1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
23 #include <linux/sched/smt.h>
24
25 #include <linux/u64_stats_sync.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/binfmts.h>
28 #include <linux/mutex.h>
29 #include <linux/psi.h>
30 #include <linux/spinlock.h>
31 #include <linux/stop_machine.h>
32 #include <linux/irq_work.h>
33 #include <linux/tick.h>
34 #include <linux/slab.h>
35
36 #ifdef CONFIG_PARAVIRT
37 #include <asm/paravirt.h>
38 #endif
39
40 #include "cpupri.h"
41 #include "cpudeadline.h"
42 #include "cpuacct.h"
43
44 #ifdef CONFIG_SCHED_DEBUG
45 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
46 #else
47 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
48 #endif
49
50 struct rq;
51 struct cpuidle_state;
52
53 /* task_struct::on_rq states: */
54 #define TASK_ON_RQ_QUEUED 1
55 #define TASK_ON_RQ_MIGRATING 2
56
57 extern __read_mostly int scheduler_running;
58
59 extern unsigned long calc_load_update;
60 extern atomic_long_t calc_load_tasks;
61
62 extern void calc_global_load_tick(struct rq *this_rq);
63 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
64
65 #ifdef CONFIG_SMP
66 extern void cpu_load_update_active(struct rq *this_rq);
67 #else
cpu_load_update_active(struct rq * this_rq)68 static inline void cpu_load_update_active(struct rq *this_rq) { }
69 #endif
70
71 /*
72 * Helpers for converting nanosecond timing to jiffy resolution
73 */
74 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
75
76 /*
77 * Increase resolution of nice-level calculations for 64-bit architectures.
78 * The extra resolution improves shares distribution and load balancing of
79 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
80 * hierarchies, especially on larger systems. This is not a user-visible change
81 * and does not change the user-interface for setting shares/weights.
82 *
83 * We increase resolution only if we have enough bits to allow this increased
84 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
85 * pretty high and the returns do not justify the increased costs.
86 *
87 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
88 * increase coverage and consistency always enable it on 64bit platforms.
89 */
90 #ifdef CONFIG_64BIT
91 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
92 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
93 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
94 #else
95 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
96 # define scale_load(w) (w)
97 # define scale_load_down(w) (w)
98 #endif
99
100 /*
101 * Task weight (visible to users) and its load (invisible to users) have
102 * independent resolution, but they should be well calibrated. We use
103 * scale_load() and scale_load_down(w) to convert between them. The
104 * following must be true:
105 *
106 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
107 *
108 */
109 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
110
111 /*
112 * Single value that decides SCHED_DEADLINE internal math precision.
113 * 10 -> just above 1us
114 * 9 -> just above 0.5us
115 */
116 #define DL_SCALE (10)
117
118 /*
119 * These are the 'tuning knobs' of the scheduler:
120 */
121
122 /*
123 * single value that denotes runtime == period, ie unlimited time.
124 */
125 #define RUNTIME_INF ((u64)~0ULL)
126
idle_policy(int policy)127 static inline int idle_policy(int policy)
128 {
129 return policy == SCHED_IDLE;
130 }
fair_policy(int policy)131 static inline int fair_policy(int policy)
132 {
133 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
134 }
135
rt_policy(int policy)136 static inline int rt_policy(int policy)
137 {
138 return policy == SCHED_FIFO || policy == SCHED_RR;
139 }
140
dl_policy(int policy)141 static inline int dl_policy(int policy)
142 {
143 return policy == SCHED_DEADLINE;
144 }
valid_policy(int policy)145 static inline bool valid_policy(int policy)
146 {
147 return idle_policy(policy) || fair_policy(policy) ||
148 rt_policy(policy) || dl_policy(policy);
149 }
150
task_has_rt_policy(struct task_struct * p)151 static inline int task_has_rt_policy(struct task_struct *p)
152 {
153 return rt_policy(p->policy);
154 }
155
task_has_dl_policy(struct task_struct * p)156 static inline int task_has_dl_policy(struct task_struct *p)
157 {
158 return dl_policy(p->policy);
159 }
160
161 /*
162 * Tells if entity @a should preempt entity @b.
163 */
164 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)165 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
166 {
167 return dl_time_before(a->deadline, b->deadline);
168 }
169
170 /*
171 * This is the priority-queue data structure of the RT scheduling class:
172 */
173 struct rt_prio_array {
174 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
175 struct list_head queue[MAX_RT_PRIO];
176 };
177
178 struct rt_bandwidth {
179 /* nests inside the rq lock: */
180 raw_spinlock_t rt_runtime_lock;
181 ktime_t rt_period;
182 u64 rt_runtime;
183 struct hrtimer rt_period_timer;
184 unsigned int rt_period_active;
185 };
186
187 void __dl_clear_params(struct task_struct *p);
188
189 /*
190 * To keep the bandwidth of -deadline tasks and groups under control
191 * we need some place where:
192 * - store the maximum -deadline bandwidth of the system (the group);
193 * - cache the fraction of that bandwidth that is currently allocated.
194 *
195 * This is all done in the data structure below. It is similar to the
196 * one used for RT-throttling (rt_bandwidth), with the main difference
197 * that, since here we are only interested in admission control, we
198 * do not decrease any runtime while the group "executes", neither we
199 * need a timer to replenish it.
200 *
201 * With respect to SMP, the bandwidth is given on a per-CPU basis,
202 * meaning that:
203 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
204 * - dl_total_bw array contains, in the i-eth element, the currently
205 * allocated bandwidth on the i-eth CPU.
206 * Moreover, groups consume bandwidth on each CPU, while tasks only
207 * consume bandwidth on the CPU they're running on.
208 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
209 * that will be shown the next time the proc or cgroup controls will
210 * be red. It on its turn can be changed by writing on its own
211 * control.
212 */
213 struct dl_bandwidth {
214 raw_spinlock_t dl_runtime_lock;
215 u64 dl_runtime;
216 u64 dl_period;
217 };
218
dl_bandwidth_enabled(void)219 static inline int dl_bandwidth_enabled(void)
220 {
221 return sysctl_sched_rt_runtime >= 0;
222 }
223
224 struct dl_bw {
225 raw_spinlock_t lock;
226 u64 bw, total_bw;
227 };
228
229 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
230
231 static inline
__dl_clear(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 dl_b->total_bw -= tsk_bw;
235 __dl_update(dl_b, (s32)tsk_bw / cpus);
236 }
237
238 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)239 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
240 {
241 dl_b->total_bw += tsk_bw;
242 __dl_update(dl_b, -((s32)tsk_bw / cpus));
243 }
244
245 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)246 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
247 {
248 return dl_b->bw != -1 &&
249 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
250 }
251
252 void dl_change_utilization(struct task_struct *p, u64 new_bw);
253 extern void init_dl_bw(struct dl_bw *dl_b);
254 extern int sched_dl_global_validate(void);
255 extern void sched_dl_do_global(void);
256 extern int sched_dl_overflow(struct task_struct *p, int policy,
257 const struct sched_attr *attr);
258 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
259 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
260 extern bool __checkparam_dl(const struct sched_attr *attr);
261 extern void __dl_clear_params(struct task_struct *p);
262 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
263 extern int dl_task_can_attach(struct task_struct *p,
264 const struct cpumask *cs_cpus_allowed);
265 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
266 const struct cpumask *trial);
267 extern bool dl_cpu_busy(unsigned int cpu);
268
269 #ifdef CONFIG_CGROUP_SCHED
270
271 #include <linux/cgroup.h>
272 #include <linux/psi.h>
273
274 struct cfs_rq;
275 struct rt_rq;
276
277 extern struct list_head task_groups;
278
279 struct cfs_bandwidth {
280 #ifdef CONFIG_CFS_BANDWIDTH
281 raw_spinlock_t lock;
282 ktime_t period;
283 u64 quota, runtime;
284 s64 hierarchical_quota;
285
286 short idle, period_active;
287 struct hrtimer period_timer, slack_timer;
288 struct list_head throttled_cfs_rq;
289
290 /* statistics */
291 int nr_periods, nr_throttled;
292 u64 throttled_time;
293
294 bool distribute_running;
295 #endif
296 };
297
298 /* task group related information */
299 struct task_group {
300 struct cgroup_subsys_state css;
301
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 /* schedulable entities of this group on each cpu */
304 struct sched_entity **se;
305 /* runqueue "owned" by this group on each cpu */
306 struct cfs_rq **cfs_rq;
307 unsigned long shares;
308
309 #ifdef CONFIG_SMP
310 /*
311 * load_avg can be heavily contended at clock tick time, so put
312 * it in its own cacheline separated from the fields above which
313 * will also be accessed at each tick.
314 */
315 atomic_long_t load_avg ____cacheline_aligned;
316 #endif
317 #endif
318
319 #ifdef CONFIG_RT_GROUP_SCHED
320 struct sched_rt_entity **rt_se;
321 struct rt_rq **rt_rq;
322
323 struct rt_bandwidth rt_bandwidth;
324 #endif
325
326 struct rcu_head rcu;
327 struct list_head list;
328
329 struct task_group *parent;
330 struct list_head siblings;
331 struct list_head children;
332
333 #ifdef CONFIG_SCHED_AUTOGROUP
334 struct autogroup *autogroup;
335 #endif
336
337 struct cfs_bandwidth cfs_bandwidth;
338 };
339
340 #ifdef CONFIG_FAIR_GROUP_SCHED
341 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
342
343 /*
344 * A weight of 0 or 1 can cause arithmetics problems.
345 * A weight of a cfs_rq is the sum of weights of which entities
346 * are queued on this cfs_rq, so a weight of a entity should not be
347 * too large, so as the shares value of a task group.
348 * (The default weight is 1024 - so there's no practical
349 * limitation from this.)
350 */
351 #define MIN_SHARES (1UL << 1)
352 #define MAX_SHARES (1UL << 18)
353 #endif
354
355 typedef int (*tg_visitor)(struct task_group *, void *);
356
357 extern int walk_tg_tree_from(struct task_group *from,
358 tg_visitor down, tg_visitor up, void *data);
359
360 /*
361 * Iterate the full tree, calling @down when first entering a node and @up when
362 * leaving it for the final time.
363 *
364 * Caller must hold rcu_lock or sufficient equivalent.
365 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)366 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
367 {
368 return walk_tg_tree_from(&root_task_group, down, up, data);
369 }
370
371 extern int tg_nop(struct task_group *tg, void *data);
372
373 extern void free_fair_sched_group(struct task_group *tg);
374 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
375 extern void online_fair_sched_group(struct task_group *tg);
376 extern void unregister_fair_sched_group(struct task_group *tg);
377 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
378 struct sched_entity *se, int cpu,
379 struct sched_entity *parent);
380 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
381
382 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
383 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
384 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
385
386 extern void free_rt_sched_group(struct task_group *tg);
387 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
388 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
389 struct sched_rt_entity *rt_se, int cpu,
390 struct sched_rt_entity *parent);
391 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
392 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
393 extern long sched_group_rt_runtime(struct task_group *tg);
394 extern long sched_group_rt_period(struct task_group *tg);
395 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
396
397 extern struct task_group *sched_create_group(struct task_group *parent);
398 extern void sched_online_group(struct task_group *tg,
399 struct task_group *parent);
400 extern void sched_destroy_group(struct task_group *tg);
401 extern void sched_offline_group(struct task_group *tg);
402
403 extern void sched_move_task(struct task_struct *tsk);
404
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
407
408 #ifdef CONFIG_SMP
409 extern void set_task_rq_fair(struct sched_entity *se,
410 struct cfs_rq *prev, struct cfs_rq *next);
411 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)412 static inline void set_task_rq_fair(struct sched_entity *se,
413 struct cfs_rq *prev, struct cfs_rq *next) { }
414 #endif /* CONFIG_SMP */
415 #endif /* CONFIG_FAIR_GROUP_SCHED */
416
417 #else /* CONFIG_CGROUP_SCHED */
418
419 struct cfs_bandwidth { };
420
421 #endif /* CONFIG_CGROUP_SCHED */
422
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned int nr_running, h_nr_running;
427
428 u64 exec_clock;
429 u64 min_vruntime;
430 #ifndef CONFIG_64BIT
431 u64 min_vruntime_copy;
432 #endif
433
434 struct rb_root_cached tasks_timeline;
435
436 /*
437 * 'curr' points to currently running entity on this cfs_rq.
438 * It is set to NULL otherwise (i.e when none are currently running).
439 */
440 struct sched_entity *curr, *next, *last, *skip;
441
442 #ifdef CONFIG_SCHED_DEBUG
443 unsigned int nr_spread_over;
444 #endif
445
446 #ifdef CONFIG_SMP
447 /*
448 * CFS load tracking
449 */
450 struct sched_avg avg;
451 u64 runnable_load_sum;
452 unsigned long runnable_load_avg;
453 #ifdef CONFIG_FAIR_GROUP_SCHED
454 unsigned long tg_load_avg_contrib;
455 unsigned long propagate_avg;
456 #endif
457 atomic_long_t removed_load_avg, removed_util_avg;
458 #ifndef CONFIG_64BIT
459 u64 load_last_update_time_copy;
460 #endif
461
462 #ifdef CONFIG_FAIR_GROUP_SCHED
463 /*
464 * h_load = weight * f(tg)
465 *
466 * Where f(tg) is the recursive weight fraction assigned to
467 * this group.
468 */
469 unsigned long h_load;
470 u64 last_h_load_update;
471 struct sched_entity *h_load_next;
472 #endif /* CONFIG_FAIR_GROUP_SCHED */
473 #endif /* CONFIG_SMP */
474
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
477
478 /*
479 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
480 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
481 * (like users, containers etc.)
482 *
483 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
484 * list is used during load balance.
485 */
486 int on_list;
487 struct list_head leaf_cfs_rq_list;
488 struct task_group *tg; /* group that "owns" this runqueue */
489
490 #ifdef CONFIG_CFS_BANDWIDTH
491 int runtime_enabled;
492 s64 runtime_remaining;
493
494 u64 throttled_clock, throttled_clock_task;
495 u64 throttled_clock_task_time;
496 int throttled, throttle_count;
497 struct list_head throttled_list;
498 #ifdef CONFIG_SCHED_WALT
499 u64 cumulative_runnable_avg;
500 #endif /* CONFIG_SCHED_WALT */
501 #endif /* CONFIG_CFS_BANDWIDTH */
502 #endif /* CONFIG_FAIR_GROUP_SCHED */
503 };
504
rt_bandwidth_enabled(void)505 static inline int rt_bandwidth_enabled(void)
506 {
507 return sysctl_sched_rt_runtime >= 0;
508 }
509
510 /* RT IPI pull logic requires IRQ_WORK */
511 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
512 # define HAVE_RT_PUSH_IPI
513 #endif
514
515 /* Real-Time classes' related field in a runqueue: */
516 struct rt_rq {
517 struct rt_prio_array active;
518 unsigned int rt_nr_running;
519 unsigned int rr_nr_running;
520 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
521 struct {
522 int curr; /* highest queued rt task prio */
523 #ifdef CONFIG_SMP
524 int next; /* next highest */
525 #endif
526 } highest_prio;
527 #endif
528 #ifdef CONFIG_SMP
529 unsigned long rt_nr_migratory;
530 unsigned long rt_nr_total;
531 int overloaded;
532 struct plist_head pushable_tasks;
533
534 struct sched_avg avg;
535
536 #endif /* CONFIG_SMP */
537 int rt_queued;
538
539 int rt_throttled;
540 u64 rt_time;
541 u64 rt_runtime;
542 /* Nests inside the rq lock: */
543 raw_spinlock_t rt_runtime_lock;
544
545 #ifdef CONFIG_RT_GROUP_SCHED
546 unsigned long rt_nr_boosted;
547
548 struct rq *rq;
549 struct task_group *tg;
550 #endif
551 };
552
553 /* Deadline class' related fields in a runqueue */
554 struct dl_rq {
555 /* runqueue is an rbtree, ordered by deadline */
556 struct rb_root_cached root;
557
558 unsigned long dl_nr_running;
559
560 #ifdef CONFIG_SMP
561 /*
562 * Deadline values of the currently executing and the
563 * earliest ready task on this rq. Caching these facilitates
564 * the decision wether or not a ready but not running task
565 * should migrate somewhere else.
566 */
567 struct {
568 u64 curr;
569 u64 next;
570 } earliest_dl;
571
572 unsigned long dl_nr_migratory;
573 int overloaded;
574
575 /*
576 * Tasks on this rq that can be pushed away. They are kept in
577 * an rb-tree, ordered by tasks' deadlines, with caching
578 * of the leftmost (earliest deadline) element.
579 */
580 struct rb_root_cached pushable_dl_tasks_root;
581 #else
582 struct dl_bw dl_bw;
583 #endif
584 /*
585 * "Active utilization" for this runqueue: increased when a
586 * task wakes up (becomes TASK_RUNNING) and decreased when a
587 * task blocks
588 */
589 u64 running_bw;
590
591 /*
592 * Utilization of the tasks "assigned" to this runqueue (including
593 * the tasks that are in runqueue and the tasks that executed on this
594 * CPU and blocked). Increased when a task moves to this runqueue, and
595 * decreased when the task moves away (migrates, changes scheduling
596 * policy, or terminates).
597 * This is needed to compute the "inactive utilization" for the
598 * runqueue (inactive utilization = this_bw - running_bw).
599 */
600 u64 this_bw;
601 u64 extra_bw;
602
603 /*
604 * Inverse of the fraction of CPU utilization that can be reclaimed
605 * by the GRUB algorithm.
606 */
607 u64 bw_ratio;
608 };
609
610 #ifdef CONFIG_SMP
611
sched_asym_prefer(int a,int b)612 static inline bool sched_asym_prefer(int a, int b)
613 {
614 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
615 }
616
617 struct max_cpu_capacity {
618 raw_spinlock_t lock;
619 unsigned long val;
620 int cpu;
621 };
622
623 /*
624 * We add the notion of a root-domain which will be used to define per-domain
625 * variables. Each exclusive cpuset essentially defines an island domain by
626 * fully partitioning the member cpus from any other cpuset. Whenever a new
627 * exclusive cpuset is created, we also create and attach a new root-domain
628 * object.
629 *
630 */
631 struct root_domain {
632 atomic_t refcount;
633 atomic_t rto_count;
634 struct rcu_head rcu;
635 cpumask_var_t span;
636 cpumask_var_t online;
637
638 /*
639 * Indicate pullable load on at least one CPU, e.g:
640 * - More than one runnable task
641 * - Running task is misfit
642 */
643 int overload;
644
645 /*
646 * The bit corresponding to a CPU gets set here if such CPU has more
647 * than one runnable -deadline task (as it is below for RT tasks).
648 */
649 cpumask_var_t dlo_mask;
650 atomic_t dlo_count;
651 struct dl_bw dl_bw;
652 struct cpudl cpudl;
653
654 #ifdef HAVE_RT_PUSH_IPI
655 /*
656 * For IPI pull requests, loop across the rto_mask.
657 */
658 struct irq_work rto_push_work;
659 raw_spinlock_t rto_lock;
660 /* These are only updated and read within rto_lock */
661 int rto_loop;
662 int rto_cpu;
663 /* These atomics are updated outside of a lock */
664 atomic_t rto_loop_next;
665 atomic_t rto_loop_start;
666 #endif
667 /*
668 * The "RT overload" flag: it gets set if a CPU has more than
669 * one runnable RT task.
670 */
671 cpumask_var_t rto_mask;
672 struct cpupri cpupri;
673
674 /* Maximum cpu capacity in the system. */
675 struct max_cpu_capacity max_cpu_capacity;
676
677 /* First cpu with maximum and minimum original capacity */
678 int max_cap_orig_cpu, min_cap_orig_cpu;
679 };
680
681 extern struct root_domain def_root_domain;
682 extern struct mutex sched_domains_mutex;
683
684 extern void init_defrootdomain(void);
685 extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
686 extern int sched_init_domains(const struct cpumask *cpu_map);
687 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
688 extern void sched_get_rd(struct root_domain *rd);
689 extern void sched_put_rd(struct root_domain *rd);
690
691 #ifdef HAVE_RT_PUSH_IPI
692 extern void rto_push_irq_work_func(struct irq_work *work);
693 #endif
694 #endif /* CONFIG_SMP */
695
696 /*
697 * This is the main, per-CPU runqueue data structure.
698 *
699 * Locking rule: those places that want to lock multiple runqueues
700 * (such as the load balancing or the thread migration code), lock
701 * acquire operations must be ordered by ascending &runqueue.
702 */
703 struct rq {
704 /* runqueue lock: */
705 raw_spinlock_t lock;
706
707 /*
708 * nr_running and cpu_load should be in the same cacheline because
709 * remote CPUs use both these fields when doing load calculation.
710 */
711 unsigned int nr_running;
712 #ifdef CONFIG_NUMA_BALANCING
713 unsigned int nr_numa_running;
714 unsigned int nr_preferred_running;
715 #endif
716 #define CPU_LOAD_IDX_MAX 5
717 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
718 #ifdef CONFIG_NO_HZ_COMMON
719 #ifdef CONFIG_SMP
720 unsigned long last_load_update_tick;
721 unsigned long last_blocked_load_update_tick;
722 #endif /* CONFIG_SMP */
723 unsigned long nohz_flags;
724 #endif /* CONFIG_NO_HZ_COMMON */
725 #ifdef CONFIG_NO_HZ_FULL
726 unsigned long last_sched_tick;
727 #endif
728 /* capture load from *all* tasks on this cpu: */
729 struct load_weight load;
730 unsigned long nr_load_updates;
731 u64 nr_switches;
732
733 struct cfs_rq cfs;
734 struct rt_rq rt;
735 struct dl_rq dl;
736
737 #ifdef CONFIG_FAIR_GROUP_SCHED
738 /* list of leaf cfs_rq on this cpu: */
739 struct list_head leaf_cfs_rq_list;
740 struct list_head *tmp_alone_branch;
741 #endif /* CONFIG_FAIR_GROUP_SCHED */
742
743 /*
744 * This is part of a global counter where only the total sum
745 * over all CPUs matters. A task can increase this counter on
746 * one CPU and if it got migrated afterwards it may decrease
747 * it on another CPU. Always updated under the runqueue lock:
748 */
749 unsigned long nr_uninterruptible;
750
751 struct task_struct *curr, *idle, *stop;
752 unsigned long next_balance;
753 struct mm_struct *prev_mm;
754
755 unsigned int clock_update_flags;
756 u64 clock;
757 u64 clock_task;
758
759 atomic_t nr_iowait;
760
761 #ifdef CONFIG_SMP
762 struct root_domain *rd;
763 struct sched_domain *sd;
764
765 unsigned long cpu_capacity;
766 unsigned long cpu_capacity_orig;
767
768 struct callback_head *balance_callback;
769
770 unsigned char idle_balance;
771
772 unsigned long misfit_task_load;
773
774 /* For active balancing */
775 int active_balance;
776 int push_cpu;
777 struct cpu_stop_work active_balance_work;
778 /* cpu of this runqueue: */
779 int cpu;
780 int online;
781
782 struct list_head cfs_tasks;
783
784 u64 rt_avg;
785 u64 age_stamp;
786 u64 idle_stamp;
787 u64 avg_idle;
788
789 /* This is used to determine avg_idle's max value */
790 u64 max_idle_balance_cost;
791 #endif
792
793 #ifdef CONFIG_SCHED_WALT
794 u64 cumulative_runnable_avg;
795 u64 window_start;
796 u64 curr_runnable_sum;
797 u64 prev_runnable_sum;
798 u64 nt_curr_runnable_sum;
799 u64 nt_prev_runnable_sum;
800 u64 cur_irqload;
801 u64 avg_irqload;
802 u64 irqload_ts;
803 u64 cum_window_demand;
804 #endif /* CONFIG_SCHED_WALT */
805
806
807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
808 u64 prev_irq_time;
809 #endif
810 #ifdef CONFIG_PARAVIRT
811 u64 prev_steal_time;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 u64 prev_steal_time_rq;
815 #endif
816
817 /* calc_load related fields */
818 unsigned long calc_load_update;
819 long calc_load_active;
820
821 #ifdef CONFIG_SCHED_HRTICK
822 #ifdef CONFIG_SMP
823 int hrtick_csd_pending;
824 call_single_data_t hrtick_csd;
825 #endif
826 struct hrtimer hrtick_timer;
827 #endif
828
829 #ifdef CONFIG_SCHEDSTATS
830 /* latency stats */
831 struct sched_info rq_sched_info;
832 unsigned long long rq_cpu_time;
833 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
834
835 /* sys_sched_yield() stats */
836 unsigned int yld_count;
837
838 /* schedule() stats */
839 unsigned int sched_count;
840 unsigned int sched_goidle;
841
842 /* try_to_wake_up() stats */
843 unsigned int ttwu_count;
844 unsigned int ttwu_local;
845 #endif
846
847 #ifdef CONFIG_SMP
848 struct llist_head wake_list;
849 #endif
850
851 #ifdef CONFIG_CPU_IDLE
852 /* Must be inspected within a rcu lock section */
853 struct cpuidle_state *idle_state;
854 int idle_state_idx;
855 #endif
856 };
857
cpu_of(struct rq * rq)858 static inline int cpu_of(struct rq *rq)
859 {
860 #ifdef CONFIG_SMP
861 return rq->cpu;
862 #else
863 return 0;
864 #endif
865 }
866
867
868 #ifdef CONFIG_SCHED_SMT
869 extern void __update_idle_core(struct rq *rq);
870
update_idle_core(struct rq * rq)871 static inline void update_idle_core(struct rq *rq)
872 {
873 if (static_branch_unlikely(&sched_smt_present))
874 __update_idle_core(rq);
875 }
876
877 #else
update_idle_core(struct rq * rq)878 static inline void update_idle_core(struct rq *rq) { }
879 #endif
880
881 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
882
883 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
884 #define this_rq() this_cpu_ptr(&runqueues)
885 #define task_rq(p) cpu_rq(task_cpu(p))
886 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
887 #define raw_rq() raw_cpu_ptr(&runqueues)
888
889 extern void update_rq_clock(struct rq *rq);
890
__rq_clock_broken(struct rq * rq)891 static inline u64 __rq_clock_broken(struct rq *rq)
892 {
893 return READ_ONCE(rq->clock);
894 }
895
896 /*
897 * rq::clock_update_flags bits
898 *
899 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
900 * call to __schedule(). This is an optimisation to avoid
901 * neighbouring rq clock updates.
902 *
903 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
904 * in effect and calls to update_rq_clock() are being ignored.
905 *
906 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
907 * made to update_rq_clock() since the last time rq::lock was pinned.
908 *
909 * If inside of __schedule(), clock_update_flags will have been
910 * shifted left (a left shift is a cheap operation for the fast path
911 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
912 *
913 * if (rq-clock_update_flags >= RQCF_UPDATED)
914 *
915 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
916 * one position though, because the next rq_unpin_lock() will shift it
917 * back.
918 */
919 #define RQCF_REQ_SKIP 0x01
920 #define RQCF_ACT_SKIP 0x02
921 #define RQCF_UPDATED 0x04
922
assert_clock_updated(struct rq * rq)923 static inline void assert_clock_updated(struct rq *rq)
924 {
925 /*
926 * The only reason for not seeing a clock update since the
927 * last rq_pin_lock() is if we're currently skipping updates.
928 */
929 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
930 }
931
rq_clock(struct rq * rq)932 static inline u64 rq_clock(struct rq *rq)
933 {
934 lockdep_assert_held(&rq->lock);
935 assert_clock_updated(rq);
936
937 return rq->clock;
938 }
939
rq_clock_task(struct rq * rq)940 static inline u64 rq_clock_task(struct rq *rq)
941 {
942 lockdep_assert_held(&rq->lock);
943 assert_clock_updated(rq);
944
945 return rq->clock_task;
946 }
947
rq_clock_skip_update(struct rq * rq,bool skip)948 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
949 {
950 lockdep_assert_held(&rq->lock);
951 if (skip)
952 rq->clock_update_flags |= RQCF_REQ_SKIP;
953 else
954 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
955 }
956
957 struct rq_flags {
958 unsigned long flags;
959 struct pin_cookie cookie;
960 #ifdef CONFIG_SCHED_DEBUG
961 /*
962 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
963 * current pin context is stashed here in case it needs to be
964 * restored in rq_repin_lock().
965 */
966 unsigned int clock_update_flags;
967 #endif
968 };
969
rq_pin_lock(struct rq * rq,struct rq_flags * rf)970 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
971 {
972 rf->cookie = lockdep_pin_lock(&rq->lock);
973
974 #ifdef CONFIG_SCHED_DEBUG
975 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
976 rf->clock_update_flags = 0;
977 #endif
978 }
979
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)980 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
981 {
982 #ifdef CONFIG_SCHED_DEBUG
983 if (rq->clock_update_flags > RQCF_ACT_SKIP)
984 rf->clock_update_flags = RQCF_UPDATED;
985 #endif
986
987 lockdep_unpin_lock(&rq->lock, rf->cookie);
988 }
989
rq_repin_lock(struct rq * rq,struct rq_flags * rf)990 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
991 {
992 lockdep_repin_lock(&rq->lock, rf->cookie);
993
994 #ifdef CONFIG_SCHED_DEBUG
995 /*
996 * Restore the value we stashed in @rf for this pin context.
997 */
998 rq->clock_update_flags |= rf->clock_update_flags;
999 #endif
1000 }
1001
1002 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1003 __acquires(rq->lock);
1004
1005 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1006 __acquires(p->pi_lock)
1007 __acquires(rq->lock);
1008
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1009 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1010 __releases(rq->lock)
1011 {
1012 rq_unpin_lock(rq, rf);
1013 raw_spin_unlock(&rq->lock);
1014 }
1015
1016 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1017 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1018 __releases(rq->lock)
1019 __releases(p->pi_lock)
1020 {
1021 rq_unpin_lock(rq, rf);
1022 raw_spin_unlock(&rq->lock);
1023 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1024 }
1025
1026 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1027 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1028 __acquires(rq->lock)
1029 {
1030 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1031 rq_pin_lock(rq, rf);
1032 }
1033
1034 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1035 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1036 __acquires(rq->lock)
1037 {
1038 raw_spin_lock_irq(&rq->lock);
1039 rq_pin_lock(rq, rf);
1040 }
1041
1042 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1043 rq_lock(struct rq *rq, struct rq_flags *rf)
1044 __acquires(rq->lock)
1045 {
1046 raw_spin_lock(&rq->lock);
1047 rq_pin_lock(rq, rf);
1048 }
1049
1050 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1051 rq_relock(struct rq *rq, struct rq_flags *rf)
1052 __acquires(rq->lock)
1053 {
1054 raw_spin_lock(&rq->lock);
1055 rq_repin_lock(rq, rf);
1056 }
1057
1058 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1059 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1060 __releases(rq->lock)
1061 {
1062 rq_unpin_lock(rq, rf);
1063 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1064 }
1065
1066 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1067 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1068 __releases(rq->lock)
1069 {
1070 rq_unpin_lock(rq, rf);
1071 raw_spin_unlock_irq(&rq->lock);
1072 }
1073
1074 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1075 rq_unlock(struct rq *rq, struct rq_flags *rf)
1076 __releases(rq->lock)
1077 {
1078 rq_unpin_lock(rq, rf);
1079 raw_spin_unlock(&rq->lock);
1080 }
1081
1082 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1083 this_rq_lock_irq(struct rq_flags *rf)
1084 __acquires(rq->lock)
1085 {
1086 struct rq *rq;
1087
1088 local_irq_disable();
1089 rq = this_rq();
1090 rq_lock(rq, rf);
1091 return rq;
1092 }
1093
1094 #ifdef CONFIG_NUMA
1095 enum numa_topology_type {
1096 NUMA_DIRECT,
1097 NUMA_GLUELESS_MESH,
1098 NUMA_BACKPLANE,
1099 };
1100 extern enum numa_topology_type sched_numa_topology_type;
1101 extern int sched_max_numa_distance;
1102 extern bool find_numa_distance(int distance);
1103 #endif
1104
1105 #ifdef CONFIG_NUMA
1106 extern void sched_init_numa(void);
1107 extern void sched_domains_numa_masks_set(unsigned int cpu);
1108 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1109 #else
sched_init_numa(void)1110 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1111 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1112 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1113 #endif
1114
1115 #ifdef CONFIG_NUMA_BALANCING
1116 /* The regions in numa_faults array from task_struct */
1117 enum numa_faults_stats {
1118 NUMA_MEM = 0,
1119 NUMA_CPU,
1120 NUMA_MEMBUF,
1121 NUMA_CPUBUF
1122 };
1123 extern void sched_setnuma(struct task_struct *p, int node);
1124 extern int migrate_task_to(struct task_struct *p, int cpu);
1125 extern int migrate_swap(struct task_struct *, struct task_struct *);
1126 #endif /* CONFIG_NUMA_BALANCING */
1127
1128 #ifdef CONFIG_SMP
1129
1130 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1131 queue_balance_callback(struct rq *rq,
1132 struct callback_head *head,
1133 void (*func)(struct rq *rq))
1134 {
1135 lockdep_assert_held(&rq->lock);
1136
1137 if (unlikely(head->next))
1138 return;
1139
1140 head->func = (void (*)(struct callback_head *))func;
1141 head->next = rq->balance_callback;
1142 rq->balance_callback = head;
1143 }
1144
1145 extern void sched_ttwu_pending(void);
1146
1147 #define rcu_dereference_check_sched_domain(p) \
1148 rcu_dereference_check((p), \
1149 lockdep_is_held(&sched_domains_mutex))
1150
1151 /*
1152 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1153 * See detach_destroy_domains: synchronize_sched for details.
1154 *
1155 * The domain tree of any CPU may only be accessed from within
1156 * preempt-disabled sections.
1157 */
1158 #define for_each_domain(cpu, __sd) \
1159 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1160 __sd; __sd = __sd->parent)
1161
1162 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1163
1164 /**
1165 * highest_flag_domain - Return highest sched_domain containing flag.
1166 * @cpu: The cpu whose highest level of sched domain is to
1167 * be returned.
1168 * @flag: The flag to check for the highest sched_domain
1169 * for the given cpu.
1170 *
1171 * Returns the highest sched_domain of a cpu which contains the given flag.
1172 */
highest_flag_domain(int cpu,int flag)1173 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1174 {
1175 struct sched_domain *sd, *hsd = NULL;
1176
1177 for_each_domain(cpu, sd) {
1178 if (!(sd->flags & flag))
1179 break;
1180 hsd = sd;
1181 }
1182
1183 return hsd;
1184 }
1185
lowest_flag_domain(int cpu,int flag)1186 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1187 {
1188 struct sched_domain *sd;
1189
1190 for_each_domain(cpu, sd) {
1191 if (sd->flags & flag)
1192 break;
1193 }
1194
1195 return sd;
1196 }
1197
1198 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1199 DECLARE_PER_CPU(int, sd_llc_size);
1200 DECLARE_PER_CPU(int, sd_llc_id);
1201 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1202 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1203 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1204 DECLARE_PER_CPU(struct sched_domain *, sd_ea);
1205 DECLARE_PER_CPU(struct sched_domain *, sd_scs);
1206 extern struct static_key_false sched_asym_cpucapacity;
1207
1208 struct sched_group_capacity {
1209 atomic_t ref;
1210 /*
1211 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1212 * for a single CPU.
1213 */
1214 unsigned long capacity;
1215 unsigned long min_capacity; /* Min per-CPU capacity in group */
1216 unsigned long max_capacity; /* Max per-CPU capacity in group */
1217 unsigned long next_update;
1218 int imbalance; /* XXX unrelated to capacity but shared group state */
1219
1220 #ifdef CONFIG_SCHED_DEBUG
1221 int id;
1222 #endif
1223
1224 unsigned long cpumask[0]; /* balance mask */
1225 };
1226
1227 struct sched_group {
1228 struct sched_group *next; /* Must be a circular list */
1229 atomic_t ref;
1230
1231 unsigned int group_weight;
1232 struct sched_group_capacity *sgc;
1233 int asym_prefer_cpu; /* cpu of highest priority in group */
1234 const struct sched_group_energy *sge;
1235
1236 /*
1237 * The CPUs this group covers.
1238 *
1239 * NOTE: this field is variable length. (Allocated dynamically
1240 * by attaching extra space to the end of the structure,
1241 * depending on how many CPUs the kernel has booted up with)
1242 */
1243 unsigned long cpumask[0];
1244 };
1245
sched_group_span(struct sched_group * sg)1246 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1247 {
1248 return to_cpumask(sg->cpumask);
1249 }
1250
1251 /*
1252 * See build_balance_mask().
1253 */
group_balance_mask(struct sched_group * sg)1254 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1255 {
1256 return to_cpumask(sg->sgc->cpumask);
1257 }
1258
1259 /**
1260 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1261 * @group: The group whose first cpu is to be returned.
1262 */
group_first_cpu(struct sched_group * group)1263 static inline unsigned int group_first_cpu(struct sched_group *group)
1264 {
1265 return cpumask_first(sched_group_span(group));
1266 }
1267
1268 extern int group_balance_cpu(struct sched_group *sg);
1269
1270 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1271 void register_sched_domain_sysctl(void);
1272 void dirty_sched_domain_sysctl(int cpu);
1273 void unregister_sched_domain_sysctl(void);
1274 #else
register_sched_domain_sysctl(void)1275 static inline void register_sched_domain_sysctl(void)
1276 {
1277 }
dirty_sched_domain_sysctl(int cpu)1278 static inline void dirty_sched_domain_sysctl(int cpu)
1279 {
1280 }
unregister_sched_domain_sysctl(void)1281 static inline void unregister_sched_domain_sysctl(void)
1282 {
1283 }
1284 #endif
1285
1286 #else
1287
sched_ttwu_pending(void)1288 static inline void sched_ttwu_pending(void) { }
1289
1290 #endif /* CONFIG_SMP */
1291
1292 #include "stats.h"
1293 #include "autogroup.h"
1294
1295 #ifdef CONFIG_CGROUP_SCHED
1296
1297 /*
1298 * Return the group to which this tasks belongs.
1299 *
1300 * We cannot use task_css() and friends because the cgroup subsystem
1301 * changes that value before the cgroup_subsys::attach() method is called,
1302 * therefore we cannot pin it and might observe the wrong value.
1303 *
1304 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1305 * core changes this before calling sched_move_task().
1306 *
1307 * Instead we use a 'copy' which is updated from sched_move_task() while
1308 * holding both task_struct::pi_lock and rq::lock.
1309 */
task_group(struct task_struct * p)1310 static inline struct task_group *task_group(struct task_struct *p)
1311 {
1312 return p->sched_task_group;
1313 }
1314
1315 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1316 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1317 {
1318 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1319 struct task_group *tg = task_group(p);
1320 #endif
1321
1322 #ifdef CONFIG_FAIR_GROUP_SCHED
1323 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1324 p->se.cfs_rq = tg->cfs_rq[cpu];
1325 p->se.parent = tg->se[cpu];
1326 #endif
1327
1328 #ifdef CONFIG_RT_GROUP_SCHED
1329 p->rt.rt_rq = tg->rt_rq[cpu];
1330 p->rt.parent = tg->rt_se[cpu];
1331 #endif
1332 }
1333
1334 #else /* CONFIG_CGROUP_SCHED */
1335
set_task_rq(struct task_struct * p,unsigned int cpu)1336 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1337 static inline struct task_group *task_group(struct task_struct *p)
1338 {
1339 return NULL;
1340 }
1341
1342 #endif /* CONFIG_CGROUP_SCHED */
1343
__set_task_cpu(struct task_struct * p,unsigned int cpu)1344 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1345 {
1346 set_task_rq(p, cpu);
1347 #ifdef CONFIG_SMP
1348 /*
1349 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1350 * successfuly executed on another CPU. We must ensure that updates of
1351 * per-task data have been completed by this moment.
1352 */
1353 smp_wmb();
1354 #ifdef CONFIG_THREAD_INFO_IN_TASK
1355 p->cpu = cpu;
1356 #else
1357 task_thread_info(p)->cpu = cpu;
1358 #endif
1359 p->wake_cpu = cpu;
1360 #endif
1361 }
1362
1363 /*
1364 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1365 */
1366 #ifdef CONFIG_SCHED_DEBUG
1367 # include <linux/static_key.h>
1368 # define const_debug __read_mostly
1369 #else
1370 # define const_debug const
1371 #endif
1372
1373 extern const_debug unsigned int sysctl_sched_features;
1374
1375 #define SCHED_FEAT(name, enabled) \
1376 __SCHED_FEAT_##name ,
1377
1378 enum {
1379 #include "features.h"
1380 __SCHED_FEAT_NR,
1381 };
1382
1383 #undef SCHED_FEAT
1384
1385 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1386 #define SCHED_FEAT(name, enabled) \
1387 static __always_inline bool static_branch_##name(struct static_key *key) \
1388 { \
1389 return static_key_##enabled(key); \
1390 }
1391
1392 #include "features.h"
1393
1394 #undef SCHED_FEAT
1395
1396 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1397 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1398 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1399 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1400 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1401
1402 extern struct static_key_false sched_numa_balancing;
1403 extern struct static_key_false sched_schedstats;
1404
global_rt_period(void)1405 static inline u64 global_rt_period(void)
1406 {
1407 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1408 }
1409
global_rt_runtime(void)1410 static inline u64 global_rt_runtime(void)
1411 {
1412 if (sysctl_sched_rt_runtime < 0)
1413 return RUNTIME_INF;
1414
1415 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1416 }
1417
task_current(struct rq * rq,struct task_struct * p)1418 static inline int task_current(struct rq *rq, struct task_struct *p)
1419 {
1420 return rq->curr == p;
1421 }
1422
task_running(struct rq * rq,struct task_struct * p)1423 static inline int task_running(struct rq *rq, struct task_struct *p)
1424 {
1425 #ifdef CONFIG_SMP
1426 return p->on_cpu;
1427 #else
1428 return task_current(rq, p);
1429 #endif
1430 }
1431
task_on_rq_queued(struct task_struct * p)1432 static inline int task_on_rq_queued(struct task_struct *p)
1433 {
1434 return p->on_rq == TASK_ON_RQ_QUEUED;
1435 }
1436
task_on_rq_migrating(struct task_struct * p)1437 static inline int task_on_rq_migrating(struct task_struct *p)
1438 {
1439 return p->on_rq == TASK_ON_RQ_MIGRATING;
1440 }
1441
1442 #ifndef prepare_arch_switch
1443 # define prepare_arch_switch(next) do { } while (0)
1444 #endif
1445 #ifndef finish_arch_post_lock_switch
1446 # define finish_arch_post_lock_switch() do { } while (0)
1447 #endif
1448
prepare_lock_switch(struct rq * rq,struct task_struct * next)1449 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1450 {
1451 #ifdef CONFIG_SMP
1452 /*
1453 * We can optimise this out completely for !SMP, because the
1454 * SMP rebalancing from interrupt is the only thing that cares
1455 * here.
1456 */
1457 next->on_cpu = 1;
1458 #endif
1459 }
1460
finish_lock_switch(struct rq * rq,struct task_struct * prev)1461 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1462 {
1463 #ifdef CONFIG_SMP
1464 /*
1465 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1466 * We must ensure this doesn't happen until the switch is completely
1467 * finished.
1468 *
1469 * In particular, the load of prev->state in finish_task_switch() must
1470 * happen before this.
1471 *
1472 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1473 */
1474 smp_store_release(&prev->on_cpu, 0);
1475 #endif
1476 #ifdef CONFIG_DEBUG_SPINLOCK
1477 /* this is a valid case when another task releases the spinlock */
1478 rq->lock.owner = current;
1479 #endif
1480 /*
1481 * If we are tracking spinlock dependencies then we have to
1482 * fix up the runqueue lock - which gets 'carried over' from
1483 * prev into current:
1484 */
1485 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1486
1487 raw_spin_unlock_irq(&rq->lock);
1488 }
1489
1490 /*
1491 * wake flags
1492 */
1493 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1494 #define WF_FORK 0x02 /* child wakeup after fork */
1495 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1496
1497 /*
1498 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1499 * of tasks with abnormal "nice" values across CPUs the contribution that
1500 * each task makes to its run queue's load is weighted according to its
1501 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1502 * scaled version of the new time slice allocation that they receive on time
1503 * slice expiry etc.
1504 */
1505
1506 #define WEIGHT_IDLEPRIO 3
1507 #define WMULT_IDLEPRIO 1431655765
1508
1509 extern const int sched_prio_to_weight[40];
1510 extern const u32 sched_prio_to_wmult[40];
1511
1512 /*
1513 * {de,en}queue flags:
1514 *
1515 * DEQUEUE_SLEEP - task is no longer runnable
1516 * ENQUEUE_WAKEUP - task just became runnable
1517 *
1518 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1519 * are in a known state which allows modification. Such pairs
1520 * should preserve as much state as possible.
1521 *
1522 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1523 * in the runqueue.
1524 *
1525 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1526 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1527 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1528 *
1529 */
1530
1531 #define DEQUEUE_SLEEP 0x01
1532 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1533 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1534 #define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
1535
1536 #define ENQUEUE_WAKEUP 0x01
1537 #define ENQUEUE_RESTORE 0x02
1538 #define ENQUEUE_MOVE 0x04
1539 #define ENQUEUE_NOCLOCK 0x08
1540
1541 #define ENQUEUE_HEAD 0x10
1542 #define ENQUEUE_REPLENISH 0x20
1543 #ifdef CONFIG_SMP
1544 #define ENQUEUE_MIGRATED 0x40
1545 #else
1546 #define ENQUEUE_MIGRATED 0x00
1547 #endif
1548
1549 #define RETRY_TASK ((void *)-1UL)
1550
1551 struct sched_class {
1552 const struct sched_class *next;
1553
1554 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1555 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1556 void (*yield_task) (struct rq *rq);
1557 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1558
1559 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1560
1561 /*
1562 * It is the responsibility of the pick_next_task() method that will
1563 * return the next task to call put_prev_task() on the @prev task or
1564 * something equivalent.
1565 *
1566 * May return RETRY_TASK when it finds a higher prio class has runnable
1567 * tasks.
1568 */
1569 struct task_struct * (*pick_next_task) (struct rq *rq,
1570 struct task_struct *prev,
1571 struct rq_flags *rf);
1572 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1573
1574 #ifdef CONFIG_SMP
1575 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
1576 int subling_count_hint);
1577 void (*migrate_task_rq)(struct task_struct *p);
1578
1579 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1580
1581 void (*set_cpus_allowed)(struct task_struct *p,
1582 const struct cpumask *newmask);
1583
1584 void (*rq_online)(struct rq *rq);
1585 void (*rq_offline)(struct rq *rq);
1586 #endif
1587
1588 void (*set_curr_task) (struct rq *rq);
1589 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1590 void (*task_fork) (struct task_struct *p);
1591 void (*task_dead) (struct task_struct *p);
1592
1593 /*
1594 * The switched_from() call is allowed to drop rq->lock, therefore we
1595 * cannot assume the switched_from/switched_to pair is serliazed by
1596 * rq->lock. They are however serialized by p->pi_lock.
1597 */
1598 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1599 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1600 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1601 int oldprio);
1602
1603 unsigned int (*get_rr_interval) (struct rq *rq,
1604 struct task_struct *task);
1605
1606 void (*update_curr) (struct rq *rq);
1607
1608 #define TASK_SET_GROUP 0
1609 #define TASK_MOVE_GROUP 1
1610
1611 #ifdef CONFIG_FAIR_GROUP_SCHED
1612 void (*task_change_group) (struct task_struct *p, int type);
1613 #endif
1614 };
1615
put_prev_task(struct rq * rq,struct task_struct * prev)1616 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1617 {
1618 prev->sched_class->put_prev_task(rq, prev);
1619 }
1620
set_curr_task(struct rq * rq,struct task_struct * curr)1621 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1622 {
1623 curr->sched_class->set_curr_task(rq);
1624 }
1625
1626 #ifdef CONFIG_SMP
1627 #define sched_class_highest (&stop_sched_class)
1628 #else
1629 #define sched_class_highest (&dl_sched_class)
1630 #endif
1631 #define for_each_class(class) \
1632 for (class = sched_class_highest; class; class = class->next)
1633
1634 extern const struct sched_class stop_sched_class;
1635 extern const struct sched_class dl_sched_class;
1636 extern const struct sched_class rt_sched_class;
1637 extern const struct sched_class fair_sched_class;
1638 extern const struct sched_class idle_sched_class;
1639
1640
1641 #ifdef CONFIG_SMP
1642
1643 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1644
1645 extern void trigger_load_balance(struct rq *rq);
1646
1647 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1648
1649 #endif
1650
1651 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1652 static inline void idle_set_state(struct rq *rq,
1653 struct cpuidle_state *idle_state)
1654 {
1655 rq->idle_state = idle_state;
1656 }
1657
idle_get_state(struct rq * rq)1658 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1659 {
1660 SCHED_WARN_ON(!rcu_read_lock_held());
1661 return rq->idle_state;
1662 }
1663
idle_set_state_idx(struct rq * rq,int idle_state_idx)1664 static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
1665 {
1666 rq->idle_state_idx = idle_state_idx;
1667 }
1668
idle_get_state_idx(struct rq * rq)1669 static inline int idle_get_state_idx(struct rq *rq)
1670 {
1671 WARN_ON(!rcu_read_lock_held());
1672 return rq->idle_state_idx;
1673 }
1674 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1675 static inline void idle_set_state(struct rq *rq,
1676 struct cpuidle_state *idle_state)
1677 {
1678 }
1679
idle_get_state(struct rq * rq)1680 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1681 {
1682 return NULL;
1683 }
1684
idle_set_state_idx(struct rq * rq,int idle_state_idx)1685 static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
1686 {
1687 }
1688
idle_get_state_idx(struct rq * rq)1689 static inline int idle_get_state_idx(struct rq *rq)
1690 {
1691 return -1;
1692 }
1693 #endif
1694
1695 extern void schedule_idle(void);
1696
1697 extern void sysrq_sched_debug_show(void);
1698 extern void sched_init_granularity(void);
1699 extern void update_max_interval(void);
1700
1701 extern void init_sched_dl_class(void);
1702 extern void init_sched_rt_class(void);
1703 extern void init_sched_fair_class(void);
1704
1705 extern void resched_curr(struct rq *rq);
1706 extern void resched_cpu(int cpu);
1707
1708 extern struct rt_bandwidth def_rt_bandwidth;
1709 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1710
1711 extern struct dl_bandwidth def_dl_bandwidth;
1712 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1713 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1714 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1715 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1716
1717 #define BW_SHIFT 20
1718 #define BW_UNIT (1 << BW_SHIFT)
1719 #define RATIO_SHIFT 8
1720 unsigned long to_ratio(u64 period, u64 runtime);
1721
1722 extern void init_entity_runnable_average(struct sched_entity *se);
1723 extern void post_init_entity_util_avg(struct sched_entity *se);
1724
1725 #ifdef CONFIG_NO_HZ_FULL
1726 extern bool sched_can_stop_tick(struct rq *rq);
1727
1728 /*
1729 * Tick may be needed by tasks in the runqueue depending on their policy and
1730 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1731 * nohz mode if necessary.
1732 */
sched_update_tick_dependency(struct rq * rq)1733 static inline void sched_update_tick_dependency(struct rq *rq)
1734 {
1735 int cpu;
1736
1737 if (!tick_nohz_full_enabled())
1738 return;
1739
1740 cpu = cpu_of(rq);
1741
1742 if (!tick_nohz_full_cpu(cpu))
1743 return;
1744
1745 if (sched_can_stop_tick(rq))
1746 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1747 else
1748 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1749 }
1750 #else
sched_update_tick_dependency(struct rq * rq)1751 static inline void sched_update_tick_dependency(struct rq *rq) { }
1752 #endif
1753
add_nr_running(struct rq * rq,unsigned count)1754 static inline void add_nr_running(struct rq *rq, unsigned count)
1755 {
1756 unsigned prev_nr = rq->nr_running;
1757
1758 rq->nr_running = prev_nr + count;
1759
1760 if (prev_nr < 2 && rq->nr_running >= 2) {
1761 #ifdef CONFIG_SMP
1762 if (!READ_ONCE(rq->rd->overload))
1763 WRITE_ONCE(rq->rd->overload, 1);
1764 #endif
1765 }
1766
1767 sched_update_tick_dependency(rq);
1768 }
1769
sub_nr_running(struct rq * rq,unsigned count)1770 static inline void sub_nr_running(struct rq *rq, unsigned count)
1771 {
1772 rq->nr_running -= count;
1773 /* Check if we still need preemption */
1774 sched_update_tick_dependency(rq);
1775 }
1776
rq_last_tick_reset(struct rq * rq)1777 static inline void rq_last_tick_reset(struct rq *rq)
1778 {
1779 #ifdef CONFIG_NO_HZ_FULL
1780 rq->last_sched_tick = jiffies;
1781 #endif
1782 }
1783
1784 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1785 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1786
1787 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1788
1789 extern const_debug unsigned int sysctl_sched_time_avg;
1790 extern const_debug unsigned int sysctl_sched_nr_migrate;
1791 extern const_debug unsigned int sysctl_sched_migration_cost;
1792
sched_avg_period(void)1793 static inline u64 sched_avg_period(void)
1794 {
1795 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1796 }
1797
1798 #ifdef CONFIG_SCHED_HRTICK
1799
1800 /*
1801 * Use hrtick when:
1802 * - enabled by features
1803 * - hrtimer is actually high res
1804 */
hrtick_enabled(struct rq * rq)1805 static inline int hrtick_enabled(struct rq *rq)
1806 {
1807 if (!sched_feat(HRTICK))
1808 return 0;
1809 if (!cpu_active(cpu_of(rq)))
1810 return 0;
1811 return hrtimer_is_hres_active(&rq->hrtick_timer);
1812 }
1813
1814 void hrtick_start(struct rq *rq, u64 delay);
1815
1816 #else
1817
hrtick_enabled(struct rq * rq)1818 static inline int hrtick_enabled(struct rq *rq)
1819 {
1820 return 0;
1821 }
1822
1823 #endif /* CONFIG_SCHED_HRTICK */
1824
1825 #ifdef CONFIG_SMP
1826 extern void sched_avg_update(struct rq *rq);
1827 extern unsigned long sched_get_rt_rq_util(int cpu);
1828
1829 #ifndef arch_scale_freq_capacity
1830 static __always_inline
arch_scale_freq_capacity(struct sched_domain * sd,int cpu)1831 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1832 {
1833 return SCHED_CAPACITY_SCALE;
1834 }
1835 #endif
1836
1837 #ifndef arch_scale_max_freq_capacity
1838 static __always_inline
arch_scale_max_freq_capacity(struct sched_domain * sd,int cpu)1839 unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu)
1840 {
1841 return SCHED_CAPACITY_SCALE;
1842 }
1843 #endif
1844
1845 #ifndef arch_scale_cpu_capacity
1846 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1847 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1848 {
1849 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1850 return sd->smt_gain / sd->span_weight;
1851
1852 return SCHED_CAPACITY_SCALE;
1853 }
1854 #endif
1855
1856 #ifdef CONFIG_SMP
capacity_of(int cpu)1857 static inline unsigned long capacity_of(int cpu)
1858 {
1859 return cpu_rq(cpu)->cpu_capacity;
1860 }
1861
capacity_orig_of(int cpu)1862 static inline unsigned long capacity_orig_of(int cpu)
1863 {
1864 return cpu_rq(cpu)->cpu_capacity_orig;
1865 }
1866
1867 extern unsigned int sysctl_sched_use_walt_cpu_util;
1868 extern unsigned int walt_ravg_window;
1869 extern bool walt_disabled;
1870
1871 #endif /* CONFIG_SMP */
1872
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1873 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1874 {
1875 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1876 sched_avg_update(rq);
1877 }
1878 #else
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1879 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
sched_avg_update(struct rq * rq)1880 static inline void sched_avg_update(struct rq *rq) { }
1881 #endif
1882
1883 #ifdef CONFIG_SMP
1884 #ifdef CONFIG_PREEMPT
1885
1886 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1887
1888 /*
1889 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1890 * way at the expense of forcing extra atomic operations in all
1891 * invocations. This assures that the double_lock is acquired using the
1892 * same underlying policy as the spinlock_t on this architecture, which
1893 * reduces latency compared to the unfair variant below. However, it
1894 * also adds more overhead and therefore may reduce throughput.
1895 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1896 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1897 __releases(this_rq->lock)
1898 __acquires(busiest->lock)
1899 __acquires(this_rq->lock)
1900 {
1901 raw_spin_unlock(&this_rq->lock);
1902 double_rq_lock(this_rq, busiest);
1903
1904 return 1;
1905 }
1906
1907 #else
1908 /*
1909 * Unfair double_lock_balance: Optimizes throughput at the expense of
1910 * latency by eliminating extra atomic operations when the locks are
1911 * already in proper order on entry. This favors lower cpu-ids and will
1912 * grant the double lock to lower cpus over higher ids under contention,
1913 * regardless of entry order into the function.
1914 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1915 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1916 __releases(this_rq->lock)
1917 __acquires(busiest->lock)
1918 __acquires(this_rq->lock)
1919 {
1920 int ret = 0;
1921
1922 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1923 if (busiest < this_rq) {
1924 raw_spin_unlock(&this_rq->lock);
1925 raw_spin_lock(&busiest->lock);
1926 raw_spin_lock_nested(&this_rq->lock,
1927 SINGLE_DEPTH_NESTING);
1928 ret = 1;
1929 } else
1930 raw_spin_lock_nested(&busiest->lock,
1931 SINGLE_DEPTH_NESTING);
1932 }
1933 return ret;
1934 }
1935
1936 #endif /* CONFIG_PREEMPT */
1937
1938 /*
1939 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1940 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1941 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1942 {
1943 if (unlikely(!irqs_disabled())) {
1944 /* printk() doesn't work good under rq->lock */
1945 raw_spin_unlock(&this_rq->lock);
1946 BUG_ON(1);
1947 }
1948
1949 return _double_lock_balance(this_rq, busiest);
1950 }
1951
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1952 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1953 __releases(busiest->lock)
1954 {
1955 raw_spin_unlock(&busiest->lock);
1956 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1957 }
1958
double_lock(spinlock_t * l1,spinlock_t * l2)1959 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1960 {
1961 if (l1 > l2)
1962 swap(l1, l2);
1963
1964 spin_lock(l1);
1965 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1966 }
1967
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1968 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1969 {
1970 if (l1 > l2)
1971 swap(l1, l2);
1972
1973 spin_lock_irq(l1);
1974 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1975 }
1976
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1977 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1978 {
1979 if (l1 > l2)
1980 swap(l1, l2);
1981
1982 raw_spin_lock(l1);
1983 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1984 }
1985
1986 /*
1987 * double_rq_lock - safely lock two runqueues
1988 *
1989 * Note this does not disable interrupts like task_rq_lock,
1990 * you need to do so manually before calling.
1991 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1992 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1993 __acquires(rq1->lock)
1994 __acquires(rq2->lock)
1995 {
1996 BUG_ON(!irqs_disabled());
1997 if (rq1 == rq2) {
1998 raw_spin_lock(&rq1->lock);
1999 __acquire(rq2->lock); /* Fake it out ;) */
2000 } else {
2001 if (rq1 < rq2) {
2002 raw_spin_lock(&rq1->lock);
2003 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2004 } else {
2005 raw_spin_lock(&rq2->lock);
2006 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2007 }
2008 }
2009 }
2010
2011 /*
2012 * double_rq_unlock - safely unlock two runqueues
2013 *
2014 * Note this does not restore interrupts like task_rq_unlock,
2015 * you need to do so manually after calling.
2016 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2017 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2018 __releases(rq1->lock)
2019 __releases(rq2->lock)
2020 {
2021 raw_spin_unlock(&rq1->lock);
2022 if (rq1 != rq2)
2023 raw_spin_unlock(&rq2->lock);
2024 else
2025 __release(rq2->lock);
2026 }
2027
2028 extern void set_rq_online (struct rq *rq);
2029 extern void set_rq_offline(struct rq *rq);
2030 extern bool sched_smp_initialized;
2031
2032 #else /* CONFIG_SMP */
2033
2034 /*
2035 * double_rq_lock - safely lock two runqueues
2036 *
2037 * Note this does not disable interrupts like task_rq_lock,
2038 * you need to do so manually before calling.
2039 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2040 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2041 __acquires(rq1->lock)
2042 __acquires(rq2->lock)
2043 {
2044 BUG_ON(!irqs_disabled());
2045 BUG_ON(rq1 != rq2);
2046 raw_spin_lock(&rq1->lock);
2047 __acquire(rq2->lock); /* Fake it out ;) */
2048 }
2049
2050 /*
2051 * double_rq_unlock - safely unlock two runqueues
2052 *
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2055 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2056 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2057 __releases(rq1->lock)
2058 __releases(rq2->lock)
2059 {
2060 BUG_ON(rq1 != rq2);
2061 raw_spin_unlock(&rq1->lock);
2062 __release(rq2->lock);
2063 }
2064
2065 #endif
2066
2067 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2068 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2069
2070 #ifdef CONFIG_SCHED_DEBUG
2071 extern bool sched_debug_enabled;
2072
2073 extern void print_cfs_stats(struct seq_file *m, int cpu);
2074 extern void print_rt_stats(struct seq_file *m, int cpu);
2075 extern void print_dl_stats(struct seq_file *m, int cpu);
2076 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2077 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2078 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2079 #ifdef CONFIG_NUMA_BALANCING
2080 extern void
2081 show_numa_stats(struct task_struct *p, struct seq_file *m);
2082 extern void
2083 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2084 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2085 #endif /* CONFIG_NUMA_BALANCING */
2086 #endif /* CONFIG_SCHED_DEBUG */
2087
2088 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2089 extern void init_rt_rq(struct rt_rq *rt_rq);
2090 extern void init_dl_rq(struct dl_rq *dl_rq);
2091
2092 extern void cfs_bandwidth_usage_inc(void);
2093 extern void cfs_bandwidth_usage_dec(void);
2094
2095 #ifdef CONFIG_NO_HZ_COMMON
2096 enum rq_nohz_flag_bits {
2097 NOHZ_TICK_STOPPED,
2098 NOHZ_BALANCE_KICK,
2099 NOHZ_STATS_KICK
2100 };
2101
2102 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2103
2104 extern void nohz_balance_exit_idle(unsigned int cpu);
2105 #else
nohz_balance_exit_idle(unsigned int cpu)2106 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
2107 #endif
2108
2109
2110 #ifdef CONFIG_SMP
2111
2112 extern void init_energy_aware_data(int cpu);
2113
2114 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2115 void __dl_update(struct dl_bw *dl_b, s64 bw)
2116 {
2117 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2118 int i;
2119
2120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2121 "sched RCU must be held");
2122 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2123 struct rq *rq = cpu_rq(i);
2124
2125 rq->dl.extra_bw += bw;
2126 }
2127 }
2128 #else
2129 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2130 void __dl_update(struct dl_bw *dl_b, s64 bw)
2131 {
2132 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2133
2134 dl->extra_bw += bw;
2135 }
2136 #endif
2137
2138
2139 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2140 struct irqtime {
2141 u64 total;
2142 u64 tick_delta;
2143 u64 irq_start_time;
2144 struct u64_stats_sync sync;
2145 };
2146
2147 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2148
2149 /*
2150 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2151 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2152 * and never move forward.
2153 */
irq_time_read(int cpu)2154 static inline u64 irq_time_read(int cpu)
2155 {
2156 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2157 unsigned int seq;
2158 u64 total;
2159
2160 do {
2161 seq = __u64_stats_fetch_begin(&irqtime->sync);
2162 total = irqtime->total;
2163 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2164
2165 return total;
2166 }
2167 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2168
2169 #ifdef CONFIG_CPU_FREQ
2170 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2171
2172 /**
2173 * cpufreq_update_util - Take a note about CPU utilization changes.
2174 * @rq: Runqueue to carry out the update for.
2175 * @flags: Update reason flags.
2176 *
2177 * This function is called by the scheduler on the CPU whose utilization is
2178 * being updated.
2179 *
2180 * It can only be called from RCU-sched read-side critical sections.
2181 *
2182 * The way cpufreq is currently arranged requires it to evaluate the CPU
2183 * performance state (frequency/voltage) on a regular basis to prevent it from
2184 * being stuck in a completely inadequate performance level for too long.
2185 * That is not guaranteed to happen if the updates are only triggered from CFS,
2186 * though, because they may not be coming in if RT or deadline tasks are active
2187 * all the time (or there are RT and DL tasks only).
2188 *
2189 * As a workaround for that issue, this function is called by the RT and DL
2190 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
2191 * but that really is a band-aid. Going forward it should be replaced with
2192 * solutions targeted more specifically at RT and DL tasks.
2193 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2194 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2195 {
2196 struct update_util_data *data;
2197
2198 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2199 cpu_of(rq)));
2200 if (data)
2201 data->func(data, rq_clock(rq), flags);
2202 }
2203 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2204 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2205 #endif /* CONFIG_CPU_FREQ */
2206
2207 #ifdef CONFIG_SCHED_WALT
2208
2209 static inline bool
walt_task_in_cum_window_demand(struct rq * rq,struct task_struct * p)2210 walt_task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
2211 {
2212 return cpu_of(rq) == task_cpu(p) &&
2213 (p->on_rq || p->last_sleep_ts >= rq->window_start);
2214 }
2215
2216 #endif /* CONFIG_SCHED_WALT */
2217
2218 #ifdef arch_scale_freq_capacity
2219 #ifndef arch_scale_freq_invariant
2220 #define arch_scale_freq_invariant() (true)
2221 #endif
2222 #else /* arch_scale_freq_capacity */
2223 #define arch_scale_freq_invariant() (false)
2224 #endif
2225