1 /*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
17 *
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
20 */
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/numa.h>
29 #include <linux/oprofile.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include "pr_util.h"
33
34 #define RELEASE_ALL 9999
35
36 static DEFINE_SPINLOCK(buffer_lock);
37 static DEFINE_SPINLOCK(cache_lock);
38 static int num_spu_nodes;
39 static int spu_prof_num_nodes;
40
41 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
42 struct delayed_work spu_work;
43 static unsigned max_spu_buff;
44
spu_buff_add(unsigned long int value,int spu)45 static void spu_buff_add(unsigned long int value, int spu)
46 {
47 /* spu buff is a circular buffer. Add entries to the
48 * head. Head is the index to store the next value.
49 * The buffer is full when there is one available entry
50 * in the queue, i.e. head and tail can't be equal.
51 * That way we can tell the difference between the
52 * buffer being full versus empty.
53 *
54 * ASSUMPTION: the buffer_lock is held when this function
55 * is called to lock the buffer, head and tail.
56 */
57 int full = 1;
58
59 if (spu_buff[spu].head >= spu_buff[spu].tail) {
60 if ((spu_buff[spu].head - spu_buff[spu].tail)
61 < (max_spu_buff - 1))
62 full = 0;
63
64 } else if (spu_buff[spu].tail > spu_buff[spu].head) {
65 if ((spu_buff[spu].tail - spu_buff[spu].head)
66 > 1)
67 full = 0;
68 }
69
70 if (!full) {
71 spu_buff[spu].buff[spu_buff[spu].head] = value;
72 spu_buff[spu].head++;
73
74 if (spu_buff[spu].head >= max_spu_buff)
75 spu_buff[spu].head = 0;
76 } else {
77 /* From the user's perspective make the SPU buffer
78 * size management/overflow look like we are using
79 * per cpu buffers. The user uses the same
80 * per cpu parameter to adjust the SPU buffer size.
81 * Increment the sample_lost_overflow to inform
82 * the user the buffer size needs to be increased.
83 */
84 oprofile_cpu_buffer_inc_smpl_lost();
85 }
86 }
87
88 /* This function copies the per SPU buffers to the
89 * OProfile kernel buffer.
90 */
sync_spu_buff(void)91 static void sync_spu_buff(void)
92 {
93 int spu;
94 unsigned long flags;
95 int curr_head;
96
97 for (spu = 0; spu < num_spu_nodes; spu++) {
98 /* In case there was an issue and the buffer didn't
99 * get created skip it.
100 */
101 if (spu_buff[spu].buff == NULL)
102 continue;
103
104 /* Hold the lock to make sure the head/tail
105 * doesn't change while spu_buff_add() is
106 * deciding if the buffer is full or not.
107 * Being a little paranoid.
108 */
109 spin_lock_irqsave(&buffer_lock, flags);
110 curr_head = spu_buff[spu].head;
111 spin_unlock_irqrestore(&buffer_lock, flags);
112
113 /* Transfer the current contents to the kernel buffer.
114 * data can still be added to the head of the buffer.
115 */
116 oprofile_put_buff(spu_buff[spu].buff,
117 spu_buff[spu].tail,
118 curr_head, max_spu_buff);
119
120 spin_lock_irqsave(&buffer_lock, flags);
121 spu_buff[spu].tail = curr_head;
122 spin_unlock_irqrestore(&buffer_lock, flags);
123 }
124
125 }
126
wq_sync_spu_buff(struct work_struct * work)127 static void wq_sync_spu_buff(struct work_struct *work)
128 {
129 /* move data from spu buffers to kernel buffer */
130 sync_spu_buff();
131
132 /* only reschedule if profiling is not done */
133 if (spu_prof_running)
134 schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
135 }
136
137 /* Container for caching information about an active SPU task. */
138 struct cached_info {
139 struct vma_to_fileoffset_map *map;
140 struct spu *the_spu; /* needed to access pointer to local_store */
141 struct kref cache_ref;
142 };
143
144 static struct cached_info *spu_info[MAX_NUMNODES * 8];
145
destroy_cached_info(struct kref * kref)146 static void destroy_cached_info(struct kref *kref)
147 {
148 struct cached_info *info;
149
150 info = container_of(kref, struct cached_info, cache_ref);
151 vma_map_free(info->map);
152 kfree(info);
153 module_put(THIS_MODULE);
154 }
155
156 /* Return the cached_info for the passed SPU number.
157 * ATTENTION: Callers are responsible for obtaining the
158 * cache_lock if needed prior to invoking this function.
159 */
get_cached_info(struct spu * the_spu,int spu_num)160 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
161 {
162 struct kref *ref;
163 struct cached_info *ret_info;
164
165 if (spu_num >= num_spu_nodes) {
166 printk(KERN_ERR "SPU_PROF: "
167 "%s, line %d: Invalid index %d into spu info cache\n",
168 __func__, __LINE__, spu_num);
169 ret_info = NULL;
170 goto out;
171 }
172 if (!spu_info[spu_num] && the_spu) {
173 ref = spu_get_profile_private_kref(the_spu->ctx);
174 if (ref) {
175 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
176 kref_get(&spu_info[spu_num]->cache_ref);
177 }
178 }
179
180 ret_info = spu_info[spu_num];
181 out:
182 return ret_info;
183 }
184
185
186 /* Looks for cached info for the passed spu. If not found, the
187 * cached info is created for the passed spu.
188 * Returns 0 for success; otherwise, -1 for error.
189 */
190 static int
prepare_cached_spu_info(struct spu * spu,unsigned long objectId)191 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
192 {
193 unsigned long flags;
194 struct vma_to_fileoffset_map *new_map;
195 int retval = 0;
196 struct cached_info *info;
197
198 /* We won't bother getting cache_lock here since
199 * don't do anything with the cached_info that's returned.
200 */
201 info = get_cached_info(spu, spu->number);
202
203 if (info) {
204 pr_debug("Found cached SPU info.\n");
205 goto out;
206 }
207
208 /* Create cached_info and set spu_info[spu->number] to point to it.
209 * spu->number is a system-wide value, not a per-node value.
210 */
211 info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
212 if (!info) {
213 printk(KERN_ERR "SPU_PROF: "
214 "%s, line %d: create vma_map failed\n",
215 __func__, __LINE__);
216 retval = -ENOMEM;
217 goto err_alloc;
218 }
219 new_map = create_vma_map(spu, objectId);
220 if (!new_map) {
221 printk(KERN_ERR "SPU_PROF: "
222 "%s, line %d: create vma_map failed\n",
223 __func__, __LINE__);
224 retval = -ENOMEM;
225 goto err_alloc;
226 }
227
228 pr_debug("Created vma_map\n");
229 info->map = new_map;
230 info->the_spu = spu;
231 kref_init(&info->cache_ref);
232 spin_lock_irqsave(&cache_lock, flags);
233 spu_info[spu->number] = info;
234 /* Increment count before passing off ref to SPUFS. */
235 kref_get(&info->cache_ref);
236
237 /* We increment the module refcount here since SPUFS is
238 * responsible for the final destruction of the cached_info,
239 * and it must be able to access the destroy_cached_info()
240 * function defined in the OProfile module. We decrement
241 * the module refcount in destroy_cached_info.
242 */
243 try_module_get(THIS_MODULE);
244 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
245 destroy_cached_info);
246 spin_unlock_irqrestore(&cache_lock, flags);
247 goto out;
248
249 err_alloc:
250 kfree(info);
251 out:
252 return retval;
253 }
254
255 /*
256 * NOTE: The caller is responsible for locking the
257 * cache_lock prior to calling this function.
258 */
release_cached_info(int spu_index)259 static int release_cached_info(int spu_index)
260 {
261 int index, end;
262
263 if (spu_index == RELEASE_ALL) {
264 end = num_spu_nodes;
265 index = 0;
266 } else {
267 if (spu_index >= num_spu_nodes) {
268 printk(KERN_ERR "SPU_PROF: "
269 "%s, line %d: "
270 "Invalid index %d into spu info cache\n",
271 __func__, __LINE__, spu_index);
272 goto out;
273 }
274 end = spu_index + 1;
275 index = spu_index;
276 }
277 for (; index < end; index++) {
278 if (spu_info[index]) {
279 kref_put(&spu_info[index]->cache_ref,
280 destroy_cached_info);
281 spu_info[index] = NULL;
282 }
283 }
284
285 out:
286 return 0;
287 }
288
289 /* The source code for fast_get_dcookie was "borrowed"
290 * from drivers/oprofile/buffer_sync.c.
291 */
292
293 /* Optimisation. We can manage without taking the dcookie sem
294 * because we cannot reach this code without at least one
295 * dcookie user still being registered (namely, the reader
296 * of the event buffer).
297 */
fast_get_dcookie(const struct path * path)298 static inline unsigned long fast_get_dcookie(const struct path *path)
299 {
300 unsigned long cookie;
301
302 if (path->dentry->d_flags & DCACHE_COOKIE)
303 return (unsigned long)path->dentry;
304 get_dcookie(path, &cookie);
305 return cookie;
306 }
307
308 /* Look up the dcookie for the task's mm->exe_file,
309 * which corresponds loosely to "application name". Also, determine
310 * the offset for the SPU ELF object. If computed offset is
311 * non-zero, it implies an embedded SPU object; otherwise, it's a
312 * separate SPU binary, in which case we retrieve it's dcookie.
313 * For the embedded case, we must determine if SPU ELF is embedded
314 * in the executable application or another file (i.e., shared lib).
315 * If embedded in a shared lib, we must get the dcookie and return
316 * that to the caller.
317 */
318 static unsigned long
get_exec_dcookie_and_offset(struct spu * spu,unsigned int * offsetp,unsigned long * spu_bin_dcookie,unsigned long spu_ref)319 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
320 unsigned long *spu_bin_dcookie,
321 unsigned long spu_ref)
322 {
323 unsigned long app_cookie = 0;
324 unsigned int my_offset = 0;
325 struct vm_area_struct *vma;
326 struct file *exe_file;
327 struct mm_struct *mm = spu->mm;
328
329 if (!mm)
330 goto out;
331
332 exe_file = get_mm_exe_file(mm);
333 if (exe_file) {
334 app_cookie = fast_get_dcookie(&exe_file->f_path);
335 pr_debug("got dcookie for %pD\n", exe_file);
336 fput(exe_file);
337 }
338
339 down_read(&mm->mmap_sem);
340 for (vma = mm->mmap; vma; vma = vma->vm_next) {
341 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
342 continue;
343 my_offset = spu_ref - vma->vm_start;
344 if (!vma->vm_file)
345 goto fail_no_image_cookie;
346
347 pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
348 my_offset, spu_ref, vma->vm_file);
349 *offsetp = my_offset;
350 break;
351 }
352
353 *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
354 pr_debug("got dcookie for %pD\n", vma->vm_file);
355
356 up_read(&mm->mmap_sem);
357
358 out:
359 return app_cookie;
360
361 fail_no_image_cookie:
362 up_read(&mm->mmap_sem);
363
364 printk(KERN_ERR "SPU_PROF: "
365 "%s, line %d: Cannot find dcookie for SPU binary\n",
366 __func__, __LINE__);
367 goto out;
368 }
369
370
371
372 /* This function finds or creates cached context information for the
373 * passed SPU and records SPU context information into the OProfile
374 * event buffer.
375 */
process_context_switch(struct spu * spu,unsigned long objectId)376 static int process_context_switch(struct spu *spu, unsigned long objectId)
377 {
378 unsigned long flags;
379 int retval;
380 unsigned int offset = 0;
381 unsigned long spu_cookie = 0, app_dcookie;
382
383 retval = prepare_cached_spu_info(spu, objectId);
384 if (retval)
385 goto out;
386
387 /* Get dcookie first because a mutex_lock is taken in that
388 * code path, so interrupts must not be disabled.
389 */
390 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
391 if (!app_dcookie || !spu_cookie) {
392 retval = -ENOENT;
393 goto out;
394 }
395
396 /* Record context info in event buffer */
397 spin_lock_irqsave(&buffer_lock, flags);
398 spu_buff_add(ESCAPE_CODE, spu->number);
399 spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
400 spu_buff_add(spu->number, spu->number);
401 spu_buff_add(spu->pid, spu->number);
402 spu_buff_add(spu->tgid, spu->number);
403 spu_buff_add(app_dcookie, spu->number);
404 spu_buff_add(spu_cookie, spu->number);
405 spu_buff_add(offset, spu->number);
406
407 /* Set flag to indicate SPU PC data can now be written out. If
408 * the SPU program counter data is seen before an SPU context
409 * record is seen, the postprocessing will fail.
410 */
411 spu_buff[spu->number].ctx_sw_seen = 1;
412
413 spin_unlock_irqrestore(&buffer_lock, flags);
414 smp_wmb(); /* insure spu event buffer updates are written */
415 /* don't want entries intermingled... */
416 out:
417 return retval;
418 }
419
420 /*
421 * This function is invoked on either a bind_context or unbind_context.
422 * If called for an unbind_context, the val arg is 0; otherwise,
423 * it is the object-id value for the spu context.
424 * The data arg is of type 'struct spu *'.
425 */
spu_active_notify(struct notifier_block * self,unsigned long val,void * data)426 static int spu_active_notify(struct notifier_block *self, unsigned long val,
427 void *data)
428 {
429 int retval;
430 unsigned long flags;
431 struct spu *the_spu = data;
432
433 pr_debug("SPU event notification arrived\n");
434 if (!val) {
435 spin_lock_irqsave(&cache_lock, flags);
436 retval = release_cached_info(the_spu->number);
437 spin_unlock_irqrestore(&cache_lock, flags);
438 } else {
439 retval = process_context_switch(the_spu, val);
440 }
441 return retval;
442 }
443
444 static struct notifier_block spu_active = {
445 .notifier_call = spu_active_notify,
446 };
447
number_of_online_nodes(void)448 static int number_of_online_nodes(void)
449 {
450 u32 cpu; u32 tmp;
451 int nodes = 0;
452 for_each_online_cpu(cpu) {
453 tmp = cbe_cpu_to_node(cpu) + 1;
454 if (tmp > nodes)
455 nodes++;
456 }
457 return nodes;
458 }
459
oprofile_spu_buff_create(void)460 static int oprofile_spu_buff_create(void)
461 {
462 int spu;
463
464 max_spu_buff = oprofile_get_cpu_buffer_size();
465
466 for (spu = 0; spu < num_spu_nodes; spu++) {
467 /* create circular buffers to store the data in.
468 * use locks to manage accessing the buffers
469 */
470 spu_buff[spu].head = 0;
471 spu_buff[spu].tail = 0;
472
473 /*
474 * Create a buffer for each SPU. Can't reliably
475 * create a single buffer for all spus due to not
476 * enough contiguous kernel memory.
477 */
478
479 spu_buff[spu].buff = kzalloc((max_spu_buff
480 * sizeof(unsigned long)),
481 GFP_KERNEL);
482
483 if (!spu_buff[spu].buff) {
484 printk(KERN_ERR "SPU_PROF: "
485 "%s, line %d: oprofile_spu_buff_create "
486 "failed to allocate spu buffer %d.\n",
487 __func__, __LINE__, spu);
488
489 /* release the spu buffers that have been allocated */
490 while (spu >= 0) {
491 kfree(spu_buff[spu].buff);
492 spu_buff[spu].buff = 0;
493 spu--;
494 }
495 return -ENOMEM;
496 }
497 }
498 return 0;
499 }
500
501 /* The main purpose of this function is to synchronize
502 * OProfile with SPUFS by registering to be notified of
503 * SPU task switches.
504 *
505 * NOTE: When profiling SPUs, we must ensure that only
506 * spu_sync_start is invoked and not the generic sync_start
507 * in drivers/oprofile/oprof.c. A return value of
508 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
509 * accomplish this.
510 */
spu_sync_start(void)511 int spu_sync_start(void)
512 {
513 int spu;
514 int ret = SKIP_GENERIC_SYNC;
515 int register_ret;
516 unsigned long flags = 0;
517
518 spu_prof_num_nodes = number_of_online_nodes();
519 num_spu_nodes = spu_prof_num_nodes * 8;
520 INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
521
522 /* create buffer for storing the SPU data to put in
523 * the kernel buffer.
524 */
525 ret = oprofile_spu_buff_create();
526 if (ret)
527 goto out;
528
529 spin_lock_irqsave(&buffer_lock, flags);
530 for (spu = 0; spu < num_spu_nodes; spu++) {
531 spu_buff_add(ESCAPE_CODE, spu);
532 spu_buff_add(SPU_PROFILING_CODE, spu);
533 spu_buff_add(num_spu_nodes, spu);
534 }
535 spin_unlock_irqrestore(&buffer_lock, flags);
536
537 for (spu = 0; spu < num_spu_nodes; spu++) {
538 spu_buff[spu].ctx_sw_seen = 0;
539 spu_buff[spu].last_guard_val = 0;
540 }
541
542 /* Register for SPU events */
543 register_ret = spu_switch_event_register(&spu_active);
544 if (register_ret) {
545 ret = SYNC_START_ERROR;
546 goto out;
547 }
548
549 pr_debug("spu_sync_start -- running.\n");
550 out:
551 return ret;
552 }
553
554 /* Record SPU program counter samples to the oprofile event buffer. */
spu_sync_buffer(int spu_num,unsigned int * samples,int num_samples)555 void spu_sync_buffer(int spu_num, unsigned int *samples,
556 int num_samples)
557 {
558 unsigned long long file_offset;
559 unsigned long flags;
560 int i;
561 struct vma_to_fileoffset_map *map;
562 struct spu *the_spu;
563 unsigned long long spu_num_ll = spu_num;
564 unsigned long long spu_num_shifted = spu_num_ll << 32;
565 struct cached_info *c_info;
566
567 /* We need to obtain the cache_lock here because it's
568 * possible that after getting the cached_info, the SPU job
569 * corresponding to this cached_info may end, thus resulting
570 * in the destruction of the cached_info.
571 */
572 spin_lock_irqsave(&cache_lock, flags);
573 c_info = get_cached_info(NULL, spu_num);
574 if (!c_info) {
575 /* This legitimately happens when the SPU task ends before all
576 * samples are recorded.
577 * No big deal -- so we just drop a few samples.
578 */
579 pr_debug("SPU_PROF: No cached SPU contex "
580 "for SPU #%d. Dropping samples.\n", spu_num);
581 goto out;
582 }
583
584 map = c_info->map;
585 the_spu = c_info->the_spu;
586 spin_lock(&buffer_lock);
587 for (i = 0; i < num_samples; i++) {
588 unsigned int sample = *(samples+i);
589 int grd_val = 0;
590 file_offset = 0;
591 if (sample == 0)
592 continue;
593 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
594
595 /* If overlays are used by this SPU application, the guard
596 * value is non-zero, indicating which overlay section is in
597 * use. We need to discard samples taken during the time
598 * period which an overlay occurs (i.e., guard value changes).
599 */
600 if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
601 spu_buff[spu_num].last_guard_val = grd_val;
602 /* Drop the rest of the samples. */
603 break;
604 }
605
606 /* We must ensure that the SPU context switch has been written
607 * out before samples for the SPU. Otherwise, the SPU context
608 * information is not available and the postprocessing of the
609 * SPU PC will fail with no available anonymous map information.
610 */
611 if (spu_buff[spu_num].ctx_sw_seen)
612 spu_buff_add((file_offset | spu_num_shifted),
613 spu_num);
614 }
615 spin_unlock(&buffer_lock);
616 out:
617 spin_unlock_irqrestore(&cache_lock, flags);
618 }
619
620
spu_sync_stop(void)621 int spu_sync_stop(void)
622 {
623 unsigned long flags = 0;
624 int ret;
625 int k;
626
627 ret = spu_switch_event_unregister(&spu_active);
628
629 if (ret)
630 printk(KERN_ERR "SPU_PROF: "
631 "%s, line %d: spu_switch_event_unregister " \
632 "returned %d\n",
633 __func__, __LINE__, ret);
634
635 /* flush any remaining data in the per SPU buffers */
636 sync_spu_buff();
637
638 spin_lock_irqsave(&cache_lock, flags);
639 ret = release_cached_info(RELEASE_ALL);
640 spin_unlock_irqrestore(&cache_lock, flags);
641
642 /* remove scheduled work queue item rather then waiting
643 * for every queued entry to execute. Then flush pending
644 * system wide buffer to event buffer.
645 */
646 cancel_delayed_work(&spu_work);
647
648 for (k = 0; k < num_spu_nodes; k++) {
649 spu_buff[k].ctx_sw_seen = 0;
650
651 /*
652 * spu_sys_buff will be null if there was a problem
653 * allocating the buffer. Only delete if it exists.
654 */
655 kfree(spu_buff[k].buff);
656 spu_buff[k].buff = 0;
657 }
658 pr_debug("spu_sync_stop -- done.\n");
659 return ret;
660 }
661
662