• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/cpufreq_times.h>
9 #include "sched.h"
10 #include "walt.h"
11 
12 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13 
14 /*
15  * There are no locks covering percpu hardirq/softirq time.
16  * They are only modified in vtime_account, on corresponding CPU
17  * with interrupts disabled. So, writes are safe.
18  * They are read and saved off onto struct rq in update_rq_clock().
19  * This may result in other CPU reading this CPU's irq time and can
20  * race with irq/vtime_account on this CPU. We would either get old
21  * or new value with a side effect of accounting a slice of irq time to wrong
22  * task when irq is in progress while we read rq->clock. That is a worthy
23  * compromise in place of having locks on each irq in account_system_time.
24  */
25 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
26 
27 static int sched_clock_irqtime;
28 
enable_sched_clock_irqtime(void)29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
disable_sched_clock_irqtime(void)34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)39 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
40 				  enum cpu_usage_stat idx)
41 {
42 	u64 *cpustat = kcpustat_this_cpu->cpustat;
43 
44 	u64_stats_update_begin(&irqtime->sync);
45 	cpustat[idx] += delta;
46 	irqtime->total += delta;
47 	irqtime->tick_delta += delta;
48 	u64_stats_update_end(&irqtime->sync);
49 }
50 
51 /*
52  * Called before incrementing preempt_count on {soft,}irq_enter
53  * and before decrementing preempt_count on {soft,}irq_exit.
54  */
irqtime_account_irq(struct task_struct * curr)55 void irqtime_account_irq(struct task_struct *curr)
56 {
57 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
58 	s64 delta;
59 	int cpu;
60 #ifdef CONFIG_SCHED_WALT
61 	u64 wallclock;
62 	bool account = true;
63 #endif
64 
65 	if (!sched_clock_irqtime)
66 		return;
67 
68 	cpu = smp_processor_id();
69 #ifdef CONFIG_SCHED_WALT
70 	wallclock = sched_clock_cpu(cpu);
71 #endif
72 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
73 	irqtime->irq_start_time += delta;
74 
75 	/*
76 	 * We do not account for softirq time from ksoftirqd here.
77 	 * We want to continue accounting softirq time to ksoftirqd thread
78 	 * in that case, so as not to confuse scheduler with a special task
79 	 * that do not consume any time, but still wants to run.
80 	 */
81 	if (hardirq_count())
82 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
83 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
84 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
85 #ifdef CONFIG_SCHED_WALT
86 	else
87 		account = false;
88 
89 	if (account)
90 		walt_account_irqtime(cpu, curr, delta, wallclock);
91 #endif
92 }
93 EXPORT_SYMBOL_GPL(irqtime_account_irq);
94 
irqtime_tick_accounted(u64 maxtime)95 static u64 irqtime_tick_accounted(u64 maxtime)
96 {
97 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
98 	u64 delta;
99 
100 	delta = min(irqtime->tick_delta, maxtime);
101 	irqtime->tick_delta -= delta;
102 
103 	return delta;
104 }
105 
106 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
107 
108 #define sched_clock_irqtime	(0)
109 
irqtime_tick_accounted(u64 dummy)110 static u64 irqtime_tick_accounted(u64 dummy)
111 {
112 	return 0;
113 }
114 
115 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
116 
task_group_account_field(struct task_struct * p,int index,u64 tmp)117 static inline void task_group_account_field(struct task_struct *p, int index,
118 					    u64 tmp)
119 {
120 	/*
121 	 * Since all updates are sure to touch the root cgroup, we
122 	 * get ourselves ahead and touch it first. If the root cgroup
123 	 * is the only cgroup, then nothing else should be necessary.
124 	 *
125 	 */
126 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
127 
128 	cpuacct_account_field(p, index, tmp);
129 }
130 
131 /*
132  * Account user cpu time to a process.
133  * @p: the process that the cpu time gets accounted to
134  * @cputime: the cpu time spent in user space since the last update
135  */
account_user_time(struct task_struct * p,u64 cputime)136 void account_user_time(struct task_struct *p, u64 cputime)
137 {
138 	int index;
139 
140 	/* Add user time to process. */
141 	p->utime += cputime;
142 	account_group_user_time(p, cputime);
143 
144 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
145 
146 	/* Add user time to cpustat. */
147 	task_group_account_field(p, index, cputime);
148 
149 	/* Account for user time used */
150 	acct_account_cputime(p);
151 
152 	/* Account power usage for user time */
153 	cpufreq_acct_update_power(p, cputime);
154 }
155 
156 /*
157  * Account guest cpu time to a process.
158  * @p: the process that the cpu time gets accounted to
159  * @cputime: the cpu time spent in virtual machine since the last update
160  */
account_guest_time(struct task_struct * p,u64 cputime)161 void account_guest_time(struct task_struct *p, u64 cputime)
162 {
163 	u64 *cpustat = kcpustat_this_cpu->cpustat;
164 
165 	/* Add guest time to process. */
166 	p->utime += cputime;
167 	account_group_user_time(p, cputime);
168 	p->gtime += cputime;
169 
170 	/* Add guest time to cpustat. */
171 	if (task_nice(p) > 0) {
172 		cpustat[CPUTIME_NICE] += cputime;
173 		cpustat[CPUTIME_GUEST_NICE] += cputime;
174 	} else {
175 		cpustat[CPUTIME_USER] += cputime;
176 		cpustat[CPUTIME_GUEST] += cputime;
177 	}
178 }
179 
180 /*
181  * Account system cpu time to a process and desired cpustat field
182  * @p: the process that the cpu time gets accounted to
183  * @cputime: the cpu time spent in kernel space since the last update
184  * @index: pointer to cpustat field that has to be updated
185  */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)186 void account_system_index_time(struct task_struct *p,
187 			       u64 cputime, enum cpu_usage_stat index)
188 {
189 	/* Add system time to process. */
190 	p->stime += cputime;
191 	account_group_system_time(p, cputime);
192 
193 	/* Add system time to cpustat. */
194 	task_group_account_field(p, index, cputime);
195 
196 	/* Account for system time used */
197 	acct_account_cputime(p);
198 
199 	/* Account power usage for system time */
200 	cpufreq_acct_update_power(p, cputime);
201 }
202 
203 /*
204  * Account system cpu time to a process.
205  * @p: the process that the cpu time gets accounted to
206  * @hardirq_offset: the offset to subtract from hardirq_count()
207  * @cputime: the cpu time spent in kernel space since the last update
208  */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)209 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
210 {
211 	int index;
212 
213 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
214 		account_guest_time(p, cputime);
215 		return;
216 	}
217 
218 	if (hardirq_count() - hardirq_offset)
219 		index = CPUTIME_IRQ;
220 	else if (in_serving_softirq())
221 		index = CPUTIME_SOFTIRQ;
222 	else
223 		index = CPUTIME_SYSTEM;
224 
225 	account_system_index_time(p, cputime, index);
226 }
227 
228 /*
229  * Account for involuntary wait time.
230  * @cputime: the cpu time spent in involuntary wait
231  */
account_steal_time(u64 cputime)232 void account_steal_time(u64 cputime)
233 {
234 	u64 *cpustat = kcpustat_this_cpu->cpustat;
235 
236 	cpustat[CPUTIME_STEAL] += cputime;
237 }
238 
239 /*
240  * Account for idle time.
241  * @cputime: the cpu time spent in idle wait
242  */
account_idle_time(u64 cputime)243 void account_idle_time(u64 cputime)
244 {
245 	u64 *cpustat = kcpustat_this_cpu->cpustat;
246 	struct rq *rq = this_rq();
247 
248 	if (atomic_read(&rq->nr_iowait) > 0)
249 		cpustat[CPUTIME_IOWAIT] += cputime;
250 	else
251 		cpustat[CPUTIME_IDLE] += cputime;
252 }
253 
254 /*
255  * When a guest is interrupted for a longer amount of time, missed clock
256  * ticks are not redelivered later. Due to that, this function may on
257  * occasion account more time than the calling functions think elapsed.
258  */
steal_account_process_time(u64 maxtime)259 static __always_inline u64 steal_account_process_time(u64 maxtime)
260 {
261 #ifdef CONFIG_PARAVIRT
262 	if (static_key_false(&paravirt_steal_enabled)) {
263 		u64 steal;
264 
265 		steal = paravirt_steal_clock(smp_processor_id());
266 		steal -= this_rq()->prev_steal_time;
267 		steal = min(steal, maxtime);
268 		account_steal_time(steal);
269 		this_rq()->prev_steal_time += steal;
270 
271 		return steal;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /*
278  * Account how much elapsed time was spent in steal, irq, or softirq time.
279  */
account_other_time(u64 max)280 static inline u64 account_other_time(u64 max)
281 {
282 	u64 accounted;
283 
284 	/* Shall be converted to a lockdep-enabled lightweight check */
285 	WARN_ON_ONCE(!irqs_disabled());
286 
287 	accounted = steal_account_process_time(max);
288 
289 	if (accounted < max)
290 		accounted += irqtime_tick_accounted(max - accounted);
291 
292 	return accounted;
293 }
294 
295 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)296 static inline u64 read_sum_exec_runtime(struct task_struct *t)
297 {
298 	return t->se.sum_exec_runtime;
299 }
300 #else
read_sum_exec_runtime(struct task_struct * t)301 static u64 read_sum_exec_runtime(struct task_struct *t)
302 {
303 	u64 ns;
304 	struct rq_flags rf;
305 	struct rq *rq;
306 
307 	rq = task_rq_lock(t, &rf);
308 	ns = t->se.sum_exec_runtime;
309 	task_rq_unlock(rq, t, &rf);
310 
311 	return ns;
312 }
313 #endif
314 
315 /*
316  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
317  * tasks (sum on group iteration) belonging to @tsk's group.
318  */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)319 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
320 {
321 	struct signal_struct *sig = tsk->signal;
322 	u64 utime, stime;
323 	struct task_struct *t;
324 	unsigned int seq, nextseq;
325 	unsigned long flags;
326 
327 	/*
328 	 * Update current task runtime to account pending time since last
329 	 * scheduler action or thread_group_cputime() call. This thread group
330 	 * might have other running tasks on different CPUs, but updating
331 	 * their runtime can affect syscall performance, so we skip account
332 	 * those pending times and rely only on values updated on tick or
333 	 * other scheduler action.
334 	 */
335 	if (same_thread_group(current, tsk))
336 		(void) task_sched_runtime(current);
337 
338 	rcu_read_lock();
339 	/* Attempt a lockless read on the first round. */
340 	nextseq = 0;
341 	do {
342 		seq = nextseq;
343 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
344 		times->utime = sig->utime;
345 		times->stime = sig->stime;
346 		times->sum_exec_runtime = sig->sum_sched_runtime;
347 
348 		for_each_thread(tsk, t) {
349 			task_cputime(t, &utime, &stime);
350 			times->utime += utime;
351 			times->stime += stime;
352 			times->sum_exec_runtime += read_sum_exec_runtime(t);
353 		}
354 		/* If lockless access failed, take the lock. */
355 		nextseq = 1;
356 	} while (need_seqretry(&sig->stats_lock, seq));
357 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
358 	rcu_read_unlock();
359 }
360 
361 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
362 /*
363  * Account a tick to a process and cpustat
364  * @p: the process that the cpu time gets accounted to
365  * @user_tick: is the tick from userspace
366  * @rq: the pointer to rq
367  *
368  * Tick demultiplexing follows the order
369  * - pending hardirq update
370  * - pending softirq update
371  * - user_time
372  * - idle_time
373  * - system time
374  *   - check for guest_time
375  *   - else account as system_time
376  *
377  * Check for hardirq is done both for system and user time as there is
378  * no timer going off while we are on hardirq and hence we may never get an
379  * opportunity to update it solely in system time.
380  * p->stime and friends are only updated on system time and not on irq
381  * softirq as those do not count in task exec_runtime any more.
382  */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)383 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
384 					 struct rq *rq, int ticks)
385 {
386 	u64 other, cputime = TICK_NSEC * ticks;
387 
388 	/*
389 	 * When returning from idle, many ticks can get accounted at
390 	 * once, including some ticks of steal, irq, and softirq time.
391 	 * Subtract those ticks from the amount of time accounted to
392 	 * idle, or potentially user or system time. Due to rounding,
393 	 * other time can exceed ticks occasionally.
394 	 */
395 	other = account_other_time(ULONG_MAX);
396 	if (other >= cputime)
397 		return;
398 
399 	cputime -= other;
400 
401 	if (this_cpu_ksoftirqd() == p) {
402 		/*
403 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
404 		 * So, we have to handle it separately here.
405 		 * Also, p->stime needs to be updated for ksoftirqd.
406 		 */
407 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
408 	} else if (user_tick) {
409 		account_user_time(p, cputime);
410 	} else if (p == rq->idle) {
411 		account_idle_time(cputime);
412 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
413 		account_guest_time(p, cputime);
414 	} else {
415 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
416 	}
417 }
418 
irqtime_account_idle_ticks(int ticks)419 static void irqtime_account_idle_ticks(int ticks)
420 {
421 	struct rq *rq = this_rq();
422 
423 	irqtime_account_process_tick(current, 0, rq, ticks);
424 }
425 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)426 static inline void irqtime_account_idle_ticks(int ticks) {}
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)427 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
428 						struct rq *rq, int nr_ticks) {}
429 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
430 
431 /*
432  * Use precise platform statistics if available:
433  */
434 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
435 
436 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)437 void vtime_common_task_switch(struct task_struct *prev)
438 {
439 	if (is_idle_task(prev))
440 		vtime_account_idle(prev);
441 	else
442 		vtime_account_system(prev);
443 
444 	vtime_flush(prev);
445 	arch_vtime_task_switch(prev);
446 }
447 #endif
448 
449 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
450 
451 
452 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
453 /*
454  * Archs that account the whole time spent in the idle task
455  * (outside irq) as idle time can rely on this and just implement
456  * vtime_account_system() and vtime_account_idle(). Archs that
457  * have other meaning of the idle time (s390 only includes the
458  * time spent by the CPU when it's in low power mode) must override
459  * vtime_account().
460  */
461 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)462 void vtime_account_irq_enter(struct task_struct *tsk)
463 {
464 	if (!in_interrupt() && is_idle_task(tsk))
465 		vtime_account_idle(tsk);
466 	else
467 		vtime_account_system(tsk);
468 }
469 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
470 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
471 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)472 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
473 {
474 	*ut = p->utime;
475 	*st = p->stime;
476 }
477 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
478 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)479 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
480 {
481 	struct task_cputime cputime;
482 
483 	thread_group_cputime(p, &cputime);
484 
485 	*ut = cputime.utime;
486 	*st = cputime.stime;
487 }
488 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
489 /*
490  * Account a single tick of cpu time.
491  * @p: the process that the cpu time gets accounted to
492  * @user_tick: indicates if the tick is a user or a system tick
493  */
account_process_tick(struct task_struct * p,int user_tick)494 void account_process_tick(struct task_struct *p, int user_tick)
495 {
496 	u64 cputime, steal;
497 	struct rq *rq = this_rq();
498 
499 	if (vtime_accounting_cpu_enabled())
500 		return;
501 
502 	if (sched_clock_irqtime) {
503 		irqtime_account_process_tick(p, user_tick, rq, 1);
504 		return;
505 	}
506 
507 	cputime = TICK_NSEC;
508 	steal = steal_account_process_time(ULONG_MAX);
509 
510 	if (steal >= cputime)
511 		return;
512 
513 	cputime -= steal;
514 
515 	if (user_tick)
516 		account_user_time(p, cputime);
517 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
518 		account_system_time(p, HARDIRQ_OFFSET, cputime);
519 	else
520 		account_idle_time(cputime);
521 }
522 
523 /*
524  * Account multiple ticks of idle time.
525  * @ticks: number of stolen ticks
526  */
account_idle_ticks(unsigned long ticks)527 void account_idle_ticks(unsigned long ticks)
528 {
529 	u64 cputime, steal;
530 
531 	if (sched_clock_irqtime) {
532 		irqtime_account_idle_ticks(ticks);
533 		return;
534 	}
535 
536 	cputime = ticks * TICK_NSEC;
537 	steal = steal_account_process_time(ULONG_MAX);
538 
539 	if (steal >= cputime)
540 		return;
541 
542 	cputime -= steal;
543 	account_idle_time(cputime);
544 }
545 
546 /*
547  * Perform (stime * rtime) / total, but avoid multiplication overflow by
548  * loosing precision when the numbers are big.
549  */
scale_stime(u64 stime,u64 rtime,u64 total)550 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
551 {
552 	u64 scaled;
553 
554 	for (;;) {
555 		/* Make sure "rtime" is the bigger of stime/rtime */
556 		if (stime > rtime)
557 			swap(rtime, stime);
558 
559 		/* Make sure 'total' fits in 32 bits */
560 		if (total >> 32)
561 			goto drop_precision;
562 
563 		/* Does rtime (and thus stime) fit in 32 bits? */
564 		if (!(rtime >> 32))
565 			break;
566 
567 		/* Can we just balance rtime/stime rather than dropping bits? */
568 		if (stime >> 31)
569 			goto drop_precision;
570 
571 		/* We can grow stime and shrink rtime and try to make them both fit */
572 		stime <<= 1;
573 		rtime >>= 1;
574 		continue;
575 
576 drop_precision:
577 		/* We drop from rtime, it has more bits than stime */
578 		rtime >>= 1;
579 		total >>= 1;
580 	}
581 
582 	/*
583 	 * Make sure gcc understands that this is a 32x32->64 multiply,
584 	 * followed by a 64/32->64 divide.
585 	 */
586 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
587 	return scaled;
588 }
589 
590 /*
591  * Adjust tick based cputime random precision against scheduler runtime
592  * accounting.
593  *
594  * Tick based cputime accounting depend on random scheduling timeslices of a
595  * task to be interrupted or not by the timer.  Depending on these
596  * circumstances, the number of these interrupts may be over or
597  * under-optimistic, matching the real user and system cputime with a variable
598  * precision.
599  *
600  * Fix this by scaling these tick based values against the total runtime
601  * accounted by the CFS scheduler.
602  *
603  * This code provides the following guarantees:
604  *
605  *   stime + utime == rtime
606  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
607  *
608  * Assuming that rtime_i+1 >= rtime_i.
609  */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)610 static void cputime_adjust(struct task_cputime *curr,
611 			   struct prev_cputime *prev,
612 			   u64 *ut, u64 *st)
613 {
614 	u64 rtime, stime, utime;
615 	unsigned long flags;
616 
617 	/* Serialize concurrent callers such that we can honour our guarantees */
618 	raw_spin_lock_irqsave(&prev->lock, flags);
619 	rtime = curr->sum_exec_runtime;
620 
621 	/*
622 	 * This is possible under two circumstances:
623 	 *  - rtime isn't monotonic after all (a bug);
624 	 *  - we got reordered by the lock.
625 	 *
626 	 * In both cases this acts as a filter such that the rest of the code
627 	 * can assume it is monotonic regardless of anything else.
628 	 */
629 	if (prev->stime + prev->utime >= rtime)
630 		goto out;
631 
632 	stime = curr->stime;
633 	utime = curr->utime;
634 
635 	/*
636 	 * If either stime or utime are 0, assume all runtime is userspace.
637 	 * Once a task gets some ticks, the monotonicy code at 'update:'
638 	 * will ensure things converge to the observed ratio.
639 	 */
640 	if (stime == 0) {
641 		utime = rtime;
642 		goto update;
643 	}
644 
645 	if (utime == 0) {
646 		stime = rtime;
647 		goto update;
648 	}
649 
650 	stime = scale_stime(stime, rtime, stime + utime);
651 
652 update:
653 	/*
654 	 * Make sure stime doesn't go backwards; this preserves monotonicity
655 	 * for utime because rtime is monotonic.
656 	 *
657 	 *  utime_i+1 = rtime_i+1 - stime_i
658 	 *            = rtime_i+1 - (rtime_i - utime_i)
659 	 *            = (rtime_i+1 - rtime_i) + utime_i
660 	 *            >= utime_i
661 	 */
662 	if (stime < prev->stime)
663 		stime = prev->stime;
664 	utime = rtime - stime;
665 
666 	/*
667 	 * Make sure utime doesn't go backwards; this still preserves
668 	 * monotonicity for stime, analogous argument to above.
669 	 */
670 	if (utime < prev->utime) {
671 		utime = prev->utime;
672 		stime = rtime - utime;
673 	}
674 
675 	prev->stime = stime;
676 	prev->utime = utime;
677 out:
678 	*ut = prev->utime;
679 	*st = prev->stime;
680 	raw_spin_unlock_irqrestore(&prev->lock, flags);
681 }
682 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)683 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
684 {
685 	struct task_cputime cputime = {
686 		.sum_exec_runtime = p->se.sum_exec_runtime,
687 	};
688 
689 	task_cputime(p, &cputime.utime, &cputime.stime);
690 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
691 }
692 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
693 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)694 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
695 {
696 	struct task_cputime cputime;
697 
698 	thread_group_cputime(p, &cputime);
699 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
700 }
701 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
702 
703 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)704 static u64 vtime_delta(struct vtime *vtime)
705 {
706 	unsigned long long clock;
707 
708 	clock = sched_clock();
709 	if (clock < vtime->starttime)
710 		return 0;
711 
712 	return clock - vtime->starttime;
713 }
714 
get_vtime_delta(struct vtime * vtime)715 static u64 get_vtime_delta(struct vtime *vtime)
716 {
717 	u64 delta = vtime_delta(vtime);
718 	u64 other;
719 
720 	/*
721 	 * Unlike tick based timing, vtime based timing never has lost
722 	 * ticks, and no need for steal time accounting to make up for
723 	 * lost ticks. Vtime accounts a rounded version of actual
724 	 * elapsed time. Limit account_other_time to prevent rounding
725 	 * errors from causing elapsed vtime to go negative.
726 	 */
727 	other = account_other_time(delta);
728 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
729 	vtime->starttime += delta;
730 
731 	return delta - other;
732 }
733 
__vtime_account_system(struct task_struct * tsk,struct vtime * vtime)734 static void __vtime_account_system(struct task_struct *tsk,
735 				   struct vtime *vtime)
736 {
737 	vtime->stime += get_vtime_delta(vtime);
738 	if (vtime->stime >= TICK_NSEC) {
739 		account_system_time(tsk, irq_count(), vtime->stime);
740 		vtime->stime = 0;
741 	}
742 }
743 
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)744 static void vtime_account_guest(struct task_struct *tsk,
745 				struct vtime *vtime)
746 {
747 	vtime->gtime += get_vtime_delta(vtime);
748 	if (vtime->gtime >= TICK_NSEC) {
749 		account_guest_time(tsk, vtime->gtime);
750 		vtime->gtime = 0;
751 	}
752 }
753 
vtime_account_system(struct task_struct * tsk)754 void vtime_account_system(struct task_struct *tsk)
755 {
756 	struct vtime *vtime = &tsk->vtime;
757 
758 	if (!vtime_delta(vtime))
759 		return;
760 
761 	write_seqcount_begin(&vtime->seqcount);
762 	/* We might have scheduled out from guest path */
763 	if (tsk->flags & PF_VCPU)
764 		vtime_account_guest(tsk, vtime);
765 	else
766 		__vtime_account_system(tsk, vtime);
767 	write_seqcount_end(&vtime->seqcount);
768 }
769 
vtime_user_enter(struct task_struct * tsk)770 void vtime_user_enter(struct task_struct *tsk)
771 {
772 	struct vtime *vtime = &tsk->vtime;
773 
774 	write_seqcount_begin(&vtime->seqcount);
775 	__vtime_account_system(tsk, vtime);
776 	vtime->state = VTIME_USER;
777 	write_seqcount_end(&vtime->seqcount);
778 }
779 
vtime_user_exit(struct task_struct * tsk)780 void vtime_user_exit(struct task_struct *tsk)
781 {
782 	struct vtime *vtime = &tsk->vtime;
783 
784 	write_seqcount_begin(&vtime->seqcount);
785 	vtime->utime += get_vtime_delta(vtime);
786 	if (vtime->utime >= TICK_NSEC) {
787 		account_user_time(tsk, vtime->utime);
788 		vtime->utime = 0;
789 	}
790 	vtime->state = VTIME_SYS;
791 	write_seqcount_end(&vtime->seqcount);
792 }
793 
vtime_guest_enter(struct task_struct * tsk)794 void vtime_guest_enter(struct task_struct *tsk)
795 {
796 	struct vtime *vtime = &tsk->vtime;
797 	/*
798 	 * The flags must be updated under the lock with
799 	 * the vtime_starttime flush and update.
800 	 * That enforces a right ordering and update sequence
801 	 * synchronization against the reader (task_gtime())
802 	 * that can thus safely catch up with a tickless delta.
803 	 */
804 	write_seqcount_begin(&vtime->seqcount);
805 	__vtime_account_system(tsk, vtime);
806 	tsk->flags |= PF_VCPU;
807 	write_seqcount_end(&vtime->seqcount);
808 }
809 EXPORT_SYMBOL_GPL(vtime_guest_enter);
810 
vtime_guest_exit(struct task_struct * tsk)811 void vtime_guest_exit(struct task_struct *tsk)
812 {
813 	struct vtime *vtime = &tsk->vtime;
814 
815 	write_seqcount_begin(&vtime->seqcount);
816 	vtime_account_guest(tsk, vtime);
817 	tsk->flags &= ~PF_VCPU;
818 	write_seqcount_end(&vtime->seqcount);
819 }
820 EXPORT_SYMBOL_GPL(vtime_guest_exit);
821 
vtime_account_idle(struct task_struct * tsk)822 void vtime_account_idle(struct task_struct *tsk)
823 {
824 	account_idle_time(get_vtime_delta(&tsk->vtime));
825 }
826 
arch_vtime_task_switch(struct task_struct * prev)827 void arch_vtime_task_switch(struct task_struct *prev)
828 {
829 	struct vtime *vtime = &prev->vtime;
830 
831 	write_seqcount_begin(&vtime->seqcount);
832 	vtime->state = VTIME_INACTIVE;
833 	write_seqcount_end(&vtime->seqcount);
834 
835 	vtime = &current->vtime;
836 
837 	write_seqcount_begin(&vtime->seqcount);
838 	vtime->state = VTIME_SYS;
839 	vtime->starttime = sched_clock();
840 	write_seqcount_end(&vtime->seqcount);
841 }
842 
vtime_init_idle(struct task_struct * t,int cpu)843 void vtime_init_idle(struct task_struct *t, int cpu)
844 {
845 	struct vtime *vtime = &t->vtime;
846 	unsigned long flags;
847 
848 	local_irq_save(flags);
849 	write_seqcount_begin(&vtime->seqcount);
850 	vtime->state = VTIME_SYS;
851 	vtime->starttime = sched_clock();
852 	write_seqcount_end(&vtime->seqcount);
853 	local_irq_restore(flags);
854 }
855 
task_gtime(struct task_struct * t)856 u64 task_gtime(struct task_struct *t)
857 {
858 	struct vtime *vtime = &t->vtime;
859 	unsigned int seq;
860 	u64 gtime;
861 
862 	if (!vtime_accounting_enabled())
863 		return t->gtime;
864 
865 	do {
866 		seq = read_seqcount_begin(&vtime->seqcount);
867 
868 		gtime = t->gtime;
869 		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
870 			gtime += vtime->gtime + vtime_delta(vtime);
871 
872 	} while (read_seqcount_retry(&vtime->seqcount, seq));
873 
874 	return gtime;
875 }
876 
877 /*
878  * Fetch cputime raw values from fields of task_struct and
879  * add up the pending nohz execution time since the last
880  * cputime snapshot.
881  */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)882 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
883 {
884 	struct vtime *vtime = &t->vtime;
885 	unsigned int seq;
886 	u64 delta;
887 
888 	if (!vtime_accounting_enabled()) {
889 		*utime = t->utime;
890 		*stime = t->stime;
891 		return;
892 	}
893 
894 	do {
895 		seq = read_seqcount_begin(&vtime->seqcount);
896 
897 		*utime = t->utime;
898 		*stime = t->stime;
899 
900 		/* Task is sleeping, nothing to add */
901 		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
902 			continue;
903 
904 		delta = vtime_delta(vtime);
905 
906 		/*
907 		 * Task runs either in user or kernel space, add pending nohz time to
908 		 * the right place.
909 		 */
910 		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
911 			*utime += vtime->utime + delta;
912 		else if (vtime->state == VTIME_SYS)
913 			*stime += vtime->stime + delta;
914 	} while (read_seqcount_retry(&vtime->seqcount, seq));
915 }
916 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
917