */
1777 return 1;
1778 }
1779
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)1780 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1781 struct acpi_device *adev)
1782 {
1783 struct list_head resource_list;
1784 struct spi_device *spi;
1785 int ret;
1786
1787 if (acpi_bus_get_status(adev) || !adev->status.present ||
1788 acpi_device_enumerated(adev))
1789 return AE_OK;
1790
1791 spi = spi_alloc_device(ctlr);
1792 if (!spi) {
1793 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1794 dev_name(&adev->dev));
1795 return AE_NO_MEMORY;
1796 }
1797
1798 ACPI_COMPANION_SET(&spi->dev, adev);
1799 spi->irq = -1;
1800
1801 INIT_LIST_HEAD(&resource_list);
1802 ret = acpi_dev_get_resources(adev, &resource_list,
1803 acpi_spi_add_resource, spi);
1804 acpi_dev_free_resource_list(&resource_list);
1805
1806 acpi_spi_parse_apple_properties(spi);
1807
1808 if (ret < 0 || !spi->max_speed_hz) {
1809 spi_dev_put(spi);
1810 return AE_OK;
1811 }
1812
1813 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1814 sizeof(spi->modalias));
1815
1816 if (spi->irq < 0)
1817 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1818
1819 acpi_device_set_enumerated(adev);
1820
1821 adev->power.flags.ignore_parent = true;
1822 if (spi_add_device(spi)) {
1823 adev->power.flags.ignore_parent = false;
1824 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1825 dev_name(&adev->dev));
1826 spi_dev_put(spi);
1827 }
1828
1829 return AE_OK;
1830 }
1831
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1832 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1833 void *data, void **return_value)
1834 {
1835 struct spi_controller *ctlr = data;
1836 struct acpi_device *adev;
1837
1838 if (acpi_bus_get_device(handle, &adev))
1839 return AE_OK;
1840
1841 return acpi_register_spi_device(ctlr, adev);
1842 }
1843
acpi_register_spi_devices(struct spi_controller * ctlr)1844 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1845 {
1846 acpi_status status;
1847 acpi_handle handle;
1848
1849 handle = ACPI_HANDLE(ctlr->dev.parent);
1850 if (!handle)
1851 return;
1852
1853 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1854 acpi_spi_add_device, NULL, ctlr, NULL);
1855 if (ACPI_FAILURE(status))
1856 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1857 }
1858 #else
acpi_register_spi_devices(struct spi_controller * ctlr)1859 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1860 #endif /* CONFIG_ACPI */
1861
spi_controller_release(struct device * dev)1862 static void spi_controller_release(struct device *dev)
1863 {
1864 struct spi_controller *ctlr;
1865
1866 ctlr = container_of(dev, struct spi_controller, dev);
1867 kfree(ctlr);
1868 }
1869
1870 static struct class spi_master_class = {
1871 .name = "spi_master",
1872 .owner = THIS_MODULE,
1873 .dev_release = spi_controller_release,
1874 .dev_groups = spi_master_groups,
1875 };
1876
1877 #ifdef CONFIG_SPI_SLAVE
1878 /**
1879 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1880 * controller
1881 * @spi: device used for the current transfer
1882 */
spi_slave_abort(struct spi_device * spi)1883 int spi_slave_abort(struct spi_device *spi)
1884 {
1885 struct spi_controller *ctlr = spi->controller;
1886
1887 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1888 return ctlr->slave_abort(ctlr);
1889
1890 return -ENOTSUPP;
1891 }
1892 EXPORT_SYMBOL_GPL(spi_slave_abort);
1893
match_true(struct device * dev,void * data)1894 static int match_true(struct device *dev, void *data)
1895 {
1896 return 1;
1897 }
1898
spi_slave_show(struct device * dev,struct device_attribute * attr,char * buf)1899 static ssize_t spi_slave_show(struct device *dev,
1900 struct device_attribute *attr, char *buf)
1901 {
1902 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1903 dev);
1904 struct device *child;
1905
1906 child = device_find_child(&ctlr->dev, NULL, match_true);
1907 return sprintf(buf, "%s\n",
1908 child ? to_spi_device(child)->modalias : NULL);
1909 }
1910
spi_slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1911 static ssize_t spi_slave_store(struct device *dev,
1912 struct device_attribute *attr, const char *buf,
1913 size_t count)
1914 {
1915 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1916 dev);
1917 struct spi_device *spi;
1918 struct device *child;
1919 char name[32];
1920 int rc;
1921
1922 rc = sscanf(buf, "%31s", name);
1923 if (rc != 1 || !name[0])
1924 return -EINVAL;
1925
1926 child = device_find_child(&ctlr->dev, NULL, match_true);
1927 if (child) {
1928 /* Remove registered slave */
1929 device_unregister(child);
1930 put_device(child);
1931 }
1932
1933 if (strcmp(name, "(null)")) {
1934 /* Register new slave */
1935 spi = spi_alloc_device(ctlr);
1936 if (!spi)
1937 return -ENOMEM;
1938
1939 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1940
1941 rc = spi_add_device(spi);
1942 if (rc) {
1943 spi_dev_put(spi);
1944 return rc;
1945 }
1946 }
1947
1948 return count;
1949 }
1950
1951 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1952
1953 static struct attribute *spi_slave_attrs[] = {
1954 &dev_attr_slave.attr,
1955 NULL,
1956 };
1957
1958 static const struct attribute_group spi_slave_group = {
1959 .attrs = spi_slave_attrs,
1960 };
1961
1962 static const struct attribute_group *spi_slave_groups[] = {
1963 &spi_controller_statistics_group,
1964 &spi_slave_group,
1965 NULL,
1966 };
1967
1968 static struct class spi_slave_class = {
1969 .name = "spi_slave",
1970 .owner = THIS_MODULE,
1971 .dev_release = spi_controller_release,
1972 .dev_groups = spi_slave_groups,
1973 };
1974 #else
1975 extern struct class spi_slave_class; /* dummy */
1976 #endif
1977
1978 /**
1979 * __spi_alloc_controller - allocate an SPI master or slave controller
1980 * @dev: the controller, possibly using the platform_bus
1981 * @size: how much zeroed driver-private data to allocate; the pointer to this
1982 * memory is in the driver_data field of the returned device,
1983 * accessible with spi_controller_get_devdata().
1984 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1985 * slave (true) controller
1986 * Context: can sleep
1987 *
1988 * This call is used only by SPI controller drivers, which are the
1989 * only ones directly touching chip registers. It's how they allocate
1990 * an spi_controller structure, prior to calling spi_register_controller().
1991 *
1992 * This must be called from context that can sleep.
1993 *
1994 * The caller is responsible for assigning the bus number and initializing the
1995 * controller's methods before calling spi_register_controller(); and (after
1996 * errors adding the device) calling spi_controller_put() to prevent a memory
1997 * leak.
1998 *
1999 * Return: the SPI controller structure on success, else NULL.
2000 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2001 struct spi_controller *__spi_alloc_controller(struct device *dev,
2002 unsigned int size, bool slave)
2003 {
2004 struct spi_controller *ctlr;
2005
2006 if (!dev)
2007 return NULL;
2008
2009 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2010 if (!ctlr)
2011 return NULL;
2012
2013 device_initialize(&ctlr->dev);
2014 ctlr->bus_num = -1;
2015 ctlr->num_chipselect = 1;
2016 ctlr->slave = slave;
2017 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2018 ctlr->dev.class = &spi_slave_class;
2019 else
2020 ctlr->dev.class = &spi_master_class;
2021 ctlr->dev.parent = dev;
2022 pm_suspend_ignore_children(&ctlr->dev, true);
2023 spi_controller_set_devdata(ctlr, &ctlr[1]);
2024
2025 return ctlr;
2026 }
2027 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2028
2029 #ifdef CONFIG_OF
of_spi_register_master(struct spi_controller * ctlr)2030 static int of_spi_register_master(struct spi_controller *ctlr)
2031 {
2032 int nb, i, *cs;
2033 struct device_node *np = ctlr->dev.of_node;
2034
2035 if (!np)
2036 return 0;
2037
2038 nb = of_gpio_named_count(np, "cs-gpios");
2039 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2040
2041 /* Return error only for an incorrectly formed cs-gpios property */
2042 if (nb == 0 || nb == -ENOENT)
2043 return 0;
2044 else if (nb < 0)
2045 return nb;
2046
2047 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2048 GFP_KERNEL);
2049 ctlr->cs_gpios = cs;
2050
2051 if (!ctlr->cs_gpios)
2052 return -ENOMEM;
2053
2054 for (i = 0; i < ctlr->num_chipselect; i++)
2055 cs[i] = -ENOENT;
2056
2057 for (i = 0; i < nb; i++)
2058 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2059
2060 return 0;
2061 }
2062 #else
of_spi_register_master(struct spi_controller * ctlr)2063 static int of_spi_register_master(struct spi_controller *ctlr)
2064 {
2065 return 0;
2066 }
2067 #endif
2068
2069 /**
2070 * spi_register_controller - register SPI master or slave controller
2071 * @ctlr: initialized master, originally from spi_alloc_master() or
2072 * spi_alloc_slave()
2073 * Context: can sleep
2074 *
2075 * SPI controllers connect to their drivers using some non-SPI bus,
2076 * such as the platform bus. The final stage of probe() in that code
2077 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2078 *
2079 * SPI controllers use board specific (often SOC specific) bus numbers,
2080 * and board-specific addressing for SPI devices combines those numbers
2081 * with chip select numbers. Since SPI does not directly support dynamic
2082 * device identification, boards need configuration tables telling which
2083 * chip is at which address.
2084 *
2085 * This must be called from context that can sleep. It returns zero on
2086 * success, else a negative error code (dropping the controller's refcount).
2087 * After a successful return, the caller is responsible for calling
2088 * spi_unregister_controller().
2089 *
2090 * Return: zero on success, else a negative error code.
2091 */
spi_register_controller(struct spi_controller * ctlr)2092 int spi_register_controller(struct spi_controller *ctlr)
2093 {
2094 struct device *dev = ctlr->dev.parent;
2095 struct boardinfo *bi;
2096 int status = -ENODEV;
2097 int id, first_dynamic;
2098
2099 if (!dev)
2100 return -ENODEV;
2101
2102 if (!spi_controller_is_slave(ctlr)) {
2103 status = of_spi_register_master(ctlr);
2104 if (status)
2105 return status;
2106 }
2107
2108 /* even if it's just one always-selected device, there must
2109 * be at least one chipselect
2110 */
2111 if (ctlr->num_chipselect == 0)
2112 return -EINVAL;
2113 if (ctlr->bus_num >= 0) {
2114 /* devices with a fixed bus num must check-in with the num */
2115 mutex_lock(&board_lock);
2116 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117 ctlr->bus_num + 1, GFP_KERNEL);
2118 mutex_unlock(&board_lock);
2119 if (WARN(id < 0, "couldn't get idr"))
2120 return id == -ENOSPC ? -EBUSY : id;
2121 ctlr->bus_num = id;
2122 } else if (ctlr->dev.of_node) {
2123 /* allocate dynamic bus number using Linux idr */
2124 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2125 if (id >= 0) {
2126 ctlr->bus_num = id;
2127 mutex_lock(&board_lock);
2128 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2129 ctlr->bus_num + 1, GFP_KERNEL);
2130 mutex_unlock(&board_lock);
2131 if (WARN(id < 0, "couldn't get idr"))
2132 return id == -ENOSPC ? -EBUSY : id;
2133 }
2134 }
2135 if (ctlr->bus_num < 0) {
2136 first_dynamic = of_alias_get_highest_id("spi");
2137 if (first_dynamic < 0)
2138 first_dynamic = 0;
2139 else
2140 first_dynamic++;
2141
2142 mutex_lock(&board_lock);
2143 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2144 0, GFP_KERNEL);
2145 mutex_unlock(&board_lock);
2146 if (WARN(id < 0, "couldn't get idr"))
2147 return id;
2148 ctlr->bus_num = id;
2149 }
2150 INIT_LIST_HEAD(&ctlr->queue);
2151 spin_lock_init(&ctlr->queue_lock);
2152 spin_lock_init(&ctlr->bus_lock_spinlock);
2153 mutex_init(&ctlr->bus_lock_mutex);
2154 mutex_init(&ctlr->io_mutex);
2155 ctlr->bus_lock_flag = 0;
2156 init_completion(&ctlr->xfer_completion);
2157 if (!ctlr->max_dma_len)
2158 ctlr->max_dma_len = INT_MAX;
2159
2160 /* register the device, then userspace will see it.
2161 * registration fails if the bus ID is in use.
2162 */
2163 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2164 status = device_add(&ctlr->dev);
2165 if (status < 0) {
2166 /* free bus id */
2167 mutex_lock(&board_lock);
2168 idr_remove(&spi_master_idr, ctlr->bus_num);
2169 mutex_unlock(&board_lock);
2170 goto done;
2171 }
2172 dev_dbg(dev, "registered %s %s\n",
2173 spi_controller_is_slave(ctlr) ? "slave" : "master",
2174 dev_name(&ctlr->dev));
2175
2176 /* If we're using a queued driver, start the queue */
2177 if (ctlr->transfer)
2178 dev_info(dev, "controller is unqueued, this is deprecated\n");
2179 else {
2180 status = spi_controller_initialize_queue(ctlr);
2181 if (status) {
2182 device_del(&ctlr->dev);
2183 /* free bus id */
2184 mutex_lock(&board_lock);
2185 idr_remove(&spi_master_idr, ctlr->bus_num);
2186 mutex_unlock(&board_lock);
2187 goto done;
2188 }
2189 }
2190 /* add statistics */
2191 spin_lock_init(&ctlr->statistics.lock);
2192
2193 mutex_lock(&board_lock);
2194 list_add_tail(&ctlr->list, &spi_controller_list);
2195 list_for_each_entry(bi, &board_list, list)
2196 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2197 mutex_unlock(&board_lock);
2198
2199 /* Register devices from the device tree and ACPI */
2200 of_register_spi_devices(ctlr);
2201 acpi_register_spi_devices(ctlr);
2202 done:
2203 return status;
2204 }
2205 EXPORT_SYMBOL_GPL(spi_register_controller);
2206
devm_spi_unregister(struct device * dev,void * res)2207 static void devm_spi_unregister(struct device *dev, void *res)
2208 {
2209 spi_unregister_controller(*(struct spi_controller **)res);
2210 }
2211
2212 /**
2213 * devm_spi_register_controller - register managed SPI master or slave
2214 * controller
2215 * @dev: device managing SPI controller
2216 * @ctlr: initialized controller, originally from spi_alloc_master() or
2217 * spi_alloc_slave()
2218 * Context: can sleep
2219 *
2220 * Register a SPI device as with spi_register_controller() which will
2221 * automatically be unregister
2222 *
2223 * Return: zero on success, else a negative error code.
2224 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2225 int devm_spi_register_controller(struct device *dev,
2226 struct spi_controller *ctlr)
2227 {
2228 struct spi_controller **ptr;
2229 int ret;
2230
2231 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2232 if (!ptr)
2233 return -ENOMEM;
2234
2235 ret = spi_register_controller(ctlr);
2236 if (!ret) {
2237 *ptr = ctlr;
2238 devres_add(dev, ptr);
2239 } else {
2240 devres_free(ptr);
2241 }
2242
2243 return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2246
__unregister(struct device * dev,void * null)2247 static int __unregister(struct device *dev, void *null)
2248 {
2249 spi_unregister_device(to_spi_device(dev));
2250 return 0;
2251 }
2252
2253 /**
2254 * spi_unregister_controller - unregister SPI master or slave controller
2255 * @ctlr: the controller being unregistered
2256 * Context: can sleep
2257 *
2258 * This call is used only by SPI controller drivers, which are the
2259 * only ones directly touching chip registers.
2260 *
2261 * This must be called from context that can sleep.
2262 */
spi_unregister_controller(struct spi_controller * ctlr)2263 void spi_unregister_controller(struct spi_controller *ctlr)
2264 {
2265 struct spi_controller *found;
2266 int id = ctlr->bus_num;
2267 int dummy;
2268
2269 /* First make sure that this controller was ever added */
2270 mutex_lock(&board_lock);
2271 found = idr_find(&spi_master_idr, id);
2272 mutex_unlock(&board_lock);
2273 if (ctlr->queued) {
2274 if (spi_destroy_queue(ctlr))
2275 dev_err(&ctlr->dev, "queue remove failed\n");
2276 }
2277 mutex_lock(&board_lock);
2278 list_del(&ctlr->list);
2279 mutex_unlock(&board_lock);
2280
2281 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2282 device_unregister(&ctlr->dev);
2283 /* free bus id */
2284 mutex_lock(&board_lock);
2285 if (found == ctlr)
2286 idr_remove(&spi_master_idr, id);
2287 mutex_unlock(&board_lock);
2288 }
2289 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2290
spi_controller_suspend(struct spi_controller * ctlr)2291 int spi_controller_suspend(struct spi_controller *ctlr)
2292 {
2293 int ret;
2294
2295 /* Basically no-ops for non-queued controllers */
2296 if (!ctlr->queued)
2297 return 0;
2298
2299 ret = spi_stop_queue(ctlr);
2300 if (ret)
2301 dev_err(&ctlr->dev, "queue stop failed\n");
2302
2303 return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2306
spi_controller_resume(struct spi_controller * ctlr)2307 int spi_controller_resume(struct spi_controller *ctlr)
2308 {
2309 int ret;
2310
2311 if (!ctlr->queued)
2312 return 0;
2313
2314 ret = spi_start_queue(ctlr);
2315 if (ret)
2316 dev_err(&ctlr->dev, "queue restart failed\n");
2317
2318 return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(spi_controller_resume);
2321
__spi_controller_match(struct device * dev,const void * data)2322 static int __spi_controller_match(struct device *dev, const void *data)
2323 {
2324 struct spi_controller *ctlr;
2325 const u16 *bus_num = data;
2326
2327 ctlr = container_of(dev, struct spi_controller, dev);
2328 return ctlr->bus_num == *bus_num;
2329 }
2330
2331 /**
2332 * spi_busnum_to_master - look up master associated with bus_num
2333 * @bus_num: the master's bus number
2334 * Context: can sleep
2335 *
2336 * This call may be used with devices that are registered after
2337 * arch init time. It returns a refcounted pointer to the relevant
2338 * spi_controller (which the caller must release), or NULL if there is
2339 * no such master registered.
2340 *
2341 * Return: the SPI master structure on success, else NULL.
2342 */
spi_busnum_to_master(u16 bus_num)2343 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2344 {
2345 struct device *dev;
2346 struct spi_controller *ctlr = NULL;
2347
2348 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2349 __spi_controller_match);
2350 if (dev)
2351 ctlr = container_of(dev, struct spi_controller, dev);
2352 /* reference got in class_find_device */
2353 return ctlr;
2354 }
2355 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2356
2357 /*-------------------------------------------------------------------------*/
2358
2359 /* Core methods for SPI resource management */
2360
2361 /**
2362 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2363 * during the processing of a spi_message while using
2364 * spi_transfer_one
2365 * @spi: the spi device for which we allocate memory
2366 * @release: the release code to execute for this resource
2367 * @size: size to alloc and return
2368 * @gfp: GFP allocation flags
2369 *
2370 * Return: the pointer to the allocated data
2371 *
2372 * This may get enhanced in the future to allocate from a memory pool
2373 * of the @spi_device or @spi_controller to avoid repeated allocations.
2374 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2375 void *spi_res_alloc(struct spi_device *spi,
2376 spi_res_release_t release,
2377 size_t size, gfp_t gfp)
2378 {
2379 struct spi_res *sres;
2380
2381 sres = kzalloc(sizeof(*sres) + size, gfp);
2382 if (!sres)
2383 return NULL;
2384
2385 INIT_LIST_HEAD(&sres->entry);
2386 sres->release = release;
2387
2388 return sres->data;
2389 }
2390 EXPORT_SYMBOL_GPL(spi_res_alloc);
2391
2392 /**
2393 * spi_res_free - free an spi resource
2394 * @res: pointer to the custom data of a resource
2395 *
2396 */
spi_res_free(void * res)2397 void spi_res_free(void *res)
2398 {
2399 struct spi_res *sres = container_of(res, struct spi_res, data);
2400
2401 if (!res)
2402 return;
2403
2404 WARN_ON(!list_empty(&sres->entry));
2405 kfree(sres);
2406 }
2407 EXPORT_SYMBOL_GPL(spi_res_free);
2408
2409 /**
2410 * spi_res_add - add a spi_res to the spi_message
2411 * @message: the spi message
2412 * @res: the spi_resource
2413 */
spi_res_add(struct spi_message * message,void * res)2414 void spi_res_add(struct spi_message *message, void *res)
2415 {
2416 struct spi_res *sres = container_of(res, struct spi_res, data);
2417
2418 WARN_ON(!list_empty(&sres->entry));
2419 list_add_tail(&sres->entry, &message->resources);
2420 }
2421 EXPORT_SYMBOL_GPL(spi_res_add);
2422
2423 /**
2424 * spi_res_release - release all spi resources for this message
2425 * @ctlr: the @spi_controller
2426 * @message: the @spi_message
2427 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)2428 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2429 {
2430 struct spi_res *res;
2431
2432 while (!list_empty(&message->resources)) {
2433 res = list_last_entry(&message->resources,
2434 struct spi_res, entry);
2435
2436 if (res->release)
2437 res->release(ctlr, message, res->data);
2438
2439 list_del(&res->entry);
2440
2441 kfree(res);
2442 }
2443 }
2444 EXPORT_SYMBOL_GPL(spi_res_release);
2445
2446 /*-------------------------------------------------------------------------*/
2447
2448 /* Core methods for spi_message alterations */
2449
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)2450 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2451 struct spi_message *msg,
2452 void *res)
2453 {
2454 struct spi_replaced_transfers *rxfer = res;
2455 size_t i;
2456
2457 /* call extra callback if requested */
2458 if (rxfer->release)
2459 rxfer->release(ctlr, msg, res);
2460
2461 /* insert replaced transfers back into the message */
2462 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2463
2464 /* remove the formerly inserted entries */
2465 for (i = 0; i < rxfer->inserted; i++)
2466 list_del(&rxfer->inserted_transfers[i].transfer_list);
2467 }
2468
2469 /**
2470 * spi_replace_transfers - replace transfers with several transfers
2471 * and register change with spi_message.resources
2472 * @msg: the spi_message we work upon
2473 * @xfer_first: the first spi_transfer we want to replace
2474 * @remove: number of transfers to remove
2475 * @insert: the number of transfers we want to insert instead
2476 * @release: extra release code necessary in some circumstances
2477 * @extradatasize: extra data to allocate (with alignment guarantees
2478 * of struct @spi_transfer)
2479 * @gfp: gfp flags
2480 *
2481 * Returns: pointer to @spi_replaced_transfers,
2482 * PTR_ERR(...) in case of errors.
2483 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2484 struct spi_replaced_transfers *spi_replace_transfers(
2485 struct spi_message *msg,
2486 struct spi_transfer *xfer_first,
2487 size_t remove,
2488 size_t insert,
2489 spi_replaced_release_t release,
2490 size_t extradatasize,
2491 gfp_t gfp)
2492 {
2493 struct spi_replaced_transfers *rxfer;
2494 struct spi_transfer *xfer;
2495 size_t i;
2496
2497 /* allocate the structure using spi_res */
2498 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2499 insert * sizeof(struct spi_transfer)
2500 + sizeof(struct spi_replaced_transfers)
2501 + extradatasize,
2502 gfp);
2503 if (!rxfer)
2504 return ERR_PTR(-ENOMEM);
2505
2506 /* the release code to invoke before running the generic release */
2507 rxfer->release = release;
2508
2509 /* assign extradata */
2510 if (extradatasize)
2511 rxfer->extradata =
2512 &rxfer->inserted_transfers[insert];
2513
2514 /* init the replaced_transfers list */
2515 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2516
2517 /* assign the list_entry after which we should reinsert
2518 * the @replaced_transfers - it may be spi_message.messages!
2519 */
2520 rxfer->replaced_after = xfer_first->transfer_list.prev;
2521
2522 /* remove the requested number of transfers */
2523 for (i = 0; i < remove; i++) {
2524 /* if the entry after replaced_after it is msg->transfers
2525 * then we have been requested to remove more transfers
2526 * than are in the list
2527 */
2528 if (rxfer->replaced_after->next == &msg->transfers) {
2529 dev_err(&msg->spi->dev,
2530 "requested to remove more spi_transfers than are available\n");
2531 /* insert replaced transfers back into the message */
2532 list_splice(&rxfer->replaced_transfers,
2533 rxfer->replaced_after);
2534
2535 /* free the spi_replace_transfer structure */
2536 spi_res_free(rxfer);
2537
2538 /* and return with an error */
2539 return ERR_PTR(-EINVAL);
2540 }
2541
2542 /* remove the entry after replaced_after from list of
2543 * transfers and add it to list of replaced_transfers
2544 */
2545 list_move_tail(rxfer->replaced_after->next,
2546 &rxfer->replaced_transfers);
2547 }
2548
2549 /* create copy of the given xfer with identical settings
2550 * based on the first transfer to get removed
2551 */
2552 for (i = 0; i < insert; i++) {
2553 /* we need to run in reverse order */
2554 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2555
2556 /* copy all spi_transfer data */
2557 memcpy(xfer, xfer_first, sizeof(*xfer));
2558
2559 /* add to list */
2560 list_add(&xfer->transfer_list, rxfer->replaced_after);
2561
2562 /* clear cs_change and delay_usecs for all but the last */
2563 if (i) {
2564 xfer->cs_change = false;
2565 xfer->delay_usecs = 0;
2566 }
2567 }
2568
2569 /* set up inserted */
2570 rxfer->inserted = insert;
2571
2572 /* and register it with spi_res/spi_message */
2573 spi_res_add(msg, rxfer);
2574
2575 return rxfer;
2576 }
2577 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2578
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2579 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2580 struct spi_message *msg,
2581 struct spi_transfer **xferp,
2582 size_t maxsize,
2583 gfp_t gfp)
2584 {
2585 struct spi_transfer *xfer = *xferp, *xfers;
2586 struct spi_replaced_transfers *srt;
2587 size_t offset;
2588 size_t count, i;
2589
2590 /* warn once about this fact that we are splitting a transfer */
2591 dev_warn_once(&msg->spi->dev,
2592 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2593 xfer->len, maxsize);
2594
2595 /* calculate how many we have to replace */
2596 count = DIV_ROUND_UP(xfer->len, maxsize);
2597
2598 /* create replacement */
2599 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2600 if (IS_ERR(srt))
2601 return PTR_ERR(srt);
2602 xfers = srt->inserted_transfers;
2603
2604 /* now handle each of those newly inserted spi_transfers
2605 * note that the replacements spi_transfers all are preset
2606 * to the same values as *xferp, so tx_buf, rx_buf and len
2607 * are all identical (as well as most others)
2608 * so we just have to fix up len and the pointers.
2609 *
2610 * this also includes support for the depreciated
2611 * spi_message.is_dma_mapped interface
2612 */
2613
2614 /* the first transfer just needs the length modified, so we
2615 * run it outside the loop
2616 */
2617 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2618
2619 /* all the others need rx_buf/tx_buf also set */
2620 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2621 /* update rx_buf, tx_buf and dma */
2622 if (xfers[i].rx_buf)
2623 xfers[i].rx_buf += offset;
2624 if (xfers[i].rx_dma)
2625 xfers[i].rx_dma += offset;
2626 if (xfers[i].tx_buf)
2627 xfers[i].tx_buf += offset;
2628 if (xfers[i].tx_dma)
2629 xfers[i].tx_dma += offset;
2630
2631 /* update length */
2632 xfers[i].len = min(maxsize, xfers[i].len - offset);
2633 }
2634
2635 /* we set up xferp to the last entry we have inserted,
2636 * so that we skip those already split transfers
2637 */
2638 *xferp = &xfers[count - 1];
2639
2640 /* increment statistics counters */
2641 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2642 transfers_split_maxsize);
2643 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2644 transfers_split_maxsize);
2645
2646 return 0;
2647 }
2648
2649 /**
2650 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2651 * when an individual transfer exceeds a
2652 * certain size
2653 * @ctlr: the @spi_controller for this transfer
2654 * @msg: the @spi_message to transform
2655 * @maxsize: the maximum when to apply this
2656 * @gfp: GFP allocation flags
2657 *
2658 * Return: status of transformation
2659 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)2660 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2661 struct spi_message *msg,
2662 size_t maxsize,
2663 gfp_t gfp)
2664 {
2665 struct spi_transfer *xfer;
2666 int ret;
2667
2668 /* iterate over the transfer_list,
2669 * but note that xfer is advanced to the last transfer inserted
2670 * to avoid checking sizes again unnecessarily (also xfer does
2671 * potentiall belong to a different list by the time the
2672 * replacement has happened
2673 */
2674 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2675 if (xfer->len > maxsize) {
2676 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2677 maxsize, gfp);
2678 if (ret)
2679 return ret;
2680 }
2681 }
2682
2683 return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2686
2687 /*-------------------------------------------------------------------------*/
2688
2689 /* Core methods for SPI controller protocol drivers. Some of the
2690 * other core methods are currently defined as inline functions.
2691 */
2692
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)2693 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2694 u8 bits_per_word)
2695 {
2696 if (ctlr->bits_per_word_mask) {
2697 /* Only 32 bits fit in the mask */
2698 if (bits_per_word > 32)
2699 return -EINVAL;
2700 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2701 return -EINVAL;
2702 }
2703
2704 return 0;
2705 }
2706
2707 /**
2708 * spi_setup - setup SPI mode and clock rate
2709 * @spi: the device whose settings are being modified
2710 * Context: can sleep, and no requests are queued to the device
2711 *
2712 * SPI protocol drivers may need to update the transfer mode if the
2713 * device doesn't work with its default. They may likewise need
2714 * to update clock rates or word sizes from initial values. This function
2715 * changes those settings, and must be called from a context that can sleep.
2716 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2717 * effect the next time the device is selected and data is transferred to
2718 * or from it. When this function returns, the spi device is deselected.
2719 *
2720 * Note that this call will fail if the protocol driver specifies an option
2721 * that the underlying controller or its driver does not support. For
2722 * example, not all hardware supports wire transfers using nine bit words,
2723 * LSB-first wire encoding, or active-high chipselects.
2724 *
2725 * Return: zero on success, else a negative error code.
2726 */
spi_setup(struct spi_device * spi)2727 int spi_setup(struct spi_device *spi)
2728 {
2729 unsigned bad_bits, ugly_bits;
2730 int status;
2731
2732 /* check mode to prevent that DUAL and QUAD set at the same time
2733 */
2734 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2735 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2736 dev_err(&spi->dev,
2737 "setup: can not select dual and quad at the same time\n");
2738 return -EINVAL;
2739 }
2740 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2741 */
2742 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2743 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2744 return -EINVAL;
2745 /* help drivers fail *cleanly* when they need options
2746 * that aren't supported with their current controller
2747 */
2748 bad_bits = spi->mode & ~spi->controller->mode_bits;
2749 ugly_bits = bad_bits &
2750 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2751 if (ugly_bits) {
2752 dev_warn(&spi->dev,
2753 "setup: ignoring unsupported mode bits %x\n",
2754 ugly_bits);
2755 spi->mode &= ~ugly_bits;
2756 bad_bits &= ~ugly_bits;
2757 }
2758 if (bad_bits) {
2759 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2760 bad_bits);
2761 return -EINVAL;
2762 }
2763
2764 if (!spi->bits_per_word)
2765 spi->bits_per_word = 8;
2766
2767 status = __spi_validate_bits_per_word(spi->controller,
2768 spi->bits_per_word);
2769 if (status)
2770 return status;
2771
2772 if (!spi->max_speed_hz)
2773 spi->max_speed_hz = spi->controller->max_speed_hz;
2774
2775 if (spi->controller->setup)
2776 status = spi->controller->setup(spi);
2777
2778 spi_set_cs(spi, false);
2779
2780 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2781 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2782 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2783 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2784 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2785 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2786 spi->bits_per_word, spi->max_speed_hz,
2787 status);
2788
2789 return status;
2790 }
2791 EXPORT_SYMBOL_GPL(spi_setup);
2792
__spi_validate(struct spi_device * spi,struct spi_message * message)2793 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2794 {
2795 struct spi_controller *ctlr = spi->controller;
2796 struct spi_transfer *xfer;
2797 int w_size;
2798
2799 if (list_empty(&message->transfers))
2800 return -EINVAL;
2801
2802 /* Half-duplex links include original MicroWire, and ones with
2803 * only one data pin like SPI_3WIRE (switches direction) or where
2804 * either MOSI or MISO is missing. They can also be caused by
2805 * software limitations.
2806 */
2807 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2808 (spi->mode & SPI_3WIRE)) {
2809 unsigned flags = ctlr->flags;
2810
2811 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2812 if (xfer->rx_buf && xfer->tx_buf)
2813 return -EINVAL;
2814 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2815 return -EINVAL;
2816 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2817 return -EINVAL;
2818 }
2819 }
2820
2821 /**
2822 * Set transfer bits_per_word and max speed as spi device default if
2823 * it is not set for this transfer.
2824 * Set transfer tx_nbits and rx_nbits as single transfer default
2825 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2826 */
2827 message->frame_length = 0;
2828 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2829 message->frame_length += xfer->len;
2830 if (!xfer->bits_per_word)
2831 xfer->bits_per_word = spi->bits_per_word;
2832
2833 if (!xfer->speed_hz)
2834 xfer->speed_hz = spi->max_speed_hz;
2835 if (!xfer->speed_hz)
2836 xfer->speed_hz = ctlr->max_speed_hz;
2837
2838 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2839 xfer->speed_hz = ctlr->max_speed_hz;
2840
2841 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2842 return -EINVAL;
2843
2844 /*
2845 * SPI transfer length should be multiple of SPI word size
2846 * where SPI word size should be power-of-two multiple
2847 */
2848 if (xfer->bits_per_word <= 8)
2849 w_size = 1;
2850 else if (xfer->bits_per_word <= 16)
2851 w_size = 2;
2852 else
2853 w_size = 4;
2854
2855 /* No partial transfers accepted */
2856 if (xfer->len % w_size)
2857 return -EINVAL;
2858
2859 if (xfer->speed_hz && ctlr->min_speed_hz &&
2860 xfer->speed_hz < ctlr->min_speed_hz)
2861 return -EINVAL;
2862
2863 if (xfer->tx_buf && !xfer->tx_nbits)
2864 xfer->tx_nbits = SPI_NBITS_SINGLE;
2865 if (xfer->rx_buf && !xfer->rx_nbits)
2866 xfer->rx_nbits = SPI_NBITS_SINGLE;
2867 /* check transfer tx/rx_nbits:
2868 * 1. check the value matches one of single, dual and quad
2869 * 2. check tx/rx_nbits match the mode in spi_device
2870 */
2871 if (xfer->tx_buf) {
2872 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2873 xfer->tx_nbits != SPI_NBITS_DUAL &&
2874 xfer->tx_nbits != SPI_NBITS_QUAD)
2875 return -EINVAL;
2876 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2877 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2878 return -EINVAL;
2879 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2880 !(spi->mode & SPI_TX_QUAD))
2881 return -EINVAL;
2882 }
2883 /* check transfer rx_nbits */
2884 if (xfer->rx_buf) {
2885 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2886 xfer->rx_nbits != SPI_NBITS_DUAL &&
2887 xfer->rx_nbits != SPI_NBITS_QUAD)
2888 return -EINVAL;
2889 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2890 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2891 return -EINVAL;
2892 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2893 !(spi->mode & SPI_RX_QUAD))
2894 return -EINVAL;
2895 }
2896 }
2897
2898 message->status = -EINPROGRESS;
2899
2900 return 0;
2901 }
2902
__spi_async(struct spi_device * spi,struct spi_message * message)2903 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2904 {
2905 struct spi_controller *ctlr = spi->controller;
2906
2907 message->spi = spi;
2908
2909 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2910 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2911
2912 trace_spi_message_submit(message);
2913
2914 return ctlr->transfer(spi, message);
2915 }
2916
2917 /**
2918 * spi_async - asynchronous SPI transfer
2919 * @spi: device with which data will be exchanged
2920 * @message: describes the data transfers, including completion callback
2921 * Context: any (irqs may be blocked, etc)
2922 *
2923 * This call may be used in_irq and other contexts which can't sleep,
2924 * as well as from task contexts which can sleep.
2925 *
2926 * The completion callback is invoked in a context which can't sleep.
2927 * Before that invocation, the value of message->status is undefined.
2928 * When the callback is issued, message->status holds either zero (to
2929 * indicate complete success) or a negative error code. After that
2930 * callback returns, the driver which issued the transfer request may
2931 * deallocate the associated memory; it's no longer in use by any SPI
2932 * core or controller driver code.
2933 *
2934 * Note that although all messages to a spi_device are handled in
2935 * FIFO order, messages may go to different devices in other orders.
2936 * Some device might be higher priority, or have various "hard" access
2937 * time requirements, for example.
2938 *
2939 * On detection of any fault during the transfer, processing of
2940 * the entire message is aborted, and the device is deselected.
2941 * Until returning from the associated message completion callback,
2942 * no other spi_message queued to that device will be processed.
2943 * (This rule applies equally to all the synchronous transfer calls,
2944 * which are wrappers around this core asynchronous primitive.)
2945 *
2946 * Return: zero on success, else a negative error code.
2947 */
spi_async(struct spi_device * spi,struct spi_message * message)2948 int spi_async(struct spi_device *spi, struct spi_message *message)
2949 {
2950 struct spi_controller *ctlr = spi->controller;
2951 int ret;
2952 unsigned long flags;
2953
2954 ret = __spi_validate(spi, message);
2955 if (ret != 0)
2956 return ret;
2957
2958 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2959
2960 if (ctlr->bus_lock_flag)
2961 ret = -EBUSY;
2962 else
2963 ret = __spi_async(spi, message);
2964
2965 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2966
2967 return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(spi_async);
2970
2971 /**
2972 * spi_async_locked - version of spi_async with exclusive bus usage
2973 * @spi: device with which data will be exchanged
2974 * @message: describes the data transfers, including completion callback
2975 * Context: any (irqs may be blocked, etc)
2976 *
2977 * This call may be used in_irq and other contexts which can't sleep,
2978 * as well as from task contexts which can sleep.
2979 *
2980 * The completion callback is invoked in a context which can't sleep.
2981 * Before that invocation, the value of message->status is undefined.
2982 * When the callback is issued, message->status holds either zero (to
2983 * indicate complete success) or a negative error code. After that
2984 * callback returns, the driver which issued the transfer request may
2985 * deallocate the associated memory; it's no longer in use by any SPI
2986 * core or controller driver code.
2987 *
2988 * Note that although all messages to a spi_device are handled in
2989 * FIFO order, messages may go to different devices in other orders.
2990 * Some device might be higher priority, or have various "hard" access
2991 * time requirements, for example.
2992 *
2993 * On detection of any fault during the transfer, processing of
2994 * the entire message is aborted, and the device is deselected.
2995 * Until returning from the associated message completion callback,
2996 * no other spi_message queued to that device will be processed.
2997 * (This rule applies equally to all the synchronous transfer calls,
2998 * which are wrappers around this core asynchronous primitive.)
2999 *
3000 * Return: zero on success, else a negative error code.
3001 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3002 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3003 {
3004 struct spi_controller *ctlr = spi->controller;
3005 int ret;
3006 unsigned long flags;
3007
3008 ret = __spi_validate(spi, message);
3009 if (ret != 0)
3010 return ret;
3011
3012 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3013
3014 ret = __spi_async(spi, message);
3015
3016 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3017
3018 return ret;
3019
3020 }
3021 EXPORT_SYMBOL_GPL(spi_async_locked);
3022
3023
spi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)3024 int spi_flash_read(struct spi_device *spi,
3025 struct spi_flash_read_message *msg)
3026
3027 {
3028 struct spi_controller *master = spi->controller;
3029 struct device *rx_dev = NULL;
3030 int ret;
3031
3032 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3033 msg->addr_nbits == SPI_NBITS_DUAL) &&
3034 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3035 return -EINVAL;
3036 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3037 msg->addr_nbits == SPI_NBITS_QUAD) &&
3038 !(spi->mode & SPI_TX_QUAD))
3039 return -EINVAL;
3040 if (msg->data_nbits == SPI_NBITS_DUAL &&
3041 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3042 return -EINVAL;
3043 if (msg->data_nbits == SPI_NBITS_QUAD &&
3044 !(spi->mode & SPI_RX_QUAD))
3045 return -EINVAL;
3046
3047 if (master->auto_runtime_pm) {
3048 ret = pm_runtime_get_sync(master->dev.parent);
3049 if (ret < 0) {
3050 dev_err(&master->dev, "Failed to power device: %d\n",
3051 ret);
3052 return ret;
3053 }
3054 }
3055
3056 mutex_lock(&master->bus_lock_mutex);
3057 mutex_lock(&master->io_mutex);
3058 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3059 rx_dev = master->dma_rx->device->dev;
3060 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3061 msg->buf, msg->len,
3062 DMA_FROM_DEVICE);
3063 if (!ret)
3064 msg->cur_msg_mapped = true;
3065 }
3066 ret = master->spi_flash_read(spi, msg);
3067 if (msg->cur_msg_mapped)
3068 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3069 DMA_FROM_DEVICE);
3070 mutex_unlock(&master->io_mutex);
3071 mutex_unlock(&master->bus_lock_mutex);
3072
3073 if (master->auto_runtime_pm)
3074 pm_runtime_put(master->dev.parent);
3075
3076 return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(spi_flash_read);
3079
3080 /*-------------------------------------------------------------------------*/
3081
3082 /* Utility methods for SPI protocol drivers, layered on
3083 * top of the core. Some other utility methods are defined as
3084 * inline functions.
3085 */
3086
spi_complete(void * arg)3087 static void spi_complete(void *arg)
3088 {
3089 complete(arg);
3090 }
3091
__spi_sync(struct spi_device * spi,struct spi_message * message)3092 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3093 {
3094 DECLARE_COMPLETION_ONSTACK(done);
3095 int status;
3096 struct spi_controller *ctlr = spi->controller;
3097 unsigned long flags;
3098
3099 status = __spi_validate(spi, message);
3100 if (status != 0)
3101 return status;
3102
3103 message->complete = spi_complete;
3104 message->context = &done;
3105 message->spi = spi;
3106
3107 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3108 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3109
3110 /* If we're not using the legacy transfer method then we will
3111 * try to transfer in the calling context so special case.
3112 * This code would be less tricky if we could remove the
3113 * support for driver implemented message queues.
3114 */
3115 if (ctlr->transfer == spi_queued_transfer) {
3116 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3117
3118 trace_spi_message_submit(message);
3119
3120 status = __spi_queued_transfer(spi, message, false);
3121
3122 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3123 } else {
3124 status = spi_async_locked(spi, message);
3125 }
3126
3127 if (status == 0) {
3128 /* Push out the messages in the calling context if we
3129 * can.
3130 */
3131 if (ctlr->transfer == spi_queued_transfer) {
3132 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3133 spi_sync_immediate);
3134 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3135 spi_sync_immediate);
3136 __spi_pump_messages(ctlr, false);
3137 }
3138
3139 wait_for_completion(&done);
3140 status = message->status;
3141 }
3142 message->context = NULL;
3143 return status;
3144 }
3145
3146 /**
3147 * spi_sync - blocking/synchronous SPI data transfers
3148 * @spi: device with which data will be exchanged
3149 * @message: describes the data transfers
3150 * Context: can sleep
3151 *
3152 * This call may only be used from a context that may sleep. The sleep
3153 * is non-interruptible, and has no timeout. Low-overhead controller
3154 * drivers may DMA directly into and out of the message buffers.
3155 *
3156 * Note that the SPI device's chip select is active during the message,
3157 * and then is normally disabled between messages. Drivers for some
3158 * frequently-used devices may want to minimize costs of selecting a chip,
3159 * by leaving it selected in anticipation that the next message will go
3160 * to the same chip. (That may increase power usage.)
3161 *
3162 * Also, the caller is guaranteeing that the memory associated with the
3163 * message will not be freed before this call returns.
3164 *
3165 * Return: zero on success, else a negative error code.
3166 */
spi_sync(struct spi_device * spi,struct spi_message * message)3167 int spi_sync(struct spi_device *spi, struct spi_message *message)
3168 {
3169 int ret;
3170
3171 mutex_lock(&spi->controller->bus_lock_mutex);
3172 ret = __spi_sync(spi, message);
3173 mutex_unlock(&spi->controller->bus_lock_mutex);
3174
3175 return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(spi_sync);
3178
3179 /**
3180 * spi_sync_locked - version of spi_sync with exclusive bus usage
3181 * @spi: device with which data will be exchanged
3182 * @message: describes the data transfers
3183 * Context: can sleep
3184 *
3185 * This call may only be used from a context that may sleep. The sleep
3186 * is non-interruptible, and has no timeout. Low-overhead controller
3187 * drivers may DMA directly into and out of the message buffers.
3188 *
3189 * This call should be used by drivers that require exclusive access to the
3190 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3191 * be released by a spi_bus_unlock call when the exclusive access is over.
3192 *
3193 * Return: zero on success, else a negative error code.
3194 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3195 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3196 {
3197 return __spi_sync(spi, message);
3198 }
3199 EXPORT_SYMBOL_GPL(spi_sync_locked);
3200
3201 /**
3202 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3203 * @ctlr: SPI bus master that should be locked for exclusive bus access
3204 * Context: can sleep
3205 *
3206 * This call may only be used from a context that may sleep. The sleep
3207 * is non-interruptible, and has no timeout.
3208 *
3209 * This call should be used by drivers that require exclusive access to the
3210 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3211 * exclusive access is over. Data transfer must be done by spi_sync_locked
3212 * and spi_async_locked calls when the SPI bus lock is held.
3213 *
3214 * Return: always zero.
3215 */
spi_bus_lock(struct spi_controller * ctlr)3216 int spi_bus_lock(struct spi_controller *ctlr)
3217 {
3218 unsigned long flags;
3219
3220 mutex_lock(&ctlr->bus_lock_mutex);
3221
3222 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3223 ctlr->bus_lock_flag = 1;
3224 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3225
3226 /* mutex remains locked until spi_bus_unlock is called */
3227
3228 return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(spi_bus_lock);
3231
3232 /**
3233 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3234 * @ctlr: SPI bus master that was locked for exclusive bus access
3235 * Context: can sleep
3236 *
3237 * This call may only be used from a context that may sleep. The sleep
3238 * is non-interruptible, and has no timeout.
3239 *
3240 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3241 * call.
3242 *
3243 * Return: always zero.
3244 */
spi_bus_unlock(struct spi_controller * ctlr)3245 int spi_bus_unlock(struct spi_controller *ctlr)
3246 {
3247 ctlr->bus_lock_flag = 0;
3248
3249 mutex_unlock(&ctlr->bus_lock_mutex);
3250
3251 return 0;
3252 }
3253 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3254
3255 /* portable code must never pass more than 32 bytes */
3256 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3257
3258 static u8 *buf;
3259
3260 /**
3261 * spi_write_then_read - SPI synchronous write followed by read
3262 * @spi: device with which data will be exchanged
3263 * @txbuf: data to be written (need not be dma-safe)
3264 * @n_tx: size of txbuf, in bytes
3265 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3266 * @n_rx: size of rxbuf, in bytes
3267 * Context: can sleep
3268 *
3269 * This performs a half duplex MicroWire style transaction with the
3270 * device, sending txbuf and then reading rxbuf. The return value
3271 * is zero for success, else a negative errno status code.
3272 * This call may only be used from a context that may sleep.
3273 *
3274 * Parameters to this routine are always copied using a small buffer;
3275 * portable code should never use this for more than 32 bytes.
3276 * Performance-sensitive or bulk transfer code should instead use
3277 * spi_{async,sync}() calls with dma-safe buffers.
3278 *
3279 * Return: zero on success, else a negative error code.
3280 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3281 int spi_write_then_read(struct spi_device *spi,
3282 const void *txbuf, unsigned n_tx,
3283 void *rxbuf, unsigned n_rx)
3284 {
3285 static DEFINE_MUTEX(lock);
3286
3287 int status;
3288 struct spi_message message;
3289 struct spi_transfer x[2];
3290 u8 *local_buf;
3291
3292 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3293 * copying here, (as a pure convenience thing), but we can
3294 * keep heap costs out of the hot path unless someone else is
3295 * using the pre-allocated buffer or the transfer is too large.
3296 */
3297 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3298 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3299 GFP_KERNEL | GFP_DMA);
3300 if (!local_buf)
3301 return -ENOMEM;
3302 } else {
3303 local_buf = buf;
3304 }
3305
3306 spi_message_init(&message);
3307 memset(x, 0, sizeof(x));
3308 if (n_tx) {
3309 x[0].len = n_tx;
3310 spi_message_add_tail(&x[0], &message);
3311 }
3312 if (n_rx) {
3313 x[1].len = n_rx;
3314 spi_message_add_tail(&x[1], &message);
3315 }
3316
3317 memcpy(local_buf, txbuf, n_tx);
3318 x[0].tx_buf = local_buf;
3319 x[1].rx_buf = local_buf + n_tx;
3320
3321 /* do the i/o */
3322 status = spi_sync(spi, &message);
3323 if (status == 0)
3324 memcpy(rxbuf, x[1].rx_buf, n_rx);
3325
3326 if (x[0].tx_buf == buf)
3327 mutex_unlock(&lock);
3328 else
3329 kfree(local_buf);
3330
3331 return status;
3332 }
3333 EXPORT_SYMBOL_GPL(spi_write_then_read);
3334
3335 /*-------------------------------------------------------------------------*/
3336
3337 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
__spi_of_device_match(struct device * dev,void * data)3338 static int __spi_of_device_match(struct device *dev, void *data)
3339 {
3340 return dev->of_node == data;
3341 }
3342
3343 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3344 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3345 {
3346 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3347 __spi_of_device_match);
3348 return dev ? to_spi_device(dev) : NULL;
3349 }
3350
__spi_of_controller_match(struct device * dev,const void * data)3351 static int __spi_of_controller_match(struct device *dev, const void *data)
3352 {
3353 return dev->of_node == data;
3354 }
3355
3356 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)3357 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3358 {
3359 struct device *dev;
3360
3361 dev = class_find_device(&spi_master_class, NULL, node,
3362 __spi_of_controller_match);
3363 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3364 dev = class_find_device(&spi_slave_class, NULL, node,
3365 __spi_of_controller_match);
3366 if (!dev)
3367 return NULL;
3368
3369 /* reference got in class_find_device */
3370 return container_of(dev, struct spi_controller, dev);
3371 }
3372
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3373 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3374 void *arg)
3375 {
3376 struct of_reconfig_data *rd = arg;
3377 struct spi_controller *ctlr;
3378 struct spi_device *spi;
3379
3380 switch (of_reconfig_get_state_change(action, arg)) {
3381 case OF_RECONFIG_CHANGE_ADD:
3382 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3383 if (ctlr == NULL)
3384 return NOTIFY_OK; /* not for us */
3385
3386 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3387 put_device(&ctlr->dev);
3388 return NOTIFY_OK;
3389 }
3390
3391 spi = of_register_spi_device(ctlr, rd->dn);
3392 put_device(&ctlr->dev);
3393
3394 if (IS_ERR(spi)) {
3395 pr_err("%s: failed to create for '%pOF'\n",
3396 __func__, rd->dn);
3397 of_node_clear_flag(rd->dn, OF_POPULATED);
3398 return notifier_from_errno(PTR_ERR(spi));
3399 }
3400 break;
3401
3402 case OF_RECONFIG_CHANGE_REMOVE:
3403 /* already depopulated? */
3404 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3405 return NOTIFY_OK;
3406
3407 /* find our device by node */
3408 spi = of_find_spi_device_by_node(rd->dn);
3409 if (spi == NULL)
3410 return NOTIFY_OK; /* no? not meant for us */
3411
3412 /* unregister takes one ref away */
3413 spi_unregister_device(spi);
3414
3415 /* and put the reference of the find */
3416 put_device(&spi->dev);
3417 break;
3418 }
3419
3420 return NOTIFY_OK;
3421 }
3422
3423 static struct notifier_block spi_of_notifier = {
3424 .notifier_call = of_spi_notify,
3425 };
3426 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3427 extern struct notifier_block spi_of_notifier;
3428 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3429
3430 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)3431 static int spi_acpi_controller_match(struct device *dev, const void *data)
3432 {
3433 return ACPI_COMPANION(dev->parent) == data;
3434 }
3435
spi_acpi_device_match(struct device * dev,void * data)3436 static int spi_acpi_device_match(struct device *dev, void *data)
3437 {
3438 return ACPI_COMPANION(dev) == data;
3439 }
3440
acpi_spi_find_controller_by_adev(struct acpi_device * adev)3441 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3442 {
3443 struct device *dev;
3444
3445 dev = class_find_device(&spi_master_class, NULL, adev,
3446 spi_acpi_controller_match);
3447 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3448 dev = class_find_device(&spi_slave_class, NULL, adev,
3449 spi_acpi_controller_match);
3450 if (!dev)
3451 return NULL;
3452
3453 return container_of(dev, struct spi_controller, dev);
3454 }
3455
acpi_spi_find_device_by_adev(struct acpi_device * adev)3456 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3457 {
3458 struct device *dev;
3459
3460 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3461
3462 return dev ? to_spi_device(dev) : NULL;
3463 }
3464
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3465 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3466 void *arg)
3467 {
3468 struct acpi_device *adev = arg;
3469 struct spi_controller *ctlr;
3470 struct spi_device *spi;
3471
3472 switch (value) {
3473 case ACPI_RECONFIG_DEVICE_ADD:
3474 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3475 if (!ctlr)
3476 break;
3477
3478 acpi_register_spi_device(ctlr, adev);
3479 put_device(&ctlr->dev);
3480 break;
3481 case ACPI_RECONFIG_DEVICE_REMOVE:
3482 if (!acpi_device_enumerated(adev))
3483 break;
3484
3485 spi = acpi_spi_find_device_by_adev(adev);
3486 if (!spi)
3487 break;
3488
3489 spi_unregister_device(spi);
3490 put_device(&spi->dev);
3491 break;
3492 }
3493
3494 return NOTIFY_OK;
3495 }
3496
3497 static struct notifier_block spi_acpi_notifier = {
3498 .notifier_call = acpi_spi_notify,
3499 };
3500 #else
3501 extern struct notifier_block spi_acpi_notifier;
3502 #endif
3503
spi_init(void)3504 static int __init spi_init(void)
3505 {
3506 int status;
3507
3508 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3509 if (!buf) {
3510 status = -ENOMEM;
3511 goto err0;
3512 }
3513
3514 status = bus_register(&spi_bus_type);
3515 if (status < 0)
3516 goto err1;
3517
3518 status = class_register(&spi_master_class);
3519 if (status < 0)
3520 goto err2;
3521
3522 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3523 status = class_register(&spi_slave_class);
3524 if (status < 0)
3525 goto err3;
3526 }
3527
3528 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3529 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3530 if (IS_ENABLED(CONFIG_ACPI))
3531 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3532
3533 return 0;
3534
3535 err3:
3536 class_unregister(&spi_master_class);
3537 err2:
3538 bus_unregister(&spi_bus_type);
3539 err1:
3540 kfree(buf);
3541 buf = NULL;
3542 err0:
3543 return status;
3544 }
3545
3546 /* board_info is normally registered in arch_initcall(),
3547 * but even essential drivers wait till later
3548 *
3549 * REVISIT only boardinfo really needs static linking. the rest (device and
3550 * driver registration) _could_ be dynamically linked (modular) ... costs
3551 * include needing to have boardinfo data structures be much more public.
3552 */
3553 postcore_initcall(spi_init);
3554
3555