• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 
274 #include <net/icmp.h>
275 #include <net/inet_common.h>
276 #include <net/tcp.h>
277 #include <net/xfrm.h>
278 #include <net/ip.h>
279 #include <net/sock.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	unsigned long val;
330 
331 	if (READ_ONCE(tcp_memory_pressure))
332 		return;
333 	val = jiffies;
334 
335 	if (!val)
336 		val--;
337 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 
tcp_leave_memory_pressure(struct sock * sk)342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 	unsigned long val;
345 
346 	if (!READ_ONCE(tcp_memory_pressure))
347 		return;
348 	val = xchg(&tcp_memory_pressure, 0);
349 	if (val)
350 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 			      jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 
355 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 	u8 res = 0;
359 
360 	if (seconds > 0) {
361 		int period = timeout;
362 
363 		res = 1;
364 		while (seconds > period && res < 255) {
365 			res++;
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return res;
373 }
374 
375 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 	int period = 0;
379 
380 	if (retrans > 0) {
381 		period = timeout;
382 		while (--retrans) {
383 			timeout <<= 1;
384 			if (timeout > rto_max)
385 				timeout = rto_max;
386 			period += timeout;
387 		}
388 	}
389 	return period;
390 }
391 
tcp_compute_delivery_rate(const struct tcp_sock * tp)392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 	u32 rate = READ_ONCE(tp->rate_delivered);
395 	u32 intv = READ_ONCE(tp->rate_interval_us);
396 	u64 rate64 = 0;
397 
398 	if (rate && intv) {
399 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 		do_div(rate64, intv);
401 	}
402 	return rate64;
403 }
404 
405 /* Address-family independent initialization for a tcp_sock.
406  *
407  * NOTE: A lot of things set to zero explicitly by call to
408  *       sk_alloc() so need not be done here.
409  */
tcp_init_sock(struct sock * sk)410 void tcp_init_sock(struct sock *sk)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 
415 	tp->out_of_order_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 
419 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 
423 	/* So many TCP implementations out there (incorrectly) count the
424 	 * initial SYN frame in their delayed-ACK and congestion control
425 	 * algorithms that we must have the following bandaid to talk
426 	 * efficiently to them.  -DaveM
427 	 */
428 	tp->snd_cwnd = TCP_INIT_CWND;
429 
430 	/* There's a bubble in the pipe until at least the first ACK. */
431 	tp->app_limited = ~0U;
432 
433 	/* See draft-stevens-tcpca-spec-01 for discussion of the
434 	 * initialization of these values.
435 	 */
436 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 	tp->snd_cwnd_clamp = ~0;
438 	tp->mss_cache = TCP_MSS_DEFAULT;
439 
440 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 	tcp_assign_congestion_control(sk);
442 
443 	tp->tsoffset = 0;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 }
457 EXPORT_SYMBOL(tcp_init_sock);
458 
tcp_tx_timestamp(struct sock * sk,u16 tsflags,struct sk_buff * skb)459 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
460 {
461 	if (tsflags && skb) {
462 		struct skb_shared_info *shinfo = skb_shinfo(skb);
463 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
464 
465 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
466 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
467 			tcb->txstamp_ack = 1;
468 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
469 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
470 	}
471 }
472 
473 /*
474  *	Wait for a TCP event.
475  *
476  *	Note that we don't need to lock the socket, as the upper poll layers
477  *	take care of normal races (between the test and the event) and we don't
478  *	go look at any of the socket buffers directly.
479  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)480 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
481 {
482 	unsigned int mask;
483 	struct sock *sk = sock->sk;
484 	const struct tcp_sock *tp = tcp_sk(sk);
485 	int state;
486 
487 	sock_rps_record_flow(sk);
488 
489 	sock_poll_wait(file, sk_sleep(sk), wait);
490 
491 	state = sk_state_load(sk);
492 	if (state == TCP_LISTEN)
493 		return inet_csk_listen_poll(sk);
494 
495 	/* Socket is not locked. We are protected from async events
496 	 * by poll logic and correct handling of state changes
497 	 * made by other threads is impossible in any case.
498 	 */
499 
500 	mask = 0;
501 
502 	/*
503 	 * POLLHUP is certainly not done right. But poll() doesn't
504 	 * have a notion of HUP in just one direction, and for a
505 	 * socket the read side is more interesting.
506 	 *
507 	 * Some poll() documentation says that POLLHUP is incompatible
508 	 * with the POLLOUT/POLLWR flags, so somebody should check this
509 	 * all. But careful, it tends to be safer to return too many
510 	 * bits than too few, and you can easily break real applications
511 	 * if you don't tell them that something has hung up!
512 	 *
513 	 * Check-me.
514 	 *
515 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
516 	 * our fs/select.c). It means that after we received EOF,
517 	 * poll always returns immediately, making impossible poll() on write()
518 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
519 	 * if and only if shutdown has been made in both directions.
520 	 * Actually, it is interesting to look how Solaris and DUX
521 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
522 	 * then we could set it on SND_SHUTDOWN. BTW examples given
523 	 * in Stevens' books assume exactly this behaviour, it explains
524 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
525 	 *
526 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
527 	 * blocking on fresh not-connected or disconnected socket. --ANK
528 	 */
529 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
530 		mask |= POLLHUP;
531 	if (sk->sk_shutdown & RCV_SHUTDOWN)
532 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
533 
534 	/* Connected or passive Fast Open socket? */
535 	if (state != TCP_SYN_SENT &&
536 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
537 		int target = sock_rcvlowat(sk, 0, INT_MAX);
538 
539 		if (tp->urg_seq == tp->copied_seq &&
540 		    !sock_flag(sk, SOCK_URGINLINE) &&
541 		    tp->urg_data)
542 			target++;
543 
544 		if (tp->rcv_nxt - tp->copied_seq >= target)
545 			mask |= POLLIN | POLLRDNORM;
546 
547 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
548 			if (sk_stream_is_writeable(sk)) {
549 				mask |= POLLOUT | POLLWRNORM;
550 			} else {  /* send SIGIO later */
551 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
552 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
553 
554 				/* Race breaker. If space is freed after
555 				 * wspace test but before the flags are set,
556 				 * IO signal will be lost. Memory barrier
557 				 * pairs with the input side.
558 				 */
559 				smp_mb__after_atomic();
560 				if (sk_stream_is_writeable(sk))
561 					mask |= POLLOUT | POLLWRNORM;
562 			}
563 		} else
564 			mask |= POLLOUT | POLLWRNORM;
565 
566 		if (tp->urg_data & TCP_URG_VALID)
567 			mask |= POLLPRI;
568 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
569 		/* Active TCP fastopen socket with defer_connect
570 		 * Return POLLOUT so application can call write()
571 		 * in order for kernel to generate SYN+data
572 		 */
573 		mask |= POLLOUT | POLLWRNORM;
574 	}
575 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
576 	smp_rmb();
577 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
578 		mask |= POLLERR;
579 
580 	return mask;
581 }
582 EXPORT_SYMBOL(tcp_poll);
583 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)584 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
585 {
586 	struct tcp_sock *tp = tcp_sk(sk);
587 	int answ;
588 	bool slow;
589 
590 	switch (cmd) {
591 	case SIOCINQ:
592 		if (sk->sk_state == TCP_LISTEN)
593 			return -EINVAL;
594 
595 		slow = lock_sock_fast(sk);
596 		answ = tcp_inq(sk);
597 		unlock_sock_fast(sk, slow);
598 		break;
599 	case SIOCATMARK:
600 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
601 		break;
602 	case SIOCOUTQ:
603 		if (sk->sk_state == TCP_LISTEN)
604 			return -EINVAL;
605 
606 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
607 			answ = 0;
608 		else
609 			answ = tp->write_seq - tp->snd_una;
610 		break;
611 	case SIOCOUTQNSD:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
616 			answ = 0;
617 		else
618 			answ = tp->write_seq - tp->snd_nxt;
619 		break;
620 	default:
621 		return -ENOIOCTLCMD;
622 	}
623 
624 	return put_user(answ, (int __user *)arg);
625 }
626 EXPORT_SYMBOL(tcp_ioctl);
627 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)628 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
629 {
630 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
631 	tp->pushed_seq = tp->write_seq;
632 }
633 
forced_push(const struct tcp_sock * tp)634 static inline bool forced_push(const struct tcp_sock *tp)
635 {
636 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
637 }
638 
skb_entail(struct sock * sk,struct sk_buff * skb)639 static void skb_entail(struct sock *sk, struct sk_buff *skb)
640 {
641 	struct tcp_sock *tp = tcp_sk(sk);
642 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
643 
644 	skb->csum    = 0;
645 	tcb->seq     = tcb->end_seq = tp->write_seq;
646 	tcb->tcp_flags = TCPHDR_ACK;
647 	tcb->sacked  = 0;
648 	__skb_header_release(skb);
649 	tcp_add_write_queue_tail(sk, skb);
650 	sk->sk_wmem_queued += skb->truesize;
651 	sk_mem_charge(sk, skb->truesize);
652 	if (tp->nonagle & TCP_NAGLE_PUSH)
653 		tp->nonagle &= ~TCP_NAGLE_PUSH;
654 
655 	tcp_slow_start_after_idle_check(sk);
656 }
657 
tcp_mark_urg(struct tcp_sock * tp,int flags)658 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
659 {
660 	if (flags & MSG_OOB)
661 		tp->snd_up = tp->write_seq;
662 }
663 
664 /* If a not yet filled skb is pushed, do not send it if
665  * we have data packets in Qdisc or NIC queues :
666  * Because TX completion will happen shortly, it gives a chance
667  * to coalesce future sendmsg() payload into this skb, without
668  * need for a timer, and with no latency trade off.
669  * As packets containing data payload have a bigger truesize
670  * than pure acks (dataless) packets, the last checks prevent
671  * autocorking if we only have an ACK in Qdisc/NIC queues,
672  * or if TX completion was delayed after we processed ACK packet.
673  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)674 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
675 				int size_goal)
676 {
677 	return skb->len < size_goal &&
678 	       sysctl_tcp_autocorking &&
679 	       skb != tcp_write_queue_head(sk) &&
680 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
681 }
682 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)683 static void tcp_push(struct sock *sk, int flags, int mss_now,
684 		     int nonagle, int size_goal)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 	struct sk_buff *skb;
688 
689 	if (!tcp_send_head(sk))
690 		return;
691 
692 	skb = tcp_write_queue_tail(sk);
693 	if (!(flags & MSG_MORE) || forced_push(tp))
694 		tcp_mark_push(tp, skb);
695 
696 	tcp_mark_urg(tp, flags);
697 
698 	if (tcp_should_autocork(sk, skb, size_goal)) {
699 
700 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
701 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
702 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
703 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
704 		}
705 		/* It is possible TX completion already happened
706 		 * before we set TSQ_THROTTLED.
707 		 */
708 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
709 			return;
710 	}
711 
712 	if (flags & MSG_MORE)
713 		nonagle = TCP_NAGLE_CORK;
714 
715 	__tcp_push_pending_frames(sk, mss_now, nonagle);
716 }
717 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)718 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
719 				unsigned int offset, size_t len)
720 {
721 	struct tcp_splice_state *tss = rd_desc->arg.data;
722 	int ret;
723 
724 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
725 			      min(rd_desc->count, len), tss->flags);
726 	if (ret > 0)
727 		rd_desc->count -= ret;
728 	return ret;
729 }
730 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)731 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
732 {
733 	/* Store TCP splice context information in read_descriptor_t. */
734 	read_descriptor_t rd_desc = {
735 		.arg.data = tss,
736 		.count	  = tss->len,
737 	};
738 
739 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
740 }
741 
742 /**
743  *  tcp_splice_read - splice data from TCP socket to a pipe
744  * @sock:	socket to splice from
745  * @ppos:	position (not valid)
746  * @pipe:	pipe to splice to
747  * @len:	number of bytes to splice
748  * @flags:	splice modifier flags
749  *
750  * Description:
751  *    Will read pages from given socket and fill them into a pipe.
752  *
753  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)754 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
755 			struct pipe_inode_info *pipe, size_t len,
756 			unsigned int flags)
757 {
758 	struct sock *sk = sock->sk;
759 	struct tcp_splice_state tss = {
760 		.pipe = pipe,
761 		.len = len,
762 		.flags = flags,
763 	};
764 	long timeo;
765 	ssize_t spliced;
766 	int ret;
767 
768 	sock_rps_record_flow(sk);
769 	/*
770 	 * We can't seek on a socket input
771 	 */
772 	if (unlikely(*ppos))
773 		return -ESPIPE;
774 
775 	ret = spliced = 0;
776 
777 	lock_sock(sk);
778 
779 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
780 	while (tss.len) {
781 		ret = __tcp_splice_read(sk, &tss);
782 		if (ret < 0)
783 			break;
784 		else if (!ret) {
785 			if (spliced)
786 				break;
787 			if (sock_flag(sk, SOCK_DONE))
788 				break;
789 			if (sk->sk_err) {
790 				ret = sock_error(sk);
791 				break;
792 			}
793 			if (sk->sk_shutdown & RCV_SHUTDOWN)
794 				break;
795 			if (sk->sk_state == TCP_CLOSE) {
796 				/*
797 				 * This occurs when user tries to read
798 				 * from never connected socket.
799 				 */
800 				if (!sock_flag(sk, SOCK_DONE))
801 					ret = -ENOTCONN;
802 				break;
803 			}
804 			if (!timeo) {
805 				ret = -EAGAIN;
806 				break;
807 			}
808 			/* if __tcp_splice_read() got nothing while we have
809 			 * an skb in receive queue, we do not want to loop.
810 			 * This might happen with URG data.
811 			 */
812 			if (!skb_queue_empty(&sk->sk_receive_queue))
813 				break;
814 			sk_wait_data(sk, &timeo, NULL);
815 			if (signal_pending(current)) {
816 				ret = sock_intr_errno(timeo);
817 				break;
818 			}
819 			continue;
820 		}
821 		tss.len -= ret;
822 		spliced += ret;
823 
824 		if (!timeo)
825 			break;
826 		release_sock(sk);
827 		lock_sock(sk);
828 
829 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
830 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
831 		    signal_pending(current))
832 			break;
833 	}
834 
835 	release_sock(sk);
836 
837 	if (spliced)
838 		return spliced;
839 
840 	return ret;
841 }
842 EXPORT_SYMBOL(tcp_splice_read);
843 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)844 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
845 				    bool force_schedule)
846 {
847 	struct sk_buff *skb;
848 
849 	/* The TCP header must be at least 32-bit aligned.  */
850 	size = ALIGN(size, 4);
851 
852 	if (unlikely(tcp_under_memory_pressure(sk)))
853 		sk_mem_reclaim_partial(sk);
854 
855 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
856 	if (likely(skb)) {
857 		bool mem_scheduled;
858 
859 		if (force_schedule) {
860 			mem_scheduled = true;
861 			sk_forced_mem_schedule(sk, skb->truesize);
862 		} else {
863 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
864 		}
865 		if (likely(mem_scheduled)) {
866 			skb_reserve(skb, sk->sk_prot->max_header);
867 			/*
868 			 * Make sure that we have exactly size bytes
869 			 * available to the caller, no more, no less.
870 			 */
871 			skb->reserved_tailroom = skb->end - skb->tail - size;
872 			return skb;
873 		}
874 		__kfree_skb(skb);
875 	} else {
876 		sk->sk_prot->enter_memory_pressure(sk);
877 		sk_stream_moderate_sndbuf(sk);
878 	}
879 	return NULL;
880 }
881 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)882 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
883 				       int large_allowed)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	u32 new_size_goal, size_goal;
887 
888 	if (!large_allowed || !sk_can_gso(sk))
889 		return mss_now;
890 
891 	/* Note : tcp_tso_autosize() will eventually split this later */
892 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
893 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
894 
895 	/* We try hard to avoid divides here */
896 	size_goal = tp->gso_segs * mss_now;
897 	if (unlikely(new_size_goal < size_goal ||
898 		     new_size_goal >= size_goal + mss_now)) {
899 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
900 				     sk->sk_gso_max_segs);
901 		size_goal = tp->gso_segs * mss_now;
902 	}
903 
904 	return max(size_goal, mss_now);
905 }
906 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)907 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
908 {
909 	int mss_now;
910 
911 	mss_now = tcp_current_mss(sk);
912 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
913 
914 	return mss_now;
915 }
916 
917 /* In some cases, both sendpage() and sendmsg() could have added
918  * an skb to the write queue, but failed adding payload on it.
919  * We need to remove it to consume less memory, but more
920  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
921  * users.
922  */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)923 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
924 {
925 	if (skb && !skb->len &&
926 	    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
927 		tcp_unlink_write_queue(skb, sk);
928 		tcp_check_send_head(sk, skb);
929 		sk_wmem_free_skb(sk, skb);
930 	}
931 }
932 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 			 size_t size, int flags)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	int mss_now, size_goal;
938 	int err;
939 	ssize_t copied;
940 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941 
942 	/* Wait for a connection to finish. One exception is TCP Fast Open
943 	 * (passive side) where data is allowed to be sent before a connection
944 	 * is fully established.
945 	 */
946 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
947 	    !tcp_passive_fastopen(sk)) {
948 		err = sk_stream_wait_connect(sk, &timeo);
949 		if (err != 0)
950 			goto out_err;
951 	}
952 
953 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
954 
955 	mss_now = tcp_send_mss(sk, &size_goal, flags);
956 	copied = 0;
957 
958 	err = -EPIPE;
959 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 		goto out_err;
961 
962 	while (size > 0) {
963 		struct sk_buff *skb = tcp_write_queue_tail(sk);
964 		int copy, i;
965 		bool can_coalesce;
966 
967 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
968 		    !tcp_skb_can_collapse_to(skb)) {
969 new_segment:
970 			if (!sk_stream_memory_free(sk))
971 				goto wait_for_sndbuf;
972 
973 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
974 						  skb_queue_empty(&sk->sk_write_queue));
975 			if (!skb)
976 				goto wait_for_memory;
977 
978 			skb_entail(sk, skb);
979 			copy = size_goal;
980 		}
981 
982 		if (copy > size)
983 			copy = size;
984 
985 		i = skb_shinfo(skb)->nr_frags;
986 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
987 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
988 			tcp_mark_push(tp, skb);
989 			goto new_segment;
990 		}
991 		if (!sk_wmem_schedule(sk, copy))
992 			goto wait_for_memory;
993 
994 		if (can_coalesce) {
995 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
996 		} else {
997 			get_page(page);
998 			skb_fill_page_desc(skb, i, page, offset, copy);
999 		}
1000 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1001 
1002 		skb->len += copy;
1003 		skb->data_len += copy;
1004 		skb->truesize += copy;
1005 		sk->sk_wmem_queued += copy;
1006 		sk_mem_charge(sk, copy);
1007 		skb->ip_summed = CHECKSUM_PARTIAL;
1008 		tp->write_seq += copy;
1009 		TCP_SKB_CB(skb)->end_seq += copy;
1010 		tcp_skb_pcount_set(skb, 0);
1011 
1012 		if (!copied)
1013 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1014 
1015 		copied += copy;
1016 		offset += copy;
1017 		size -= copy;
1018 		if (!size)
1019 			goto out;
1020 
1021 		if (skb->len < size_goal || (flags & MSG_OOB))
1022 			continue;
1023 
1024 		if (forced_push(tp)) {
1025 			tcp_mark_push(tp, skb);
1026 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1027 		} else if (skb == tcp_send_head(sk))
1028 			tcp_push_one(sk, mss_now);
1029 		continue;
1030 
1031 wait_for_sndbuf:
1032 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1033 wait_for_memory:
1034 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1035 			 TCP_NAGLE_PUSH, size_goal);
1036 
1037 		err = sk_stream_wait_memory(sk, &timeo);
1038 		if (err != 0)
1039 			goto do_error;
1040 
1041 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1042 	}
1043 
1044 out:
1045 	if (copied) {
1046 		tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1047 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1048 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1049 	}
1050 	return copied;
1051 
1052 do_error:
1053 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1054 	if (copied)
1055 		goto out;
1056 out_err:
1057 	/* make sure we wake any epoll edge trigger waiter */
1058 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1059 		     err == -EAGAIN)) {
1060 		sk->sk_write_space(sk);
1061 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1062 	}
1063 	return sk_stream_error(sk, flags, err);
1064 }
1065 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1066 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1067 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1068 			size_t size, int flags)
1069 {
1070 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1071 	    !sk_check_csum_caps(sk))
1072 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1073 
1074 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1075 
1076 	return do_tcp_sendpages(sk, page, offset, size, flags);
1077 }
1078 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1079 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1080 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1081 		 size_t size, int flags)
1082 {
1083 	int ret;
1084 
1085 	lock_sock(sk);
1086 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1087 	release_sock(sk);
1088 
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL(tcp_sendpage);
1092 
1093 /* Do not bother using a page frag for very small frames.
1094  * But use this heuristic only for the first skb in write queue.
1095  *
1096  * Having no payload in skb->head allows better SACK shifting
1097  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1098  * write queue has less skbs.
1099  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1100  * This also speeds up tso_fragment(), since it wont fallback
1101  * to tcp_fragment().
1102  */
linear_payload_sz(bool first_skb)1103 static int linear_payload_sz(bool first_skb)
1104 {
1105 	if (first_skb)
1106 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1107 	return 0;
1108 }
1109 
select_size(const struct sock * sk,bool sg,bool first_skb)1110 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1111 {
1112 	const struct tcp_sock *tp = tcp_sk(sk);
1113 	int tmp = tp->mss_cache;
1114 
1115 	if (sg) {
1116 		if (sk_can_gso(sk)) {
1117 			tmp = linear_payload_sz(first_skb);
1118 		} else {
1119 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1120 
1121 			if (tmp >= pgbreak &&
1122 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1123 				tmp = pgbreak;
1124 		}
1125 	}
1126 
1127 	return tmp;
1128 }
1129 
tcp_free_fastopen_req(struct tcp_sock * tp)1130 void tcp_free_fastopen_req(struct tcp_sock *tp)
1131 {
1132 	if (tp->fastopen_req) {
1133 		kfree(tp->fastopen_req);
1134 		tp->fastopen_req = NULL;
1135 	}
1136 }
1137 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1138 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1139 				int *copied, size_t size)
1140 {
1141 	struct tcp_sock *tp = tcp_sk(sk);
1142 	struct inet_sock *inet = inet_sk(sk);
1143 	struct sockaddr *uaddr = msg->msg_name;
1144 	int err, flags;
1145 
1146 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1147 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1148 	     uaddr->sa_family == AF_UNSPEC))
1149 		return -EOPNOTSUPP;
1150 	if (tp->fastopen_req)
1151 		return -EALREADY; /* Another Fast Open is in progress */
1152 
1153 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1154 				   sk->sk_allocation);
1155 	if (unlikely(!tp->fastopen_req))
1156 		return -ENOBUFS;
1157 	tp->fastopen_req->data = msg;
1158 	tp->fastopen_req->size = size;
1159 
1160 	if (inet->defer_connect) {
1161 		err = tcp_connect(sk);
1162 		/* Same failure procedure as in tcp_v4/6_connect */
1163 		if (err) {
1164 			tcp_set_state(sk, TCP_CLOSE);
1165 			inet->inet_dport = 0;
1166 			sk->sk_route_caps = 0;
1167 		}
1168 	}
1169 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1170 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1171 				    msg->msg_namelen, flags, 1);
1172 	/* fastopen_req could already be freed in __inet_stream_connect
1173 	 * if the connection times out or gets rst
1174 	 */
1175 	if (tp->fastopen_req) {
1176 		*copied = tp->fastopen_req->copied;
1177 		tcp_free_fastopen_req(tp);
1178 		inet->defer_connect = 0;
1179 	}
1180 	return err;
1181 }
1182 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1183 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 	struct ubuf_info *uarg = NULL;
1187 	struct sk_buff *skb;
1188 	struct sockcm_cookie sockc;
1189 	int flags, err, copied = 0;
1190 	int mss_now = 0, size_goal, copied_syn = 0;
1191 	bool process_backlog = false;
1192 	bool sg;
1193 	long timeo;
1194 
1195 	flags = msg->msg_flags;
1196 
1197 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1198 		if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1199 			err = -EINVAL;
1200 			goto out_err;
1201 		}
1202 
1203 		skb = tcp_send_head(sk) ? tcp_write_queue_tail(sk) : NULL;
1204 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1205 		if (!uarg) {
1206 			err = -ENOBUFS;
1207 			goto out_err;
1208 		}
1209 
1210 		if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1211 			uarg->zerocopy = 0;
1212 	}
1213 
1214 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1215 	    !tp->repair) {
1216 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1217 		if (err == -EINPROGRESS && copied_syn > 0)
1218 			goto out;
1219 		else if (err)
1220 			goto out_err;
1221 	}
1222 
1223 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1224 
1225 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1226 
1227 	/* Wait for a connection to finish. One exception is TCP Fast Open
1228 	 * (passive side) where data is allowed to be sent before a connection
1229 	 * is fully established.
1230 	 */
1231 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1232 	    !tcp_passive_fastopen(sk)) {
1233 		err = sk_stream_wait_connect(sk, &timeo);
1234 		if (err != 0)
1235 			goto do_error;
1236 	}
1237 
1238 	if (unlikely(tp->repair)) {
1239 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1240 			copied = tcp_send_rcvq(sk, msg, size);
1241 			goto out_nopush;
1242 		}
1243 
1244 		err = -EINVAL;
1245 		if (tp->repair_queue == TCP_NO_QUEUE)
1246 			goto out_err;
1247 
1248 		/* 'common' sending to sendq */
1249 	}
1250 
1251 	sockc.tsflags = sk->sk_tsflags;
1252 	if (msg->msg_controllen) {
1253 		err = sock_cmsg_send(sk, msg, &sockc);
1254 		if (unlikely(err)) {
1255 			err = -EINVAL;
1256 			goto out_err;
1257 		}
1258 	}
1259 
1260 	/* This should be in poll */
1261 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1262 
1263 	/* Ok commence sending. */
1264 	copied = 0;
1265 
1266 restart:
1267 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1268 
1269 	err = -EPIPE;
1270 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1271 		goto do_error;
1272 
1273 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1274 
1275 	while (msg_data_left(msg)) {
1276 		int copy = 0;
1277 		int max = size_goal;
1278 
1279 		skb = tcp_write_queue_tail(sk);
1280 		if (tcp_send_head(sk)) {
1281 			if (skb->ip_summed == CHECKSUM_NONE)
1282 				max = mss_now;
1283 			copy = max - skb->len;
1284 		}
1285 
1286 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 			bool first_skb;
1288 
1289 new_segment:
1290 			/* Allocate new segment. If the interface is SG,
1291 			 * allocate skb fitting to single page.
1292 			 */
1293 			if (!sk_stream_memory_free(sk))
1294 				goto wait_for_sndbuf;
1295 
1296 			if (process_backlog && sk_flush_backlog(sk)) {
1297 				process_backlog = false;
1298 				goto restart;
1299 			}
1300 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1301 			skb = sk_stream_alloc_skb(sk,
1302 						  select_size(sk, sg, first_skb),
1303 						  sk->sk_allocation,
1304 						  first_skb);
1305 			if (!skb)
1306 				goto wait_for_memory;
1307 
1308 			process_backlog = true;
1309 			/*
1310 			 * Check whether we can use HW checksum.
1311 			 */
1312 			if (sk_check_csum_caps(sk))
1313 				skb->ip_summed = CHECKSUM_PARTIAL;
1314 
1315 			skb_entail(sk, skb);
1316 			copy = size_goal;
1317 			max = size_goal;
1318 
1319 			/* All packets are restored as if they have
1320 			 * already been sent. skb_mstamp isn't set to
1321 			 * avoid wrong rtt estimation.
1322 			 */
1323 			if (tp->repair)
1324 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1325 		}
1326 
1327 		/* Try to append data to the end of skb. */
1328 		if (copy > msg_data_left(msg))
1329 			copy = msg_data_left(msg);
1330 
1331 		/* Where to copy to? */
1332 		if (skb_availroom(skb) > 0) {
1333 			/* We have some space in skb head. Superb! */
1334 			copy = min_t(int, copy, skb_availroom(skb));
1335 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1336 			if (err)
1337 				goto do_fault;
1338 		} else if (!uarg || !uarg->zerocopy) {
1339 			bool merge = true;
1340 			int i = skb_shinfo(skb)->nr_frags;
1341 			struct page_frag *pfrag = sk_page_frag(sk);
1342 
1343 			if (!sk_page_frag_refill(sk, pfrag))
1344 				goto wait_for_memory;
1345 
1346 			if (!skb_can_coalesce(skb, i, pfrag->page,
1347 					      pfrag->offset)) {
1348 				if (i >= sysctl_max_skb_frags || !sg) {
1349 					tcp_mark_push(tp, skb);
1350 					goto new_segment;
1351 				}
1352 				merge = false;
1353 			}
1354 
1355 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1356 
1357 			if (!sk_wmem_schedule(sk, copy))
1358 				goto wait_for_memory;
1359 
1360 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1361 						       pfrag->page,
1362 						       pfrag->offset,
1363 						       copy);
1364 			if (err)
1365 				goto do_error;
1366 
1367 			/* Update the skb. */
1368 			if (merge) {
1369 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1370 			} else {
1371 				skb_fill_page_desc(skb, i, pfrag->page,
1372 						   pfrag->offset, copy);
1373 				page_ref_inc(pfrag->page);
1374 			}
1375 			pfrag->offset += copy;
1376 		} else {
1377 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1378 			if (err == -EMSGSIZE || err == -EEXIST)
1379 				goto new_segment;
1380 			if (err < 0)
1381 				goto do_error;
1382 			copy = err;
1383 		}
1384 
1385 		if (!copied)
1386 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1387 
1388 		tp->write_seq += copy;
1389 		TCP_SKB_CB(skb)->end_seq += copy;
1390 		tcp_skb_pcount_set(skb, 0);
1391 
1392 		copied += copy;
1393 		if (!msg_data_left(msg)) {
1394 			if (unlikely(flags & MSG_EOR))
1395 				TCP_SKB_CB(skb)->eor = 1;
1396 			goto out;
1397 		}
1398 
1399 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1400 			continue;
1401 
1402 		if (forced_push(tp)) {
1403 			tcp_mark_push(tp, skb);
1404 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1405 		} else if (skb == tcp_send_head(sk))
1406 			tcp_push_one(sk, mss_now);
1407 		continue;
1408 
1409 wait_for_sndbuf:
1410 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1411 wait_for_memory:
1412 		if (copied)
1413 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1414 				 TCP_NAGLE_PUSH, size_goal);
1415 
1416 		err = sk_stream_wait_memory(sk, &timeo);
1417 		if (err != 0)
1418 			goto do_error;
1419 
1420 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1421 	}
1422 
1423 out:
1424 	if (copied) {
1425 		tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1426 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1427 	}
1428 out_nopush:
1429 	sock_zerocopy_put(uarg);
1430 	return copied + copied_syn;
1431 
1432 do_error:
1433 	skb = tcp_write_queue_tail(sk);
1434 do_fault:
1435 	tcp_remove_empty_skb(sk, skb);
1436 
1437 	if (copied + copied_syn)
1438 		goto out;
1439 out_err:
1440 	sock_zerocopy_put_abort(uarg);
1441 	err = sk_stream_error(sk, flags, err);
1442 	/* make sure we wake any epoll edge trigger waiter */
1443 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1444 		     err == -EAGAIN)) {
1445 		sk->sk_write_space(sk);
1446 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1447 	}
1448 	return err;
1449 }
1450 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1451 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1452 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1453 {
1454 	int ret;
1455 
1456 	lock_sock(sk);
1457 	ret = tcp_sendmsg_locked(sk, msg, size);
1458 	release_sock(sk);
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(tcp_sendmsg);
1463 
1464 /*
1465  *	Handle reading urgent data. BSD has very simple semantics for
1466  *	this, no blocking and very strange errors 8)
1467  */
1468 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1469 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 
1473 	/* No URG data to read. */
1474 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1475 	    tp->urg_data == TCP_URG_READ)
1476 		return -EINVAL;	/* Yes this is right ! */
1477 
1478 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1479 		return -ENOTCONN;
1480 
1481 	if (tp->urg_data & TCP_URG_VALID) {
1482 		int err = 0;
1483 		char c = tp->urg_data;
1484 
1485 		if (!(flags & MSG_PEEK))
1486 			tp->urg_data = TCP_URG_READ;
1487 
1488 		/* Read urgent data. */
1489 		msg->msg_flags |= MSG_OOB;
1490 
1491 		if (len > 0) {
1492 			if (!(flags & MSG_TRUNC))
1493 				err = memcpy_to_msg(msg, &c, 1);
1494 			len = 1;
1495 		} else
1496 			msg->msg_flags |= MSG_TRUNC;
1497 
1498 		return err ? -EFAULT : len;
1499 	}
1500 
1501 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1502 		return 0;
1503 
1504 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1505 	 * the available implementations agree in this case:
1506 	 * this call should never block, independent of the
1507 	 * blocking state of the socket.
1508 	 * Mike <pall@rz.uni-karlsruhe.de>
1509 	 */
1510 	return -EAGAIN;
1511 }
1512 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1513 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1514 {
1515 	struct sk_buff *skb;
1516 	int copied = 0, err = 0;
1517 
1518 	/* XXX -- need to support SO_PEEK_OFF */
1519 
1520 	skb_queue_walk(&sk->sk_write_queue, skb) {
1521 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1522 		if (err)
1523 			break;
1524 
1525 		copied += skb->len;
1526 	}
1527 
1528 	return err ?: copied;
1529 }
1530 
1531 /* Clean up the receive buffer for full frames taken by the user,
1532  * then send an ACK if necessary.  COPIED is the number of bytes
1533  * tcp_recvmsg has given to the user so far, it speeds up the
1534  * calculation of whether or not we must ACK for the sake of
1535  * a window update.
1536  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1537 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	bool time_to_ack = false;
1541 
1542 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1543 
1544 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1545 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1546 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1547 
1548 	if (inet_csk_ack_scheduled(sk)) {
1549 		const struct inet_connection_sock *icsk = inet_csk(sk);
1550 		   /* Delayed ACKs frequently hit locked sockets during bulk
1551 		    * receive. */
1552 		if (icsk->icsk_ack.blocked ||
1553 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1554 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1555 		    /*
1556 		     * If this read emptied read buffer, we send ACK, if
1557 		     * connection is not bidirectional, user drained
1558 		     * receive buffer and there was a small segment
1559 		     * in queue.
1560 		     */
1561 		    (copied > 0 &&
1562 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1563 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1564 		       !icsk->icsk_ack.pingpong)) &&
1565 		      !atomic_read(&sk->sk_rmem_alloc)))
1566 			time_to_ack = true;
1567 	}
1568 
1569 	/* We send an ACK if we can now advertise a non-zero window
1570 	 * which has been raised "significantly".
1571 	 *
1572 	 * Even if window raised up to infinity, do not send window open ACK
1573 	 * in states, where we will not receive more. It is useless.
1574 	 */
1575 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1576 		__u32 rcv_window_now = tcp_receive_window(tp);
1577 
1578 		/* Optimize, __tcp_select_window() is not cheap. */
1579 		if (2*rcv_window_now <= tp->window_clamp) {
1580 			__u32 new_window = __tcp_select_window(sk);
1581 
1582 			/* Send ACK now, if this read freed lots of space
1583 			 * in our buffer. Certainly, new_window is new window.
1584 			 * We can advertise it now, if it is not less than current one.
1585 			 * "Lots" means "at least twice" here.
1586 			 */
1587 			if (new_window && new_window >= 2 * rcv_window_now)
1588 				time_to_ack = true;
1589 		}
1590 	}
1591 	if (time_to_ack)
1592 		tcp_send_ack(sk);
1593 }
1594 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1595 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1596 {
1597 	struct sk_buff *skb;
1598 	u32 offset;
1599 
1600 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1601 		offset = seq - TCP_SKB_CB(skb)->seq;
1602 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1603 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1604 			offset--;
1605 		}
1606 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1607 			*off = offset;
1608 			return skb;
1609 		}
1610 		/* This looks weird, but this can happen if TCP collapsing
1611 		 * splitted a fat GRO packet, while we released socket lock
1612 		 * in skb_splice_bits()
1613 		 */
1614 		sk_eat_skb(sk, skb);
1615 	}
1616 	return NULL;
1617 }
1618 
1619 /*
1620  * This routine provides an alternative to tcp_recvmsg() for routines
1621  * that would like to handle copying from skbuffs directly in 'sendfile'
1622  * fashion.
1623  * Note:
1624  *	- It is assumed that the socket was locked by the caller.
1625  *	- The routine does not block.
1626  *	- At present, there is no support for reading OOB data
1627  *	  or for 'peeking' the socket using this routine
1628  *	  (although both would be easy to implement).
1629  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1630 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1631 		  sk_read_actor_t recv_actor)
1632 {
1633 	struct sk_buff *skb;
1634 	struct tcp_sock *tp = tcp_sk(sk);
1635 	u32 seq = tp->copied_seq;
1636 	u32 offset;
1637 	int copied = 0;
1638 
1639 	if (sk->sk_state == TCP_LISTEN)
1640 		return -ENOTCONN;
1641 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1642 		if (offset < skb->len) {
1643 			int used;
1644 			size_t len;
1645 
1646 			len = skb->len - offset;
1647 			/* Stop reading if we hit a patch of urgent data */
1648 			if (tp->urg_data) {
1649 				u32 urg_offset = tp->urg_seq - seq;
1650 				if (urg_offset < len)
1651 					len = urg_offset;
1652 				if (!len)
1653 					break;
1654 			}
1655 			used = recv_actor(desc, skb, offset, len);
1656 			if (used <= 0) {
1657 				if (!copied)
1658 					copied = used;
1659 				break;
1660 			} else if (used <= len) {
1661 				seq += used;
1662 				copied += used;
1663 				offset += used;
1664 			}
1665 			/* If recv_actor drops the lock (e.g. TCP splice
1666 			 * receive) the skb pointer might be invalid when
1667 			 * getting here: tcp_collapse might have deleted it
1668 			 * while aggregating skbs from the socket queue.
1669 			 */
1670 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1671 			if (!skb)
1672 				break;
1673 			/* TCP coalescing might have appended data to the skb.
1674 			 * Try to splice more frags
1675 			 */
1676 			if (offset + 1 != skb->len)
1677 				continue;
1678 		}
1679 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1680 			sk_eat_skb(sk, skb);
1681 			++seq;
1682 			break;
1683 		}
1684 		sk_eat_skb(sk, skb);
1685 		if (!desc->count)
1686 			break;
1687 		tp->copied_seq = seq;
1688 	}
1689 	tp->copied_seq = seq;
1690 
1691 	tcp_rcv_space_adjust(sk);
1692 
1693 	/* Clean up data we have read: This will do ACK frames. */
1694 	if (copied > 0) {
1695 		tcp_recv_skb(sk, seq, &offset);
1696 		tcp_cleanup_rbuf(sk, copied);
1697 	}
1698 	return copied;
1699 }
1700 EXPORT_SYMBOL(tcp_read_sock);
1701 
tcp_peek_len(struct socket * sock)1702 int tcp_peek_len(struct socket *sock)
1703 {
1704 	return tcp_inq(sock->sk);
1705 }
1706 EXPORT_SYMBOL(tcp_peek_len);
1707 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping * tss)1708 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1709 				    struct scm_timestamping *tss)
1710 {
1711 	if (skb->tstamp)
1712 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1713 	else
1714 		tss->ts[0] = (struct timespec) {0};
1715 
1716 	if (skb_hwtstamps(skb)->hwtstamp)
1717 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1718 	else
1719 		tss->ts[2] = (struct timespec) {0};
1720 }
1721 
1722 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping * tss)1723 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1724 			struct scm_timestamping *tss)
1725 {
1726 	struct timeval tv;
1727 	bool has_timestamping = false;
1728 
1729 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1730 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1731 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1732 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1733 					 sizeof(tss->ts[0]), &tss->ts[0]);
1734 			} else {
1735 				tv.tv_sec = tss->ts[0].tv_sec;
1736 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1737 
1738 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1739 					 sizeof(tv), &tv);
1740 			}
1741 		}
1742 
1743 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1744 			has_timestamping = true;
1745 		else
1746 			tss->ts[0] = (struct timespec) {0};
1747 	}
1748 
1749 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1750 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1751 			has_timestamping = true;
1752 		else
1753 			tss->ts[2] = (struct timespec) {0};
1754 	}
1755 
1756 	if (has_timestamping) {
1757 		tss->ts[1] = (struct timespec) {0};
1758 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1759 			 sizeof(*tss), tss);
1760 	}
1761 }
1762 
1763 /*
1764  *	This routine copies from a sock struct into the user buffer.
1765  *
1766  *	Technical note: in 2.3 we work on _locked_ socket, so that
1767  *	tricks with *seq access order and skb->users are not required.
1768  *	Probably, code can be easily improved even more.
1769  */
1770 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1771 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1772 		int flags, int *addr_len)
1773 {
1774 	struct tcp_sock *tp = tcp_sk(sk);
1775 	int copied = 0;
1776 	u32 peek_seq;
1777 	u32 *seq;
1778 	unsigned long used;
1779 	int err;
1780 	int target;		/* Read at least this many bytes */
1781 	long timeo;
1782 	struct sk_buff *skb, *last;
1783 	u32 urg_hole = 0;
1784 	struct scm_timestamping tss;
1785 	bool has_tss = false;
1786 
1787 	if (unlikely(flags & MSG_ERRQUEUE))
1788 		return inet_recv_error(sk, msg, len, addr_len);
1789 
1790 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1791 	    (sk->sk_state == TCP_ESTABLISHED))
1792 		sk_busy_loop(sk, nonblock);
1793 
1794 	lock_sock(sk);
1795 
1796 	err = -ENOTCONN;
1797 	if (sk->sk_state == TCP_LISTEN)
1798 		goto out;
1799 
1800 	timeo = sock_rcvtimeo(sk, nonblock);
1801 
1802 	/* Urgent data needs to be handled specially. */
1803 	if (flags & MSG_OOB)
1804 		goto recv_urg;
1805 
1806 	if (unlikely(tp->repair)) {
1807 		err = -EPERM;
1808 		if (!(flags & MSG_PEEK))
1809 			goto out;
1810 
1811 		if (tp->repair_queue == TCP_SEND_QUEUE)
1812 			goto recv_sndq;
1813 
1814 		err = -EINVAL;
1815 		if (tp->repair_queue == TCP_NO_QUEUE)
1816 			goto out;
1817 
1818 		/* 'common' recv queue MSG_PEEK-ing */
1819 	}
1820 
1821 	seq = &tp->copied_seq;
1822 	if (flags & MSG_PEEK) {
1823 		peek_seq = tp->copied_seq;
1824 		seq = &peek_seq;
1825 	}
1826 
1827 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1828 
1829 	do {
1830 		u32 offset;
1831 
1832 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1833 		if (tp->urg_data && tp->urg_seq == *seq) {
1834 			if (copied)
1835 				break;
1836 			if (signal_pending(current)) {
1837 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1838 				break;
1839 			}
1840 		}
1841 
1842 		/* Next get a buffer. */
1843 
1844 		last = skb_peek_tail(&sk->sk_receive_queue);
1845 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1846 			last = skb;
1847 			/* Now that we have two receive queues this
1848 			 * shouldn't happen.
1849 			 */
1850 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1851 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1852 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1853 				 flags))
1854 				break;
1855 
1856 			offset = *seq - TCP_SKB_CB(skb)->seq;
1857 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1858 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1859 				offset--;
1860 			}
1861 			if (offset < skb->len)
1862 				goto found_ok_skb;
1863 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1864 				goto found_fin_ok;
1865 			WARN(!(flags & MSG_PEEK),
1866 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
1867 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1868 		}
1869 
1870 		/* Well, if we have backlog, try to process it now yet. */
1871 
1872 		if (copied >= target && !sk->sk_backlog.tail)
1873 			break;
1874 
1875 		if (copied) {
1876 			if (sk->sk_err ||
1877 			    sk->sk_state == TCP_CLOSE ||
1878 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1879 			    !timeo ||
1880 			    signal_pending(current))
1881 				break;
1882 		} else {
1883 			if (sock_flag(sk, SOCK_DONE))
1884 				break;
1885 
1886 			if (sk->sk_err) {
1887 				copied = sock_error(sk);
1888 				break;
1889 			}
1890 
1891 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1892 				break;
1893 
1894 			if (sk->sk_state == TCP_CLOSE) {
1895 				if (!sock_flag(sk, SOCK_DONE)) {
1896 					/* This occurs when user tries to read
1897 					 * from never connected socket.
1898 					 */
1899 					copied = -ENOTCONN;
1900 					break;
1901 				}
1902 				break;
1903 			}
1904 
1905 			if (!timeo) {
1906 				copied = -EAGAIN;
1907 				break;
1908 			}
1909 
1910 			if (signal_pending(current)) {
1911 				copied = sock_intr_errno(timeo);
1912 				break;
1913 			}
1914 		}
1915 
1916 		tcp_cleanup_rbuf(sk, copied);
1917 
1918 		if (copied >= target) {
1919 			/* Do not sleep, just process backlog. */
1920 			release_sock(sk);
1921 			lock_sock(sk);
1922 		} else {
1923 			sk_wait_data(sk, &timeo, last);
1924 		}
1925 
1926 		if ((flags & MSG_PEEK) &&
1927 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1928 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1929 					    current->comm,
1930 					    task_pid_nr(current));
1931 			peek_seq = tp->copied_seq;
1932 		}
1933 		continue;
1934 
1935 	found_ok_skb:
1936 		/* Ok so how much can we use? */
1937 		used = skb->len - offset;
1938 		if (len < used)
1939 			used = len;
1940 
1941 		/* Do we have urgent data here? */
1942 		if (tp->urg_data) {
1943 			u32 urg_offset = tp->urg_seq - *seq;
1944 			if (urg_offset < used) {
1945 				if (!urg_offset) {
1946 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1947 						++*seq;
1948 						urg_hole++;
1949 						offset++;
1950 						used--;
1951 						if (!used)
1952 							goto skip_copy;
1953 					}
1954 				} else
1955 					used = urg_offset;
1956 			}
1957 		}
1958 
1959 		if (!(flags & MSG_TRUNC)) {
1960 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1961 			if (err) {
1962 				/* Exception. Bailout! */
1963 				if (!copied)
1964 					copied = -EFAULT;
1965 				break;
1966 			}
1967 		}
1968 
1969 		*seq += used;
1970 		copied += used;
1971 		len -= used;
1972 
1973 		tcp_rcv_space_adjust(sk);
1974 
1975 skip_copy:
1976 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1977 			tp->urg_data = 0;
1978 			tcp_fast_path_check(sk);
1979 		}
1980 		if (used + offset < skb->len)
1981 			continue;
1982 
1983 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1984 			tcp_update_recv_tstamps(skb, &tss);
1985 			has_tss = true;
1986 		}
1987 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1988 			goto found_fin_ok;
1989 		if (!(flags & MSG_PEEK))
1990 			sk_eat_skb(sk, skb);
1991 		continue;
1992 
1993 	found_fin_ok:
1994 		/* Process the FIN. */
1995 		++*seq;
1996 		if (!(flags & MSG_PEEK))
1997 			sk_eat_skb(sk, skb);
1998 		break;
1999 	} while (len > 0);
2000 
2001 	/* According to UNIX98, msg_name/msg_namelen are ignored
2002 	 * on connected socket. I was just happy when found this 8) --ANK
2003 	 */
2004 
2005 	if (has_tss)
2006 		tcp_recv_timestamp(msg, sk, &tss);
2007 
2008 	/* Clean up data we have read: This will do ACK frames. */
2009 	tcp_cleanup_rbuf(sk, copied);
2010 
2011 	release_sock(sk);
2012 	return copied;
2013 
2014 out:
2015 	release_sock(sk);
2016 	return err;
2017 
2018 recv_urg:
2019 	err = tcp_recv_urg(sk, msg, len, flags);
2020 	goto out;
2021 
2022 recv_sndq:
2023 	err = tcp_peek_sndq(sk, msg, len);
2024 	goto out;
2025 }
2026 EXPORT_SYMBOL(tcp_recvmsg);
2027 
tcp_set_state(struct sock * sk,int state)2028 void tcp_set_state(struct sock *sk, int state)
2029 {
2030 	int oldstate = sk->sk_state;
2031 
2032 	switch (state) {
2033 	case TCP_ESTABLISHED:
2034 		if (oldstate != TCP_ESTABLISHED)
2035 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2036 		break;
2037 
2038 	case TCP_CLOSE:
2039 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2040 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2041 
2042 		sk->sk_prot->unhash(sk);
2043 		if (inet_csk(sk)->icsk_bind_hash &&
2044 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2045 			inet_put_port(sk);
2046 		/* fall through */
2047 	default:
2048 		if (oldstate == TCP_ESTABLISHED)
2049 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2050 	}
2051 
2052 	/* Change state AFTER socket is unhashed to avoid closed
2053 	 * socket sitting in hash tables.
2054 	 */
2055 	sk_state_store(sk, state);
2056 
2057 #ifdef STATE_TRACE
2058 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2059 #endif
2060 }
2061 EXPORT_SYMBOL_GPL(tcp_set_state);
2062 
2063 /*
2064  *	State processing on a close. This implements the state shift for
2065  *	sending our FIN frame. Note that we only send a FIN for some
2066  *	states. A shutdown() may have already sent the FIN, or we may be
2067  *	closed.
2068  */
2069 
2070 static const unsigned char new_state[16] = {
2071   /* current state:        new state:      action:	*/
2072   [0 /* (Invalid) */]	= TCP_CLOSE,
2073   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2074   [TCP_SYN_SENT]	= TCP_CLOSE,
2075   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2076   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2077   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2078   [TCP_TIME_WAIT]	= TCP_CLOSE,
2079   [TCP_CLOSE]		= TCP_CLOSE,
2080   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2081   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2082   [TCP_LISTEN]		= TCP_CLOSE,
2083   [TCP_CLOSING]		= TCP_CLOSING,
2084   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2085 };
2086 
tcp_close_state(struct sock * sk)2087 static int tcp_close_state(struct sock *sk)
2088 {
2089 	int next = (int)new_state[sk->sk_state];
2090 	int ns = next & TCP_STATE_MASK;
2091 
2092 	tcp_set_state(sk, ns);
2093 
2094 	return next & TCP_ACTION_FIN;
2095 }
2096 
2097 /*
2098  *	Shutdown the sending side of a connection. Much like close except
2099  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2100  */
2101 
tcp_shutdown(struct sock * sk,int how)2102 void tcp_shutdown(struct sock *sk, int how)
2103 {
2104 	/*	We need to grab some memory, and put together a FIN,
2105 	 *	and then put it into the queue to be sent.
2106 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2107 	 */
2108 	if (!(how & SEND_SHUTDOWN))
2109 		return;
2110 
2111 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2112 	if ((1 << sk->sk_state) &
2113 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2114 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2115 		/* Clear out any half completed packets.  FIN if needed. */
2116 		if (tcp_close_state(sk))
2117 			tcp_send_fin(sk);
2118 	}
2119 }
2120 EXPORT_SYMBOL(tcp_shutdown);
2121 
tcp_check_oom(struct sock * sk,int shift)2122 bool tcp_check_oom(struct sock *sk, int shift)
2123 {
2124 	bool too_many_orphans, out_of_socket_memory;
2125 
2126 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2127 	out_of_socket_memory = tcp_out_of_memory(sk);
2128 
2129 	if (too_many_orphans)
2130 		net_info_ratelimited("too many orphaned sockets\n");
2131 	if (out_of_socket_memory)
2132 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2133 	return too_many_orphans || out_of_socket_memory;
2134 }
2135 
tcp_close(struct sock * sk,long timeout)2136 void tcp_close(struct sock *sk, long timeout)
2137 {
2138 	struct sk_buff *skb;
2139 	int data_was_unread = 0;
2140 	int state;
2141 
2142 	lock_sock(sk);
2143 	sk->sk_shutdown = SHUTDOWN_MASK;
2144 
2145 	if (sk->sk_state == TCP_LISTEN) {
2146 		tcp_set_state(sk, TCP_CLOSE);
2147 
2148 		/* Special case. */
2149 		inet_csk_listen_stop(sk);
2150 
2151 		goto adjudge_to_death;
2152 	}
2153 
2154 	/*  We need to flush the recv. buffs.  We do this only on the
2155 	 *  descriptor close, not protocol-sourced closes, because the
2156 	 *  reader process may not have drained the data yet!
2157 	 */
2158 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2159 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2160 
2161 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2162 			len--;
2163 		data_was_unread += len;
2164 		__kfree_skb(skb);
2165 	}
2166 
2167 	sk_mem_reclaim(sk);
2168 
2169 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2170 	if (sk->sk_state == TCP_CLOSE)
2171 		goto adjudge_to_death;
2172 
2173 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2174 	 * data was lost. To witness the awful effects of the old behavior of
2175 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2176 	 * GET in an FTP client, suspend the process, wait for the client to
2177 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2178 	 * Note: timeout is always zero in such a case.
2179 	 */
2180 	if (unlikely(tcp_sk(sk)->repair)) {
2181 		sk->sk_prot->disconnect(sk, 0);
2182 	} else if (data_was_unread) {
2183 		/* Unread data was tossed, zap the connection. */
2184 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2185 		tcp_set_state(sk, TCP_CLOSE);
2186 		tcp_send_active_reset(sk, sk->sk_allocation);
2187 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2188 		/* Check zero linger _after_ checking for unread data. */
2189 		sk->sk_prot->disconnect(sk, 0);
2190 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2191 	} else if (tcp_close_state(sk)) {
2192 		/* We FIN if the application ate all the data before
2193 		 * zapping the connection.
2194 		 */
2195 
2196 		/* RED-PEN. Formally speaking, we have broken TCP state
2197 		 * machine. State transitions:
2198 		 *
2199 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2200 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2201 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2202 		 *
2203 		 * are legal only when FIN has been sent (i.e. in window),
2204 		 * rather than queued out of window. Purists blame.
2205 		 *
2206 		 * F.e. "RFC state" is ESTABLISHED,
2207 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2208 		 *
2209 		 * The visible declinations are that sometimes
2210 		 * we enter time-wait state, when it is not required really
2211 		 * (harmless), do not send active resets, when they are
2212 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2213 		 * they look as CLOSING or LAST_ACK for Linux)
2214 		 * Probably, I missed some more holelets.
2215 		 * 						--ANK
2216 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2217 		 * in a single packet! (May consider it later but will
2218 		 * probably need API support or TCP_CORK SYN-ACK until
2219 		 * data is written and socket is closed.)
2220 		 */
2221 		tcp_send_fin(sk);
2222 	}
2223 
2224 	sk_stream_wait_close(sk, timeout);
2225 
2226 adjudge_to_death:
2227 	state = sk->sk_state;
2228 	sock_hold(sk);
2229 	sock_orphan(sk);
2230 
2231 	local_bh_disable();
2232 	bh_lock_sock(sk);
2233 	/* remove backlog if any, without releasing ownership. */
2234 	__release_sock(sk);
2235 
2236 	percpu_counter_inc(sk->sk_prot->orphan_count);
2237 
2238 	/* Have we already been destroyed by a softirq or backlog? */
2239 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2240 		goto out;
2241 
2242 	/*	This is a (useful) BSD violating of the RFC. There is a
2243 	 *	problem with TCP as specified in that the other end could
2244 	 *	keep a socket open forever with no application left this end.
2245 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2246 	 *	our end. If they send after that then tough - BUT: long enough
2247 	 *	that we won't make the old 4*rto = almost no time - whoops
2248 	 *	reset mistake.
2249 	 *
2250 	 *	Nope, it was not mistake. It is really desired behaviour
2251 	 *	f.e. on http servers, when such sockets are useless, but
2252 	 *	consume significant resources. Let's do it with special
2253 	 *	linger2	option.					--ANK
2254 	 */
2255 
2256 	if (sk->sk_state == TCP_FIN_WAIT2) {
2257 		struct tcp_sock *tp = tcp_sk(sk);
2258 		if (tp->linger2 < 0) {
2259 			tcp_set_state(sk, TCP_CLOSE);
2260 			tcp_send_active_reset(sk, GFP_ATOMIC);
2261 			__NET_INC_STATS(sock_net(sk),
2262 					LINUX_MIB_TCPABORTONLINGER);
2263 		} else {
2264 			const int tmo = tcp_fin_time(sk);
2265 
2266 			if (tmo > TCP_TIMEWAIT_LEN) {
2267 				inet_csk_reset_keepalive_timer(sk,
2268 						tmo - TCP_TIMEWAIT_LEN);
2269 			} else {
2270 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2271 				goto out;
2272 			}
2273 		}
2274 	}
2275 	if (sk->sk_state != TCP_CLOSE) {
2276 		sk_mem_reclaim(sk);
2277 		if (tcp_check_oom(sk, 0)) {
2278 			tcp_set_state(sk, TCP_CLOSE);
2279 			tcp_send_active_reset(sk, GFP_ATOMIC);
2280 			__NET_INC_STATS(sock_net(sk),
2281 					LINUX_MIB_TCPABORTONMEMORY);
2282 		} else if (!check_net(sock_net(sk))) {
2283 			/* Not possible to send reset; just close */
2284 			tcp_set_state(sk, TCP_CLOSE);
2285 		}
2286 	}
2287 
2288 	if (sk->sk_state == TCP_CLOSE) {
2289 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2290 		/* We could get here with a non-NULL req if the socket is
2291 		 * aborted (e.g., closed with unread data) before 3WHS
2292 		 * finishes.
2293 		 */
2294 		if (req)
2295 			reqsk_fastopen_remove(sk, req, false);
2296 		inet_csk_destroy_sock(sk);
2297 	}
2298 	/* Otherwise, socket is reprieved until protocol close. */
2299 
2300 out:
2301 	bh_unlock_sock(sk);
2302 	local_bh_enable();
2303 	release_sock(sk);
2304 	sock_put(sk);
2305 }
2306 EXPORT_SYMBOL(tcp_close);
2307 
2308 /* These states need RST on ABORT according to RFC793 */
2309 
tcp_need_reset(int state)2310 static inline bool tcp_need_reset(int state)
2311 {
2312 	return (1 << state) &
2313 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2314 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2315 }
2316 
tcp_disconnect(struct sock * sk,int flags)2317 int tcp_disconnect(struct sock *sk, int flags)
2318 {
2319 	struct inet_sock *inet = inet_sk(sk);
2320 	struct inet_connection_sock *icsk = inet_csk(sk);
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 	int err = 0;
2323 	int old_state = sk->sk_state;
2324 
2325 	if (old_state != TCP_CLOSE)
2326 		tcp_set_state(sk, TCP_CLOSE);
2327 
2328 	/* ABORT function of RFC793 */
2329 	if (old_state == TCP_LISTEN) {
2330 		inet_csk_listen_stop(sk);
2331 	} else if (unlikely(tp->repair)) {
2332 		sk->sk_err = ECONNABORTED;
2333 	} else if (tcp_need_reset(old_state) ||
2334 		   (tp->snd_nxt != tp->write_seq &&
2335 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2336 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2337 		 * states
2338 		 */
2339 		tcp_send_active_reset(sk, gfp_any());
2340 		sk->sk_err = ECONNRESET;
2341 	} else if (old_state == TCP_SYN_SENT)
2342 		sk->sk_err = ECONNRESET;
2343 
2344 	tcp_clear_xmit_timers(sk);
2345 	__skb_queue_purge(&sk->sk_receive_queue);
2346 	tcp_write_queue_purge(sk);
2347 	tcp_fastopen_active_disable_ofo_check(sk);
2348 	skb_rbtree_purge(&tp->out_of_order_queue);
2349 
2350 	inet->inet_dport = 0;
2351 
2352 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2353 		inet_reset_saddr(sk);
2354 
2355 	sk->sk_shutdown = 0;
2356 	sock_reset_flag(sk, SOCK_DONE);
2357 	tp->srtt_us = 0;
2358 	tp->write_seq += tp->max_window + 2;
2359 	if (tp->write_seq == 0)
2360 		tp->write_seq = 1;
2361 	tp->snd_cwnd = 2;
2362 	icsk->icsk_probes_out = 0;
2363 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2364 	tp->snd_cwnd_cnt = 0;
2365 	tp->window_clamp = 0;
2366 	tp->delivered = 0;
2367 	tcp_set_ca_state(sk, TCP_CA_Open);
2368 	tp->is_sack_reneg = 0;
2369 	tcp_clear_retrans(tp);
2370 	tp->total_retrans = 0;
2371 	inet_csk_delack_init(sk);
2372 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2373 	 * issue in __tcp_select_window()
2374 	 */
2375 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2376 	tcp_init_send_head(sk);
2377 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2378 	__sk_dst_reset(sk);
2379 	dst_release(sk->sk_rx_dst);
2380 	sk->sk_rx_dst = NULL;
2381 	tcp_saved_syn_free(tp);
2382 	tp->segs_in = 0;
2383 	tp->segs_out = 0;
2384 	tp->bytes_acked = 0;
2385 	tp->bytes_received = 0;
2386 	tp->data_segs_in = 0;
2387 	tp->data_segs_out = 0;
2388 
2389 	/* Clean up fastopen related fields */
2390 	tcp_free_fastopen_req(tp);
2391 	inet->defer_connect = 0;
2392 
2393 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2394 
2395 	if (sk->sk_frag.page) {
2396 		put_page(sk->sk_frag.page);
2397 		sk->sk_frag.page = NULL;
2398 		sk->sk_frag.offset = 0;
2399 	}
2400 
2401 	sk->sk_error_report(sk);
2402 	return err;
2403 }
2404 EXPORT_SYMBOL(tcp_disconnect);
2405 
tcp_can_repair_sock(const struct sock * sk)2406 static inline bool tcp_can_repair_sock(const struct sock *sk)
2407 {
2408 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2409 		(sk->sk_state != TCP_LISTEN);
2410 }
2411 
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2412 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2413 {
2414 	struct tcp_repair_window opt;
2415 
2416 	if (!tp->repair)
2417 		return -EPERM;
2418 
2419 	if (len != sizeof(opt))
2420 		return -EINVAL;
2421 
2422 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2423 		return -EFAULT;
2424 
2425 	if (opt.max_window < opt.snd_wnd)
2426 		return -EINVAL;
2427 
2428 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2429 		return -EINVAL;
2430 
2431 	if (after(opt.rcv_wup, tp->rcv_nxt))
2432 		return -EINVAL;
2433 
2434 	tp->snd_wl1	= opt.snd_wl1;
2435 	tp->snd_wnd	= opt.snd_wnd;
2436 	tp->max_window	= opt.max_window;
2437 
2438 	tp->rcv_wnd	= opt.rcv_wnd;
2439 	tp->rcv_wup	= opt.rcv_wup;
2440 
2441 	return 0;
2442 }
2443 
tcp_repair_options_est(struct sock * sk,struct tcp_repair_opt __user * optbuf,unsigned int len)2444 static int tcp_repair_options_est(struct sock *sk,
2445 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2446 {
2447 	struct tcp_sock *tp = tcp_sk(sk);
2448 	struct tcp_repair_opt opt;
2449 
2450 	while (len >= sizeof(opt)) {
2451 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2452 			return -EFAULT;
2453 
2454 		optbuf++;
2455 		len -= sizeof(opt);
2456 
2457 		switch (opt.opt_code) {
2458 		case TCPOPT_MSS:
2459 			tp->rx_opt.mss_clamp = opt.opt_val;
2460 			tcp_mtup_init(sk);
2461 			break;
2462 		case TCPOPT_WINDOW:
2463 			{
2464 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2465 				u16 rcv_wscale = opt.opt_val >> 16;
2466 
2467 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2468 					return -EFBIG;
2469 
2470 				tp->rx_opt.snd_wscale = snd_wscale;
2471 				tp->rx_opt.rcv_wscale = rcv_wscale;
2472 				tp->rx_opt.wscale_ok = 1;
2473 			}
2474 			break;
2475 		case TCPOPT_SACK_PERM:
2476 			if (opt.opt_val != 0)
2477 				return -EINVAL;
2478 
2479 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2480 			if (sysctl_tcp_fack)
2481 				tcp_enable_fack(tp);
2482 			break;
2483 		case TCPOPT_TIMESTAMP:
2484 			if (opt.opt_val != 0)
2485 				return -EINVAL;
2486 
2487 			tp->rx_opt.tstamp_ok = 1;
2488 			break;
2489 		}
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 /*
2496  *	Socket option code for TCP.
2497  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2498 static int do_tcp_setsockopt(struct sock *sk, int level,
2499 		int optname, char __user *optval, unsigned int optlen)
2500 {
2501 	struct tcp_sock *tp = tcp_sk(sk);
2502 	struct inet_connection_sock *icsk = inet_csk(sk);
2503 	struct net *net = sock_net(sk);
2504 	int val;
2505 	int err = 0;
2506 
2507 	/* These are data/string values, all the others are ints */
2508 	switch (optname) {
2509 	case TCP_CONGESTION: {
2510 		char name[TCP_CA_NAME_MAX];
2511 
2512 		if (optlen < 1)
2513 			return -EINVAL;
2514 
2515 		val = strncpy_from_user(name, optval,
2516 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2517 		if (val < 0)
2518 			return -EFAULT;
2519 		name[val] = 0;
2520 
2521 		lock_sock(sk);
2522 		err = tcp_set_congestion_control(sk, name, true, true,
2523 						 ns_capable(sock_net(sk)->user_ns,
2524 							    CAP_NET_ADMIN));
2525 		release_sock(sk);
2526 		return err;
2527 	}
2528 	case TCP_ULP: {
2529 		char name[TCP_ULP_NAME_MAX];
2530 
2531 		if (optlen < 1)
2532 			return -EINVAL;
2533 
2534 		val = strncpy_from_user(name, optval,
2535 					min_t(long, TCP_ULP_NAME_MAX - 1,
2536 					      optlen));
2537 		if (val < 0)
2538 			return -EFAULT;
2539 		name[val] = 0;
2540 
2541 		lock_sock(sk);
2542 		err = tcp_set_ulp(sk, name);
2543 		release_sock(sk);
2544 		return err;
2545 	}
2546 	default:
2547 		/* fallthru */
2548 		break;
2549 	}
2550 
2551 	if (optlen < sizeof(int))
2552 		return -EINVAL;
2553 
2554 	if (get_user(val, (int __user *)optval))
2555 		return -EFAULT;
2556 
2557 	lock_sock(sk);
2558 
2559 	switch (optname) {
2560 	case TCP_MAXSEG:
2561 		/* Values greater than interface MTU won't take effect. However
2562 		 * at the point when this call is done we typically don't yet
2563 		 * know which interface is going to be used
2564 		 */
2565 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2566 			err = -EINVAL;
2567 			break;
2568 		}
2569 		tp->rx_opt.user_mss = val;
2570 		break;
2571 
2572 	case TCP_NODELAY:
2573 		if (val) {
2574 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2575 			 * this option on corked socket is remembered, but
2576 			 * it is not activated until cork is cleared.
2577 			 *
2578 			 * However, when TCP_NODELAY is set we make
2579 			 * an explicit push, which overrides even TCP_CORK
2580 			 * for currently queued segments.
2581 			 */
2582 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2583 			tcp_push_pending_frames(sk);
2584 		} else {
2585 			tp->nonagle &= ~TCP_NAGLE_OFF;
2586 		}
2587 		break;
2588 
2589 	case TCP_THIN_LINEAR_TIMEOUTS:
2590 		if (val < 0 || val > 1)
2591 			err = -EINVAL;
2592 		else
2593 			tp->thin_lto = val;
2594 		break;
2595 
2596 	case TCP_THIN_DUPACK:
2597 		if (val < 0 || val > 1)
2598 			err = -EINVAL;
2599 		break;
2600 
2601 	case TCP_REPAIR:
2602 		if (!tcp_can_repair_sock(sk))
2603 			err = -EPERM;
2604 		else if (val == 1) {
2605 			tp->repair = 1;
2606 			sk->sk_reuse = SK_FORCE_REUSE;
2607 			tp->repair_queue = TCP_NO_QUEUE;
2608 		} else if (val == 0) {
2609 			tp->repair = 0;
2610 			sk->sk_reuse = SK_NO_REUSE;
2611 			tcp_send_window_probe(sk);
2612 		} else
2613 			err = -EINVAL;
2614 
2615 		break;
2616 
2617 	case TCP_REPAIR_QUEUE:
2618 		if (!tp->repair)
2619 			err = -EPERM;
2620 		else if ((unsigned int)val < TCP_QUEUES_NR)
2621 			tp->repair_queue = val;
2622 		else
2623 			err = -EINVAL;
2624 		break;
2625 
2626 	case TCP_QUEUE_SEQ:
2627 		if (sk->sk_state != TCP_CLOSE)
2628 			err = -EPERM;
2629 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2630 			tp->write_seq = val;
2631 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2632 			tp->rcv_nxt = val;
2633 		else
2634 			err = -EINVAL;
2635 		break;
2636 
2637 	case TCP_REPAIR_OPTIONS:
2638 		if (!tp->repair)
2639 			err = -EINVAL;
2640 		else if (sk->sk_state == TCP_ESTABLISHED)
2641 			err = tcp_repair_options_est(sk,
2642 					(struct tcp_repair_opt __user *)optval,
2643 					optlen);
2644 		else
2645 			err = -EPERM;
2646 		break;
2647 
2648 	case TCP_CORK:
2649 		/* When set indicates to always queue non-full frames.
2650 		 * Later the user clears this option and we transmit
2651 		 * any pending partial frames in the queue.  This is
2652 		 * meant to be used alongside sendfile() to get properly
2653 		 * filled frames when the user (for example) must write
2654 		 * out headers with a write() call first and then use
2655 		 * sendfile to send out the data parts.
2656 		 *
2657 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2658 		 * stronger than TCP_NODELAY.
2659 		 */
2660 		if (val) {
2661 			tp->nonagle |= TCP_NAGLE_CORK;
2662 		} else {
2663 			tp->nonagle &= ~TCP_NAGLE_CORK;
2664 			if (tp->nonagle&TCP_NAGLE_OFF)
2665 				tp->nonagle |= TCP_NAGLE_PUSH;
2666 			tcp_push_pending_frames(sk);
2667 		}
2668 		break;
2669 
2670 	case TCP_KEEPIDLE:
2671 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2672 			err = -EINVAL;
2673 		else {
2674 			tp->keepalive_time = val * HZ;
2675 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2676 			    !((1 << sk->sk_state) &
2677 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2678 				u32 elapsed = keepalive_time_elapsed(tp);
2679 				if (tp->keepalive_time > elapsed)
2680 					elapsed = tp->keepalive_time - elapsed;
2681 				else
2682 					elapsed = 0;
2683 				inet_csk_reset_keepalive_timer(sk, elapsed);
2684 			}
2685 		}
2686 		break;
2687 	case TCP_KEEPINTVL:
2688 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2689 			err = -EINVAL;
2690 		else
2691 			tp->keepalive_intvl = val * HZ;
2692 		break;
2693 	case TCP_KEEPCNT:
2694 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2695 			err = -EINVAL;
2696 		else
2697 			tp->keepalive_probes = val;
2698 		break;
2699 	case TCP_SYNCNT:
2700 		if (val < 1 || val > MAX_TCP_SYNCNT)
2701 			err = -EINVAL;
2702 		else
2703 			icsk->icsk_syn_retries = val;
2704 		break;
2705 
2706 	case TCP_SAVE_SYN:
2707 		if (val < 0 || val > 1)
2708 			err = -EINVAL;
2709 		else
2710 			tp->save_syn = val;
2711 		break;
2712 
2713 	case TCP_LINGER2:
2714 		if (val < 0)
2715 			tp->linger2 = -1;
2716 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2717 			tp->linger2 = 0;
2718 		else
2719 			tp->linger2 = val * HZ;
2720 		break;
2721 
2722 	case TCP_DEFER_ACCEPT:
2723 		/* Translate value in seconds to number of retransmits */
2724 		icsk->icsk_accept_queue.rskq_defer_accept =
2725 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2726 					TCP_RTO_MAX / HZ);
2727 		break;
2728 
2729 	case TCP_WINDOW_CLAMP:
2730 		if (!val) {
2731 			if (sk->sk_state != TCP_CLOSE) {
2732 				err = -EINVAL;
2733 				break;
2734 			}
2735 			tp->window_clamp = 0;
2736 		} else
2737 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2738 						SOCK_MIN_RCVBUF / 2 : val;
2739 		break;
2740 
2741 	case TCP_QUICKACK:
2742 		if (!val) {
2743 			icsk->icsk_ack.pingpong = 1;
2744 		} else {
2745 			icsk->icsk_ack.pingpong = 0;
2746 			if ((1 << sk->sk_state) &
2747 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2748 			    inet_csk_ack_scheduled(sk)) {
2749 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2750 				tcp_cleanup_rbuf(sk, 1);
2751 				if (!(val & 1))
2752 					icsk->icsk_ack.pingpong = 1;
2753 			}
2754 		}
2755 		break;
2756 
2757 #ifdef CONFIG_TCP_MD5SIG
2758 	case TCP_MD5SIG:
2759 	case TCP_MD5SIG_EXT:
2760 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2761 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2762 		else
2763 			err = -EINVAL;
2764 		break;
2765 #endif
2766 	case TCP_USER_TIMEOUT:
2767 		/* Cap the max time in ms TCP will retry or probe the window
2768 		 * before giving up and aborting (ETIMEDOUT) a connection.
2769 		 */
2770 		if (val < 0)
2771 			err = -EINVAL;
2772 		else
2773 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2774 		break;
2775 
2776 	case TCP_FASTOPEN:
2777 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2778 		    TCPF_LISTEN))) {
2779 			tcp_fastopen_init_key_once(true);
2780 
2781 			fastopen_queue_tune(sk, val);
2782 		} else {
2783 			err = -EINVAL;
2784 		}
2785 		break;
2786 	case TCP_FASTOPEN_CONNECT:
2787 		if (val > 1 || val < 0) {
2788 			err = -EINVAL;
2789 		} else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2790 			if (sk->sk_state == TCP_CLOSE)
2791 				tp->fastopen_connect = val;
2792 			else
2793 				err = -EINVAL;
2794 		} else {
2795 			err = -EOPNOTSUPP;
2796 		}
2797 		break;
2798 	case TCP_TIMESTAMP:
2799 		if (!tp->repair)
2800 			err = -EPERM;
2801 		else
2802 			tp->tsoffset = val - tcp_time_stamp_raw();
2803 		break;
2804 	case TCP_REPAIR_WINDOW:
2805 		err = tcp_repair_set_window(tp, optval, optlen);
2806 		break;
2807 	case TCP_NOTSENT_LOWAT:
2808 		tp->notsent_lowat = val;
2809 		sk->sk_write_space(sk);
2810 		break;
2811 	default:
2812 		err = -ENOPROTOOPT;
2813 		break;
2814 	}
2815 
2816 	release_sock(sk);
2817 	return err;
2818 }
2819 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2820 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2821 		   unsigned int optlen)
2822 {
2823 	const struct inet_connection_sock *icsk = inet_csk(sk);
2824 
2825 	if (level != SOL_TCP)
2826 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2827 						     optval, optlen);
2828 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2829 }
2830 EXPORT_SYMBOL(tcp_setsockopt);
2831 
2832 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2833 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2834 			  char __user *optval, unsigned int optlen)
2835 {
2836 	if (level != SOL_TCP)
2837 		return inet_csk_compat_setsockopt(sk, level, optname,
2838 						  optval, optlen);
2839 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2840 }
2841 EXPORT_SYMBOL(compat_tcp_setsockopt);
2842 #endif
2843 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)2844 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2845 				      struct tcp_info *info)
2846 {
2847 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2848 	enum tcp_chrono i;
2849 
2850 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2851 		stats[i] = tp->chrono_stat[i - 1];
2852 		if (i == tp->chrono_type)
2853 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2854 		stats[i] *= USEC_PER_SEC / HZ;
2855 		total += stats[i];
2856 	}
2857 
2858 	info->tcpi_busy_time = total;
2859 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2860 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2861 }
2862 
2863 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)2864 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2865 {
2866 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2867 	const struct inet_connection_sock *icsk = inet_csk(sk);
2868 	u32 now;
2869 	u64 rate64;
2870 	bool slow;
2871 	u32 rate;
2872 
2873 	memset(info, 0, sizeof(*info));
2874 	if (sk->sk_type != SOCK_STREAM)
2875 		return;
2876 
2877 	info->tcpi_state = sk_state_load(sk);
2878 
2879 	/* Report meaningful fields for all TCP states, including listeners */
2880 	rate = READ_ONCE(sk->sk_pacing_rate);
2881 	rate64 = rate != ~0U ? rate : ~0ULL;
2882 	info->tcpi_pacing_rate = rate64;
2883 
2884 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2885 	rate64 = rate != ~0U ? rate : ~0ULL;
2886 	info->tcpi_max_pacing_rate = rate64;
2887 
2888 	info->tcpi_reordering = tp->reordering;
2889 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2890 
2891 	if (info->tcpi_state == TCP_LISTEN) {
2892 		/* listeners aliased fields :
2893 		 * tcpi_unacked -> Number of children ready for accept()
2894 		 * tcpi_sacked  -> max backlog
2895 		 */
2896 		info->tcpi_unacked = sk->sk_ack_backlog;
2897 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2898 		return;
2899 	}
2900 
2901 	slow = lock_sock_fast(sk);
2902 
2903 	info->tcpi_ca_state = icsk->icsk_ca_state;
2904 	info->tcpi_retransmits = icsk->icsk_retransmits;
2905 	info->tcpi_probes = icsk->icsk_probes_out;
2906 	info->tcpi_backoff = icsk->icsk_backoff;
2907 
2908 	if (tp->rx_opt.tstamp_ok)
2909 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2910 	if (tcp_is_sack(tp))
2911 		info->tcpi_options |= TCPI_OPT_SACK;
2912 	if (tp->rx_opt.wscale_ok) {
2913 		info->tcpi_options |= TCPI_OPT_WSCALE;
2914 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2915 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2916 	}
2917 
2918 	if (tp->ecn_flags & TCP_ECN_OK)
2919 		info->tcpi_options |= TCPI_OPT_ECN;
2920 	if (tp->ecn_flags & TCP_ECN_SEEN)
2921 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2922 	if (tp->syn_data_acked)
2923 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2924 
2925 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2926 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2927 	info->tcpi_snd_mss = tp->mss_cache;
2928 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2929 
2930 	info->tcpi_unacked = tp->packets_out;
2931 	info->tcpi_sacked = tp->sacked_out;
2932 
2933 	info->tcpi_lost = tp->lost_out;
2934 	info->tcpi_retrans = tp->retrans_out;
2935 	info->tcpi_fackets = tp->fackets_out;
2936 
2937 	now = tcp_jiffies32;
2938 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2939 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2940 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2941 
2942 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2943 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2944 	info->tcpi_rtt = tp->srtt_us >> 3;
2945 	info->tcpi_rttvar = tp->mdev_us >> 2;
2946 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2947 	info->tcpi_advmss = tp->advmss;
2948 
2949 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2950 	info->tcpi_rcv_space = tp->rcvq_space.space;
2951 
2952 	info->tcpi_total_retrans = tp->total_retrans;
2953 
2954 	info->tcpi_bytes_acked = tp->bytes_acked;
2955 	info->tcpi_bytes_received = tp->bytes_received;
2956 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2957 	tcp_get_info_chrono_stats(tp, info);
2958 
2959 	info->tcpi_segs_out = tp->segs_out;
2960 	info->tcpi_segs_in = tp->segs_in;
2961 
2962 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2963 	info->tcpi_data_segs_in = tp->data_segs_in;
2964 	info->tcpi_data_segs_out = tp->data_segs_out;
2965 
2966 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2967 	rate64 = tcp_compute_delivery_rate(tp);
2968 	if (rate64)
2969 		info->tcpi_delivery_rate = rate64;
2970 	unlock_sock_fast(sk, slow);
2971 }
2972 EXPORT_SYMBOL_GPL(tcp_get_info);
2973 
tcp_get_timestamping_opt_stats(const struct sock * sk)2974 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2975 {
2976 	const struct tcp_sock *tp = tcp_sk(sk);
2977 	struct sk_buff *stats;
2978 	struct tcp_info info;
2979 	u64 rate64;
2980 	u32 rate;
2981 
2982 	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
2983 			  3 * nla_total_size(sizeof(u32)) +
2984 			  2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
2985 	if (!stats)
2986 		return NULL;
2987 
2988 	tcp_get_info_chrono_stats(tp, &info);
2989 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2990 			  info.tcpi_busy_time, TCP_NLA_PAD);
2991 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2992 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
2993 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2994 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2995 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2996 			  tp->data_segs_out, TCP_NLA_PAD);
2997 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2998 			  tp->total_retrans, TCP_NLA_PAD);
2999 
3000 	rate = READ_ONCE(sk->sk_pacing_rate);
3001 	rate64 = rate != ~0U ? rate : ~0ULL;
3002 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3003 
3004 	rate64 = tcp_compute_delivery_rate(tp);
3005 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3006 
3007 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3008 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3009 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3010 
3011 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3012 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3013 	return stats;
3014 }
3015 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3016 static int do_tcp_getsockopt(struct sock *sk, int level,
3017 		int optname, char __user *optval, int __user *optlen)
3018 {
3019 	struct inet_connection_sock *icsk = inet_csk(sk);
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	struct net *net = sock_net(sk);
3022 	int val, len;
3023 
3024 	if (get_user(len, optlen))
3025 		return -EFAULT;
3026 
3027 	len = min_t(unsigned int, len, sizeof(int));
3028 
3029 	if (len < 0)
3030 		return -EINVAL;
3031 
3032 	switch (optname) {
3033 	case TCP_MAXSEG:
3034 		val = tp->mss_cache;
3035 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3036 			val = tp->rx_opt.user_mss;
3037 		if (tp->repair)
3038 			val = tp->rx_opt.mss_clamp;
3039 		break;
3040 	case TCP_NODELAY:
3041 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3042 		break;
3043 	case TCP_CORK:
3044 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3045 		break;
3046 	case TCP_KEEPIDLE:
3047 		val = keepalive_time_when(tp) / HZ;
3048 		break;
3049 	case TCP_KEEPINTVL:
3050 		val = keepalive_intvl_when(tp) / HZ;
3051 		break;
3052 	case TCP_KEEPCNT:
3053 		val = keepalive_probes(tp);
3054 		break;
3055 	case TCP_SYNCNT:
3056 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3057 		break;
3058 	case TCP_LINGER2:
3059 		val = tp->linger2;
3060 		if (val >= 0)
3061 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3062 		break;
3063 	case TCP_DEFER_ACCEPT:
3064 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3065 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3066 		break;
3067 	case TCP_WINDOW_CLAMP:
3068 		val = tp->window_clamp;
3069 		break;
3070 	case TCP_INFO: {
3071 		struct tcp_info info;
3072 
3073 		if (get_user(len, optlen))
3074 			return -EFAULT;
3075 
3076 		tcp_get_info(sk, &info);
3077 
3078 		len = min_t(unsigned int, len, sizeof(info));
3079 		if (put_user(len, optlen))
3080 			return -EFAULT;
3081 		if (copy_to_user(optval, &info, len))
3082 			return -EFAULT;
3083 		return 0;
3084 	}
3085 	case TCP_CC_INFO: {
3086 		const struct tcp_congestion_ops *ca_ops;
3087 		union tcp_cc_info info;
3088 		size_t sz = 0;
3089 		int attr;
3090 
3091 		if (get_user(len, optlen))
3092 			return -EFAULT;
3093 
3094 		ca_ops = icsk->icsk_ca_ops;
3095 		if (ca_ops && ca_ops->get_info)
3096 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3097 
3098 		len = min_t(unsigned int, len, sz);
3099 		if (put_user(len, optlen))
3100 			return -EFAULT;
3101 		if (copy_to_user(optval, &info, len))
3102 			return -EFAULT;
3103 		return 0;
3104 	}
3105 	case TCP_QUICKACK:
3106 		val = !icsk->icsk_ack.pingpong;
3107 		break;
3108 
3109 	case TCP_CONGESTION:
3110 		if (get_user(len, optlen))
3111 			return -EFAULT;
3112 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3113 		if (put_user(len, optlen))
3114 			return -EFAULT;
3115 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3116 			return -EFAULT;
3117 		return 0;
3118 
3119 	case TCP_ULP:
3120 		if (get_user(len, optlen))
3121 			return -EFAULT;
3122 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3123 		if (!icsk->icsk_ulp_ops) {
3124 			if (put_user(0, optlen))
3125 				return -EFAULT;
3126 			return 0;
3127 		}
3128 		if (put_user(len, optlen))
3129 			return -EFAULT;
3130 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3131 			return -EFAULT;
3132 		return 0;
3133 
3134 	case TCP_THIN_LINEAR_TIMEOUTS:
3135 		val = tp->thin_lto;
3136 		break;
3137 
3138 	case TCP_THIN_DUPACK:
3139 		val = 0;
3140 		break;
3141 
3142 	case TCP_REPAIR:
3143 		val = tp->repair;
3144 		break;
3145 
3146 	case TCP_REPAIR_QUEUE:
3147 		if (tp->repair)
3148 			val = tp->repair_queue;
3149 		else
3150 			return -EINVAL;
3151 		break;
3152 
3153 	case TCP_REPAIR_WINDOW: {
3154 		struct tcp_repair_window opt;
3155 
3156 		if (get_user(len, optlen))
3157 			return -EFAULT;
3158 
3159 		if (len != sizeof(opt))
3160 			return -EINVAL;
3161 
3162 		if (!tp->repair)
3163 			return -EPERM;
3164 
3165 		opt.snd_wl1	= tp->snd_wl1;
3166 		opt.snd_wnd	= tp->snd_wnd;
3167 		opt.max_window	= tp->max_window;
3168 		opt.rcv_wnd	= tp->rcv_wnd;
3169 		opt.rcv_wup	= tp->rcv_wup;
3170 
3171 		if (copy_to_user(optval, &opt, len))
3172 			return -EFAULT;
3173 		return 0;
3174 	}
3175 	case TCP_QUEUE_SEQ:
3176 		if (tp->repair_queue == TCP_SEND_QUEUE)
3177 			val = tp->write_seq;
3178 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3179 			val = tp->rcv_nxt;
3180 		else
3181 			return -EINVAL;
3182 		break;
3183 
3184 	case TCP_USER_TIMEOUT:
3185 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3186 		break;
3187 
3188 	case TCP_FASTOPEN:
3189 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3190 		break;
3191 
3192 	case TCP_FASTOPEN_CONNECT:
3193 		val = tp->fastopen_connect;
3194 		break;
3195 
3196 	case TCP_TIMESTAMP:
3197 		val = tcp_time_stamp_raw() + tp->tsoffset;
3198 		break;
3199 	case TCP_NOTSENT_LOWAT:
3200 		val = tp->notsent_lowat;
3201 		break;
3202 	case TCP_SAVE_SYN:
3203 		val = tp->save_syn;
3204 		break;
3205 	case TCP_SAVED_SYN: {
3206 		if (get_user(len, optlen))
3207 			return -EFAULT;
3208 
3209 		lock_sock(sk);
3210 		if (tp->saved_syn) {
3211 			if (len < tp->saved_syn[0]) {
3212 				if (put_user(tp->saved_syn[0], optlen)) {
3213 					release_sock(sk);
3214 					return -EFAULT;
3215 				}
3216 				release_sock(sk);
3217 				return -EINVAL;
3218 			}
3219 			len = tp->saved_syn[0];
3220 			if (put_user(len, optlen)) {
3221 				release_sock(sk);
3222 				return -EFAULT;
3223 			}
3224 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3225 				release_sock(sk);
3226 				return -EFAULT;
3227 			}
3228 			tcp_saved_syn_free(tp);
3229 			release_sock(sk);
3230 		} else {
3231 			release_sock(sk);
3232 			len = 0;
3233 			if (put_user(len, optlen))
3234 				return -EFAULT;
3235 		}
3236 		return 0;
3237 	}
3238 	default:
3239 		return -ENOPROTOOPT;
3240 	}
3241 
3242 	if (put_user(len, optlen))
3243 		return -EFAULT;
3244 	if (copy_to_user(optval, &val, len))
3245 		return -EFAULT;
3246 	return 0;
3247 }
3248 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3249 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3250 		   int __user *optlen)
3251 {
3252 	struct inet_connection_sock *icsk = inet_csk(sk);
3253 
3254 	if (level != SOL_TCP)
3255 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3256 						     optval, optlen);
3257 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3258 }
3259 EXPORT_SYMBOL(tcp_getsockopt);
3260 
3261 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3262 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3263 			  char __user *optval, int __user *optlen)
3264 {
3265 	if (level != SOL_TCP)
3266 		return inet_csk_compat_getsockopt(sk, level, optname,
3267 						  optval, optlen);
3268 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3269 }
3270 EXPORT_SYMBOL(compat_tcp_getsockopt);
3271 #endif
3272 
3273 #ifdef CONFIG_TCP_MD5SIG
3274 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3275 static DEFINE_MUTEX(tcp_md5sig_mutex);
3276 static bool tcp_md5sig_pool_populated = false;
3277 
__tcp_alloc_md5sig_pool(void)3278 static void __tcp_alloc_md5sig_pool(void)
3279 {
3280 	struct crypto_ahash *hash;
3281 	int cpu;
3282 
3283 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3284 	if (IS_ERR(hash))
3285 		return;
3286 
3287 	for_each_possible_cpu(cpu) {
3288 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3289 		struct ahash_request *req;
3290 
3291 		if (!scratch) {
3292 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3293 					       sizeof(struct tcphdr),
3294 					       GFP_KERNEL,
3295 					       cpu_to_node(cpu));
3296 			if (!scratch)
3297 				return;
3298 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3299 		}
3300 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3301 			continue;
3302 
3303 		req = ahash_request_alloc(hash, GFP_KERNEL);
3304 		if (!req)
3305 			return;
3306 
3307 		ahash_request_set_callback(req, 0, NULL, NULL);
3308 
3309 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3310 	}
3311 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3312 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3313 	 */
3314 	smp_wmb();
3315 	tcp_md5sig_pool_populated = true;
3316 }
3317 
tcp_alloc_md5sig_pool(void)3318 bool tcp_alloc_md5sig_pool(void)
3319 {
3320 	if (unlikely(!tcp_md5sig_pool_populated)) {
3321 		mutex_lock(&tcp_md5sig_mutex);
3322 
3323 		if (!tcp_md5sig_pool_populated)
3324 			__tcp_alloc_md5sig_pool();
3325 
3326 		mutex_unlock(&tcp_md5sig_mutex);
3327 	}
3328 	return tcp_md5sig_pool_populated;
3329 }
3330 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3331 
3332 
3333 /**
3334  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3335  *
3336  *	We use percpu structure, so if we succeed, we exit with preemption
3337  *	and BH disabled, to make sure another thread or softirq handling
3338  *	wont try to get same context.
3339  */
tcp_get_md5sig_pool(void)3340 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3341 {
3342 	local_bh_disable();
3343 
3344 	if (tcp_md5sig_pool_populated) {
3345 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3346 		smp_rmb();
3347 		return this_cpu_ptr(&tcp_md5sig_pool);
3348 	}
3349 	local_bh_enable();
3350 	return NULL;
3351 }
3352 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3353 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3354 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3355 			  const struct sk_buff *skb, unsigned int header_len)
3356 {
3357 	struct scatterlist sg;
3358 	const struct tcphdr *tp = tcp_hdr(skb);
3359 	struct ahash_request *req = hp->md5_req;
3360 	unsigned int i;
3361 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3362 					   skb_headlen(skb) - header_len : 0;
3363 	const struct skb_shared_info *shi = skb_shinfo(skb);
3364 	struct sk_buff *frag_iter;
3365 
3366 	sg_init_table(&sg, 1);
3367 
3368 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3369 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3370 	if (crypto_ahash_update(req))
3371 		return 1;
3372 
3373 	for (i = 0; i < shi->nr_frags; ++i) {
3374 		const struct skb_frag_struct *f = &shi->frags[i];
3375 		unsigned int offset = f->page_offset;
3376 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3377 
3378 		sg_set_page(&sg, page, skb_frag_size(f),
3379 			    offset_in_page(offset));
3380 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3381 		if (crypto_ahash_update(req))
3382 			return 1;
3383 	}
3384 
3385 	skb_walk_frags(skb, frag_iter)
3386 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3387 			return 1;
3388 
3389 	return 0;
3390 }
3391 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3392 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3393 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3394 {
3395 	struct scatterlist sg;
3396 
3397 	sg_init_one(&sg, key->key, key->keylen);
3398 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3399 	return crypto_ahash_update(hp->md5_req);
3400 }
3401 EXPORT_SYMBOL(tcp_md5_hash_key);
3402 
3403 #endif
3404 
tcp_done(struct sock * sk)3405 void tcp_done(struct sock *sk)
3406 {
3407 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3408 
3409 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3410 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3411 
3412 	tcp_set_state(sk, TCP_CLOSE);
3413 	tcp_clear_xmit_timers(sk);
3414 	if (req)
3415 		reqsk_fastopen_remove(sk, req, false);
3416 
3417 	sk->sk_shutdown = SHUTDOWN_MASK;
3418 
3419 	if (!sock_flag(sk, SOCK_DEAD))
3420 		sk->sk_state_change(sk);
3421 	else
3422 		inet_csk_destroy_sock(sk);
3423 }
3424 EXPORT_SYMBOL_GPL(tcp_done);
3425 
tcp_abort(struct sock * sk,int err)3426 int tcp_abort(struct sock *sk, int err)
3427 {
3428 	if (!sk_fullsock(sk)) {
3429 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3430 			struct request_sock *req = inet_reqsk(sk);
3431 
3432 			local_bh_disable();
3433 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3434 			local_bh_enable();
3435 			return 0;
3436 		}
3437 		return -EOPNOTSUPP;
3438 	}
3439 
3440 	/* Don't race with userspace socket closes such as tcp_close. */
3441 	lock_sock(sk);
3442 
3443 	if (sk->sk_state == TCP_LISTEN) {
3444 		tcp_set_state(sk, TCP_CLOSE);
3445 		inet_csk_listen_stop(sk);
3446 	}
3447 
3448 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3449 	local_bh_disable();
3450 	bh_lock_sock(sk);
3451 
3452 	if (!sock_flag(sk, SOCK_DEAD)) {
3453 		sk->sk_err = err;
3454 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3455 		smp_wmb();
3456 		sk->sk_error_report(sk);
3457 		if (tcp_need_reset(sk->sk_state))
3458 			tcp_send_active_reset(sk, GFP_ATOMIC);
3459 		tcp_done(sk);
3460 	}
3461 
3462 	bh_unlock_sock(sk);
3463 	local_bh_enable();
3464 	tcp_write_queue_purge(sk);
3465 	release_sock(sk);
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(tcp_abort);
3469 
3470 extern struct tcp_congestion_ops tcp_reno;
3471 
3472 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3473 static int __init set_thash_entries(char *str)
3474 {
3475 	ssize_t ret;
3476 
3477 	if (!str)
3478 		return 0;
3479 
3480 	ret = kstrtoul(str, 0, &thash_entries);
3481 	if (ret)
3482 		return 0;
3483 
3484 	return 1;
3485 }
3486 __setup("thash_entries=", set_thash_entries);
3487 
tcp_init_mem(void)3488 static void __init tcp_init_mem(void)
3489 {
3490 	unsigned long limit = nr_free_buffer_pages() / 16;
3491 
3492 	limit = max(limit, 128UL);
3493 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3494 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3495 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3496 }
3497 
tcp_init(void)3498 void __init tcp_init(void)
3499 {
3500 	int max_rshare, max_wshare, cnt;
3501 	unsigned long limit;
3502 	unsigned int i;
3503 
3504 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3505 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3506 		     FIELD_SIZEOF(struct sk_buff, cb));
3507 
3508 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3509 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3510 	inet_hashinfo_init(&tcp_hashinfo);
3511 	tcp_hashinfo.bind_bucket_cachep =
3512 		kmem_cache_create("tcp_bind_bucket",
3513 				  sizeof(struct inet_bind_bucket), 0,
3514 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3515 
3516 	/* Size and allocate the main established and bind bucket
3517 	 * hash tables.
3518 	 *
3519 	 * The methodology is similar to that of the buffer cache.
3520 	 */
3521 	tcp_hashinfo.ehash =
3522 		alloc_large_system_hash("TCP established",
3523 					sizeof(struct inet_ehash_bucket),
3524 					thash_entries,
3525 					17, /* one slot per 128 KB of memory */
3526 					0,
3527 					NULL,
3528 					&tcp_hashinfo.ehash_mask,
3529 					0,
3530 					thash_entries ? 0 : 512 * 1024);
3531 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3532 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3533 
3534 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3535 		panic("TCP: failed to alloc ehash_locks");
3536 	tcp_hashinfo.bhash =
3537 		alloc_large_system_hash("TCP bind",
3538 					sizeof(struct inet_bind_hashbucket),
3539 					tcp_hashinfo.ehash_mask + 1,
3540 					17, /* one slot per 128 KB of memory */
3541 					0,
3542 					&tcp_hashinfo.bhash_size,
3543 					NULL,
3544 					0,
3545 					64 * 1024);
3546 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3547 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3548 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3549 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3550 	}
3551 
3552 
3553 	cnt = tcp_hashinfo.ehash_mask + 1;
3554 	sysctl_tcp_max_orphans = cnt / 2;
3555 
3556 	tcp_init_mem();
3557 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3558 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3559 	max_wshare = min(4UL*1024*1024, limit);
3560 	max_rshare = min(6UL*1024*1024, limit);
3561 
3562 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3563 	sysctl_tcp_wmem[1] = 16*1024;
3564 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3565 
3566 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3567 	sysctl_tcp_rmem[1] = 87380;
3568 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3569 
3570 	pr_info("Hash tables configured (established %u bind %u)\n",
3571 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3572 
3573 	tcp_v4_init();
3574 	tcp_metrics_init();
3575 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3576 	tcp_tasklet_init();
3577 }
3578