1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
t4vf_wait_dev_ready(struct adapter * adapter)50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66 }
67
68 /*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
get_mbox_rpl(struct adapter * adapter,__be64 * rpl,int size,u32 mbox_data)72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74 {
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
86 */
t4vf_record_mbox(struct adapter * adapter,const __be64 * cmd,int size,int access,int execute)87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 int size, int access, int execute)
89 {
90 struct mbox_cmd_log *log = adapter->mbox_log;
91 struct mbox_cmd *entry;
92 int i;
93
94 entry = mbox_cmd_log_entry(log, log->cursor++);
95 if (log->cursor == log->size)
96 log->cursor = 0;
97
98 for (i = 0; i < size / 8; i++)
99 entry->cmd[i] = be64_to_cpu(cmd[i]);
100 while (i < MBOX_LEN / 8)
101 entry->cmd[i++] = 0;
102 entry->timestamp = jiffies;
103 entry->seqno = log->seqno++;
104 entry->access = access;
105 entry->execute = execute;
106 }
107
108 /**
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
115 *
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
127 */
t4vf_wr_mbox_core(struct adapter * adapter,const void * cmd,int size,void * rpl,bool sleep_ok)128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 void *rpl, bool sleep_ok)
130 {
131 static const int delay[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
133 };
134
135 u16 access = 0, execute = 0;
136 u32 v, mbox_data;
137 int i, ms, delay_idx, ret;
138 const __be64 *p;
139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 __be64 cmd_rpl[MBOX_LEN / 8];
142 struct mbox_list entry;
143
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
146 */
147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 mbox_data = T4VF_MBDATA_BASE_ADDR;
149 else
150 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152 /*
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
155 */
156 if ((size % 16) != 0 ||
157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 return -EINVAL;
159
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
163 * EBUSY] ...
164 */
165 spin_lock(&adapter->mbox_lock);
166 list_add_tail(&entry.list, &adapter->mlist.list);
167 spin_unlock(&adapter->mbox_lock);
168
169 delay_idx = 0;
170 ms = delay[0];
171
172 for (i = 0; ; i += ms) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
177 */
178 if (i > FW_CMD_MAX_TIMEOUT) {
179 spin_lock(&adapter->mbox_lock);
180 list_del(&entry.list);
181 spin_unlock(&adapter->mbox_lock);
182 ret = -EBUSY;
183 t4vf_record_mbox(adapter, cmd, size, access, ret);
184 return ret;
185 }
186
187 /* If we're at the head, break out and start the mailbox
188 * protocol.
189 */
190 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 list) == &entry)
192 break;
193
194 /* Delay for a bit before checking again ... */
195 if (sleep_ok) {
196 ms = delay[delay_idx]; /* last element may repeat */
197 if (delay_idx < ARRAY_SIZE(delay) - 1)
198 delay_idx++;
199 msleep(ms);
200 } else {
201 mdelay(ms);
202 }
203 }
204
205 /*
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
208 */
209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 if (v != MBOX_OWNER_DRV) {
213 spin_lock(&adapter->mbox_lock);
214 list_del(&entry.list);
215 spin_unlock(&adapter->mbox_lock);
216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 t4vf_record_mbox(adapter, cmd, size, access, ret);
218 return ret;
219 }
220
221 /*
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
224 *
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
232 * register.
233 */
234 if (cmd_op != FW_VI_STATS_CMD)
235 t4vf_record_mbox(adapter, cmd, size, access, 0);
236 for (i = 0, p = cmd; i < size; i += 8)
237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 t4_read_reg(adapter, mbox_data); /* flush write */
239
240 t4_write_reg(adapter, mbox_ctl,
241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 t4_read_reg(adapter, mbox_ctl); /* flush write */
243
244 /*
245 * Spin waiting for firmware to acknowledge processing our command.
246 */
247 delay_idx = 0;
248 ms = delay[0];
249
250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 if (sleep_ok) {
252 ms = delay[delay_idx];
253 if (delay_idx < ARRAY_SIZE(delay) - 1)
254 delay_idx++;
255 msleep(ms);
256 } else
257 mdelay(ms);
258
259 /*
260 * If we're the owner, see if this is the reply we wanted.
261 */
262 v = t4_read_reg(adapter, mbox_ctl);
263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 /*
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
267 */
268 if ((v & MBMSGVALID_F) == 0) {
269 t4_write_reg(adapter, mbox_ctl,
270 MBOWNER_V(MBOX_OWNER_NONE));
271 continue;
272 }
273
274 /*
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
280 */
281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283 /* return value in low-order little-endian word */
284 v = be64_to_cpu(cmd_rpl[0]);
285
286 if (rpl) {
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 & FW_CMD_REQUEST_F) == 0);
290 memcpy(rpl, cmd_rpl, size);
291 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 & FW_CMD_REQUEST_F) != 0);
293 }
294 t4_write_reg(adapter, mbox_ctl,
295 MBOWNER_V(MBOX_OWNER_NONE));
296 execute = i + ms;
297 if (cmd_op != FW_VI_STATS_CMD)
298 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 execute);
300 spin_lock(&adapter->mbox_lock);
301 list_del(&entry.list);
302 spin_unlock(&adapter->mbox_lock);
303 return -FW_CMD_RETVAL_G(v);
304 }
305 }
306
307 /* We timed out. Return the error ... */
308 ret = -ETIMEDOUT;
309 t4vf_record_mbox(adapter, cmd, size, access, ret);
310 spin_lock(&adapter->mbox_lock);
311 list_del(&entry.list);
312 spin_unlock(&adapter->mbox_lock);
313 return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
317 FW_PORT_CAP32_ANEG)
318
319 /**
320 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321 * @caps16: a 16-bit Port Capabilities value
322 *
323 * Returns the equivalent 32-bit Port Capabilities value.
324 */
fwcaps16_to_caps32(fw_port_cap16_t caps16)325 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
326 {
327 fw_port_cap32_t caps32 = 0;
328
329 #define CAP16_TO_CAP32(__cap) \
330 do { \
331 if (caps16 & FW_PORT_CAP_##__cap) \
332 caps32 |= FW_PORT_CAP32_##__cap; \
333 } while (0)
334
335 CAP16_TO_CAP32(SPEED_100M);
336 CAP16_TO_CAP32(SPEED_1G);
337 CAP16_TO_CAP32(SPEED_25G);
338 CAP16_TO_CAP32(SPEED_10G);
339 CAP16_TO_CAP32(SPEED_40G);
340 CAP16_TO_CAP32(SPEED_100G);
341 CAP16_TO_CAP32(FC_RX);
342 CAP16_TO_CAP32(FC_TX);
343 CAP16_TO_CAP32(ANEG);
344 CAP16_TO_CAP32(MDIX);
345 CAP16_TO_CAP32(MDIAUTO);
346 CAP16_TO_CAP32(FEC_RS);
347 CAP16_TO_CAP32(FEC_BASER_RS);
348 CAP16_TO_CAP32(802_3_PAUSE);
349 CAP16_TO_CAP32(802_3_ASM_DIR);
350
351 #undef CAP16_TO_CAP32
352
353 return caps32;
354 }
355
356 /* Translate Firmware Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)357 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
358 {
359 enum cc_pause cc_pause = 0;
360
361 if (fw_pause & FW_PORT_CAP32_FC_RX)
362 cc_pause |= PAUSE_RX;
363 if (fw_pause & FW_PORT_CAP32_FC_TX)
364 cc_pause |= PAUSE_TX;
365
366 return cc_pause;
367 }
368
369 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)370 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
371 {
372 enum cc_fec cc_fec = 0;
373
374 if (fw_fec & FW_PORT_CAP32_FEC_RS)
375 cc_fec |= FEC_RS;
376 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
377 cc_fec |= FEC_BASER_RS;
378
379 return cc_fec;
380 }
381
382 /**
383 * Return the highest speed set in the port capabilities, in Mb/s.
384 */
fwcap_to_speed(fw_port_cap32_t caps)385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
386 {
387 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
388 do { \
389 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
390 return __speed; \
391 } while (0)
392
393 TEST_SPEED_RETURN(400G, 400000);
394 TEST_SPEED_RETURN(200G, 200000);
395 TEST_SPEED_RETURN(100G, 100000);
396 TEST_SPEED_RETURN(50G, 50000);
397 TEST_SPEED_RETURN(40G, 40000);
398 TEST_SPEED_RETURN(25G, 25000);
399 TEST_SPEED_RETURN(10G, 10000);
400 TEST_SPEED_RETURN(1G, 1000);
401 TEST_SPEED_RETURN(100M, 100);
402
403 #undef TEST_SPEED_RETURN
404
405 return 0;
406 }
407
408 /*
409 * init_link_config - initialize a link's SW state
410 * @lc: structure holding the link state
411 * @pcaps: link Port Capabilities
412 * @acaps: link current Advertised Port Capabilities
413 *
414 * Initializes the SW state maintained for each link, including the link's
415 * capabilities and default speed/flow-control/autonegotiation settings.
416 */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)417 static void init_link_config(struct link_config *lc,
418 fw_port_cap32_t pcaps,
419 fw_port_cap32_t acaps)
420 {
421 lc->pcaps = pcaps;
422 lc->lpacaps = 0;
423 lc->speed_caps = 0;
424 lc->speed = 0;
425 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
426
427 /* For Forward Error Control, we default to whatever the Firmware
428 * tells us the Link is currently advertising.
429 */
430 lc->auto_fec = fwcap_to_cc_fec(acaps);
431 lc->requested_fec = FEC_AUTO;
432 lc->fec = lc->auto_fec;
433
434 if (lc->pcaps & FW_PORT_CAP32_ANEG) {
435 lc->acaps = acaps & ADVERT_MASK;
436 lc->autoneg = AUTONEG_ENABLE;
437 lc->requested_fc |= PAUSE_AUTONEG;
438 } else {
439 lc->acaps = 0;
440 lc->autoneg = AUTONEG_DISABLE;
441 }
442 }
443
444 /**
445 * t4vf_port_init - initialize port hardware/software state
446 * @adapter: the adapter
447 * @pidx: the adapter port index
448 */
t4vf_port_init(struct adapter * adapter,int pidx)449 int t4vf_port_init(struct adapter *adapter, int pidx)
450 {
451 struct port_info *pi = adap2pinfo(adapter, pidx);
452 unsigned int fw_caps = adapter->params.fw_caps_support;
453 struct fw_vi_cmd vi_cmd, vi_rpl;
454 struct fw_port_cmd port_cmd, port_rpl;
455 enum fw_port_type port_type;
456 int mdio_addr;
457 fw_port_cap32_t pcaps, acaps;
458 int ret;
459
460 /* If we haven't yet determined whether we're talking to Firmware
461 * which knows the new 32-bit Port Capabilities, it's time to find
462 * out now. This will also tell new Firmware to send us Port Status
463 * Updates using the new 32-bit Port Capabilities version of the
464 * Port Information message.
465 */
466 if (fw_caps == FW_CAPS_UNKNOWN) {
467 u32 param, val;
468
469 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
470 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
471 val = 1;
472 ret = t4vf_set_params(adapter, 1, ¶m, &val);
473 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
474 adapter->params.fw_caps_support = fw_caps;
475 }
476
477 /*
478 * Execute a VI Read command to get our Virtual Interface information
479 * like MAC address, etc.
480 */
481 memset(&vi_cmd, 0, sizeof(vi_cmd));
482 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
483 FW_CMD_REQUEST_F |
484 FW_CMD_READ_F);
485 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
486 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
487 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
488 if (ret != FW_SUCCESS)
489 return ret;
490
491 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
492 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
493 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
494
495 /*
496 * If we don't have read access to our port information, we're done
497 * now. Otherwise, execute a PORT Read command to get it ...
498 */
499 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
500 return 0;
501
502 memset(&port_cmd, 0, sizeof(port_cmd));
503 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
504 FW_CMD_REQUEST_F |
505 FW_CMD_READ_F |
506 FW_PORT_CMD_PORTID_V(pi->port_id));
507 port_cmd.action_to_len16 = cpu_to_be32(
508 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
509 ? FW_PORT_ACTION_GET_PORT_INFO
510 : FW_PORT_ACTION_GET_PORT_INFO32) |
511 FW_LEN16(port_cmd));
512 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
513 if (ret != FW_SUCCESS)
514 return ret;
515
516 /* Extract the various fields from the Port Information message. */
517 if (fw_caps == FW_CAPS16) {
518 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
519
520 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
521 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
522 ? FW_PORT_CMD_MDIOADDR_G(lstatus)
523 : -1);
524 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
525 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
526 } else {
527 u32 lstatus32 =
528 be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
529
530 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
531 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
532 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
533 : -1);
534 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
535 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
536 }
537
538 pi->port_type = port_type;
539 pi->mdio_addr = mdio_addr;
540 pi->mod_type = FW_PORT_MOD_TYPE_NA;
541
542 init_link_config(&pi->link_cfg, pcaps, acaps);
543 return 0;
544 }
545
546 /**
547 * t4vf_fw_reset - issue a reset to FW
548 * @adapter: the adapter
549 *
550 * Issues a reset command to FW. For a Physical Function this would
551 * result in the Firmware resetting all of its state. For a Virtual
552 * Function this just resets the state associated with the VF.
553 */
t4vf_fw_reset(struct adapter * adapter)554 int t4vf_fw_reset(struct adapter *adapter)
555 {
556 struct fw_reset_cmd cmd;
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
560 FW_CMD_WRITE_F);
561 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
562 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
563 }
564
565 /**
566 * t4vf_query_params - query FW or device parameters
567 * @adapter: the adapter
568 * @nparams: the number of parameters
569 * @params: the parameter names
570 * @vals: the parameter values
571 *
572 * Reads the values of firmware or device parameters. Up to 7 parameters
573 * can be queried at once.
574 */
t4vf_query_params(struct adapter * adapter,unsigned int nparams,const u32 * params,u32 * vals)575 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
576 const u32 *params, u32 *vals)
577 {
578 int i, ret;
579 struct fw_params_cmd cmd, rpl;
580 struct fw_params_param *p;
581 size_t len16;
582
583 if (nparams > 7)
584 return -EINVAL;
585
586 memset(&cmd, 0, sizeof(cmd));
587 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
588 FW_CMD_REQUEST_F |
589 FW_CMD_READ_F);
590 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
591 param[nparams].mnem), 16);
592 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
593 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
594 p->mnem = htonl(*params++);
595
596 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
597 if (ret == 0)
598 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
599 *vals++ = be32_to_cpu(p->val);
600 return ret;
601 }
602
603 /**
604 * t4vf_set_params - sets FW or device parameters
605 * @adapter: the adapter
606 * @nparams: the number of parameters
607 * @params: the parameter names
608 * @vals: the parameter values
609 *
610 * Sets the values of firmware or device parameters. Up to 7 parameters
611 * can be specified at once.
612 */
t4vf_set_params(struct adapter * adapter,unsigned int nparams,const u32 * params,const u32 * vals)613 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
614 const u32 *params, const u32 *vals)
615 {
616 int i;
617 struct fw_params_cmd cmd;
618 struct fw_params_param *p;
619 size_t len16;
620
621 if (nparams > 7)
622 return -EINVAL;
623
624 memset(&cmd, 0, sizeof(cmd));
625 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
626 FW_CMD_REQUEST_F |
627 FW_CMD_WRITE_F);
628 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
629 param[nparams]), 16);
630 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
631 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
632 p->mnem = cpu_to_be32(*params++);
633 p->val = cpu_to_be32(*vals++);
634 }
635
636 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
637 }
638
639 /**
640 * t4vf_fl_pkt_align - return the fl packet alignment
641 * @adapter: the adapter
642 *
643 * T4 has a single field to specify the packing and padding boundary.
644 * T5 onwards has separate fields for this and hence the alignment for
645 * next packet offset is maximum of these two. And T6 changes the
646 * Ingress Padding Boundary Shift, so it's all a mess and it's best
647 * if we put this in low-level Common Code ...
648 *
649 */
t4vf_fl_pkt_align(struct adapter * adapter)650 int t4vf_fl_pkt_align(struct adapter *adapter)
651 {
652 u32 sge_control, sge_control2;
653 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
654
655 sge_control = adapter->params.sge.sge_control;
656
657 /* T4 uses a single control field to specify both the PCIe Padding and
658 * Packing Boundary. T5 introduced the ability to specify these
659 * separately. The actual Ingress Packet Data alignment boundary
660 * within Packed Buffer Mode is the maximum of these two
661 * specifications. (Note that it makes no real practical sense to
662 * have the Pading Boudary be larger than the Packing Boundary but you
663 * could set the chip up that way and, in fact, legacy T4 code would
664 * end doing this because it would initialize the Padding Boundary and
665 * leave the Packing Boundary initialized to 0 (16 bytes).)
666 * Padding Boundary values in T6 starts from 8B,
667 * where as it is 32B for T4 and T5.
668 */
669 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
670 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
671 else
672 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
673
674 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
675
676 fl_align = ingpadboundary;
677 if (!is_t4(adapter->params.chip)) {
678 /* T5 has a different interpretation of one of the PCIe Packing
679 * Boundary values.
680 */
681 sge_control2 = adapter->params.sge.sge_control2;
682 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
683 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
684 ingpackboundary = 16;
685 else
686 ingpackboundary = 1 << (ingpackboundary +
687 INGPACKBOUNDARY_SHIFT_X);
688
689 fl_align = max(ingpadboundary, ingpackboundary);
690 }
691 return fl_align;
692 }
693
694 /**
695 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
696 * @adapter: the adapter
697 * @qid: the Queue ID
698 * @qtype: the Ingress or Egress type for @qid
699 * @pbar2_qoffset: BAR2 Queue Offset
700 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
701 *
702 * Returns the BAR2 SGE Queue Registers information associated with the
703 * indicated Absolute Queue ID. These are passed back in return value
704 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
705 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
706 *
707 * This may return an error which indicates that BAR2 SGE Queue
708 * registers aren't available. If an error is not returned, then the
709 * following values are returned:
710 *
711 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
712 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
713 *
714 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
715 * require the "Inferred Queue ID" ability may be used. E.g. the
716 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
717 * then these "Inferred Queue ID" register may not be used.
718 */
t4vf_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,u64 * pbar2_qoffset,unsigned int * pbar2_qid)719 int t4vf_bar2_sge_qregs(struct adapter *adapter,
720 unsigned int qid,
721 enum t4_bar2_qtype qtype,
722 u64 *pbar2_qoffset,
723 unsigned int *pbar2_qid)
724 {
725 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
726 u64 bar2_page_offset, bar2_qoffset;
727 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
728
729 /* T4 doesn't support BAR2 SGE Queue registers.
730 */
731 if (is_t4(adapter->params.chip))
732 return -EINVAL;
733
734 /* Get our SGE Page Size parameters.
735 */
736 page_shift = adapter->params.sge.sge_vf_hps + 10;
737 page_size = 1 << page_shift;
738
739 /* Get the right Queues per Page parameters for our Queue.
740 */
741 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
742 ? adapter->params.sge.sge_vf_eq_qpp
743 : adapter->params.sge.sge_vf_iq_qpp);
744 qpp_mask = (1 << qpp_shift) - 1;
745
746 /* Calculate the basics of the BAR2 SGE Queue register area:
747 * o The BAR2 page the Queue registers will be in.
748 * o The BAR2 Queue ID.
749 * o The BAR2 Queue ID Offset into the BAR2 page.
750 */
751 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
752 bar2_qid = qid & qpp_mask;
753 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
754
755 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
756 * hardware will infer the Absolute Queue ID simply from the writes to
757 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
758 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
759 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
760 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
761 * from the BAR2 Page and BAR2 Queue ID.
762 *
763 * One important censequence of this is that some BAR2 SGE registers
764 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
765 * there. But other registers synthesize the SGE Queue ID purely
766 * from the writes to the registers -- the Write Combined Doorbell
767 * Buffer is a good example. These BAR2 SGE Registers are only
768 * available for those BAR2 SGE Register areas where the SGE Absolute
769 * Queue ID can be inferred from simple writes.
770 */
771 bar2_qoffset = bar2_page_offset;
772 bar2_qinferred = (bar2_qid_offset < page_size);
773 if (bar2_qinferred) {
774 bar2_qoffset += bar2_qid_offset;
775 bar2_qid = 0;
776 }
777
778 *pbar2_qoffset = bar2_qoffset;
779 *pbar2_qid = bar2_qid;
780 return 0;
781 }
782
t4vf_get_pf_from_vf(struct adapter * adapter)783 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
784 {
785 u32 whoami;
786
787 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
788 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
789 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
790 }
791
792 /**
793 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
794 * @adapter: the adapter
795 *
796 * Retrieves various core SGE parameters in the form of hardware SGE
797 * register values. The caller is responsible for decoding these as
798 * needed. The SGE parameters are stored in @adapter->params.sge.
799 */
t4vf_get_sge_params(struct adapter * adapter)800 int t4vf_get_sge_params(struct adapter *adapter)
801 {
802 struct sge_params *sge_params = &adapter->params.sge;
803 u32 params[7], vals[7];
804 int v;
805
806 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
807 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
808 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
809 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
810 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
811 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
812 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
813 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
814 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
815 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
816 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
817 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
818 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
819 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
820 v = t4vf_query_params(adapter, 7, params, vals);
821 if (v)
822 return v;
823 sge_params->sge_control = vals[0];
824 sge_params->sge_host_page_size = vals[1];
825 sge_params->sge_fl_buffer_size[0] = vals[2];
826 sge_params->sge_fl_buffer_size[1] = vals[3];
827 sge_params->sge_timer_value_0_and_1 = vals[4];
828 sge_params->sge_timer_value_2_and_3 = vals[5];
829 sge_params->sge_timer_value_4_and_5 = vals[6];
830
831 /* T4 uses a single control field to specify both the PCIe Padding and
832 * Packing Boundary. T5 introduced the ability to specify these
833 * separately with the Padding Boundary in SGE_CONTROL and and Packing
834 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
835 * SGE_CONTROL in order to determine how ingress packet data will be
836 * laid out in Packed Buffer Mode. Unfortunately, older versions of
837 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
838 * failure grabbing it we throw an error since we can't figure out the
839 * right value.
840 */
841 if (!is_t4(adapter->params.chip)) {
842 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
843 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
844 v = t4vf_query_params(adapter, 1, params, vals);
845 if (v != FW_SUCCESS) {
846 dev_err(adapter->pdev_dev,
847 "Unable to get SGE Control2; "
848 "probably old firmware.\n");
849 return v;
850 }
851 sge_params->sge_control2 = vals[0];
852 }
853
854 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
856 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
858 v = t4vf_query_params(adapter, 2, params, vals);
859 if (v)
860 return v;
861 sge_params->sge_ingress_rx_threshold = vals[0];
862 sge_params->sge_congestion_control = vals[1];
863
864 /* For T5 and later we want to use the new BAR2 Doorbells.
865 * Unfortunately, older firmware didn't allow the this register to be
866 * read.
867 */
868 if (!is_t4(adapter->params.chip)) {
869 unsigned int pf, s_hps, s_qpp;
870
871 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
872 FW_PARAMS_PARAM_XYZ_V(
873 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
874 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
875 FW_PARAMS_PARAM_XYZ_V(
876 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
877 v = t4vf_query_params(adapter, 2, params, vals);
878 if (v != FW_SUCCESS) {
879 dev_warn(adapter->pdev_dev,
880 "Unable to get VF SGE Queues/Page; "
881 "probably old firmware.\n");
882 return v;
883 }
884 sge_params->sge_egress_queues_per_page = vals[0];
885 sge_params->sge_ingress_queues_per_page = vals[1];
886
887 /* We need the Queues/Page for our VF. This is based on the
888 * PF from which we're instantiated and is indexed in the
889 * register we just read. Do it once here so other code in
890 * the driver can just use it.
891 */
892 pf = t4vf_get_pf_from_vf(adapter);
893 s_hps = (HOSTPAGESIZEPF0_S +
894 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
895 sge_params->sge_vf_hps =
896 ((sge_params->sge_host_page_size >> s_hps)
897 & HOSTPAGESIZEPF0_M);
898
899 s_qpp = (QUEUESPERPAGEPF0_S +
900 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
901 sge_params->sge_vf_eq_qpp =
902 ((sge_params->sge_egress_queues_per_page >> s_qpp)
903 & QUEUESPERPAGEPF0_M);
904 sge_params->sge_vf_iq_qpp =
905 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
906 & QUEUESPERPAGEPF0_M);
907 }
908
909 return 0;
910 }
911
912 /**
913 * t4vf_get_vpd_params - retrieve device VPD paremeters
914 * @adapter: the adapter
915 *
916 * Retrives various device Vital Product Data parameters. The parameters
917 * are stored in @adapter->params.vpd.
918 */
t4vf_get_vpd_params(struct adapter * adapter)919 int t4vf_get_vpd_params(struct adapter *adapter)
920 {
921 struct vpd_params *vpd_params = &adapter->params.vpd;
922 u32 params[7], vals[7];
923 int v;
924
925 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
926 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
927 v = t4vf_query_params(adapter, 1, params, vals);
928 if (v)
929 return v;
930 vpd_params->cclk = vals[0];
931
932 return 0;
933 }
934
935 /**
936 * t4vf_get_dev_params - retrieve device paremeters
937 * @adapter: the adapter
938 *
939 * Retrives various device parameters. The parameters are stored in
940 * @adapter->params.dev.
941 */
t4vf_get_dev_params(struct adapter * adapter)942 int t4vf_get_dev_params(struct adapter *adapter)
943 {
944 struct dev_params *dev_params = &adapter->params.dev;
945 u32 params[7], vals[7];
946 int v;
947
948 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
949 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
950 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
951 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
952 v = t4vf_query_params(adapter, 2, params, vals);
953 if (v)
954 return v;
955 dev_params->fwrev = vals[0];
956 dev_params->tprev = vals[1];
957
958 return 0;
959 }
960
961 /**
962 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
963 * @adapter: the adapter
964 *
965 * Retrieves global RSS mode and parameters with which we have to live
966 * and stores them in the @adapter's RSS parameters.
967 */
t4vf_get_rss_glb_config(struct adapter * adapter)968 int t4vf_get_rss_glb_config(struct adapter *adapter)
969 {
970 struct rss_params *rss = &adapter->params.rss;
971 struct fw_rss_glb_config_cmd cmd, rpl;
972 int v;
973
974 /*
975 * Execute an RSS Global Configuration read command to retrieve
976 * our RSS configuration.
977 */
978 memset(&cmd, 0, sizeof(cmd));
979 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
980 FW_CMD_REQUEST_F |
981 FW_CMD_READ_F);
982 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
983 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
984 if (v)
985 return v;
986
987 /*
988 * Transate the big-endian RSS Global Configuration into our
989 * cpu-endian format based on the RSS mode. We also do first level
990 * filtering at this point to weed out modes which don't support
991 * VF Drivers ...
992 */
993 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
994 be32_to_cpu(rpl.u.manual.mode_pkd));
995 switch (rss->mode) {
996 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
997 u32 word = be32_to_cpu(
998 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
999
1000 rss->u.basicvirtual.synmapen =
1001 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1002 rss->u.basicvirtual.syn4tupenipv6 =
1003 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1004 rss->u.basicvirtual.syn2tupenipv6 =
1005 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1006 rss->u.basicvirtual.syn4tupenipv4 =
1007 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1008 rss->u.basicvirtual.syn2tupenipv4 =
1009 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1010
1011 rss->u.basicvirtual.ofdmapen =
1012 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1013
1014 rss->u.basicvirtual.tnlmapen =
1015 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1016 rss->u.basicvirtual.tnlalllookup =
1017 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1018
1019 rss->u.basicvirtual.hashtoeplitz =
1020 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1021
1022 /* we need at least Tunnel Map Enable to be set */
1023 if (!rss->u.basicvirtual.tnlmapen)
1024 return -EINVAL;
1025 break;
1026 }
1027
1028 default:
1029 /* all unknown/unsupported RSS modes result in an error */
1030 return -EINVAL;
1031 }
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * t4vf_get_vfres - retrieve VF resource limits
1038 * @adapter: the adapter
1039 *
1040 * Retrieves configured resource limits and capabilities for a virtual
1041 * function. The results are stored in @adapter->vfres.
1042 */
t4vf_get_vfres(struct adapter * adapter)1043 int t4vf_get_vfres(struct adapter *adapter)
1044 {
1045 struct vf_resources *vfres = &adapter->params.vfres;
1046 struct fw_pfvf_cmd cmd, rpl;
1047 int v;
1048 u32 word;
1049
1050 /*
1051 * Execute PFVF Read command to get VF resource limits; bail out early
1052 * with error on command failure.
1053 */
1054 memset(&cmd, 0, sizeof(cmd));
1055 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1056 FW_CMD_REQUEST_F |
1057 FW_CMD_READ_F);
1058 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1059 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1060 if (v)
1061 return v;
1062
1063 /*
1064 * Extract VF resource limits and return success.
1065 */
1066 word = be32_to_cpu(rpl.niqflint_niq);
1067 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1068 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1069
1070 word = be32_to_cpu(rpl.type_to_neq);
1071 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1072 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1073
1074 word = be32_to_cpu(rpl.tc_to_nexactf);
1075 vfres->tc = FW_PFVF_CMD_TC_G(word);
1076 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1077 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1078
1079 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1080 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1081 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1082 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * t4vf_read_rss_vi_config - read a VI's RSS configuration
1089 * @adapter: the adapter
1090 * @viid: Virtual Interface ID
1091 * @config: pointer to host-native VI RSS Configuration buffer
1092 *
1093 * Reads the Virtual Interface's RSS configuration information and
1094 * translates it into CPU-native format.
1095 */
t4vf_read_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1096 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1097 union rss_vi_config *config)
1098 {
1099 struct fw_rss_vi_config_cmd cmd, rpl;
1100 int v;
1101
1102 memset(&cmd, 0, sizeof(cmd));
1103 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1104 FW_CMD_REQUEST_F |
1105 FW_CMD_READ_F |
1106 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1107 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1108 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1109 if (v)
1110 return v;
1111
1112 switch (adapter->params.rss.mode) {
1113 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1114 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1115
1116 config->basicvirtual.ip6fourtupen =
1117 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1118 config->basicvirtual.ip6twotupen =
1119 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1120 config->basicvirtual.ip4fourtupen =
1121 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1122 config->basicvirtual.ip4twotupen =
1123 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1124 config->basicvirtual.udpen =
1125 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1126 config->basicvirtual.defaultq =
1127 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1128 break;
1129 }
1130
1131 default:
1132 return -EINVAL;
1133 }
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1140 * @adapter: the adapter
1141 * @viid: Virtual Interface ID
1142 * @config: pointer to host-native VI RSS Configuration buffer
1143 *
1144 * Write the Virtual Interface's RSS configuration information
1145 * (translating it into firmware-native format before writing).
1146 */
t4vf_write_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1147 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1148 union rss_vi_config *config)
1149 {
1150 struct fw_rss_vi_config_cmd cmd, rpl;
1151
1152 memset(&cmd, 0, sizeof(cmd));
1153 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1154 FW_CMD_REQUEST_F |
1155 FW_CMD_WRITE_F |
1156 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1157 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1158 switch (adapter->params.rss.mode) {
1159 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160 u32 word = 0;
1161
1162 if (config->basicvirtual.ip6fourtupen)
1163 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1164 if (config->basicvirtual.ip6twotupen)
1165 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1166 if (config->basicvirtual.ip4fourtupen)
1167 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1168 if (config->basicvirtual.ip4twotupen)
1169 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1170 if (config->basicvirtual.udpen)
1171 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1172 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1173 config->basicvirtual.defaultq);
1174 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1175 break;
1176 }
1177
1178 default:
1179 return -EINVAL;
1180 }
1181
1182 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1183 }
1184
1185 /**
1186 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1187 * @adapter: the adapter
1188 * @viid: Virtual Interface of RSS Table Slice
1189 * @start: starting entry in the table to write
1190 * @n: how many table entries to write
1191 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1192 * @nrspq: number of values in @rspq
1193 *
1194 * Programs the selected part of the VI's RSS mapping table with the
1195 * provided values. If @nrspq < @n the supplied values are used repeatedly
1196 * until the full table range is populated.
1197 *
1198 * The caller must ensure the values in @rspq are in the range 0..1023.
1199 */
t4vf_config_rss_range(struct adapter * adapter,unsigned int viid,int start,int n,const u16 * rspq,int nrspq)1200 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1201 int start, int n, const u16 *rspq, int nrspq)
1202 {
1203 const u16 *rsp = rspq;
1204 const u16 *rsp_end = rspq+nrspq;
1205 struct fw_rss_ind_tbl_cmd cmd;
1206
1207 /*
1208 * Initialize firmware command template to write the RSS table.
1209 */
1210 memset(&cmd, 0, sizeof(cmd));
1211 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1212 FW_CMD_REQUEST_F |
1213 FW_CMD_WRITE_F |
1214 FW_RSS_IND_TBL_CMD_VIID_V(viid));
1215 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1216
1217 /*
1218 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1219 * Queue Identifiers. These Ingress Queue IDs are packed three to
1220 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1221 * reserved.
1222 */
1223 while (n > 0) {
1224 __be32 *qp = &cmd.iq0_to_iq2;
1225 int nq = min(n, 32);
1226 int ret;
1227
1228 /*
1229 * Set up the firmware RSS command header to send the next
1230 * "nq" Ingress Queue IDs to the firmware.
1231 */
1232 cmd.niqid = cpu_to_be16(nq);
1233 cmd.startidx = cpu_to_be16(start);
1234
1235 /*
1236 * "nq" more done for the start of the next loop.
1237 */
1238 start += nq;
1239 n -= nq;
1240
1241 /*
1242 * While there are still Ingress Queue IDs to stuff into the
1243 * current firmware RSS command, retrieve them from the
1244 * Ingress Queue ID array and insert them into the command.
1245 */
1246 while (nq > 0) {
1247 /*
1248 * Grab up to the next 3 Ingress Queue IDs (wrapping
1249 * around the Ingress Queue ID array if necessary) and
1250 * insert them into the firmware RSS command at the
1251 * current 3-tuple position within the commad.
1252 */
1253 u16 qbuf[3];
1254 u16 *qbp = qbuf;
1255 int nqbuf = min(3, nq);
1256
1257 nq -= nqbuf;
1258 qbuf[0] = qbuf[1] = qbuf[2] = 0;
1259 while (nqbuf) {
1260 nqbuf--;
1261 *qbp++ = *rsp++;
1262 if (rsp >= rsp_end)
1263 rsp = rspq;
1264 }
1265 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1266 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1267 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1268 }
1269
1270 /*
1271 * Send this portion of the RRS table update to the firmware;
1272 * bail out on any errors.
1273 */
1274 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1275 if (ret)
1276 return ret;
1277 }
1278 return 0;
1279 }
1280
1281 /**
1282 * t4vf_alloc_vi - allocate a virtual interface on a port
1283 * @adapter: the adapter
1284 * @port_id: physical port associated with the VI
1285 *
1286 * Allocate a new Virtual Interface and bind it to the indicated
1287 * physical port. Return the new Virtual Interface Identifier on
1288 * success, or a [negative] error number on failure.
1289 */
t4vf_alloc_vi(struct adapter * adapter,int port_id)1290 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1291 {
1292 struct fw_vi_cmd cmd, rpl;
1293 int v;
1294
1295 /*
1296 * Execute a VI command to allocate Virtual Interface and return its
1297 * VIID.
1298 */
1299 memset(&cmd, 0, sizeof(cmd));
1300 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1301 FW_CMD_REQUEST_F |
1302 FW_CMD_WRITE_F |
1303 FW_CMD_EXEC_F);
1304 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1305 FW_VI_CMD_ALLOC_F);
1306 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1307 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1308 if (v)
1309 return v;
1310
1311 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1312 }
1313
1314 /**
1315 * t4vf_free_vi -- free a virtual interface
1316 * @adapter: the adapter
1317 * @viid: the virtual interface identifier
1318 *
1319 * Free a previously allocated Virtual Interface. Return an error on
1320 * failure.
1321 */
t4vf_free_vi(struct adapter * adapter,int viid)1322 int t4vf_free_vi(struct adapter *adapter, int viid)
1323 {
1324 struct fw_vi_cmd cmd;
1325
1326 /*
1327 * Execute a VI command to free the Virtual Interface.
1328 */
1329 memset(&cmd, 0, sizeof(cmd));
1330 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1331 FW_CMD_REQUEST_F |
1332 FW_CMD_EXEC_F);
1333 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1334 FW_VI_CMD_FREE_F);
1335 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1336 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1337 }
1338
1339 /**
1340 * t4vf_enable_vi - enable/disable a virtual interface
1341 * @adapter: the adapter
1342 * @viid: the Virtual Interface ID
1343 * @rx_en: 1=enable Rx, 0=disable Rx
1344 * @tx_en: 1=enable Tx, 0=disable Tx
1345 *
1346 * Enables/disables a virtual interface.
1347 */
t4vf_enable_vi(struct adapter * adapter,unsigned int viid,bool rx_en,bool tx_en)1348 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1349 bool rx_en, bool tx_en)
1350 {
1351 struct fw_vi_enable_cmd cmd;
1352
1353 memset(&cmd, 0, sizeof(cmd));
1354 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1355 FW_CMD_REQUEST_F |
1356 FW_CMD_EXEC_F |
1357 FW_VI_ENABLE_CMD_VIID_V(viid));
1358 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1359 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1360 FW_LEN16(cmd));
1361 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1362 }
1363
1364 /**
1365 * t4vf_identify_port - identify a VI's port by blinking its LED
1366 * @adapter: the adapter
1367 * @viid: the Virtual Interface ID
1368 * @nblinks: how many times to blink LED at 2.5 Hz
1369 *
1370 * Identifies a VI's port by blinking its LED.
1371 */
t4vf_identify_port(struct adapter * adapter,unsigned int viid,unsigned int nblinks)1372 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1373 unsigned int nblinks)
1374 {
1375 struct fw_vi_enable_cmd cmd;
1376
1377 memset(&cmd, 0, sizeof(cmd));
1378 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1379 FW_CMD_REQUEST_F |
1380 FW_CMD_EXEC_F |
1381 FW_VI_ENABLE_CMD_VIID_V(viid));
1382 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1383 FW_LEN16(cmd));
1384 cmd.blinkdur = cpu_to_be16(nblinks);
1385 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1386 }
1387
1388 /**
1389 * t4vf_set_rxmode - set Rx properties of a virtual interface
1390 * @adapter: the adapter
1391 * @viid: the VI id
1392 * @mtu: the new MTU or -1 for no change
1393 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1394 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1395 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1396 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1397 * -1 no change
1398 *
1399 * Sets Rx properties of a virtual interface.
1400 */
t4vf_set_rxmode(struct adapter * adapter,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)1401 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1402 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1403 bool sleep_ok)
1404 {
1405 struct fw_vi_rxmode_cmd cmd;
1406
1407 /* convert to FW values */
1408 if (mtu < 0)
1409 mtu = FW_VI_RXMODE_CMD_MTU_M;
1410 if (promisc < 0)
1411 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1412 if (all_multi < 0)
1413 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1414 if (bcast < 0)
1415 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1416 if (vlanex < 0)
1417 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1418
1419 memset(&cmd, 0, sizeof(cmd));
1420 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1421 FW_CMD_REQUEST_F |
1422 FW_CMD_WRITE_F |
1423 FW_VI_RXMODE_CMD_VIID_V(viid));
1424 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1425 cmd.mtu_to_vlanexen =
1426 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1427 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1428 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1429 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1430 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1431 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1432 }
1433
1434 /**
1435 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1436 * @adapter: the adapter
1437 * @viid: the Virtual Interface Identifier
1438 * @free: if true any existing filters for this VI id are first removed
1439 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1440 * @addr: the MAC address(es)
1441 * @idx: where to store the index of each allocated filter
1442 * @hash: pointer to hash address filter bitmap
1443 * @sleep_ok: call is allowed to sleep
1444 *
1445 * Allocates an exact-match filter for each of the supplied addresses and
1446 * sets it to the corresponding address. If @idx is not %NULL it should
1447 * have at least @naddr entries, each of which will be set to the index of
1448 * the filter allocated for the corresponding MAC address. If a filter
1449 * could not be allocated for an address its index is set to 0xffff.
1450 * If @hash is not %NULL addresses that fail to allocate an exact filter
1451 * are hashed and update the hash filter bitmap pointed at by @hash.
1452 *
1453 * Returns a negative error number or the number of filters allocated.
1454 */
t4vf_alloc_mac_filt(struct adapter * adapter,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)1455 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1456 unsigned int naddr, const u8 **addr, u16 *idx,
1457 u64 *hash, bool sleep_ok)
1458 {
1459 int offset, ret = 0;
1460 unsigned nfilters = 0;
1461 unsigned int rem = naddr;
1462 struct fw_vi_mac_cmd cmd, rpl;
1463 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1464
1465 if (naddr > max_naddr)
1466 return -EINVAL;
1467
1468 for (offset = 0; offset < naddr; /**/) {
1469 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1470 ? rem
1471 : ARRAY_SIZE(cmd.u.exact));
1472 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1473 u.exact[fw_naddr]), 16);
1474 struct fw_vi_mac_exact *p;
1475 int i;
1476
1477 memset(&cmd, 0, sizeof(cmd));
1478 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1479 FW_CMD_REQUEST_F |
1480 FW_CMD_WRITE_F |
1481 (free ? FW_CMD_EXEC_F : 0) |
1482 FW_VI_MAC_CMD_VIID_V(viid));
1483 cmd.freemacs_to_len16 =
1484 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1485 FW_CMD_LEN16_V(len16));
1486
1487 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1488 p->valid_to_idx = cpu_to_be16(
1489 FW_VI_MAC_CMD_VALID_F |
1490 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1491 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1492 }
1493
1494
1495 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1496 sleep_ok);
1497 if (ret && ret != -ENOMEM)
1498 break;
1499
1500 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1501 u16 index = FW_VI_MAC_CMD_IDX_G(
1502 be16_to_cpu(p->valid_to_idx));
1503
1504 if (idx)
1505 idx[offset+i] =
1506 (index >= max_naddr
1507 ? 0xffff
1508 : index);
1509 if (index < max_naddr)
1510 nfilters++;
1511 else if (hash)
1512 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1513 }
1514
1515 free = false;
1516 offset += fw_naddr;
1517 rem -= fw_naddr;
1518 }
1519
1520 /*
1521 * If there were no errors or we merely ran out of room in our MAC
1522 * address arena, return the number of filters actually written.
1523 */
1524 if (ret == 0 || ret == -ENOMEM)
1525 ret = nfilters;
1526 return ret;
1527 }
1528
1529 /**
1530 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1531 * @adapter: the adapter
1532 * @viid: the VI id
1533 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1534 * @addr: the MAC address(es)
1535 * @sleep_ok: call is allowed to sleep
1536 *
1537 * Frees the exact-match filter for each of the supplied addresses
1538 *
1539 * Returns a negative error number or the number of filters freed.
1540 */
t4vf_free_mac_filt(struct adapter * adapter,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)1541 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1542 unsigned int naddr, const u8 **addr, bool sleep_ok)
1543 {
1544 int offset, ret = 0;
1545 struct fw_vi_mac_cmd cmd;
1546 unsigned int nfilters = 0;
1547 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1548 unsigned int rem = naddr;
1549
1550 if (naddr > max_naddr)
1551 return -EINVAL;
1552
1553 for (offset = 0; offset < (int)naddr ; /**/) {
1554 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1555 rem : ARRAY_SIZE(cmd.u.exact));
1556 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1557 u.exact[fw_naddr]), 16);
1558 struct fw_vi_mac_exact *p;
1559 int i;
1560
1561 memset(&cmd, 0, sizeof(cmd));
1562 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1563 FW_CMD_REQUEST_F |
1564 FW_CMD_WRITE_F |
1565 FW_CMD_EXEC_V(0) |
1566 FW_VI_MAC_CMD_VIID_V(viid));
1567 cmd.freemacs_to_len16 =
1568 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1569 FW_CMD_LEN16_V(len16));
1570
1571 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1572 p->valid_to_idx = cpu_to_be16(
1573 FW_VI_MAC_CMD_VALID_F |
1574 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1575 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1576 }
1577
1578 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1579 sleep_ok);
1580 if (ret)
1581 break;
1582
1583 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1584 u16 index = FW_VI_MAC_CMD_IDX_G(
1585 be16_to_cpu(p->valid_to_idx));
1586
1587 if (index < max_naddr)
1588 nfilters++;
1589 }
1590
1591 offset += fw_naddr;
1592 rem -= fw_naddr;
1593 }
1594
1595 if (ret == 0)
1596 ret = nfilters;
1597 return ret;
1598 }
1599
1600 /**
1601 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1602 * @adapter: the adapter
1603 * @viid: the Virtual Interface ID
1604 * @idx: index of existing filter for old value of MAC address, or -1
1605 * @addr: the new MAC address value
1606 * @persist: if idx < 0, the new MAC allocation should be persistent
1607 *
1608 * Modifies an exact-match filter and sets it to the new MAC address.
1609 * Note that in general it is not possible to modify the value of a given
1610 * filter so the generic way to modify an address filter is to free the
1611 * one being used by the old address value and allocate a new filter for
1612 * the new address value. @idx can be -1 if the address is a new
1613 * addition.
1614 *
1615 * Returns a negative error number or the index of the filter with the new
1616 * MAC value.
1617 */
t4vf_change_mac(struct adapter * adapter,unsigned int viid,int idx,const u8 * addr,bool persist)1618 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1619 int idx, const u8 *addr, bool persist)
1620 {
1621 int ret;
1622 struct fw_vi_mac_cmd cmd, rpl;
1623 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1624 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1625 u.exact[1]), 16);
1626 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1627
1628 /*
1629 * If this is a new allocation, determine whether it should be
1630 * persistent (across a "freemacs" operation) or not.
1631 */
1632 if (idx < 0)
1633 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1634
1635 memset(&cmd, 0, sizeof(cmd));
1636 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1637 FW_CMD_REQUEST_F |
1638 FW_CMD_WRITE_F |
1639 FW_VI_MAC_CMD_VIID_V(viid));
1640 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1641 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1642 FW_VI_MAC_CMD_IDX_V(idx));
1643 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1644
1645 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1646 if (ret == 0) {
1647 p = &rpl.u.exact[0];
1648 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1649 if (ret >= max_mac_addr)
1650 ret = -ENOMEM;
1651 }
1652 return ret;
1653 }
1654
1655 /**
1656 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1657 * @adapter: the adapter
1658 * @viid: the Virtual Interface Identifier
1659 * @ucast: whether the hash filter should also match unicast addresses
1660 * @vec: the value to be written to the hash filter
1661 * @sleep_ok: call is allowed to sleep
1662 *
1663 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1664 */
t4vf_set_addr_hash(struct adapter * adapter,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)1665 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1666 bool ucast, u64 vec, bool sleep_ok)
1667 {
1668 struct fw_vi_mac_cmd cmd;
1669 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1670 u.exact[0]), 16);
1671
1672 memset(&cmd, 0, sizeof(cmd));
1673 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1674 FW_CMD_REQUEST_F |
1675 FW_CMD_WRITE_F |
1676 FW_VI_ENABLE_CMD_VIID_V(viid));
1677 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1678 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1679 FW_CMD_LEN16_V(len16));
1680 cmd.u.hash.hashvec = cpu_to_be64(vec);
1681 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1682 }
1683
1684 /**
1685 * t4vf_get_port_stats - collect "port" statistics
1686 * @adapter: the adapter
1687 * @pidx: the port index
1688 * @s: the stats structure to fill
1689 *
1690 * Collect statistics for the "port"'s Virtual Interface.
1691 */
t4vf_get_port_stats(struct adapter * adapter,int pidx,struct t4vf_port_stats * s)1692 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1693 struct t4vf_port_stats *s)
1694 {
1695 struct port_info *pi = adap2pinfo(adapter, pidx);
1696 struct fw_vi_stats_vf fwstats;
1697 unsigned int rem = VI_VF_NUM_STATS;
1698 __be64 *fwsp = (__be64 *)&fwstats;
1699
1700 /*
1701 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1702 * commands. We could use a Work Request and get all of them at once
1703 * but that's an asynchronous interface which is awkward to use.
1704 */
1705 while (rem) {
1706 unsigned int ix = VI_VF_NUM_STATS - rem;
1707 unsigned int nstats = min(6U, rem);
1708 struct fw_vi_stats_cmd cmd, rpl;
1709 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1710 sizeof(struct fw_vi_stats_ctl));
1711 size_t len16 = DIV_ROUND_UP(len, 16);
1712 int ret;
1713
1714 memset(&cmd, 0, sizeof(cmd));
1715 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1716 FW_VI_STATS_CMD_VIID_V(pi->viid) |
1717 FW_CMD_REQUEST_F |
1718 FW_CMD_READ_F);
1719 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1720 cmd.u.ctl.nstats_ix =
1721 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1722 FW_VI_STATS_CMD_NSTATS_V(nstats));
1723 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1724 if (ret)
1725 return ret;
1726
1727 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1728
1729 rem -= nstats;
1730 fwsp += nstats;
1731 }
1732
1733 /*
1734 * Translate firmware statistics into host native statistics.
1735 */
1736 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1737 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1738 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1739 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1740 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1741 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1742 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1743 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1744 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1745
1746 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1747 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1748 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1749 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1750 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1751 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1752
1753 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * t4vf_iq_free - free an ingress queue and its free lists
1760 * @adapter: the adapter
1761 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1762 * @iqid: ingress queue ID
1763 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1764 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1765 *
1766 * Frees an ingress queue and its associated free lists, if any.
1767 */
t4vf_iq_free(struct adapter * adapter,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)1768 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1769 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1770 {
1771 struct fw_iq_cmd cmd;
1772
1773 memset(&cmd, 0, sizeof(cmd));
1774 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1775 FW_CMD_REQUEST_F |
1776 FW_CMD_EXEC_F);
1777 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1778 FW_LEN16(cmd));
1779 cmd.type_to_iqandstindex =
1780 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1781
1782 cmd.iqid = cpu_to_be16(iqid);
1783 cmd.fl0id = cpu_to_be16(fl0id);
1784 cmd.fl1id = cpu_to_be16(fl1id);
1785 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1786 }
1787
1788 /**
1789 * t4vf_eth_eq_free - free an Ethernet egress queue
1790 * @adapter: the adapter
1791 * @eqid: egress queue ID
1792 *
1793 * Frees an Ethernet egress queue.
1794 */
t4vf_eth_eq_free(struct adapter * adapter,unsigned int eqid)1795 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1796 {
1797 struct fw_eq_eth_cmd cmd;
1798
1799 memset(&cmd, 0, sizeof(cmd));
1800 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1801 FW_CMD_REQUEST_F |
1802 FW_CMD_EXEC_F);
1803 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1804 FW_LEN16(cmd));
1805 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1806 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1807 }
1808
1809 /**
1810 * t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1811 * @link_down_rc: Link Down Reason Code
1812 *
1813 * Returns a string representation of the Link Down Reason Code.
1814 */
t4vf_link_down_rc_str(unsigned char link_down_rc)1815 const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1816 {
1817 static const char * const reason[] = {
1818 "Link Down",
1819 "Remote Fault",
1820 "Auto-negotiation Failure",
1821 "Reserved",
1822 "Insufficient Airflow",
1823 "Unable To Determine Reason",
1824 "No RX Signal Detected",
1825 "Reserved",
1826 };
1827
1828 if (link_down_rc >= ARRAY_SIZE(reason))
1829 return "Bad Reason Code";
1830
1831 return reason[link_down_rc];
1832 }
1833
1834 /**
1835 * t4vf_handle_get_port_info - process a FW reply message
1836 * @pi: the port info
1837 * @rpl: start of the FW message
1838 *
1839 * Processes a GET_PORT_INFO FW reply message.
1840 */
t4vf_handle_get_port_info(struct port_info * pi,const struct fw_port_cmd * cmd)1841 void t4vf_handle_get_port_info(struct port_info *pi,
1842 const struct fw_port_cmd *cmd)
1843 {
1844 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1845 struct adapter *adapter = pi->adapter;
1846 struct link_config *lc = &pi->link_cfg;
1847 int link_ok, linkdnrc;
1848 enum fw_port_type port_type;
1849 enum fw_port_module_type mod_type;
1850 unsigned int speed, fc, fec;
1851 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1852
1853 /* Extract the various fields from the Port Information message. */
1854 switch (action) {
1855 case FW_PORT_ACTION_GET_PORT_INFO: {
1856 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1857
1858 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1859 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1860 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1861 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1862 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1863 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1864 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1865
1866 /* Unfortunately the format of the Link Status in the old
1867 * 16-bit Port Information message isn't the same as the
1868 * 16-bit Port Capabilities bitfield used everywhere else ...
1869 */
1870 linkattr = 0;
1871 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1872 linkattr |= FW_PORT_CAP32_FC_RX;
1873 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1874 linkattr |= FW_PORT_CAP32_FC_TX;
1875 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1876 linkattr |= FW_PORT_CAP32_SPEED_100M;
1877 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1878 linkattr |= FW_PORT_CAP32_SPEED_1G;
1879 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1880 linkattr |= FW_PORT_CAP32_SPEED_10G;
1881 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1882 linkattr |= FW_PORT_CAP32_SPEED_25G;
1883 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1884 linkattr |= FW_PORT_CAP32_SPEED_40G;
1885 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1886 linkattr |= FW_PORT_CAP32_SPEED_100G;
1887
1888 break;
1889 }
1890
1891 case FW_PORT_ACTION_GET_PORT_INFO32: {
1892 u32 lstatus32;
1893
1894 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1895 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1896 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1897 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1898 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1899 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1900 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1901 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1902 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1903 break;
1904 }
1905
1906 default:
1907 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1908 be32_to_cpu(cmd->action_to_len16));
1909 return;
1910 }
1911
1912 fec = fwcap_to_cc_fec(acaps);
1913 fc = fwcap_to_cc_pause(linkattr);
1914 speed = fwcap_to_speed(linkattr);
1915
1916 if (mod_type != pi->mod_type) {
1917 /* When a new Transceiver Module is inserted, the Firmware
1918 * will examine any Forward Error Correction parameters
1919 * present in the Transceiver Module i2c EPROM and determine
1920 * the supported and recommended FEC settings from those
1921 * based on IEEE 802.3 standards. We always record the
1922 * IEEE 802.3 recommended "automatic" settings.
1923 */
1924 lc->auto_fec = fec;
1925
1926 /* Some versions of the early T6 Firmware "cheated" when
1927 * handling different Transceiver Modules by changing the
1928 * underlaying Port Type reported to the Host Drivers. As
1929 * such we need to capture whatever Port Type the Firmware
1930 * sends us and record it in case it's different from what we
1931 * were told earlier. Unfortunately, since Firmware is
1932 * forever, we'll need to keep this code here forever, but in
1933 * later T6 Firmware it should just be an assignment of the
1934 * same value already recorded.
1935 */
1936 pi->port_type = port_type;
1937
1938 pi->mod_type = mod_type;
1939 t4vf_os_portmod_changed(adapter, pi->pidx);
1940 }
1941
1942 if (link_ok != lc->link_ok || speed != lc->speed ||
1943 fc != lc->fc || fec != lc->fec) { /* something changed */
1944 if (!link_ok && lc->link_ok) {
1945 lc->link_down_rc = linkdnrc;
1946 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
1947 pi->port_id, t4vf_link_down_rc_str(linkdnrc));
1948 }
1949 lc->link_ok = link_ok;
1950 lc->speed = speed;
1951 lc->fc = fc;
1952 lc->fec = fec;
1953
1954 lc->pcaps = pcaps;
1955 lc->lpacaps = lpacaps;
1956 lc->acaps = acaps & ADVERT_MASK;
1957
1958 if (lc->acaps & FW_PORT_CAP32_ANEG) {
1959 lc->autoneg = AUTONEG_ENABLE;
1960 } else {
1961 /* When Autoneg is disabled, user needs to set
1962 * single speed.
1963 * Similar to cxgb4_ethtool.c: set_link_ksettings
1964 */
1965 lc->acaps = 0;
1966 lc->speed_caps = fwcap_to_speed(acaps);
1967 lc->autoneg = AUTONEG_DISABLE;
1968 }
1969
1970 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
1971 }
1972 }
1973
1974 /**
1975 * t4vf_update_port_info - retrieve and update port information if changed
1976 * @pi: the port_info
1977 *
1978 * We issue a Get Port Information Command to the Firmware and, if
1979 * successful, we check to see if anything is different from what we
1980 * last recorded and update things accordingly.
1981 */
t4vf_update_port_info(struct port_info * pi)1982 int t4vf_update_port_info(struct port_info *pi)
1983 {
1984 unsigned int fw_caps = pi->adapter->params.fw_caps_support;
1985 struct fw_port_cmd port_cmd;
1986 int ret;
1987
1988 memset(&port_cmd, 0, sizeof(port_cmd));
1989 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
1990 FW_CMD_REQUEST_F | FW_CMD_READ_F |
1991 FW_PORT_CMD_PORTID_V(pi->port_id));
1992 port_cmd.action_to_len16 = cpu_to_be32(
1993 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
1994 ? FW_PORT_ACTION_GET_PORT_INFO
1995 : FW_PORT_ACTION_GET_PORT_INFO32) |
1996 FW_LEN16(port_cmd));
1997 ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
1998 &port_cmd);
1999 if (ret)
2000 return ret;
2001 t4vf_handle_get_port_info(pi, &port_cmd);
2002 return 0;
2003 }
2004
2005 /**
2006 * t4vf_handle_fw_rpl - process a firmware reply message
2007 * @adapter: the adapter
2008 * @rpl: start of the firmware message
2009 *
2010 * Processes a firmware message, such as link state change messages.
2011 */
t4vf_handle_fw_rpl(struct adapter * adapter,const __be64 * rpl)2012 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2013 {
2014 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2015 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2016
2017 switch (opcode) {
2018 case FW_PORT_CMD: {
2019 /*
2020 * Link/module state change message.
2021 */
2022 const struct fw_port_cmd *port_cmd =
2023 (const struct fw_port_cmd *)rpl;
2024 int action = FW_PORT_CMD_ACTION_G(
2025 be32_to_cpu(port_cmd->action_to_len16));
2026 int port_id, pidx;
2027
2028 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2029 action != FW_PORT_ACTION_GET_PORT_INFO32) {
2030 dev_err(adapter->pdev_dev,
2031 "Unknown firmware PORT reply action %x\n",
2032 action);
2033 break;
2034 }
2035
2036 port_id = FW_PORT_CMD_PORTID_G(
2037 be32_to_cpu(port_cmd->op_to_portid));
2038 for_each_port(adapter, pidx) {
2039 struct port_info *pi = adap2pinfo(adapter, pidx);
2040
2041 if (pi->port_id != port_id)
2042 continue;
2043 t4vf_handle_get_port_info(pi, port_cmd);
2044 }
2045 break;
2046 }
2047
2048 default:
2049 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2050 opcode);
2051 }
2052 return 0;
2053 }
2054
2055 /**
2056 */
t4vf_prep_adapter(struct adapter * adapter)2057 int t4vf_prep_adapter(struct adapter *adapter)
2058 {
2059 int err;
2060 unsigned int chipid;
2061
2062 /* Wait for the device to become ready before proceeding ...
2063 */
2064 err = t4vf_wait_dev_ready(adapter);
2065 if (err)
2066 return err;
2067
2068 /* Default port and clock for debugging in case we can't reach
2069 * firmware.
2070 */
2071 adapter->params.nports = 1;
2072 adapter->params.vfres.pmask = 1;
2073 adapter->params.vpd.cclk = 50000;
2074
2075 adapter->params.chip = 0;
2076 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2077 case CHELSIO_T4:
2078 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2079 adapter->params.arch.sge_fl_db = DBPRIO_F;
2080 adapter->params.arch.mps_tcam_size =
2081 NUM_MPS_CLS_SRAM_L_INSTANCES;
2082 break;
2083
2084 case CHELSIO_T5:
2085 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2086 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2087 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2088 adapter->params.arch.mps_tcam_size =
2089 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2090 break;
2091
2092 case CHELSIO_T6:
2093 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2094 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2095 adapter->params.arch.sge_fl_db = 0;
2096 adapter->params.arch.mps_tcam_size =
2097 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2098 break;
2099 }
2100
2101 return 0;
2102 }
2103
2104 /**
2105 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
2106 * the VI of this VF.
2107 * @adapter: The adapter
2108 * @pf: The pf associated with vf
2109 * @naddr: the number of ACL MAC addresses returned in addr
2110 * @addr: Placeholder for MAC addresses
2111 *
2112 * Find the MAC address to be set to the VF's VI. The requested MAC address
2113 * is from the host OS via callback in the PF driver.
2114 */
t4vf_get_vf_mac_acl(struct adapter * adapter,unsigned int pf,unsigned int * naddr,u8 * addr)2115 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2116 unsigned int *naddr, u8 *addr)
2117 {
2118 struct fw_acl_mac_cmd cmd;
2119 int ret;
2120
2121 memset(&cmd, 0, sizeof(cmd));
2122 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2123 FW_CMD_REQUEST_F |
2124 FW_CMD_READ_F);
2125 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2126 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2127 if (ret)
2128 return ret;
2129
2130 if (cmd.nmac < *naddr)
2131 *naddr = cmd.nmac;
2132
2133 switch (pf) {
2134 case 3:
2135 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2136 break;
2137 case 2:
2138 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2139 break;
2140 case 1:
2141 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2142 break;
2143 case 0:
2144 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2145 break;
2146 }
2147
2148 return ret;
2149 }
2150