• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 
49 static DEFINE_IDR(spi_master_idr);
50 
spidev_release(struct device * dev)51 static void spidev_release(struct device *dev)
52 {
53 	struct spi_device	*spi = to_spi_device(dev);
54 
55 	/* spi controllers may cleanup for released devices */
56 	if (spi->controller->cleanup)
57 		spi->controller->cleanup(spi);
58 
59 	spi_controller_put(spi->controller);
60 	kfree(spi);
61 }
62 
63 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 	const struct spi_device	*spi = to_spi_device(dev);
67 	int len;
68 
69 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 	if (len != -ENODEV)
71 		return len;
72 
73 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76 
77 #define SPI_STATISTICS_ATTRS(field, file)				\
78 static ssize_t spi_controller_##field##_show(struct device *dev,	\
79 					     struct device_attribute *attr, \
80 					     char *buf)			\
81 {									\
82 	struct spi_controller *ctlr = container_of(dev,			\
83 					 struct spi_controller, dev);	\
84 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
85 }									\
86 static struct device_attribute dev_attr_spi_controller_##field = {	\
87 	.attr = { .name = file, .mode = 0444 },				\
88 	.show = spi_controller_##field##_show,				\
89 };									\
90 static ssize_t spi_device_##field##_show(struct device *dev,		\
91 					 struct device_attribute *attr,	\
92 					char *buf)			\
93 {									\
94 	struct spi_device *spi = to_spi_device(dev);			\
95 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
96 }									\
97 static struct device_attribute dev_attr_spi_device_##field = {		\
98 	.attr = { .name = file, .mode = 0444 },				\
99 	.show = spi_device_##field##_show,				\
100 }
101 
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 					    char *buf)			\
105 {									\
106 	unsigned long flags;						\
107 	ssize_t len;							\
108 	spin_lock_irqsave(&stat->lock, flags);				\
109 	len = sprintf(buf, format_string, stat->field);			\
110 	spin_unlock_irqrestore(&stat->lock, flags);			\
111 	return len;							\
112 }									\
113 SPI_STATISTICS_ATTRS(name, file)
114 
115 #define SPI_STATISTICS_SHOW(field, format_string)			\
116 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
117 				 field, format_string)
118 
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123 
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127 
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131 
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
133 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
134 				 "transfer_bytes_histo_" number,	\
135 				 transfer_bytes_histo[index],  "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153 
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155 
156 static struct attribute *spi_dev_attrs[] = {
157 	&dev_attr_modalias.attr,
158 	NULL,
159 };
160 
161 static const struct attribute_group spi_dev_group = {
162 	.attrs  = spi_dev_attrs,
163 };
164 
165 static struct attribute *spi_device_statistics_attrs[] = {
166 	&dev_attr_spi_device_messages.attr,
167 	&dev_attr_spi_device_transfers.attr,
168 	&dev_attr_spi_device_errors.attr,
169 	&dev_attr_spi_device_timedout.attr,
170 	&dev_attr_spi_device_spi_sync.attr,
171 	&dev_attr_spi_device_spi_sync_immediate.attr,
172 	&dev_attr_spi_device_spi_async.attr,
173 	&dev_attr_spi_device_bytes.attr,
174 	&dev_attr_spi_device_bytes_rx.attr,
175 	&dev_attr_spi_device_bytes_tx.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
187 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
188 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
189 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
190 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
191 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
192 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
193 	&dev_attr_spi_device_transfers_split_maxsize.attr,
194 	NULL,
195 };
196 
197 static const struct attribute_group spi_device_statistics_group = {
198 	.name  = "statistics",
199 	.attrs  = spi_device_statistics_attrs,
200 };
201 
202 static const struct attribute_group *spi_dev_groups[] = {
203 	&spi_dev_group,
204 	&spi_device_statistics_group,
205 	NULL,
206 };
207 
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 	&dev_attr_spi_controller_messages.attr,
210 	&dev_attr_spi_controller_transfers.attr,
211 	&dev_attr_spi_controller_errors.attr,
212 	&dev_attr_spi_controller_timedout.attr,
213 	&dev_attr_spi_controller_spi_sync.attr,
214 	&dev_attr_spi_controller_spi_sync_immediate.attr,
215 	&dev_attr_spi_controller_spi_async.attr,
216 	&dev_attr_spi_controller_bytes.attr,
217 	&dev_attr_spi_controller_bytes_rx.attr,
218 	&dev_attr_spi_controller_bytes_tx.attr,
219 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
237 	NULL,
238 };
239 
240 static const struct attribute_group spi_controller_statistics_group = {
241 	.name  = "statistics",
242 	.attrs  = spi_controller_statistics_attrs,
243 };
244 
245 static const struct attribute_group *spi_master_groups[] = {
246 	&spi_controller_statistics_group,
247 	NULL,
248 };
249 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 				       struct spi_transfer *xfer,
252 				       struct spi_controller *ctlr)
253 {
254 	unsigned long flags;
255 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256 
257 	if (l2len < 0)
258 		l2len = 0;
259 
260 	spin_lock_irqsave(&stats->lock, flags);
261 
262 	stats->transfers++;
263 	stats->transfer_bytes_histo[l2len]++;
264 
265 	stats->bytes += xfer->len;
266 	if ((xfer->tx_buf) &&
267 	    (xfer->tx_buf != ctlr->dummy_tx))
268 		stats->bytes_tx += xfer->len;
269 	if ((xfer->rx_buf) &&
270 	    (xfer->rx_buf != ctlr->dummy_rx))
271 		stats->bytes_rx += xfer->len;
272 
273 	spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276 
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278  * and the sysfs version makes coldplug work too.
279  */
280 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 						const struct spi_device *sdev)
283 {
284 	while (id->name[0]) {
285 		if (!strcmp(sdev->modalias, id->name))
286 			return id;
287 		id++;
288 	}
289 	return NULL;
290 }
291 
spi_get_device_id(const struct spi_device * sdev)292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295 
296 	return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299 
spi_match_device(struct device * dev,struct device_driver * drv)300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 	const struct spi_device	*spi = to_spi_device(dev);
303 	const struct spi_driver	*sdrv = to_spi_driver(drv);
304 
305 	/* Attempt an OF style match */
306 	if (of_driver_match_device(dev, drv))
307 		return 1;
308 
309 	/* Then try ACPI */
310 	if (acpi_driver_match_device(dev, drv))
311 		return 1;
312 
313 	if (sdrv->id_table)
314 		return !!spi_match_id(sdrv->id_table, spi);
315 
316 	return strcmp(spi->modalias, drv->name) == 0;
317 }
318 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 	const struct spi_device		*spi = to_spi_device(dev);
322 	int rc;
323 
324 	rc = acpi_device_uevent_modalias(dev, env);
325 	if (rc != -ENODEV)
326 		return rc;
327 
328 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330 
331 struct bus_type spi_bus_type = {
332 	.name		= "spi",
333 	.dev_groups	= spi_dev_groups,
334 	.match		= spi_match_device,
335 	.uevent		= spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338 
339 
spi_drv_probe(struct device * dev)340 static int spi_drv_probe(struct device *dev)
341 {
342 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
343 	struct spi_device		*spi = to_spi_device(dev);
344 	int ret;
345 
346 	ret = of_clk_set_defaults(dev->of_node, false);
347 	if (ret)
348 		return ret;
349 
350 	if (dev->of_node) {
351 		spi->irq = of_irq_get(dev->of_node, 0);
352 		if (spi->irq == -EPROBE_DEFER)
353 			return -EPROBE_DEFER;
354 		if (spi->irq < 0)
355 			spi->irq = 0;
356 	}
357 
358 	ret = dev_pm_domain_attach(dev, true);
359 	if (ret != -EPROBE_DEFER) {
360 		ret = sdrv->probe(spi);
361 		if (ret)
362 			dev_pm_domain_detach(dev, true);
363 	}
364 
365 	return ret;
366 }
367 
spi_drv_remove(struct device * dev)368 static int spi_drv_remove(struct device *dev)
369 {
370 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
371 	int ret;
372 
373 	ret = sdrv->remove(to_spi_device(dev));
374 	dev_pm_domain_detach(dev, true);
375 
376 	return ret;
377 }
378 
spi_drv_shutdown(struct device * dev)379 static void spi_drv_shutdown(struct device *dev)
380 {
381 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
382 
383 	sdrv->shutdown(to_spi_device(dev));
384 }
385 
386 /**
387  * __spi_register_driver - register a SPI driver
388  * @owner: owner module of the driver to register
389  * @sdrv: the driver to register
390  * Context: can sleep
391  *
392  * Return: zero on success, else a negative error code.
393  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 	sdrv->driver.owner = owner;
397 	sdrv->driver.bus = &spi_bus_type;
398 	if (sdrv->probe)
399 		sdrv->driver.probe = spi_drv_probe;
400 	if (sdrv->remove)
401 		sdrv->driver.remove = spi_drv_remove;
402 	if (sdrv->shutdown)
403 		sdrv->driver.shutdown = spi_drv_shutdown;
404 	return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407 
408 /*-------------------------------------------------------------------------*/
409 
410 /* SPI devices should normally not be created by SPI device drivers; that
411  * would make them board-specific.  Similarly with SPI controller drivers.
412  * Device registration normally goes into like arch/.../mach.../board-YYY.c
413  * with other readonly (flashable) information about mainboard devices.
414  */
415 
416 struct boardinfo {
417 	struct list_head	list;
418 	struct spi_board_info	board_info;
419 };
420 
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423 
424 /*
425  * Used to protect add/del opertion for board_info list and
426  * spi_controller list, and their matching process
427  * also used to protect object of type struct idr
428  */
429 static DEFINE_MUTEX(board_lock);
430 
431 /**
432  * spi_alloc_device - Allocate a new SPI device
433  * @ctlr: Controller to which device is connected
434  * Context: can sleep
435  *
436  * Allows a driver to allocate and initialize a spi_device without
437  * registering it immediately.  This allows a driver to directly
438  * fill the spi_device with device parameters before calling
439  * spi_add_device() on it.
440  *
441  * Caller is responsible to call spi_add_device() on the returned
442  * spi_device structure to add it to the SPI controller.  If the caller
443  * needs to discard the spi_device without adding it, then it should
444  * call spi_dev_put() on it.
445  *
446  * Return: a pointer to the new device, or NULL.
447  */
spi_alloc_device(struct spi_controller * ctlr)448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 	struct spi_device	*spi;
451 
452 	if (!spi_controller_get(ctlr))
453 		return NULL;
454 
455 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 	if (!spi) {
457 		spi_controller_put(ctlr);
458 		return NULL;
459 	}
460 
461 	spi->master = spi->controller = ctlr;
462 	spi->dev.parent = &ctlr->dev;
463 	spi->dev.bus = &spi_bus_type;
464 	spi->dev.release = spidev_release;
465 	spi->cs_gpio = -ENOENT;
466 
467 	spin_lock_init(&spi->statistics.lock);
468 
469 	device_initialize(&spi->dev);
470 	return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473 
spi_dev_set_name(struct spi_device * spi)474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477 
478 	if (adev) {
479 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 		return;
481 	}
482 
483 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 		     spi->chip_select);
485 }
486 
spi_dev_check(struct device * dev,void * data)487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 	struct spi_device *spi = to_spi_device(dev);
490 	struct spi_device *new_spi = data;
491 
492 	if (spi->controller == new_spi->controller &&
493 	    spi->chip_select == new_spi->chip_select)
494 		return -EBUSY;
495 	return 0;
496 }
497 
498 /**
499  * spi_add_device - Add spi_device allocated with spi_alloc_device
500  * @spi: spi_device to register
501  *
502  * Companion function to spi_alloc_device.  Devices allocated with
503  * spi_alloc_device can be added onto the spi bus with this function.
504  *
505  * Return: 0 on success; negative errno on failure
506  */
spi_add_device(struct spi_device * spi)507 int spi_add_device(struct spi_device *spi)
508 {
509 	static DEFINE_MUTEX(spi_add_lock);
510 	struct spi_controller *ctlr = spi->controller;
511 	struct device *dev = ctlr->dev.parent;
512 	int status;
513 
514 	/* Chipselects are numbered 0..max; validate. */
515 	if (spi->chip_select >= ctlr->num_chipselect) {
516 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 			ctlr->num_chipselect);
518 		return -EINVAL;
519 	}
520 
521 	/* Set the bus ID string */
522 	spi_dev_set_name(spi);
523 
524 	/* We need to make sure there's no other device with this
525 	 * chipselect **BEFORE** we call setup(), else we'll trash
526 	 * its configuration.  Lock against concurrent add() calls.
527 	 */
528 	mutex_lock(&spi_add_lock);
529 
530 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 	if (status) {
532 		dev_err(dev, "chipselect %d already in use\n",
533 				spi->chip_select);
534 		goto done;
535 	}
536 
537 	if (ctlr->cs_gpios)
538 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539 
540 	/* Drivers may modify this initial i/o setup, but will
541 	 * normally rely on the device being setup.  Devices
542 	 * using SPI_CS_HIGH can't coexist well otherwise...
543 	 */
544 	status = spi_setup(spi);
545 	if (status < 0) {
546 		dev_err(dev, "can't setup %s, status %d\n",
547 				dev_name(&spi->dev), status);
548 		goto done;
549 	}
550 
551 	/* Device may be bound to an active driver when this returns */
552 	status = device_add(&spi->dev);
553 	if (status < 0)
554 		dev_err(dev, "can't add %s, status %d\n",
555 				dev_name(&spi->dev), status);
556 	else
557 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558 
559 done:
560 	mutex_unlock(&spi_add_lock);
561 	return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564 
565 /**
566  * spi_new_device - instantiate one new SPI device
567  * @ctlr: Controller to which device is connected
568  * @chip: Describes the SPI device
569  * Context: can sleep
570  *
571  * On typical mainboards, this is purely internal; and it's not needed
572  * after board init creates the hard-wired devices.  Some development
573  * platforms may not be able to use spi_register_board_info though, and
574  * this is exported so that for example a USB or parport based adapter
575  * driver could add devices (which it would learn about out-of-band).
576  *
577  * Return: the new device, or NULL.
578  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 				  struct spi_board_info *chip)
581 {
582 	struct spi_device	*proxy;
583 	int			status;
584 
585 	/* NOTE:  caller did any chip->bus_num checks necessary.
586 	 *
587 	 * Also, unless we change the return value convention to use
588 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 	 * suggests syslogged diagnostics are best here (ugh).
590 	 */
591 
592 	proxy = spi_alloc_device(ctlr);
593 	if (!proxy)
594 		return NULL;
595 
596 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597 
598 	proxy->chip_select = chip->chip_select;
599 	proxy->max_speed_hz = chip->max_speed_hz;
600 	proxy->mode = chip->mode;
601 	proxy->irq = chip->irq;
602 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 	proxy->dev.platform_data = (void *) chip->platform_data;
604 	proxy->controller_data = chip->controller_data;
605 	proxy->controller_state = NULL;
606 
607 	if (chip->properties) {
608 		status = device_add_properties(&proxy->dev, chip->properties);
609 		if (status) {
610 			dev_err(&ctlr->dev,
611 				"failed to add properties to '%s': %d\n",
612 				chip->modalias, status);
613 			goto err_dev_put;
614 		}
615 	}
616 
617 	status = spi_add_device(proxy);
618 	if (status < 0)
619 		goto err_remove_props;
620 
621 	return proxy;
622 
623 err_remove_props:
624 	if (chip->properties)
625 		device_remove_properties(&proxy->dev);
626 err_dev_put:
627 	spi_dev_put(proxy);
628 	return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631 
632 /**
633  * spi_unregister_device - unregister a single SPI device
634  * @spi: spi_device to unregister
635  *
636  * Start making the passed SPI device vanish. Normally this would be handled
637  * by spi_unregister_controller().
638  */
spi_unregister_device(struct spi_device * spi)639 void spi_unregister_device(struct spi_device *spi)
640 {
641 	if (!spi)
642 		return;
643 
644 	if (spi->dev.of_node) {
645 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 		of_node_put(spi->dev.of_node);
647 	}
648 	if (ACPI_COMPANION(&spi->dev))
649 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 	device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 					      struct spi_board_info *bi)
656 {
657 	struct spi_device *dev;
658 
659 	if (ctlr->bus_num != bi->bus_num)
660 		return;
661 
662 	dev = spi_new_device(ctlr, bi);
663 	if (!dev)
664 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 			bi->modalias);
666 }
667 
668 /**
669  * spi_register_board_info - register SPI devices for a given board
670  * @info: array of chip descriptors
671  * @n: how many descriptors are provided
672  * Context: can sleep
673  *
674  * Board-specific early init code calls this (probably during arch_initcall)
675  * with segments of the SPI device table.  Any device nodes are created later,
676  * after the relevant parent SPI controller (bus_num) is defined.  We keep
677  * this table of devices forever, so that reloading a controller driver will
678  * not make Linux forget about these hard-wired devices.
679  *
680  * Other code can also call this, e.g. a particular add-on board might provide
681  * SPI devices through its expansion connector, so code initializing that board
682  * would naturally declare its SPI devices.
683  *
684  * The board info passed can safely be __initdata ... but be careful of
685  * any embedded pointers (platform_data, etc), they're copied as-is.
686  * Device properties are deep-copied though.
687  *
688  * Return: zero on success, else a negative error code.
689  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 	struct boardinfo *bi;
693 	int i;
694 
695 	if (!n)
696 		return 0;
697 
698 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 	if (!bi)
700 		return -ENOMEM;
701 
702 	for (i = 0; i < n; i++, bi++, info++) {
703 		struct spi_controller *ctlr;
704 
705 		memcpy(&bi->board_info, info, sizeof(*info));
706 		if (info->properties) {
707 			bi->board_info.properties =
708 					property_entries_dup(info->properties);
709 			if (IS_ERR(bi->board_info.properties))
710 				return PTR_ERR(bi->board_info.properties);
711 		}
712 
713 		mutex_lock(&board_lock);
714 		list_add_tail(&bi->list, &board_list);
715 		list_for_each_entry(ctlr, &spi_controller_list, list)
716 			spi_match_controller_to_boardinfo(ctlr,
717 							  &bi->board_info);
718 		mutex_unlock(&board_lock);
719 	}
720 
721 	return 0;
722 }
723 
724 /*-------------------------------------------------------------------------*/
725 
spi_set_cs(struct spi_device * spi,bool enable)726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 	if (spi->mode & SPI_CS_HIGH)
729 		enable = !enable;
730 
731 	if (gpio_is_valid(spi->cs_gpio)) {
732 		gpio_set_value(spi->cs_gpio, !enable);
733 		/* Some SPI masters need both GPIO CS & slave_select */
734 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 		    spi->controller->set_cs)
736 			spi->controller->set_cs(spi, !enable);
737 	} else if (spi->controller->set_cs) {
738 		spi->controller->set_cs(spi, !enable);
739 	}
740 }
741 
742 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 		       struct sg_table *sgt, void *buf, size_t len,
745 		       enum dma_data_direction dir)
746 {
747 	const bool vmalloced_buf = is_vmalloc_addr(buf);
748 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 				(unsigned long)buf < (PKMAP_BASE +
752 					(LAST_PKMAP * PAGE_SIZE)));
753 #else
754 	const bool kmap_buf = false;
755 #endif
756 	int desc_len;
757 	int sgs;
758 	struct page *vm_page;
759 	struct scatterlist *sg;
760 	void *sg_buf;
761 	size_t min;
762 	int i, ret;
763 
764 	if (vmalloced_buf || kmap_buf) {
765 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 	} else if (virt_addr_valid(buf)) {
768 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 		sgs = DIV_ROUND_UP(len, desc_len);
770 	} else {
771 		return -EINVAL;
772 	}
773 
774 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 	if (ret != 0)
776 		return ret;
777 
778 	sg = &sgt->sgl[0];
779 	for (i = 0; i < sgs; i++) {
780 
781 		if (vmalloced_buf || kmap_buf) {
782 			/*
783 			 * Next scatterlist entry size is the minimum between
784 			 * the desc_len and the remaining buffer length that
785 			 * fits in a page.
786 			 */
787 			min = min_t(size_t, desc_len,
788 				    min_t(size_t, len,
789 					  PAGE_SIZE - offset_in_page(buf)));
790 			if (vmalloced_buf)
791 				vm_page = vmalloc_to_page(buf);
792 			else
793 				vm_page = kmap_to_page(buf);
794 			if (!vm_page) {
795 				sg_free_table(sgt);
796 				return -ENOMEM;
797 			}
798 			sg_set_page(sg, vm_page,
799 				    min, offset_in_page(buf));
800 		} else {
801 			min = min_t(size_t, len, desc_len);
802 			sg_buf = buf;
803 			sg_set_buf(sg, sg_buf, min);
804 		}
805 
806 		buf += min;
807 		len -= min;
808 		sg = sg_next(sg);
809 	}
810 
811 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
812 	if (!ret)
813 		ret = -ENOMEM;
814 	if (ret < 0) {
815 		sg_free_table(sgt);
816 		return ret;
817 	}
818 
819 	sgt->nents = ret;
820 
821 	return 0;
822 }
823 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)824 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
825 			  struct sg_table *sgt, enum dma_data_direction dir)
826 {
827 	if (sgt->orig_nents) {
828 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829 		sg_free_table(sgt);
830 	}
831 }
832 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)833 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
834 {
835 	struct device *tx_dev, *rx_dev;
836 	struct spi_transfer *xfer;
837 	int ret;
838 
839 	if (!ctlr->can_dma)
840 		return 0;
841 
842 	if (ctlr->dma_tx)
843 		tx_dev = ctlr->dma_tx->device->dev;
844 	else
845 		tx_dev = ctlr->dev.parent;
846 
847 	if (ctlr->dma_rx)
848 		rx_dev = ctlr->dma_rx->device->dev;
849 	else
850 		rx_dev = ctlr->dev.parent;
851 
852 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
853 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
854 			continue;
855 
856 		if (xfer->tx_buf != NULL) {
857 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
858 					  (void *)xfer->tx_buf, xfer->len,
859 					  DMA_TO_DEVICE);
860 			if (ret != 0)
861 				return ret;
862 		}
863 
864 		if (xfer->rx_buf != NULL) {
865 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
866 					  xfer->rx_buf, xfer->len,
867 					  DMA_FROM_DEVICE);
868 			if (ret != 0) {
869 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
870 					      DMA_TO_DEVICE);
871 				return ret;
872 			}
873 		}
874 	}
875 
876 	ctlr->cur_msg_mapped = true;
877 
878 	return 0;
879 }
880 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)881 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
882 {
883 	struct spi_transfer *xfer;
884 	struct device *tx_dev, *rx_dev;
885 
886 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
887 		return 0;
888 
889 	if (ctlr->dma_tx)
890 		tx_dev = ctlr->dma_tx->device->dev;
891 	else
892 		tx_dev = ctlr->dev.parent;
893 
894 	if (ctlr->dma_rx)
895 		rx_dev = ctlr->dma_rx->device->dev;
896 	else
897 		rx_dev = ctlr->dev.parent;
898 
899 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
900 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
901 			continue;
902 
903 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
904 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
905 	}
906 
907 	return 0;
908 }
909 #else /* !CONFIG_HAS_DMA */
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)910 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
911 			      struct sg_table *sgt, void *buf, size_t len,
912 			      enum dma_data_direction dir)
913 {
914 	return -EINVAL;
915 }
916 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)917 static inline void spi_unmap_buf(struct spi_controller *ctlr,
918 				 struct device *dev, struct sg_table *sgt,
919 				 enum dma_data_direction dir)
920 {
921 }
922 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)923 static inline int __spi_map_msg(struct spi_controller *ctlr,
924 				struct spi_message *msg)
925 {
926 	return 0;
927 }
928 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)929 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
930 				  struct spi_message *msg)
931 {
932 	return 0;
933 }
934 #endif /* !CONFIG_HAS_DMA */
935 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)936 static inline int spi_unmap_msg(struct spi_controller *ctlr,
937 				struct spi_message *msg)
938 {
939 	struct spi_transfer *xfer;
940 
941 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942 		/*
943 		 * Restore the original value of tx_buf or rx_buf if they are
944 		 * NULL.
945 		 */
946 		if (xfer->tx_buf == ctlr->dummy_tx)
947 			xfer->tx_buf = NULL;
948 		if (xfer->rx_buf == ctlr->dummy_rx)
949 			xfer->rx_buf = NULL;
950 	}
951 
952 	return __spi_unmap_msg(ctlr, msg);
953 }
954 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)955 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
956 {
957 	struct spi_transfer *xfer;
958 	void *tmp;
959 	unsigned int max_tx, max_rx;
960 
961 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
962 		max_tx = 0;
963 		max_rx = 0;
964 
965 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
967 			    !xfer->tx_buf)
968 				max_tx = max(xfer->len, max_tx);
969 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
970 			    !xfer->rx_buf)
971 				max_rx = max(xfer->len, max_rx);
972 		}
973 
974 		if (max_tx) {
975 			tmp = krealloc(ctlr->dummy_tx, max_tx,
976 				       GFP_KERNEL | GFP_DMA);
977 			if (!tmp)
978 				return -ENOMEM;
979 			ctlr->dummy_tx = tmp;
980 			memset(tmp, 0, max_tx);
981 		}
982 
983 		if (max_rx) {
984 			tmp = krealloc(ctlr->dummy_rx, max_rx,
985 				       GFP_KERNEL | GFP_DMA);
986 			if (!tmp)
987 				return -ENOMEM;
988 			ctlr->dummy_rx = tmp;
989 		}
990 
991 		if (max_tx || max_rx) {
992 			list_for_each_entry(xfer, &msg->transfers,
993 					    transfer_list) {
994 				if (!xfer->len)
995 					continue;
996 				if (!xfer->tx_buf)
997 					xfer->tx_buf = ctlr->dummy_tx;
998 				if (!xfer->rx_buf)
999 					xfer->rx_buf = ctlr->dummy_rx;
1000 			}
1001 		}
1002 	}
1003 
1004 	return __spi_map_msg(ctlr, msg);
1005 }
1006 
1007 /*
1008  * spi_transfer_one_message - Default implementation of transfer_one_message()
1009  *
1010  * This is a standard implementation of transfer_one_message() for
1011  * drivers which implement a transfer_one() operation.  It provides
1012  * standard handling of delays and chip select management.
1013  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1014 static int spi_transfer_one_message(struct spi_controller *ctlr,
1015 				    struct spi_message *msg)
1016 {
1017 	struct spi_transfer *xfer;
1018 	bool keep_cs = false;
1019 	int ret = 0;
1020 	unsigned long long ms = 1;
1021 	struct spi_statistics *statm = &ctlr->statistics;
1022 	struct spi_statistics *stats = &msg->spi->statistics;
1023 
1024 	spi_set_cs(msg->spi, true);
1025 
1026 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1027 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1028 
1029 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 		trace_spi_transfer_start(msg, xfer);
1031 
1032 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1033 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1034 
1035 		if (xfer->tx_buf || xfer->rx_buf) {
1036 			reinit_completion(&ctlr->xfer_completion);
1037 
1038 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1039 			if (ret < 0) {
1040 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1041 							       errors);
1042 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1043 							       errors);
1044 				dev_err(&msg->spi->dev,
1045 					"SPI transfer failed: %d\n", ret);
1046 				goto out;
1047 			}
1048 
1049 			if (ret > 0) {
1050 				ret = 0;
1051 				ms = 8LL * 1000LL * xfer->len;
1052 				do_div(ms, xfer->speed_hz);
1053 				ms += ms + 200; /* some tolerance */
1054 
1055 				if (ms > UINT_MAX)
1056 					ms = UINT_MAX;
1057 
1058 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1059 								 msecs_to_jiffies(ms));
1060 			}
1061 
1062 			if (ms == 0) {
1063 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1064 							       timedout);
1065 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1066 							       timedout);
1067 				dev_err(&msg->spi->dev,
1068 					"SPI transfer timed out\n");
1069 				msg->status = -ETIMEDOUT;
1070 			}
1071 		} else {
1072 			if (xfer->len)
1073 				dev_err(&msg->spi->dev,
1074 					"Bufferless transfer has length %u\n",
1075 					xfer->len);
1076 		}
1077 
1078 		trace_spi_transfer_stop(msg, xfer);
1079 
1080 		if (msg->status != -EINPROGRESS)
1081 			goto out;
1082 
1083 		if (xfer->delay_usecs) {
1084 			u16 us = xfer->delay_usecs;
1085 
1086 			if (us <= 10)
1087 				udelay(us);
1088 			else
1089 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1090 		}
1091 
1092 		if (xfer->cs_change) {
1093 			if (list_is_last(&xfer->transfer_list,
1094 					 &msg->transfers)) {
1095 				keep_cs = true;
1096 			} else {
1097 				spi_set_cs(msg->spi, false);
1098 				udelay(10);
1099 				spi_set_cs(msg->spi, true);
1100 			}
1101 		}
1102 
1103 		msg->actual_length += xfer->len;
1104 	}
1105 
1106 out:
1107 	if (ret != 0 || !keep_cs)
1108 		spi_set_cs(msg->spi, false);
1109 
1110 	if (msg->status == -EINPROGRESS)
1111 		msg->status = ret;
1112 
1113 	if (msg->status && ctlr->handle_err)
1114 		ctlr->handle_err(ctlr, msg);
1115 
1116 	spi_res_release(ctlr, msg);
1117 
1118 	spi_finalize_current_message(ctlr);
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * spi_finalize_current_transfer - report completion of a transfer
1125  * @ctlr: the controller reporting completion
1126  *
1127  * Called by SPI drivers using the core transfer_one_message()
1128  * implementation to notify it that the current interrupt driven
1129  * transfer has finished and the next one may be scheduled.
1130  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1131 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1132 {
1133 	complete(&ctlr->xfer_completion);
1134 }
1135 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1136 
1137 /**
1138  * __spi_pump_messages - function which processes spi message queue
1139  * @ctlr: controller to process queue for
1140  * @in_kthread: true if we are in the context of the message pump thread
1141  *
1142  * This function checks if there is any spi message in the queue that
1143  * needs processing and if so call out to the driver to initialize hardware
1144  * and transfer each message.
1145  *
1146  * Note that it is called both from the kthread itself and also from
1147  * inside spi_sync(); the queue extraction handling at the top of the
1148  * function should deal with this safely.
1149  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1150 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1151 {
1152 	unsigned long flags;
1153 	bool was_busy = false;
1154 	int ret;
1155 
1156 	/* Lock queue */
1157 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1158 
1159 	/* Make sure we are not already running a message */
1160 	if (ctlr->cur_msg) {
1161 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1162 		return;
1163 	}
1164 
1165 	/* If another context is idling the device then defer */
1166 	if (ctlr->idling) {
1167 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1168 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1169 		return;
1170 	}
1171 
1172 	/* Check if the queue is idle */
1173 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1174 		if (!ctlr->busy) {
1175 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176 			return;
1177 		}
1178 
1179 		/* Only do teardown in the thread */
1180 		if (!in_kthread) {
1181 			kthread_queue_work(&ctlr->kworker,
1182 					   &ctlr->pump_messages);
1183 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1184 			return;
1185 		}
1186 
1187 		ctlr->busy = false;
1188 		ctlr->idling = true;
1189 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1190 
1191 		kfree(ctlr->dummy_rx);
1192 		ctlr->dummy_rx = NULL;
1193 		kfree(ctlr->dummy_tx);
1194 		ctlr->dummy_tx = NULL;
1195 		if (ctlr->unprepare_transfer_hardware &&
1196 		    ctlr->unprepare_transfer_hardware(ctlr))
1197 			dev_err(&ctlr->dev,
1198 				"failed to unprepare transfer hardware\n");
1199 		if (ctlr->auto_runtime_pm) {
1200 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1201 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1202 		}
1203 		trace_spi_controller_idle(ctlr);
1204 
1205 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1206 		ctlr->idling = false;
1207 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1208 		return;
1209 	}
1210 
1211 	/* Extract head of queue */
1212 	ctlr->cur_msg =
1213 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1214 
1215 	list_del_init(&ctlr->cur_msg->queue);
1216 	if (ctlr->busy)
1217 		was_busy = true;
1218 	else
1219 		ctlr->busy = true;
1220 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1221 
1222 	mutex_lock(&ctlr->io_mutex);
1223 
1224 	if (!was_busy && ctlr->auto_runtime_pm) {
1225 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1226 		if (ret < 0) {
1227 			pm_runtime_put_noidle(ctlr->dev.parent);
1228 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1229 				ret);
1230 			mutex_unlock(&ctlr->io_mutex);
1231 			return;
1232 		}
1233 	}
1234 
1235 	if (!was_busy)
1236 		trace_spi_controller_busy(ctlr);
1237 
1238 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1239 		ret = ctlr->prepare_transfer_hardware(ctlr);
1240 		if (ret) {
1241 			dev_err(&ctlr->dev,
1242 				"failed to prepare transfer hardware\n");
1243 
1244 			if (ctlr->auto_runtime_pm)
1245 				pm_runtime_put(ctlr->dev.parent);
1246 			mutex_unlock(&ctlr->io_mutex);
1247 			return;
1248 		}
1249 	}
1250 
1251 	trace_spi_message_start(ctlr->cur_msg);
1252 
1253 	if (ctlr->prepare_message) {
1254 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1255 		if (ret) {
1256 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1257 				ret);
1258 			ctlr->cur_msg->status = ret;
1259 			spi_finalize_current_message(ctlr);
1260 			goto out;
1261 		}
1262 		ctlr->cur_msg_prepared = true;
1263 	}
1264 
1265 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1266 	if (ret) {
1267 		ctlr->cur_msg->status = ret;
1268 		spi_finalize_current_message(ctlr);
1269 		goto out;
1270 	}
1271 
1272 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1273 	if (ret) {
1274 		dev_err(&ctlr->dev,
1275 			"failed to transfer one message from queue\n");
1276 		goto out;
1277 	}
1278 
1279 out:
1280 	mutex_unlock(&ctlr->io_mutex);
1281 
1282 	/* Prod the scheduler in case transfer_one() was busy waiting */
1283 	if (!ret)
1284 		cond_resched();
1285 }
1286 
1287 /**
1288  * spi_pump_messages - kthread work function which processes spi message queue
1289  * @work: pointer to kthread work struct contained in the controller struct
1290  */
spi_pump_messages(struct kthread_work * work)1291 static void spi_pump_messages(struct kthread_work *work)
1292 {
1293 	struct spi_controller *ctlr =
1294 		container_of(work, struct spi_controller, pump_messages);
1295 
1296 	__spi_pump_messages(ctlr, true);
1297 }
1298 
spi_init_queue(struct spi_controller * ctlr)1299 static int spi_init_queue(struct spi_controller *ctlr)
1300 {
1301 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1302 
1303 	ctlr->running = false;
1304 	ctlr->busy = false;
1305 
1306 	kthread_init_worker(&ctlr->kworker);
1307 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1308 					 "%s", dev_name(&ctlr->dev));
1309 	if (IS_ERR(ctlr->kworker_task)) {
1310 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1311 		return PTR_ERR(ctlr->kworker_task);
1312 	}
1313 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1314 
1315 	/*
1316 	 * Controller config will indicate if this controller should run the
1317 	 * message pump with high (realtime) priority to reduce the transfer
1318 	 * latency on the bus by minimising the delay between a transfer
1319 	 * request and the scheduling of the message pump thread. Without this
1320 	 * setting the message pump thread will remain at default priority.
1321 	 */
1322 	if (ctlr->rt) {
1323 		dev_info(&ctlr->dev,
1324 			"will run message pump with realtime priority\n");
1325 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * spi_get_next_queued_message() - called by driver to check for queued
1333  * messages
1334  * @ctlr: the controller to check for queued messages
1335  *
1336  * If there are more messages in the queue, the next message is returned from
1337  * this call.
1338  *
1339  * Return: the next message in the queue, else NULL if the queue is empty.
1340  */
spi_get_next_queued_message(struct spi_controller * ctlr)1341 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1342 {
1343 	struct spi_message *next;
1344 	unsigned long flags;
1345 
1346 	/* get a pointer to the next message, if any */
1347 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1348 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1349 					queue);
1350 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1351 
1352 	return next;
1353 }
1354 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1355 
1356 /**
1357  * spi_finalize_current_message() - the current message is complete
1358  * @ctlr: the controller to return the message to
1359  *
1360  * Called by the driver to notify the core that the message in the front of the
1361  * queue is complete and can be removed from the queue.
1362  */
spi_finalize_current_message(struct spi_controller * ctlr)1363 void spi_finalize_current_message(struct spi_controller *ctlr)
1364 {
1365 	struct spi_message *mesg;
1366 	unsigned long flags;
1367 	int ret;
1368 
1369 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1370 	mesg = ctlr->cur_msg;
1371 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1372 
1373 	spi_unmap_msg(ctlr, mesg);
1374 
1375 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1376 		ret = ctlr->unprepare_message(ctlr, mesg);
1377 		if (ret) {
1378 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1379 				ret);
1380 		}
1381 	}
1382 
1383 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1384 	ctlr->cur_msg = NULL;
1385 	ctlr->cur_msg_prepared = false;
1386 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1387 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1388 
1389 	trace_spi_message_done(mesg);
1390 
1391 	mesg->state = NULL;
1392 	if (mesg->complete)
1393 		mesg->complete(mesg->context);
1394 }
1395 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1396 
spi_start_queue(struct spi_controller * ctlr)1397 static int spi_start_queue(struct spi_controller *ctlr)
1398 {
1399 	unsigned long flags;
1400 
1401 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1402 
1403 	if (ctlr->running || ctlr->busy) {
1404 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1405 		return -EBUSY;
1406 	}
1407 
1408 	ctlr->running = true;
1409 	ctlr->cur_msg = NULL;
1410 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1411 
1412 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1413 
1414 	return 0;
1415 }
1416 
spi_stop_queue(struct spi_controller * ctlr)1417 static int spi_stop_queue(struct spi_controller *ctlr)
1418 {
1419 	unsigned long flags;
1420 	unsigned limit = 500;
1421 	int ret = 0;
1422 
1423 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1424 
1425 	/*
1426 	 * This is a bit lame, but is optimized for the common execution path.
1427 	 * A wait_queue on the ctlr->busy could be used, but then the common
1428 	 * execution path (pump_messages) would be required to call wake_up or
1429 	 * friends on every SPI message. Do this instead.
1430 	 */
1431 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1432 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1433 		usleep_range(10000, 11000);
1434 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1435 	}
1436 
1437 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1438 		ret = -EBUSY;
1439 	else
1440 		ctlr->running = false;
1441 
1442 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1443 
1444 	if (ret) {
1445 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1446 		return ret;
1447 	}
1448 	return ret;
1449 }
1450 
spi_destroy_queue(struct spi_controller * ctlr)1451 static int spi_destroy_queue(struct spi_controller *ctlr)
1452 {
1453 	int ret;
1454 
1455 	ret = spi_stop_queue(ctlr);
1456 
1457 	/*
1458 	 * kthread_flush_worker will block until all work is done.
1459 	 * If the reason that stop_queue timed out is that the work will never
1460 	 * finish, then it does no good to call flush/stop thread, so
1461 	 * return anyway.
1462 	 */
1463 	if (ret) {
1464 		dev_err(&ctlr->dev, "problem destroying queue\n");
1465 		return ret;
1466 	}
1467 
1468 	kthread_flush_worker(&ctlr->kworker);
1469 	kthread_stop(ctlr->kworker_task);
1470 
1471 	return 0;
1472 }
1473 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1474 static int __spi_queued_transfer(struct spi_device *spi,
1475 				 struct spi_message *msg,
1476 				 bool need_pump)
1477 {
1478 	struct spi_controller *ctlr = spi->controller;
1479 	unsigned long flags;
1480 
1481 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1482 
1483 	if (!ctlr->running) {
1484 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1485 		return -ESHUTDOWN;
1486 	}
1487 	msg->actual_length = 0;
1488 	msg->status = -EINPROGRESS;
1489 
1490 	list_add_tail(&msg->queue, &ctlr->queue);
1491 	if (!ctlr->busy && need_pump)
1492 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1493 
1494 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1495 	return 0;
1496 }
1497 
1498 /**
1499  * spi_queued_transfer - transfer function for queued transfers
1500  * @spi: spi device which is requesting transfer
1501  * @msg: spi message which is to handled is queued to driver queue
1502  *
1503  * Return: zero on success, else a negative error code.
1504  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1505 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1506 {
1507 	return __spi_queued_transfer(spi, msg, true);
1508 }
1509 
spi_controller_initialize_queue(struct spi_controller * ctlr)1510 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1511 {
1512 	int ret;
1513 
1514 	ctlr->transfer = spi_queued_transfer;
1515 	if (!ctlr->transfer_one_message)
1516 		ctlr->transfer_one_message = spi_transfer_one_message;
1517 
1518 	/* Initialize and start queue */
1519 	ret = spi_init_queue(ctlr);
1520 	if (ret) {
1521 		dev_err(&ctlr->dev, "problem initializing queue\n");
1522 		goto err_init_queue;
1523 	}
1524 	ctlr->queued = true;
1525 	ret = spi_start_queue(ctlr);
1526 	if (ret) {
1527 		dev_err(&ctlr->dev, "problem starting queue\n");
1528 		goto err_start_queue;
1529 	}
1530 
1531 	return 0;
1532 
1533 err_start_queue:
1534 	spi_destroy_queue(ctlr);
1535 err_init_queue:
1536 	return ret;
1537 }
1538 
1539 /*-------------------------------------------------------------------------*/
1540 
1541 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1542 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1543 			   struct device_node *nc)
1544 {
1545 	u32 value;
1546 	int rc;
1547 
1548 	/* Mode (clock phase/polarity/etc.) */
1549 	if (of_property_read_bool(nc, "spi-cpha"))
1550 		spi->mode |= SPI_CPHA;
1551 	if (of_property_read_bool(nc, "spi-cpol"))
1552 		spi->mode |= SPI_CPOL;
1553 	if (of_property_read_bool(nc, "spi-cs-high"))
1554 		spi->mode |= SPI_CS_HIGH;
1555 	if (of_property_read_bool(nc, "spi-3wire"))
1556 		spi->mode |= SPI_3WIRE;
1557 	if (of_property_read_bool(nc, "spi-lsb-first"))
1558 		spi->mode |= SPI_LSB_FIRST;
1559 
1560 	/* Device DUAL/QUAD mode */
1561 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1562 		switch (value) {
1563 		case 1:
1564 			break;
1565 		case 2:
1566 			spi->mode |= SPI_TX_DUAL;
1567 			break;
1568 		case 4:
1569 			spi->mode |= SPI_TX_QUAD;
1570 			break;
1571 		default:
1572 			dev_warn(&ctlr->dev,
1573 				"spi-tx-bus-width %d not supported\n",
1574 				value);
1575 			break;
1576 		}
1577 	}
1578 
1579 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1580 		switch (value) {
1581 		case 1:
1582 			break;
1583 		case 2:
1584 			spi->mode |= SPI_RX_DUAL;
1585 			break;
1586 		case 4:
1587 			spi->mode |= SPI_RX_QUAD;
1588 			break;
1589 		default:
1590 			dev_warn(&ctlr->dev,
1591 				"spi-rx-bus-width %d not supported\n",
1592 				value);
1593 			break;
1594 		}
1595 	}
1596 
1597 	if (spi_controller_is_slave(ctlr)) {
1598 		if (strcmp(nc->name, "slave")) {
1599 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1600 				nc);
1601 			return -EINVAL;
1602 		}
1603 		return 0;
1604 	}
1605 
1606 	/* Device address */
1607 	rc = of_property_read_u32(nc, "reg", &value);
1608 	if (rc) {
1609 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1610 			nc, rc);
1611 		return rc;
1612 	}
1613 	spi->chip_select = value;
1614 
1615 	/* Device speed */
1616 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1617 	if (rc) {
1618 		dev_err(&ctlr->dev,
1619 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1620 		return rc;
1621 	}
1622 	spi->max_speed_hz = value;
1623 
1624 	return 0;
1625 }
1626 
1627 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)1628 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1629 {
1630 	struct spi_device *spi;
1631 	int rc;
1632 
1633 	/* Alloc an spi_device */
1634 	spi = spi_alloc_device(ctlr);
1635 	if (!spi) {
1636 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1637 		rc = -ENOMEM;
1638 		goto err_out;
1639 	}
1640 
1641 	/* Select device driver */
1642 	rc = of_modalias_node(nc, spi->modalias,
1643 				sizeof(spi->modalias));
1644 	if (rc < 0) {
1645 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1646 		goto err_out;
1647 	}
1648 
1649 	rc = of_spi_parse_dt(ctlr, spi, nc);
1650 	if (rc)
1651 		goto err_out;
1652 
1653 	/* Store a pointer to the node in the device structure */
1654 	of_node_get(nc);
1655 	spi->dev.of_node = nc;
1656 
1657 	/* Register the new device */
1658 	rc = spi_add_device(spi);
1659 	if (rc) {
1660 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1661 		goto err_of_node_put;
1662 	}
1663 
1664 	return spi;
1665 
1666 err_of_node_put:
1667 	of_node_put(nc);
1668 err_out:
1669 	spi_dev_put(spi);
1670 	return ERR_PTR(rc);
1671 }
1672 
1673 /**
1674  * of_register_spi_devices() - Register child devices onto the SPI bus
1675  * @ctlr:	Pointer to spi_controller device
1676  *
1677  * Registers an spi_device for each child node of controller node which
1678  * represents a valid SPI slave.
1679  */
of_register_spi_devices(struct spi_controller * ctlr)1680 static void of_register_spi_devices(struct spi_controller *ctlr)
1681 {
1682 	struct spi_device *spi;
1683 	struct device_node *nc;
1684 
1685 	if (!ctlr->dev.of_node)
1686 		return;
1687 
1688 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1689 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1690 			continue;
1691 		spi = of_register_spi_device(ctlr, nc);
1692 		if (IS_ERR(spi)) {
1693 			dev_warn(&ctlr->dev,
1694 				 "Failed to create SPI device for %pOF\n", nc);
1695 			of_node_clear_flag(nc, OF_POPULATED);
1696 		}
1697 	}
1698 }
1699 #else
of_register_spi_devices(struct spi_controller * ctlr)1700 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1701 #endif
1702 
1703 #ifdef CONFIG_ACPI
acpi_spi_parse_apple_properties(struct spi_device * spi)1704 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1705 {
1706 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1707 	const union acpi_object *obj;
1708 
1709 	if (!x86_apple_machine)
1710 		return;
1711 
1712 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1713 	    && obj->buffer.length >= 4)
1714 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1715 
1716 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1717 	    && obj->buffer.length == 8)
1718 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1719 
1720 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1721 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1722 		spi->mode |= SPI_LSB_FIRST;
1723 
1724 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1725 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1726 		spi->mode |= SPI_CPOL;
1727 
1728 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1729 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1730 		spi->mode |= SPI_CPHA;
1731 }
1732 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1733 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1734 {
1735 	struct spi_device *spi = data;
1736 	struct spi_controller *ctlr = spi->controller;
1737 
1738 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1739 		struct acpi_resource_spi_serialbus *sb;
1740 
1741 		sb = &ares->data.spi_serial_bus;
1742 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1743 			/*
1744 			 * ACPI DeviceSelection numbering is handled by the
1745 			 * host controller driver in Windows and can vary
1746 			 * from driver to driver. In Linux we always expect
1747 			 * 0 .. max - 1 so we need to ask the driver to
1748 			 * translate between the two schemes.
1749 			 */
1750 			if (ctlr->fw_translate_cs) {
1751 				int cs = ctlr->fw_translate_cs(ctlr,
1752 						sb->device_selection);
1753 				if (cs < 0)
1754 					return cs;
1755 				spi->chip_select = cs;
1756 			} else {
1757 				spi->chip_select = sb->device_selection;
1758 			}
1759 
1760 			spi->max_speed_hz = sb->connection_speed;
1761 
1762 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1763 				spi->mode |= SPI_CPHA;
1764 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1765 				spi->mode |= SPI_CPOL;
1766 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1767 				spi->mode |= SPI_CS_HIGH;
1768 		}
1769 	} else if (spi->irq < 0) {
1770 		struct resource r;
1771 
1772 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1773 			spi->irq = r.start;
1774 	}
1775 
1776 	/* Always tell the ACPI core to skip this resource */
1777 	return 1;
1778 }
1779 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)1780 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1781 					    struct acpi_device *adev)
1782 {
1783 	struct list_head resource_list;
1784 	struct spi_device *spi;
1785 	int ret;
1786 
1787 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1788 	    acpi_device_enumerated(adev))
1789 		return AE_OK;
1790 
1791 	spi = spi_alloc_device(ctlr);
1792 	if (!spi) {
1793 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1794 			dev_name(&adev->dev));
1795 		return AE_NO_MEMORY;
1796 	}
1797 
1798 	ACPI_COMPANION_SET(&spi->dev, adev);
1799 	spi->irq = -1;
1800 
1801 	INIT_LIST_HEAD(&resource_list);
1802 	ret = acpi_dev_get_resources(adev, &resource_list,
1803 				     acpi_spi_add_resource, spi);
1804 	acpi_dev_free_resource_list(&resource_list);
1805 
1806 	acpi_spi_parse_apple_properties(spi);
1807 
1808 	if (ret < 0 || !spi->max_speed_hz) {
1809 		spi_dev_put(spi);
1810 		return AE_OK;
1811 	}
1812 
1813 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1814 			  sizeof(spi->modalias));
1815 
1816 	if (spi->irq < 0)
1817 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1818 
1819 	acpi_device_set_enumerated(adev);
1820 
1821 	adev->power.flags.ignore_parent = true;
1822 	if (spi_add_device(spi)) {
1823 		adev->power.flags.ignore_parent = false;
1824 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1825 			dev_name(&adev->dev));
1826 		spi_dev_put(spi);
1827 	}
1828 
1829 	return AE_OK;
1830 }
1831 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1832 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1833 				       void *data, void **return_value)
1834 {
1835 	struct spi_controller *ctlr = data;
1836 	struct acpi_device *adev;
1837 
1838 	if (acpi_bus_get_device(handle, &adev))
1839 		return AE_OK;
1840 
1841 	return acpi_register_spi_device(ctlr, adev);
1842 }
1843 
acpi_register_spi_devices(struct spi_controller * ctlr)1844 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1845 {
1846 	acpi_status status;
1847 	acpi_handle handle;
1848 
1849 	handle = ACPI_HANDLE(ctlr->dev.parent);
1850 	if (!handle)
1851 		return;
1852 
1853 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1854 				     acpi_spi_add_device, NULL, ctlr, NULL);
1855 	if (ACPI_FAILURE(status))
1856 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1857 }
1858 #else
acpi_register_spi_devices(struct spi_controller * ctlr)1859 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1860 #endif /* CONFIG_ACPI */
1861 
spi_controller_release(struct device * dev)1862 static void spi_controller_release(struct device *dev)
1863 {
1864 	struct spi_controller *ctlr;
1865 
1866 	ctlr = container_of(dev, struct spi_controller, dev);
1867 	kfree(ctlr);
1868 }
1869 
1870 static struct class spi_master_class = {
1871 	.name		= "spi_master",
1872 	.owner		= THIS_MODULE,
1873 	.dev_release	= spi_controller_release,
1874 	.dev_groups	= spi_master_groups,
1875 };
1876 
1877 #ifdef CONFIG_SPI_SLAVE
1878 /**
1879  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1880  *		     controller
1881  * @spi: device used for the current transfer
1882  */
spi_slave_abort(struct spi_device * spi)1883 int spi_slave_abort(struct spi_device *spi)
1884 {
1885 	struct spi_controller *ctlr = spi->controller;
1886 
1887 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1888 		return ctlr->slave_abort(ctlr);
1889 
1890 	return -ENOTSUPP;
1891 }
1892 EXPORT_SYMBOL_GPL(spi_slave_abort);
1893 
match_true(struct device * dev,void * data)1894 static int match_true(struct device *dev, void *data)
1895 {
1896 	return 1;
1897 }
1898 
spi_slave_show(struct device * dev,struct device_attribute * attr,char * buf)1899 static ssize_t spi_slave_show(struct device *dev,
1900 			      struct device_attribute *attr, char *buf)
1901 {
1902 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1903 						   dev);
1904 	struct device *child;
1905 
1906 	child = device_find_child(&ctlr->dev, NULL, match_true);
1907 	return sprintf(buf, "%s\n",
1908 		       child ? to_spi_device(child)->modalias : NULL);
1909 }
1910 
spi_slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1911 static ssize_t spi_slave_store(struct device *dev,
1912 			       struct device_attribute *attr, const char *buf,
1913 			       size_t count)
1914 {
1915 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1916 						   dev);
1917 	struct spi_device *spi;
1918 	struct device *child;
1919 	char name[32];
1920 	int rc;
1921 
1922 	rc = sscanf(buf, "%31s", name);
1923 	if (rc != 1 || !name[0])
1924 		return -EINVAL;
1925 
1926 	child = device_find_child(&ctlr->dev, NULL, match_true);
1927 	if (child) {
1928 		/* Remove registered slave */
1929 		device_unregister(child);
1930 		put_device(child);
1931 	}
1932 
1933 	if (strcmp(name, "(null)")) {
1934 		/* Register new slave */
1935 		spi = spi_alloc_device(ctlr);
1936 		if (!spi)
1937 			return -ENOMEM;
1938 
1939 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1940 
1941 		rc = spi_add_device(spi);
1942 		if (rc) {
1943 			spi_dev_put(spi);
1944 			return rc;
1945 		}
1946 	}
1947 
1948 	return count;
1949 }
1950 
1951 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1952 
1953 static struct attribute *spi_slave_attrs[] = {
1954 	&dev_attr_slave.attr,
1955 	NULL,
1956 };
1957 
1958 static const struct attribute_group spi_slave_group = {
1959 	.attrs = spi_slave_attrs,
1960 };
1961 
1962 static const struct attribute_group *spi_slave_groups[] = {
1963 	&spi_controller_statistics_group,
1964 	&spi_slave_group,
1965 	NULL,
1966 };
1967 
1968 static struct class spi_slave_class = {
1969 	.name		= "spi_slave",
1970 	.owner		= THIS_MODULE,
1971 	.dev_release	= spi_controller_release,
1972 	.dev_groups	= spi_slave_groups,
1973 };
1974 #else
1975 extern struct class spi_slave_class;	/* dummy */
1976 #endif
1977 
1978 /**
1979  * __spi_alloc_controller - allocate an SPI master or slave controller
1980  * @dev: the controller, possibly using the platform_bus
1981  * @size: how much zeroed driver-private data to allocate; the pointer to this
1982  *	memory is in the driver_data field of the returned device,
1983  *	accessible with spi_controller_get_devdata().
1984  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1985  *	slave (true) controller
1986  * Context: can sleep
1987  *
1988  * This call is used only by SPI controller drivers, which are the
1989  * only ones directly touching chip registers.  It's how they allocate
1990  * an spi_controller structure, prior to calling spi_register_controller().
1991  *
1992  * This must be called from context that can sleep.
1993  *
1994  * The caller is responsible for assigning the bus number and initializing the
1995  * controller's methods before calling spi_register_controller(); and (after
1996  * errors adding the device) calling spi_controller_put() to prevent a memory
1997  * leak.
1998  *
1999  * Return: the SPI controller structure on success, else NULL.
2000  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2001 struct spi_controller *__spi_alloc_controller(struct device *dev,
2002 					      unsigned int size, bool slave)
2003 {
2004 	struct spi_controller	*ctlr;
2005 
2006 	if (!dev)
2007 		return NULL;
2008 
2009 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2010 	if (!ctlr)
2011 		return NULL;
2012 
2013 	device_initialize(&ctlr->dev);
2014 	ctlr->bus_num = -1;
2015 	ctlr->num_chipselect = 1;
2016 	ctlr->slave = slave;
2017 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2018 		ctlr->dev.class = &spi_slave_class;
2019 	else
2020 		ctlr->dev.class = &spi_master_class;
2021 	ctlr->dev.parent = dev;
2022 	pm_suspend_ignore_children(&ctlr->dev, true);
2023 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2024 
2025 	return ctlr;
2026 }
2027 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2028 
2029 #ifdef CONFIG_OF
of_spi_register_master(struct spi_controller * ctlr)2030 static int of_spi_register_master(struct spi_controller *ctlr)
2031 {
2032 	int nb, i, *cs;
2033 	struct device_node *np = ctlr->dev.of_node;
2034 
2035 	if (!np)
2036 		return 0;
2037 
2038 	nb = of_gpio_named_count(np, "cs-gpios");
2039 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2040 
2041 	/* Return error only for an incorrectly formed cs-gpios property */
2042 	if (nb == 0 || nb == -ENOENT)
2043 		return 0;
2044 	else if (nb < 0)
2045 		return nb;
2046 
2047 	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2048 			  GFP_KERNEL);
2049 	ctlr->cs_gpios = cs;
2050 
2051 	if (!ctlr->cs_gpios)
2052 		return -ENOMEM;
2053 
2054 	for (i = 0; i < ctlr->num_chipselect; i++)
2055 		cs[i] = -ENOENT;
2056 
2057 	for (i = 0; i < nb; i++)
2058 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2059 
2060 	return 0;
2061 }
2062 #else
of_spi_register_master(struct spi_controller * ctlr)2063 static int of_spi_register_master(struct spi_controller *ctlr)
2064 {
2065 	return 0;
2066 }
2067 #endif
2068 
2069 /**
2070  * spi_register_controller - register SPI master or slave controller
2071  * @ctlr: initialized master, originally from spi_alloc_master() or
2072  *	spi_alloc_slave()
2073  * Context: can sleep
2074  *
2075  * SPI controllers connect to their drivers using some non-SPI bus,
2076  * such as the platform bus.  The final stage of probe() in that code
2077  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2078  *
2079  * SPI controllers use board specific (often SOC specific) bus numbers,
2080  * and board-specific addressing for SPI devices combines those numbers
2081  * with chip select numbers.  Since SPI does not directly support dynamic
2082  * device identification, boards need configuration tables telling which
2083  * chip is at which address.
2084  *
2085  * This must be called from context that can sleep.  It returns zero on
2086  * success, else a negative error code (dropping the controller's refcount).
2087  * After a successful return, the caller is responsible for calling
2088  * spi_unregister_controller().
2089  *
2090  * Return: zero on success, else a negative error code.
2091  */
spi_register_controller(struct spi_controller * ctlr)2092 int spi_register_controller(struct spi_controller *ctlr)
2093 {
2094 	struct device		*dev = ctlr->dev.parent;
2095 	struct boardinfo	*bi;
2096 	int			status = -ENODEV;
2097 	int			id, first_dynamic;
2098 
2099 	if (!dev)
2100 		return -ENODEV;
2101 
2102 	if (!spi_controller_is_slave(ctlr)) {
2103 		status = of_spi_register_master(ctlr);
2104 		if (status)
2105 			return status;
2106 	}
2107 
2108 	/* even if it's just one always-selected device, there must
2109 	 * be at least one chipselect
2110 	 */
2111 	if (ctlr->num_chipselect == 0)
2112 		return -EINVAL;
2113 	if (ctlr->bus_num >= 0) {
2114 		/* devices with a fixed bus num must check-in with the num */
2115 		mutex_lock(&board_lock);
2116 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117 			ctlr->bus_num + 1, GFP_KERNEL);
2118 		mutex_unlock(&board_lock);
2119 		if (WARN(id < 0, "couldn't get idr"))
2120 			return id == -ENOSPC ? -EBUSY : id;
2121 		ctlr->bus_num = id;
2122 	} else if (ctlr->dev.of_node) {
2123 		/* allocate dynamic bus number using Linux idr */
2124 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2125 		if (id >= 0) {
2126 			ctlr->bus_num = id;
2127 			mutex_lock(&board_lock);
2128 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2129 				       ctlr->bus_num + 1, GFP_KERNEL);
2130 			mutex_unlock(&board_lock);
2131 			if (WARN(id < 0, "couldn't get idr"))
2132 				return id == -ENOSPC ? -EBUSY : id;
2133 		}
2134 	}
2135 	if (ctlr->bus_num < 0) {
2136 		first_dynamic = of_alias_get_highest_id("spi");
2137 		if (first_dynamic < 0)
2138 			first_dynamic = 0;
2139 		else
2140 			first_dynamic++;
2141 
2142 		mutex_lock(&board_lock);
2143 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2144 			       0, GFP_KERNEL);
2145 		mutex_unlock(&board_lock);
2146 		if (WARN(id < 0, "couldn't get idr"))
2147 			return id;
2148 		ctlr->bus_num = id;
2149 	}
2150 	INIT_LIST_HEAD(&ctlr->queue);
2151 	spin_lock_init(&ctlr->queue_lock);
2152 	spin_lock_init(&ctlr->bus_lock_spinlock);
2153 	mutex_init(&ctlr->bus_lock_mutex);
2154 	mutex_init(&ctlr->io_mutex);
2155 	ctlr->bus_lock_flag = 0;
2156 	init_completion(&ctlr->xfer_completion);
2157 	if (!ctlr->max_dma_len)
2158 		ctlr->max_dma_len = INT_MAX;
2159 
2160 	/* register the device, then userspace will see it.
2161 	 * registration fails if the bus ID is in use.
2162 	 */
2163 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2164 	status = device_add(&ctlr->dev);
2165 	if (status < 0) {
2166 		/* free bus id */
2167 		mutex_lock(&board_lock);
2168 		idr_remove(&spi_master_idr, ctlr->bus_num);
2169 		mutex_unlock(&board_lock);
2170 		goto done;
2171 	}
2172 	dev_dbg(dev, "registered %s %s\n",
2173 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2174 			dev_name(&ctlr->dev));
2175 
2176 	/* If we're using a queued driver, start the queue */
2177 	if (ctlr->transfer)
2178 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2179 	else {
2180 		status = spi_controller_initialize_queue(ctlr);
2181 		if (status) {
2182 			device_del(&ctlr->dev);
2183 			/* free bus id */
2184 			mutex_lock(&board_lock);
2185 			idr_remove(&spi_master_idr, ctlr->bus_num);
2186 			mutex_unlock(&board_lock);
2187 			goto done;
2188 		}
2189 	}
2190 	/* add statistics */
2191 	spin_lock_init(&ctlr->statistics.lock);
2192 
2193 	mutex_lock(&board_lock);
2194 	list_add_tail(&ctlr->list, &spi_controller_list);
2195 	list_for_each_entry(bi, &board_list, list)
2196 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2197 	mutex_unlock(&board_lock);
2198 
2199 	/* Register devices from the device tree and ACPI */
2200 	of_register_spi_devices(ctlr);
2201 	acpi_register_spi_devices(ctlr);
2202 done:
2203 	return status;
2204 }
2205 EXPORT_SYMBOL_GPL(spi_register_controller);
2206 
devm_spi_unregister(struct device * dev,void * res)2207 static void devm_spi_unregister(struct device *dev, void *res)
2208 {
2209 	spi_unregister_controller(*(struct spi_controller **)res);
2210 }
2211 
2212 /**
2213  * devm_spi_register_controller - register managed SPI master or slave
2214  *	controller
2215  * @dev:    device managing SPI controller
2216  * @ctlr: initialized controller, originally from spi_alloc_master() or
2217  *	spi_alloc_slave()
2218  * Context: can sleep
2219  *
2220  * Register a SPI device as with spi_register_controller() which will
2221  * automatically be unregister
2222  *
2223  * Return: zero on success, else a negative error code.
2224  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2225 int devm_spi_register_controller(struct device *dev,
2226 				 struct spi_controller *ctlr)
2227 {
2228 	struct spi_controller **ptr;
2229 	int ret;
2230 
2231 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2232 	if (!ptr)
2233 		return -ENOMEM;
2234 
2235 	ret = spi_register_controller(ctlr);
2236 	if (!ret) {
2237 		*ptr = ctlr;
2238 		devres_add(dev, ptr);
2239 	} else {
2240 		devres_free(ptr);
2241 	}
2242 
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2246 
__unregister(struct device * dev,void * null)2247 static int __unregister(struct device *dev, void *null)
2248 {
2249 	spi_unregister_device(to_spi_device(dev));
2250 	return 0;
2251 }
2252 
2253 /**
2254  * spi_unregister_controller - unregister SPI master or slave controller
2255  * @ctlr: the controller being unregistered
2256  * Context: can sleep
2257  *
2258  * This call is used only by SPI controller drivers, which are the
2259  * only ones directly touching chip registers.
2260  *
2261  * This must be called from context that can sleep.
2262  */
spi_unregister_controller(struct spi_controller * ctlr)2263 void spi_unregister_controller(struct spi_controller *ctlr)
2264 {
2265 	struct spi_controller *found;
2266 	int id = ctlr->bus_num;
2267 	int dummy;
2268 
2269 	/* First make sure that this controller was ever added */
2270 	mutex_lock(&board_lock);
2271 	found = idr_find(&spi_master_idr, id);
2272 	mutex_unlock(&board_lock);
2273 	if (ctlr->queued) {
2274 		if (spi_destroy_queue(ctlr))
2275 			dev_err(&ctlr->dev, "queue remove failed\n");
2276 	}
2277 	mutex_lock(&board_lock);
2278 	list_del(&ctlr->list);
2279 	mutex_unlock(&board_lock);
2280 
2281 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2282 	device_unregister(&ctlr->dev);
2283 	/* free bus id */
2284 	mutex_lock(&board_lock);
2285 	if (found == ctlr)
2286 		idr_remove(&spi_master_idr, id);
2287 	mutex_unlock(&board_lock);
2288 }
2289 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2290 
spi_controller_suspend(struct spi_controller * ctlr)2291 int spi_controller_suspend(struct spi_controller *ctlr)
2292 {
2293 	int ret;
2294 
2295 	/* Basically no-ops for non-queued controllers */
2296 	if (!ctlr->queued)
2297 		return 0;
2298 
2299 	ret = spi_stop_queue(ctlr);
2300 	if (ret)
2301 		dev_err(&ctlr->dev, "queue stop failed\n");
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2306 
spi_controller_resume(struct spi_controller * ctlr)2307 int spi_controller_resume(struct spi_controller *ctlr)
2308 {
2309 	int ret;
2310 
2311 	if (!ctlr->queued)
2312 		return 0;
2313 
2314 	ret = spi_start_queue(ctlr);
2315 	if (ret)
2316 		dev_err(&ctlr->dev, "queue restart failed\n");
2317 
2318 	return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(spi_controller_resume);
2321 
__spi_controller_match(struct device * dev,const void * data)2322 static int __spi_controller_match(struct device *dev, const void *data)
2323 {
2324 	struct spi_controller *ctlr;
2325 	const u16 *bus_num = data;
2326 
2327 	ctlr = container_of(dev, struct spi_controller, dev);
2328 	return ctlr->bus_num == *bus_num;
2329 }
2330 
2331 /**
2332  * spi_busnum_to_master - look up master associated with bus_num
2333  * @bus_num: the master's bus number
2334  * Context: can sleep
2335  *
2336  * This call may be used with devices that are registered after
2337  * arch init time.  It returns a refcounted pointer to the relevant
2338  * spi_controller (which the caller must release), or NULL if there is
2339  * no such master registered.
2340  *
2341  * Return: the SPI master structure on success, else NULL.
2342  */
spi_busnum_to_master(u16 bus_num)2343 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2344 {
2345 	struct device		*dev;
2346 	struct spi_controller	*ctlr = NULL;
2347 
2348 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2349 				__spi_controller_match);
2350 	if (dev)
2351 		ctlr = container_of(dev, struct spi_controller, dev);
2352 	/* reference got in class_find_device */
2353 	return ctlr;
2354 }
2355 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2356 
2357 /*-------------------------------------------------------------------------*/
2358 
2359 /* Core methods for SPI resource management */
2360 
2361 /**
2362  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2363  *                 during the processing of a spi_message while using
2364  *                 spi_transfer_one
2365  * @spi:     the spi device for which we allocate memory
2366  * @release: the release code to execute for this resource
2367  * @size:    size to alloc and return
2368  * @gfp:     GFP allocation flags
2369  *
2370  * Return: the pointer to the allocated data
2371  *
2372  * This may get enhanced in the future to allocate from a memory pool
2373  * of the @spi_device or @spi_controller to avoid repeated allocations.
2374  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2375 void *spi_res_alloc(struct spi_device *spi,
2376 		    spi_res_release_t release,
2377 		    size_t size, gfp_t gfp)
2378 {
2379 	struct spi_res *sres;
2380 
2381 	sres = kzalloc(sizeof(*sres) + size, gfp);
2382 	if (!sres)
2383 		return NULL;
2384 
2385 	INIT_LIST_HEAD(&sres->entry);
2386 	sres->release = release;
2387 
2388 	return sres->data;
2389 }
2390 EXPORT_SYMBOL_GPL(spi_res_alloc);
2391 
2392 /**
2393  * spi_res_free - free an spi resource
2394  * @res: pointer to the custom data of a resource
2395  *
2396  */
spi_res_free(void * res)2397 void spi_res_free(void *res)
2398 {
2399 	struct spi_res *sres = container_of(res, struct spi_res, data);
2400 
2401 	if (!res)
2402 		return;
2403 
2404 	WARN_ON(!list_empty(&sres->entry));
2405 	kfree(sres);
2406 }
2407 EXPORT_SYMBOL_GPL(spi_res_free);
2408 
2409 /**
2410  * spi_res_add - add a spi_res to the spi_message
2411  * @message: the spi message
2412  * @res:     the spi_resource
2413  */
spi_res_add(struct spi_message * message,void * res)2414 void spi_res_add(struct spi_message *message, void *res)
2415 {
2416 	struct spi_res *sres = container_of(res, struct spi_res, data);
2417 
2418 	WARN_ON(!list_empty(&sres->entry));
2419 	list_add_tail(&sres->entry, &message->resources);
2420 }
2421 EXPORT_SYMBOL_GPL(spi_res_add);
2422 
2423 /**
2424  * spi_res_release - release all spi resources for this message
2425  * @ctlr:  the @spi_controller
2426  * @message: the @spi_message
2427  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)2428 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2429 {
2430 	struct spi_res *res;
2431 
2432 	while (!list_empty(&message->resources)) {
2433 		res = list_last_entry(&message->resources,
2434 				      struct spi_res, entry);
2435 
2436 		if (res->release)
2437 			res->release(ctlr, message, res->data);
2438 
2439 		list_del(&res->entry);
2440 
2441 		kfree(res);
2442 	}
2443 }
2444 EXPORT_SYMBOL_GPL(spi_res_release);
2445 
2446 /*-------------------------------------------------------------------------*/
2447 
2448 /* Core methods for spi_message alterations */
2449 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)2450 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2451 					    struct spi_message *msg,
2452 					    void *res)
2453 {
2454 	struct spi_replaced_transfers *rxfer = res;
2455 	size_t i;
2456 
2457 	/* call extra callback if requested */
2458 	if (rxfer->release)
2459 		rxfer->release(ctlr, msg, res);
2460 
2461 	/* insert replaced transfers back into the message */
2462 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2463 
2464 	/* remove the formerly inserted entries */
2465 	for (i = 0; i < rxfer->inserted; i++)
2466 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2467 }
2468 
2469 /**
2470  * spi_replace_transfers - replace transfers with several transfers
2471  *                         and register change with spi_message.resources
2472  * @msg:           the spi_message we work upon
2473  * @xfer_first:    the first spi_transfer we want to replace
2474  * @remove:        number of transfers to remove
2475  * @insert:        the number of transfers we want to insert instead
2476  * @release:       extra release code necessary in some circumstances
2477  * @extradatasize: extra data to allocate (with alignment guarantees
2478  *                 of struct @spi_transfer)
2479  * @gfp:           gfp flags
2480  *
2481  * Returns: pointer to @spi_replaced_transfers,
2482  *          PTR_ERR(...) in case of errors.
2483  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2484 struct spi_replaced_transfers *spi_replace_transfers(
2485 	struct spi_message *msg,
2486 	struct spi_transfer *xfer_first,
2487 	size_t remove,
2488 	size_t insert,
2489 	spi_replaced_release_t release,
2490 	size_t extradatasize,
2491 	gfp_t gfp)
2492 {
2493 	struct spi_replaced_transfers *rxfer;
2494 	struct spi_transfer *xfer;
2495 	size_t i;
2496 
2497 	/* allocate the structure using spi_res */
2498 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2499 			      insert * sizeof(struct spi_transfer)
2500 			      + sizeof(struct spi_replaced_transfers)
2501 			      + extradatasize,
2502 			      gfp);
2503 	if (!rxfer)
2504 		return ERR_PTR(-ENOMEM);
2505 
2506 	/* the release code to invoke before running the generic release */
2507 	rxfer->release = release;
2508 
2509 	/* assign extradata */
2510 	if (extradatasize)
2511 		rxfer->extradata =
2512 			&rxfer->inserted_transfers[insert];
2513 
2514 	/* init the replaced_transfers list */
2515 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2516 
2517 	/* assign the list_entry after which we should reinsert
2518 	 * the @replaced_transfers - it may be spi_message.messages!
2519 	 */
2520 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2521 
2522 	/* remove the requested number of transfers */
2523 	for (i = 0; i < remove; i++) {
2524 		/* if the entry after replaced_after it is msg->transfers
2525 		 * then we have been requested to remove more transfers
2526 		 * than are in the list
2527 		 */
2528 		if (rxfer->replaced_after->next == &msg->transfers) {
2529 			dev_err(&msg->spi->dev,
2530 				"requested to remove more spi_transfers than are available\n");
2531 			/* insert replaced transfers back into the message */
2532 			list_splice(&rxfer->replaced_transfers,
2533 				    rxfer->replaced_after);
2534 
2535 			/* free the spi_replace_transfer structure */
2536 			spi_res_free(rxfer);
2537 
2538 			/* and return with an error */
2539 			return ERR_PTR(-EINVAL);
2540 		}
2541 
2542 		/* remove the entry after replaced_after from list of
2543 		 * transfers and add it to list of replaced_transfers
2544 		 */
2545 		list_move_tail(rxfer->replaced_after->next,
2546 			       &rxfer->replaced_transfers);
2547 	}
2548 
2549 	/* create copy of the given xfer with identical settings
2550 	 * based on the first transfer to get removed
2551 	 */
2552 	for (i = 0; i < insert; i++) {
2553 		/* we need to run in reverse order */
2554 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2555 
2556 		/* copy all spi_transfer data */
2557 		memcpy(xfer, xfer_first, sizeof(*xfer));
2558 
2559 		/* add to list */
2560 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2561 
2562 		/* clear cs_change and delay_usecs for all but the last */
2563 		if (i) {
2564 			xfer->cs_change = false;
2565 			xfer->delay_usecs = 0;
2566 		}
2567 	}
2568 
2569 	/* set up inserted */
2570 	rxfer->inserted = insert;
2571 
2572 	/* and register it with spi_res/spi_message */
2573 	spi_res_add(msg, rxfer);
2574 
2575 	return rxfer;
2576 }
2577 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2578 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2579 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2580 					struct spi_message *msg,
2581 					struct spi_transfer **xferp,
2582 					size_t maxsize,
2583 					gfp_t gfp)
2584 {
2585 	struct spi_transfer *xfer = *xferp, *xfers;
2586 	struct spi_replaced_transfers *srt;
2587 	size_t offset;
2588 	size_t count, i;
2589 
2590 	/* warn once about this fact that we are splitting a transfer */
2591 	dev_warn_once(&msg->spi->dev,
2592 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2593 		      xfer->len, maxsize);
2594 
2595 	/* calculate how many we have to replace */
2596 	count = DIV_ROUND_UP(xfer->len, maxsize);
2597 
2598 	/* create replacement */
2599 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2600 	if (IS_ERR(srt))
2601 		return PTR_ERR(srt);
2602 	xfers = srt->inserted_transfers;
2603 
2604 	/* now handle each of those newly inserted spi_transfers
2605 	 * note that the replacements spi_transfers all are preset
2606 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2607 	 * are all identical (as well as most others)
2608 	 * so we just have to fix up len and the pointers.
2609 	 *
2610 	 * this also includes support for the depreciated
2611 	 * spi_message.is_dma_mapped interface
2612 	 */
2613 
2614 	/* the first transfer just needs the length modified, so we
2615 	 * run it outside the loop
2616 	 */
2617 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2618 
2619 	/* all the others need rx_buf/tx_buf also set */
2620 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2621 		/* update rx_buf, tx_buf and dma */
2622 		if (xfers[i].rx_buf)
2623 			xfers[i].rx_buf += offset;
2624 		if (xfers[i].rx_dma)
2625 			xfers[i].rx_dma += offset;
2626 		if (xfers[i].tx_buf)
2627 			xfers[i].tx_buf += offset;
2628 		if (xfers[i].tx_dma)
2629 			xfers[i].tx_dma += offset;
2630 
2631 		/* update length */
2632 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2633 	}
2634 
2635 	/* we set up xferp to the last entry we have inserted,
2636 	 * so that we skip those already split transfers
2637 	 */
2638 	*xferp = &xfers[count - 1];
2639 
2640 	/* increment statistics counters */
2641 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2642 				       transfers_split_maxsize);
2643 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2644 				       transfers_split_maxsize);
2645 
2646 	return 0;
2647 }
2648 
2649 /**
2650  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2651  *                              when an individual transfer exceeds a
2652  *                              certain size
2653  * @ctlr:    the @spi_controller for this transfer
2654  * @msg:   the @spi_message to transform
2655  * @maxsize:  the maximum when to apply this
2656  * @gfp: GFP allocation flags
2657  *
2658  * Return: status of transformation
2659  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)2660 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2661 				struct spi_message *msg,
2662 				size_t maxsize,
2663 				gfp_t gfp)
2664 {
2665 	struct spi_transfer *xfer;
2666 	int ret;
2667 
2668 	/* iterate over the transfer_list,
2669 	 * but note that xfer is advanced to the last transfer inserted
2670 	 * to avoid checking sizes again unnecessarily (also xfer does
2671 	 * potentiall belong to a different list by the time the
2672 	 * replacement has happened
2673 	 */
2674 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2675 		if (xfer->len > maxsize) {
2676 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2677 							   maxsize, gfp);
2678 			if (ret)
2679 				return ret;
2680 		}
2681 	}
2682 
2683 	return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2686 
2687 /*-------------------------------------------------------------------------*/
2688 
2689 /* Core methods for SPI controller protocol drivers.  Some of the
2690  * other core methods are currently defined as inline functions.
2691  */
2692 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)2693 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2694 					u8 bits_per_word)
2695 {
2696 	if (ctlr->bits_per_word_mask) {
2697 		/* Only 32 bits fit in the mask */
2698 		if (bits_per_word > 32)
2699 			return -EINVAL;
2700 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2701 			return -EINVAL;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 /**
2708  * spi_setup - setup SPI mode and clock rate
2709  * @spi: the device whose settings are being modified
2710  * Context: can sleep, and no requests are queued to the device
2711  *
2712  * SPI protocol drivers may need to update the transfer mode if the
2713  * device doesn't work with its default.  They may likewise need
2714  * to update clock rates or word sizes from initial values.  This function
2715  * changes those settings, and must be called from a context that can sleep.
2716  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2717  * effect the next time the device is selected and data is transferred to
2718  * or from it.  When this function returns, the spi device is deselected.
2719  *
2720  * Note that this call will fail if the protocol driver specifies an option
2721  * that the underlying controller or its driver does not support.  For
2722  * example, not all hardware supports wire transfers using nine bit words,
2723  * LSB-first wire encoding, or active-high chipselects.
2724  *
2725  * Return: zero on success, else a negative error code.
2726  */
spi_setup(struct spi_device * spi)2727 int spi_setup(struct spi_device *spi)
2728 {
2729 	unsigned	bad_bits, ugly_bits;
2730 	int		status;
2731 
2732 	/* check mode to prevent that DUAL and QUAD set at the same time
2733 	 */
2734 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2735 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2736 		dev_err(&spi->dev,
2737 		"setup: can not select dual and quad at the same time\n");
2738 		return -EINVAL;
2739 	}
2740 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2741 	 */
2742 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2743 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2744 		return -EINVAL;
2745 	/* help drivers fail *cleanly* when they need options
2746 	 * that aren't supported with their current controller
2747 	 */
2748 	bad_bits = spi->mode & ~spi->controller->mode_bits;
2749 	ugly_bits = bad_bits &
2750 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2751 	if (ugly_bits) {
2752 		dev_warn(&spi->dev,
2753 			 "setup: ignoring unsupported mode bits %x\n",
2754 			 ugly_bits);
2755 		spi->mode &= ~ugly_bits;
2756 		bad_bits &= ~ugly_bits;
2757 	}
2758 	if (bad_bits) {
2759 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2760 			bad_bits);
2761 		return -EINVAL;
2762 	}
2763 
2764 	if (!spi->bits_per_word)
2765 		spi->bits_per_word = 8;
2766 
2767 	status = __spi_validate_bits_per_word(spi->controller,
2768 					      spi->bits_per_word);
2769 	if (status)
2770 		return status;
2771 
2772 	if (!spi->max_speed_hz)
2773 		spi->max_speed_hz = spi->controller->max_speed_hz;
2774 
2775 	if (spi->controller->setup)
2776 		status = spi->controller->setup(spi);
2777 
2778 	spi_set_cs(spi, false);
2779 
2780 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2781 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2782 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2783 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2784 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2785 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2786 			spi->bits_per_word, spi->max_speed_hz,
2787 			status);
2788 
2789 	return status;
2790 }
2791 EXPORT_SYMBOL_GPL(spi_setup);
2792 
__spi_validate(struct spi_device * spi,struct spi_message * message)2793 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2794 {
2795 	struct spi_controller *ctlr = spi->controller;
2796 	struct spi_transfer *xfer;
2797 	int w_size;
2798 
2799 	if (list_empty(&message->transfers))
2800 		return -EINVAL;
2801 
2802 	/* Half-duplex links include original MicroWire, and ones with
2803 	 * only one data pin like SPI_3WIRE (switches direction) or where
2804 	 * either MOSI or MISO is missing.  They can also be caused by
2805 	 * software limitations.
2806 	 */
2807 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2808 	    (spi->mode & SPI_3WIRE)) {
2809 		unsigned flags = ctlr->flags;
2810 
2811 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2812 			if (xfer->rx_buf && xfer->tx_buf)
2813 				return -EINVAL;
2814 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2815 				return -EINVAL;
2816 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2817 				return -EINVAL;
2818 		}
2819 	}
2820 
2821 	/**
2822 	 * Set transfer bits_per_word and max speed as spi device default if
2823 	 * it is not set for this transfer.
2824 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2825 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2826 	 */
2827 	message->frame_length = 0;
2828 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2829 		message->frame_length += xfer->len;
2830 		if (!xfer->bits_per_word)
2831 			xfer->bits_per_word = spi->bits_per_word;
2832 
2833 		if (!xfer->speed_hz)
2834 			xfer->speed_hz = spi->max_speed_hz;
2835 		if (!xfer->speed_hz)
2836 			xfer->speed_hz = ctlr->max_speed_hz;
2837 
2838 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2839 			xfer->speed_hz = ctlr->max_speed_hz;
2840 
2841 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2842 			return -EINVAL;
2843 
2844 		/*
2845 		 * SPI transfer length should be multiple of SPI word size
2846 		 * where SPI word size should be power-of-two multiple
2847 		 */
2848 		if (xfer->bits_per_word <= 8)
2849 			w_size = 1;
2850 		else if (xfer->bits_per_word <= 16)
2851 			w_size = 2;
2852 		else
2853 			w_size = 4;
2854 
2855 		/* No partial transfers accepted */
2856 		if (xfer->len % w_size)
2857 			return -EINVAL;
2858 
2859 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2860 		    xfer->speed_hz < ctlr->min_speed_hz)
2861 			return -EINVAL;
2862 
2863 		if (xfer->tx_buf && !xfer->tx_nbits)
2864 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2865 		if (xfer->rx_buf && !xfer->rx_nbits)
2866 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2867 		/* check transfer tx/rx_nbits:
2868 		 * 1. check the value matches one of single, dual and quad
2869 		 * 2. check tx/rx_nbits match the mode in spi_device
2870 		 */
2871 		if (xfer->tx_buf) {
2872 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2873 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2874 				xfer->tx_nbits != SPI_NBITS_QUAD)
2875 				return -EINVAL;
2876 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2877 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2878 				return -EINVAL;
2879 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2880 				!(spi->mode & SPI_TX_QUAD))
2881 				return -EINVAL;
2882 		}
2883 		/* check transfer rx_nbits */
2884 		if (xfer->rx_buf) {
2885 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2886 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2887 				xfer->rx_nbits != SPI_NBITS_QUAD)
2888 				return -EINVAL;
2889 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2890 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2891 				return -EINVAL;
2892 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2893 				!(spi->mode & SPI_RX_QUAD))
2894 				return -EINVAL;
2895 		}
2896 	}
2897 
2898 	message->status = -EINPROGRESS;
2899 
2900 	return 0;
2901 }
2902 
__spi_async(struct spi_device * spi,struct spi_message * message)2903 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2904 {
2905 	struct spi_controller *ctlr = spi->controller;
2906 
2907 	message->spi = spi;
2908 
2909 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2910 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2911 
2912 	trace_spi_message_submit(message);
2913 
2914 	return ctlr->transfer(spi, message);
2915 }
2916 
2917 /**
2918  * spi_async - asynchronous SPI transfer
2919  * @spi: device with which data will be exchanged
2920  * @message: describes the data transfers, including completion callback
2921  * Context: any (irqs may be blocked, etc)
2922  *
2923  * This call may be used in_irq and other contexts which can't sleep,
2924  * as well as from task contexts which can sleep.
2925  *
2926  * The completion callback is invoked in a context which can't sleep.
2927  * Before that invocation, the value of message->status is undefined.
2928  * When the callback is issued, message->status holds either zero (to
2929  * indicate complete success) or a negative error code.  After that
2930  * callback returns, the driver which issued the transfer request may
2931  * deallocate the associated memory; it's no longer in use by any SPI
2932  * core or controller driver code.
2933  *
2934  * Note that although all messages to a spi_device are handled in
2935  * FIFO order, messages may go to different devices in other orders.
2936  * Some device might be higher priority, or have various "hard" access
2937  * time requirements, for example.
2938  *
2939  * On detection of any fault during the transfer, processing of
2940  * the entire message is aborted, and the device is deselected.
2941  * Until returning from the associated message completion callback,
2942  * no other spi_message queued to that device will be processed.
2943  * (This rule applies equally to all the synchronous transfer calls,
2944  * which are wrappers around this core asynchronous primitive.)
2945  *
2946  * Return: zero on success, else a negative error code.
2947  */
spi_async(struct spi_device * spi,struct spi_message * message)2948 int spi_async(struct spi_device *spi, struct spi_message *message)
2949 {
2950 	struct spi_controller *ctlr = spi->controller;
2951 	int ret;
2952 	unsigned long flags;
2953 
2954 	ret = __spi_validate(spi, message);
2955 	if (ret != 0)
2956 		return ret;
2957 
2958 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2959 
2960 	if (ctlr->bus_lock_flag)
2961 		ret = -EBUSY;
2962 	else
2963 		ret = __spi_async(spi, message);
2964 
2965 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2966 
2967 	return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(spi_async);
2970 
2971 /**
2972  * spi_async_locked - version of spi_async with exclusive bus usage
2973  * @spi: device with which data will be exchanged
2974  * @message: describes the data transfers, including completion callback
2975  * Context: any (irqs may be blocked, etc)
2976  *
2977  * This call may be used in_irq and other contexts which can't sleep,
2978  * as well as from task contexts which can sleep.
2979  *
2980  * The completion callback is invoked in a context which can't sleep.
2981  * Before that invocation, the value of message->status is undefined.
2982  * When the callback is issued, message->status holds either zero (to
2983  * indicate complete success) or a negative error code.  After that
2984  * callback returns, the driver which issued the transfer request may
2985  * deallocate the associated memory; it's no longer in use by any SPI
2986  * core or controller driver code.
2987  *
2988  * Note that although all messages to a spi_device are handled in
2989  * FIFO order, messages may go to different devices in other orders.
2990  * Some device might be higher priority, or have various "hard" access
2991  * time requirements, for example.
2992  *
2993  * On detection of any fault during the transfer, processing of
2994  * the entire message is aborted, and the device is deselected.
2995  * Until returning from the associated message completion callback,
2996  * no other spi_message queued to that device will be processed.
2997  * (This rule applies equally to all the synchronous transfer calls,
2998  * which are wrappers around this core asynchronous primitive.)
2999  *
3000  * Return: zero on success, else a negative error code.
3001  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3002 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3003 {
3004 	struct spi_controller *ctlr = spi->controller;
3005 	int ret;
3006 	unsigned long flags;
3007 
3008 	ret = __spi_validate(spi, message);
3009 	if (ret != 0)
3010 		return ret;
3011 
3012 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3013 
3014 	ret = __spi_async(spi, message);
3015 
3016 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3017 
3018 	return ret;
3019 
3020 }
3021 EXPORT_SYMBOL_GPL(spi_async_locked);
3022 
3023 
spi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)3024 int spi_flash_read(struct spi_device *spi,
3025 		   struct spi_flash_read_message *msg)
3026 
3027 {
3028 	struct spi_controller *master = spi->controller;
3029 	struct device *rx_dev = NULL;
3030 	int ret;
3031 
3032 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3033 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3034 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3035 		return -EINVAL;
3036 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3037 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3038 	    !(spi->mode & SPI_TX_QUAD))
3039 		return -EINVAL;
3040 	if (msg->data_nbits == SPI_NBITS_DUAL &&
3041 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3042 		return -EINVAL;
3043 	if (msg->data_nbits == SPI_NBITS_QUAD &&
3044 	    !(spi->mode &  SPI_RX_QUAD))
3045 		return -EINVAL;
3046 
3047 	if (master->auto_runtime_pm) {
3048 		ret = pm_runtime_get_sync(master->dev.parent);
3049 		if (ret < 0) {
3050 			dev_err(&master->dev, "Failed to power device: %d\n",
3051 				ret);
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	mutex_lock(&master->bus_lock_mutex);
3057 	mutex_lock(&master->io_mutex);
3058 	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3059 		rx_dev = master->dma_rx->device->dev;
3060 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3061 				  msg->buf, msg->len,
3062 				  DMA_FROM_DEVICE);
3063 		if (!ret)
3064 			msg->cur_msg_mapped = true;
3065 	}
3066 	ret = master->spi_flash_read(spi, msg);
3067 	if (msg->cur_msg_mapped)
3068 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3069 			      DMA_FROM_DEVICE);
3070 	mutex_unlock(&master->io_mutex);
3071 	mutex_unlock(&master->bus_lock_mutex);
3072 
3073 	if (master->auto_runtime_pm)
3074 		pm_runtime_put(master->dev.parent);
3075 
3076 	return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(spi_flash_read);
3079 
3080 /*-------------------------------------------------------------------------*/
3081 
3082 /* Utility methods for SPI protocol drivers, layered on
3083  * top of the core.  Some other utility methods are defined as
3084  * inline functions.
3085  */
3086 
spi_complete(void * arg)3087 static void spi_complete(void *arg)
3088 {
3089 	complete(arg);
3090 }
3091 
__spi_sync(struct spi_device * spi,struct spi_message * message)3092 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3093 {
3094 	DECLARE_COMPLETION_ONSTACK(done);
3095 	int status;
3096 	struct spi_controller *ctlr = spi->controller;
3097 	unsigned long flags;
3098 
3099 	status = __spi_validate(spi, message);
3100 	if (status != 0)
3101 		return status;
3102 
3103 	message->complete = spi_complete;
3104 	message->context = &done;
3105 	message->spi = spi;
3106 
3107 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3108 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3109 
3110 	/* If we're not using the legacy transfer method then we will
3111 	 * try to transfer in the calling context so special case.
3112 	 * This code would be less tricky if we could remove the
3113 	 * support for driver implemented message queues.
3114 	 */
3115 	if (ctlr->transfer == spi_queued_transfer) {
3116 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3117 
3118 		trace_spi_message_submit(message);
3119 
3120 		status = __spi_queued_transfer(spi, message, false);
3121 
3122 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3123 	} else {
3124 		status = spi_async_locked(spi, message);
3125 	}
3126 
3127 	if (status == 0) {
3128 		/* Push out the messages in the calling context if we
3129 		 * can.
3130 		 */
3131 		if (ctlr->transfer == spi_queued_transfer) {
3132 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3133 						       spi_sync_immediate);
3134 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3135 						       spi_sync_immediate);
3136 			__spi_pump_messages(ctlr, false);
3137 		}
3138 
3139 		wait_for_completion(&done);
3140 		status = message->status;
3141 	}
3142 	message->context = NULL;
3143 	return status;
3144 }
3145 
3146 /**
3147  * spi_sync - blocking/synchronous SPI data transfers
3148  * @spi: device with which data will be exchanged
3149  * @message: describes the data transfers
3150  * Context: can sleep
3151  *
3152  * This call may only be used from a context that may sleep.  The sleep
3153  * is non-interruptible, and has no timeout.  Low-overhead controller
3154  * drivers may DMA directly into and out of the message buffers.
3155  *
3156  * Note that the SPI device's chip select is active during the message,
3157  * and then is normally disabled between messages.  Drivers for some
3158  * frequently-used devices may want to minimize costs of selecting a chip,
3159  * by leaving it selected in anticipation that the next message will go
3160  * to the same chip.  (That may increase power usage.)
3161  *
3162  * Also, the caller is guaranteeing that the memory associated with the
3163  * message will not be freed before this call returns.
3164  *
3165  * Return: zero on success, else a negative error code.
3166  */
spi_sync(struct spi_device * spi,struct spi_message * message)3167 int spi_sync(struct spi_device *spi, struct spi_message *message)
3168 {
3169 	int ret;
3170 
3171 	mutex_lock(&spi->controller->bus_lock_mutex);
3172 	ret = __spi_sync(spi, message);
3173 	mutex_unlock(&spi->controller->bus_lock_mutex);
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(spi_sync);
3178 
3179 /**
3180  * spi_sync_locked - version of spi_sync with exclusive bus usage
3181  * @spi: device with which data will be exchanged
3182  * @message: describes the data transfers
3183  * Context: can sleep
3184  *
3185  * This call may only be used from a context that may sleep.  The sleep
3186  * is non-interruptible, and has no timeout.  Low-overhead controller
3187  * drivers may DMA directly into and out of the message buffers.
3188  *
3189  * This call should be used by drivers that require exclusive access to the
3190  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3191  * be released by a spi_bus_unlock call when the exclusive access is over.
3192  *
3193  * Return: zero on success, else a negative error code.
3194  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3195 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3196 {
3197 	return __spi_sync(spi, message);
3198 }
3199 EXPORT_SYMBOL_GPL(spi_sync_locked);
3200 
3201 /**
3202  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3203  * @ctlr: SPI bus master that should be locked for exclusive bus access
3204  * Context: can sleep
3205  *
3206  * This call may only be used from a context that may sleep.  The sleep
3207  * is non-interruptible, and has no timeout.
3208  *
3209  * This call should be used by drivers that require exclusive access to the
3210  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3211  * exclusive access is over. Data transfer must be done by spi_sync_locked
3212  * and spi_async_locked calls when the SPI bus lock is held.
3213  *
3214  * Return: always zero.
3215  */
spi_bus_lock(struct spi_controller * ctlr)3216 int spi_bus_lock(struct spi_controller *ctlr)
3217 {
3218 	unsigned long flags;
3219 
3220 	mutex_lock(&ctlr->bus_lock_mutex);
3221 
3222 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3223 	ctlr->bus_lock_flag = 1;
3224 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3225 
3226 	/* mutex remains locked until spi_bus_unlock is called */
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(spi_bus_lock);
3231 
3232 /**
3233  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3234  * @ctlr: SPI bus master that was locked for exclusive bus access
3235  * Context: can sleep
3236  *
3237  * This call may only be used from a context that may sleep.  The sleep
3238  * is non-interruptible, and has no timeout.
3239  *
3240  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3241  * call.
3242  *
3243  * Return: always zero.
3244  */
spi_bus_unlock(struct spi_controller * ctlr)3245 int spi_bus_unlock(struct spi_controller *ctlr)
3246 {
3247 	ctlr->bus_lock_flag = 0;
3248 
3249 	mutex_unlock(&ctlr->bus_lock_mutex);
3250 
3251 	return 0;
3252 }
3253 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3254 
3255 /* portable code must never pass more than 32 bytes */
3256 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3257 
3258 static u8	*buf;
3259 
3260 /**
3261  * spi_write_then_read - SPI synchronous write followed by read
3262  * @spi: device with which data will be exchanged
3263  * @txbuf: data to be written (need not be dma-safe)
3264  * @n_tx: size of txbuf, in bytes
3265  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3266  * @n_rx: size of rxbuf, in bytes
3267  * Context: can sleep
3268  *
3269  * This performs a half duplex MicroWire style transaction with the
3270  * device, sending txbuf and then reading rxbuf.  The return value
3271  * is zero for success, else a negative errno status code.
3272  * This call may only be used from a context that may sleep.
3273  *
3274  * Parameters to this routine are always copied using a small buffer;
3275  * portable code should never use this for more than 32 bytes.
3276  * Performance-sensitive or bulk transfer code should instead use
3277  * spi_{async,sync}() calls with dma-safe buffers.
3278  *
3279  * Return: zero on success, else a negative error code.
3280  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3281 int spi_write_then_read(struct spi_device *spi,
3282 		const void *txbuf, unsigned n_tx,
3283 		void *rxbuf, unsigned n_rx)
3284 {
3285 	static DEFINE_MUTEX(lock);
3286 
3287 	int			status;
3288 	struct spi_message	message;
3289 	struct spi_transfer	x[2];
3290 	u8			*local_buf;
3291 
3292 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3293 	 * copying here, (as a pure convenience thing), but we can
3294 	 * keep heap costs out of the hot path unless someone else is
3295 	 * using the pre-allocated buffer or the transfer is too large.
3296 	 */
3297 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3298 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3299 				    GFP_KERNEL | GFP_DMA);
3300 		if (!local_buf)
3301 			return -ENOMEM;
3302 	} else {
3303 		local_buf = buf;
3304 	}
3305 
3306 	spi_message_init(&message);
3307 	memset(x, 0, sizeof(x));
3308 	if (n_tx) {
3309 		x[0].len = n_tx;
3310 		spi_message_add_tail(&x[0], &message);
3311 	}
3312 	if (n_rx) {
3313 		x[1].len = n_rx;
3314 		spi_message_add_tail(&x[1], &message);
3315 	}
3316 
3317 	memcpy(local_buf, txbuf, n_tx);
3318 	x[0].tx_buf = local_buf;
3319 	x[1].rx_buf = local_buf + n_tx;
3320 
3321 	/* do the i/o */
3322 	status = spi_sync(spi, &message);
3323 	if (status == 0)
3324 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3325 
3326 	if (x[0].tx_buf == buf)
3327 		mutex_unlock(&lock);
3328 	else
3329 		kfree(local_buf);
3330 
3331 	return status;
3332 }
3333 EXPORT_SYMBOL_GPL(spi_write_then_read);
3334 
3335 /*-------------------------------------------------------------------------*/
3336 
3337 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
__spi_of_device_match(struct device * dev,void * data)3338 static int __spi_of_device_match(struct device *dev, void *data)
3339 {
3340 	return dev->of_node == data;
3341 }
3342 
3343 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3344 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3345 {
3346 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3347 						__spi_of_device_match);
3348 	return dev ? to_spi_device(dev) : NULL;
3349 }
3350 
__spi_of_controller_match(struct device * dev,const void * data)3351 static int __spi_of_controller_match(struct device *dev, const void *data)
3352 {
3353 	return dev->of_node == data;
3354 }
3355 
3356 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)3357 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3358 {
3359 	struct device *dev;
3360 
3361 	dev = class_find_device(&spi_master_class, NULL, node,
3362 				__spi_of_controller_match);
3363 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3364 		dev = class_find_device(&spi_slave_class, NULL, node,
3365 					__spi_of_controller_match);
3366 	if (!dev)
3367 		return NULL;
3368 
3369 	/* reference got in class_find_device */
3370 	return container_of(dev, struct spi_controller, dev);
3371 }
3372 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3373 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3374 			 void *arg)
3375 {
3376 	struct of_reconfig_data *rd = arg;
3377 	struct spi_controller *ctlr;
3378 	struct spi_device *spi;
3379 
3380 	switch (of_reconfig_get_state_change(action, arg)) {
3381 	case OF_RECONFIG_CHANGE_ADD:
3382 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3383 		if (ctlr == NULL)
3384 			return NOTIFY_OK;	/* not for us */
3385 
3386 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3387 			put_device(&ctlr->dev);
3388 			return NOTIFY_OK;
3389 		}
3390 
3391 		spi = of_register_spi_device(ctlr, rd->dn);
3392 		put_device(&ctlr->dev);
3393 
3394 		if (IS_ERR(spi)) {
3395 			pr_err("%s: failed to create for '%pOF'\n",
3396 					__func__, rd->dn);
3397 			of_node_clear_flag(rd->dn, OF_POPULATED);
3398 			return notifier_from_errno(PTR_ERR(spi));
3399 		}
3400 		break;
3401 
3402 	case OF_RECONFIG_CHANGE_REMOVE:
3403 		/* already depopulated? */
3404 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3405 			return NOTIFY_OK;
3406 
3407 		/* find our device by node */
3408 		spi = of_find_spi_device_by_node(rd->dn);
3409 		if (spi == NULL)
3410 			return NOTIFY_OK;	/* no? not meant for us */
3411 
3412 		/* unregister takes one ref away */
3413 		spi_unregister_device(spi);
3414 
3415 		/* and put the reference of the find */
3416 		put_device(&spi->dev);
3417 		break;
3418 	}
3419 
3420 	return NOTIFY_OK;
3421 }
3422 
3423 static struct notifier_block spi_of_notifier = {
3424 	.notifier_call = of_spi_notify,
3425 };
3426 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3427 extern struct notifier_block spi_of_notifier;
3428 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3429 
3430 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)3431 static int spi_acpi_controller_match(struct device *dev, const void *data)
3432 {
3433 	return ACPI_COMPANION(dev->parent) == data;
3434 }
3435 
spi_acpi_device_match(struct device * dev,void * data)3436 static int spi_acpi_device_match(struct device *dev, void *data)
3437 {
3438 	return ACPI_COMPANION(dev) == data;
3439 }
3440 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)3441 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3442 {
3443 	struct device *dev;
3444 
3445 	dev = class_find_device(&spi_master_class, NULL, adev,
3446 				spi_acpi_controller_match);
3447 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3448 		dev = class_find_device(&spi_slave_class, NULL, adev,
3449 					spi_acpi_controller_match);
3450 	if (!dev)
3451 		return NULL;
3452 
3453 	return container_of(dev, struct spi_controller, dev);
3454 }
3455 
acpi_spi_find_device_by_adev(struct acpi_device * adev)3456 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3457 {
3458 	struct device *dev;
3459 
3460 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3461 
3462 	return dev ? to_spi_device(dev) : NULL;
3463 }
3464 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3465 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3466 			   void *arg)
3467 {
3468 	struct acpi_device *adev = arg;
3469 	struct spi_controller *ctlr;
3470 	struct spi_device *spi;
3471 
3472 	switch (value) {
3473 	case ACPI_RECONFIG_DEVICE_ADD:
3474 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3475 		if (!ctlr)
3476 			break;
3477 
3478 		acpi_register_spi_device(ctlr, adev);
3479 		put_device(&ctlr->dev);
3480 		break;
3481 	case ACPI_RECONFIG_DEVICE_REMOVE:
3482 		if (!acpi_device_enumerated(adev))
3483 			break;
3484 
3485 		spi = acpi_spi_find_device_by_adev(adev);
3486 		if (!spi)
3487 			break;
3488 
3489 		spi_unregister_device(spi);
3490 		put_device(&spi->dev);
3491 		break;
3492 	}
3493 
3494 	return NOTIFY_OK;
3495 }
3496 
3497 static struct notifier_block spi_acpi_notifier = {
3498 	.notifier_call = acpi_spi_notify,
3499 };
3500 #else
3501 extern struct notifier_block spi_acpi_notifier;
3502 #endif
3503 
spi_init(void)3504 static int __init spi_init(void)
3505 {
3506 	int	status;
3507 
3508 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3509 	if (!buf) {
3510 		status = -ENOMEM;
3511 		goto err0;
3512 	}
3513 
3514 	status = bus_register(&spi_bus_type);
3515 	if (status < 0)
3516 		goto err1;
3517 
3518 	status = class_register(&spi_master_class);
3519 	if (status < 0)
3520 		goto err2;
3521 
3522 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3523 		status = class_register(&spi_slave_class);
3524 		if (status < 0)
3525 			goto err3;
3526 	}
3527 
3528 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3529 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3530 	if (IS_ENABLED(CONFIG_ACPI))
3531 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3532 
3533 	return 0;
3534 
3535 err3:
3536 	class_unregister(&spi_master_class);
3537 err2:
3538 	bus_unregister(&spi_bus_type);
3539 err1:
3540 	kfree(buf);
3541 	buf = NULL;
3542 err0:
3543 	return status;
3544 }
3545 
3546 /* board_info is normally registered in arch_initcall(),
3547  * but even essential drivers wait till later
3548  *
3549  * REVISIT only boardinfo really needs static linking. the rest (device and
3550  * driver registration) _could_ be dynamically linked (modular) ... costs
3551  * include needing to have boardinfo data structures be much more public.
3552  */
3553 postcore_initcall(spi_init);
3554 
3555