1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
speed_max(struct mddev * mddev)127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone_bioset, but with a local bio set
189 */
190
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
md_bio_alloc_sync(struct mddev * mddev)206 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
207 {
208 if (!mddev || !mddev->sync_set)
209 return bio_alloc(GFP_NOIO, 1);
210
211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
212 }
213
214 /*
215 * We have a system wide 'event count' that is incremented
216 * on any 'interesting' event, and readers of /proc/mdstat
217 * can use 'poll' or 'select' to find out when the event
218 * count increases.
219 *
220 * Events are:
221 * start array, stop array, error, add device, remove device,
222 * start build, activate spare
223 */
224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
225 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)226 void md_new_event(struct mddev *mddev)
227 {
228 atomic_inc(&md_event_count);
229 wake_up(&md_event_waiters);
230 }
231 EXPORT_SYMBOL_GPL(md_new_event);
232
233 /*
234 * Enables to iterate over all existing md arrays
235 * all_mddevs_lock protects this list.
236 */
237 static LIST_HEAD(all_mddevs);
238 static DEFINE_SPINLOCK(all_mddevs_lock);
239
240 /*
241 * iterates through all used mddevs in the system.
242 * We take care to grab the all_mddevs_lock whenever navigating
243 * the list, and to always hold a refcount when unlocked.
244 * Any code which breaks out of this loop while own
245 * a reference to the current mddev and must mddev_put it.
246 */
247 #define for_each_mddev(_mddev,_tmp) \
248 \
249 for (({ spin_lock(&all_mddevs_lock); \
250 _tmp = all_mddevs.next; \
251 _mddev = NULL;}); \
252 ({ if (_tmp != &all_mddevs) \
253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
254 spin_unlock(&all_mddevs_lock); \
255 if (_mddev) mddev_put(_mddev); \
256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
257 _tmp != &all_mddevs;}); \
258 ({ spin_lock(&all_mddevs_lock); \
259 _tmp = _tmp->next;}) \
260 )
261
262 /* Rather than calling directly into the personality make_request function,
263 * IO requests come here first so that we can check if the device is
264 * being suspended pending a reconfiguration.
265 * We hold a refcount over the call to ->make_request. By the time that
266 * call has finished, the bio has been linked into some internal structure
267 * and so is visible to ->quiesce(), so we don't need the refcount any more.
268 */
is_suspended(struct mddev * mddev,struct bio * bio)269 static bool is_suspended(struct mddev *mddev, struct bio *bio)
270 {
271 if (mddev->suspended)
272 return true;
273 if (bio_data_dir(bio) != WRITE)
274 return false;
275 if (mddev->suspend_lo >= mddev->suspend_hi)
276 return false;
277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
278 return false;
279 if (bio_end_sector(bio) < mddev->suspend_lo)
280 return false;
281 return true;
282 }
283
md_handle_request(struct mddev * mddev,struct bio * bio)284 void md_handle_request(struct mddev *mddev, struct bio *bio)
285 {
286 check_suspended:
287 rcu_read_lock();
288 if (is_suspended(mddev, bio)) {
289 DEFINE_WAIT(__wait);
290 for (;;) {
291 prepare_to_wait(&mddev->sb_wait, &__wait,
292 TASK_UNINTERRUPTIBLE);
293 if (!is_suspended(mddev, bio))
294 break;
295 rcu_read_unlock();
296 schedule();
297 rcu_read_lock();
298 }
299 finish_wait(&mddev->sb_wait, &__wait);
300 }
301 atomic_inc(&mddev->active_io);
302 rcu_read_unlock();
303
304 if (!mddev->pers->make_request(mddev, bio)) {
305 atomic_dec(&mddev->active_io);
306 wake_up(&mddev->sb_wait);
307 goto check_suspended;
308 }
309
310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
311 wake_up(&mddev->sb_wait);
312 }
313 EXPORT_SYMBOL(md_handle_request);
314
md_make_request(struct request_queue * q,struct bio * bio)315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
316 {
317 const int rw = bio_data_dir(bio);
318 struct mddev *mddev = q->queuedata;
319 unsigned int sectors;
320 int cpu;
321
322 blk_queue_split(q, &bio);
323
324 if (mddev == NULL || mddev->pers == NULL) {
325 bio_io_error(bio);
326 return BLK_QC_T_NONE;
327 }
328 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
329 if (bio_sectors(bio) != 0)
330 bio->bi_status = BLK_STS_IOERR;
331 bio_endio(bio);
332 return BLK_QC_T_NONE;
333 }
334
335 /*
336 * save the sectors now since our bio can
337 * go away inside make_request
338 */
339 sectors = bio_sectors(bio);
340 /* bio could be mergeable after passing to underlayer */
341 bio->bi_opf &= ~REQ_NOMERGE;
342
343 md_handle_request(mddev, bio);
344
345 cpu = part_stat_lock();
346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
348 part_stat_unlock();
349
350 return BLK_QC_T_NONE;
351 }
352
353 /* mddev_suspend makes sure no new requests are submitted
354 * to the device, and that any requests that have been submitted
355 * are completely handled.
356 * Once mddev_detach() is called and completes, the module will be
357 * completely unused.
358 */
mddev_suspend(struct mddev * mddev)359 void mddev_suspend(struct mddev *mddev)
360 {
361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
362 lockdep_assert_held(&mddev->reconfig_mutex);
363 if (mddev->suspended++)
364 return;
365 synchronize_rcu();
366 wake_up(&mddev->sb_wait);
367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
368 smp_mb__after_atomic();
369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
370 mddev->pers->quiesce(mddev, 1);
371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
373
374 del_timer_sync(&mddev->safemode_timer);
375 }
376 EXPORT_SYMBOL_GPL(mddev_suspend);
377
mddev_resume(struct mddev * mddev)378 void mddev_resume(struct mddev *mddev)
379 {
380 lockdep_assert_held(&mddev->reconfig_mutex);
381 if (--mddev->suspended)
382 return;
383 wake_up(&mddev->sb_wait);
384 mddev->pers->quiesce(mddev, 0);
385
386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
387 md_wakeup_thread(mddev->thread);
388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
389 }
390 EXPORT_SYMBOL_GPL(mddev_resume);
391
mddev_congested(struct mddev * mddev,int bits)392 int mddev_congested(struct mddev *mddev, int bits)
393 {
394 struct md_personality *pers = mddev->pers;
395 int ret = 0;
396
397 rcu_read_lock();
398 if (mddev->suspended)
399 ret = 1;
400 else if (pers && pers->congested)
401 ret = pers->congested(mddev, bits);
402 rcu_read_unlock();
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(mddev_congested);
md_congested(void * data,int bits)406 static int md_congested(void *data, int bits)
407 {
408 struct mddev *mddev = data;
409 return mddev_congested(mddev, bits);
410 }
411
412 /*
413 * Generic flush handling for md
414 */
415
md_end_flush(struct bio * bio)416 static void md_end_flush(struct bio *bio)
417 {
418 struct md_rdev *rdev = bio->bi_private;
419 struct mddev *mddev = rdev->mddev;
420
421 rdev_dec_pending(rdev, mddev);
422
423 if (atomic_dec_and_test(&mddev->flush_pending)) {
424 /* The pre-request flush has finished */
425 queue_work(md_wq, &mddev->flush_work);
426 }
427 bio_put(bio);
428 }
429
430 static void md_submit_flush_data(struct work_struct *ws);
431
submit_flushes(struct work_struct * ws)432 static void submit_flushes(struct work_struct *ws)
433 {
434 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
435 struct md_rdev *rdev;
436
437 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
438 atomic_set(&mddev->flush_pending, 1);
439 rcu_read_lock();
440 rdev_for_each_rcu(rdev, mddev)
441 if (rdev->raid_disk >= 0 &&
442 !test_bit(Faulty, &rdev->flags)) {
443 /* Take two references, one is dropped
444 * when request finishes, one after
445 * we reclaim rcu_read_lock
446 */
447 struct bio *bi;
448 atomic_inc(&rdev->nr_pending);
449 atomic_inc(&rdev->nr_pending);
450 rcu_read_unlock();
451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
452 bi->bi_end_io = md_end_flush;
453 bi->bi_private = rdev;
454 bio_set_dev(bi, rdev->bdev);
455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
456 atomic_inc(&mddev->flush_pending);
457 submit_bio(bi);
458 rcu_read_lock();
459 rdev_dec_pending(rdev, mddev);
460 }
461 rcu_read_unlock();
462 if (atomic_dec_and_test(&mddev->flush_pending))
463 queue_work(md_wq, &mddev->flush_work);
464 }
465
md_submit_flush_data(struct work_struct * ws)466 static void md_submit_flush_data(struct work_struct *ws)
467 {
468 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
469 struct bio *bio = mddev->flush_bio;
470
471 /*
472 * must reset flush_bio before calling into md_handle_request to avoid a
473 * deadlock, because other bios passed md_handle_request suspend check
474 * could wait for this and below md_handle_request could wait for those
475 * bios because of suspend check
476 */
477 mddev->flush_bio = NULL;
478 wake_up(&mddev->sb_wait);
479
480 if (bio->bi_iter.bi_size == 0)
481 /* an empty barrier - all done */
482 bio_endio(bio);
483 else {
484 bio->bi_opf &= ~REQ_PREFLUSH;
485 md_handle_request(mddev, bio);
486 }
487 }
488
md_flush_request(struct mddev * mddev,struct bio * bio)489 void md_flush_request(struct mddev *mddev, struct bio *bio)
490 {
491 spin_lock_irq(&mddev->lock);
492 wait_event_lock_irq(mddev->sb_wait,
493 !mddev->flush_bio,
494 mddev->lock);
495 mddev->flush_bio = bio;
496 spin_unlock_irq(&mddev->lock);
497
498 INIT_WORK(&mddev->flush_work, submit_flushes);
499 queue_work(md_wq, &mddev->flush_work);
500 }
501 EXPORT_SYMBOL(md_flush_request);
502
mddev_get(struct mddev * mddev)503 static inline struct mddev *mddev_get(struct mddev *mddev)
504 {
505 atomic_inc(&mddev->active);
506 return mddev;
507 }
508
509 static void mddev_delayed_delete(struct work_struct *ws);
510
mddev_put(struct mddev * mddev)511 static void mddev_put(struct mddev *mddev)
512 {
513 struct bio_set *bs = NULL, *sync_bs = NULL;
514
515 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
516 return;
517 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
518 mddev->ctime == 0 && !mddev->hold_active) {
519 /* Array is not configured at all, and not held active,
520 * so destroy it */
521 list_del_init(&mddev->all_mddevs);
522 bs = mddev->bio_set;
523 sync_bs = mddev->sync_set;
524 mddev->bio_set = NULL;
525 mddev->sync_set = NULL;
526 if (mddev->gendisk) {
527 /* We did a probe so need to clean up. Call
528 * queue_work inside the spinlock so that
529 * flush_workqueue() after mddev_find will
530 * succeed in waiting for the work to be done.
531 */
532 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
533 queue_work(md_misc_wq, &mddev->del_work);
534 } else
535 kfree(mddev);
536 }
537 spin_unlock(&all_mddevs_lock);
538 if (bs)
539 bioset_free(bs);
540 if (sync_bs)
541 bioset_free(sync_bs);
542 }
543
544 static void md_safemode_timeout(unsigned long data);
545
mddev_init(struct mddev * mddev)546 void mddev_init(struct mddev *mddev)
547 {
548 mutex_init(&mddev->open_mutex);
549 mutex_init(&mddev->reconfig_mutex);
550 mutex_init(&mddev->bitmap_info.mutex);
551 INIT_LIST_HEAD(&mddev->disks);
552 INIT_LIST_HEAD(&mddev->all_mddevs);
553 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
554 (unsigned long) mddev);
555 atomic_set(&mddev->active, 1);
556 atomic_set(&mddev->openers, 0);
557 atomic_set(&mddev->active_io, 0);
558 spin_lock_init(&mddev->lock);
559 atomic_set(&mddev->flush_pending, 0);
560 init_waitqueue_head(&mddev->sb_wait);
561 init_waitqueue_head(&mddev->recovery_wait);
562 mddev->reshape_position = MaxSector;
563 mddev->reshape_backwards = 0;
564 mddev->last_sync_action = "none";
565 mddev->resync_min = 0;
566 mddev->resync_max = MaxSector;
567 mddev->level = LEVEL_NONE;
568 }
569 EXPORT_SYMBOL_GPL(mddev_init);
570
mddev_find(dev_t unit)571 static struct mddev *mddev_find(dev_t unit)
572 {
573 struct mddev *mddev, *new = NULL;
574
575 if (unit && MAJOR(unit) != MD_MAJOR)
576 unit &= ~((1<<MdpMinorShift)-1);
577
578 retry:
579 spin_lock(&all_mddevs_lock);
580
581 if (unit) {
582 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
583 if (mddev->unit == unit) {
584 mddev_get(mddev);
585 spin_unlock(&all_mddevs_lock);
586 kfree(new);
587 return mddev;
588 }
589
590 if (new) {
591 list_add(&new->all_mddevs, &all_mddevs);
592 spin_unlock(&all_mddevs_lock);
593 new->hold_active = UNTIL_IOCTL;
594 return new;
595 }
596 } else if (new) {
597 /* find an unused unit number */
598 static int next_minor = 512;
599 int start = next_minor;
600 int is_free = 0;
601 int dev = 0;
602 while (!is_free) {
603 dev = MKDEV(MD_MAJOR, next_minor);
604 next_minor++;
605 if (next_minor > MINORMASK)
606 next_minor = 0;
607 if (next_minor == start) {
608 /* Oh dear, all in use. */
609 spin_unlock(&all_mddevs_lock);
610 kfree(new);
611 return NULL;
612 }
613
614 is_free = 1;
615 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
616 if (mddev->unit == dev) {
617 is_free = 0;
618 break;
619 }
620 }
621 new->unit = dev;
622 new->md_minor = MINOR(dev);
623 new->hold_active = UNTIL_STOP;
624 list_add(&new->all_mddevs, &all_mddevs);
625 spin_unlock(&all_mddevs_lock);
626 return new;
627 }
628 spin_unlock(&all_mddevs_lock);
629
630 new = kzalloc(sizeof(*new), GFP_KERNEL);
631 if (!new)
632 return NULL;
633
634 new->unit = unit;
635 if (MAJOR(unit) == MD_MAJOR)
636 new->md_minor = MINOR(unit);
637 else
638 new->md_minor = MINOR(unit) >> MdpMinorShift;
639
640 mddev_init(new);
641
642 goto retry;
643 }
644
645 static struct attribute_group md_redundancy_group;
646
mddev_unlock(struct mddev * mddev)647 void mddev_unlock(struct mddev *mddev)
648 {
649 if (mddev->to_remove) {
650 /* These cannot be removed under reconfig_mutex as
651 * an access to the files will try to take reconfig_mutex
652 * while holding the file unremovable, which leads to
653 * a deadlock.
654 * So hold set sysfs_active while the remove in happeing,
655 * and anything else which might set ->to_remove or my
656 * otherwise change the sysfs namespace will fail with
657 * -EBUSY if sysfs_active is still set.
658 * We set sysfs_active under reconfig_mutex and elsewhere
659 * test it under the same mutex to ensure its correct value
660 * is seen.
661 */
662 struct attribute_group *to_remove = mddev->to_remove;
663 mddev->to_remove = NULL;
664 mddev->sysfs_active = 1;
665 mutex_unlock(&mddev->reconfig_mutex);
666
667 if (mddev->kobj.sd) {
668 if (to_remove != &md_redundancy_group)
669 sysfs_remove_group(&mddev->kobj, to_remove);
670 if (mddev->pers == NULL ||
671 mddev->pers->sync_request == NULL) {
672 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
673 if (mddev->sysfs_action)
674 sysfs_put(mddev->sysfs_action);
675 mddev->sysfs_action = NULL;
676 }
677 }
678 mddev->sysfs_active = 0;
679 } else
680 mutex_unlock(&mddev->reconfig_mutex);
681
682 /* As we've dropped the mutex we need a spinlock to
683 * make sure the thread doesn't disappear
684 */
685 spin_lock(&pers_lock);
686 md_wakeup_thread(mddev->thread);
687 wake_up(&mddev->sb_wait);
688 spin_unlock(&pers_lock);
689 }
690 EXPORT_SYMBOL_GPL(mddev_unlock);
691
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)692 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
693 {
694 struct md_rdev *rdev;
695
696 rdev_for_each_rcu(rdev, mddev)
697 if (rdev->desc_nr == nr)
698 return rdev;
699
700 return NULL;
701 }
702 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
703
find_rdev(struct mddev * mddev,dev_t dev)704 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
705 {
706 struct md_rdev *rdev;
707
708 rdev_for_each(rdev, mddev)
709 if (rdev->bdev->bd_dev == dev)
710 return rdev;
711
712 return NULL;
713 }
714
find_rdev_rcu(struct mddev * mddev,dev_t dev)715 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
716 {
717 struct md_rdev *rdev;
718
719 rdev_for_each_rcu(rdev, mddev)
720 if (rdev->bdev->bd_dev == dev)
721 return rdev;
722
723 return NULL;
724 }
725
find_pers(int level,char * clevel)726 static struct md_personality *find_pers(int level, char *clevel)
727 {
728 struct md_personality *pers;
729 list_for_each_entry(pers, &pers_list, list) {
730 if (level != LEVEL_NONE && pers->level == level)
731 return pers;
732 if (strcmp(pers->name, clevel)==0)
733 return pers;
734 }
735 return NULL;
736 }
737
738 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)739 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
740 {
741 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
742 return MD_NEW_SIZE_SECTORS(num_sectors);
743 }
744
alloc_disk_sb(struct md_rdev * rdev)745 static int alloc_disk_sb(struct md_rdev *rdev)
746 {
747 rdev->sb_page = alloc_page(GFP_KERNEL);
748 if (!rdev->sb_page)
749 return -ENOMEM;
750 return 0;
751 }
752
md_rdev_clear(struct md_rdev * rdev)753 void md_rdev_clear(struct md_rdev *rdev)
754 {
755 if (rdev->sb_page) {
756 put_page(rdev->sb_page);
757 rdev->sb_loaded = 0;
758 rdev->sb_page = NULL;
759 rdev->sb_start = 0;
760 rdev->sectors = 0;
761 }
762 if (rdev->bb_page) {
763 put_page(rdev->bb_page);
764 rdev->bb_page = NULL;
765 }
766 badblocks_exit(&rdev->badblocks);
767 }
768 EXPORT_SYMBOL_GPL(md_rdev_clear);
769
super_written(struct bio * bio)770 static void super_written(struct bio *bio)
771 {
772 struct md_rdev *rdev = bio->bi_private;
773 struct mddev *mddev = rdev->mddev;
774
775 if (bio->bi_status) {
776 pr_err("md: super_written gets error=%d\n", bio->bi_status);
777 md_error(mddev, rdev);
778 if (!test_bit(Faulty, &rdev->flags)
779 && (bio->bi_opf & MD_FAILFAST)) {
780 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
781 set_bit(LastDev, &rdev->flags);
782 }
783 } else
784 clear_bit(LastDev, &rdev->flags);
785
786 if (atomic_dec_and_test(&mddev->pending_writes))
787 wake_up(&mddev->sb_wait);
788 rdev_dec_pending(rdev, mddev);
789 bio_put(bio);
790 }
791
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)792 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
793 sector_t sector, int size, struct page *page)
794 {
795 /* write first size bytes of page to sector of rdev
796 * Increment mddev->pending_writes before returning
797 * and decrement it on completion, waking up sb_wait
798 * if zero is reached.
799 * If an error occurred, call md_error
800 */
801 struct bio *bio;
802 int ff = 0;
803
804 if (!page)
805 return;
806
807 if (test_bit(Faulty, &rdev->flags))
808 return;
809
810 bio = md_bio_alloc_sync(mddev);
811
812 atomic_inc(&rdev->nr_pending);
813
814 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
815 bio->bi_iter.bi_sector = sector;
816 bio_add_page(bio, page, size, 0);
817 bio->bi_private = rdev;
818 bio->bi_end_io = super_written;
819
820 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
821 test_bit(FailFast, &rdev->flags) &&
822 !test_bit(LastDev, &rdev->flags))
823 ff = MD_FAILFAST;
824 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
825
826 atomic_inc(&mddev->pending_writes);
827 submit_bio(bio);
828 }
829
md_super_wait(struct mddev * mddev)830 int md_super_wait(struct mddev *mddev)
831 {
832 /* wait for all superblock writes that were scheduled to complete */
833 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
834 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
835 return -EAGAIN;
836 return 0;
837 }
838
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)839 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
840 struct page *page, int op, int op_flags, bool metadata_op)
841 {
842 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
843 int ret;
844
845 if (metadata_op && rdev->meta_bdev)
846 bio_set_dev(bio, rdev->meta_bdev);
847 else
848 bio_set_dev(bio, rdev->bdev);
849 bio_set_op_attrs(bio, op, op_flags);
850 if (metadata_op)
851 bio->bi_iter.bi_sector = sector + rdev->sb_start;
852 else if (rdev->mddev->reshape_position != MaxSector &&
853 (rdev->mddev->reshape_backwards ==
854 (sector >= rdev->mddev->reshape_position)))
855 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
856 else
857 bio->bi_iter.bi_sector = sector + rdev->data_offset;
858 bio_add_page(bio, page, size, 0);
859
860 submit_bio_wait(bio);
861
862 ret = !bio->bi_status;
863 bio_put(bio);
864 return ret;
865 }
866 EXPORT_SYMBOL_GPL(sync_page_io);
867
read_disk_sb(struct md_rdev * rdev,int size)868 static int read_disk_sb(struct md_rdev *rdev, int size)
869 {
870 char b[BDEVNAME_SIZE];
871
872 if (rdev->sb_loaded)
873 return 0;
874
875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
876 goto fail;
877 rdev->sb_loaded = 1;
878 return 0;
879
880 fail:
881 pr_err("md: disabled device %s, could not read superblock.\n",
882 bdevname(rdev->bdev,b));
883 return -EINVAL;
884 }
885
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)886 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888 return sb1->set_uuid0 == sb2->set_uuid0 &&
889 sb1->set_uuid1 == sb2->set_uuid1 &&
890 sb1->set_uuid2 == sb2->set_uuid2 &&
891 sb1->set_uuid3 == sb2->set_uuid3;
892 }
893
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)894 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
895 {
896 int ret;
897 mdp_super_t *tmp1, *tmp2;
898
899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
901
902 if (!tmp1 || !tmp2) {
903 ret = 0;
904 goto abort;
905 }
906
907 *tmp1 = *sb1;
908 *tmp2 = *sb2;
909
910 /*
911 * nr_disks is not constant
912 */
913 tmp1->nr_disks = 0;
914 tmp2->nr_disks = 0;
915
916 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
917 abort:
918 kfree(tmp1);
919 kfree(tmp2);
920 return ret;
921 }
922
md_csum_fold(u32 csum)923 static u32 md_csum_fold(u32 csum)
924 {
925 csum = (csum & 0xffff) + (csum >> 16);
926 return (csum & 0xffff) + (csum >> 16);
927 }
928
calc_sb_csum(mdp_super_t * sb)929 static unsigned int calc_sb_csum(mdp_super_t *sb)
930 {
931 u64 newcsum = 0;
932 u32 *sb32 = (u32*)sb;
933 int i;
934 unsigned int disk_csum, csum;
935
936 disk_csum = sb->sb_csum;
937 sb->sb_csum = 0;
938
939 for (i = 0; i < MD_SB_BYTES/4 ; i++)
940 newcsum += sb32[i];
941 csum = (newcsum & 0xffffffff) + (newcsum>>32);
942
943 #ifdef CONFIG_ALPHA
944 /* This used to use csum_partial, which was wrong for several
945 * reasons including that different results are returned on
946 * different architectures. It isn't critical that we get exactly
947 * the same return value as before (we always csum_fold before
948 * testing, and that removes any differences). However as we
949 * know that csum_partial always returned a 16bit value on
950 * alphas, do a fold to maximise conformity to previous behaviour.
951 */
952 sb->sb_csum = md_csum_fold(disk_csum);
953 #else
954 sb->sb_csum = disk_csum;
955 #endif
956 return csum;
957 }
958
959 /*
960 * Handle superblock details.
961 * We want to be able to handle multiple superblock formats
962 * so we have a common interface to them all, and an array of
963 * different handlers.
964 * We rely on user-space to write the initial superblock, and support
965 * reading and updating of superblocks.
966 * Interface methods are:
967 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
968 * loads and validates a superblock on dev.
969 * if refdev != NULL, compare superblocks on both devices
970 * Return:
971 * 0 - dev has a superblock that is compatible with refdev
972 * 1 - dev has a superblock that is compatible and newer than refdev
973 * so dev should be used as the refdev in future
974 * -EINVAL superblock incompatible or invalid
975 * -othererror e.g. -EIO
976 *
977 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
978 * Verify that dev is acceptable into mddev.
979 * The first time, mddev->raid_disks will be 0, and data from
980 * dev should be merged in. Subsequent calls check that dev
981 * is new enough. Return 0 or -EINVAL
982 *
983 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
984 * Update the superblock for rdev with data in mddev
985 * This does not write to disc.
986 *
987 */
988
989 struct super_type {
990 char *name;
991 struct module *owner;
992 int (*load_super)(struct md_rdev *rdev,
993 struct md_rdev *refdev,
994 int minor_version);
995 int (*validate_super)(struct mddev *mddev,
996 struct md_rdev *rdev);
997 void (*sync_super)(struct mddev *mddev,
998 struct md_rdev *rdev);
999 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1000 sector_t num_sectors);
1001 int (*allow_new_offset)(struct md_rdev *rdev,
1002 unsigned long long new_offset);
1003 };
1004
1005 /*
1006 * Check that the given mddev has no bitmap.
1007 *
1008 * This function is called from the run method of all personalities that do not
1009 * support bitmaps. It prints an error message and returns non-zero if mddev
1010 * has a bitmap. Otherwise, it returns 0.
1011 *
1012 */
md_check_no_bitmap(struct mddev * mddev)1013 int md_check_no_bitmap(struct mddev *mddev)
1014 {
1015 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1016 return 0;
1017 pr_warn("%s: bitmaps are not supported for %s\n",
1018 mdname(mddev), mddev->pers->name);
1019 return 1;
1020 }
1021 EXPORT_SYMBOL(md_check_no_bitmap);
1022
1023 /*
1024 * load_super for 0.90.0
1025 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1026 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1027 {
1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 mdp_super_t *sb;
1030 int ret;
1031
1032 /*
1033 * Calculate the position of the superblock (512byte sectors),
1034 * it's at the end of the disk.
1035 *
1036 * It also happens to be a multiple of 4Kb.
1037 */
1038 rdev->sb_start = calc_dev_sboffset(rdev);
1039
1040 ret = read_disk_sb(rdev, MD_SB_BYTES);
1041 if (ret)
1042 return ret;
1043
1044 ret = -EINVAL;
1045
1046 bdevname(rdev->bdev, b);
1047 sb = page_address(rdev->sb_page);
1048
1049 if (sb->md_magic != MD_SB_MAGIC) {
1050 pr_warn("md: invalid raid superblock magic on %s\n", b);
1051 goto abort;
1052 }
1053
1054 if (sb->major_version != 0 ||
1055 sb->minor_version < 90 ||
1056 sb->minor_version > 91) {
1057 pr_warn("Bad version number %d.%d on %s\n",
1058 sb->major_version, sb->minor_version, b);
1059 goto abort;
1060 }
1061
1062 if (sb->raid_disks <= 0)
1063 goto abort;
1064
1065 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1066 pr_warn("md: invalid superblock checksum on %s\n", b);
1067 goto abort;
1068 }
1069
1070 rdev->preferred_minor = sb->md_minor;
1071 rdev->data_offset = 0;
1072 rdev->new_data_offset = 0;
1073 rdev->sb_size = MD_SB_BYTES;
1074 rdev->badblocks.shift = -1;
1075
1076 if (sb->level == LEVEL_MULTIPATH)
1077 rdev->desc_nr = -1;
1078 else
1079 rdev->desc_nr = sb->this_disk.number;
1080
1081 if (!refdev) {
1082 ret = 1;
1083 } else {
1084 __u64 ev1, ev2;
1085 mdp_super_t *refsb = page_address(refdev->sb_page);
1086 if (!md_uuid_equal(refsb, sb)) {
1087 pr_warn("md: %s has different UUID to %s\n",
1088 b, bdevname(refdev->bdev,b2));
1089 goto abort;
1090 }
1091 if (!md_sb_equal(refsb, sb)) {
1092 pr_warn("md: %s has same UUID but different superblock to %s\n",
1093 b, bdevname(refdev->bdev, b2));
1094 goto abort;
1095 }
1096 ev1 = md_event(sb);
1097 ev2 = md_event(refsb);
1098 if (ev1 > ev2)
1099 ret = 1;
1100 else
1101 ret = 0;
1102 }
1103 rdev->sectors = rdev->sb_start;
1104 /* Limit to 4TB as metadata cannot record more than that.
1105 * (not needed for Linear and RAID0 as metadata doesn't
1106 * record this size)
1107 */
1108 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1109 sb->level >= 1)
1110 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1111
1112 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1113 /* "this cannot possibly happen" ... */
1114 ret = -EINVAL;
1115
1116 abort:
1117 return ret;
1118 }
1119
1120 /*
1121 * validate_super for 0.90.0
1122 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1123 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1124 {
1125 mdp_disk_t *desc;
1126 mdp_super_t *sb = page_address(rdev->sb_page);
1127 __u64 ev1 = md_event(sb);
1128
1129 rdev->raid_disk = -1;
1130 clear_bit(Faulty, &rdev->flags);
1131 clear_bit(In_sync, &rdev->flags);
1132 clear_bit(Bitmap_sync, &rdev->flags);
1133 clear_bit(WriteMostly, &rdev->flags);
1134
1135 if (mddev->raid_disks == 0) {
1136 mddev->major_version = 0;
1137 mddev->minor_version = sb->minor_version;
1138 mddev->patch_version = sb->patch_version;
1139 mddev->external = 0;
1140 mddev->chunk_sectors = sb->chunk_size >> 9;
1141 mddev->ctime = sb->ctime;
1142 mddev->utime = sb->utime;
1143 mddev->level = sb->level;
1144 mddev->clevel[0] = 0;
1145 mddev->layout = sb->layout;
1146 mddev->raid_disks = sb->raid_disks;
1147 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1148 mddev->events = ev1;
1149 mddev->bitmap_info.offset = 0;
1150 mddev->bitmap_info.space = 0;
1151 /* bitmap can use 60 K after the 4K superblocks */
1152 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1153 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1154 mddev->reshape_backwards = 0;
1155
1156 if (mddev->minor_version >= 91) {
1157 mddev->reshape_position = sb->reshape_position;
1158 mddev->delta_disks = sb->delta_disks;
1159 mddev->new_level = sb->new_level;
1160 mddev->new_layout = sb->new_layout;
1161 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1162 if (mddev->delta_disks < 0)
1163 mddev->reshape_backwards = 1;
1164 } else {
1165 mddev->reshape_position = MaxSector;
1166 mddev->delta_disks = 0;
1167 mddev->new_level = mddev->level;
1168 mddev->new_layout = mddev->layout;
1169 mddev->new_chunk_sectors = mddev->chunk_sectors;
1170 }
1171
1172 if (sb->state & (1<<MD_SB_CLEAN))
1173 mddev->recovery_cp = MaxSector;
1174 else {
1175 if (sb->events_hi == sb->cp_events_hi &&
1176 sb->events_lo == sb->cp_events_lo) {
1177 mddev->recovery_cp = sb->recovery_cp;
1178 } else
1179 mddev->recovery_cp = 0;
1180 }
1181
1182 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1183 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1184 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1185 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1186
1187 mddev->max_disks = MD_SB_DISKS;
1188
1189 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1190 mddev->bitmap_info.file == NULL) {
1191 mddev->bitmap_info.offset =
1192 mddev->bitmap_info.default_offset;
1193 mddev->bitmap_info.space =
1194 mddev->bitmap_info.default_space;
1195 }
1196
1197 } else if (mddev->pers == NULL) {
1198 /* Insist on good event counter while assembling, except
1199 * for spares (which don't need an event count) */
1200 ++ev1;
1201 if (sb->disks[rdev->desc_nr].state & (
1202 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1203 if (ev1 < mddev->events)
1204 return -EINVAL;
1205 } else if (mddev->bitmap) {
1206 /* if adding to array with a bitmap, then we can accept an
1207 * older device ... but not too old.
1208 */
1209 if (ev1 < mddev->bitmap->events_cleared)
1210 return 0;
1211 if (ev1 < mddev->events)
1212 set_bit(Bitmap_sync, &rdev->flags);
1213 } else {
1214 if (ev1 < mddev->events)
1215 /* just a hot-add of a new device, leave raid_disk at -1 */
1216 return 0;
1217 }
1218
1219 if (mddev->level != LEVEL_MULTIPATH) {
1220 desc = sb->disks + rdev->desc_nr;
1221
1222 if (desc->state & (1<<MD_DISK_FAULTY))
1223 set_bit(Faulty, &rdev->flags);
1224 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1225 desc->raid_disk < mddev->raid_disks */) {
1226 set_bit(In_sync, &rdev->flags);
1227 rdev->raid_disk = desc->raid_disk;
1228 rdev->saved_raid_disk = desc->raid_disk;
1229 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1230 /* active but not in sync implies recovery up to
1231 * reshape position. We don't know exactly where
1232 * that is, so set to zero for now */
1233 if (mddev->minor_version >= 91) {
1234 rdev->recovery_offset = 0;
1235 rdev->raid_disk = desc->raid_disk;
1236 }
1237 }
1238 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1239 set_bit(WriteMostly, &rdev->flags);
1240 if (desc->state & (1<<MD_DISK_FAILFAST))
1241 set_bit(FailFast, &rdev->flags);
1242 } else /* MULTIPATH are always insync */
1243 set_bit(In_sync, &rdev->flags);
1244 return 0;
1245 }
1246
1247 /*
1248 * sync_super for 0.90.0
1249 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252 mdp_super_t *sb;
1253 struct md_rdev *rdev2;
1254 int next_spare = mddev->raid_disks;
1255
1256 /* make rdev->sb match mddev data..
1257 *
1258 * 1/ zero out disks
1259 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1260 * 3/ any empty disks < next_spare become removed
1261 *
1262 * disks[0] gets initialised to REMOVED because
1263 * we cannot be sure from other fields if it has
1264 * been initialised or not.
1265 */
1266 int i;
1267 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1268
1269 rdev->sb_size = MD_SB_BYTES;
1270
1271 sb = page_address(rdev->sb_page);
1272
1273 memset(sb, 0, sizeof(*sb));
1274
1275 sb->md_magic = MD_SB_MAGIC;
1276 sb->major_version = mddev->major_version;
1277 sb->patch_version = mddev->patch_version;
1278 sb->gvalid_words = 0; /* ignored */
1279 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1280 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1281 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1282 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1283
1284 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1285 sb->level = mddev->level;
1286 sb->size = mddev->dev_sectors / 2;
1287 sb->raid_disks = mddev->raid_disks;
1288 sb->md_minor = mddev->md_minor;
1289 sb->not_persistent = 0;
1290 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1291 sb->state = 0;
1292 sb->events_hi = (mddev->events>>32);
1293 sb->events_lo = (u32)mddev->events;
1294
1295 if (mddev->reshape_position == MaxSector)
1296 sb->minor_version = 90;
1297 else {
1298 sb->minor_version = 91;
1299 sb->reshape_position = mddev->reshape_position;
1300 sb->new_level = mddev->new_level;
1301 sb->delta_disks = mddev->delta_disks;
1302 sb->new_layout = mddev->new_layout;
1303 sb->new_chunk = mddev->new_chunk_sectors << 9;
1304 }
1305 mddev->minor_version = sb->minor_version;
1306 if (mddev->in_sync)
1307 {
1308 sb->recovery_cp = mddev->recovery_cp;
1309 sb->cp_events_hi = (mddev->events>>32);
1310 sb->cp_events_lo = (u32)mddev->events;
1311 if (mddev->recovery_cp == MaxSector)
1312 sb->state = (1<< MD_SB_CLEAN);
1313 } else
1314 sb->recovery_cp = 0;
1315
1316 sb->layout = mddev->layout;
1317 sb->chunk_size = mddev->chunk_sectors << 9;
1318
1319 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1320 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1321
1322 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1323 rdev_for_each(rdev2, mddev) {
1324 mdp_disk_t *d;
1325 int desc_nr;
1326 int is_active = test_bit(In_sync, &rdev2->flags);
1327
1328 if (rdev2->raid_disk >= 0 &&
1329 sb->minor_version >= 91)
1330 /* we have nowhere to store the recovery_offset,
1331 * but if it is not below the reshape_position,
1332 * we can piggy-back on that.
1333 */
1334 is_active = 1;
1335 if (rdev2->raid_disk < 0 ||
1336 test_bit(Faulty, &rdev2->flags))
1337 is_active = 0;
1338 if (is_active)
1339 desc_nr = rdev2->raid_disk;
1340 else
1341 desc_nr = next_spare++;
1342 rdev2->desc_nr = desc_nr;
1343 d = &sb->disks[rdev2->desc_nr];
1344 nr_disks++;
1345 d->number = rdev2->desc_nr;
1346 d->major = MAJOR(rdev2->bdev->bd_dev);
1347 d->minor = MINOR(rdev2->bdev->bd_dev);
1348 if (is_active)
1349 d->raid_disk = rdev2->raid_disk;
1350 else
1351 d->raid_disk = rdev2->desc_nr; /* compatibility */
1352 if (test_bit(Faulty, &rdev2->flags))
1353 d->state = (1<<MD_DISK_FAULTY);
1354 else if (is_active) {
1355 d->state = (1<<MD_DISK_ACTIVE);
1356 if (test_bit(In_sync, &rdev2->flags))
1357 d->state |= (1<<MD_DISK_SYNC);
1358 active++;
1359 working++;
1360 } else {
1361 d->state = 0;
1362 spare++;
1363 working++;
1364 }
1365 if (test_bit(WriteMostly, &rdev2->flags))
1366 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1367 if (test_bit(FailFast, &rdev2->flags))
1368 d->state |= (1<<MD_DISK_FAILFAST);
1369 }
1370 /* now set the "removed" and "faulty" bits on any missing devices */
1371 for (i=0 ; i < mddev->raid_disks ; i++) {
1372 mdp_disk_t *d = &sb->disks[i];
1373 if (d->state == 0 && d->number == 0) {
1374 d->number = i;
1375 d->raid_disk = i;
1376 d->state = (1<<MD_DISK_REMOVED);
1377 d->state |= (1<<MD_DISK_FAULTY);
1378 failed++;
1379 }
1380 }
1381 sb->nr_disks = nr_disks;
1382 sb->active_disks = active;
1383 sb->working_disks = working;
1384 sb->failed_disks = failed;
1385 sb->spare_disks = spare;
1386
1387 sb->this_disk = sb->disks[rdev->desc_nr];
1388 sb->sb_csum = calc_sb_csum(sb);
1389 }
1390
1391 /*
1392 * rdev_size_change for 0.90.0
1393 */
1394 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1395 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1396 {
1397 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1398 return 0; /* component must fit device */
1399 if (rdev->mddev->bitmap_info.offset)
1400 return 0; /* can't move bitmap */
1401 rdev->sb_start = calc_dev_sboffset(rdev);
1402 if (!num_sectors || num_sectors > rdev->sb_start)
1403 num_sectors = rdev->sb_start;
1404 /* Limit to 4TB as metadata cannot record more than that.
1405 * 4TB == 2^32 KB, or 2*2^32 sectors.
1406 */
1407 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1408 rdev->mddev->level >= 1)
1409 num_sectors = (sector_t)(2ULL << 32) - 2;
1410 do {
1411 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1412 rdev->sb_page);
1413 } while (md_super_wait(rdev->mddev) < 0);
1414 return num_sectors;
1415 }
1416
1417 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1418 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1419 {
1420 /* non-zero offset changes not possible with v0.90 */
1421 return new_offset == 0;
1422 }
1423
1424 /*
1425 * version 1 superblock
1426 */
1427
calc_sb_1_csum(struct mdp_superblock_1 * sb)1428 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1429 {
1430 __le32 disk_csum;
1431 u32 csum;
1432 unsigned long long newcsum;
1433 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1434 __le32 *isuper = (__le32*)sb;
1435
1436 disk_csum = sb->sb_csum;
1437 sb->sb_csum = 0;
1438 newcsum = 0;
1439 for (; size >= 4; size -= 4)
1440 newcsum += le32_to_cpu(*isuper++);
1441
1442 if (size == 2)
1443 newcsum += le16_to_cpu(*(__le16*) isuper);
1444
1445 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1446 sb->sb_csum = disk_csum;
1447 return cpu_to_le32(csum);
1448 }
1449
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1450 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1451 {
1452 struct mdp_superblock_1 *sb;
1453 int ret;
1454 sector_t sb_start;
1455 sector_t sectors;
1456 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1457 int bmask;
1458
1459 /*
1460 * Calculate the position of the superblock in 512byte sectors.
1461 * It is always aligned to a 4K boundary and
1462 * depeding on minor_version, it can be:
1463 * 0: At least 8K, but less than 12K, from end of device
1464 * 1: At start of device
1465 * 2: 4K from start of device.
1466 */
1467 switch(minor_version) {
1468 case 0:
1469 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1470 sb_start -= 8*2;
1471 sb_start &= ~(sector_t)(4*2-1);
1472 break;
1473 case 1:
1474 sb_start = 0;
1475 break;
1476 case 2:
1477 sb_start = 8;
1478 break;
1479 default:
1480 return -EINVAL;
1481 }
1482 rdev->sb_start = sb_start;
1483
1484 /* superblock is rarely larger than 1K, but it can be larger,
1485 * and it is safe to read 4k, so we do that
1486 */
1487 ret = read_disk_sb(rdev, 4096);
1488 if (ret) return ret;
1489
1490 sb = page_address(rdev->sb_page);
1491
1492 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1493 sb->major_version != cpu_to_le32(1) ||
1494 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1495 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1496 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1497 return -EINVAL;
1498
1499 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1500 pr_warn("md: invalid superblock checksum on %s\n",
1501 bdevname(rdev->bdev,b));
1502 return -EINVAL;
1503 }
1504 if (le64_to_cpu(sb->data_size) < 10) {
1505 pr_warn("md: data_size too small on %s\n",
1506 bdevname(rdev->bdev,b));
1507 return -EINVAL;
1508 }
1509 if (sb->pad0 ||
1510 sb->pad3[0] ||
1511 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1512 /* Some padding is non-zero, might be a new feature */
1513 return -EINVAL;
1514
1515 rdev->preferred_minor = 0xffff;
1516 rdev->data_offset = le64_to_cpu(sb->data_offset);
1517 rdev->new_data_offset = rdev->data_offset;
1518 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1519 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1520 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1521 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1522
1523 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1524 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1525 if (rdev->sb_size & bmask)
1526 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1527
1528 if (minor_version
1529 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1530 return -EINVAL;
1531 if (minor_version
1532 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1533 return -EINVAL;
1534
1535 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1536 rdev->desc_nr = -1;
1537 else
1538 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1539
1540 if (!rdev->bb_page) {
1541 rdev->bb_page = alloc_page(GFP_KERNEL);
1542 if (!rdev->bb_page)
1543 return -ENOMEM;
1544 }
1545 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1546 rdev->badblocks.count == 0) {
1547 /* need to load the bad block list.
1548 * Currently we limit it to one page.
1549 */
1550 s32 offset;
1551 sector_t bb_sector;
1552 u64 *bbp;
1553 int i;
1554 int sectors = le16_to_cpu(sb->bblog_size);
1555 if (sectors > (PAGE_SIZE / 512))
1556 return -EINVAL;
1557 offset = le32_to_cpu(sb->bblog_offset);
1558 if (offset == 0)
1559 return -EINVAL;
1560 bb_sector = (long long)offset;
1561 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1562 rdev->bb_page, REQ_OP_READ, 0, true))
1563 return -EIO;
1564 bbp = (u64 *)page_address(rdev->bb_page);
1565 rdev->badblocks.shift = sb->bblog_shift;
1566 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1567 u64 bb = le64_to_cpu(*bbp);
1568 int count = bb & (0x3ff);
1569 u64 sector = bb >> 10;
1570 sector <<= sb->bblog_shift;
1571 count <<= sb->bblog_shift;
1572 if (bb + 1 == 0)
1573 break;
1574 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1575 return -EINVAL;
1576 }
1577 } else if (sb->bblog_offset != 0)
1578 rdev->badblocks.shift = 0;
1579
1580 if ((le32_to_cpu(sb->feature_map) &
1581 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1582 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1583 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1584 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1585 }
1586
1587 if (!refdev) {
1588 ret = 1;
1589 } else {
1590 __u64 ev1, ev2;
1591 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1592
1593 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1594 sb->level != refsb->level ||
1595 sb->layout != refsb->layout ||
1596 sb->chunksize != refsb->chunksize) {
1597 pr_warn("md: %s has strangely different superblock to %s\n",
1598 bdevname(rdev->bdev,b),
1599 bdevname(refdev->bdev,b2));
1600 return -EINVAL;
1601 }
1602 ev1 = le64_to_cpu(sb->events);
1603 ev2 = le64_to_cpu(refsb->events);
1604
1605 if (ev1 > ev2)
1606 ret = 1;
1607 else
1608 ret = 0;
1609 }
1610 if (minor_version) {
1611 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1612 sectors -= rdev->data_offset;
1613 } else
1614 sectors = rdev->sb_start;
1615 if (sectors < le64_to_cpu(sb->data_size))
1616 return -EINVAL;
1617 rdev->sectors = le64_to_cpu(sb->data_size);
1618 return ret;
1619 }
1620
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 __u64 ev1 = le64_to_cpu(sb->events);
1625
1626 rdev->raid_disk = -1;
1627 clear_bit(Faulty, &rdev->flags);
1628 clear_bit(In_sync, &rdev->flags);
1629 clear_bit(Bitmap_sync, &rdev->flags);
1630 clear_bit(WriteMostly, &rdev->flags);
1631
1632 if (mddev->raid_disks == 0) {
1633 mddev->major_version = 1;
1634 mddev->patch_version = 0;
1635 mddev->external = 0;
1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 mddev->ctime = le64_to_cpu(sb->ctime);
1638 mddev->utime = le64_to_cpu(sb->utime);
1639 mddev->level = le32_to_cpu(sb->level);
1640 mddev->clevel[0] = 0;
1641 mddev->layout = le32_to_cpu(sb->layout);
1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 mddev->dev_sectors = le64_to_cpu(sb->size);
1644 mddev->events = ev1;
1645 mddev->bitmap_info.offset = 0;
1646 mddev->bitmap_info.space = 0;
1647 /* Default location for bitmap is 1K after superblock
1648 * using 3K - total of 4K
1649 */
1650 mddev->bitmap_info.default_offset = 1024 >> 9;
1651 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1652 mddev->reshape_backwards = 0;
1653
1654 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1655 memcpy(mddev->uuid, sb->set_uuid, 16);
1656
1657 mddev->max_disks = (4096-256)/2;
1658
1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1660 mddev->bitmap_info.file == NULL) {
1661 mddev->bitmap_info.offset =
1662 (__s32)le32_to_cpu(sb->bitmap_offset);
1663 /* Metadata doesn't record how much space is available.
1664 * For 1.0, we assume we can use up to the superblock
1665 * if before, else to 4K beyond superblock.
1666 * For others, assume no change is possible.
1667 */
1668 if (mddev->minor_version > 0)
1669 mddev->bitmap_info.space = 0;
1670 else if (mddev->bitmap_info.offset > 0)
1671 mddev->bitmap_info.space =
1672 8 - mddev->bitmap_info.offset;
1673 else
1674 mddev->bitmap_info.space =
1675 -mddev->bitmap_info.offset;
1676 }
1677
1678 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1679 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1680 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1681 mddev->new_level = le32_to_cpu(sb->new_level);
1682 mddev->new_layout = le32_to_cpu(sb->new_layout);
1683 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1684 if (mddev->delta_disks < 0 ||
1685 (mddev->delta_disks == 0 &&
1686 (le32_to_cpu(sb->feature_map)
1687 & MD_FEATURE_RESHAPE_BACKWARDS)))
1688 mddev->reshape_backwards = 1;
1689 } else {
1690 mddev->reshape_position = MaxSector;
1691 mddev->delta_disks = 0;
1692 mddev->new_level = mddev->level;
1693 mddev->new_layout = mddev->layout;
1694 mddev->new_chunk_sectors = mddev->chunk_sectors;
1695 }
1696
1697 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1698 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1699
1700 if (le32_to_cpu(sb->feature_map) &
1701 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1702 if (le32_to_cpu(sb->feature_map) &
1703 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1704 return -EINVAL;
1705 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1706 (le32_to_cpu(sb->feature_map) &
1707 MD_FEATURE_MULTIPLE_PPLS))
1708 return -EINVAL;
1709 set_bit(MD_HAS_PPL, &mddev->flags);
1710 }
1711 } else if (mddev->pers == NULL) {
1712 /* Insist of good event counter while assembling, except for
1713 * spares (which don't need an event count) */
1714 ++ev1;
1715 if (rdev->desc_nr >= 0 &&
1716 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1717 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1718 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1719 if (ev1 < mddev->events)
1720 return -EINVAL;
1721 } else if (mddev->bitmap) {
1722 /* If adding to array with a bitmap, then we can accept an
1723 * older device, but not too old.
1724 */
1725 if (ev1 < mddev->bitmap->events_cleared)
1726 return 0;
1727 if (ev1 < mddev->events)
1728 set_bit(Bitmap_sync, &rdev->flags);
1729 } else {
1730 if (ev1 < mddev->events)
1731 /* just a hot-add of a new device, leave raid_disk at -1 */
1732 return 0;
1733 }
1734 if (mddev->level != LEVEL_MULTIPATH) {
1735 int role;
1736 if (rdev->desc_nr < 0 ||
1737 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1738 role = MD_DISK_ROLE_SPARE;
1739 rdev->desc_nr = -1;
1740 } else
1741 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1742 switch(role) {
1743 case MD_DISK_ROLE_SPARE: /* spare */
1744 break;
1745 case MD_DISK_ROLE_FAULTY: /* faulty */
1746 set_bit(Faulty, &rdev->flags);
1747 break;
1748 case MD_DISK_ROLE_JOURNAL: /* journal device */
1749 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1750 /* journal device without journal feature */
1751 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1752 return -EINVAL;
1753 }
1754 set_bit(Journal, &rdev->flags);
1755 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1756 rdev->raid_disk = 0;
1757 break;
1758 default:
1759 rdev->saved_raid_disk = role;
1760 if ((le32_to_cpu(sb->feature_map) &
1761 MD_FEATURE_RECOVERY_OFFSET)) {
1762 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1763 if (!(le32_to_cpu(sb->feature_map) &
1764 MD_FEATURE_RECOVERY_BITMAP))
1765 rdev->saved_raid_disk = -1;
1766 } else {
1767 /*
1768 * If the array is FROZEN, then the device can't
1769 * be in_sync with rest of array.
1770 */
1771 if (!test_bit(MD_RECOVERY_FROZEN,
1772 &mddev->recovery))
1773 set_bit(In_sync, &rdev->flags);
1774 }
1775 rdev->raid_disk = role;
1776 break;
1777 }
1778 if (sb->devflags & WriteMostly1)
1779 set_bit(WriteMostly, &rdev->flags);
1780 if (sb->devflags & FailFast1)
1781 set_bit(FailFast, &rdev->flags);
1782 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1783 set_bit(Replacement, &rdev->flags);
1784 } else /* MULTIPATH are always insync */
1785 set_bit(In_sync, &rdev->flags);
1786
1787 return 0;
1788 }
1789
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1790 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1791 {
1792 struct mdp_superblock_1 *sb;
1793 struct md_rdev *rdev2;
1794 int max_dev, i;
1795 /* make rdev->sb match mddev and rdev data. */
1796
1797 sb = page_address(rdev->sb_page);
1798
1799 sb->feature_map = 0;
1800 sb->pad0 = 0;
1801 sb->recovery_offset = cpu_to_le64(0);
1802 memset(sb->pad3, 0, sizeof(sb->pad3));
1803
1804 sb->utime = cpu_to_le64((__u64)mddev->utime);
1805 sb->events = cpu_to_le64(mddev->events);
1806 if (mddev->in_sync)
1807 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1808 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1809 sb->resync_offset = cpu_to_le64(MaxSector);
1810 else
1811 sb->resync_offset = cpu_to_le64(0);
1812
1813 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1814
1815 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1816 sb->size = cpu_to_le64(mddev->dev_sectors);
1817 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1818 sb->level = cpu_to_le32(mddev->level);
1819 sb->layout = cpu_to_le32(mddev->layout);
1820 if (test_bit(FailFast, &rdev->flags))
1821 sb->devflags |= FailFast1;
1822 else
1823 sb->devflags &= ~FailFast1;
1824
1825 if (test_bit(WriteMostly, &rdev->flags))
1826 sb->devflags |= WriteMostly1;
1827 else
1828 sb->devflags &= ~WriteMostly1;
1829 sb->data_offset = cpu_to_le64(rdev->data_offset);
1830 sb->data_size = cpu_to_le64(rdev->sectors);
1831
1832 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1833 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1834 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1835 }
1836
1837 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1838 !test_bit(In_sync, &rdev->flags)) {
1839 sb->feature_map |=
1840 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1841 sb->recovery_offset =
1842 cpu_to_le64(rdev->recovery_offset);
1843 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1844 sb->feature_map |=
1845 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1846 }
1847 /* Note: recovery_offset and journal_tail share space */
1848 if (test_bit(Journal, &rdev->flags))
1849 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1850 if (test_bit(Replacement, &rdev->flags))
1851 sb->feature_map |=
1852 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1853
1854 if (mddev->reshape_position != MaxSector) {
1855 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1856 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1857 sb->new_layout = cpu_to_le32(mddev->new_layout);
1858 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1859 sb->new_level = cpu_to_le32(mddev->new_level);
1860 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1861 if (mddev->delta_disks == 0 &&
1862 mddev->reshape_backwards)
1863 sb->feature_map
1864 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1865 if (rdev->new_data_offset != rdev->data_offset) {
1866 sb->feature_map
1867 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1868 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1869 - rdev->data_offset));
1870 }
1871 }
1872
1873 if (mddev_is_clustered(mddev))
1874 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1875
1876 if (rdev->badblocks.count == 0)
1877 /* Nothing to do for bad blocks*/ ;
1878 else if (sb->bblog_offset == 0)
1879 /* Cannot record bad blocks on this device */
1880 md_error(mddev, rdev);
1881 else {
1882 struct badblocks *bb = &rdev->badblocks;
1883 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1884 u64 *p = bb->page;
1885 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1886 if (bb->changed) {
1887 unsigned seq;
1888
1889 retry:
1890 seq = read_seqbegin(&bb->lock);
1891
1892 memset(bbp, 0xff, PAGE_SIZE);
1893
1894 for (i = 0 ; i < bb->count ; i++) {
1895 u64 internal_bb = p[i];
1896 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1897 | BB_LEN(internal_bb));
1898 bbp[i] = cpu_to_le64(store_bb);
1899 }
1900 bb->changed = 0;
1901 if (read_seqretry(&bb->lock, seq))
1902 goto retry;
1903
1904 bb->sector = (rdev->sb_start +
1905 (int)le32_to_cpu(sb->bblog_offset));
1906 bb->size = le16_to_cpu(sb->bblog_size);
1907 }
1908 }
1909
1910 max_dev = 0;
1911 rdev_for_each(rdev2, mddev)
1912 if (rdev2->desc_nr+1 > max_dev)
1913 max_dev = rdev2->desc_nr+1;
1914
1915 if (max_dev > le32_to_cpu(sb->max_dev)) {
1916 int bmask;
1917 sb->max_dev = cpu_to_le32(max_dev);
1918 rdev->sb_size = max_dev * 2 + 256;
1919 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1920 if (rdev->sb_size & bmask)
1921 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1922 } else
1923 max_dev = le32_to_cpu(sb->max_dev);
1924
1925 for (i=0; i<max_dev;i++)
1926 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1927
1928 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1929 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1930
1931 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1932 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1933 sb->feature_map |=
1934 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1935 else
1936 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1937 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1938 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1939 }
1940
1941 rdev_for_each(rdev2, mddev) {
1942 i = rdev2->desc_nr;
1943 if (test_bit(Faulty, &rdev2->flags))
1944 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1945 else if (test_bit(In_sync, &rdev2->flags))
1946 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1947 else if (test_bit(Journal, &rdev2->flags))
1948 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1949 else if (rdev2->raid_disk >= 0)
1950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1951 else
1952 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1953 }
1954
1955 sb->sb_csum = calc_sb_1_csum(sb);
1956 }
1957
1958 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1959 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1960 {
1961 struct mdp_superblock_1 *sb;
1962 sector_t max_sectors;
1963 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1964 return 0; /* component must fit device */
1965 if (rdev->data_offset != rdev->new_data_offset)
1966 return 0; /* too confusing */
1967 if (rdev->sb_start < rdev->data_offset) {
1968 /* minor versions 1 and 2; superblock before data */
1969 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1970 max_sectors -= rdev->data_offset;
1971 if (!num_sectors || num_sectors > max_sectors)
1972 num_sectors = max_sectors;
1973 } else if (rdev->mddev->bitmap_info.offset) {
1974 /* minor version 0 with bitmap we can't move */
1975 return 0;
1976 } else {
1977 /* minor version 0; superblock after data */
1978 sector_t sb_start;
1979 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1980 sb_start &= ~(sector_t)(4*2 - 1);
1981 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1982 if (!num_sectors || num_sectors > max_sectors)
1983 num_sectors = max_sectors;
1984 rdev->sb_start = sb_start;
1985 }
1986 sb = page_address(rdev->sb_page);
1987 sb->data_size = cpu_to_le64(num_sectors);
1988 sb->super_offset = cpu_to_le64(rdev->sb_start);
1989 sb->sb_csum = calc_sb_1_csum(sb);
1990 do {
1991 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1992 rdev->sb_page);
1993 } while (md_super_wait(rdev->mddev) < 0);
1994 return num_sectors;
1995
1996 }
1997
1998 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1999 super_1_allow_new_offset(struct md_rdev *rdev,
2000 unsigned long long new_offset)
2001 {
2002 /* All necessary checks on new >= old have been done */
2003 struct bitmap *bitmap;
2004 if (new_offset >= rdev->data_offset)
2005 return 1;
2006
2007 /* with 1.0 metadata, there is no metadata to tread on
2008 * so we can always move back */
2009 if (rdev->mddev->minor_version == 0)
2010 return 1;
2011
2012 /* otherwise we must be sure not to step on
2013 * any metadata, so stay:
2014 * 36K beyond start of superblock
2015 * beyond end of badblocks
2016 * beyond write-intent bitmap
2017 */
2018 if (rdev->sb_start + (32+4)*2 > new_offset)
2019 return 0;
2020 bitmap = rdev->mddev->bitmap;
2021 if (bitmap && !rdev->mddev->bitmap_info.file &&
2022 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2023 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2024 return 0;
2025 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2026 return 0;
2027
2028 return 1;
2029 }
2030
2031 static struct super_type super_types[] = {
2032 [0] = {
2033 .name = "0.90.0",
2034 .owner = THIS_MODULE,
2035 .load_super = super_90_load,
2036 .validate_super = super_90_validate,
2037 .sync_super = super_90_sync,
2038 .rdev_size_change = super_90_rdev_size_change,
2039 .allow_new_offset = super_90_allow_new_offset,
2040 },
2041 [1] = {
2042 .name = "md-1",
2043 .owner = THIS_MODULE,
2044 .load_super = super_1_load,
2045 .validate_super = super_1_validate,
2046 .sync_super = super_1_sync,
2047 .rdev_size_change = super_1_rdev_size_change,
2048 .allow_new_offset = super_1_allow_new_offset,
2049 },
2050 };
2051
sync_super(struct mddev * mddev,struct md_rdev * rdev)2052 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2053 {
2054 if (mddev->sync_super) {
2055 mddev->sync_super(mddev, rdev);
2056 return;
2057 }
2058
2059 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2060
2061 super_types[mddev->major_version].sync_super(mddev, rdev);
2062 }
2063
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2064 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2065 {
2066 struct md_rdev *rdev, *rdev2;
2067
2068 rcu_read_lock();
2069 rdev_for_each_rcu(rdev, mddev1) {
2070 if (test_bit(Faulty, &rdev->flags) ||
2071 test_bit(Journal, &rdev->flags) ||
2072 rdev->raid_disk == -1)
2073 continue;
2074 rdev_for_each_rcu(rdev2, mddev2) {
2075 if (test_bit(Faulty, &rdev2->flags) ||
2076 test_bit(Journal, &rdev2->flags) ||
2077 rdev2->raid_disk == -1)
2078 continue;
2079 if (rdev->bdev->bd_contains ==
2080 rdev2->bdev->bd_contains) {
2081 rcu_read_unlock();
2082 return 1;
2083 }
2084 }
2085 }
2086 rcu_read_unlock();
2087 return 0;
2088 }
2089
2090 static LIST_HEAD(pending_raid_disks);
2091
2092 /*
2093 * Try to register data integrity profile for an mddev
2094 *
2095 * This is called when an array is started and after a disk has been kicked
2096 * from the array. It only succeeds if all working and active component devices
2097 * are integrity capable with matching profiles.
2098 */
md_integrity_register(struct mddev * mddev)2099 int md_integrity_register(struct mddev *mddev)
2100 {
2101 struct md_rdev *rdev, *reference = NULL;
2102
2103 if (list_empty(&mddev->disks))
2104 return 0; /* nothing to do */
2105 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2106 return 0; /* shouldn't register, or already is */
2107 rdev_for_each(rdev, mddev) {
2108 /* skip spares and non-functional disks */
2109 if (test_bit(Faulty, &rdev->flags))
2110 continue;
2111 if (rdev->raid_disk < 0)
2112 continue;
2113 if (!reference) {
2114 /* Use the first rdev as the reference */
2115 reference = rdev;
2116 continue;
2117 }
2118 /* does this rdev's profile match the reference profile? */
2119 if (blk_integrity_compare(reference->bdev->bd_disk,
2120 rdev->bdev->bd_disk) < 0)
2121 return -EINVAL;
2122 }
2123 if (!reference || !bdev_get_integrity(reference->bdev))
2124 return 0;
2125 /*
2126 * All component devices are integrity capable and have matching
2127 * profiles, register the common profile for the md device.
2128 */
2129 blk_integrity_register(mddev->gendisk,
2130 bdev_get_integrity(reference->bdev));
2131
2132 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2133 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2134 pr_err("md: failed to create integrity pool for %s\n",
2135 mdname(mddev));
2136 return -EINVAL;
2137 }
2138 return 0;
2139 }
2140 EXPORT_SYMBOL(md_integrity_register);
2141
2142 /*
2143 * Attempt to add an rdev, but only if it is consistent with the current
2144 * integrity profile
2145 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2146 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2147 {
2148 struct blk_integrity *bi_rdev;
2149 struct blk_integrity *bi_mddev;
2150 char name[BDEVNAME_SIZE];
2151
2152 if (!mddev->gendisk)
2153 return 0;
2154
2155 bi_rdev = bdev_get_integrity(rdev->bdev);
2156 bi_mddev = blk_get_integrity(mddev->gendisk);
2157
2158 if (!bi_mddev) /* nothing to do */
2159 return 0;
2160
2161 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2162 pr_err("%s: incompatible integrity profile for %s\n",
2163 mdname(mddev), bdevname(rdev->bdev, name));
2164 return -ENXIO;
2165 }
2166
2167 return 0;
2168 }
2169 EXPORT_SYMBOL(md_integrity_add_rdev);
2170
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2171 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2172 {
2173 char b[BDEVNAME_SIZE];
2174 struct kobject *ko;
2175 int err;
2176
2177 /* prevent duplicates */
2178 if (find_rdev(mddev, rdev->bdev->bd_dev))
2179 return -EEXIST;
2180
2181 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2182 mddev->pers)
2183 return -EROFS;
2184
2185 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2186 if (!test_bit(Journal, &rdev->flags) &&
2187 rdev->sectors &&
2188 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2189 if (mddev->pers) {
2190 /* Cannot change size, so fail
2191 * If mddev->level <= 0, then we don't care
2192 * about aligning sizes (e.g. linear)
2193 */
2194 if (mddev->level > 0)
2195 return -ENOSPC;
2196 } else
2197 mddev->dev_sectors = rdev->sectors;
2198 }
2199
2200 /* Verify rdev->desc_nr is unique.
2201 * If it is -1, assign a free number, else
2202 * check number is not in use
2203 */
2204 rcu_read_lock();
2205 if (rdev->desc_nr < 0) {
2206 int choice = 0;
2207 if (mddev->pers)
2208 choice = mddev->raid_disks;
2209 while (md_find_rdev_nr_rcu(mddev, choice))
2210 choice++;
2211 rdev->desc_nr = choice;
2212 } else {
2213 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2214 rcu_read_unlock();
2215 return -EBUSY;
2216 }
2217 }
2218 rcu_read_unlock();
2219 if (!test_bit(Journal, &rdev->flags) &&
2220 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2221 pr_warn("md: %s: array is limited to %d devices\n",
2222 mdname(mddev), mddev->max_disks);
2223 return -EBUSY;
2224 }
2225 bdevname(rdev->bdev,b);
2226 strreplace(b, '/', '!');
2227
2228 rdev->mddev = mddev;
2229 pr_debug("md: bind<%s>\n", b);
2230
2231 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2232 goto fail;
2233
2234 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2235 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2236 /* failure here is OK */;
2237 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2238
2239 list_add_rcu(&rdev->same_set, &mddev->disks);
2240 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2241
2242 /* May as well allow recovery to be retried once */
2243 mddev->recovery_disabled++;
2244
2245 return 0;
2246
2247 fail:
2248 pr_warn("md: failed to register dev-%s for %s\n",
2249 b, mdname(mddev));
2250 return err;
2251 }
2252
md_delayed_delete(struct work_struct * ws)2253 static void md_delayed_delete(struct work_struct *ws)
2254 {
2255 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2256 kobject_del(&rdev->kobj);
2257 kobject_put(&rdev->kobj);
2258 }
2259
unbind_rdev_from_array(struct md_rdev * rdev)2260 static void unbind_rdev_from_array(struct md_rdev *rdev)
2261 {
2262 char b[BDEVNAME_SIZE];
2263
2264 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2265 list_del_rcu(&rdev->same_set);
2266 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2267 rdev->mddev = NULL;
2268 sysfs_remove_link(&rdev->kobj, "block");
2269 sysfs_put(rdev->sysfs_state);
2270 rdev->sysfs_state = NULL;
2271 rdev->badblocks.count = 0;
2272 /* We need to delay this, otherwise we can deadlock when
2273 * writing to 'remove' to "dev/state". We also need
2274 * to delay it due to rcu usage.
2275 */
2276 synchronize_rcu();
2277 INIT_WORK(&rdev->del_work, md_delayed_delete);
2278 kobject_get(&rdev->kobj);
2279 queue_work(md_misc_wq, &rdev->del_work);
2280 }
2281
2282 /*
2283 * prevent the device from being mounted, repartitioned or
2284 * otherwise reused by a RAID array (or any other kernel
2285 * subsystem), by bd_claiming the device.
2286 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2287 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2288 {
2289 int err = 0;
2290 struct block_device *bdev;
2291 char b[BDEVNAME_SIZE];
2292
2293 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2294 shared ? (struct md_rdev *)lock_rdev : rdev);
2295 if (IS_ERR(bdev)) {
2296 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2297 return PTR_ERR(bdev);
2298 }
2299 rdev->bdev = bdev;
2300 return err;
2301 }
2302
unlock_rdev(struct md_rdev * rdev)2303 static void unlock_rdev(struct md_rdev *rdev)
2304 {
2305 struct block_device *bdev = rdev->bdev;
2306 rdev->bdev = NULL;
2307 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2308 }
2309
2310 void md_autodetect_dev(dev_t dev);
2311
export_rdev(struct md_rdev * rdev)2312 static void export_rdev(struct md_rdev *rdev)
2313 {
2314 char b[BDEVNAME_SIZE];
2315
2316 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2317 md_rdev_clear(rdev);
2318 #ifndef MODULE
2319 if (test_bit(AutoDetected, &rdev->flags))
2320 md_autodetect_dev(rdev->bdev->bd_dev);
2321 #endif
2322 unlock_rdev(rdev);
2323 kobject_put(&rdev->kobj);
2324 }
2325
md_kick_rdev_from_array(struct md_rdev * rdev)2326 void md_kick_rdev_from_array(struct md_rdev *rdev)
2327 {
2328 unbind_rdev_from_array(rdev);
2329 export_rdev(rdev);
2330 }
2331 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2332
export_array(struct mddev * mddev)2333 static void export_array(struct mddev *mddev)
2334 {
2335 struct md_rdev *rdev;
2336
2337 while (!list_empty(&mddev->disks)) {
2338 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2339 same_set);
2340 md_kick_rdev_from_array(rdev);
2341 }
2342 mddev->raid_disks = 0;
2343 mddev->major_version = 0;
2344 }
2345
set_in_sync(struct mddev * mddev)2346 static bool set_in_sync(struct mddev *mddev)
2347 {
2348 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock));
2349 if (!mddev->in_sync) {
2350 mddev->sync_checkers++;
2351 spin_unlock(&mddev->lock);
2352 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2353 spin_lock(&mddev->lock);
2354 if (!mddev->in_sync &&
2355 percpu_ref_is_zero(&mddev->writes_pending)) {
2356 mddev->in_sync = 1;
2357 /*
2358 * Ensure ->in_sync is visible before we clear
2359 * ->sync_checkers.
2360 */
2361 smp_mb();
2362 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2363 sysfs_notify_dirent_safe(mddev->sysfs_state);
2364 }
2365 if (--mddev->sync_checkers == 0)
2366 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2367 }
2368 if (mddev->safemode == 1)
2369 mddev->safemode = 0;
2370 return mddev->in_sync;
2371 }
2372
sync_sbs(struct mddev * mddev,int nospares)2373 static void sync_sbs(struct mddev *mddev, int nospares)
2374 {
2375 /* Update each superblock (in-memory image), but
2376 * if we are allowed to, skip spares which already
2377 * have the right event counter, or have one earlier
2378 * (which would mean they aren't being marked as dirty
2379 * with the rest of the array)
2380 */
2381 struct md_rdev *rdev;
2382 rdev_for_each(rdev, mddev) {
2383 if (rdev->sb_events == mddev->events ||
2384 (nospares &&
2385 rdev->raid_disk < 0 &&
2386 rdev->sb_events+1 == mddev->events)) {
2387 /* Don't update this superblock */
2388 rdev->sb_loaded = 2;
2389 } else {
2390 sync_super(mddev, rdev);
2391 rdev->sb_loaded = 1;
2392 }
2393 }
2394 }
2395
does_sb_need_changing(struct mddev * mddev)2396 static bool does_sb_need_changing(struct mddev *mddev)
2397 {
2398 struct md_rdev *rdev;
2399 struct mdp_superblock_1 *sb;
2400 int role;
2401
2402 /* Find a good rdev */
2403 rdev_for_each(rdev, mddev)
2404 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2405 break;
2406
2407 /* No good device found. */
2408 if (!rdev)
2409 return false;
2410
2411 sb = page_address(rdev->sb_page);
2412 /* Check if a device has become faulty or a spare become active */
2413 rdev_for_each(rdev, mddev) {
2414 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2415 /* Device activated? */
2416 if (role == 0xffff && rdev->raid_disk >=0 &&
2417 !test_bit(Faulty, &rdev->flags))
2418 return true;
2419 /* Device turned faulty? */
2420 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2421 return true;
2422 }
2423
2424 /* Check if any mddev parameters have changed */
2425 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2426 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2427 (mddev->layout != le32_to_cpu(sb->layout)) ||
2428 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2429 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2430 return true;
2431
2432 return false;
2433 }
2434
md_update_sb(struct mddev * mddev,int force_change)2435 void md_update_sb(struct mddev *mddev, int force_change)
2436 {
2437 struct md_rdev *rdev;
2438 int sync_req;
2439 int nospares = 0;
2440 int any_badblocks_changed = 0;
2441 int ret = -1;
2442
2443 if (mddev->ro) {
2444 if (force_change)
2445 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2446 return;
2447 }
2448
2449 repeat:
2450 if (mddev_is_clustered(mddev)) {
2451 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2452 force_change = 1;
2453 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2454 nospares = 1;
2455 ret = md_cluster_ops->metadata_update_start(mddev);
2456 /* Has someone else has updated the sb */
2457 if (!does_sb_need_changing(mddev)) {
2458 if (ret == 0)
2459 md_cluster_ops->metadata_update_cancel(mddev);
2460 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2461 BIT(MD_SB_CHANGE_DEVS) |
2462 BIT(MD_SB_CHANGE_CLEAN));
2463 return;
2464 }
2465 }
2466
2467 /* First make sure individual recovery_offsets are correct */
2468 rdev_for_each(rdev, mddev) {
2469 if (rdev->raid_disk >= 0 &&
2470 mddev->delta_disks >= 0 &&
2471 !test_bit(Journal, &rdev->flags) &&
2472 !test_bit(In_sync, &rdev->flags) &&
2473 mddev->curr_resync_completed > rdev->recovery_offset)
2474 rdev->recovery_offset = mddev->curr_resync_completed;
2475
2476 }
2477 if (!mddev->persistent) {
2478 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2479 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2480 if (!mddev->external) {
2481 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2482 rdev_for_each(rdev, mddev) {
2483 if (rdev->badblocks.changed) {
2484 rdev->badblocks.changed = 0;
2485 ack_all_badblocks(&rdev->badblocks);
2486 md_error(mddev, rdev);
2487 }
2488 clear_bit(Blocked, &rdev->flags);
2489 clear_bit(BlockedBadBlocks, &rdev->flags);
2490 wake_up(&rdev->blocked_wait);
2491 }
2492 }
2493 wake_up(&mddev->sb_wait);
2494 return;
2495 }
2496
2497 spin_lock(&mddev->lock);
2498
2499 mddev->utime = ktime_get_real_seconds();
2500
2501 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2502 force_change = 1;
2503 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2504 /* just a clean<-> dirty transition, possibly leave spares alone,
2505 * though if events isn't the right even/odd, we will have to do
2506 * spares after all
2507 */
2508 nospares = 1;
2509 if (force_change)
2510 nospares = 0;
2511 if (mddev->degraded)
2512 /* If the array is degraded, then skipping spares is both
2513 * dangerous and fairly pointless.
2514 * Dangerous because a device that was removed from the array
2515 * might have a event_count that still looks up-to-date,
2516 * so it can be re-added without a resync.
2517 * Pointless because if there are any spares to skip,
2518 * then a recovery will happen and soon that array won't
2519 * be degraded any more and the spare can go back to sleep then.
2520 */
2521 nospares = 0;
2522
2523 sync_req = mddev->in_sync;
2524
2525 /* If this is just a dirty<->clean transition, and the array is clean
2526 * and 'events' is odd, we can roll back to the previous clean state */
2527 if (nospares
2528 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2529 && mddev->can_decrease_events
2530 && mddev->events != 1) {
2531 mddev->events--;
2532 mddev->can_decrease_events = 0;
2533 } else {
2534 /* otherwise we have to go forward and ... */
2535 mddev->events ++;
2536 mddev->can_decrease_events = nospares;
2537 }
2538
2539 /*
2540 * This 64-bit counter should never wrap.
2541 * Either we are in around ~1 trillion A.C., assuming
2542 * 1 reboot per second, or we have a bug...
2543 */
2544 WARN_ON(mddev->events == 0);
2545
2546 rdev_for_each(rdev, mddev) {
2547 if (rdev->badblocks.changed)
2548 any_badblocks_changed++;
2549 if (test_bit(Faulty, &rdev->flags))
2550 set_bit(FaultRecorded, &rdev->flags);
2551 }
2552
2553 sync_sbs(mddev, nospares);
2554 spin_unlock(&mddev->lock);
2555
2556 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2557 mdname(mddev), mddev->in_sync);
2558
2559 if (mddev->queue)
2560 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2561 rewrite:
2562 bitmap_update_sb(mddev->bitmap);
2563 rdev_for_each(rdev, mddev) {
2564 char b[BDEVNAME_SIZE];
2565
2566 if (rdev->sb_loaded != 1)
2567 continue; /* no noise on spare devices */
2568
2569 if (!test_bit(Faulty, &rdev->flags)) {
2570 md_super_write(mddev,rdev,
2571 rdev->sb_start, rdev->sb_size,
2572 rdev->sb_page);
2573 pr_debug("md: (write) %s's sb offset: %llu\n",
2574 bdevname(rdev->bdev, b),
2575 (unsigned long long)rdev->sb_start);
2576 rdev->sb_events = mddev->events;
2577 if (rdev->badblocks.size) {
2578 md_super_write(mddev, rdev,
2579 rdev->badblocks.sector,
2580 rdev->badblocks.size << 9,
2581 rdev->bb_page);
2582 rdev->badblocks.size = 0;
2583 }
2584
2585 } else
2586 pr_debug("md: %s (skipping faulty)\n",
2587 bdevname(rdev->bdev, b));
2588
2589 if (mddev->level == LEVEL_MULTIPATH)
2590 /* only need to write one superblock... */
2591 break;
2592 }
2593 if (md_super_wait(mddev) < 0)
2594 goto rewrite;
2595 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2596
2597 if (mddev_is_clustered(mddev) && ret == 0)
2598 md_cluster_ops->metadata_update_finish(mddev);
2599
2600 if (mddev->in_sync != sync_req ||
2601 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2602 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2603 /* have to write it out again */
2604 goto repeat;
2605 wake_up(&mddev->sb_wait);
2606 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2607 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2608
2609 rdev_for_each(rdev, mddev) {
2610 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2611 clear_bit(Blocked, &rdev->flags);
2612
2613 if (any_badblocks_changed)
2614 ack_all_badblocks(&rdev->badblocks);
2615 clear_bit(BlockedBadBlocks, &rdev->flags);
2616 wake_up(&rdev->blocked_wait);
2617 }
2618 }
2619 EXPORT_SYMBOL(md_update_sb);
2620
add_bound_rdev(struct md_rdev * rdev)2621 static int add_bound_rdev(struct md_rdev *rdev)
2622 {
2623 struct mddev *mddev = rdev->mddev;
2624 int err = 0;
2625 bool add_journal = test_bit(Journal, &rdev->flags);
2626
2627 if (!mddev->pers->hot_remove_disk || add_journal) {
2628 /* If there is hot_add_disk but no hot_remove_disk
2629 * then added disks for geometry changes,
2630 * and should be added immediately.
2631 */
2632 super_types[mddev->major_version].
2633 validate_super(mddev, rdev);
2634 if (add_journal)
2635 mddev_suspend(mddev);
2636 err = mddev->pers->hot_add_disk(mddev, rdev);
2637 if (add_journal)
2638 mddev_resume(mddev);
2639 if (err) {
2640 md_kick_rdev_from_array(rdev);
2641 return err;
2642 }
2643 }
2644 sysfs_notify_dirent_safe(rdev->sysfs_state);
2645
2646 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2647 if (mddev->degraded)
2648 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2649 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2650 md_new_event(mddev);
2651 md_wakeup_thread(mddev->thread);
2652 return 0;
2653 }
2654
2655 /* words written to sysfs files may, or may not, be \n terminated.
2656 * We want to accept with case. For this we use cmd_match.
2657 */
cmd_match(const char * cmd,const char * str)2658 static int cmd_match(const char *cmd, const char *str)
2659 {
2660 /* See if cmd, written into a sysfs file, matches
2661 * str. They must either be the same, or cmd can
2662 * have a trailing newline
2663 */
2664 while (*cmd && *str && *cmd == *str) {
2665 cmd++;
2666 str++;
2667 }
2668 if (*cmd == '\n')
2669 cmd++;
2670 if (*str || *cmd)
2671 return 0;
2672 return 1;
2673 }
2674
2675 struct rdev_sysfs_entry {
2676 struct attribute attr;
2677 ssize_t (*show)(struct md_rdev *, char *);
2678 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2679 };
2680
2681 static ssize_t
state_show(struct md_rdev * rdev,char * page)2682 state_show(struct md_rdev *rdev, char *page)
2683 {
2684 char *sep = ",";
2685 size_t len = 0;
2686 unsigned long flags = ACCESS_ONCE(rdev->flags);
2687
2688 if (test_bit(Faulty, &flags) ||
2689 (!test_bit(ExternalBbl, &flags) &&
2690 rdev->badblocks.unacked_exist))
2691 len += sprintf(page+len, "faulty%s", sep);
2692 if (test_bit(In_sync, &flags))
2693 len += sprintf(page+len, "in_sync%s", sep);
2694 if (test_bit(Journal, &flags))
2695 len += sprintf(page+len, "journal%s", sep);
2696 if (test_bit(WriteMostly, &flags))
2697 len += sprintf(page+len, "write_mostly%s", sep);
2698 if (test_bit(Blocked, &flags) ||
2699 (rdev->badblocks.unacked_exist
2700 && !test_bit(Faulty, &flags)))
2701 len += sprintf(page+len, "blocked%s", sep);
2702 if (!test_bit(Faulty, &flags) &&
2703 !test_bit(Journal, &flags) &&
2704 !test_bit(In_sync, &flags))
2705 len += sprintf(page+len, "spare%s", sep);
2706 if (test_bit(WriteErrorSeen, &flags))
2707 len += sprintf(page+len, "write_error%s", sep);
2708 if (test_bit(WantReplacement, &flags))
2709 len += sprintf(page+len, "want_replacement%s", sep);
2710 if (test_bit(Replacement, &flags))
2711 len += sprintf(page+len, "replacement%s", sep);
2712 if (test_bit(ExternalBbl, &flags))
2713 len += sprintf(page+len, "external_bbl%s", sep);
2714 if (test_bit(FailFast, &flags))
2715 len += sprintf(page+len, "failfast%s", sep);
2716
2717 if (len)
2718 len -= strlen(sep);
2719
2720 return len+sprintf(page+len, "\n");
2721 }
2722
2723 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2724 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2725 {
2726 /* can write
2727 * faulty - simulates an error
2728 * remove - disconnects the device
2729 * writemostly - sets write_mostly
2730 * -writemostly - clears write_mostly
2731 * blocked - sets the Blocked flags
2732 * -blocked - clears the Blocked and possibly simulates an error
2733 * insync - sets Insync providing device isn't active
2734 * -insync - clear Insync for a device with a slot assigned,
2735 * so that it gets rebuilt based on bitmap
2736 * write_error - sets WriteErrorSeen
2737 * -write_error - clears WriteErrorSeen
2738 * {,-}failfast - set/clear FailFast
2739 */
2740 int err = -EINVAL;
2741 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2742 md_error(rdev->mddev, rdev);
2743 if (test_bit(Faulty, &rdev->flags))
2744 err = 0;
2745 else
2746 err = -EBUSY;
2747 } else if (cmd_match(buf, "remove")) {
2748 if (rdev->mddev->pers) {
2749 clear_bit(Blocked, &rdev->flags);
2750 remove_and_add_spares(rdev->mddev, rdev);
2751 }
2752 if (rdev->raid_disk >= 0)
2753 err = -EBUSY;
2754 else {
2755 struct mddev *mddev = rdev->mddev;
2756 err = 0;
2757 if (mddev_is_clustered(mddev))
2758 err = md_cluster_ops->remove_disk(mddev, rdev);
2759
2760 if (err == 0) {
2761 md_kick_rdev_from_array(rdev);
2762 if (mddev->pers) {
2763 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2764 md_wakeup_thread(mddev->thread);
2765 }
2766 md_new_event(mddev);
2767 }
2768 }
2769 } else if (cmd_match(buf, "writemostly")) {
2770 set_bit(WriteMostly, &rdev->flags);
2771 err = 0;
2772 } else if (cmd_match(buf, "-writemostly")) {
2773 clear_bit(WriteMostly, &rdev->flags);
2774 err = 0;
2775 } else if (cmd_match(buf, "blocked")) {
2776 set_bit(Blocked, &rdev->flags);
2777 err = 0;
2778 } else if (cmd_match(buf, "-blocked")) {
2779 if (!test_bit(Faulty, &rdev->flags) &&
2780 !test_bit(ExternalBbl, &rdev->flags) &&
2781 rdev->badblocks.unacked_exist) {
2782 /* metadata handler doesn't understand badblocks,
2783 * so we need to fail the device
2784 */
2785 md_error(rdev->mddev, rdev);
2786 }
2787 clear_bit(Blocked, &rdev->flags);
2788 clear_bit(BlockedBadBlocks, &rdev->flags);
2789 wake_up(&rdev->blocked_wait);
2790 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2791 md_wakeup_thread(rdev->mddev->thread);
2792
2793 err = 0;
2794 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2795 set_bit(In_sync, &rdev->flags);
2796 err = 0;
2797 } else if (cmd_match(buf, "failfast")) {
2798 set_bit(FailFast, &rdev->flags);
2799 err = 0;
2800 } else if (cmd_match(buf, "-failfast")) {
2801 clear_bit(FailFast, &rdev->flags);
2802 err = 0;
2803 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2804 !test_bit(Journal, &rdev->flags)) {
2805 if (rdev->mddev->pers == NULL) {
2806 clear_bit(In_sync, &rdev->flags);
2807 rdev->saved_raid_disk = rdev->raid_disk;
2808 rdev->raid_disk = -1;
2809 err = 0;
2810 }
2811 } else if (cmd_match(buf, "write_error")) {
2812 set_bit(WriteErrorSeen, &rdev->flags);
2813 err = 0;
2814 } else if (cmd_match(buf, "-write_error")) {
2815 clear_bit(WriteErrorSeen, &rdev->flags);
2816 err = 0;
2817 } else if (cmd_match(buf, "want_replacement")) {
2818 /* Any non-spare device that is not a replacement can
2819 * become want_replacement at any time, but we then need to
2820 * check if recovery is needed.
2821 */
2822 if (rdev->raid_disk >= 0 &&
2823 !test_bit(Journal, &rdev->flags) &&
2824 !test_bit(Replacement, &rdev->flags))
2825 set_bit(WantReplacement, &rdev->flags);
2826 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2827 md_wakeup_thread(rdev->mddev->thread);
2828 err = 0;
2829 } else if (cmd_match(buf, "-want_replacement")) {
2830 /* Clearing 'want_replacement' is always allowed.
2831 * Once replacements starts it is too late though.
2832 */
2833 err = 0;
2834 clear_bit(WantReplacement, &rdev->flags);
2835 } else if (cmd_match(buf, "replacement")) {
2836 /* Can only set a device as a replacement when array has not
2837 * yet been started. Once running, replacement is automatic
2838 * from spares, or by assigning 'slot'.
2839 */
2840 if (rdev->mddev->pers)
2841 err = -EBUSY;
2842 else {
2843 set_bit(Replacement, &rdev->flags);
2844 err = 0;
2845 }
2846 } else if (cmd_match(buf, "-replacement")) {
2847 /* Similarly, can only clear Replacement before start */
2848 if (rdev->mddev->pers)
2849 err = -EBUSY;
2850 else {
2851 clear_bit(Replacement, &rdev->flags);
2852 err = 0;
2853 }
2854 } else if (cmd_match(buf, "re-add")) {
2855 if (!rdev->mddev->pers)
2856 err = -EINVAL;
2857 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2858 rdev->saved_raid_disk >= 0) {
2859 /* clear_bit is performed _after_ all the devices
2860 * have their local Faulty bit cleared. If any writes
2861 * happen in the meantime in the local node, they
2862 * will land in the local bitmap, which will be synced
2863 * by this node eventually
2864 */
2865 if (!mddev_is_clustered(rdev->mddev) ||
2866 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2867 clear_bit(Faulty, &rdev->flags);
2868 err = add_bound_rdev(rdev);
2869 }
2870 } else
2871 err = -EBUSY;
2872 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2873 set_bit(ExternalBbl, &rdev->flags);
2874 rdev->badblocks.shift = 0;
2875 err = 0;
2876 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2877 clear_bit(ExternalBbl, &rdev->flags);
2878 err = 0;
2879 }
2880 if (!err)
2881 sysfs_notify_dirent_safe(rdev->sysfs_state);
2882 return err ? err : len;
2883 }
2884 static struct rdev_sysfs_entry rdev_state =
2885 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2886
2887 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2888 errors_show(struct md_rdev *rdev, char *page)
2889 {
2890 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2891 }
2892
2893 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2894 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2895 {
2896 unsigned int n;
2897 int rv;
2898
2899 rv = kstrtouint(buf, 10, &n);
2900 if (rv < 0)
2901 return rv;
2902 atomic_set(&rdev->corrected_errors, n);
2903 return len;
2904 }
2905 static struct rdev_sysfs_entry rdev_errors =
2906 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2907
2908 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2909 slot_show(struct md_rdev *rdev, char *page)
2910 {
2911 if (test_bit(Journal, &rdev->flags))
2912 return sprintf(page, "journal\n");
2913 else if (rdev->raid_disk < 0)
2914 return sprintf(page, "none\n");
2915 else
2916 return sprintf(page, "%d\n", rdev->raid_disk);
2917 }
2918
2919 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2920 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2921 {
2922 int slot;
2923 int err;
2924
2925 if (test_bit(Journal, &rdev->flags))
2926 return -EBUSY;
2927 if (strncmp(buf, "none", 4)==0)
2928 slot = -1;
2929 else {
2930 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2931 if (err < 0)
2932 return err;
2933 }
2934 if (rdev->mddev->pers && slot == -1) {
2935 /* Setting 'slot' on an active array requires also
2936 * updating the 'rd%d' link, and communicating
2937 * with the personality with ->hot_*_disk.
2938 * For now we only support removing
2939 * failed/spare devices. This normally happens automatically,
2940 * but not when the metadata is externally managed.
2941 */
2942 if (rdev->raid_disk == -1)
2943 return -EEXIST;
2944 /* personality does all needed checks */
2945 if (rdev->mddev->pers->hot_remove_disk == NULL)
2946 return -EINVAL;
2947 clear_bit(Blocked, &rdev->flags);
2948 remove_and_add_spares(rdev->mddev, rdev);
2949 if (rdev->raid_disk >= 0)
2950 return -EBUSY;
2951 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2952 md_wakeup_thread(rdev->mddev->thread);
2953 } else if (rdev->mddev->pers) {
2954 /* Activating a spare .. or possibly reactivating
2955 * if we ever get bitmaps working here.
2956 */
2957 int err;
2958
2959 if (rdev->raid_disk != -1)
2960 return -EBUSY;
2961
2962 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2963 return -EBUSY;
2964
2965 if (rdev->mddev->pers->hot_add_disk == NULL)
2966 return -EINVAL;
2967
2968 if (slot >= rdev->mddev->raid_disks &&
2969 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2970 return -ENOSPC;
2971
2972 rdev->raid_disk = slot;
2973 if (test_bit(In_sync, &rdev->flags))
2974 rdev->saved_raid_disk = slot;
2975 else
2976 rdev->saved_raid_disk = -1;
2977 clear_bit(In_sync, &rdev->flags);
2978 clear_bit(Bitmap_sync, &rdev->flags);
2979 err = rdev->mddev->pers->
2980 hot_add_disk(rdev->mddev, rdev);
2981 if (err) {
2982 rdev->raid_disk = -1;
2983 return err;
2984 } else
2985 sysfs_notify_dirent_safe(rdev->sysfs_state);
2986 if (sysfs_link_rdev(rdev->mddev, rdev))
2987 /* failure here is OK */;
2988 /* don't wakeup anyone, leave that to userspace. */
2989 } else {
2990 if (slot >= rdev->mddev->raid_disks &&
2991 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2992 return -ENOSPC;
2993 rdev->raid_disk = slot;
2994 /* assume it is working */
2995 clear_bit(Faulty, &rdev->flags);
2996 clear_bit(WriteMostly, &rdev->flags);
2997 set_bit(In_sync, &rdev->flags);
2998 sysfs_notify_dirent_safe(rdev->sysfs_state);
2999 }
3000 return len;
3001 }
3002
3003 static struct rdev_sysfs_entry rdev_slot =
3004 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3005
3006 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3007 offset_show(struct md_rdev *rdev, char *page)
3008 {
3009 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3010 }
3011
3012 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3013 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3014 {
3015 unsigned long long offset;
3016 if (kstrtoull(buf, 10, &offset) < 0)
3017 return -EINVAL;
3018 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3019 return -EBUSY;
3020 if (rdev->sectors && rdev->mddev->external)
3021 /* Must set offset before size, so overlap checks
3022 * can be sane */
3023 return -EBUSY;
3024 rdev->data_offset = offset;
3025 rdev->new_data_offset = offset;
3026 return len;
3027 }
3028
3029 static struct rdev_sysfs_entry rdev_offset =
3030 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3031
new_offset_show(struct md_rdev * rdev,char * page)3032 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3033 {
3034 return sprintf(page, "%llu\n",
3035 (unsigned long long)rdev->new_data_offset);
3036 }
3037
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3038 static ssize_t new_offset_store(struct md_rdev *rdev,
3039 const char *buf, size_t len)
3040 {
3041 unsigned long long new_offset;
3042 struct mddev *mddev = rdev->mddev;
3043
3044 if (kstrtoull(buf, 10, &new_offset) < 0)
3045 return -EINVAL;
3046
3047 if (mddev->sync_thread ||
3048 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3049 return -EBUSY;
3050 if (new_offset == rdev->data_offset)
3051 /* reset is always permitted */
3052 ;
3053 else if (new_offset > rdev->data_offset) {
3054 /* must not push array size beyond rdev_sectors */
3055 if (new_offset - rdev->data_offset
3056 + mddev->dev_sectors > rdev->sectors)
3057 return -E2BIG;
3058 }
3059 /* Metadata worries about other space details. */
3060
3061 /* decreasing the offset is inconsistent with a backwards
3062 * reshape.
3063 */
3064 if (new_offset < rdev->data_offset &&
3065 mddev->reshape_backwards)
3066 return -EINVAL;
3067 /* Increasing offset is inconsistent with forwards
3068 * reshape. reshape_direction should be set to
3069 * 'backwards' first.
3070 */
3071 if (new_offset > rdev->data_offset &&
3072 !mddev->reshape_backwards)
3073 return -EINVAL;
3074
3075 if (mddev->pers && mddev->persistent &&
3076 !super_types[mddev->major_version]
3077 .allow_new_offset(rdev, new_offset))
3078 return -E2BIG;
3079 rdev->new_data_offset = new_offset;
3080 if (new_offset > rdev->data_offset)
3081 mddev->reshape_backwards = 1;
3082 else if (new_offset < rdev->data_offset)
3083 mddev->reshape_backwards = 0;
3084
3085 return len;
3086 }
3087 static struct rdev_sysfs_entry rdev_new_offset =
3088 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3089
3090 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3091 rdev_size_show(struct md_rdev *rdev, char *page)
3092 {
3093 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3094 }
3095
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3096 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3097 {
3098 /* check if two start/length pairs overlap */
3099 if (s1+l1 <= s2)
3100 return 0;
3101 if (s2+l2 <= s1)
3102 return 0;
3103 return 1;
3104 }
3105
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3106 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3107 {
3108 unsigned long long blocks;
3109 sector_t new;
3110
3111 if (kstrtoull(buf, 10, &blocks) < 0)
3112 return -EINVAL;
3113
3114 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3115 return -EINVAL; /* sector conversion overflow */
3116
3117 new = blocks * 2;
3118 if (new != blocks * 2)
3119 return -EINVAL; /* unsigned long long to sector_t overflow */
3120
3121 *sectors = new;
3122 return 0;
3123 }
3124
3125 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3126 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3127 {
3128 struct mddev *my_mddev = rdev->mddev;
3129 sector_t oldsectors = rdev->sectors;
3130 sector_t sectors;
3131
3132 if (test_bit(Journal, &rdev->flags))
3133 return -EBUSY;
3134 if (strict_blocks_to_sectors(buf, §ors) < 0)
3135 return -EINVAL;
3136 if (rdev->data_offset != rdev->new_data_offset)
3137 return -EINVAL; /* too confusing */
3138 if (my_mddev->pers && rdev->raid_disk >= 0) {
3139 if (my_mddev->persistent) {
3140 sectors = super_types[my_mddev->major_version].
3141 rdev_size_change(rdev, sectors);
3142 if (!sectors)
3143 return -EBUSY;
3144 } else if (!sectors)
3145 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3146 rdev->data_offset;
3147 if (!my_mddev->pers->resize)
3148 /* Cannot change size for RAID0 or Linear etc */
3149 return -EINVAL;
3150 }
3151 if (sectors < my_mddev->dev_sectors)
3152 return -EINVAL; /* component must fit device */
3153
3154 rdev->sectors = sectors;
3155 if (sectors > oldsectors && my_mddev->external) {
3156 /* Need to check that all other rdevs with the same
3157 * ->bdev do not overlap. 'rcu' is sufficient to walk
3158 * the rdev lists safely.
3159 * This check does not provide a hard guarantee, it
3160 * just helps avoid dangerous mistakes.
3161 */
3162 struct mddev *mddev;
3163 int overlap = 0;
3164 struct list_head *tmp;
3165
3166 rcu_read_lock();
3167 for_each_mddev(mddev, tmp) {
3168 struct md_rdev *rdev2;
3169
3170 rdev_for_each(rdev2, mddev)
3171 if (rdev->bdev == rdev2->bdev &&
3172 rdev != rdev2 &&
3173 overlaps(rdev->data_offset, rdev->sectors,
3174 rdev2->data_offset,
3175 rdev2->sectors)) {
3176 overlap = 1;
3177 break;
3178 }
3179 if (overlap) {
3180 mddev_put(mddev);
3181 break;
3182 }
3183 }
3184 rcu_read_unlock();
3185 if (overlap) {
3186 /* Someone else could have slipped in a size
3187 * change here, but doing so is just silly.
3188 * We put oldsectors back because we *know* it is
3189 * safe, and trust userspace not to race with
3190 * itself
3191 */
3192 rdev->sectors = oldsectors;
3193 return -EBUSY;
3194 }
3195 }
3196 return len;
3197 }
3198
3199 static struct rdev_sysfs_entry rdev_size =
3200 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3201
recovery_start_show(struct md_rdev * rdev,char * page)3202 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3203 {
3204 unsigned long long recovery_start = rdev->recovery_offset;
3205
3206 if (test_bit(In_sync, &rdev->flags) ||
3207 recovery_start == MaxSector)
3208 return sprintf(page, "none\n");
3209
3210 return sprintf(page, "%llu\n", recovery_start);
3211 }
3212
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3213 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3214 {
3215 unsigned long long recovery_start;
3216
3217 if (cmd_match(buf, "none"))
3218 recovery_start = MaxSector;
3219 else if (kstrtoull(buf, 10, &recovery_start))
3220 return -EINVAL;
3221
3222 if (rdev->mddev->pers &&
3223 rdev->raid_disk >= 0)
3224 return -EBUSY;
3225
3226 rdev->recovery_offset = recovery_start;
3227 if (recovery_start == MaxSector)
3228 set_bit(In_sync, &rdev->flags);
3229 else
3230 clear_bit(In_sync, &rdev->flags);
3231 return len;
3232 }
3233
3234 static struct rdev_sysfs_entry rdev_recovery_start =
3235 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3236
3237 /* sysfs access to bad-blocks list.
3238 * We present two files.
3239 * 'bad-blocks' lists sector numbers and lengths of ranges that
3240 * are recorded as bad. The list is truncated to fit within
3241 * the one-page limit of sysfs.
3242 * Writing "sector length" to this file adds an acknowledged
3243 * bad block list.
3244 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3245 * been acknowledged. Writing to this file adds bad blocks
3246 * without acknowledging them. This is largely for testing.
3247 */
bb_show(struct md_rdev * rdev,char * page)3248 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3249 {
3250 return badblocks_show(&rdev->badblocks, page, 0);
3251 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3252 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3253 {
3254 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3255 /* Maybe that ack was all we needed */
3256 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3257 wake_up(&rdev->blocked_wait);
3258 return rv;
3259 }
3260 static struct rdev_sysfs_entry rdev_bad_blocks =
3261 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3262
ubb_show(struct md_rdev * rdev,char * page)3263 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3264 {
3265 return badblocks_show(&rdev->badblocks, page, 1);
3266 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3267 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3268 {
3269 return badblocks_store(&rdev->badblocks, page, len, 1);
3270 }
3271 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3272 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3273
3274 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3275 ppl_sector_show(struct md_rdev *rdev, char *page)
3276 {
3277 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3278 }
3279
3280 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3281 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3282 {
3283 unsigned long long sector;
3284
3285 if (kstrtoull(buf, 10, §or) < 0)
3286 return -EINVAL;
3287 if (sector != (sector_t)sector)
3288 return -EINVAL;
3289
3290 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3291 rdev->raid_disk >= 0)
3292 return -EBUSY;
3293
3294 if (rdev->mddev->persistent) {
3295 if (rdev->mddev->major_version == 0)
3296 return -EINVAL;
3297 if ((sector > rdev->sb_start &&
3298 sector - rdev->sb_start > S16_MAX) ||
3299 (sector < rdev->sb_start &&
3300 rdev->sb_start - sector > -S16_MIN))
3301 return -EINVAL;
3302 rdev->ppl.offset = sector - rdev->sb_start;
3303 } else if (!rdev->mddev->external) {
3304 return -EBUSY;
3305 }
3306 rdev->ppl.sector = sector;
3307 return len;
3308 }
3309
3310 static struct rdev_sysfs_entry rdev_ppl_sector =
3311 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3312
3313 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3314 ppl_size_show(struct md_rdev *rdev, char *page)
3315 {
3316 return sprintf(page, "%u\n", rdev->ppl.size);
3317 }
3318
3319 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3320 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3321 {
3322 unsigned int size;
3323
3324 if (kstrtouint(buf, 10, &size) < 0)
3325 return -EINVAL;
3326
3327 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3328 rdev->raid_disk >= 0)
3329 return -EBUSY;
3330
3331 if (rdev->mddev->persistent) {
3332 if (rdev->mddev->major_version == 0)
3333 return -EINVAL;
3334 if (size > U16_MAX)
3335 return -EINVAL;
3336 } else if (!rdev->mddev->external) {
3337 return -EBUSY;
3338 }
3339 rdev->ppl.size = size;
3340 return len;
3341 }
3342
3343 static struct rdev_sysfs_entry rdev_ppl_size =
3344 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3345
3346 static struct attribute *rdev_default_attrs[] = {
3347 &rdev_state.attr,
3348 &rdev_errors.attr,
3349 &rdev_slot.attr,
3350 &rdev_offset.attr,
3351 &rdev_new_offset.attr,
3352 &rdev_size.attr,
3353 &rdev_recovery_start.attr,
3354 &rdev_bad_blocks.attr,
3355 &rdev_unack_bad_blocks.attr,
3356 &rdev_ppl_sector.attr,
3357 &rdev_ppl_size.attr,
3358 NULL,
3359 };
3360 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3361 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3362 {
3363 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3364 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3365
3366 if (!entry->show)
3367 return -EIO;
3368 if (!rdev->mddev)
3369 return -EBUSY;
3370 return entry->show(rdev, page);
3371 }
3372
3373 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3374 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3375 const char *page, size_t length)
3376 {
3377 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3378 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3379 ssize_t rv;
3380 struct mddev *mddev = rdev->mddev;
3381
3382 if (!entry->store)
3383 return -EIO;
3384 if (!capable(CAP_SYS_ADMIN))
3385 return -EACCES;
3386 rv = mddev ? mddev_lock(mddev): -EBUSY;
3387 if (!rv) {
3388 if (rdev->mddev == NULL)
3389 rv = -EBUSY;
3390 else
3391 rv = entry->store(rdev, page, length);
3392 mddev_unlock(mddev);
3393 }
3394 return rv;
3395 }
3396
rdev_free(struct kobject * ko)3397 static void rdev_free(struct kobject *ko)
3398 {
3399 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3400 kfree(rdev);
3401 }
3402 static const struct sysfs_ops rdev_sysfs_ops = {
3403 .show = rdev_attr_show,
3404 .store = rdev_attr_store,
3405 };
3406 static struct kobj_type rdev_ktype = {
3407 .release = rdev_free,
3408 .sysfs_ops = &rdev_sysfs_ops,
3409 .default_attrs = rdev_default_attrs,
3410 };
3411
md_rdev_init(struct md_rdev * rdev)3412 int md_rdev_init(struct md_rdev *rdev)
3413 {
3414 rdev->desc_nr = -1;
3415 rdev->saved_raid_disk = -1;
3416 rdev->raid_disk = -1;
3417 rdev->flags = 0;
3418 rdev->data_offset = 0;
3419 rdev->new_data_offset = 0;
3420 rdev->sb_events = 0;
3421 rdev->last_read_error = 0;
3422 rdev->sb_loaded = 0;
3423 rdev->bb_page = NULL;
3424 atomic_set(&rdev->nr_pending, 0);
3425 atomic_set(&rdev->read_errors, 0);
3426 atomic_set(&rdev->corrected_errors, 0);
3427
3428 INIT_LIST_HEAD(&rdev->same_set);
3429 init_waitqueue_head(&rdev->blocked_wait);
3430
3431 /* Add space to store bad block list.
3432 * This reserves the space even on arrays where it cannot
3433 * be used - I wonder if that matters
3434 */
3435 return badblocks_init(&rdev->badblocks, 0);
3436 }
3437 EXPORT_SYMBOL_GPL(md_rdev_init);
3438 /*
3439 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3440 *
3441 * mark the device faulty if:
3442 *
3443 * - the device is nonexistent (zero size)
3444 * - the device has no valid superblock
3445 *
3446 * a faulty rdev _never_ has rdev->sb set.
3447 */
md_import_device(dev_t newdev,int super_format,int super_minor)3448 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3449 {
3450 char b[BDEVNAME_SIZE];
3451 int err;
3452 struct md_rdev *rdev;
3453 sector_t size;
3454
3455 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3456 if (!rdev)
3457 return ERR_PTR(-ENOMEM);
3458
3459 err = md_rdev_init(rdev);
3460 if (err)
3461 goto abort_free;
3462 err = alloc_disk_sb(rdev);
3463 if (err)
3464 goto abort_free;
3465
3466 err = lock_rdev(rdev, newdev, super_format == -2);
3467 if (err)
3468 goto abort_free;
3469
3470 kobject_init(&rdev->kobj, &rdev_ktype);
3471
3472 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3473 if (!size) {
3474 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3475 bdevname(rdev->bdev,b));
3476 err = -EINVAL;
3477 goto abort_free;
3478 }
3479
3480 if (super_format >= 0) {
3481 err = super_types[super_format].
3482 load_super(rdev, NULL, super_minor);
3483 if (err == -EINVAL) {
3484 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3485 bdevname(rdev->bdev,b),
3486 super_format, super_minor);
3487 goto abort_free;
3488 }
3489 if (err < 0) {
3490 pr_warn("md: could not read %s's sb, not importing!\n",
3491 bdevname(rdev->bdev,b));
3492 goto abort_free;
3493 }
3494 }
3495
3496 return rdev;
3497
3498 abort_free:
3499 if (rdev->bdev)
3500 unlock_rdev(rdev);
3501 md_rdev_clear(rdev);
3502 kfree(rdev);
3503 return ERR_PTR(err);
3504 }
3505
3506 /*
3507 * Check a full RAID array for plausibility
3508 */
3509
analyze_sbs(struct mddev * mddev)3510 static void analyze_sbs(struct mddev *mddev)
3511 {
3512 int i;
3513 struct md_rdev *rdev, *freshest, *tmp;
3514 char b[BDEVNAME_SIZE];
3515
3516 freshest = NULL;
3517 rdev_for_each_safe(rdev, tmp, mddev)
3518 switch (super_types[mddev->major_version].
3519 load_super(rdev, freshest, mddev->minor_version)) {
3520 case 1:
3521 freshest = rdev;
3522 break;
3523 case 0:
3524 break;
3525 default:
3526 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3527 bdevname(rdev->bdev,b));
3528 md_kick_rdev_from_array(rdev);
3529 }
3530
3531 super_types[mddev->major_version].
3532 validate_super(mddev, freshest);
3533
3534 i = 0;
3535 rdev_for_each_safe(rdev, tmp, mddev) {
3536 if (mddev->max_disks &&
3537 (rdev->desc_nr >= mddev->max_disks ||
3538 i > mddev->max_disks)) {
3539 pr_warn("md: %s: %s: only %d devices permitted\n",
3540 mdname(mddev), bdevname(rdev->bdev, b),
3541 mddev->max_disks);
3542 md_kick_rdev_from_array(rdev);
3543 continue;
3544 }
3545 if (rdev != freshest) {
3546 if (super_types[mddev->major_version].
3547 validate_super(mddev, rdev)) {
3548 pr_warn("md: kicking non-fresh %s from array!\n",
3549 bdevname(rdev->bdev,b));
3550 md_kick_rdev_from_array(rdev);
3551 continue;
3552 }
3553 }
3554 if (mddev->level == LEVEL_MULTIPATH) {
3555 rdev->desc_nr = i++;
3556 rdev->raid_disk = rdev->desc_nr;
3557 set_bit(In_sync, &rdev->flags);
3558 } else if (rdev->raid_disk >=
3559 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3560 !test_bit(Journal, &rdev->flags)) {
3561 rdev->raid_disk = -1;
3562 clear_bit(In_sync, &rdev->flags);
3563 }
3564 }
3565 }
3566
3567 /* Read a fixed-point number.
3568 * Numbers in sysfs attributes should be in "standard" units where
3569 * possible, so time should be in seconds.
3570 * However we internally use a a much smaller unit such as
3571 * milliseconds or jiffies.
3572 * This function takes a decimal number with a possible fractional
3573 * component, and produces an integer which is the result of
3574 * multiplying that number by 10^'scale'.
3575 * all without any floating-point arithmetic.
3576 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3577 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3578 {
3579 unsigned long result = 0;
3580 long decimals = -1;
3581 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3582 if (*cp == '.')
3583 decimals = 0;
3584 else if (decimals < scale) {
3585 unsigned int value;
3586 value = *cp - '0';
3587 result = result * 10 + value;
3588 if (decimals >= 0)
3589 decimals++;
3590 }
3591 cp++;
3592 }
3593 if (*cp == '\n')
3594 cp++;
3595 if (*cp)
3596 return -EINVAL;
3597 if (decimals < 0)
3598 decimals = 0;
3599 while (decimals < scale) {
3600 result *= 10;
3601 decimals ++;
3602 }
3603 *res = result;
3604 return 0;
3605 }
3606
3607 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3608 safe_delay_show(struct mddev *mddev, char *page)
3609 {
3610 int msec = (mddev->safemode_delay*1000)/HZ;
3611 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3612 }
3613 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3614 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3615 {
3616 unsigned long msec;
3617
3618 if (mddev_is_clustered(mddev)) {
3619 pr_warn("md: Safemode is disabled for clustered mode\n");
3620 return -EINVAL;
3621 }
3622
3623 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3624 return -EINVAL;
3625 if (msec == 0)
3626 mddev->safemode_delay = 0;
3627 else {
3628 unsigned long old_delay = mddev->safemode_delay;
3629 unsigned long new_delay = (msec*HZ)/1000;
3630
3631 if (new_delay == 0)
3632 new_delay = 1;
3633 mddev->safemode_delay = new_delay;
3634 if (new_delay < old_delay || old_delay == 0)
3635 mod_timer(&mddev->safemode_timer, jiffies+1);
3636 }
3637 return len;
3638 }
3639 static struct md_sysfs_entry md_safe_delay =
3640 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3641
3642 static ssize_t
level_show(struct mddev * mddev,char * page)3643 level_show(struct mddev *mddev, char *page)
3644 {
3645 struct md_personality *p;
3646 int ret;
3647 spin_lock(&mddev->lock);
3648 p = mddev->pers;
3649 if (p)
3650 ret = sprintf(page, "%s\n", p->name);
3651 else if (mddev->clevel[0])
3652 ret = sprintf(page, "%s\n", mddev->clevel);
3653 else if (mddev->level != LEVEL_NONE)
3654 ret = sprintf(page, "%d\n", mddev->level);
3655 else
3656 ret = 0;
3657 spin_unlock(&mddev->lock);
3658 return ret;
3659 }
3660
3661 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3662 level_store(struct mddev *mddev, const char *buf, size_t len)
3663 {
3664 char clevel[16];
3665 ssize_t rv;
3666 size_t slen = len;
3667 struct md_personality *pers, *oldpers;
3668 long level;
3669 void *priv, *oldpriv;
3670 struct md_rdev *rdev;
3671
3672 if (slen == 0 || slen >= sizeof(clevel))
3673 return -EINVAL;
3674
3675 rv = mddev_lock(mddev);
3676 if (rv)
3677 return rv;
3678
3679 if (mddev->pers == NULL) {
3680 strncpy(mddev->clevel, buf, slen);
3681 if (mddev->clevel[slen-1] == '\n')
3682 slen--;
3683 mddev->clevel[slen] = 0;
3684 mddev->level = LEVEL_NONE;
3685 rv = len;
3686 goto out_unlock;
3687 }
3688 rv = -EROFS;
3689 if (mddev->ro)
3690 goto out_unlock;
3691
3692 /* request to change the personality. Need to ensure:
3693 * - array is not engaged in resync/recovery/reshape
3694 * - old personality can be suspended
3695 * - new personality will access other array.
3696 */
3697
3698 rv = -EBUSY;
3699 if (mddev->sync_thread ||
3700 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3701 mddev->reshape_position != MaxSector ||
3702 mddev->sysfs_active)
3703 goto out_unlock;
3704
3705 rv = -EINVAL;
3706 if (!mddev->pers->quiesce) {
3707 pr_warn("md: %s: %s does not support online personality change\n",
3708 mdname(mddev), mddev->pers->name);
3709 goto out_unlock;
3710 }
3711
3712 /* Now find the new personality */
3713 strncpy(clevel, buf, slen);
3714 if (clevel[slen-1] == '\n')
3715 slen--;
3716 clevel[slen] = 0;
3717 if (kstrtol(clevel, 10, &level))
3718 level = LEVEL_NONE;
3719
3720 if (request_module("md-%s", clevel) != 0)
3721 request_module("md-level-%s", clevel);
3722 spin_lock(&pers_lock);
3723 pers = find_pers(level, clevel);
3724 if (!pers || !try_module_get(pers->owner)) {
3725 spin_unlock(&pers_lock);
3726 pr_warn("md: personality %s not loaded\n", clevel);
3727 rv = -EINVAL;
3728 goto out_unlock;
3729 }
3730 spin_unlock(&pers_lock);
3731
3732 if (pers == mddev->pers) {
3733 /* Nothing to do! */
3734 module_put(pers->owner);
3735 rv = len;
3736 goto out_unlock;
3737 }
3738 if (!pers->takeover) {
3739 module_put(pers->owner);
3740 pr_warn("md: %s: %s does not support personality takeover\n",
3741 mdname(mddev), clevel);
3742 rv = -EINVAL;
3743 goto out_unlock;
3744 }
3745
3746 rdev_for_each(rdev, mddev)
3747 rdev->new_raid_disk = rdev->raid_disk;
3748
3749 /* ->takeover must set new_* and/or delta_disks
3750 * if it succeeds, and may set them when it fails.
3751 */
3752 priv = pers->takeover(mddev);
3753 if (IS_ERR(priv)) {
3754 mddev->new_level = mddev->level;
3755 mddev->new_layout = mddev->layout;
3756 mddev->new_chunk_sectors = mddev->chunk_sectors;
3757 mddev->raid_disks -= mddev->delta_disks;
3758 mddev->delta_disks = 0;
3759 mddev->reshape_backwards = 0;
3760 module_put(pers->owner);
3761 pr_warn("md: %s: %s would not accept array\n",
3762 mdname(mddev), clevel);
3763 rv = PTR_ERR(priv);
3764 goto out_unlock;
3765 }
3766
3767 /* Looks like we have a winner */
3768 mddev_suspend(mddev);
3769 mddev_detach(mddev);
3770
3771 spin_lock(&mddev->lock);
3772 oldpers = mddev->pers;
3773 oldpriv = mddev->private;
3774 mddev->pers = pers;
3775 mddev->private = priv;
3776 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3777 mddev->level = mddev->new_level;
3778 mddev->layout = mddev->new_layout;
3779 mddev->chunk_sectors = mddev->new_chunk_sectors;
3780 mddev->delta_disks = 0;
3781 mddev->reshape_backwards = 0;
3782 mddev->degraded = 0;
3783 spin_unlock(&mddev->lock);
3784
3785 if (oldpers->sync_request == NULL &&
3786 mddev->external) {
3787 /* We are converting from a no-redundancy array
3788 * to a redundancy array and metadata is managed
3789 * externally so we need to be sure that writes
3790 * won't block due to a need to transition
3791 * clean->dirty
3792 * until external management is started.
3793 */
3794 mddev->in_sync = 0;
3795 mddev->safemode_delay = 0;
3796 mddev->safemode = 0;
3797 }
3798
3799 oldpers->free(mddev, oldpriv);
3800
3801 if (oldpers->sync_request == NULL &&
3802 pers->sync_request != NULL) {
3803 /* need to add the md_redundancy_group */
3804 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3805 pr_warn("md: cannot register extra attributes for %s\n",
3806 mdname(mddev));
3807 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3808 }
3809 if (oldpers->sync_request != NULL &&
3810 pers->sync_request == NULL) {
3811 /* need to remove the md_redundancy_group */
3812 if (mddev->to_remove == NULL)
3813 mddev->to_remove = &md_redundancy_group;
3814 }
3815
3816 module_put(oldpers->owner);
3817
3818 rdev_for_each(rdev, mddev) {
3819 if (rdev->raid_disk < 0)
3820 continue;
3821 if (rdev->new_raid_disk >= mddev->raid_disks)
3822 rdev->new_raid_disk = -1;
3823 if (rdev->new_raid_disk == rdev->raid_disk)
3824 continue;
3825 sysfs_unlink_rdev(mddev, rdev);
3826 }
3827 rdev_for_each(rdev, mddev) {
3828 if (rdev->raid_disk < 0)
3829 continue;
3830 if (rdev->new_raid_disk == rdev->raid_disk)
3831 continue;
3832 rdev->raid_disk = rdev->new_raid_disk;
3833 if (rdev->raid_disk < 0)
3834 clear_bit(In_sync, &rdev->flags);
3835 else {
3836 if (sysfs_link_rdev(mddev, rdev))
3837 pr_warn("md: cannot register rd%d for %s after level change\n",
3838 rdev->raid_disk, mdname(mddev));
3839 }
3840 }
3841
3842 if (pers->sync_request == NULL) {
3843 /* this is now an array without redundancy, so
3844 * it must always be in_sync
3845 */
3846 mddev->in_sync = 1;
3847 del_timer_sync(&mddev->safemode_timer);
3848 }
3849 blk_set_stacking_limits(&mddev->queue->limits);
3850 pers->run(mddev);
3851 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3852 mddev_resume(mddev);
3853 if (!mddev->thread)
3854 md_update_sb(mddev, 1);
3855 sysfs_notify(&mddev->kobj, NULL, "level");
3856 md_new_event(mddev);
3857 rv = len;
3858 out_unlock:
3859 mddev_unlock(mddev);
3860 return rv;
3861 }
3862
3863 static struct md_sysfs_entry md_level =
3864 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3865
3866 static ssize_t
layout_show(struct mddev * mddev,char * page)3867 layout_show(struct mddev *mddev, char *page)
3868 {
3869 /* just a number, not meaningful for all levels */
3870 if (mddev->reshape_position != MaxSector &&
3871 mddev->layout != mddev->new_layout)
3872 return sprintf(page, "%d (%d)\n",
3873 mddev->new_layout, mddev->layout);
3874 return sprintf(page, "%d\n", mddev->layout);
3875 }
3876
3877 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3878 layout_store(struct mddev *mddev, const char *buf, size_t len)
3879 {
3880 unsigned int n;
3881 int err;
3882
3883 err = kstrtouint(buf, 10, &n);
3884 if (err < 0)
3885 return err;
3886 err = mddev_lock(mddev);
3887 if (err)
3888 return err;
3889
3890 if (mddev->pers) {
3891 if (mddev->pers->check_reshape == NULL)
3892 err = -EBUSY;
3893 else if (mddev->ro)
3894 err = -EROFS;
3895 else {
3896 mddev->new_layout = n;
3897 err = mddev->pers->check_reshape(mddev);
3898 if (err)
3899 mddev->new_layout = mddev->layout;
3900 }
3901 } else {
3902 mddev->new_layout = n;
3903 if (mddev->reshape_position == MaxSector)
3904 mddev->layout = n;
3905 }
3906 mddev_unlock(mddev);
3907 return err ?: len;
3908 }
3909 static struct md_sysfs_entry md_layout =
3910 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3911
3912 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3913 raid_disks_show(struct mddev *mddev, char *page)
3914 {
3915 if (mddev->raid_disks == 0)
3916 return 0;
3917 if (mddev->reshape_position != MaxSector &&
3918 mddev->delta_disks != 0)
3919 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3920 mddev->raid_disks - mddev->delta_disks);
3921 return sprintf(page, "%d\n", mddev->raid_disks);
3922 }
3923
3924 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3925
3926 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3927 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3928 {
3929 unsigned int n;
3930 int err;
3931
3932 err = kstrtouint(buf, 10, &n);
3933 if (err < 0)
3934 return err;
3935
3936 err = mddev_lock(mddev);
3937 if (err)
3938 return err;
3939 if (mddev->pers)
3940 err = update_raid_disks(mddev, n);
3941 else if (mddev->reshape_position != MaxSector) {
3942 struct md_rdev *rdev;
3943 int olddisks = mddev->raid_disks - mddev->delta_disks;
3944
3945 err = -EINVAL;
3946 rdev_for_each(rdev, mddev) {
3947 if (olddisks < n &&
3948 rdev->data_offset < rdev->new_data_offset)
3949 goto out_unlock;
3950 if (olddisks > n &&
3951 rdev->data_offset > rdev->new_data_offset)
3952 goto out_unlock;
3953 }
3954 err = 0;
3955 mddev->delta_disks = n - olddisks;
3956 mddev->raid_disks = n;
3957 mddev->reshape_backwards = (mddev->delta_disks < 0);
3958 } else
3959 mddev->raid_disks = n;
3960 out_unlock:
3961 mddev_unlock(mddev);
3962 return err ? err : len;
3963 }
3964 static struct md_sysfs_entry md_raid_disks =
3965 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3966
3967 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3968 chunk_size_show(struct mddev *mddev, char *page)
3969 {
3970 if (mddev->reshape_position != MaxSector &&
3971 mddev->chunk_sectors != mddev->new_chunk_sectors)
3972 return sprintf(page, "%d (%d)\n",
3973 mddev->new_chunk_sectors << 9,
3974 mddev->chunk_sectors << 9);
3975 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3976 }
3977
3978 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3979 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3980 {
3981 unsigned long n;
3982 int err;
3983
3984 err = kstrtoul(buf, 10, &n);
3985 if (err < 0)
3986 return err;
3987
3988 err = mddev_lock(mddev);
3989 if (err)
3990 return err;
3991 if (mddev->pers) {
3992 if (mddev->pers->check_reshape == NULL)
3993 err = -EBUSY;
3994 else if (mddev->ro)
3995 err = -EROFS;
3996 else {
3997 mddev->new_chunk_sectors = n >> 9;
3998 err = mddev->pers->check_reshape(mddev);
3999 if (err)
4000 mddev->new_chunk_sectors = mddev->chunk_sectors;
4001 }
4002 } else {
4003 mddev->new_chunk_sectors = n >> 9;
4004 if (mddev->reshape_position == MaxSector)
4005 mddev->chunk_sectors = n >> 9;
4006 }
4007 mddev_unlock(mddev);
4008 return err ?: len;
4009 }
4010 static struct md_sysfs_entry md_chunk_size =
4011 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4012
4013 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4014 resync_start_show(struct mddev *mddev, char *page)
4015 {
4016 if (mddev->recovery_cp == MaxSector)
4017 return sprintf(page, "none\n");
4018 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4019 }
4020
4021 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4022 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4023 {
4024 unsigned long long n;
4025 int err;
4026
4027 if (cmd_match(buf, "none"))
4028 n = MaxSector;
4029 else {
4030 err = kstrtoull(buf, 10, &n);
4031 if (err < 0)
4032 return err;
4033 if (n != (sector_t)n)
4034 return -EINVAL;
4035 }
4036
4037 err = mddev_lock(mddev);
4038 if (err)
4039 return err;
4040 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4041 err = -EBUSY;
4042
4043 if (!err) {
4044 mddev->recovery_cp = n;
4045 if (mddev->pers)
4046 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4047 }
4048 mddev_unlock(mddev);
4049 return err ?: len;
4050 }
4051 static struct md_sysfs_entry md_resync_start =
4052 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4053 resync_start_show, resync_start_store);
4054
4055 /*
4056 * The array state can be:
4057 *
4058 * clear
4059 * No devices, no size, no level
4060 * Equivalent to STOP_ARRAY ioctl
4061 * inactive
4062 * May have some settings, but array is not active
4063 * all IO results in error
4064 * When written, doesn't tear down array, but just stops it
4065 * suspended (not supported yet)
4066 * All IO requests will block. The array can be reconfigured.
4067 * Writing this, if accepted, will block until array is quiescent
4068 * readonly
4069 * no resync can happen. no superblocks get written.
4070 * write requests fail
4071 * read-auto
4072 * like readonly, but behaves like 'clean' on a write request.
4073 *
4074 * clean - no pending writes, but otherwise active.
4075 * When written to inactive array, starts without resync
4076 * If a write request arrives then
4077 * if metadata is known, mark 'dirty' and switch to 'active'.
4078 * if not known, block and switch to write-pending
4079 * If written to an active array that has pending writes, then fails.
4080 * active
4081 * fully active: IO and resync can be happening.
4082 * When written to inactive array, starts with resync
4083 *
4084 * write-pending
4085 * clean, but writes are blocked waiting for 'active' to be written.
4086 *
4087 * active-idle
4088 * like active, but no writes have been seen for a while (100msec).
4089 *
4090 */
4091 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4092 write_pending, active_idle, bad_word};
4093 static char *array_states[] = {
4094 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4095 "write-pending", "active-idle", NULL };
4096
match_word(const char * word,char ** list)4097 static int match_word(const char *word, char **list)
4098 {
4099 int n;
4100 for (n=0; list[n]; n++)
4101 if (cmd_match(word, list[n]))
4102 break;
4103 return n;
4104 }
4105
4106 static ssize_t
array_state_show(struct mddev * mddev,char * page)4107 array_state_show(struct mddev *mddev, char *page)
4108 {
4109 enum array_state st = inactive;
4110
4111 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags))
4112 switch(mddev->ro) {
4113 case 1:
4114 st = readonly;
4115 break;
4116 case 2:
4117 st = read_auto;
4118 break;
4119 case 0:
4120 spin_lock(&mddev->lock);
4121 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4122 st = write_pending;
4123 else if (mddev->in_sync)
4124 st = clean;
4125 else if (mddev->safemode)
4126 st = active_idle;
4127 else
4128 st = active;
4129 spin_unlock(&mddev->lock);
4130 }
4131 else {
4132 if (list_empty(&mddev->disks) &&
4133 mddev->raid_disks == 0 &&
4134 mddev->dev_sectors == 0)
4135 st = clear;
4136 else
4137 st = inactive;
4138 }
4139 return sprintf(page, "%s\n", array_states[st]);
4140 }
4141
4142 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4143 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4144 static int do_md_run(struct mddev *mddev);
4145 static int restart_array(struct mddev *mddev);
4146
4147 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4148 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4149 {
4150 int err = 0;
4151 enum array_state st = match_word(buf, array_states);
4152
4153 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4154 /* don't take reconfig_mutex when toggling between
4155 * clean and active
4156 */
4157 spin_lock(&mddev->lock);
4158 if (st == active) {
4159 restart_array(mddev);
4160 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4161 md_wakeup_thread(mddev->thread);
4162 wake_up(&mddev->sb_wait);
4163 } else /* st == clean */ {
4164 restart_array(mddev);
4165 if (!set_in_sync(mddev))
4166 err = -EBUSY;
4167 }
4168 if (!err)
4169 sysfs_notify_dirent_safe(mddev->sysfs_state);
4170 spin_unlock(&mddev->lock);
4171 return err ?: len;
4172 }
4173 err = mddev_lock(mddev);
4174 if (err)
4175 return err;
4176 err = -EINVAL;
4177 switch(st) {
4178 case bad_word:
4179 break;
4180 case clear:
4181 /* stopping an active array */
4182 err = do_md_stop(mddev, 0, NULL);
4183 break;
4184 case inactive:
4185 /* stopping an active array */
4186 if (mddev->pers)
4187 err = do_md_stop(mddev, 2, NULL);
4188 else
4189 err = 0; /* already inactive */
4190 break;
4191 case suspended:
4192 break; /* not supported yet */
4193 case readonly:
4194 if (mddev->pers)
4195 err = md_set_readonly(mddev, NULL);
4196 else {
4197 mddev->ro = 1;
4198 set_disk_ro(mddev->gendisk, 1);
4199 err = do_md_run(mddev);
4200 }
4201 break;
4202 case read_auto:
4203 if (mddev->pers) {
4204 if (mddev->ro == 0)
4205 err = md_set_readonly(mddev, NULL);
4206 else if (mddev->ro == 1)
4207 err = restart_array(mddev);
4208 if (err == 0) {
4209 mddev->ro = 2;
4210 set_disk_ro(mddev->gendisk, 0);
4211 }
4212 } else {
4213 mddev->ro = 2;
4214 err = do_md_run(mddev);
4215 }
4216 break;
4217 case clean:
4218 if (mddev->pers) {
4219 err = restart_array(mddev);
4220 if (err)
4221 break;
4222 spin_lock(&mddev->lock);
4223 if (!set_in_sync(mddev))
4224 err = -EBUSY;
4225 spin_unlock(&mddev->lock);
4226 } else
4227 err = -EINVAL;
4228 break;
4229 case active:
4230 if (mddev->pers) {
4231 err = restart_array(mddev);
4232 if (err)
4233 break;
4234 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4235 wake_up(&mddev->sb_wait);
4236 err = 0;
4237 } else {
4238 mddev->ro = 0;
4239 set_disk_ro(mddev->gendisk, 0);
4240 err = do_md_run(mddev);
4241 }
4242 break;
4243 case write_pending:
4244 case active_idle:
4245 /* these cannot be set */
4246 break;
4247 }
4248
4249 if (!err) {
4250 if (mddev->hold_active == UNTIL_IOCTL)
4251 mddev->hold_active = 0;
4252 sysfs_notify_dirent_safe(mddev->sysfs_state);
4253 }
4254 mddev_unlock(mddev);
4255 return err ?: len;
4256 }
4257 static struct md_sysfs_entry md_array_state =
4258 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4259
4260 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4261 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4262 return sprintf(page, "%d\n",
4263 atomic_read(&mddev->max_corr_read_errors));
4264 }
4265
4266 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4267 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4268 {
4269 unsigned int n;
4270 int rv;
4271
4272 rv = kstrtouint(buf, 10, &n);
4273 if (rv < 0)
4274 return rv;
4275 atomic_set(&mddev->max_corr_read_errors, n);
4276 return len;
4277 }
4278
4279 static struct md_sysfs_entry max_corr_read_errors =
4280 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4281 max_corrected_read_errors_store);
4282
4283 static ssize_t
null_show(struct mddev * mddev,char * page)4284 null_show(struct mddev *mddev, char *page)
4285 {
4286 return -EINVAL;
4287 }
4288
4289 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4290 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4291 {
4292 /* buf must be %d:%d\n? giving major and minor numbers */
4293 /* The new device is added to the array.
4294 * If the array has a persistent superblock, we read the
4295 * superblock to initialise info and check validity.
4296 * Otherwise, only checking done is that in bind_rdev_to_array,
4297 * which mainly checks size.
4298 */
4299 char *e;
4300 int major = simple_strtoul(buf, &e, 10);
4301 int minor;
4302 dev_t dev;
4303 struct md_rdev *rdev;
4304 int err;
4305
4306 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4307 return -EINVAL;
4308 minor = simple_strtoul(e+1, &e, 10);
4309 if (*e && *e != '\n')
4310 return -EINVAL;
4311 dev = MKDEV(major, minor);
4312 if (major != MAJOR(dev) ||
4313 minor != MINOR(dev))
4314 return -EOVERFLOW;
4315
4316 flush_workqueue(md_misc_wq);
4317
4318 err = mddev_lock(mddev);
4319 if (err)
4320 return err;
4321 if (mddev->persistent) {
4322 rdev = md_import_device(dev, mddev->major_version,
4323 mddev->minor_version);
4324 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4325 struct md_rdev *rdev0
4326 = list_entry(mddev->disks.next,
4327 struct md_rdev, same_set);
4328 err = super_types[mddev->major_version]
4329 .load_super(rdev, rdev0, mddev->minor_version);
4330 if (err < 0)
4331 goto out;
4332 }
4333 } else if (mddev->external)
4334 rdev = md_import_device(dev, -2, -1);
4335 else
4336 rdev = md_import_device(dev, -1, -1);
4337
4338 if (IS_ERR(rdev)) {
4339 mddev_unlock(mddev);
4340 return PTR_ERR(rdev);
4341 }
4342 err = bind_rdev_to_array(rdev, mddev);
4343 out:
4344 if (err)
4345 export_rdev(rdev);
4346 mddev_unlock(mddev);
4347 if (!err)
4348 md_new_event(mddev);
4349 return err ? err : len;
4350 }
4351
4352 static struct md_sysfs_entry md_new_device =
4353 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4354
4355 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4356 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 char *end;
4359 unsigned long chunk, end_chunk;
4360 int err;
4361
4362 err = mddev_lock(mddev);
4363 if (err)
4364 return err;
4365 if (!mddev->bitmap)
4366 goto out;
4367 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4368 while (*buf) {
4369 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4370 if (buf == end) break;
4371 if (*end == '-') { /* range */
4372 buf = end + 1;
4373 end_chunk = simple_strtoul(buf, &end, 0);
4374 if (buf == end) break;
4375 }
4376 if (*end && !isspace(*end)) break;
4377 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4378 buf = skip_spaces(end);
4379 }
4380 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4381 out:
4382 mddev_unlock(mddev);
4383 return len;
4384 }
4385
4386 static struct md_sysfs_entry md_bitmap =
4387 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4388
4389 static ssize_t
size_show(struct mddev * mddev,char * page)4390 size_show(struct mddev *mddev, char *page)
4391 {
4392 return sprintf(page, "%llu\n",
4393 (unsigned long long)mddev->dev_sectors / 2);
4394 }
4395
4396 static int update_size(struct mddev *mddev, sector_t num_sectors);
4397
4398 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4399 size_store(struct mddev *mddev, const char *buf, size_t len)
4400 {
4401 /* If array is inactive, we can reduce the component size, but
4402 * not increase it (except from 0).
4403 * If array is active, we can try an on-line resize
4404 */
4405 sector_t sectors;
4406 int err = strict_blocks_to_sectors(buf, §ors);
4407
4408 if (err < 0)
4409 return err;
4410 err = mddev_lock(mddev);
4411 if (err)
4412 return err;
4413 if (mddev->pers) {
4414 err = update_size(mddev, sectors);
4415 if (err == 0)
4416 md_update_sb(mddev, 1);
4417 } else {
4418 if (mddev->dev_sectors == 0 ||
4419 mddev->dev_sectors > sectors)
4420 mddev->dev_sectors = sectors;
4421 else
4422 err = -ENOSPC;
4423 }
4424 mddev_unlock(mddev);
4425 return err ? err : len;
4426 }
4427
4428 static struct md_sysfs_entry md_size =
4429 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4430
4431 /* Metadata version.
4432 * This is one of
4433 * 'none' for arrays with no metadata (good luck...)
4434 * 'external' for arrays with externally managed metadata,
4435 * or N.M for internally known formats
4436 */
4437 static ssize_t
metadata_show(struct mddev * mddev,char * page)4438 metadata_show(struct mddev *mddev, char *page)
4439 {
4440 if (mddev->persistent)
4441 return sprintf(page, "%d.%d\n",
4442 mddev->major_version, mddev->minor_version);
4443 else if (mddev->external)
4444 return sprintf(page, "external:%s\n", mddev->metadata_type);
4445 else
4446 return sprintf(page, "none\n");
4447 }
4448
4449 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4450 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4451 {
4452 int major, minor;
4453 char *e;
4454 int err;
4455 /* Changing the details of 'external' metadata is
4456 * always permitted. Otherwise there must be
4457 * no devices attached to the array.
4458 */
4459
4460 err = mddev_lock(mddev);
4461 if (err)
4462 return err;
4463 err = -EBUSY;
4464 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4465 ;
4466 else if (!list_empty(&mddev->disks))
4467 goto out_unlock;
4468
4469 err = 0;
4470 if (cmd_match(buf, "none")) {
4471 mddev->persistent = 0;
4472 mddev->external = 0;
4473 mddev->major_version = 0;
4474 mddev->minor_version = 90;
4475 goto out_unlock;
4476 }
4477 if (strncmp(buf, "external:", 9) == 0) {
4478 size_t namelen = len-9;
4479 if (namelen >= sizeof(mddev->metadata_type))
4480 namelen = sizeof(mddev->metadata_type)-1;
4481 strncpy(mddev->metadata_type, buf+9, namelen);
4482 mddev->metadata_type[namelen] = 0;
4483 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4484 mddev->metadata_type[--namelen] = 0;
4485 mddev->persistent = 0;
4486 mddev->external = 1;
4487 mddev->major_version = 0;
4488 mddev->minor_version = 90;
4489 goto out_unlock;
4490 }
4491 major = simple_strtoul(buf, &e, 10);
4492 err = -EINVAL;
4493 if (e==buf || *e != '.')
4494 goto out_unlock;
4495 buf = e+1;
4496 minor = simple_strtoul(buf, &e, 10);
4497 if (e==buf || (*e && *e != '\n') )
4498 goto out_unlock;
4499 err = -ENOENT;
4500 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4501 goto out_unlock;
4502 mddev->major_version = major;
4503 mddev->minor_version = minor;
4504 mddev->persistent = 1;
4505 mddev->external = 0;
4506 err = 0;
4507 out_unlock:
4508 mddev_unlock(mddev);
4509 return err ?: len;
4510 }
4511
4512 static struct md_sysfs_entry md_metadata =
4513 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4514
4515 static ssize_t
action_show(struct mddev * mddev,char * page)4516 action_show(struct mddev *mddev, char *page)
4517 {
4518 char *type = "idle";
4519 unsigned long recovery = mddev->recovery;
4520 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4521 type = "frozen";
4522 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4523 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4524 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4525 type = "reshape";
4526 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4527 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4528 type = "resync";
4529 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4530 type = "check";
4531 else
4532 type = "repair";
4533 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4534 type = "recover";
4535 else if (mddev->reshape_position != MaxSector)
4536 type = "reshape";
4537 }
4538 return sprintf(page, "%s\n", type);
4539 }
4540
4541 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4542 action_store(struct mddev *mddev, const char *page, size_t len)
4543 {
4544 if (!mddev->pers || !mddev->pers->sync_request)
4545 return -EINVAL;
4546
4547
4548 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4549 if (cmd_match(page, "frozen"))
4550 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4551 else
4552 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4554 mddev_lock(mddev) == 0) {
4555 flush_workqueue(md_misc_wq);
4556 if (mddev->sync_thread) {
4557 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558 md_reap_sync_thread(mddev);
4559 }
4560 mddev_unlock(mddev);
4561 }
4562 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4563 return -EBUSY;
4564 else if (cmd_match(page, "resync"))
4565 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4566 else if (cmd_match(page, "recover")) {
4567 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4568 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4569 } else if (cmd_match(page, "reshape")) {
4570 int err;
4571 if (mddev->pers->start_reshape == NULL)
4572 return -EINVAL;
4573 err = mddev_lock(mddev);
4574 if (!err) {
4575 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4576 err = -EBUSY;
4577 else {
4578 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4579 err = mddev->pers->start_reshape(mddev);
4580 }
4581 mddev_unlock(mddev);
4582 }
4583 if (err)
4584 return err;
4585 sysfs_notify(&mddev->kobj, NULL, "degraded");
4586 } else {
4587 if (cmd_match(page, "check"))
4588 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4589 else if (!cmd_match(page, "repair"))
4590 return -EINVAL;
4591 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4592 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4593 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4594 }
4595 if (mddev->ro == 2) {
4596 /* A write to sync_action is enough to justify
4597 * canceling read-auto mode
4598 */
4599 mddev->ro = 0;
4600 md_wakeup_thread(mddev->sync_thread);
4601 }
4602 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4603 md_wakeup_thread(mddev->thread);
4604 sysfs_notify_dirent_safe(mddev->sysfs_action);
4605 return len;
4606 }
4607
4608 static struct md_sysfs_entry md_scan_mode =
4609 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4610
4611 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4612 last_sync_action_show(struct mddev *mddev, char *page)
4613 {
4614 return sprintf(page, "%s\n", mddev->last_sync_action);
4615 }
4616
4617 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4618
4619 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4620 mismatch_cnt_show(struct mddev *mddev, char *page)
4621 {
4622 return sprintf(page, "%llu\n",
4623 (unsigned long long)
4624 atomic64_read(&mddev->resync_mismatches));
4625 }
4626
4627 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4628
4629 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4630 sync_min_show(struct mddev *mddev, char *page)
4631 {
4632 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4633 mddev->sync_speed_min ? "local": "system");
4634 }
4635
4636 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4637 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639 unsigned int min;
4640 int rv;
4641
4642 if (strncmp(buf, "system", 6)==0) {
4643 min = 0;
4644 } else {
4645 rv = kstrtouint(buf, 10, &min);
4646 if (rv < 0)
4647 return rv;
4648 if (min == 0)
4649 return -EINVAL;
4650 }
4651 mddev->sync_speed_min = min;
4652 return len;
4653 }
4654
4655 static struct md_sysfs_entry md_sync_min =
4656 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4657
4658 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4659 sync_max_show(struct mddev *mddev, char *page)
4660 {
4661 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4662 mddev->sync_speed_max ? "local": "system");
4663 }
4664
4665 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4666 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 unsigned int max;
4669 int rv;
4670
4671 if (strncmp(buf, "system", 6)==0) {
4672 max = 0;
4673 } else {
4674 rv = kstrtouint(buf, 10, &max);
4675 if (rv < 0)
4676 return rv;
4677 if (max == 0)
4678 return -EINVAL;
4679 }
4680 mddev->sync_speed_max = max;
4681 return len;
4682 }
4683
4684 static struct md_sysfs_entry md_sync_max =
4685 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4686
4687 static ssize_t
degraded_show(struct mddev * mddev,char * page)4688 degraded_show(struct mddev *mddev, char *page)
4689 {
4690 return sprintf(page, "%d\n", mddev->degraded);
4691 }
4692 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4693
4694 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4695 sync_force_parallel_show(struct mddev *mddev, char *page)
4696 {
4697 return sprintf(page, "%d\n", mddev->parallel_resync);
4698 }
4699
4700 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4701 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4702 {
4703 long n;
4704
4705 if (kstrtol(buf, 10, &n))
4706 return -EINVAL;
4707
4708 if (n != 0 && n != 1)
4709 return -EINVAL;
4710
4711 mddev->parallel_resync = n;
4712
4713 if (mddev->sync_thread)
4714 wake_up(&resync_wait);
4715
4716 return len;
4717 }
4718
4719 /* force parallel resync, even with shared block devices */
4720 static struct md_sysfs_entry md_sync_force_parallel =
4721 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4722 sync_force_parallel_show, sync_force_parallel_store);
4723
4724 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4725 sync_speed_show(struct mddev *mddev, char *page)
4726 {
4727 unsigned long resync, dt, db;
4728 if (mddev->curr_resync == 0)
4729 return sprintf(page, "none\n");
4730 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4731 dt = (jiffies - mddev->resync_mark) / HZ;
4732 if (!dt) dt++;
4733 db = resync - mddev->resync_mark_cnt;
4734 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4735 }
4736
4737 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4738
4739 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4740 sync_completed_show(struct mddev *mddev, char *page)
4741 {
4742 unsigned long long max_sectors, resync;
4743
4744 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4745 return sprintf(page, "none\n");
4746
4747 if (mddev->curr_resync == 1 ||
4748 mddev->curr_resync == 2)
4749 return sprintf(page, "delayed\n");
4750
4751 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4752 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4753 max_sectors = mddev->resync_max_sectors;
4754 else
4755 max_sectors = mddev->dev_sectors;
4756
4757 resync = mddev->curr_resync_completed;
4758 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4759 }
4760
4761 static struct md_sysfs_entry md_sync_completed =
4762 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4763
4764 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4765 min_sync_show(struct mddev *mddev, char *page)
4766 {
4767 return sprintf(page, "%llu\n",
4768 (unsigned long long)mddev->resync_min);
4769 }
4770 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4771 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4772 {
4773 unsigned long long min;
4774 int err;
4775
4776 if (kstrtoull(buf, 10, &min))
4777 return -EINVAL;
4778
4779 spin_lock(&mddev->lock);
4780 err = -EINVAL;
4781 if (min > mddev->resync_max)
4782 goto out_unlock;
4783
4784 err = -EBUSY;
4785 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4786 goto out_unlock;
4787
4788 /* Round down to multiple of 4K for safety */
4789 mddev->resync_min = round_down(min, 8);
4790 err = 0;
4791
4792 out_unlock:
4793 spin_unlock(&mddev->lock);
4794 return err ?: len;
4795 }
4796
4797 static struct md_sysfs_entry md_min_sync =
4798 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4799
4800 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4801 max_sync_show(struct mddev *mddev, char *page)
4802 {
4803 if (mddev->resync_max == MaxSector)
4804 return sprintf(page, "max\n");
4805 else
4806 return sprintf(page, "%llu\n",
4807 (unsigned long long)mddev->resync_max);
4808 }
4809 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4810 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4811 {
4812 int err;
4813 spin_lock(&mddev->lock);
4814 if (strncmp(buf, "max", 3) == 0)
4815 mddev->resync_max = MaxSector;
4816 else {
4817 unsigned long long max;
4818 int chunk;
4819
4820 err = -EINVAL;
4821 if (kstrtoull(buf, 10, &max))
4822 goto out_unlock;
4823 if (max < mddev->resync_min)
4824 goto out_unlock;
4825
4826 err = -EBUSY;
4827 if (max < mddev->resync_max &&
4828 mddev->ro == 0 &&
4829 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4830 goto out_unlock;
4831
4832 /* Must be a multiple of chunk_size */
4833 chunk = mddev->chunk_sectors;
4834 if (chunk) {
4835 sector_t temp = max;
4836
4837 err = -EINVAL;
4838 if (sector_div(temp, chunk))
4839 goto out_unlock;
4840 }
4841 mddev->resync_max = max;
4842 }
4843 wake_up(&mddev->recovery_wait);
4844 err = 0;
4845 out_unlock:
4846 spin_unlock(&mddev->lock);
4847 return err ?: len;
4848 }
4849
4850 static struct md_sysfs_entry md_max_sync =
4851 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4852
4853 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4854 suspend_lo_show(struct mddev *mddev, char *page)
4855 {
4856 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4857 }
4858
4859 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4860 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4861 {
4862 unsigned long long new;
4863 int err;
4864
4865 err = kstrtoull(buf, 10, &new);
4866 if (err < 0)
4867 return err;
4868 if (new != (sector_t)new)
4869 return -EINVAL;
4870
4871 err = mddev_lock(mddev);
4872 if (err)
4873 return err;
4874 err = -EINVAL;
4875 if (mddev->pers == NULL ||
4876 mddev->pers->quiesce == NULL)
4877 goto unlock;
4878 mddev_suspend(mddev);
4879 mddev->suspend_lo = new;
4880 mddev_resume(mddev);
4881
4882 err = 0;
4883 unlock:
4884 mddev_unlock(mddev);
4885 return err ?: len;
4886 }
4887 static struct md_sysfs_entry md_suspend_lo =
4888 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4889
4890 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4891 suspend_hi_show(struct mddev *mddev, char *page)
4892 {
4893 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4894 }
4895
4896 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4897 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4898 {
4899 unsigned long long new;
4900 int err;
4901
4902 err = kstrtoull(buf, 10, &new);
4903 if (err < 0)
4904 return err;
4905 if (new != (sector_t)new)
4906 return -EINVAL;
4907
4908 err = mddev_lock(mddev);
4909 if (err)
4910 return err;
4911 err = -EINVAL;
4912 if (mddev->pers == NULL)
4913 goto unlock;
4914
4915 mddev_suspend(mddev);
4916 mddev->suspend_hi = new;
4917 mddev_resume(mddev);
4918
4919 err = 0;
4920 unlock:
4921 mddev_unlock(mddev);
4922 return err ?: len;
4923 }
4924 static struct md_sysfs_entry md_suspend_hi =
4925 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4926
4927 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4928 reshape_position_show(struct mddev *mddev, char *page)
4929 {
4930 if (mddev->reshape_position != MaxSector)
4931 return sprintf(page, "%llu\n",
4932 (unsigned long long)mddev->reshape_position);
4933 strcpy(page, "none\n");
4934 return 5;
4935 }
4936
4937 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4938 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4939 {
4940 struct md_rdev *rdev;
4941 unsigned long long new;
4942 int err;
4943
4944 err = kstrtoull(buf, 10, &new);
4945 if (err < 0)
4946 return err;
4947 if (new != (sector_t)new)
4948 return -EINVAL;
4949 err = mddev_lock(mddev);
4950 if (err)
4951 return err;
4952 err = -EBUSY;
4953 if (mddev->pers)
4954 goto unlock;
4955 mddev->reshape_position = new;
4956 mddev->delta_disks = 0;
4957 mddev->reshape_backwards = 0;
4958 mddev->new_level = mddev->level;
4959 mddev->new_layout = mddev->layout;
4960 mddev->new_chunk_sectors = mddev->chunk_sectors;
4961 rdev_for_each(rdev, mddev)
4962 rdev->new_data_offset = rdev->data_offset;
4963 err = 0;
4964 unlock:
4965 mddev_unlock(mddev);
4966 return err ?: len;
4967 }
4968
4969 static struct md_sysfs_entry md_reshape_position =
4970 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4971 reshape_position_store);
4972
4973 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4974 reshape_direction_show(struct mddev *mddev, char *page)
4975 {
4976 return sprintf(page, "%s\n",
4977 mddev->reshape_backwards ? "backwards" : "forwards");
4978 }
4979
4980 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4981 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4982 {
4983 int backwards = 0;
4984 int err;
4985
4986 if (cmd_match(buf, "forwards"))
4987 backwards = 0;
4988 else if (cmd_match(buf, "backwards"))
4989 backwards = 1;
4990 else
4991 return -EINVAL;
4992 if (mddev->reshape_backwards == backwards)
4993 return len;
4994
4995 err = mddev_lock(mddev);
4996 if (err)
4997 return err;
4998 /* check if we are allowed to change */
4999 if (mddev->delta_disks)
5000 err = -EBUSY;
5001 else if (mddev->persistent &&
5002 mddev->major_version == 0)
5003 err = -EINVAL;
5004 else
5005 mddev->reshape_backwards = backwards;
5006 mddev_unlock(mddev);
5007 return err ?: len;
5008 }
5009
5010 static struct md_sysfs_entry md_reshape_direction =
5011 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5012 reshape_direction_store);
5013
5014 static ssize_t
array_size_show(struct mddev * mddev,char * page)5015 array_size_show(struct mddev *mddev, char *page)
5016 {
5017 if (mddev->external_size)
5018 return sprintf(page, "%llu\n",
5019 (unsigned long long)mddev->array_sectors/2);
5020 else
5021 return sprintf(page, "default\n");
5022 }
5023
5024 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5025 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5026 {
5027 sector_t sectors;
5028 int err;
5029
5030 err = mddev_lock(mddev);
5031 if (err)
5032 return err;
5033
5034 /* cluster raid doesn't support change array_sectors */
5035 if (mddev_is_clustered(mddev)) {
5036 mddev_unlock(mddev);
5037 return -EINVAL;
5038 }
5039
5040 if (strncmp(buf, "default", 7) == 0) {
5041 if (mddev->pers)
5042 sectors = mddev->pers->size(mddev, 0, 0);
5043 else
5044 sectors = mddev->array_sectors;
5045
5046 mddev->external_size = 0;
5047 } else {
5048 if (strict_blocks_to_sectors(buf, §ors) < 0)
5049 err = -EINVAL;
5050 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5051 err = -E2BIG;
5052 else
5053 mddev->external_size = 1;
5054 }
5055
5056 if (!err) {
5057 mddev->array_sectors = sectors;
5058 if (mddev->pers) {
5059 set_capacity(mddev->gendisk, mddev->array_sectors);
5060 revalidate_disk(mddev->gendisk);
5061 }
5062 }
5063 mddev_unlock(mddev);
5064 return err ?: len;
5065 }
5066
5067 static struct md_sysfs_entry md_array_size =
5068 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5069 array_size_store);
5070
5071 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5072 consistency_policy_show(struct mddev *mddev, char *page)
5073 {
5074 int ret;
5075
5076 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5077 ret = sprintf(page, "journal\n");
5078 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5079 ret = sprintf(page, "ppl\n");
5080 } else if (mddev->bitmap) {
5081 ret = sprintf(page, "bitmap\n");
5082 } else if (mddev->pers) {
5083 if (mddev->pers->sync_request)
5084 ret = sprintf(page, "resync\n");
5085 else
5086 ret = sprintf(page, "none\n");
5087 } else {
5088 ret = sprintf(page, "unknown\n");
5089 }
5090
5091 return ret;
5092 }
5093
5094 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5095 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5096 {
5097 int err = 0;
5098
5099 if (mddev->pers) {
5100 if (mddev->pers->change_consistency_policy)
5101 err = mddev->pers->change_consistency_policy(mddev, buf);
5102 else
5103 err = -EBUSY;
5104 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5105 set_bit(MD_HAS_PPL, &mddev->flags);
5106 } else {
5107 err = -EINVAL;
5108 }
5109
5110 return err ? err : len;
5111 }
5112
5113 static struct md_sysfs_entry md_consistency_policy =
5114 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5115 consistency_policy_store);
5116
5117 static struct attribute *md_default_attrs[] = {
5118 &md_level.attr,
5119 &md_layout.attr,
5120 &md_raid_disks.attr,
5121 &md_chunk_size.attr,
5122 &md_size.attr,
5123 &md_resync_start.attr,
5124 &md_metadata.attr,
5125 &md_new_device.attr,
5126 &md_safe_delay.attr,
5127 &md_array_state.attr,
5128 &md_reshape_position.attr,
5129 &md_reshape_direction.attr,
5130 &md_array_size.attr,
5131 &max_corr_read_errors.attr,
5132 &md_consistency_policy.attr,
5133 NULL,
5134 };
5135
5136 static struct attribute *md_redundancy_attrs[] = {
5137 &md_scan_mode.attr,
5138 &md_last_scan_mode.attr,
5139 &md_mismatches.attr,
5140 &md_sync_min.attr,
5141 &md_sync_max.attr,
5142 &md_sync_speed.attr,
5143 &md_sync_force_parallel.attr,
5144 &md_sync_completed.attr,
5145 &md_min_sync.attr,
5146 &md_max_sync.attr,
5147 &md_suspend_lo.attr,
5148 &md_suspend_hi.attr,
5149 &md_bitmap.attr,
5150 &md_degraded.attr,
5151 NULL,
5152 };
5153 static struct attribute_group md_redundancy_group = {
5154 .name = NULL,
5155 .attrs = md_redundancy_attrs,
5156 };
5157
5158 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5159 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5160 {
5161 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5162 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5163 ssize_t rv;
5164
5165 if (!entry->show)
5166 return -EIO;
5167 spin_lock(&all_mddevs_lock);
5168 if (list_empty(&mddev->all_mddevs)) {
5169 spin_unlock(&all_mddevs_lock);
5170 return -EBUSY;
5171 }
5172 mddev_get(mddev);
5173 spin_unlock(&all_mddevs_lock);
5174
5175 rv = entry->show(mddev, page);
5176 mddev_put(mddev);
5177 return rv;
5178 }
5179
5180 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5181 md_attr_store(struct kobject *kobj, struct attribute *attr,
5182 const char *page, size_t length)
5183 {
5184 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5185 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5186 ssize_t rv;
5187
5188 if (!entry->store)
5189 return -EIO;
5190 if (!capable(CAP_SYS_ADMIN))
5191 return -EACCES;
5192 spin_lock(&all_mddevs_lock);
5193 if (list_empty(&mddev->all_mddevs)) {
5194 spin_unlock(&all_mddevs_lock);
5195 return -EBUSY;
5196 }
5197 mddev_get(mddev);
5198 spin_unlock(&all_mddevs_lock);
5199 rv = entry->store(mddev, page, length);
5200 mddev_put(mddev);
5201 return rv;
5202 }
5203
md_free(struct kobject * ko)5204 static void md_free(struct kobject *ko)
5205 {
5206 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5207
5208 if (mddev->sysfs_state)
5209 sysfs_put(mddev->sysfs_state);
5210
5211 if (mddev->queue)
5212 blk_cleanup_queue(mddev->queue);
5213 if (mddev->gendisk) {
5214 del_gendisk(mddev->gendisk);
5215 put_disk(mddev->gendisk);
5216 }
5217 percpu_ref_exit(&mddev->writes_pending);
5218
5219 kfree(mddev);
5220 }
5221
5222 static const struct sysfs_ops md_sysfs_ops = {
5223 .show = md_attr_show,
5224 .store = md_attr_store,
5225 };
5226 static struct kobj_type md_ktype = {
5227 .release = md_free,
5228 .sysfs_ops = &md_sysfs_ops,
5229 .default_attrs = md_default_attrs,
5230 };
5231
5232 int mdp_major = 0;
5233
mddev_delayed_delete(struct work_struct * ws)5234 static void mddev_delayed_delete(struct work_struct *ws)
5235 {
5236 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5237
5238 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5239 kobject_del(&mddev->kobj);
5240 kobject_put(&mddev->kobj);
5241 }
5242
no_op(struct percpu_ref * r)5243 static void no_op(struct percpu_ref *r) {}
5244
mddev_init_writes_pending(struct mddev * mddev)5245 int mddev_init_writes_pending(struct mddev *mddev)
5246 {
5247 if (mddev->writes_pending.percpu_count_ptr)
5248 return 0;
5249 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5250 return -ENOMEM;
5251 /* We want to start with the refcount at zero */
5252 percpu_ref_put(&mddev->writes_pending);
5253 return 0;
5254 }
5255 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5256
md_alloc(dev_t dev,char * name)5257 static int md_alloc(dev_t dev, char *name)
5258 {
5259 /*
5260 * If dev is zero, name is the name of a device to allocate with
5261 * an arbitrary minor number. It will be "md_???"
5262 * If dev is non-zero it must be a device number with a MAJOR of
5263 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5264 * the device is being created by opening a node in /dev.
5265 * If "name" is not NULL, the device is being created by
5266 * writing to /sys/module/md_mod/parameters/new_array.
5267 */
5268 static DEFINE_MUTEX(disks_mutex);
5269 struct mddev *mddev = mddev_find(dev);
5270 struct gendisk *disk;
5271 int partitioned;
5272 int shift;
5273 int unit;
5274 int error;
5275
5276 if (!mddev)
5277 return -ENODEV;
5278
5279 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5280 shift = partitioned ? MdpMinorShift : 0;
5281 unit = MINOR(mddev->unit) >> shift;
5282
5283 /* wait for any previous instance of this device to be
5284 * completely removed (mddev_delayed_delete).
5285 */
5286 flush_workqueue(md_misc_wq);
5287
5288 mutex_lock(&disks_mutex);
5289 error = -EEXIST;
5290 if (mddev->gendisk)
5291 goto abort;
5292
5293 if (name && !dev) {
5294 /* Need to ensure that 'name' is not a duplicate.
5295 */
5296 struct mddev *mddev2;
5297 spin_lock(&all_mddevs_lock);
5298
5299 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5300 if (mddev2->gendisk &&
5301 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5302 spin_unlock(&all_mddevs_lock);
5303 goto abort;
5304 }
5305 spin_unlock(&all_mddevs_lock);
5306 }
5307 if (name && dev)
5308 /*
5309 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5310 */
5311 mddev->hold_active = UNTIL_STOP;
5312
5313 error = -ENOMEM;
5314 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5315 if (!mddev->queue)
5316 goto abort;
5317 mddev->queue->queuedata = mddev;
5318
5319 blk_queue_make_request(mddev->queue, md_make_request);
5320 blk_set_stacking_limits(&mddev->queue->limits);
5321
5322 disk = alloc_disk(1 << shift);
5323 if (!disk) {
5324 blk_cleanup_queue(mddev->queue);
5325 mddev->queue = NULL;
5326 goto abort;
5327 }
5328 disk->major = MAJOR(mddev->unit);
5329 disk->first_minor = unit << shift;
5330 if (name)
5331 strcpy(disk->disk_name, name);
5332 else if (partitioned)
5333 sprintf(disk->disk_name, "md_d%d", unit);
5334 else
5335 sprintf(disk->disk_name, "md%d", unit);
5336 disk->fops = &md_fops;
5337 disk->private_data = mddev;
5338 disk->queue = mddev->queue;
5339 blk_queue_write_cache(mddev->queue, true, true);
5340 /* Allow extended partitions. This makes the
5341 * 'mdp' device redundant, but we can't really
5342 * remove it now.
5343 */
5344 disk->flags |= GENHD_FL_EXT_DEVT;
5345 mddev->gendisk = disk;
5346 /* As soon as we call add_disk(), another thread could get
5347 * through to md_open, so make sure it doesn't get too far
5348 */
5349 mutex_lock(&mddev->open_mutex);
5350 add_disk(disk);
5351
5352 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5353 &disk_to_dev(disk)->kobj, "%s", "md");
5354 if (error) {
5355 /* This isn't possible, but as kobject_init_and_add is marked
5356 * __must_check, we must do something with the result
5357 */
5358 pr_debug("md: cannot register %s/md - name in use\n",
5359 disk->disk_name);
5360 error = 0;
5361 }
5362 if (mddev->kobj.sd &&
5363 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5364 pr_debug("pointless warning\n");
5365 mutex_unlock(&mddev->open_mutex);
5366 abort:
5367 mutex_unlock(&disks_mutex);
5368 if (!error && mddev->kobj.sd) {
5369 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5370 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5371 }
5372 mddev_put(mddev);
5373 return error;
5374 }
5375
md_probe(dev_t dev,int * part,void * data)5376 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5377 {
5378 if (create_on_open)
5379 md_alloc(dev, NULL);
5380 return NULL;
5381 }
5382
add_named_array(const char * val,const struct kernel_param * kp)5383 static int add_named_array(const char *val, const struct kernel_param *kp)
5384 {
5385 /*
5386 * val must be "md_*" or "mdNNN".
5387 * For "md_*" we allocate an array with a large free minor number, and
5388 * set the name to val. val must not already be an active name.
5389 * For "mdNNN" we allocate an array with the minor number NNN
5390 * which must not already be in use.
5391 */
5392 int len = strlen(val);
5393 char buf[DISK_NAME_LEN];
5394 unsigned long devnum;
5395
5396 while (len && val[len-1] == '\n')
5397 len--;
5398 if (len >= DISK_NAME_LEN)
5399 return -E2BIG;
5400 strlcpy(buf, val, len+1);
5401 if (strncmp(buf, "md_", 3) == 0)
5402 return md_alloc(0, buf);
5403 if (strncmp(buf, "md", 2) == 0 &&
5404 isdigit(buf[2]) &&
5405 kstrtoul(buf+2, 10, &devnum) == 0 &&
5406 devnum <= MINORMASK)
5407 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5408
5409 return -EINVAL;
5410 }
5411
md_safemode_timeout(unsigned long data)5412 static void md_safemode_timeout(unsigned long data)
5413 {
5414 struct mddev *mddev = (struct mddev *) data;
5415
5416 mddev->safemode = 1;
5417 if (mddev->external)
5418 sysfs_notify_dirent_safe(mddev->sysfs_state);
5419
5420 md_wakeup_thread(mddev->thread);
5421 }
5422
5423 static int start_dirty_degraded;
5424
md_run(struct mddev * mddev)5425 int md_run(struct mddev *mddev)
5426 {
5427 int err;
5428 struct md_rdev *rdev;
5429 struct md_personality *pers;
5430
5431 if (list_empty(&mddev->disks))
5432 /* cannot run an array with no devices.. */
5433 return -EINVAL;
5434
5435 if (mddev->pers)
5436 return -EBUSY;
5437 /* Cannot run until previous stop completes properly */
5438 if (mddev->sysfs_active)
5439 return -EBUSY;
5440
5441 /*
5442 * Analyze all RAID superblock(s)
5443 */
5444 if (!mddev->raid_disks) {
5445 if (!mddev->persistent)
5446 return -EINVAL;
5447 analyze_sbs(mddev);
5448 }
5449
5450 if (mddev->level != LEVEL_NONE)
5451 request_module("md-level-%d", mddev->level);
5452 else if (mddev->clevel[0])
5453 request_module("md-%s", mddev->clevel);
5454
5455 /*
5456 * Drop all container device buffers, from now on
5457 * the only valid external interface is through the md
5458 * device.
5459 */
5460 mddev->has_superblocks = false;
5461 rdev_for_each(rdev, mddev) {
5462 if (test_bit(Faulty, &rdev->flags))
5463 continue;
5464 sync_blockdev(rdev->bdev);
5465 invalidate_bdev(rdev->bdev);
5466 if (mddev->ro != 1 &&
5467 (bdev_read_only(rdev->bdev) ||
5468 bdev_read_only(rdev->meta_bdev))) {
5469 mddev->ro = 1;
5470 if (mddev->gendisk)
5471 set_disk_ro(mddev->gendisk, 1);
5472 }
5473
5474 if (rdev->sb_page)
5475 mddev->has_superblocks = true;
5476
5477 /* perform some consistency tests on the device.
5478 * We don't want the data to overlap the metadata,
5479 * Internal Bitmap issues have been handled elsewhere.
5480 */
5481 if (rdev->meta_bdev) {
5482 /* Nothing to check */;
5483 } else if (rdev->data_offset < rdev->sb_start) {
5484 if (mddev->dev_sectors &&
5485 rdev->data_offset + mddev->dev_sectors
5486 > rdev->sb_start) {
5487 pr_warn("md: %s: data overlaps metadata\n",
5488 mdname(mddev));
5489 return -EINVAL;
5490 }
5491 } else {
5492 if (rdev->sb_start + rdev->sb_size/512
5493 > rdev->data_offset) {
5494 pr_warn("md: %s: metadata overlaps data\n",
5495 mdname(mddev));
5496 return -EINVAL;
5497 }
5498 }
5499 sysfs_notify_dirent_safe(rdev->sysfs_state);
5500 }
5501
5502 if (mddev->bio_set == NULL) {
5503 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5504 if (!mddev->bio_set)
5505 return -ENOMEM;
5506 }
5507 if (mddev->sync_set == NULL) {
5508 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5509 if (!mddev->sync_set) {
5510 err = -ENOMEM;
5511 goto abort;
5512 }
5513 }
5514
5515 spin_lock(&pers_lock);
5516 pers = find_pers(mddev->level, mddev->clevel);
5517 if (!pers || !try_module_get(pers->owner)) {
5518 spin_unlock(&pers_lock);
5519 if (mddev->level != LEVEL_NONE)
5520 pr_warn("md: personality for level %d is not loaded!\n",
5521 mddev->level);
5522 else
5523 pr_warn("md: personality for level %s is not loaded!\n",
5524 mddev->clevel);
5525 err = -EINVAL;
5526 goto abort;
5527 }
5528 spin_unlock(&pers_lock);
5529 if (mddev->level != pers->level) {
5530 mddev->level = pers->level;
5531 mddev->new_level = pers->level;
5532 }
5533 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5534
5535 if (mddev->reshape_position != MaxSector &&
5536 pers->start_reshape == NULL) {
5537 /* This personality cannot handle reshaping... */
5538 module_put(pers->owner);
5539 err = -EINVAL;
5540 goto abort;
5541 }
5542
5543 if (pers->sync_request) {
5544 /* Warn if this is a potentially silly
5545 * configuration.
5546 */
5547 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5548 struct md_rdev *rdev2;
5549 int warned = 0;
5550
5551 rdev_for_each(rdev, mddev)
5552 rdev_for_each(rdev2, mddev) {
5553 if (rdev < rdev2 &&
5554 rdev->bdev->bd_contains ==
5555 rdev2->bdev->bd_contains) {
5556 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5557 mdname(mddev),
5558 bdevname(rdev->bdev,b),
5559 bdevname(rdev2->bdev,b2));
5560 warned = 1;
5561 }
5562 }
5563
5564 if (warned)
5565 pr_warn("True protection against single-disk failure might be compromised.\n");
5566 }
5567
5568 mddev->recovery = 0;
5569 /* may be over-ridden by personality */
5570 mddev->resync_max_sectors = mddev->dev_sectors;
5571
5572 mddev->ok_start_degraded = start_dirty_degraded;
5573
5574 if (start_readonly && mddev->ro == 0)
5575 mddev->ro = 2; /* read-only, but switch on first write */
5576
5577 /*
5578 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5579 * up mddev->thread. It is important to initialize critical
5580 * resources for mddev->thread BEFORE calling pers->run().
5581 */
5582 err = pers->run(mddev);
5583 if (err)
5584 pr_warn("md: pers->run() failed ...\n");
5585 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5586 WARN_ONCE(!mddev->external_size,
5587 "%s: default size too small, but 'external_size' not in effect?\n",
5588 __func__);
5589 pr_warn("md: invalid array_size %llu > default size %llu\n",
5590 (unsigned long long)mddev->array_sectors / 2,
5591 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5592 err = -EINVAL;
5593 }
5594 if (err == 0 && pers->sync_request &&
5595 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5596 struct bitmap *bitmap;
5597
5598 bitmap = bitmap_create(mddev, -1);
5599 if (IS_ERR(bitmap)) {
5600 err = PTR_ERR(bitmap);
5601 pr_warn("%s: failed to create bitmap (%d)\n",
5602 mdname(mddev), err);
5603 } else
5604 mddev->bitmap = bitmap;
5605
5606 }
5607 if (err) {
5608 mddev_detach(mddev);
5609 if (mddev->private)
5610 pers->free(mddev, mddev->private);
5611 mddev->private = NULL;
5612 module_put(pers->owner);
5613 bitmap_destroy(mddev);
5614 goto abort;
5615 }
5616 if (mddev->queue) {
5617 bool nonrot = true;
5618
5619 rdev_for_each(rdev, mddev) {
5620 if (rdev->raid_disk >= 0 &&
5621 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5622 nonrot = false;
5623 break;
5624 }
5625 }
5626 if (mddev->degraded)
5627 nonrot = false;
5628 if (nonrot)
5629 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5630 else
5631 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5632 mddev->queue->backing_dev_info->congested_data = mddev;
5633 mddev->queue->backing_dev_info->congested_fn = md_congested;
5634 }
5635 if (pers->sync_request) {
5636 if (mddev->kobj.sd &&
5637 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5638 pr_warn("md: cannot register extra attributes for %s\n",
5639 mdname(mddev));
5640 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5641 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5642 mddev->ro = 0;
5643
5644 atomic_set(&mddev->max_corr_read_errors,
5645 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5646 mddev->safemode = 0;
5647 if (mddev_is_clustered(mddev))
5648 mddev->safemode_delay = 0;
5649 else
5650 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5651 mddev->in_sync = 1;
5652 smp_wmb();
5653 spin_lock(&mddev->lock);
5654 mddev->pers = pers;
5655 spin_unlock(&mddev->lock);
5656 rdev_for_each(rdev, mddev)
5657 if (rdev->raid_disk >= 0)
5658 if (sysfs_link_rdev(mddev, rdev))
5659 /* failure here is OK */;
5660
5661 if (mddev->degraded && !mddev->ro)
5662 /* This ensures that recovering status is reported immediately
5663 * via sysfs - until a lack of spares is confirmed.
5664 */
5665 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5666 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5667
5668 if (mddev->sb_flags)
5669 md_update_sb(mddev, 0);
5670
5671 md_new_event(mddev);
5672 return 0;
5673
5674 abort:
5675 if (mddev->bio_set) {
5676 bioset_free(mddev->bio_set);
5677 mddev->bio_set = NULL;
5678 }
5679 if (mddev->sync_set) {
5680 bioset_free(mddev->sync_set);
5681 mddev->sync_set = NULL;
5682 }
5683
5684 return err;
5685 }
5686 EXPORT_SYMBOL_GPL(md_run);
5687
do_md_run(struct mddev * mddev)5688 static int do_md_run(struct mddev *mddev)
5689 {
5690 int err;
5691
5692 set_bit(MD_NOT_READY, &mddev->flags);
5693 err = md_run(mddev);
5694 if (err)
5695 goto out;
5696 err = bitmap_load(mddev);
5697 if (err) {
5698 bitmap_destroy(mddev);
5699 goto out;
5700 }
5701
5702 if (mddev_is_clustered(mddev))
5703 md_allow_write(mddev);
5704
5705 md_wakeup_thread(mddev->thread);
5706 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5707
5708 set_capacity(mddev->gendisk, mddev->array_sectors);
5709 revalidate_disk(mddev->gendisk);
5710 clear_bit(MD_NOT_READY, &mddev->flags);
5711 mddev->changed = 1;
5712 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5713 sysfs_notify_dirent_safe(mddev->sysfs_state);
5714 sysfs_notify_dirent_safe(mddev->sysfs_action);
5715 sysfs_notify(&mddev->kobj, NULL, "degraded");
5716 out:
5717 clear_bit(MD_NOT_READY, &mddev->flags);
5718 return err;
5719 }
5720
restart_array(struct mddev * mddev)5721 static int restart_array(struct mddev *mddev)
5722 {
5723 struct gendisk *disk = mddev->gendisk;
5724 struct md_rdev *rdev;
5725 bool has_journal = false;
5726 bool has_readonly = false;
5727
5728 /* Complain if it has no devices */
5729 if (list_empty(&mddev->disks))
5730 return -ENXIO;
5731 if (!mddev->pers)
5732 return -EINVAL;
5733 if (!mddev->ro)
5734 return -EBUSY;
5735
5736 rcu_read_lock();
5737 rdev_for_each_rcu(rdev, mddev) {
5738 if (test_bit(Journal, &rdev->flags) &&
5739 !test_bit(Faulty, &rdev->flags))
5740 has_journal = true;
5741 if (bdev_read_only(rdev->bdev))
5742 has_readonly = true;
5743 }
5744 rcu_read_unlock();
5745 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5746 /* Don't restart rw with journal missing/faulty */
5747 return -EINVAL;
5748 if (has_readonly)
5749 return -EROFS;
5750
5751 mddev->safemode = 0;
5752 mddev->ro = 0;
5753 set_disk_ro(disk, 0);
5754 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5755 /* Kick recovery or resync if necessary */
5756 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5757 md_wakeup_thread(mddev->thread);
5758 md_wakeup_thread(mddev->sync_thread);
5759 sysfs_notify_dirent_safe(mddev->sysfs_state);
5760 return 0;
5761 }
5762
md_clean(struct mddev * mddev)5763 static void md_clean(struct mddev *mddev)
5764 {
5765 mddev->array_sectors = 0;
5766 mddev->external_size = 0;
5767 mddev->dev_sectors = 0;
5768 mddev->raid_disks = 0;
5769 mddev->recovery_cp = 0;
5770 mddev->resync_min = 0;
5771 mddev->resync_max = MaxSector;
5772 mddev->reshape_position = MaxSector;
5773 mddev->external = 0;
5774 mddev->persistent = 0;
5775 mddev->level = LEVEL_NONE;
5776 mddev->clevel[0] = 0;
5777 mddev->flags = 0;
5778 mddev->sb_flags = 0;
5779 mddev->ro = 0;
5780 mddev->metadata_type[0] = 0;
5781 mddev->chunk_sectors = 0;
5782 mddev->ctime = mddev->utime = 0;
5783 mddev->layout = 0;
5784 mddev->max_disks = 0;
5785 mddev->events = 0;
5786 mddev->can_decrease_events = 0;
5787 mddev->delta_disks = 0;
5788 mddev->reshape_backwards = 0;
5789 mddev->new_level = LEVEL_NONE;
5790 mddev->new_layout = 0;
5791 mddev->new_chunk_sectors = 0;
5792 mddev->curr_resync = 0;
5793 atomic64_set(&mddev->resync_mismatches, 0);
5794 mddev->suspend_lo = mddev->suspend_hi = 0;
5795 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5796 mddev->recovery = 0;
5797 mddev->in_sync = 0;
5798 mddev->changed = 0;
5799 mddev->degraded = 0;
5800 mddev->safemode = 0;
5801 mddev->private = NULL;
5802 mddev->cluster_info = NULL;
5803 mddev->bitmap_info.offset = 0;
5804 mddev->bitmap_info.default_offset = 0;
5805 mddev->bitmap_info.default_space = 0;
5806 mddev->bitmap_info.chunksize = 0;
5807 mddev->bitmap_info.daemon_sleep = 0;
5808 mddev->bitmap_info.max_write_behind = 0;
5809 mddev->bitmap_info.nodes = 0;
5810 }
5811
__md_stop_writes(struct mddev * mddev)5812 static void __md_stop_writes(struct mddev *mddev)
5813 {
5814 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5815 flush_workqueue(md_misc_wq);
5816 if (mddev->sync_thread) {
5817 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5818 md_reap_sync_thread(mddev);
5819 }
5820
5821 del_timer_sync(&mddev->safemode_timer);
5822
5823 if (mddev->pers && mddev->pers->quiesce) {
5824 mddev->pers->quiesce(mddev, 1);
5825 mddev->pers->quiesce(mddev, 0);
5826 }
5827 bitmap_flush(mddev);
5828
5829 if (mddev->ro == 0 &&
5830 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5831 mddev->sb_flags)) {
5832 /* mark array as shutdown cleanly */
5833 if (!mddev_is_clustered(mddev))
5834 mddev->in_sync = 1;
5835 md_update_sb(mddev, 1);
5836 }
5837 }
5838
md_stop_writes(struct mddev * mddev)5839 void md_stop_writes(struct mddev *mddev)
5840 {
5841 mddev_lock_nointr(mddev);
5842 __md_stop_writes(mddev);
5843 mddev_unlock(mddev);
5844 }
5845 EXPORT_SYMBOL_GPL(md_stop_writes);
5846
mddev_detach(struct mddev * mddev)5847 static void mddev_detach(struct mddev *mddev)
5848 {
5849 bitmap_wait_behind_writes(mddev);
5850 if (mddev->pers && mddev->pers->quiesce) {
5851 mddev->pers->quiesce(mddev, 1);
5852 mddev->pers->quiesce(mddev, 0);
5853 }
5854 md_unregister_thread(&mddev->thread);
5855 if (mddev->queue)
5856 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5857 }
5858
__md_stop(struct mddev * mddev)5859 static void __md_stop(struct mddev *mddev)
5860 {
5861 struct md_personality *pers = mddev->pers;
5862 bitmap_destroy(mddev);
5863 mddev_detach(mddev);
5864 /* Ensure ->event_work is done */
5865 flush_workqueue(md_misc_wq);
5866 spin_lock(&mddev->lock);
5867 mddev->pers = NULL;
5868 spin_unlock(&mddev->lock);
5869 pers->free(mddev, mddev->private);
5870 mddev->private = NULL;
5871 if (pers->sync_request && mddev->to_remove == NULL)
5872 mddev->to_remove = &md_redundancy_group;
5873 module_put(pers->owner);
5874 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5875 }
5876
md_stop(struct mddev * mddev)5877 void md_stop(struct mddev *mddev)
5878 {
5879 /* stop the array and free an attached data structures.
5880 * This is called from dm-raid
5881 */
5882 __md_stop(mddev);
5883 if (mddev->bio_set)
5884 bioset_free(mddev->bio_set);
5885 }
5886
5887 EXPORT_SYMBOL_GPL(md_stop);
5888
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5889 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5890 {
5891 int err = 0;
5892 int did_freeze = 0;
5893
5894 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5895 did_freeze = 1;
5896 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5897 md_wakeup_thread(mddev->thread);
5898 }
5899 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5901 if (mddev->sync_thread)
5902 /* Thread might be blocked waiting for metadata update
5903 * which will now never happen */
5904 wake_up_process(mddev->sync_thread->tsk);
5905
5906 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5907 return -EBUSY;
5908 mddev_unlock(mddev);
5909 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5910 &mddev->recovery));
5911 wait_event(mddev->sb_wait,
5912 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5913 mddev_lock_nointr(mddev);
5914
5915 mutex_lock(&mddev->open_mutex);
5916 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5917 mddev->sync_thread ||
5918 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5919 pr_warn("md: %s still in use.\n",mdname(mddev));
5920 if (did_freeze) {
5921 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5922 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5923 md_wakeup_thread(mddev->thread);
5924 }
5925 err = -EBUSY;
5926 goto out;
5927 }
5928 if (mddev->pers) {
5929 __md_stop_writes(mddev);
5930
5931 err = -ENXIO;
5932 if (mddev->ro==1)
5933 goto out;
5934 mddev->ro = 1;
5935 set_disk_ro(mddev->gendisk, 1);
5936 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5937 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5938 md_wakeup_thread(mddev->thread);
5939 sysfs_notify_dirent_safe(mddev->sysfs_state);
5940 err = 0;
5941 }
5942 out:
5943 mutex_unlock(&mddev->open_mutex);
5944 return err;
5945 }
5946
5947 /* mode:
5948 * 0 - completely stop and dis-assemble array
5949 * 2 - stop but do not disassemble array
5950 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5951 static int do_md_stop(struct mddev *mddev, int mode,
5952 struct block_device *bdev)
5953 {
5954 struct gendisk *disk = mddev->gendisk;
5955 struct md_rdev *rdev;
5956 int did_freeze = 0;
5957
5958 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5959 did_freeze = 1;
5960 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5961 md_wakeup_thread(mddev->thread);
5962 }
5963 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5964 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5965 if (mddev->sync_thread)
5966 /* Thread might be blocked waiting for metadata update
5967 * which will now never happen */
5968 wake_up_process(mddev->sync_thread->tsk);
5969
5970 mddev_unlock(mddev);
5971 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5972 !test_bit(MD_RECOVERY_RUNNING,
5973 &mddev->recovery)));
5974 mddev_lock_nointr(mddev);
5975
5976 mutex_lock(&mddev->open_mutex);
5977 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5978 mddev->sysfs_active ||
5979 mddev->sync_thread ||
5980 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5981 pr_warn("md: %s still in use.\n",mdname(mddev));
5982 mutex_unlock(&mddev->open_mutex);
5983 if (did_freeze) {
5984 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5985 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5986 md_wakeup_thread(mddev->thread);
5987 }
5988 return -EBUSY;
5989 }
5990 if (mddev->pers) {
5991 if (mddev->ro)
5992 set_disk_ro(disk, 0);
5993
5994 __md_stop_writes(mddev);
5995 __md_stop(mddev);
5996 mddev->queue->backing_dev_info->congested_fn = NULL;
5997
5998 /* tell userspace to handle 'inactive' */
5999 sysfs_notify_dirent_safe(mddev->sysfs_state);
6000
6001 rdev_for_each(rdev, mddev)
6002 if (rdev->raid_disk >= 0)
6003 sysfs_unlink_rdev(mddev, rdev);
6004
6005 set_capacity(disk, 0);
6006 mutex_unlock(&mddev->open_mutex);
6007 mddev->changed = 1;
6008 revalidate_disk(disk);
6009
6010 if (mddev->ro)
6011 mddev->ro = 0;
6012 } else
6013 mutex_unlock(&mddev->open_mutex);
6014 /*
6015 * Free resources if final stop
6016 */
6017 if (mode == 0) {
6018 pr_info("md: %s stopped.\n", mdname(mddev));
6019
6020 if (mddev->bitmap_info.file) {
6021 struct file *f = mddev->bitmap_info.file;
6022 spin_lock(&mddev->lock);
6023 mddev->bitmap_info.file = NULL;
6024 spin_unlock(&mddev->lock);
6025 fput(f);
6026 }
6027 mddev->bitmap_info.offset = 0;
6028
6029 export_array(mddev);
6030
6031 md_clean(mddev);
6032 if (mddev->hold_active == UNTIL_STOP)
6033 mddev->hold_active = 0;
6034 }
6035 md_new_event(mddev);
6036 sysfs_notify_dirent_safe(mddev->sysfs_state);
6037 return 0;
6038 }
6039
6040 #ifndef MODULE
autorun_array(struct mddev * mddev)6041 static void autorun_array(struct mddev *mddev)
6042 {
6043 struct md_rdev *rdev;
6044 int err;
6045
6046 if (list_empty(&mddev->disks))
6047 return;
6048
6049 pr_info("md: running: ");
6050
6051 rdev_for_each(rdev, mddev) {
6052 char b[BDEVNAME_SIZE];
6053 pr_cont("<%s>", bdevname(rdev->bdev,b));
6054 }
6055 pr_cont("\n");
6056
6057 err = do_md_run(mddev);
6058 if (err) {
6059 pr_warn("md: do_md_run() returned %d\n", err);
6060 do_md_stop(mddev, 0, NULL);
6061 }
6062 }
6063
6064 /*
6065 * lets try to run arrays based on all disks that have arrived
6066 * until now. (those are in pending_raid_disks)
6067 *
6068 * the method: pick the first pending disk, collect all disks with
6069 * the same UUID, remove all from the pending list and put them into
6070 * the 'same_array' list. Then order this list based on superblock
6071 * update time (freshest comes first), kick out 'old' disks and
6072 * compare superblocks. If everything's fine then run it.
6073 *
6074 * If "unit" is allocated, then bump its reference count
6075 */
autorun_devices(int part)6076 static void autorun_devices(int part)
6077 {
6078 struct md_rdev *rdev0, *rdev, *tmp;
6079 struct mddev *mddev;
6080 char b[BDEVNAME_SIZE];
6081
6082 pr_info("md: autorun ...\n");
6083 while (!list_empty(&pending_raid_disks)) {
6084 int unit;
6085 dev_t dev;
6086 LIST_HEAD(candidates);
6087 rdev0 = list_entry(pending_raid_disks.next,
6088 struct md_rdev, same_set);
6089
6090 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6091 INIT_LIST_HEAD(&candidates);
6092 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6093 if (super_90_load(rdev, rdev0, 0) >= 0) {
6094 pr_debug("md: adding %s ...\n",
6095 bdevname(rdev->bdev,b));
6096 list_move(&rdev->same_set, &candidates);
6097 }
6098 /*
6099 * now we have a set of devices, with all of them having
6100 * mostly sane superblocks. It's time to allocate the
6101 * mddev.
6102 */
6103 if (part) {
6104 dev = MKDEV(mdp_major,
6105 rdev0->preferred_minor << MdpMinorShift);
6106 unit = MINOR(dev) >> MdpMinorShift;
6107 } else {
6108 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6109 unit = MINOR(dev);
6110 }
6111 if (rdev0->preferred_minor != unit) {
6112 pr_warn("md: unit number in %s is bad: %d\n",
6113 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6114 break;
6115 }
6116
6117 md_probe(dev, NULL, NULL);
6118 mddev = mddev_find(dev);
6119 if (!mddev || !mddev->gendisk) {
6120 if (mddev)
6121 mddev_put(mddev);
6122 break;
6123 }
6124 if (mddev_lock(mddev))
6125 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6126 else if (mddev->raid_disks || mddev->major_version
6127 || !list_empty(&mddev->disks)) {
6128 pr_warn("md: %s already running, cannot run %s\n",
6129 mdname(mddev), bdevname(rdev0->bdev,b));
6130 mddev_unlock(mddev);
6131 } else {
6132 pr_debug("md: created %s\n", mdname(mddev));
6133 mddev->persistent = 1;
6134 rdev_for_each_list(rdev, tmp, &candidates) {
6135 list_del_init(&rdev->same_set);
6136 if (bind_rdev_to_array(rdev, mddev))
6137 export_rdev(rdev);
6138 }
6139 autorun_array(mddev);
6140 mddev_unlock(mddev);
6141 }
6142 /* on success, candidates will be empty, on error
6143 * it won't...
6144 */
6145 rdev_for_each_list(rdev, tmp, &candidates) {
6146 list_del_init(&rdev->same_set);
6147 export_rdev(rdev);
6148 }
6149 mddev_put(mddev);
6150 }
6151 pr_info("md: ... autorun DONE.\n");
6152 }
6153 #endif /* !MODULE */
6154
get_version(void __user * arg)6155 static int get_version(void __user *arg)
6156 {
6157 mdu_version_t ver;
6158
6159 ver.major = MD_MAJOR_VERSION;
6160 ver.minor = MD_MINOR_VERSION;
6161 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6162
6163 if (copy_to_user(arg, &ver, sizeof(ver)))
6164 return -EFAULT;
6165
6166 return 0;
6167 }
6168
get_array_info(struct mddev * mddev,void __user * arg)6169 static int get_array_info(struct mddev *mddev, void __user *arg)
6170 {
6171 mdu_array_info_t info;
6172 int nr,working,insync,failed,spare;
6173 struct md_rdev *rdev;
6174
6175 nr = working = insync = failed = spare = 0;
6176 rcu_read_lock();
6177 rdev_for_each_rcu(rdev, mddev) {
6178 nr++;
6179 if (test_bit(Faulty, &rdev->flags))
6180 failed++;
6181 else {
6182 working++;
6183 if (test_bit(In_sync, &rdev->flags))
6184 insync++;
6185 else if (test_bit(Journal, &rdev->flags))
6186 /* TODO: add journal count to md_u.h */
6187 ;
6188 else
6189 spare++;
6190 }
6191 }
6192 rcu_read_unlock();
6193
6194 info.major_version = mddev->major_version;
6195 info.minor_version = mddev->minor_version;
6196 info.patch_version = MD_PATCHLEVEL_VERSION;
6197 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6198 info.level = mddev->level;
6199 info.size = mddev->dev_sectors / 2;
6200 if (info.size != mddev->dev_sectors / 2) /* overflow */
6201 info.size = -1;
6202 info.nr_disks = nr;
6203 info.raid_disks = mddev->raid_disks;
6204 info.md_minor = mddev->md_minor;
6205 info.not_persistent= !mddev->persistent;
6206
6207 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6208 info.state = 0;
6209 if (mddev->in_sync)
6210 info.state = (1<<MD_SB_CLEAN);
6211 if (mddev->bitmap && mddev->bitmap_info.offset)
6212 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6213 if (mddev_is_clustered(mddev))
6214 info.state |= (1<<MD_SB_CLUSTERED);
6215 info.active_disks = insync;
6216 info.working_disks = working;
6217 info.failed_disks = failed;
6218 info.spare_disks = spare;
6219
6220 info.layout = mddev->layout;
6221 info.chunk_size = mddev->chunk_sectors << 9;
6222
6223 if (copy_to_user(arg, &info, sizeof(info)))
6224 return -EFAULT;
6225
6226 return 0;
6227 }
6228
get_bitmap_file(struct mddev * mddev,void __user * arg)6229 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6230 {
6231 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6232 char *ptr;
6233 int err;
6234
6235 file = kzalloc(sizeof(*file), GFP_NOIO);
6236 if (!file)
6237 return -ENOMEM;
6238
6239 err = 0;
6240 spin_lock(&mddev->lock);
6241 /* bitmap enabled */
6242 if (mddev->bitmap_info.file) {
6243 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6244 sizeof(file->pathname));
6245 if (IS_ERR(ptr))
6246 err = PTR_ERR(ptr);
6247 else
6248 memmove(file->pathname, ptr,
6249 sizeof(file->pathname)-(ptr-file->pathname));
6250 }
6251 spin_unlock(&mddev->lock);
6252
6253 if (err == 0 &&
6254 copy_to_user(arg, file, sizeof(*file)))
6255 err = -EFAULT;
6256
6257 kfree(file);
6258 return err;
6259 }
6260
get_disk_info(struct mddev * mddev,void __user * arg)6261 static int get_disk_info(struct mddev *mddev, void __user * arg)
6262 {
6263 mdu_disk_info_t info;
6264 struct md_rdev *rdev;
6265
6266 if (copy_from_user(&info, arg, sizeof(info)))
6267 return -EFAULT;
6268
6269 rcu_read_lock();
6270 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6271 if (rdev) {
6272 info.major = MAJOR(rdev->bdev->bd_dev);
6273 info.minor = MINOR(rdev->bdev->bd_dev);
6274 info.raid_disk = rdev->raid_disk;
6275 info.state = 0;
6276 if (test_bit(Faulty, &rdev->flags))
6277 info.state |= (1<<MD_DISK_FAULTY);
6278 else if (test_bit(In_sync, &rdev->flags)) {
6279 info.state |= (1<<MD_DISK_ACTIVE);
6280 info.state |= (1<<MD_DISK_SYNC);
6281 }
6282 if (test_bit(Journal, &rdev->flags))
6283 info.state |= (1<<MD_DISK_JOURNAL);
6284 if (test_bit(WriteMostly, &rdev->flags))
6285 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6286 if (test_bit(FailFast, &rdev->flags))
6287 info.state |= (1<<MD_DISK_FAILFAST);
6288 } else {
6289 info.major = info.minor = 0;
6290 info.raid_disk = -1;
6291 info.state = (1<<MD_DISK_REMOVED);
6292 }
6293 rcu_read_unlock();
6294
6295 if (copy_to_user(arg, &info, sizeof(info)))
6296 return -EFAULT;
6297
6298 return 0;
6299 }
6300
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)6301 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6302 {
6303 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6304 struct md_rdev *rdev;
6305 dev_t dev = MKDEV(info->major,info->minor);
6306
6307 if (mddev_is_clustered(mddev) &&
6308 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6309 pr_warn("%s: Cannot add to clustered mddev.\n",
6310 mdname(mddev));
6311 return -EINVAL;
6312 }
6313
6314 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6315 return -EOVERFLOW;
6316
6317 if (!mddev->raid_disks) {
6318 int err;
6319 /* expecting a device which has a superblock */
6320 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6321 if (IS_ERR(rdev)) {
6322 pr_warn("md: md_import_device returned %ld\n",
6323 PTR_ERR(rdev));
6324 return PTR_ERR(rdev);
6325 }
6326 if (!list_empty(&mddev->disks)) {
6327 struct md_rdev *rdev0
6328 = list_entry(mddev->disks.next,
6329 struct md_rdev, same_set);
6330 err = super_types[mddev->major_version]
6331 .load_super(rdev, rdev0, mddev->minor_version);
6332 if (err < 0) {
6333 pr_warn("md: %s has different UUID to %s\n",
6334 bdevname(rdev->bdev,b),
6335 bdevname(rdev0->bdev,b2));
6336 export_rdev(rdev);
6337 return -EINVAL;
6338 }
6339 }
6340 err = bind_rdev_to_array(rdev, mddev);
6341 if (err)
6342 export_rdev(rdev);
6343 return err;
6344 }
6345
6346 /*
6347 * add_new_disk can be used once the array is assembled
6348 * to add "hot spares". They must already have a superblock
6349 * written
6350 */
6351 if (mddev->pers) {
6352 int err;
6353 if (!mddev->pers->hot_add_disk) {
6354 pr_warn("%s: personality does not support diskops!\n",
6355 mdname(mddev));
6356 return -EINVAL;
6357 }
6358 if (mddev->persistent)
6359 rdev = md_import_device(dev, mddev->major_version,
6360 mddev->minor_version);
6361 else
6362 rdev = md_import_device(dev, -1, -1);
6363 if (IS_ERR(rdev)) {
6364 pr_warn("md: md_import_device returned %ld\n",
6365 PTR_ERR(rdev));
6366 return PTR_ERR(rdev);
6367 }
6368 /* set saved_raid_disk if appropriate */
6369 if (!mddev->persistent) {
6370 if (info->state & (1<<MD_DISK_SYNC) &&
6371 info->raid_disk < mddev->raid_disks) {
6372 rdev->raid_disk = info->raid_disk;
6373 set_bit(In_sync, &rdev->flags);
6374 clear_bit(Bitmap_sync, &rdev->flags);
6375 } else
6376 rdev->raid_disk = -1;
6377 rdev->saved_raid_disk = rdev->raid_disk;
6378 } else
6379 super_types[mddev->major_version].
6380 validate_super(mddev, rdev);
6381 if ((info->state & (1<<MD_DISK_SYNC)) &&
6382 rdev->raid_disk != info->raid_disk) {
6383 /* This was a hot-add request, but events doesn't
6384 * match, so reject it.
6385 */
6386 export_rdev(rdev);
6387 return -EINVAL;
6388 }
6389
6390 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6391 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6392 set_bit(WriteMostly, &rdev->flags);
6393 else
6394 clear_bit(WriteMostly, &rdev->flags);
6395 if (info->state & (1<<MD_DISK_FAILFAST))
6396 set_bit(FailFast, &rdev->flags);
6397 else
6398 clear_bit(FailFast, &rdev->flags);
6399
6400 if (info->state & (1<<MD_DISK_JOURNAL)) {
6401 struct md_rdev *rdev2;
6402 bool has_journal = false;
6403
6404 /* make sure no existing journal disk */
6405 rdev_for_each(rdev2, mddev) {
6406 if (test_bit(Journal, &rdev2->flags)) {
6407 has_journal = true;
6408 break;
6409 }
6410 }
6411 if (has_journal || mddev->bitmap) {
6412 export_rdev(rdev);
6413 return -EBUSY;
6414 }
6415 set_bit(Journal, &rdev->flags);
6416 }
6417 /*
6418 * check whether the device shows up in other nodes
6419 */
6420 if (mddev_is_clustered(mddev)) {
6421 if (info->state & (1 << MD_DISK_CANDIDATE))
6422 set_bit(Candidate, &rdev->flags);
6423 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6424 /* --add initiated by this node */
6425 err = md_cluster_ops->add_new_disk(mddev, rdev);
6426 if (err) {
6427 export_rdev(rdev);
6428 return err;
6429 }
6430 }
6431 }
6432
6433 rdev->raid_disk = -1;
6434 err = bind_rdev_to_array(rdev, mddev);
6435
6436 if (err)
6437 export_rdev(rdev);
6438
6439 if (mddev_is_clustered(mddev)) {
6440 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6441 if (!err) {
6442 err = md_cluster_ops->new_disk_ack(mddev,
6443 err == 0);
6444 if (err)
6445 md_kick_rdev_from_array(rdev);
6446 }
6447 } else {
6448 if (err)
6449 md_cluster_ops->add_new_disk_cancel(mddev);
6450 else
6451 err = add_bound_rdev(rdev);
6452 }
6453
6454 } else if (!err)
6455 err = add_bound_rdev(rdev);
6456
6457 return err;
6458 }
6459
6460 /* otherwise, add_new_disk is only allowed
6461 * for major_version==0 superblocks
6462 */
6463 if (mddev->major_version != 0) {
6464 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6465 return -EINVAL;
6466 }
6467
6468 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6469 int err;
6470 rdev = md_import_device(dev, -1, 0);
6471 if (IS_ERR(rdev)) {
6472 pr_warn("md: error, md_import_device() returned %ld\n",
6473 PTR_ERR(rdev));
6474 return PTR_ERR(rdev);
6475 }
6476 rdev->desc_nr = info->number;
6477 if (info->raid_disk < mddev->raid_disks)
6478 rdev->raid_disk = info->raid_disk;
6479 else
6480 rdev->raid_disk = -1;
6481
6482 if (rdev->raid_disk < mddev->raid_disks)
6483 if (info->state & (1<<MD_DISK_SYNC))
6484 set_bit(In_sync, &rdev->flags);
6485
6486 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6487 set_bit(WriteMostly, &rdev->flags);
6488 if (info->state & (1<<MD_DISK_FAILFAST))
6489 set_bit(FailFast, &rdev->flags);
6490
6491 if (!mddev->persistent) {
6492 pr_debug("md: nonpersistent superblock ...\n");
6493 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6494 } else
6495 rdev->sb_start = calc_dev_sboffset(rdev);
6496 rdev->sectors = rdev->sb_start;
6497
6498 err = bind_rdev_to_array(rdev, mddev);
6499 if (err) {
6500 export_rdev(rdev);
6501 return err;
6502 }
6503 }
6504
6505 return 0;
6506 }
6507
hot_remove_disk(struct mddev * mddev,dev_t dev)6508 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6509 {
6510 char b[BDEVNAME_SIZE];
6511 struct md_rdev *rdev;
6512
6513 if (!mddev->pers)
6514 return -ENODEV;
6515
6516 rdev = find_rdev(mddev, dev);
6517 if (!rdev)
6518 return -ENXIO;
6519
6520 if (rdev->raid_disk < 0)
6521 goto kick_rdev;
6522
6523 clear_bit(Blocked, &rdev->flags);
6524 remove_and_add_spares(mddev, rdev);
6525
6526 if (rdev->raid_disk >= 0)
6527 goto busy;
6528
6529 kick_rdev:
6530 if (mddev_is_clustered(mddev))
6531 md_cluster_ops->remove_disk(mddev, rdev);
6532
6533 md_kick_rdev_from_array(rdev);
6534 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6535 if (mddev->thread)
6536 md_wakeup_thread(mddev->thread);
6537 else
6538 md_update_sb(mddev, 1);
6539 md_new_event(mddev);
6540
6541 return 0;
6542 busy:
6543 pr_debug("md: cannot remove active disk %s from %s ...\n",
6544 bdevname(rdev->bdev,b), mdname(mddev));
6545 return -EBUSY;
6546 }
6547
hot_add_disk(struct mddev * mddev,dev_t dev)6548 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6549 {
6550 char b[BDEVNAME_SIZE];
6551 int err;
6552 struct md_rdev *rdev;
6553
6554 if (!mddev->pers)
6555 return -ENODEV;
6556
6557 if (mddev->major_version != 0) {
6558 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6559 mdname(mddev));
6560 return -EINVAL;
6561 }
6562 if (!mddev->pers->hot_add_disk) {
6563 pr_warn("%s: personality does not support diskops!\n",
6564 mdname(mddev));
6565 return -EINVAL;
6566 }
6567
6568 rdev = md_import_device(dev, -1, 0);
6569 if (IS_ERR(rdev)) {
6570 pr_warn("md: error, md_import_device() returned %ld\n",
6571 PTR_ERR(rdev));
6572 return -EINVAL;
6573 }
6574
6575 if (mddev->persistent)
6576 rdev->sb_start = calc_dev_sboffset(rdev);
6577 else
6578 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6579
6580 rdev->sectors = rdev->sb_start;
6581
6582 if (test_bit(Faulty, &rdev->flags)) {
6583 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6584 bdevname(rdev->bdev,b), mdname(mddev));
6585 err = -EINVAL;
6586 goto abort_export;
6587 }
6588
6589 clear_bit(In_sync, &rdev->flags);
6590 rdev->desc_nr = -1;
6591 rdev->saved_raid_disk = -1;
6592 err = bind_rdev_to_array(rdev, mddev);
6593 if (err)
6594 goto abort_export;
6595
6596 /*
6597 * The rest should better be atomic, we can have disk failures
6598 * noticed in interrupt contexts ...
6599 */
6600
6601 rdev->raid_disk = -1;
6602
6603 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6604 if (!mddev->thread)
6605 md_update_sb(mddev, 1);
6606 /*
6607 * Kick recovery, maybe this spare has to be added to the
6608 * array immediately.
6609 */
6610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6611 md_wakeup_thread(mddev->thread);
6612 md_new_event(mddev);
6613 return 0;
6614
6615 abort_export:
6616 export_rdev(rdev);
6617 return err;
6618 }
6619
set_bitmap_file(struct mddev * mddev,int fd)6620 static int set_bitmap_file(struct mddev *mddev, int fd)
6621 {
6622 int err = 0;
6623
6624 if (mddev->pers) {
6625 if (!mddev->pers->quiesce || !mddev->thread)
6626 return -EBUSY;
6627 if (mddev->recovery || mddev->sync_thread)
6628 return -EBUSY;
6629 /* we should be able to change the bitmap.. */
6630 }
6631
6632 if (fd >= 0) {
6633 struct inode *inode;
6634 struct file *f;
6635
6636 if (mddev->bitmap || mddev->bitmap_info.file)
6637 return -EEXIST; /* cannot add when bitmap is present */
6638 f = fget(fd);
6639
6640 if (f == NULL) {
6641 pr_warn("%s: error: failed to get bitmap file\n",
6642 mdname(mddev));
6643 return -EBADF;
6644 }
6645
6646 inode = f->f_mapping->host;
6647 if (!S_ISREG(inode->i_mode)) {
6648 pr_warn("%s: error: bitmap file must be a regular file\n",
6649 mdname(mddev));
6650 err = -EBADF;
6651 } else if (!(f->f_mode & FMODE_WRITE)) {
6652 pr_warn("%s: error: bitmap file must open for write\n",
6653 mdname(mddev));
6654 err = -EBADF;
6655 } else if (atomic_read(&inode->i_writecount) != 1) {
6656 pr_warn("%s: error: bitmap file is already in use\n",
6657 mdname(mddev));
6658 err = -EBUSY;
6659 }
6660 if (err) {
6661 fput(f);
6662 return err;
6663 }
6664 mddev->bitmap_info.file = f;
6665 mddev->bitmap_info.offset = 0; /* file overrides offset */
6666 } else if (mddev->bitmap == NULL)
6667 return -ENOENT; /* cannot remove what isn't there */
6668 err = 0;
6669 if (mddev->pers) {
6670 if (fd >= 0) {
6671 struct bitmap *bitmap;
6672
6673 bitmap = bitmap_create(mddev, -1);
6674 mddev_suspend(mddev);
6675 if (!IS_ERR(bitmap)) {
6676 mddev->bitmap = bitmap;
6677 err = bitmap_load(mddev);
6678 } else
6679 err = PTR_ERR(bitmap);
6680 if (err) {
6681 bitmap_destroy(mddev);
6682 fd = -1;
6683 }
6684 mddev_resume(mddev);
6685 } else if (fd < 0) {
6686 mddev_suspend(mddev);
6687 bitmap_destroy(mddev);
6688 mddev_resume(mddev);
6689 }
6690 }
6691 if (fd < 0) {
6692 struct file *f = mddev->bitmap_info.file;
6693 if (f) {
6694 spin_lock(&mddev->lock);
6695 mddev->bitmap_info.file = NULL;
6696 spin_unlock(&mddev->lock);
6697 fput(f);
6698 }
6699 }
6700
6701 return err;
6702 }
6703
6704 /*
6705 * set_array_info is used two different ways
6706 * The original usage is when creating a new array.
6707 * In this usage, raid_disks is > 0 and it together with
6708 * level, size, not_persistent,layout,chunksize determine the
6709 * shape of the array.
6710 * This will always create an array with a type-0.90.0 superblock.
6711 * The newer usage is when assembling an array.
6712 * In this case raid_disks will be 0, and the major_version field is
6713 * use to determine which style super-blocks are to be found on the devices.
6714 * The minor and patch _version numbers are also kept incase the
6715 * super_block handler wishes to interpret them.
6716 */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6717 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6718 {
6719
6720 if (info->raid_disks == 0) {
6721 /* just setting version number for superblock loading */
6722 if (info->major_version < 0 ||
6723 info->major_version >= ARRAY_SIZE(super_types) ||
6724 super_types[info->major_version].name == NULL) {
6725 /* maybe try to auto-load a module? */
6726 pr_warn("md: superblock version %d not known\n",
6727 info->major_version);
6728 return -EINVAL;
6729 }
6730 mddev->major_version = info->major_version;
6731 mddev->minor_version = info->minor_version;
6732 mddev->patch_version = info->patch_version;
6733 mddev->persistent = !info->not_persistent;
6734 /* ensure mddev_put doesn't delete this now that there
6735 * is some minimal configuration.
6736 */
6737 mddev->ctime = ktime_get_real_seconds();
6738 return 0;
6739 }
6740 mddev->major_version = MD_MAJOR_VERSION;
6741 mddev->minor_version = MD_MINOR_VERSION;
6742 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6743 mddev->ctime = ktime_get_real_seconds();
6744
6745 mddev->level = info->level;
6746 mddev->clevel[0] = 0;
6747 mddev->dev_sectors = 2 * (sector_t)info->size;
6748 mddev->raid_disks = info->raid_disks;
6749 /* don't set md_minor, it is determined by which /dev/md* was
6750 * openned
6751 */
6752 if (info->state & (1<<MD_SB_CLEAN))
6753 mddev->recovery_cp = MaxSector;
6754 else
6755 mddev->recovery_cp = 0;
6756 mddev->persistent = ! info->not_persistent;
6757 mddev->external = 0;
6758
6759 mddev->layout = info->layout;
6760 mddev->chunk_sectors = info->chunk_size >> 9;
6761
6762 if (mddev->persistent) {
6763 mddev->max_disks = MD_SB_DISKS;
6764 mddev->flags = 0;
6765 mddev->sb_flags = 0;
6766 }
6767 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6768
6769 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6770 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6771 mddev->bitmap_info.offset = 0;
6772
6773 mddev->reshape_position = MaxSector;
6774
6775 /*
6776 * Generate a 128 bit UUID
6777 */
6778 get_random_bytes(mddev->uuid, 16);
6779
6780 mddev->new_level = mddev->level;
6781 mddev->new_chunk_sectors = mddev->chunk_sectors;
6782 mddev->new_layout = mddev->layout;
6783 mddev->delta_disks = 0;
6784 mddev->reshape_backwards = 0;
6785
6786 return 0;
6787 }
6788
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6789 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6790 {
6791 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6792
6793 if (mddev->external_size)
6794 return;
6795
6796 mddev->array_sectors = array_sectors;
6797 }
6798 EXPORT_SYMBOL(md_set_array_sectors);
6799
update_size(struct mddev * mddev,sector_t num_sectors)6800 static int update_size(struct mddev *mddev, sector_t num_sectors)
6801 {
6802 struct md_rdev *rdev;
6803 int rv;
6804 int fit = (num_sectors == 0);
6805 sector_t old_dev_sectors = mddev->dev_sectors;
6806
6807 if (mddev->pers->resize == NULL)
6808 return -EINVAL;
6809 /* The "num_sectors" is the number of sectors of each device that
6810 * is used. This can only make sense for arrays with redundancy.
6811 * linear and raid0 always use whatever space is available. We can only
6812 * consider changing this number if no resync or reconstruction is
6813 * happening, and if the new size is acceptable. It must fit before the
6814 * sb_start or, if that is <data_offset, it must fit before the size
6815 * of each device. If num_sectors is zero, we find the largest size
6816 * that fits.
6817 */
6818 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6819 mddev->sync_thread)
6820 return -EBUSY;
6821 if (mddev->ro)
6822 return -EROFS;
6823
6824 rdev_for_each(rdev, mddev) {
6825 sector_t avail = rdev->sectors;
6826
6827 if (fit && (num_sectors == 0 || num_sectors > avail))
6828 num_sectors = avail;
6829 if (avail < num_sectors)
6830 return -ENOSPC;
6831 }
6832 rv = mddev->pers->resize(mddev, num_sectors);
6833 if (!rv) {
6834 if (mddev_is_clustered(mddev))
6835 md_cluster_ops->update_size(mddev, old_dev_sectors);
6836 else if (mddev->queue) {
6837 set_capacity(mddev->gendisk, mddev->array_sectors);
6838 revalidate_disk(mddev->gendisk);
6839 }
6840 }
6841 return rv;
6842 }
6843
update_raid_disks(struct mddev * mddev,int raid_disks)6844 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6845 {
6846 int rv;
6847 struct md_rdev *rdev;
6848 /* change the number of raid disks */
6849 if (mddev->pers->check_reshape == NULL)
6850 return -EINVAL;
6851 if (mddev->ro)
6852 return -EROFS;
6853 if (raid_disks <= 0 ||
6854 (mddev->max_disks && raid_disks >= mddev->max_disks))
6855 return -EINVAL;
6856 if (mddev->sync_thread ||
6857 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6858 mddev->reshape_position != MaxSector)
6859 return -EBUSY;
6860
6861 rdev_for_each(rdev, mddev) {
6862 if (mddev->raid_disks < raid_disks &&
6863 rdev->data_offset < rdev->new_data_offset)
6864 return -EINVAL;
6865 if (mddev->raid_disks > raid_disks &&
6866 rdev->data_offset > rdev->new_data_offset)
6867 return -EINVAL;
6868 }
6869
6870 mddev->delta_disks = raid_disks - mddev->raid_disks;
6871 if (mddev->delta_disks < 0)
6872 mddev->reshape_backwards = 1;
6873 else if (mddev->delta_disks > 0)
6874 mddev->reshape_backwards = 0;
6875
6876 rv = mddev->pers->check_reshape(mddev);
6877 if (rv < 0) {
6878 mddev->delta_disks = 0;
6879 mddev->reshape_backwards = 0;
6880 }
6881 return rv;
6882 }
6883
6884 /*
6885 * update_array_info is used to change the configuration of an
6886 * on-line array.
6887 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6888 * fields in the info are checked against the array.
6889 * Any differences that cannot be handled will cause an error.
6890 * Normally, only one change can be managed at a time.
6891 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6892 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6893 {
6894 int rv = 0;
6895 int cnt = 0;
6896 int state = 0;
6897
6898 /* calculate expected state,ignoring low bits */
6899 if (mddev->bitmap && mddev->bitmap_info.offset)
6900 state |= (1 << MD_SB_BITMAP_PRESENT);
6901
6902 if (mddev->major_version != info->major_version ||
6903 mddev->minor_version != info->minor_version ||
6904 /* mddev->patch_version != info->patch_version || */
6905 mddev->ctime != info->ctime ||
6906 mddev->level != info->level ||
6907 /* mddev->layout != info->layout || */
6908 mddev->persistent != !info->not_persistent ||
6909 mddev->chunk_sectors != info->chunk_size >> 9 ||
6910 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6911 ((state^info->state) & 0xfffffe00)
6912 )
6913 return -EINVAL;
6914 /* Check there is only one change */
6915 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6916 cnt++;
6917 if (mddev->raid_disks != info->raid_disks)
6918 cnt++;
6919 if (mddev->layout != info->layout)
6920 cnt++;
6921 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6922 cnt++;
6923 if (cnt == 0)
6924 return 0;
6925 if (cnt > 1)
6926 return -EINVAL;
6927
6928 if (mddev->layout != info->layout) {
6929 /* Change layout
6930 * we don't need to do anything at the md level, the
6931 * personality will take care of it all.
6932 */
6933 if (mddev->pers->check_reshape == NULL)
6934 return -EINVAL;
6935 else {
6936 mddev->new_layout = info->layout;
6937 rv = mddev->pers->check_reshape(mddev);
6938 if (rv)
6939 mddev->new_layout = mddev->layout;
6940 return rv;
6941 }
6942 }
6943 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6944 rv = update_size(mddev, (sector_t)info->size * 2);
6945
6946 if (mddev->raid_disks != info->raid_disks)
6947 rv = update_raid_disks(mddev, info->raid_disks);
6948
6949 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6950 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6951 rv = -EINVAL;
6952 goto err;
6953 }
6954 if (mddev->recovery || mddev->sync_thread) {
6955 rv = -EBUSY;
6956 goto err;
6957 }
6958 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6959 struct bitmap *bitmap;
6960 /* add the bitmap */
6961 if (mddev->bitmap) {
6962 rv = -EEXIST;
6963 goto err;
6964 }
6965 if (mddev->bitmap_info.default_offset == 0) {
6966 rv = -EINVAL;
6967 goto err;
6968 }
6969 mddev->bitmap_info.offset =
6970 mddev->bitmap_info.default_offset;
6971 mddev->bitmap_info.space =
6972 mddev->bitmap_info.default_space;
6973 bitmap = bitmap_create(mddev, -1);
6974 mddev_suspend(mddev);
6975 if (!IS_ERR(bitmap)) {
6976 mddev->bitmap = bitmap;
6977 rv = bitmap_load(mddev);
6978 } else
6979 rv = PTR_ERR(bitmap);
6980 if (rv)
6981 bitmap_destroy(mddev);
6982 mddev_resume(mddev);
6983 } else {
6984 /* remove the bitmap */
6985 if (!mddev->bitmap) {
6986 rv = -ENOENT;
6987 goto err;
6988 }
6989 if (mddev->bitmap->storage.file) {
6990 rv = -EINVAL;
6991 goto err;
6992 }
6993 if (mddev->bitmap_info.nodes) {
6994 /* hold PW on all the bitmap lock */
6995 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6996 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6997 rv = -EPERM;
6998 md_cluster_ops->unlock_all_bitmaps(mddev);
6999 goto err;
7000 }
7001
7002 mddev->bitmap_info.nodes = 0;
7003 md_cluster_ops->leave(mddev);
7004 }
7005 mddev_suspend(mddev);
7006 bitmap_destroy(mddev);
7007 mddev_resume(mddev);
7008 mddev->bitmap_info.offset = 0;
7009 }
7010 }
7011 md_update_sb(mddev, 1);
7012 return rv;
7013 err:
7014 return rv;
7015 }
7016
set_disk_faulty(struct mddev * mddev,dev_t dev)7017 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7018 {
7019 struct md_rdev *rdev;
7020 int err = 0;
7021
7022 if (mddev->pers == NULL)
7023 return -ENODEV;
7024
7025 rcu_read_lock();
7026 rdev = find_rdev_rcu(mddev, dev);
7027 if (!rdev)
7028 err = -ENODEV;
7029 else {
7030 md_error(mddev, rdev);
7031 if (!test_bit(Faulty, &rdev->flags))
7032 err = -EBUSY;
7033 }
7034 rcu_read_unlock();
7035 return err;
7036 }
7037
7038 /*
7039 * We have a problem here : there is no easy way to give a CHS
7040 * virtual geometry. We currently pretend that we have a 2 heads
7041 * 4 sectors (with a BIG number of cylinders...). This drives
7042 * dosfs just mad... ;-)
7043 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7044 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7045 {
7046 struct mddev *mddev = bdev->bd_disk->private_data;
7047
7048 geo->heads = 2;
7049 geo->sectors = 4;
7050 geo->cylinders = mddev->array_sectors / 8;
7051 return 0;
7052 }
7053
md_ioctl_valid(unsigned int cmd)7054 static inline bool md_ioctl_valid(unsigned int cmd)
7055 {
7056 switch (cmd) {
7057 case ADD_NEW_DISK:
7058 case BLKROSET:
7059 case GET_ARRAY_INFO:
7060 case GET_BITMAP_FILE:
7061 case GET_DISK_INFO:
7062 case HOT_ADD_DISK:
7063 case HOT_REMOVE_DISK:
7064 case RAID_AUTORUN:
7065 case RAID_VERSION:
7066 case RESTART_ARRAY_RW:
7067 case RUN_ARRAY:
7068 case SET_ARRAY_INFO:
7069 case SET_BITMAP_FILE:
7070 case SET_DISK_FAULTY:
7071 case STOP_ARRAY:
7072 case STOP_ARRAY_RO:
7073 case CLUSTERED_DISK_NACK:
7074 return true;
7075 default:
7076 return false;
7077 }
7078 }
7079
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7080 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7081 unsigned int cmd, unsigned long arg)
7082 {
7083 int err = 0;
7084 void __user *argp = (void __user *)arg;
7085 struct mddev *mddev = NULL;
7086 int ro;
7087 bool did_set_md_closing = false;
7088
7089 if (!md_ioctl_valid(cmd))
7090 return -ENOTTY;
7091
7092 switch (cmd) {
7093 case RAID_VERSION:
7094 case GET_ARRAY_INFO:
7095 case GET_DISK_INFO:
7096 break;
7097 default:
7098 if (!capable(CAP_SYS_ADMIN))
7099 return -EACCES;
7100 }
7101
7102 /*
7103 * Commands dealing with the RAID driver but not any
7104 * particular array:
7105 */
7106 switch (cmd) {
7107 case RAID_VERSION:
7108 err = get_version(argp);
7109 goto out;
7110
7111 #ifndef MODULE
7112 case RAID_AUTORUN:
7113 err = 0;
7114 autostart_arrays(arg);
7115 goto out;
7116 #endif
7117 default:;
7118 }
7119
7120 /*
7121 * Commands creating/starting a new array:
7122 */
7123
7124 mddev = bdev->bd_disk->private_data;
7125
7126 if (!mddev) {
7127 BUG();
7128 goto out;
7129 }
7130
7131 /* Some actions do not requires the mutex */
7132 switch (cmd) {
7133 case GET_ARRAY_INFO:
7134 if (!mddev->raid_disks && !mddev->external)
7135 err = -ENODEV;
7136 else
7137 err = get_array_info(mddev, argp);
7138 goto out;
7139
7140 case GET_DISK_INFO:
7141 if (!mddev->raid_disks && !mddev->external)
7142 err = -ENODEV;
7143 else
7144 err = get_disk_info(mddev, argp);
7145 goto out;
7146
7147 case SET_DISK_FAULTY:
7148 err = set_disk_faulty(mddev, new_decode_dev(arg));
7149 goto out;
7150
7151 case GET_BITMAP_FILE:
7152 err = get_bitmap_file(mddev, argp);
7153 goto out;
7154
7155 }
7156
7157 if (cmd == ADD_NEW_DISK)
7158 /* need to ensure md_delayed_delete() has completed */
7159 flush_workqueue(md_misc_wq);
7160
7161 if (cmd == HOT_REMOVE_DISK)
7162 /* need to ensure recovery thread has run */
7163 wait_event_interruptible_timeout(mddev->sb_wait,
7164 !test_bit(MD_RECOVERY_NEEDED,
7165 &mddev->recovery),
7166 msecs_to_jiffies(5000));
7167 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7168 /* Need to flush page cache, and ensure no-one else opens
7169 * and writes
7170 */
7171 mutex_lock(&mddev->open_mutex);
7172 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7173 mutex_unlock(&mddev->open_mutex);
7174 err = -EBUSY;
7175 goto out;
7176 }
7177 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7178 set_bit(MD_CLOSING, &mddev->flags);
7179 did_set_md_closing = true;
7180 mutex_unlock(&mddev->open_mutex);
7181 sync_blockdev(bdev);
7182 }
7183 err = mddev_lock(mddev);
7184 if (err) {
7185 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7186 err, cmd);
7187 goto out;
7188 }
7189
7190 if (cmd == SET_ARRAY_INFO) {
7191 mdu_array_info_t info;
7192 if (!arg)
7193 memset(&info, 0, sizeof(info));
7194 else if (copy_from_user(&info, argp, sizeof(info))) {
7195 err = -EFAULT;
7196 goto unlock;
7197 }
7198 if (mddev->pers) {
7199 err = update_array_info(mddev, &info);
7200 if (err) {
7201 pr_warn("md: couldn't update array info. %d\n", err);
7202 goto unlock;
7203 }
7204 goto unlock;
7205 }
7206 if (!list_empty(&mddev->disks)) {
7207 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7208 err = -EBUSY;
7209 goto unlock;
7210 }
7211 if (mddev->raid_disks) {
7212 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7213 err = -EBUSY;
7214 goto unlock;
7215 }
7216 err = set_array_info(mddev, &info);
7217 if (err) {
7218 pr_warn("md: couldn't set array info. %d\n", err);
7219 goto unlock;
7220 }
7221 goto unlock;
7222 }
7223
7224 /*
7225 * Commands querying/configuring an existing array:
7226 */
7227 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7228 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7229 if ((!mddev->raid_disks && !mddev->external)
7230 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7231 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7232 && cmd != GET_BITMAP_FILE) {
7233 err = -ENODEV;
7234 goto unlock;
7235 }
7236
7237 /*
7238 * Commands even a read-only array can execute:
7239 */
7240 switch (cmd) {
7241 case RESTART_ARRAY_RW:
7242 err = restart_array(mddev);
7243 goto unlock;
7244
7245 case STOP_ARRAY:
7246 err = do_md_stop(mddev, 0, bdev);
7247 goto unlock;
7248
7249 case STOP_ARRAY_RO:
7250 err = md_set_readonly(mddev, bdev);
7251 goto unlock;
7252
7253 case HOT_REMOVE_DISK:
7254 err = hot_remove_disk(mddev, new_decode_dev(arg));
7255 goto unlock;
7256
7257 case ADD_NEW_DISK:
7258 /* We can support ADD_NEW_DISK on read-only arrays
7259 * only if we are re-adding a preexisting device.
7260 * So require mddev->pers and MD_DISK_SYNC.
7261 */
7262 if (mddev->pers) {
7263 mdu_disk_info_t info;
7264 if (copy_from_user(&info, argp, sizeof(info)))
7265 err = -EFAULT;
7266 else if (!(info.state & (1<<MD_DISK_SYNC)))
7267 /* Need to clear read-only for this */
7268 break;
7269 else
7270 err = add_new_disk(mddev, &info);
7271 goto unlock;
7272 }
7273 break;
7274
7275 case BLKROSET:
7276 if (get_user(ro, (int __user *)(arg))) {
7277 err = -EFAULT;
7278 goto unlock;
7279 }
7280 err = -EINVAL;
7281
7282 /* if the bdev is going readonly the value of mddev->ro
7283 * does not matter, no writes are coming
7284 */
7285 if (ro)
7286 goto unlock;
7287
7288 /* are we are already prepared for writes? */
7289 if (mddev->ro != 1)
7290 goto unlock;
7291
7292 /* transitioning to readauto need only happen for
7293 * arrays that call md_write_start
7294 */
7295 if (mddev->pers) {
7296 err = restart_array(mddev);
7297 if (err == 0) {
7298 mddev->ro = 2;
7299 set_disk_ro(mddev->gendisk, 0);
7300 }
7301 }
7302 goto unlock;
7303 }
7304
7305 /*
7306 * The remaining ioctls are changing the state of the
7307 * superblock, so we do not allow them on read-only arrays.
7308 */
7309 if (mddev->ro && mddev->pers) {
7310 if (mddev->ro == 2) {
7311 mddev->ro = 0;
7312 sysfs_notify_dirent_safe(mddev->sysfs_state);
7313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7314 /* mddev_unlock will wake thread */
7315 /* If a device failed while we were read-only, we
7316 * need to make sure the metadata is updated now.
7317 */
7318 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7319 mddev_unlock(mddev);
7320 wait_event(mddev->sb_wait,
7321 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7322 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7323 mddev_lock_nointr(mddev);
7324 }
7325 } else {
7326 err = -EROFS;
7327 goto unlock;
7328 }
7329 }
7330
7331 switch (cmd) {
7332 case ADD_NEW_DISK:
7333 {
7334 mdu_disk_info_t info;
7335 if (copy_from_user(&info, argp, sizeof(info)))
7336 err = -EFAULT;
7337 else
7338 err = add_new_disk(mddev, &info);
7339 goto unlock;
7340 }
7341
7342 case CLUSTERED_DISK_NACK:
7343 if (mddev_is_clustered(mddev))
7344 md_cluster_ops->new_disk_ack(mddev, false);
7345 else
7346 err = -EINVAL;
7347 goto unlock;
7348
7349 case HOT_ADD_DISK:
7350 err = hot_add_disk(mddev, new_decode_dev(arg));
7351 goto unlock;
7352
7353 case RUN_ARRAY:
7354 err = do_md_run(mddev);
7355 goto unlock;
7356
7357 case SET_BITMAP_FILE:
7358 err = set_bitmap_file(mddev, (int)arg);
7359 goto unlock;
7360
7361 default:
7362 err = -EINVAL;
7363 goto unlock;
7364 }
7365
7366 unlock:
7367 if (mddev->hold_active == UNTIL_IOCTL &&
7368 err != -EINVAL)
7369 mddev->hold_active = 0;
7370 mddev_unlock(mddev);
7371 out:
7372 if(did_set_md_closing)
7373 clear_bit(MD_CLOSING, &mddev->flags);
7374 return err;
7375 }
7376 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7377 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7378 unsigned int cmd, unsigned long arg)
7379 {
7380 switch (cmd) {
7381 case HOT_REMOVE_DISK:
7382 case HOT_ADD_DISK:
7383 case SET_DISK_FAULTY:
7384 case SET_BITMAP_FILE:
7385 /* These take in integer arg, do not convert */
7386 break;
7387 default:
7388 arg = (unsigned long)compat_ptr(arg);
7389 break;
7390 }
7391
7392 return md_ioctl(bdev, mode, cmd, arg);
7393 }
7394 #endif /* CONFIG_COMPAT */
7395
md_open(struct block_device * bdev,fmode_t mode)7396 static int md_open(struct block_device *bdev, fmode_t mode)
7397 {
7398 /*
7399 * Succeed if we can lock the mddev, which confirms that
7400 * it isn't being stopped right now.
7401 */
7402 struct mddev *mddev = mddev_find(bdev->bd_dev);
7403 int err;
7404
7405 if (!mddev)
7406 return -ENODEV;
7407
7408 if (mddev->gendisk != bdev->bd_disk) {
7409 /* we are racing with mddev_put which is discarding this
7410 * bd_disk.
7411 */
7412 mddev_put(mddev);
7413 /* Wait until bdev->bd_disk is definitely gone */
7414 flush_workqueue(md_misc_wq);
7415 /* Then retry the open from the top */
7416 return -ERESTARTSYS;
7417 }
7418 BUG_ON(mddev != bdev->bd_disk->private_data);
7419
7420 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7421 goto out;
7422
7423 if (test_bit(MD_CLOSING, &mddev->flags)) {
7424 mutex_unlock(&mddev->open_mutex);
7425 err = -ENODEV;
7426 goto out;
7427 }
7428
7429 err = 0;
7430 atomic_inc(&mddev->openers);
7431 mutex_unlock(&mddev->open_mutex);
7432
7433 check_disk_change(bdev);
7434 out:
7435 if (err)
7436 mddev_put(mddev);
7437 return err;
7438 }
7439
md_release(struct gendisk * disk,fmode_t mode)7440 static void md_release(struct gendisk *disk, fmode_t mode)
7441 {
7442 struct mddev *mddev = disk->private_data;
7443
7444 BUG_ON(!mddev);
7445 atomic_dec(&mddev->openers);
7446 mddev_put(mddev);
7447 }
7448
md_media_changed(struct gendisk * disk)7449 static int md_media_changed(struct gendisk *disk)
7450 {
7451 struct mddev *mddev = disk->private_data;
7452
7453 return mddev->changed;
7454 }
7455
md_revalidate(struct gendisk * disk)7456 static int md_revalidate(struct gendisk *disk)
7457 {
7458 struct mddev *mddev = disk->private_data;
7459
7460 mddev->changed = 0;
7461 return 0;
7462 }
7463 static const struct block_device_operations md_fops =
7464 {
7465 .owner = THIS_MODULE,
7466 .open = md_open,
7467 .release = md_release,
7468 .ioctl = md_ioctl,
7469 #ifdef CONFIG_COMPAT
7470 .compat_ioctl = md_compat_ioctl,
7471 #endif
7472 .getgeo = md_getgeo,
7473 .media_changed = md_media_changed,
7474 .revalidate_disk= md_revalidate,
7475 };
7476
md_thread(void * arg)7477 static int md_thread(void *arg)
7478 {
7479 struct md_thread *thread = arg;
7480
7481 /*
7482 * md_thread is a 'system-thread', it's priority should be very
7483 * high. We avoid resource deadlocks individually in each
7484 * raid personality. (RAID5 does preallocation) We also use RR and
7485 * the very same RT priority as kswapd, thus we will never get
7486 * into a priority inversion deadlock.
7487 *
7488 * we definitely have to have equal or higher priority than
7489 * bdflush, otherwise bdflush will deadlock if there are too
7490 * many dirty RAID5 blocks.
7491 */
7492
7493 allow_signal(SIGKILL);
7494 while (!kthread_should_stop()) {
7495
7496 /* We need to wait INTERRUPTIBLE so that
7497 * we don't add to the load-average.
7498 * That means we need to be sure no signals are
7499 * pending
7500 */
7501 if (signal_pending(current))
7502 flush_signals(current);
7503
7504 wait_event_interruptible_timeout
7505 (thread->wqueue,
7506 test_bit(THREAD_WAKEUP, &thread->flags)
7507 || kthread_should_stop() || kthread_should_park(),
7508 thread->timeout);
7509
7510 clear_bit(THREAD_WAKEUP, &thread->flags);
7511 if (kthread_should_park())
7512 kthread_parkme();
7513 if (!kthread_should_stop())
7514 thread->run(thread);
7515 }
7516
7517 return 0;
7518 }
7519
md_wakeup_thread(struct md_thread * thread)7520 void md_wakeup_thread(struct md_thread *thread)
7521 {
7522 if (thread) {
7523 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7524 set_bit(THREAD_WAKEUP, &thread->flags);
7525 wake_up(&thread->wqueue);
7526 }
7527 }
7528 EXPORT_SYMBOL(md_wakeup_thread);
7529
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7530 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7531 struct mddev *mddev, const char *name)
7532 {
7533 struct md_thread *thread;
7534
7535 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7536 if (!thread)
7537 return NULL;
7538
7539 init_waitqueue_head(&thread->wqueue);
7540
7541 thread->run = run;
7542 thread->mddev = mddev;
7543 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7544 thread->tsk = kthread_run(md_thread, thread,
7545 "%s_%s",
7546 mdname(thread->mddev),
7547 name);
7548 if (IS_ERR(thread->tsk)) {
7549 kfree(thread);
7550 return NULL;
7551 }
7552 return thread;
7553 }
7554 EXPORT_SYMBOL(md_register_thread);
7555
md_unregister_thread(struct md_thread ** threadp)7556 void md_unregister_thread(struct md_thread **threadp)
7557 {
7558 struct md_thread *thread = *threadp;
7559 if (!thread)
7560 return;
7561 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7562 /* Locking ensures that mddev_unlock does not wake_up a
7563 * non-existent thread
7564 */
7565 spin_lock(&pers_lock);
7566 *threadp = NULL;
7567 spin_unlock(&pers_lock);
7568
7569 kthread_stop(thread->tsk);
7570 kfree(thread);
7571 }
7572 EXPORT_SYMBOL(md_unregister_thread);
7573
md_error(struct mddev * mddev,struct md_rdev * rdev)7574 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7575 {
7576 if (!rdev || test_bit(Faulty, &rdev->flags))
7577 return;
7578
7579 if (!mddev->pers || !mddev->pers->error_handler)
7580 return;
7581 mddev->pers->error_handler(mddev,rdev);
7582 if (mddev->degraded)
7583 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7584 sysfs_notify_dirent_safe(rdev->sysfs_state);
7585 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7587 md_wakeup_thread(mddev->thread);
7588 if (mddev->event_work.func)
7589 queue_work(md_misc_wq, &mddev->event_work);
7590 md_new_event(mddev);
7591 }
7592 EXPORT_SYMBOL(md_error);
7593
7594 /* seq_file implementation /proc/mdstat */
7595
status_unused(struct seq_file * seq)7596 static void status_unused(struct seq_file *seq)
7597 {
7598 int i = 0;
7599 struct md_rdev *rdev;
7600
7601 seq_printf(seq, "unused devices: ");
7602
7603 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7604 char b[BDEVNAME_SIZE];
7605 i++;
7606 seq_printf(seq, "%s ",
7607 bdevname(rdev->bdev,b));
7608 }
7609 if (!i)
7610 seq_printf(seq, "<none>");
7611
7612 seq_printf(seq, "\n");
7613 }
7614
status_resync(struct seq_file * seq,struct mddev * mddev)7615 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7616 {
7617 sector_t max_sectors, resync, res;
7618 unsigned long dt, db = 0;
7619 sector_t rt, curr_mark_cnt, resync_mark_cnt;
7620 int scale, recovery_active;
7621 unsigned int per_milli;
7622
7623 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7624 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7625 max_sectors = mddev->resync_max_sectors;
7626 else
7627 max_sectors = mddev->dev_sectors;
7628
7629 resync = mddev->curr_resync;
7630 if (resync <= 3) {
7631 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7632 /* Still cleaning up */
7633 resync = max_sectors;
7634 } else
7635 resync -= atomic_read(&mddev->recovery_active);
7636
7637 if (resync == 0) {
7638 if (mddev->recovery_cp < MaxSector) {
7639 seq_printf(seq, "\tresync=PENDING");
7640 return 1;
7641 }
7642 return 0;
7643 }
7644 if (resync < 3) {
7645 seq_printf(seq, "\tresync=DELAYED");
7646 return 1;
7647 }
7648
7649 WARN_ON(max_sectors == 0);
7650 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7651 * in a sector_t, and (max_sectors>>scale) will fit in a
7652 * u32, as those are the requirements for sector_div.
7653 * Thus 'scale' must be at least 10
7654 */
7655 scale = 10;
7656 if (sizeof(sector_t) > sizeof(unsigned long)) {
7657 while ( max_sectors/2 > (1ULL<<(scale+32)))
7658 scale++;
7659 }
7660 res = (resync>>scale)*1000;
7661 sector_div(res, (u32)((max_sectors>>scale)+1));
7662
7663 per_milli = res;
7664 {
7665 int i, x = per_milli/50, y = 20-x;
7666 seq_printf(seq, "[");
7667 for (i = 0; i < x; i++)
7668 seq_printf(seq, "=");
7669 seq_printf(seq, ">");
7670 for (i = 0; i < y; i++)
7671 seq_printf(seq, ".");
7672 seq_printf(seq, "] ");
7673 }
7674 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7675 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7676 "reshape" :
7677 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7678 "check" :
7679 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7680 "resync" : "recovery"))),
7681 per_milli/10, per_milli % 10,
7682 (unsigned long long) resync/2,
7683 (unsigned long long) max_sectors/2);
7684
7685 /*
7686 * dt: time from mark until now
7687 * db: blocks written from mark until now
7688 * rt: remaining time
7689 *
7690 * rt is a sector_t, which is always 64bit now. We are keeping
7691 * the original algorithm, but it is not really necessary.
7692 *
7693 * Original algorithm:
7694 * So we divide before multiply in case it is 32bit and close
7695 * to the limit.
7696 * We scale the divisor (db) by 32 to avoid losing precision
7697 * near the end of resync when the number of remaining sectors
7698 * is close to 'db'.
7699 * We then divide rt by 32 after multiplying by db to compensate.
7700 * The '+1' avoids division by zero if db is very small.
7701 */
7702 dt = ((jiffies - mddev->resync_mark) / HZ);
7703 if (!dt) dt++;
7704
7705 curr_mark_cnt = mddev->curr_mark_cnt;
7706 recovery_active = atomic_read(&mddev->recovery_active);
7707 resync_mark_cnt = mddev->resync_mark_cnt;
7708
7709 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
7710 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
7711
7712 rt = max_sectors - resync; /* number of remaining sectors */
7713 rt = div64_u64(rt, db/32+1);
7714 rt *= dt;
7715 rt >>= 5;
7716
7717 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7718 ((unsigned long)rt % 60)/6);
7719
7720 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7721 return 1;
7722 }
7723
md_seq_start(struct seq_file * seq,loff_t * pos)7724 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7725 {
7726 struct list_head *tmp;
7727 loff_t l = *pos;
7728 struct mddev *mddev;
7729
7730 if (l >= 0x10000)
7731 return NULL;
7732 if (!l--)
7733 /* header */
7734 return (void*)1;
7735
7736 spin_lock(&all_mddevs_lock);
7737 list_for_each(tmp,&all_mddevs)
7738 if (!l--) {
7739 mddev = list_entry(tmp, struct mddev, all_mddevs);
7740 mddev_get(mddev);
7741 spin_unlock(&all_mddevs_lock);
7742 return mddev;
7743 }
7744 spin_unlock(&all_mddevs_lock);
7745 if (!l--)
7746 return (void*)2;/* tail */
7747 return NULL;
7748 }
7749
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)7750 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7751 {
7752 struct list_head *tmp;
7753 struct mddev *next_mddev, *mddev = v;
7754
7755 ++*pos;
7756 if (v == (void*)2)
7757 return NULL;
7758
7759 spin_lock(&all_mddevs_lock);
7760 if (v == (void*)1)
7761 tmp = all_mddevs.next;
7762 else
7763 tmp = mddev->all_mddevs.next;
7764 if (tmp != &all_mddevs)
7765 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7766 else {
7767 next_mddev = (void*)2;
7768 *pos = 0x10000;
7769 }
7770 spin_unlock(&all_mddevs_lock);
7771
7772 if (v != (void*)1)
7773 mddev_put(mddev);
7774 return next_mddev;
7775
7776 }
7777
md_seq_stop(struct seq_file * seq,void * v)7778 static void md_seq_stop(struct seq_file *seq, void *v)
7779 {
7780 struct mddev *mddev = v;
7781
7782 if (mddev && v != (void*)1 && v != (void*)2)
7783 mddev_put(mddev);
7784 }
7785
md_seq_show(struct seq_file * seq,void * v)7786 static int md_seq_show(struct seq_file *seq, void *v)
7787 {
7788 struct mddev *mddev = v;
7789 sector_t sectors;
7790 struct md_rdev *rdev;
7791
7792 if (v == (void*)1) {
7793 struct md_personality *pers;
7794 seq_printf(seq, "Personalities : ");
7795 spin_lock(&pers_lock);
7796 list_for_each_entry(pers, &pers_list, list)
7797 seq_printf(seq, "[%s] ", pers->name);
7798
7799 spin_unlock(&pers_lock);
7800 seq_printf(seq, "\n");
7801 seq->poll_event = atomic_read(&md_event_count);
7802 return 0;
7803 }
7804 if (v == (void*)2) {
7805 status_unused(seq);
7806 return 0;
7807 }
7808
7809 spin_lock(&mddev->lock);
7810 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7811 seq_printf(seq, "%s : %sactive", mdname(mddev),
7812 mddev->pers ? "" : "in");
7813 if (mddev->pers) {
7814 if (mddev->ro==1)
7815 seq_printf(seq, " (read-only)");
7816 if (mddev->ro==2)
7817 seq_printf(seq, " (auto-read-only)");
7818 seq_printf(seq, " %s", mddev->pers->name);
7819 }
7820
7821 sectors = 0;
7822 rcu_read_lock();
7823 rdev_for_each_rcu(rdev, mddev) {
7824 char b[BDEVNAME_SIZE];
7825 seq_printf(seq, " %s[%d]",
7826 bdevname(rdev->bdev,b), rdev->desc_nr);
7827 if (test_bit(WriteMostly, &rdev->flags))
7828 seq_printf(seq, "(W)");
7829 if (test_bit(Journal, &rdev->flags))
7830 seq_printf(seq, "(J)");
7831 if (test_bit(Faulty, &rdev->flags)) {
7832 seq_printf(seq, "(F)");
7833 continue;
7834 }
7835 if (rdev->raid_disk < 0)
7836 seq_printf(seq, "(S)"); /* spare */
7837 if (test_bit(Replacement, &rdev->flags))
7838 seq_printf(seq, "(R)");
7839 sectors += rdev->sectors;
7840 }
7841 rcu_read_unlock();
7842
7843 if (!list_empty(&mddev->disks)) {
7844 if (mddev->pers)
7845 seq_printf(seq, "\n %llu blocks",
7846 (unsigned long long)
7847 mddev->array_sectors / 2);
7848 else
7849 seq_printf(seq, "\n %llu blocks",
7850 (unsigned long long)sectors / 2);
7851 }
7852 if (mddev->persistent) {
7853 if (mddev->major_version != 0 ||
7854 mddev->minor_version != 90) {
7855 seq_printf(seq," super %d.%d",
7856 mddev->major_version,
7857 mddev->minor_version);
7858 }
7859 } else if (mddev->external)
7860 seq_printf(seq, " super external:%s",
7861 mddev->metadata_type);
7862 else
7863 seq_printf(seq, " super non-persistent");
7864
7865 if (mddev->pers) {
7866 mddev->pers->status(seq, mddev);
7867 seq_printf(seq, "\n ");
7868 if (mddev->pers->sync_request) {
7869 if (status_resync(seq, mddev))
7870 seq_printf(seq, "\n ");
7871 }
7872 } else
7873 seq_printf(seq, "\n ");
7874
7875 bitmap_status(seq, mddev->bitmap);
7876
7877 seq_printf(seq, "\n");
7878 }
7879 spin_unlock(&mddev->lock);
7880
7881 return 0;
7882 }
7883
7884 static const struct seq_operations md_seq_ops = {
7885 .start = md_seq_start,
7886 .next = md_seq_next,
7887 .stop = md_seq_stop,
7888 .show = md_seq_show,
7889 };
7890
md_seq_open(struct inode * inode,struct file * file)7891 static int md_seq_open(struct inode *inode, struct file *file)
7892 {
7893 struct seq_file *seq;
7894 int error;
7895
7896 error = seq_open(file, &md_seq_ops);
7897 if (error)
7898 return error;
7899
7900 seq = file->private_data;
7901 seq->poll_event = atomic_read(&md_event_count);
7902 return error;
7903 }
7904
7905 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)7906 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7907 {
7908 struct seq_file *seq = filp->private_data;
7909 int mask;
7910
7911 if (md_unloading)
7912 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7913 poll_wait(filp, &md_event_waiters, wait);
7914
7915 /* always allow read */
7916 mask = POLLIN | POLLRDNORM;
7917
7918 if (seq->poll_event != atomic_read(&md_event_count))
7919 mask |= POLLERR | POLLPRI;
7920 return mask;
7921 }
7922
7923 static const struct file_operations md_seq_fops = {
7924 .owner = THIS_MODULE,
7925 .open = md_seq_open,
7926 .read = seq_read,
7927 .llseek = seq_lseek,
7928 .release = seq_release,
7929 .poll = mdstat_poll,
7930 };
7931
register_md_personality(struct md_personality * p)7932 int register_md_personality(struct md_personality *p)
7933 {
7934 pr_debug("md: %s personality registered for level %d\n",
7935 p->name, p->level);
7936 spin_lock(&pers_lock);
7937 list_add_tail(&p->list, &pers_list);
7938 spin_unlock(&pers_lock);
7939 return 0;
7940 }
7941 EXPORT_SYMBOL(register_md_personality);
7942
unregister_md_personality(struct md_personality * p)7943 int unregister_md_personality(struct md_personality *p)
7944 {
7945 pr_debug("md: %s personality unregistered\n", p->name);
7946 spin_lock(&pers_lock);
7947 list_del_init(&p->list);
7948 spin_unlock(&pers_lock);
7949 return 0;
7950 }
7951 EXPORT_SYMBOL(unregister_md_personality);
7952
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)7953 int register_md_cluster_operations(struct md_cluster_operations *ops,
7954 struct module *module)
7955 {
7956 int ret = 0;
7957 spin_lock(&pers_lock);
7958 if (md_cluster_ops != NULL)
7959 ret = -EALREADY;
7960 else {
7961 md_cluster_ops = ops;
7962 md_cluster_mod = module;
7963 }
7964 spin_unlock(&pers_lock);
7965 return ret;
7966 }
7967 EXPORT_SYMBOL(register_md_cluster_operations);
7968
unregister_md_cluster_operations(void)7969 int unregister_md_cluster_operations(void)
7970 {
7971 spin_lock(&pers_lock);
7972 md_cluster_ops = NULL;
7973 spin_unlock(&pers_lock);
7974 return 0;
7975 }
7976 EXPORT_SYMBOL(unregister_md_cluster_operations);
7977
md_setup_cluster(struct mddev * mddev,int nodes)7978 int md_setup_cluster(struct mddev *mddev, int nodes)
7979 {
7980 if (!md_cluster_ops)
7981 request_module("md-cluster");
7982 spin_lock(&pers_lock);
7983 /* ensure module won't be unloaded */
7984 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7985 pr_warn("can't find md-cluster module or get it's reference.\n");
7986 spin_unlock(&pers_lock);
7987 return -ENOENT;
7988 }
7989 spin_unlock(&pers_lock);
7990
7991 return md_cluster_ops->join(mddev, nodes);
7992 }
7993
md_cluster_stop(struct mddev * mddev)7994 void md_cluster_stop(struct mddev *mddev)
7995 {
7996 if (!md_cluster_ops)
7997 return;
7998 md_cluster_ops->leave(mddev);
7999 module_put(md_cluster_mod);
8000 }
8001
is_mddev_idle(struct mddev * mddev,int init)8002 static int is_mddev_idle(struct mddev *mddev, int init)
8003 {
8004 struct md_rdev *rdev;
8005 int idle;
8006 int curr_events;
8007
8008 idle = 1;
8009 rcu_read_lock();
8010 rdev_for_each_rcu(rdev, mddev) {
8011 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
8012 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
8013 (int)part_stat_read(&disk->part0, sectors[1]) -
8014 atomic_read(&disk->sync_io);
8015 /* sync IO will cause sync_io to increase before the disk_stats
8016 * as sync_io is counted when a request starts, and
8017 * disk_stats is counted when it completes.
8018 * So resync activity will cause curr_events to be smaller than
8019 * when there was no such activity.
8020 * non-sync IO will cause disk_stat to increase without
8021 * increasing sync_io so curr_events will (eventually)
8022 * be larger than it was before. Once it becomes
8023 * substantially larger, the test below will cause
8024 * the array to appear non-idle, and resync will slow
8025 * down.
8026 * If there is a lot of outstanding resync activity when
8027 * we set last_event to curr_events, then all that activity
8028 * completing might cause the array to appear non-idle
8029 * and resync will be slowed down even though there might
8030 * not have been non-resync activity. This will only
8031 * happen once though. 'last_events' will soon reflect
8032 * the state where there is little or no outstanding
8033 * resync requests, and further resync activity will
8034 * always make curr_events less than last_events.
8035 *
8036 */
8037 if (init || curr_events - rdev->last_events > 64) {
8038 rdev->last_events = curr_events;
8039 idle = 0;
8040 }
8041 }
8042 rcu_read_unlock();
8043 return idle;
8044 }
8045
md_done_sync(struct mddev * mddev,int blocks,int ok)8046 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8047 {
8048 /* another "blocks" (512byte) blocks have been synced */
8049 atomic_sub(blocks, &mddev->recovery_active);
8050 wake_up(&mddev->recovery_wait);
8051 if (!ok) {
8052 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8053 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8054 md_wakeup_thread(mddev->thread);
8055 // stop recovery, signal do_sync ....
8056 }
8057 }
8058 EXPORT_SYMBOL(md_done_sync);
8059
8060 /* md_write_start(mddev, bi)
8061 * If we need to update some array metadata (e.g. 'active' flag
8062 * in superblock) before writing, schedule a superblock update
8063 * and wait for it to complete.
8064 * A return value of 'false' means that the write wasn't recorded
8065 * and cannot proceed as the array is being suspend.
8066 */
md_write_start(struct mddev * mddev,struct bio * bi)8067 bool md_write_start(struct mddev *mddev, struct bio *bi)
8068 {
8069 int did_change = 0;
8070
8071 if (bio_data_dir(bi) != WRITE)
8072 return true;
8073
8074 BUG_ON(mddev->ro == 1);
8075 if (mddev->ro == 2) {
8076 /* need to switch to read/write */
8077 mddev->ro = 0;
8078 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8079 md_wakeup_thread(mddev->thread);
8080 md_wakeup_thread(mddev->sync_thread);
8081 did_change = 1;
8082 }
8083 rcu_read_lock();
8084 percpu_ref_get(&mddev->writes_pending);
8085 smp_mb(); /* Match smp_mb in set_in_sync() */
8086 if (mddev->safemode == 1)
8087 mddev->safemode = 0;
8088 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8089 if (mddev->in_sync || mddev->sync_checkers) {
8090 spin_lock(&mddev->lock);
8091 if (mddev->in_sync) {
8092 mddev->in_sync = 0;
8093 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8094 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8095 md_wakeup_thread(mddev->thread);
8096 did_change = 1;
8097 }
8098 spin_unlock(&mddev->lock);
8099 }
8100 rcu_read_unlock();
8101 if (did_change)
8102 sysfs_notify_dirent_safe(mddev->sysfs_state);
8103 if (!mddev->has_superblocks)
8104 return true;
8105 wait_event(mddev->sb_wait,
8106 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8107 mddev->suspended);
8108 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8109 percpu_ref_put(&mddev->writes_pending);
8110 return false;
8111 }
8112 return true;
8113 }
8114 EXPORT_SYMBOL(md_write_start);
8115
8116 /* md_write_inc can only be called when md_write_start() has
8117 * already been called at least once of the current request.
8118 * It increments the counter and is useful when a single request
8119 * is split into several parts. Each part causes an increment and
8120 * so needs a matching md_write_end().
8121 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8122 * a spinlocked region.
8123 */
md_write_inc(struct mddev * mddev,struct bio * bi)8124 void md_write_inc(struct mddev *mddev, struct bio *bi)
8125 {
8126 if (bio_data_dir(bi) != WRITE)
8127 return;
8128 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8129 percpu_ref_get(&mddev->writes_pending);
8130 }
8131 EXPORT_SYMBOL(md_write_inc);
8132
md_write_end(struct mddev * mddev)8133 void md_write_end(struct mddev *mddev)
8134 {
8135 percpu_ref_put(&mddev->writes_pending);
8136
8137 if (mddev->safemode == 2)
8138 md_wakeup_thread(mddev->thread);
8139 else if (mddev->safemode_delay)
8140 /* The roundup() ensures this only performs locking once
8141 * every ->safemode_delay jiffies
8142 */
8143 mod_timer(&mddev->safemode_timer,
8144 roundup(jiffies, mddev->safemode_delay) +
8145 mddev->safemode_delay);
8146 }
8147
8148 EXPORT_SYMBOL(md_write_end);
8149
8150 /* md_allow_write(mddev)
8151 * Calling this ensures that the array is marked 'active' so that writes
8152 * may proceed without blocking. It is important to call this before
8153 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8154 * Must be called with mddev_lock held.
8155 */
md_allow_write(struct mddev * mddev)8156 void md_allow_write(struct mddev *mddev)
8157 {
8158 if (!mddev->pers)
8159 return;
8160 if (mddev->ro)
8161 return;
8162 if (!mddev->pers->sync_request)
8163 return;
8164
8165 spin_lock(&mddev->lock);
8166 if (mddev->in_sync) {
8167 mddev->in_sync = 0;
8168 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8169 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8170 if (mddev->safemode_delay &&
8171 mddev->safemode == 0)
8172 mddev->safemode = 1;
8173 spin_unlock(&mddev->lock);
8174 md_update_sb(mddev, 0);
8175 sysfs_notify_dirent_safe(mddev->sysfs_state);
8176 /* wait for the dirty state to be recorded in the metadata */
8177 wait_event(mddev->sb_wait,
8178 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8179 } else
8180 spin_unlock(&mddev->lock);
8181 }
8182 EXPORT_SYMBOL_GPL(md_allow_write);
8183
8184 #define SYNC_MARKS 10
8185 #define SYNC_MARK_STEP (3*HZ)
8186 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8187 void md_do_sync(struct md_thread *thread)
8188 {
8189 struct mddev *mddev = thread->mddev;
8190 struct mddev *mddev2;
8191 unsigned int currspeed = 0,
8192 window;
8193 sector_t max_sectors,j, io_sectors, recovery_done;
8194 unsigned long mark[SYNC_MARKS];
8195 unsigned long update_time;
8196 sector_t mark_cnt[SYNC_MARKS];
8197 int last_mark,m;
8198 struct list_head *tmp;
8199 sector_t last_check;
8200 int skipped = 0;
8201 struct md_rdev *rdev;
8202 char *desc, *action = NULL;
8203 struct blk_plug plug;
8204 int ret;
8205
8206 /* just incase thread restarts... */
8207 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8208 return;
8209 if (mddev->ro) {/* never try to sync a read-only array */
8210 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8211 return;
8212 }
8213
8214 if (mddev_is_clustered(mddev)) {
8215 ret = md_cluster_ops->resync_start(mddev);
8216 if (ret)
8217 goto skip;
8218
8219 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8220 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8221 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8222 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8223 && ((unsigned long long)mddev->curr_resync_completed
8224 < (unsigned long long)mddev->resync_max_sectors))
8225 goto skip;
8226 }
8227
8228 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8229 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8230 desc = "data-check";
8231 action = "check";
8232 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8233 desc = "requested-resync";
8234 action = "repair";
8235 } else
8236 desc = "resync";
8237 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8238 desc = "reshape";
8239 else
8240 desc = "recovery";
8241
8242 mddev->last_sync_action = action ?: desc;
8243
8244 /* we overload curr_resync somewhat here.
8245 * 0 == not engaged in resync at all
8246 * 2 == checking that there is no conflict with another sync
8247 * 1 == like 2, but have yielded to allow conflicting resync to
8248 * commense
8249 * other == active in resync - this many blocks
8250 *
8251 * Before starting a resync we must have set curr_resync to
8252 * 2, and then checked that every "conflicting" array has curr_resync
8253 * less than ours. When we find one that is the same or higher
8254 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8255 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8256 * This will mean we have to start checking from the beginning again.
8257 *
8258 */
8259
8260 do {
8261 int mddev2_minor = -1;
8262 mddev->curr_resync = 2;
8263
8264 try_again:
8265 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8266 goto skip;
8267 for_each_mddev(mddev2, tmp) {
8268 if (mddev2 == mddev)
8269 continue;
8270 if (!mddev->parallel_resync
8271 && mddev2->curr_resync
8272 && match_mddev_units(mddev, mddev2)) {
8273 DEFINE_WAIT(wq);
8274 if (mddev < mddev2 && mddev->curr_resync == 2) {
8275 /* arbitrarily yield */
8276 mddev->curr_resync = 1;
8277 wake_up(&resync_wait);
8278 }
8279 if (mddev > mddev2 && mddev->curr_resync == 1)
8280 /* no need to wait here, we can wait the next
8281 * time 'round when curr_resync == 2
8282 */
8283 continue;
8284 /* We need to wait 'interruptible' so as not to
8285 * contribute to the load average, and not to
8286 * be caught by 'softlockup'
8287 */
8288 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8289 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8290 mddev2->curr_resync >= mddev->curr_resync) {
8291 if (mddev2_minor != mddev2->md_minor) {
8292 mddev2_minor = mddev2->md_minor;
8293 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8294 desc, mdname(mddev),
8295 mdname(mddev2));
8296 }
8297 mddev_put(mddev2);
8298 if (signal_pending(current))
8299 flush_signals(current);
8300 schedule();
8301 finish_wait(&resync_wait, &wq);
8302 goto try_again;
8303 }
8304 finish_wait(&resync_wait, &wq);
8305 }
8306 }
8307 } while (mddev->curr_resync < 2);
8308
8309 j = 0;
8310 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8311 /* resync follows the size requested by the personality,
8312 * which defaults to physical size, but can be virtual size
8313 */
8314 max_sectors = mddev->resync_max_sectors;
8315 atomic64_set(&mddev->resync_mismatches, 0);
8316 /* we don't use the checkpoint if there's a bitmap */
8317 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8318 j = mddev->resync_min;
8319 else if (!mddev->bitmap)
8320 j = mddev->recovery_cp;
8321
8322 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8323 max_sectors = mddev->resync_max_sectors;
8324 else {
8325 /* recovery follows the physical size of devices */
8326 max_sectors = mddev->dev_sectors;
8327 j = MaxSector;
8328 rcu_read_lock();
8329 rdev_for_each_rcu(rdev, mddev)
8330 if (rdev->raid_disk >= 0 &&
8331 !test_bit(Journal, &rdev->flags) &&
8332 !test_bit(Faulty, &rdev->flags) &&
8333 !test_bit(In_sync, &rdev->flags) &&
8334 rdev->recovery_offset < j)
8335 j = rdev->recovery_offset;
8336 rcu_read_unlock();
8337
8338 /* If there is a bitmap, we need to make sure all
8339 * writes that started before we added a spare
8340 * complete before we start doing a recovery.
8341 * Otherwise the write might complete and (via
8342 * bitmap_endwrite) set a bit in the bitmap after the
8343 * recovery has checked that bit and skipped that
8344 * region.
8345 */
8346 if (mddev->bitmap) {
8347 mddev->pers->quiesce(mddev, 1);
8348 mddev->pers->quiesce(mddev, 0);
8349 }
8350 }
8351
8352 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8353 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8354 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8355 speed_max(mddev), desc);
8356
8357 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8358
8359 io_sectors = 0;
8360 for (m = 0; m < SYNC_MARKS; m++) {
8361 mark[m] = jiffies;
8362 mark_cnt[m] = io_sectors;
8363 }
8364 last_mark = 0;
8365 mddev->resync_mark = mark[last_mark];
8366 mddev->resync_mark_cnt = mark_cnt[last_mark];
8367
8368 /*
8369 * Tune reconstruction:
8370 */
8371 window = 32*(PAGE_SIZE/512);
8372 pr_debug("md: using %dk window, over a total of %lluk.\n",
8373 window/2, (unsigned long long)max_sectors/2);
8374
8375 atomic_set(&mddev->recovery_active, 0);
8376 last_check = 0;
8377
8378 if (j>2) {
8379 pr_debug("md: resuming %s of %s from checkpoint.\n",
8380 desc, mdname(mddev));
8381 mddev->curr_resync = j;
8382 } else
8383 mddev->curr_resync = 3; /* no longer delayed */
8384 mddev->curr_resync_completed = j;
8385 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8386 md_new_event(mddev);
8387 update_time = jiffies;
8388
8389 blk_start_plug(&plug);
8390 while (j < max_sectors) {
8391 sector_t sectors;
8392
8393 skipped = 0;
8394
8395 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8396 ((mddev->curr_resync > mddev->curr_resync_completed &&
8397 (mddev->curr_resync - mddev->curr_resync_completed)
8398 > (max_sectors >> 4)) ||
8399 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8400 (j - mddev->curr_resync_completed)*2
8401 >= mddev->resync_max - mddev->curr_resync_completed ||
8402 mddev->curr_resync_completed > mddev->resync_max
8403 )) {
8404 /* time to update curr_resync_completed */
8405 wait_event(mddev->recovery_wait,
8406 atomic_read(&mddev->recovery_active) == 0);
8407 mddev->curr_resync_completed = j;
8408 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8409 j > mddev->recovery_cp)
8410 mddev->recovery_cp = j;
8411 update_time = jiffies;
8412 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8413 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8414 }
8415
8416 while (j >= mddev->resync_max &&
8417 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8418 /* As this condition is controlled by user-space,
8419 * we can block indefinitely, so use '_interruptible'
8420 * to avoid triggering warnings.
8421 */
8422 flush_signals(current); /* just in case */
8423 wait_event_interruptible(mddev->recovery_wait,
8424 mddev->resync_max > j
8425 || test_bit(MD_RECOVERY_INTR,
8426 &mddev->recovery));
8427 }
8428
8429 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8430 break;
8431
8432 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8433 if (sectors == 0) {
8434 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8435 break;
8436 }
8437
8438 if (!skipped) { /* actual IO requested */
8439 io_sectors += sectors;
8440 atomic_add(sectors, &mddev->recovery_active);
8441 }
8442
8443 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8444 break;
8445
8446 j += sectors;
8447 if (j > max_sectors)
8448 /* when skipping, extra large numbers can be returned. */
8449 j = max_sectors;
8450 if (j > 2)
8451 mddev->curr_resync = j;
8452 mddev->curr_mark_cnt = io_sectors;
8453 if (last_check == 0)
8454 /* this is the earliest that rebuild will be
8455 * visible in /proc/mdstat
8456 */
8457 md_new_event(mddev);
8458
8459 if (last_check + window > io_sectors || j == max_sectors)
8460 continue;
8461
8462 last_check = io_sectors;
8463 repeat:
8464 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8465 /* step marks */
8466 int next = (last_mark+1) % SYNC_MARKS;
8467
8468 mddev->resync_mark = mark[next];
8469 mddev->resync_mark_cnt = mark_cnt[next];
8470 mark[next] = jiffies;
8471 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8472 last_mark = next;
8473 }
8474
8475 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8476 break;
8477
8478 /*
8479 * this loop exits only if either when we are slower than
8480 * the 'hard' speed limit, or the system was IO-idle for
8481 * a jiffy.
8482 * the system might be non-idle CPU-wise, but we only care
8483 * about not overloading the IO subsystem. (things like an
8484 * e2fsck being done on the RAID array should execute fast)
8485 */
8486 cond_resched();
8487
8488 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8489 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8490 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8491
8492 if (currspeed > speed_min(mddev)) {
8493 if (currspeed > speed_max(mddev)) {
8494 msleep(500);
8495 goto repeat;
8496 }
8497 if (!is_mddev_idle(mddev, 0)) {
8498 /*
8499 * Give other IO more of a chance.
8500 * The faster the devices, the less we wait.
8501 */
8502 wait_event(mddev->recovery_wait,
8503 !atomic_read(&mddev->recovery_active));
8504 }
8505 }
8506 }
8507 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8508 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8509 ? "interrupted" : "done");
8510 /*
8511 * this also signals 'finished resyncing' to md_stop
8512 */
8513 blk_finish_plug(&plug);
8514 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8515
8516 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8517 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8518 mddev->curr_resync > 3) {
8519 mddev->curr_resync_completed = mddev->curr_resync;
8520 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8521 }
8522 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8523
8524 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8525 mddev->curr_resync > 3) {
8526 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8527 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8528 if (mddev->curr_resync >= mddev->recovery_cp) {
8529 pr_debug("md: checkpointing %s of %s.\n",
8530 desc, mdname(mddev));
8531 if (test_bit(MD_RECOVERY_ERROR,
8532 &mddev->recovery))
8533 mddev->recovery_cp =
8534 mddev->curr_resync_completed;
8535 else
8536 mddev->recovery_cp =
8537 mddev->curr_resync;
8538 }
8539 } else
8540 mddev->recovery_cp = MaxSector;
8541 } else {
8542 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8543 mddev->curr_resync = MaxSector;
8544 rcu_read_lock();
8545 rdev_for_each_rcu(rdev, mddev)
8546 if (rdev->raid_disk >= 0 &&
8547 mddev->delta_disks >= 0 &&
8548 !test_bit(Journal, &rdev->flags) &&
8549 !test_bit(Faulty, &rdev->flags) &&
8550 !test_bit(In_sync, &rdev->flags) &&
8551 rdev->recovery_offset < mddev->curr_resync)
8552 rdev->recovery_offset = mddev->curr_resync;
8553 rcu_read_unlock();
8554 }
8555 }
8556 skip:
8557 /* set CHANGE_PENDING here since maybe another update is needed,
8558 * so other nodes are informed. It should be harmless for normal
8559 * raid */
8560 set_mask_bits(&mddev->sb_flags, 0,
8561 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8562
8563 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8564 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8565 mddev->delta_disks > 0 &&
8566 mddev->pers->finish_reshape &&
8567 mddev->pers->size &&
8568 mddev->queue) {
8569 mddev_lock_nointr(mddev);
8570 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
8571 mddev_unlock(mddev);
8572 set_capacity(mddev->gendisk, mddev->array_sectors);
8573 revalidate_disk(mddev->gendisk);
8574 }
8575
8576 spin_lock(&mddev->lock);
8577 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8578 /* We completed so min/max setting can be forgotten if used. */
8579 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8580 mddev->resync_min = 0;
8581 mddev->resync_max = MaxSector;
8582 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8583 mddev->resync_min = mddev->curr_resync_completed;
8584 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8585 mddev->curr_resync = 0;
8586 spin_unlock(&mddev->lock);
8587
8588 wake_up(&resync_wait);
8589 md_wakeup_thread(mddev->thread);
8590 return;
8591 }
8592 EXPORT_SYMBOL_GPL(md_do_sync);
8593
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)8594 static int remove_and_add_spares(struct mddev *mddev,
8595 struct md_rdev *this)
8596 {
8597 struct md_rdev *rdev;
8598 int spares = 0;
8599 int removed = 0;
8600 bool remove_some = false;
8601
8602 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8603 /* Mustn't remove devices when resync thread is running */
8604 return 0;
8605
8606 rdev_for_each(rdev, mddev) {
8607 if ((this == NULL || rdev == this) &&
8608 rdev->raid_disk >= 0 &&
8609 !test_bit(Blocked, &rdev->flags) &&
8610 test_bit(Faulty, &rdev->flags) &&
8611 atomic_read(&rdev->nr_pending)==0) {
8612 /* Faulty non-Blocked devices with nr_pending == 0
8613 * never get nr_pending incremented,
8614 * never get Faulty cleared, and never get Blocked set.
8615 * So we can synchronize_rcu now rather than once per device
8616 */
8617 remove_some = true;
8618 set_bit(RemoveSynchronized, &rdev->flags);
8619 }
8620 }
8621
8622 if (remove_some)
8623 synchronize_rcu();
8624 rdev_for_each(rdev, mddev) {
8625 if ((this == NULL || rdev == this) &&
8626 rdev->raid_disk >= 0 &&
8627 !test_bit(Blocked, &rdev->flags) &&
8628 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8629 (!test_bit(In_sync, &rdev->flags) &&
8630 !test_bit(Journal, &rdev->flags))) &&
8631 atomic_read(&rdev->nr_pending)==0)) {
8632 if (mddev->pers->hot_remove_disk(
8633 mddev, rdev) == 0) {
8634 sysfs_unlink_rdev(mddev, rdev);
8635 rdev->saved_raid_disk = rdev->raid_disk;
8636 rdev->raid_disk = -1;
8637 removed++;
8638 }
8639 }
8640 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8641 clear_bit(RemoveSynchronized, &rdev->flags);
8642 }
8643
8644 if (removed && mddev->kobj.sd)
8645 sysfs_notify(&mddev->kobj, NULL, "degraded");
8646
8647 if (this && removed)
8648 goto no_add;
8649
8650 rdev_for_each(rdev, mddev) {
8651 if (this && this != rdev)
8652 continue;
8653 if (test_bit(Candidate, &rdev->flags))
8654 continue;
8655 if (rdev->raid_disk >= 0 &&
8656 !test_bit(In_sync, &rdev->flags) &&
8657 !test_bit(Journal, &rdev->flags) &&
8658 !test_bit(Faulty, &rdev->flags))
8659 spares++;
8660 if (rdev->raid_disk >= 0)
8661 continue;
8662 if (test_bit(Faulty, &rdev->flags))
8663 continue;
8664 if (!test_bit(Journal, &rdev->flags)) {
8665 if (mddev->ro &&
8666 ! (rdev->saved_raid_disk >= 0 &&
8667 !test_bit(Bitmap_sync, &rdev->flags)))
8668 continue;
8669
8670 rdev->recovery_offset = 0;
8671 }
8672 if (mddev->pers->
8673 hot_add_disk(mddev, rdev) == 0) {
8674 if (sysfs_link_rdev(mddev, rdev))
8675 /* failure here is OK */;
8676 if (!test_bit(Journal, &rdev->flags))
8677 spares++;
8678 md_new_event(mddev);
8679 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8680 }
8681 }
8682 no_add:
8683 if (removed)
8684 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8685 return spares;
8686 }
8687
md_start_sync(struct work_struct * ws)8688 static void md_start_sync(struct work_struct *ws)
8689 {
8690 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8691
8692 mddev->sync_thread = md_register_thread(md_do_sync,
8693 mddev,
8694 "resync");
8695 if (!mddev->sync_thread) {
8696 pr_warn("%s: could not start resync thread...\n",
8697 mdname(mddev));
8698 /* leave the spares where they are, it shouldn't hurt */
8699 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8700 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8701 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8702 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8703 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8704 wake_up(&resync_wait);
8705 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8706 &mddev->recovery))
8707 if (mddev->sysfs_action)
8708 sysfs_notify_dirent_safe(mddev->sysfs_action);
8709 } else
8710 md_wakeup_thread(mddev->sync_thread);
8711 sysfs_notify_dirent_safe(mddev->sysfs_action);
8712 md_new_event(mddev);
8713 }
8714
8715 /*
8716 * This routine is regularly called by all per-raid-array threads to
8717 * deal with generic issues like resync and super-block update.
8718 * Raid personalities that don't have a thread (linear/raid0) do not
8719 * need this as they never do any recovery or update the superblock.
8720 *
8721 * It does not do any resync itself, but rather "forks" off other threads
8722 * to do that as needed.
8723 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8724 * "->recovery" and create a thread at ->sync_thread.
8725 * When the thread finishes it sets MD_RECOVERY_DONE
8726 * and wakeups up this thread which will reap the thread and finish up.
8727 * This thread also removes any faulty devices (with nr_pending == 0).
8728 *
8729 * The overall approach is:
8730 * 1/ if the superblock needs updating, update it.
8731 * 2/ If a recovery thread is running, don't do anything else.
8732 * 3/ If recovery has finished, clean up, possibly marking spares active.
8733 * 4/ If there are any faulty devices, remove them.
8734 * 5/ If array is degraded, try to add spares devices
8735 * 6/ If array has spares or is not in-sync, start a resync thread.
8736 */
md_check_recovery(struct mddev * mddev)8737 void md_check_recovery(struct mddev *mddev)
8738 {
8739 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
8740 /* Write superblock - thread that called mddev_suspend()
8741 * holds reconfig_mutex for us.
8742 */
8743 set_bit(MD_UPDATING_SB, &mddev->flags);
8744 smp_mb__after_atomic();
8745 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
8746 md_update_sb(mddev, 0);
8747 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
8748 wake_up(&mddev->sb_wait);
8749 }
8750
8751 if (mddev->suspended)
8752 return;
8753
8754 if (mddev->bitmap)
8755 bitmap_daemon_work(mddev);
8756
8757 if (signal_pending(current)) {
8758 if (mddev->pers->sync_request && !mddev->external) {
8759 pr_debug("md: %s in immediate safe mode\n",
8760 mdname(mddev));
8761 mddev->safemode = 2;
8762 }
8763 flush_signals(current);
8764 }
8765
8766 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8767 return;
8768 if ( ! (
8769 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8770 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8771 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8772 (mddev->external == 0 && mddev->safemode == 1) ||
8773 (mddev->safemode == 2
8774 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8775 ))
8776 return;
8777
8778 if (mddev_trylock(mddev)) {
8779 int spares = 0;
8780 bool try_set_sync = mddev->safemode != 0;
8781
8782 if (!mddev->external && mddev->safemode == 1)
8783 mddev->safemode = 0;
8784
8785 if (mddev->ro) {
8786 struct md_rdev *rdev;
8787 if (!mddev->external && mddev->in_sync)
8788 /* 'Blocked' flag not needed as failed devices
8789 * will be recorded if array switched to read/write.
8790 * Leaving it set will prevent the device
8791 * from being removed.
8792 */
8793 rdev_for_each(rdev, mddev)
8794 clear_bit(Blocked, &rdev->flags);
8795 /* On a read-only array we can:
8796 * - remove failed devices
8797 * - add already-in_sync devices if the array itself
8798 * is in-sync.
8799 * As we only add devices that are already in-sync,
8800 * we can activate the spares immediately.
8801 */
8802 remove_and_add_spares(mddev, NULL);
8803 /* There is no thread, but we need to call
8804 * ->spare_active and clear saved_raid_disk
8805 */
8806 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8807 md_reap_sync_thread(mddev);
8808 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8809 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8810 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8811 goto unlock;
8812 }
8813
8814 if (mddev_is_clustered(mddev)) {
8815 struct md_rdev *rdev;
8816 /* kick the device if another node issued a
8817 * remove disk.
8818 */
8819 rdev_for_each(rdev, mddev) {
8820 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8821 rdev->raid_disk < 0)
8822 md_kick_rdev_from_array(rdev);
8823 }
8824 }
8825
8826 if (try_set_sync && !mddev->external && !mddev->in_sync) {
8827 spin_lock(&mddev->lock);
8828 set_in_sync(mddev);
8829 spin_unlock(&mddev->lock);
8830 }
8831
8832 if (mddev->sb_flags)
8833 md_update_sb(mddev, 0);
8834
8835 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8836 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8837 /* resync/recovery still happening */
8838 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8839 goto unlock;
8840 }
8841 if (mddev->sync_thread) {
8842 md_reap_sync_thread(mddev);
8843 goto unlock;
8844 }
8845 /* Set RUNNING before clearing NEEDED to avoid
8846 * any transients in the value of "sync_action".
8847 */
8848 mddev->curr_resync_completed = 0;
8849 spin_lock(&mddev->lock);
8850 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8851 spin_unlock(&mddev->lock);
8852 /* Clear some bits that don't mean anything, but
8853 * might be left set
8854 */
8855 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8856 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8857
8858 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8859 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8860 goto not_running;
8861 /* no recovery is running.
8862 * remove any failed drives, then
8863 * add spares if possible.
8864 * Spares are also removed and re-added, to allow
8865 * the personality to fail the re-add.
8866 */
8867
8868 if (mddev->reshape_position != MaxSector) {
8869 if (mddev->pers->check_reshape == NULL ||
8870 mddev->pers->check_reshape(mddev) != 0)
8871 /* Cannot proceed */
8872 goto not_running;
8873 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8874 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8875 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8876 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8877 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8878 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8879 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8880 } else if (mddev->recovery_cp < MaxSector) {
8881 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8882 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8883 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8884 /* nothing to be done ... */
8885 goto not_running;
8886
8887 if (mddev->pers->sync_request) {
8888 if (spares) {
8889 /* We are adding a device or devices to an array
8890 * which has the bitmap stored on all devices.
8891 * So make sure all bitmap pages get written
8892 */
8893 bitmap_write_all(mddev->bitmap);
8894 }
8895 INIT_WORK(&mddev->del_work, md_start_sync);
8896 queue_work(md_misc_wq, &mddev->del_work);
8897 goto unlock;
8898 }
8899 not_running:
8900 if (!mddev->sync_thread) {
8901 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8902 wake_up(&resync_wait);
8903 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8904 &mddev->recovery))
8905 if (mddev->sysfs_action)
8906 sysfs_notify_dirent_safe(mddev->sysfs_action);
8907 }
8908 unlock:
8909 wake_up(&mddev->sb_wait);
8910 mddev_unlock(mddev);
8911 }
8912 }
8913 EXPORT_SYMBOL(md_check_recovery);
8914
md_reap_sync_thread(struct mddev * mddev)8915 void md_reap_sync_thread(struct mddev *mddev)
8916 {
8917 struct md_rdev *rdev;
8918
8919 /* resync has finished, collect result */
8920 md_unregister_thread(&mddev->sync_thread);
8921 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8922 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
8923 mddev->degraded != mddev->raid_disks) {
8924 /* success...*/
8925 /* activate any spares */
8926 if (mddev->pers->spare_active(mddev)) {
8927 sysfs_notify(&mddev->kobj, NULL,
8928 "degraded");
8929 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8930 }
8931 }
8932 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8933 mddev->pers->finish_reshape)
8934 mddev->pers->finish_reshape(mddev);
8935
8936 /* If array is no-longer degraded, then any saved_raid_disk
8937 * information must be scrapped.
8938 */
8939 if (!mddev->degraded)
8940 rdev_for_each(rdev, mddev)
8941 rdev->saved_raid_disk = -1;
8942
8943 md_update_sb(mddev, 1);
8944 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8945 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8946 * clustered raid */
8947 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8948 md_cluster_ops->resync_finish(mddev);
8949 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8950 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8951 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8952 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8953 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8954 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8955 wake_up(&resync_wait);
8956 /* flag recovery needed just to double check */
8957 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8958 sysfs_notify_dirent_safe(mddev->sysfs_action);
8959 md_new_event(mddev);
8960 if (mddev->event_work.func)
8961 queue_work(md_misc_wq, &mddev->event_work);
8962 }
8963 EXPORT_SYMBOL(md_reap_sync_thread);
8964
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)8965 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8966 {
8967 sysfs_notify_dirent_safe(rdev->sysfs_state);
8968 wait_event_timeout(rdev->blocked_wait,
8969 !test_bit(Blocked, &rdev->flags) &&
8970 !test_bit(BlockedBadBlocks, &rdev->flags),
8971 msecs_to_jiffies(5000));
8972 rdev_dec_pending(rdev, mddev);
8973 }
8974 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8975
md_finish_reshape(struct mddev * mddev)8976 void md_finish_reshape(struct mddev *mddev)
8977 {
8978 /* called be personality module when reshape completes. */
8979 struct md_rdev *rdev;
8980
8981 rdev_for_each(rdev, mddev) {
8982 if (rdev->data_offset > rdev->new_data_offset)
8983 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8984 else
8985 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8986 rdev->data_offset = rdev->new_data_offset;
8987 }
8988 }
8989 EXPORT_SYMBOL(md_finish_reshape);
8990
8991 /* Bad block management */
8992
8993 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8994 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8995 int is_new)
8996 {
8997 struct mddev *mddev = rdev->mddev;
8998 int rv;
8999 if (is_new)
9000 s += rdev->new_data_offset;
9001 else
9002 s += rdev->data_offset;
9003 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9004 if (rv == 0) {
9005 /* Make sure they get written out promptly */
9006 if (test_bit(ExternalBbl, &rdev->flags))
9007 sysfs_notify(&rdev->kobj, NULL,
9008 "unacknowledged_bad_blocks");
9009 sysfs_notify_dirent_safe(rdev->sysfs_state);
9010 set_mask_bits(&mddev->sb_flags, 0,
9011 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9012 md_wakeup_thread(rdev->mddev->thread);
9013 return 1;
9014 } else
9015 return 0;
9016 }
9017 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9018
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9019 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9020 int is_new)
9021 {
9022 int rv;
9023 if (is_new)
9024 s += rdev->new_data_offset;
9025 else
9026 s += rdev->data_offset;
9027 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9028 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9029 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
9030 return rv;
9031 }
9032 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9033
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9034 static int md_notify_reboot(struct notifier_block *this,
9035 unsigned long code, void *x)
9036 {
9037 struct list_head *tmp;
9038 struct mddev *mddev;
9039 int need_delay = 0;
9040
9041 for_each_mddev(mddev, tmp) {
9042 if (mddev_trylock(mddev)) {
9043 if (mddev->pers)
9044 __md_stop_writes(mddev);
9045 if (mddev->persistent)
9046 mddev->safemode = 2;
9047 mddev_unlock(mddev);
9048 }
9049 need_delay = 1;
9050 }
9051 /*
9052 * certain more exotic SCSI devices are known to be
9053 * volatile wrt too early system reboots. While the
9054 * right place to handle this issue is the given
9055 * driver, we do want to have a safe RAID driver ...
9056 */
9057 if (need_delay)
9058 mdelay(1000*1);
9059
9060 return NOTIFY_DONE;
9061 }
9062
9063 static struct notifier_block md_notifier = {
9064 .notifier_call = md_notify_reboot,
9065 .next = NULL,
9066 .priority = INT_MAX, /* before any real devices */
9067 };
9068
md_geninit(void)9069 static void md_geninit(void)
9070 {
9071 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9072
9073 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9074 }
9075
md_init(void)9076 static int __init md_init(void)
9077 {
9078 int ret = -ENOMEM;
9079
9080 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9081 if (!md_wq)
9082 goto err_wq;
9083
9084 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9085 if (!md_misc_wq)
9086 goto err_misc_wq;
9087
9088 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9089 goto err_md;
9090
9091 if ((ret = register_blkdev(0, "mdp")) < 0)
9092 goto err_mdp;
9093 mdp_major = ret;
9094
9095 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9096 md_probe, NULL, NULL);
9097 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9098 md_probe, NULL, NULL);
9099
9100 register_reboot_notifier(&md_notifier);
9101 raid_table_header = register_sysctl_table(raid_root_table);
9102
9103 md_geninit();
9104 return 0;
9105
9106 err_mdp:
9107 unregister_blkdev(MD_MAJOR, "md");
9108 err_md:
9109 destroy_workqueue(md_misc_wq);
9110 err_misc_wq:
9111 destroy_workqueue(md_wq);
9112 err_wq:
9113 return ret;
9114 }
9115
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9116 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9117 {
9118 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9119 struct md_rdev *rdev2;
9120 int role, ret;
9121 char b[BDEVNAME_SIZE];
9122
9123 /*
9124 * If size is changed in another node then we need to
9125 * do resize as well.
9126 */
9127 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9128 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9129 if (ret)
9130 pr_info("md-cluster: resize failed\n");
9131 else
9132 bitmap_update_sb(mddev->bitmap);
9133 }
9134
9135 /* Check for change of roles in the active devices */
9136 rdev_for_each(rdev2, mddev) {
9137 if (test_bit(Faulty, &rdev2->flags))
9138 continue;
9139
9140 /* Check if the roles changed */
9141 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9142
9143 if (test_bit(Candidate, &rdev2->flags)) {
9144 if (role == 0xfffe) {
9145 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9146 md_kick_rdev_from_array(rdev2);
9147 continue;
9148 }
9149 else
9150 clear_bit(Candidate, &rdev2->flags);
9151 }
9152
9153 if (role != rdev2->raid_disk) {
9154 /* got activated */
9155 if (rdev2->raid_disk == -1 && role != 0xffff) {
9156 rdev2->saved_raid_disk = role;
9157 ret = remove_and_add_spares(mddev, rdev2);
9158 pr_info("Activated spare: %s\n",
9159 bdevname(rdev2->bdev,b));
9160 /* wakeup mddev->thread here, so array could
9161 * perform resync with the new activated disk */
9162 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9163 md_wakeup_thread(mddev->thread);
9164
9165 }
9166 /* device faulty
9167 * We just want to do the minimum to mark the disk
9168 * as faulty. The recovery is performed by the
9169 * one who initiated the error.
9170 */
9171 if ((role == 0xfffe) || (role == 0xfffd)) {
9172 md_error(mddev, rdev2);
9173 clear_bit(Blocked, &rdev2->flags);
9174 }
9175 }
9176 }
9177
9178 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9179 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9180
9181 /* Finally set the event to be up to date */
9182 mddev->events = le64_to_cpu(sb->events);
9183 }
9184
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9185 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9186 {
9187 int err;
9188 struct page *swapout = rdev->sb_page;
9189 struct mdp_superblock_1 *sb;
9190
9191 /* Store the sb page of the rdev in the swapout temporary
9192 * variable in case we err in the future
9193 */
9194 rdev->sb_page = NULL;
9195 err = alloc_disk_sb(rdev);
9196 if (err == 0) {
9197 ClearPageUptodate(rdev->sb_page);
9198 rdev->sb_loaded = 0;
9199 err = super_types[mddev->major_version].
9200 load_super(rdev, NULL, mddev->minor_version);
9201 }
9202 if (err < 0) {
9203 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9204 __func__, __LINE__, rdev->desc_nr, err);
9205 if (rdev->sb_page)
9206 put_page(rdev->sb_page);
9207 rdev->sb_page = swapout;
9208 rdev->sb_loaded = 1;
9209 return err;
9210 }
9211
9212 sb = page_address(rdev->sb_page);
9213 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9214 * is not set
9215 */
9216
9217 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9218 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9219
9220 /* The other node finished recovery, call spare_active to set
9221 * device In_sync and mddev->degraded
9222 */
9223 if (rdev->recovery_offset == MaxSector &&
9224 !test_bit(In_sync, &rdev->flags) &&
9225 mddev->pers->spare_active(mddev))
9226 sysfs_notify(&mddev->kobj, NULL, "degraded");
9227
9228 put_page(swapout);
9229 return 0;
9230 }
9231
md_reload_sb(struct mddev * mddev,int nr)9232 void md_reload_sb(struct mddev *mddev, int nr)
9233 {
9234 struct md_rdev *rdev;
9235 int err;
9236
9237 /* Find the rdev */
9238 rdev_for_each_rcu(rdev, mddev) {
9239 if (rdev->desc_nr == nr)
9240 break;
9241 }
9242
9243 if (!rdev || rdev->desc_nr != nr) {
9244 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9245 return;
9246 }
9247
9248 err = read_rdev(mddev, rdev);
9249 if (err < 0)
9250 return;
9251
9252 check_sb_changes(mddev, rdev);
9253
9254 /* Read all rdev's to update recovery_offset */
9255 rdev_for_each_rcu(rdev, mddev)
9256 read_rdev(mddev, rdev);
9257 }
9258 EXPORT_SYMBOL(md_reload_sb);
9259
9260 #ifndef MODULE
9261
9262 /*
9263 * Searches all registered partitions for autorun RAID arrays
9264 * at boot time.
9265 */
9266
9267 static DEFINE_MUTEX(detected_devices_mutex);
9268 static LIST_HEAD(all_detected_devices);
9269 struct detected_devices_node {
9270 struct list_head list;
9271 dev_t dev;
9272 };
9273
md_autodetect_dev(dev_t dev)9274 void md_autodetect_dev(dev_t dev)
9275 {
9276 struct detected_devices_node *node_detected_dev;
9277
9278 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9279 if (node_detected_dev) {
9280 node_detected_dev->dev = dev;
9281 mutex_lock(&detected_devices_mutex);
9282 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9283 mutex_unlock(&detected_devices_mutex);
9284 }
9285 }
9286
autostart_arrays(int part)9287 static void autostart_arrays(int part)
9288 {
9289 struct md_rdev *rdev;
9290 struct detected_devices_node *node_detected_dev;
9291 dev_t dev;
9292 int i_scanned, i_passed;
9293
9294 i_scanned = 0;
9295 i_passed = 0;
9296
9297 pr_info("md: Autodetecting RAID arrays.\n");
9298
9299 mutex_lock(&detected_devices_mutex);
9300 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9301 i_scanned++;
9302 node_detected_dev = list_entry(all_detected_devices.next,
9303 struct detected_devices_node, list);
9304 list_del(&node_detected_dev->list);
9305 dev = node_detected_dev->dev;
9306 kfree(node_detected_dev);
9307 mutex_unlock(&detected_devices_mutex);
9308 rdev = md_import_device(dev,0, 90);
9309 mutex_lock(&detected_devices_mutex);
9310 if (IS_ERR(rdev))
9311 continue;
9312
9313 if (test_bit(Faulty, &rdev->flags))
9314 continue;
9315
9316 set_bit(AutoDetected, &rdev->flags);
9317 list_add(&rdev->same_set, &pending_raid_disks);
9318 i_passed++;
9319 }
9320 mutex_unlock(&detected_devices_mutex);
9321
9322 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9323
9324 autorun_devices(part);
9325 }
9326
9327 #endif /* !MODULE */
9328
md_exit(void)9329 static __exit void md_exit(void)
9330 {
9331 struct mddev *mddev;
9332 struct list_head *tmp;
9333 int delay = 1;
9334
9335 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9336 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9337
9338 unregister_blkdev(MD_MAJOR,"md");
9339 unregister_blkdev(mdp_major, "mdp");
9340 unregister_reboot_notifier(&md_notifier);
9341 unregister_sysctl_table(raid_table_header);
9342
9343 /* We cannot unload the modules while some process is
9344 * waiting for us in select() or poll() - wake them up
9345 */
9346 md_unloading = 1;
9347 while (waitqueue_active(&md_event_waiters)) {
9348 /* not safe to leave yet */
9349 wake_up(&md_event_waiters);
9350 msleep(delay);
9351 delay += delay;
9352 }
9353 remove_proc_entry("mdstat", NULL);
9354
9355 for_each_mddev(mddev, tmp) {
9356 export_array(mddev);
9357 mddev->ctime = 0;
9358 mddev->hold_active = 0;
9359 /*
9360 * for_each_mddev() will call mddev_put() at the end of each
9361 * iteration. As the mddev is now fully clear, this will
9362 * schedule the mddev for destruction by a workqueue, and the
9363 * destroy_workqueue() below will wait for that to complete.
9364 */
9365 }
9366 destroy_workqueue(md_misc_wq);
9367 destroy_workqueue(md_wq);
9368 }
9369
9370 subsys_initcall(md_init);
module_exit(md_exit)9371 module_exit(md_exit)
9372
9373 static int get_ro(char *buffer, const struct kernel_param *kp)
9374 {
9375 return sprintf(buffer, "%d", start_readonly);
9376 }
set_ro(const char * val,const struct kernel_param * kp)9377 static int set_ro(const char *val, const struct kernel_param *kp)
9378 {
9379 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9380 }
9381
9382 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9383 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9384 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9385 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9386
9387 MODULE_LICENSE("GPL");
9388 MODULE_DESCRIPTION("MD RAID framework");
9389 MODULE_ALIAS("md");
9390 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9391