1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
disable_randmaps(char * s)120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
init_zero_pfn(void)135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
sync_mm_rss(struct mm_struct * mm)145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
add_mm_counter_fast(struct mm_struct * mm,int member,int val)158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
check_sync_rss_stat(struct task_struct * task)184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
tlb_next_batch(struct mmu_gather * tlb)192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
arch_tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 __tlb_reset_range(tlb);
250 }
251
tlb_flush_mmu_free(struct mmu_gather * tlb)252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258 #endif
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
tlb_flush_mmu(struct mmu_gather * tlb)266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
arch_tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end,bool force)276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
__tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 /*
335 * If we want tlb_remove_table() to imply TLB invalidates.
336 */
tlb_table_invalidate(struct mmu_gather * tlb)337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338 {
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 /*
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
344 */
345 tlb_flush_mmu_tlbonly(tlb);
346 #endif
347 }
348
tlb_remove_table_smp_sync(void * arg)349 static void tlb_remove_table_smp_sync(void *arg)
350 {
351 /* Simply deliver the interrupt */
352 }
353
tlb_remove_table_one(void * table)354 static void tlb_remove_table_one(void *table)
355 {
356 /*
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
359 *
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
362 */
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
365 }
366
tlb_remove_table_rcu(struct rcu_head * head)367 static void tlb_remove_table_rcu(struct rcu_head *head)
368 {
369 struct mmu_table_batch *batch;
370 int i;
371
372 batch = container_of(head, struct mmu_table_batch, rcu);
373
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
376
377 free_page((unsigned long)batch);
378 }
379
tlb_table_flush(struct mmu_gather * tlb)380 void tlb_table_flush(struct mmu_gather *tlb)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 if (*batch) {
385 tlb_table_invalidate(tlb);
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
388 }
389 }
390
tlb_remove_table(struct mmu_gather * tlb,void * table)391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
392 {
393 struct mmu_table_batch **batch = &tlb->batch;
394
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
398 tlb_table_invalidate(tlb);
399 tlb_remove_table_one(table);
400 return;
401 }
402 (*batch)->nr = 0;
403 }
404
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
408 }
409
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
411
412 /* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
416 */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
419 {
420 arch_tlb_gather_mmu(tlb, mm, start, end);
421 inc_tlb_flush_pending(tlb->mm);
422 }
423
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
426 {
427 /*
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
433 */
434 bool force = mm_tlb_flush_nested(tlb->mm);
435
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
438 }
439
440 /*
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
443 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
446 {
447 pgtable_t token = pmd_pgtable(*pmd);
448 pmd_clear(pmd);
449 pte_free_tlb(tlb, token, addr);
450 atomic_long_dec(&tlb->mm->nr_ptes);
451 }
452
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
456 {
457 pmd_t *pmd;
458 unsigned long next;
459 unsigned long start;
460
461 start = addr;
462 pmd = pmd_offset(pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
467 free_pte_range(tlb, pmd, addr);
468 } while (pmd++, addr = next, addr != end);
469
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
477 }
478 if (end - 1 > ceiling - 1)
479 return;
480
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
483 pmd_free_tlb(tlb, pmd, start);
484 mm_dec_nr_pmds(tlb->mm);
485 }
486
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
490 {
491 pud_t *pud;
492 unsigned long next;
493 unsigned long start;
494
495 start = addr;
496 pud = pud_offset(p4d, addr);
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
503
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
518 }
519
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)520 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
521 unsigned long addr, unsigned long end,
522 unsigned long floor, unsigned long ceiling)
523 {
524 p4d_t *p4d;
525 unsigned long next;
526 unsigned long start;
527
528 start = addr;
529 p4d = p4d_offset(pgd, addr);
530 do {
531 next = p4d_addr_end(addr, end);
532 if (p4d_none_or_clear_bad(p4d))
533 continue;
534 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
535 } while (p4d++, addr = next, addr != end);
536
537 start &= PGDIR_MASK;
538 if (start < floor)
539 return;
540 if (ceiling) {
541 ceiling &= PGDIR_MASK;
542 if (!ceiling)
543 return;
544 }
545 if (end - 1 > ceiling - 1)
546 return;
547
548 p4d = p4d_offset(pgd, start);
549 pgd_clear(pgd);
550 p4d_free_tlb(tlb, p4d, start);
551 }
552
553 /*
554 * This function frees user-level page tables of a process.
555 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)556 void free_pgd_range(struct mmu_gather *tlb,
557 unsigned long addr, unsigned long end,
558 unsigned long floor, unsigned long ceiling)
559 {
560 pgd_t *pgd;
561 unsigned long next;
562
563 /*
564 * The next few lines have given us lots of grief...
565 *
566 * Why are we testing PMD* at this top level? Because often
567 * there will be no work to do at all, and we'd prefer not to
568 * go all the way down to the bottom just to discover that.
569 *
570 * Why all these "- 1"s? Because 0 represents both the bottom
571 * of the address space and the top of it (using -1 for the
572 * top wouldn't help much: the masks would do the wrong thing).
573 * The rule is that addr 0 and floor 0 refer to the bottom of
574 * the address space, but end 0 and ceiling 0 refer to the top
575 * Comparisons need to use "end - 1" and "ceiling - 1" (though
576 * that end 0 case should be mythical).
577 *
578 * Wherever addr is brought up or ceiling brought down, we must
579 * be careful to reject "the opposite 0" before it confuses the
580 * subsequent tests. But what about where end is brought down
581 * by PMD_SIZE below? no, end can't go down to 0 there.
582 *
583 * Whereas we round start (addr) and ceiling down, by different
584 * masks at different levels, in order to test whether a table
585 * now has no other vmas using it, so can be freed, we don't
586 * bother to round floor or end up - the tests don't need that.
587 */
588
589 addr &= PMD_MASK;
590 if (addr < floor) {
591 addr += PMD_SIZE;
592 if (!addr)
593 return;
594 }
595 if (ceiling) {
596 ceiling &= PMD_MASK;
597 if (!ceiling)
598 return;
599 }
600 if (end - 1 > ceiling - 1)
601 end -= PMD_SIZE;
602 if (addr > end - 1)
603 return;
604 /*
605 * We add page table cache pages with PAGE_SIZE,
606 * (see pte_free_tlb()), flush the tlb if we need
607 */
608 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
609 pgd = pgd_offset(tlb->mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
615 } while (pgd++, addr = next, addr != end);
616 }
617
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)618 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
619 unsigned long floor, unsigned long ceiling)
620 {
621 while (vma) {
622 struct vm_area_struct *next = vma->vm_next;
623 unsigned long addr = vma->vm_start;
624
625 /*
626 * Hide vma from rmap and truncate_pagecache before freeing
627 * pgtables
628 */
629 unlink_anon_vmas(vma);
630 unlink_file_vma(vma);
631
632 if (is_vm_hugetlb_page(vma)) {
633 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
634 floor, next ? next->vm_start : ceiling);
635 } else {
636 /*
637 * Optimization: gather nearby vmas into one call down
638 */
639 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
640 && !is_vm_hugetlb_page(next)) {
641 vma = next;
642 next = vma->vm_next;
643 unlink_anon_vmas(vma);
644 unlink_file_vma(vma);
645 }
646 free_pgd_range(tlb, addr, vma->vm_end,
647 floor, next ? next->vm_start : ceiling);
648 }
649 vma = next;
650 }
651 }
652
__pte_alloc(struct mm_struct * mm,pmd_t * pmd,unsigned long address)653 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
654 {
655 spinlock_t *ptl;
656 pgtable_t new = pte_alloc_one(mm, address);
657 if (!new)
658 return -ENOMEM;
659
660 /*
661 * Ensure all pte setup (eg. pte page lock and page clearing) are
662 * visible before the pte is made visible to other CPUs by being
663 * put into page tables.
664 *
665 * The other side of the story is the pointer chasing in the page
666 * table walking code (when walking the page table without locking;
667 * ie. most of the time). Fortunately, these data accesses consist
668 * of a chain of data-dependent loads, meaning most CPUs (alpha
669 * being the notable exception) will already guarantee loads are
670 * seen in-order. See the alpha page table accessors for the
671 * smp_read_barrier_depends() barriers in page table walking code.
672 */
673 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
674
675 ptl = pmd_lock(mm, pmd);
676 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
677 atomic_long_inc(&mm->nr_ptes);
678 pmd_populate(mm, pmd, new);
679 new = NULL;
680 }
681 spin_unlock(ptl);
682 if (new)
683 pte_free(mm, new);
684 return 0;
685 }
686
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)687 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
688 {
689 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
690 if (!new)
691 return -ENOMEM;
692
693 smp_wmb(); /* See comment in __pte_alloc */
694
695 spin_lock(&init_mm.page_table_lock);
696 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
697 pmd_populate_kernel(&init_mm, pmd, new);
698 new = NULL;
699 }
700 spin_unlock(&init_mm.page_table_lock);
701 if (new)
702 pte_free_kernel(&init_mm, new);
703 return 0;
704 }
705
init_rss_vec(int * rss)706 static inline void init_rss_vec(int *rss)
707 {
708 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
709 }
710
add_mm_rss_vec(struct mm_struct * mm,int * rss)711 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
712 {
713 int i;
714
715 if (current->mm == mm)
716 sync_mm_rss(mm);
717 for (i = 0; i < NR_MM_COUNTERS; i++)
718 if (rss[i])
719 add_mm_counter(mm, i, rss[i]);
720 }
721
722 /*
723 * This function is called to print an error when a bad pte
724 * is found. For example, we might have a PFN-mapped pte in
725 * a region that doesn't allow it.
726 *
727 * The calling function must still handle the error.
728 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)729 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
730 pte_t pte, struct page *page)
731 {
732 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
733 p4d_t *p4d = p4d_offset(pgd, addr);
734 pud_t *pud = pud_offset(p4d, addr);
735 pmd_t *pmd = pmd_offset(pud, addr);
736 struct address_space *mapping;
737 pgoff_t index;
738 static unsigned long resume;
739 static unsigned long nr_shown;
740 static unsigned long nr_unshown;
741
742 /*
743 * Allow a burst of 60 reports, then keep quiet for that minute;
744 * or allow a steady drip of one report per second.
745 */
746 if (nr_shown == 60) {
747 if (time_before(jiffies, resume)) {
748 nr_unshown++;
749 return;
750 }
751 if (nr_unshown) {
752 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
753 nr_unshown);
754 nr_unshown = 0;
755 }
756 nr_shown = 0;
757 }
758 if (nr_shown++ == 0)
759 resume = jiffies + 60 * HZ;
760
761 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
762 index = linear_page_index(vma, addr);
763
764 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
765 current->comm,
766 (long long)pte_val(pte), (long long)pmd_val(*pmd));
767 if (page)
768 dump_page(page, "bad pte");
769 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
770 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
771 /*
772 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
773 */
774 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
775 vma->vm_file,
776 vma->vm_ops ? vma->vm_ops->fault : NULL,
777 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
778 mapping ? mapping->a_ops->readpage : NULL);
779 dump_stack();
780 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
781 }
782
783 /*
784 * vm_normal_page -- This function gets the "struct page" associated with a pte.
785 *
786 * "Special" mappings do not wish to be associated with a "struct page" (either
787 * it doesn't exist, or it exists but they don't want to touch it). In this
788 * case, NULL is returned here. "Normal" mappings do have a struct page.
789 *
790 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
791 * pte bit, in which case this function is trivial. Secondly, an architecture
792 * may not have a spare pte bit, which requires a more complicated scheme,
793 * described below.
794 *
795 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
796 * special mapping (even if there are underlying and valid "struct pages").
797 * COWed pages of a VM_PFNMAP are always normal.
798 *
799 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
800 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
801 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
802 * mapping will always honor the rule
803 *
804 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
805 *
806 * And for normal mappings this is false.
807 *
808 * This restricts such mappings to be a linear translation from virtual address
809 * to pfn. To get around this restriction, we allow arbitrary mappings so long
810 * as the vma is not a COW mapping; in that case, we know that all ptes are
811 * special (because none can have been COWed).
812 *
813 *
814 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
815 *
816 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
817 * page" backing, however the difference is that _all_ pages with a struct
818 * page (that is, those where pfn_valid is true) are refcounted and considered
819 * normal pages by the VM. The disadvantage is that pages are refcounted
820 * (which can be slower and simply not an option for some PFNMAP users). The
821 * advantage is that we don't have to follow the strict linearity rule of
822 * PFNMAP mappings in order to support COWable mappings.
823 *
824 */
825 #ifdef __HAVE_ARCH_PTE_SPECIAL
826 # define HAVE_PTE_SPECIAL 1
827 #else
828 # define HAVE_PTE_SPECIAL 0
829 #endif
_vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte,bool with_public_device)830 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
831 pte_t pte, bool with_public_device)
832 {
833 unsigned long pfn = pte_pfn(pte);
834
835 if (HAVE_PTE_SPECIAL) {
836 if (likely(!pte_special(pte)))
837 goto check_pfn;
838 if (vma->vm_ops && vma->vm_ops->find_special_page)
839 return vma->vm_ops->find_special_page(vma, addr);
840 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
841 return NULL;
842 if (is_zero_pfn(pfn))
843 return NULL;
844
845 /*
846 * Device public pages are special pages (they are ZONE_DEVICE
847 * pages but different from persistent memory). They behave
848 * allmost like normal pages. The difference is that they are
849 * not on the lru and thus should never be involve with any-
850 * thing that involve lru manipulation (mlock, numa balancing,
851 * ...).
852 *
853 * This is why we still want to return NULL for such page from
854 * vm_normal_page() so that we do not have to special case all
855 * call site of vm_normal_page().
856 */
857 if (likely(pfn <= highest_memmap_pfn)) {
858 struct page *page = pfn_to_page(pfn);
859
860 if (is_device_public_page(page)) {
861 if (with_public_device)
862 return page;
863 return NULL;
864 }
865 }
866 print_bad_pte(vma, addr, pte, NULL);
867 return NULL;
868 }
869
870 /* !HAVE_PTE_SPECIAL case follows: */
871
872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 if (vma->vm_flags & VM_MIXEDMAP) {
874 if (!pfn_valid(pfn))
875 return NULL;
876 goto out;
877 } else {
878 unsigned long off;
879 off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 if (pfn == vma->vm_pgoff + off)
881 return NULL;
882 if (!is_cow_mapping(vma->vm_flags))
883 return NULL;
884 }
885 }
886
887 if (is_zero_pfn(pfn))
888 return NULL;
889 check_pfn:
890 if (unlikely(pfn > highest_memmap_pfn)) {
891 print_bad_pte(vma, addr, pte, NULL);
892 return NULL;
893 }
894
895 /*
896 * NOTE! We still have PageReserved() pages in the page tables.
897 * eg. VDSO mappings can cause them to exist.
898 */
899 out:
900 return pfn_to_page(pfn);
901 }
902
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)904 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
905 pmd_t pmd)
906 {
907 unsigned long pfn = pmd_pfn(pmd);
908
909 /*
910 * There is no pmd_special() but there may be special pmds, e.g.
911 * in a direct-access (dax) mapping, so let's just replicate the
912 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
913 */
914 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
915 if (vma->vm_flags & VM_MIXEDMAP) {
916 if (!pfn_valid(pfn))
917 return NULL;
918 goto out;
919 } else {
920 unsigned long off;
921 off = (addr - vma->vm_start) >> PAGE_SHIFT;
922 if (pfn == vma->vm_pgoff + off)
923 return NULL;
924 if (!is_cow_mapping(vma->vm_flags))
925 return NULL;
926 }
927 }
928
929 if (is_zero_pfn(pfn))
930 return NULL;
931 if (unlikely(pfn > highest_memmap_pfn))
932 return NULL;
933
934 /*
935 * NOTE! We still have PageReserved() pages in the page tables.
936 * eg. VDSO mappings can cause them to exist.
937 */
938 out:
939 return pfn_to_page(pfn);
940 }
941 #endif
942
943 /*
944 * copy one vm_area from one task to the other. Assumes the page tables
945 * already present in the new task to be cleared in the whole range
946 * covered by this vma.
947 */
948
949 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)950 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
952 unsigned long addr, int *rss)
953 {
954 unsigned long vm_flags = vma->vm_flags;
955 pte_t pte = *src_pte;
956 struct page *page;
957
958 /* pte contains position in swap or file, so copy. */
959 if (unlikely(!pte_present(pte))) {
960 swp_entry_t entry = pte_to_swp_entry(pte);
961
962 if (likely(!non_swap_entry(entry))) {
963 if (swap_duplicate(entry) < 0)
964 return entry.val;
965
966 /* make sure dst_mm is on swapoff's mmlist. */
967 if (unlikely(list_empty(&dst_mm->mmlist))) {
968 spin_lock(&mmlist_lock);
969 if (list_empty(&dst_mm->mmlist))
970 list_add(&dst_mm->mmlist,
971 &src_mm->mmlist);
972 spin_unlock(&mmlist_lock);
973 }
974 rss[MM_SWAPENTS]++;
975 } else if (is_migration_entry(entry)) {
976 page = migration_entry_to_page(entry);
977
978 rss[mm_counter(page)]++;
979
980 if (is_write_migration_entry(entry) &&
981 is_cow_mapping(vm_flags)) {
982 /*
983 * COW mappings require pages in both
984 * parent and child to be set to read.
985 */
986 make_migration_entry_read(&entry);
987 pte = swp_entry_to_pte(entry);
988 if (pte_swp_soft_dirty(*src_pte))
989 pte = pte_swp_mksoft_dirty(pte);
990 set_pte_at(src_mm, addr, src_pte, pte);
991 }
992 } else if (is_device_private_entry(entry)) {
993 page = device_private_entry_to_page(entry);
994
995 /*
996 * Update rss count even for unaddressable pages, as
997 * they should treated just like normal pages in this
998 * respect.
999 *
1000 * We will likely want to have some new rss counters
1001 * for unaddressable pages, at some point. But for now
1002 * keep things as they are.
1003 */
1004 get_page(page);
1005 rss[mm_counter(page)]++;
1006 page_dup_rmap(page, false);
1007
1008 /*
1009 * We do not preserve soft-dirty information, because so
1010 * far, checkpoint/restore is the only feature that
1011 * requires that. And checkpoint/restore does not work
1012 * when a device driver is involved (you cannot easily
1013 * save and restore device driver state).
1014 */
1015 if (is_write_device_private_entry(entry) &&
1016 is_cow_mapping(vm_flags)) {
1017 make_device_private_entry_read(&entry);
1018 pte = swp_entry_to_pte(entry);
1019 set_pte_at(src_mm, addr, src_pte, pte);
1020 }
1021 }
1022 goto out_set_pte;
1023 }
1024
1025 /*
1026 * If it's a COW mapping, write protect it both
1027 * in the parent and the child
1028 */
1029 if (is_cow_mapping(vm_flags)) {
1030 ptep_set_wrprotect(src_mm, addr, src_pte);
1031 pte = pte_wrprotect(pte);
1032 }
1033
1034 /*
1035 * If it's a shared mapping, mark it clean in
1036 * the child
1037 */
1038 if (vm_flags & VM_SHARED)
1039 pte = pte_mkclean(pte);
1040 pte = pte_mkold(pte);
1041
1042 page = vm_normal_page(vma, addr, pte);
1043 if (page) {
1044 get_page(page);
1045 page_dup_rmap(page, false);
1046 rss[mm_counter(page)]++;
1047 } else if (pte_devmap(pte)) {
1048 page = pte_page(pte);
1049
1050 /*
1051 * Cache coherent device memory behave like regular page and
1052 * not like persistent memory page. For more informations see
1053 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1054 */
1055 if (is_device_public_page(page)) {
1056 get_page(page);
1057 page_dup_rmap(page, false);
1058 rss[mm_counter(page)]++;
1059 }
1060 }
1061
1062 out_set_pte:
1063 set_pte_at(dst_mm, addr, dst_pte, pte);
1064 return 0;
1065 }
1066
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1067 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1069 unsigned long addr, unsigned long end)
1070 {
1071 pte_t *orig_src_pte, *orig_dst_pte;
1072 pte_t *src_pte, *dst_pte;
1073 spinlock_t *src_ptl, *dst_ptl;
1074 int progress = 0;
1075 int rss[NR_MM_COUNTERS];
1076 swp_entry_t entry = (swp_entry_t){0};
1077
1078 again:
1079 init_rss_vec(rss);
1080
1081 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1082 if (!dst_pte)
1083 return -ENOMEM;
1084 src_pte = pte_offset_map(src_pmd, addr);
1085 src_ptl = pte_lockptr(src_mm, src_pmd);
1086 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 orig_src_pte = src_pte;
1088 orig_dst_pte = dst_pte;
1089 arch_enter_lazy_mmu_mode();
1090
1091 do {
1092 /*
1093 * We are holding two locks at this point - either of them
1094 * could generate latencies in another task on another CPU.
1095 */
1096 if (progress >= 32) {
1097 progress = 0;
1098 if (need_resched() ||
1099 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1100 break;
1101 }
1102 if (pte_none(*src_pte)) {
1103 progress++;
1104 continue;
1105 }
1106 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1107 vma, addr, rss);
1108 if (entry.val)
1109 break;
1110 progress += 8;
1111 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1112
1113 arch_leave_lazy_mmu_mode();
1114 spin_unlock(src_ptl);
1115 pte_unmap(orig_src_pte);
1116 add_mm_rss_vec(dst_mm, rss);
1117 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1118 cond_resched();
1119
1120 if (entry.val) {
1121 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1122 return -ENOMEM;
1123 progress = 0;
1124 }
1125 if (addr != end)
1126 goto again;
1127 return 0;
1128 }
1129
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1130 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1131 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1132 unsigned long addr, unsigned long end)
1133 {
1134 pmd_t *src_pmd, *dst_pmd;
1135 unsigned long next;
1136
1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 if (!dst_pmd)
1139 return -ENOMEM;
1140 src_pmd = pmd_offset(src_pud, addr);
1141 do {
1142 next = pmd_addr_end(addr, end);
1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 || pmd_devmap(*src_pmd)) {
1145 int err;
1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1147 err = copy_huge_pmd(dst_mm, src_mm,
1148 dst_pmd, src_pmd, addr, vma);
1149 if (err == -ENOMEM)
1150 return -ENOMEM;
1151 if (!err)
1152 continue;
1153 /* fall through */
1154 }
1155 if (pmd_none_or_clear_bad(src_pmd))
1156 continue;
1157 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1158 vma, addr, next))
1159 return -ENOMEM;
1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 return 0;
1162 }
1163
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1164 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1165 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1166 unsigned long addr, unsigned long end)
1167 {
1168 pud_t *src_pud, *dst_pud;
1169 unsigned long next;
1170
1171 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1172 if (!dst_pud)
1173 return -ENOMEM;
1174 src_pud = pud_offset(src_p4d, addr);
1175 do {
1176 next = pud_addr_end(addr, end);
1177 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1178 int err;
1179
1180 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1181 err = copy_huge_pud(dst_mm, src_mm,
1182 dst_pud, src_pud, addr, vma);
1183 if (err == -ENOMEM)
1184 return -ENOMEM;
1185 if (!err)
1186 continue;
1187 /* fall through */
1188 }
1189 if (pud_none_or_clear_bad(src_pud))
1190 continue;
1191 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1192 vma, addr, next))
1193 return -ENOMEM;
1194 } while (dst_pud++, src_pud++, addr = next, addr != end);
1195 return 0;
1196 }
1197
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1198 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1199 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1200 unsigned long addr, unsigned long end)
1201 {
1202 p4d_t *src_p4d, *dst_p4d;
1203 unsigned long next;
1204
1205 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1206 if (!dst_p4d)
1207 return -ENOMEM;
1208 src_p4d = p4d_offset(src_pgd, addr);
1209 do {
1210 next = p4d_addr_end(addr, end);
1211 if (p4d_none_or_clear_bad(src_p4d))
1212 continue;
1213 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1214 vma, addr, next))
1215 return -ENOMEM;
1216 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1217 return 0;
1218 }
1219
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1220 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1221 struct vm_area_struct *vma)
1222 {
1223 pgd_t *src_pgd, *dst_pgd;
1224 unsigned long next;
1225 unsigned long addr = vma->vm_start;
1226 unsigned long end = vma->vm_end;
1227 unsigned long mmun_start; /* For mmu_notifiers */
1228 unsigned long mmun_end; /* For mmu_notifiers */
1229 bool is_cow;
1230 int ret;
1231
1232 /*
1233 * Don't copy ptes where a page fault will fill them correctly.
1234 * Fork becomes much lighter when there are big shared or private
1235 * readonly mappings. The tradeoff is that copy_page_range is more
1236 * efficient than faulting.
1237 */
1238 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1239 !vma->anon_vma)
1240 return 0;
1241
1242 if (is_vm_hugetlb_page(vma))
1243 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1244
1245 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1246 /*
1247 * We do not free on error cases below as remove_vma
1248 * gets called on error from higher level routine
1249 */
1250 ret = track_pfn_copy(vma);
1251 if (ret)
1252 return ret;
1253 }
1254
1255 /*
1256 * We need to invalidate the secondary MMU mappings only when
1257 * there could be a permission downgrade on the ptes of the
1258 * parent mm. And a permission downgrade will only happen if
1259 * is_cow_mapping() returns true.
1260 */
1261 is_cow = is_cow_mapping(vma->vm_flags);
1262 mmun_start = addr;
1263 mmun_end = end;
1264 if (is_cow)
1265 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1266 mmun_end);
1267
1268 ret = 0;
1269 dst_pgd = pgd_offset(dst_mm, addr);
1270 src_pgd = pgd_offset(src_mm, addr);
1271 do {
1272 next = pgd_addr_end(addr, end);
1273 if (pgd_none_or_clear_bad(src_pgd))
1274 continue;
1275 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1276 vma, addr, next))) {
1277 ret = -ENOMEM;
1278 break;
1279 }
1280 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1281
1282 if (is_cow)
1283 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1284 return ret;
1285 }
1286
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1287 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma, pmd_t *pmd,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1291 {
1292 struct mm_struct *mm = tlb->mm;
1293 int force_flush = 0;
1294 int rss[NR_MM_COUNTERS];
1295 spinlock_t *ptl;
1296 pte_t *start_pte;
1297 pte_t *pte;
1298 swp_entry_t entry;
1299
1300 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1301 again:
1302 init_rss_vec(rss);
1303 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1304 pte = start_pte;
1305 flush_tlb_batched_pending(mm);
1306 arch_enter_lazy_mmu_mode();
1307 do {
1308 pte_t ptent = *pte;
1309 if (pte_none(ptent))
1310 continue;
1311
1312 if (pte_present(ptent)) {
1313 struct page *page;
1314
1315 page = _vm_normal_page(vma, addr, ptent, true);
1316 if (unlikely(details) && page) {
1317 /*
1318 * unmap_shared_mapping_pages() wants to
1319 * invalidate cache without truncating:
1320 * unmap shared but keep private pages.
1321 */
1322 if (details->check_mapping &&
1323 details->check_mapping != page_rmapping(page))
1324 continue;
1325 }
1326 ptent = ptep_get_and_clear_full(mm, addr, pte,
1327 tlb->fullmm);
1328 tlb_remove_tlb_entry(tlb, pte, addr);
1329 if (unlikely(!page))
1330 continue;
1331
1332 if (!PageAnon(page)) {
1333 if (pte_dirty(ptent)) {
1334 force_flush = 1;
1335 set_page_dirty(page);
1336 }
1337 if (pte_young(ptent) &&
1338 likely(!(vma->vm_flags & VM_SEQ_READ)))
1339 mark_page_accessed(page);
1340 }
1341 rss[mm_counter(page)]--;
1342 page_remove_rmap(page, false);
1343 if (unlikely(page_mapcount(page) < 0))
1344 print_bad_pte(vma, addr, ptent, page);
1345 if (unlikely(__tlb_remove_page(tlb, page))) {
1346 force_flush = 1;
1347 addr += PAGE_SIZE;
1348 break;
1349 }
1350 continue;
1351 }
1352
1353 entry = pte_to_swp_entry(ptent);
1354 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1355 struct page *page = device_private_entry_to_page(entry);
1356
1357 if (unlikely(details && details->check_mapping)) {
1358 /*
1359 * unmap_shared_mapping_pages() wants to
1360 * invalidate cache without truncating:
1361 * unmap shared but keep private pages.
1362 */
1363 if (details->check_mapping !=
1364 page_rmapping(page))
1365 continue;
1366 }
1367
1368 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1369 rss[mm_counter(page)]--;
1370 page_remove_rmap(page, false);
1371 put_page(page);
1372 continue;
1373 }
1374
1375 /* If details->check_mapping, we leave swap entries. */
1376 if (unlikely(details))
1377 continue;
1378
1379 entry = pte_to_swp_entry(ptent);
1380 if (!non_swap_entry(entry))
1381 rss[MM_SWAPENTS]--;
1382 else if (is_migration_entry(entry)) {
1383 struct page *page;
1384
1385 page = migration_entry_to_page(entry);
1386 rss[mm_counter(page)]--;
1387 }
1388 if (unlikely(!free_swap_and_cache(entry)))
1389 print_bad_pte(vma, addr, ptent, NULL);
1390 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1391 } while (pte++, addr += PAGE_SIZE, addr != end);
1392
1393 add_mm_rss_vec(mm, rss);
1394 arch_leave_lazy_mmu_mode();
1395
1396 /* Do the actual TLB flush before dropping ptl */
1397 if (force_flush)
1398 tlb_flush_mmu_tlbonly(tlb);
1399 pte_unmap_unlock(start_pte, ptl);
1400
1401 /*
1402 * If we forced a TLB flush (either due to running out of
1403 * batch buffers or because we needed to flush dirty TLB
1404 * entries before releasing the ptl), free the batched
1405 * memory too. Restart if we didn't do everything.
1406 */
1407 if (force_flush) {
1408 force_flush = 0;
1409 tlb_flush_mmu_free(tlb);
1410 if (addr != end)
1411 goto again;
1412 }
1413
1414 return addr;
1415 }
1416
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1417 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, pud_t *pud,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1421 {
1422 pmd_t *pmd;
1423 unsigned long next;
1424
1425 pmd = pmd_offset(pud, addr);
1426 do {
1427 next = pmd_addr_end(addr, end);
1428 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1429 if (next - addr != HPAGE_PMD_SIZE)
1430 __split_huge_pmd(vma, pmd, addr, false, NULL);
1431 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1432 goto next;
1433 /* fall through */
1434 }
1435 /*
1436 * Here there can be other concurrent MADV_DONTNEED or
1437 * trans huge page faults running, and if the pmd is
1438 * none or trans huge it can change under us. This is
1439 * because MADV_DONTNEED holds the mmap_sem in read
1440 * mode.
1441 */
1442 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1443 goto next;
1444 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1445 next:
1446 cond_resched();
1447 } while (pmd++, addr = next, addr != end);
1448
1449 return addr;
1450 }
1451
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1452 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1453 struct vm_area_struct *vma, p4d_t *p4d,
1454 unsigned long addr, unsigned long end,
1455 struct zap_details *details)
1456 {
1457 pud_t *pud;
1458 unsigned long next;
1459
1460 pud = pud_offset(p4d, addr);
1461 do {
1462 next = pud_addr_end(addr, end);
1463 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1464 if (next - addr != HPAGE_PUD_SIZE) {
1465 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1466 split_huge_pud(vma, pud, addr);
1467 } else if (zap_huge_pud(tlb, vma, pud, addr))
1468 goto next;
1469 /* fall through */
1470 }
1471 if (pud_none_or_clear_bad(pud))
1472 continue;
1473 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1474 next:
1475 cond_resched();
1476 } while (pud++, addr = next, addr != end);
1477
1478 return addr;
1479 }
1480
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1481 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1482 struct vm_area_struct *vma, pgd_t *pgd,
1483 unsigned long addr, unsigned long end,
1484 struct zap_details *details)
1485 {
1486 p4d_t *p4d;
1487 unsigned long next;
1488
1489 p4d = p4d_offset(pgd, addr);
1490 do {
1491 next = p4d_addr_end(addr, end);
1492 if (p4d_none_or_clear_bad(p4d))
1493 continue;
1494 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1495 } while (p4d++, addr = next, addr != end);
1496
1497 return addr;
1498 }
1499
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1500 void unmap_page_range(struct mmu_gather *tlb,
1501 struct vm_area_struct *vma,
1502 unsigned long addr, unsigned long end,
1503 struct zap_details *details)
1504 {
1505 pgd_t *pgd;
1506 unsigned long next;
1507
1508 BUG_ON(addr >= end);
1509 tlb_start_vma(tlb, vma);
1510 pgd = pgd_offset(vma->vm_mm, addr);
1511 do {
1512 next = pgd_addr_end(addr, end);
1513 if (pgd_none_or_clear_bad(pgd))
1514 continue;
1515 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1516 } while (pgd++, addr = next, addr != end);
1517 tlb_end_vma(tlb, vma);
1518 }
1519
1520
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1521 static void unmap_single_vma(struct mmu_gather *tlb,
1522 struct vm_area_struct *vma, unsigned long start_addr,
1523 unsigned long end_addr,
1524 struct zap_details *details)
1525 {
1526 unsigned long start = max(vma->vm_start, start_addr);
1527 unsigned long end;
1528
1529 if (start >= vma->vm_end)
1530 return;
1531 end = min(vma->vm_end, end_addr);
1532 if (end <= vma->vm_start)
1533 return;
1534
1535 if (vma->vm_file)
1536 uprobe_munmap(vma, start, end);
1537
1538 if (unlikely(vma->vm_flags & VM_PFNMAP))
1539 untrack_pfn(vma, 0, 0);
1540
1541 if (start != end) {
1542 if (unlikely(is_vm_hugetlb_page(vma))) {
1543 /*
1544 * It is undesirable to test vma->vm_file as it
1545 * should be non-null for valid hugetlb area.
1546 * However, vm_file will be NULL in the error
1547 * cleanup path of mmap_region. When
1548 * hugetlbfs ->mmap method fails,
1549 * mmap_region() nullifies vma->vm_file
1550 * before calling this function to clean up.
1551 * Since no pte has actually been setup, it is
1552 * safe to do nothing in this case.
1553 */
1554 if (vma->vm_file) {
1555 i_mmap_lock_write(vma->vm_file->f_mapping);
1556 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1557 i_mmap_unlock_write(vma->vm_file->f_mapping);
1558 }
1559 } else
1560 unmap_page_range(tlb, vma, start, end, details);
1561 }
1562 }
1563
1564 /**
1565 * unmap_vmas - unmap a range of memory covered by a list of vma's
1566 * @tlb: address of the caller's struct mmu_gather
1567 * @vma: the starting vma
1568 * @start_addr: virtual address at which to start unmapping
1569 * @end_addr: virtual address at which to end unmapping
1570 *
1571 * Unmap all pages in the vma list.
1572 *
1573 * Only addresses between `start' and `end' will be unmapped.
1574 *
1575 * The VMA list must be sorted in ascending virtual address order.
1576 *
1577 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1578 * range after unmap_vmas() returns. So the only responsibility here is to
1579 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1580 * drops the lock and schedules.
1581 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1582 void unmap_vmas(struct mmu_gather *tlb,
1583 struct vm_area_struct *vma, unsigned long start_addr,
1584 unsigned long end_addr)
1585 {
1586 struct mm_struct *mm = vma->vm_mm;
1587
1588 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1589 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1590 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1591 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1592 }
1593
1594 /**
1595 * zap_page_range - remove user pages in a given range
1596 * @vma: vm_area_struct holding the applicable pages
1597 * @start: starting address of pages to zap
1598 * @size: number of bytes to zap
1599 *
1600 * Caller must protect the VMA list
1601 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1602 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1603 unsigned long size)
1604 {
1605 struct mm_struct *mm = vma->vm_mm;
1606 struct mmu_gather tlb;
1607 unsigned long end = start + size;
1608
1609 lru_add_drain();
1610 tlb_gather_mmu(&tlb, mm, start, end);
1611 update_hiwater_rss(mm);
1612 mmu_notifier_invalidate_range_start(mm, start, end);
1613 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1614 unmap_single_vma(&tlb, vma, start, end, NULL);
1615
1616 /*
1617 * zap_page_range does not specify whether mmap_sem should be
1618 * held for read or write. That allows parallel zap_page_range
1619 * operations to unmap a PTE and defer a flush meaning that
1620 * this call observes pte_none and fails to flush the TLB.
1621 * Rather than adding a complex API, ensure that no stale
1622 * TLB entries exist when this call returns.
1623 */
1624 flush_tlb_range(vma, start, end);
1625 }
1626
1627 mmu_notifier_invalidate_range_end(mm, start, end);
1628 tlb_finish_mmu(&tlb, start, end);
1629 }
1630
1631 /**
1632 * zap_page_range_single - remove user pages in a given range
1633 * @vma: vm_area_struct holding the applicable pages
1634 * @address: starting address of pages to zap
1635 * @size: number of bytes to zap
1636 * @details: details of shared cache invalidation
1637 *
1638 * The range must fit into one VMA.
1639 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1640 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1641 unsigned long size, struct zap_details *details)
1642 {
1643 struct mm_struct *mm = vma->vm_mm;
1644 struct mmu_gather tlb;
1645 unsigned long end = address + size;
1646
1647 lru_add_drain();
1648 tlb_gather_mmu(&tlb, mm, address, end);
1649 update_hiwater_rss(mm);
1650 mmu_notifier_invalidate_range_start(mm, address, end);
1651 unmap_single_vma(&tlb, vma, address, end, details);
1652 mmu_notifier_invalidate_range_end(mm, address, end);
1653 tlb_finish_mmu(&tlb, address, end);
1654 }
1655
1656 /**
1657 * zap_vma_ptes - remove ptes mapping the vma
1658 * @vma: vm_area_struct holding ptes to be zapped
1659 * @address: starting address of pages to zap
1660 * @size: number of bytes to zap
1661 *
1662 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1663 *
1664 * The entire address range must be fully contained within the vma.
1665 *
1666 * Returns 0 if successful.
1667 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1668 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1669 unsigned long size)
1670 {
1671 if (address < vma->vm_start || address + size > vma->vm_end ||
1672 !(vma->vm_flags & VM_PFNMAP))
1673 return -1;
1674 zap_page_range_single(vma, address, size, NULL);
1675 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1678
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1679 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1680 spinlock_t **ptl)
1681 {
1682 pgd_t *pgd;
1683 p4d_t *p4d;
1684 pud_t *pud;
1685 pmd_t *pmd;
1686
1687 pgd = pgd_offset(mm, addr);
1688 p4d = p4d_alloc(mm, pgd, addr);
1689 if (!p4d)
1690 return NULL;
1691 pud = pud_alloc(mm, p4d, addr);
1692 if (!pud)
1693 return NULL;
1694 pmd = pmd_alloc(mm, pud, addr);
1695 if (!pmd)
1696 return NULL;
1697
1698 VM_BUG_ON(pmd_trans_huge(*pmd));
1699 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1700 }
1701
1702 /*
1703 * This is the old fallback for page remapping.
1704 *
1705 * For historical reasons, it only allows reserved pages. Only
1706 * old drivers should use this, and they needed to mark their
1707 * pages reserved for the old functions anyway.
1708 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1709 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1710 struct page *page, pgprot_t prot)
1711 {
1712 struct mm_struct *mm = vma->vm_mm;
1713 int retval;
1714 pte_t *pte;
1715 spinlock_t *ptl;
1716
1717 retval = -EINVAL;
1718 if (PageAnon(page))
1719 goto out;
1720 retval = -ENOMEM;
1721 flush_dcache_page(page);
1722 pte = get_locked_pte(mm, addr, &ptl);
1723 if (!pte)
1724 goto out;
1725 retval = -EBUSY;
1726 if (!pte_none(*pte))
1727 goto out_unlock;
1728
1729 /* Ok, finally just insert the thing.. */
1730 get_page(page);
1731 inc_mm_counter_fast(mm, mm_counter_file(page));
1732 page_add_file_rmap(page, false);
1733 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1734
1735 retval = 0;
1736 pte_unmap_unlock(pte, ptl);
1737 return retval;
1738 out_unlock:
1739 pte_unmap_unlock(pte, ptl);
1740 out:
1741 return retval;
1742 }
1743
1744 /**
1745 * vm_insert_page - insert single page into user vma
1746 * @vma: user vma to map to
1747 * @addr: target user address of this page
1748 * @page: source kernel page
1749 *
1750 * This allows drivers to insert individual pages they've allocated
1751 * into a user vma.
1752 *
1753 * The page has to be a nice clean _individual_ kernel allocation.
1754 * If you allocate a compound page, you need to have marked it as
1755 * such (__GFP_COMP), or manually just split the page up yourself
1756 * (see split_page()).
1757 *
1758 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1759 * took an arbitrary page protection parameter. This doesn't allow
1760 * that. Your vma protection will have to be set up correctly, which
1761 * means that if you want a shared writable mapping, you'd better
1762 * ask for a shared writable mapping!
1763 *
1764 * The page does not need to be reserved.
1765 *
1766 * Usually this function is called from f_op->mmap() handler
1767 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1768 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1769 * function from other places, for example from page-fault handler.
1770 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1771 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1772 struct page *page)
1773 {
1774 if (addr < vma->vm_start || addr >= vma->vm_end)
1775 return -EFAULT;
1776 if (!page_count(page))
1777 return -EINVAL;
1778 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1779 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1780 BUG_ON(vma->vm_flags & VM_PFNMAP);
1781 vma->vm_flags |= VM_MIXEDMAP;
1782 }
1783 return insert_page(vma, addr, page, vma->vm_page_prot);
1784 }
1785 EXPORT_SYMBOL(vm_insert_page);
1786
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1787 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1788 pfn_t pfn, pgprot_t prot, bool mkwrite)
1789 {
1790 struct mm_struct *mm = vma->vm_mm;
1791 int retval;
1792 pte_t *pte, entry;
1793 spinlock_t *ptl;
1794
1795 retval = -ENOMEM;
1796 pte = get_locked_pte(mm, addr, &ptl);
1797 if (!pte)
1798 goto out;
1799 retval = -EBUSY;
1800 if (!pte_none(*pte)) {
1801 if (mkwrite) {
1802 /*
1803 * For read faults on private mappings the PFN passed
1804 * in may not match the PFN we have mapped if the
1805 * mapped PFN is a writeable COW page. In the mkwrite
1806 * case we are creating a writable PTE for a shared
1807 * mapping and we expect the PFNs to match. If they
1808 * don't match, we are likely racing with block
1809 * allocation and mapping invalidation so just skip the
1810 * update.
1811 */
1812 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1813 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1814 goto out_unlock;
1815 }
1816 entry = pte_mkyoung(*pte);
1817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1818 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1819 update_mmu_cache(vma, addr, pte);
1820 }
1821 goto out_unlock;
1822 }
1823
1824 /* Ok, finally just insert the thing.. */
1825 if (pfn_t_devmap(pfn))
1826 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1827 else
1828 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1829
1830 if (mkwrite) {
1831 entry = pte_mkyoung(entry);
1832 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1833 }
1834
1835 set_pte_at(mm, addr, pte, entry);
1836 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1837
1838 retval = 0;
1839 out_unlock:
1840 pte_unmap_unlock(pte, ptl);
1841 out:
1842 return retval;
1843 }
1844
1845 /**
1846 * vm_insert_pfn - insert single pfn into user vma
1847 * @vma: user vma to map to
1848 * @addr: target user address of this page
1849 * @pfn: source kernel pfn
1850 *
1851 * Similar to vm_insert_page, this allows drivers to insert individual pages
1852 * they've allocated into a user vma. Same comments apply.
1853 *
1854 * This function should only be called from a vm_ops->fault handler, and
1855 * in that case the handler should return NULL.
1856 *
1857 * vma cannot be a COW mapping.
1858 *
1859 * As this is called only for pages that do not currently exist, we
1860 * do not need to flush old virtual caches or the TLB.
1861 */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1862 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1863 unsigned long pfn)
1864 {
1865 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1866 }
1867 EXPORT_SYMBOL(vm_insert_pfn);
1868
1869 /**
1870 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1871 * @vma: user vma to map to
1872 * @addr: target user address of this page
1873 * @pfn: source kernel pfn
1874 * @pgprot: pgprot flags for the inserted page
1875 *
1876 * This is exactly like vm_insert_pfn, except that it allows drivers to
1877 * to override pgprot on a per-page basis.
1878 *
1879 * This only makes sense for IO mappings, and it makes no sense for
1880 * cow mappings. In general, using multiple vmas is preferable;
1881 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1882 * impractical.
1883 */
vm_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1884 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1885 unsigned long pfn, pgprot_t pgprot)
1886 {
1887 int ret;
1888 /*
1889 * Technically, architectures with pte_special can avoid all these
1890 * restrictions (same for remap_pfn_range). However we would like
1891 * consistency in testing and feature parity among all, so we should
1892 * try to keep these invariants in place for everybody.
1893 */
1894 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1895 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1896 (VM_PFNMAP|VM_MIXEDMAP));
1897 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1898 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1899
1900 if (addr < vma->vm_start || addr >= vma->vm_end)
1901 return -EFAULT;
1902
1903 if (!pfn_modify_allowed(pfn, pgprot))
1904 return -EACCES;
1905
1906 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1907
1908 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1909 false);
1910
1911 return ret;
1912 }
1913 EXPORT_SYMBOL(vm_insert_pfn_prot);
1914
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1915 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1916 pfn_t pfn, bool mkwrite)
1917 {
1918 pgprot_t pgprot = vma->vm_page_prot;
1919
1920 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1921
1922 if (addr < vma->vm_start || addr >= vma->vm_end)
1923 return -EFAULT;
1924
1925 track_pfn_insert(vma, &pgprot, pfn);
1926
1927 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1928 return -EACCES;
1929
1930 /*
1931 * If we don't have pte special, then we have to use the pfn_valid()
1932 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1933 * refcount the page if pfn_valid is true (hence insert_page rather
1934 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1935 * without pte special, it would there be refcounted as a normal page.
1936 */
1937 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1938 struct page *page;
1939
1940 /*
1941 * At this point we are committed to insert_page()
1942 * regardless of whether the caller specified flags that
1943 * result in pfn_t_has_page() == false.
1944 */
1945 page = pfn_to_page(pfn_t_to_pfn(pfn));
1946 return insert_page(vma, addr, page, pgprot);
1947 }
1948 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1949 }
1950
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1951 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1952 pfn_t pfn)
1953 {
1954 return __vm_insert_mixed(vma, addr, pfn, false);
1955
1956 }
1957 EXPORT_SYMBOL(vm_insert_mixed);
1958
vm_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1959 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1960 pfn_t pfn)
1961 {
1962 return __vm_insert_mixed(vma, addr, pfn, true);
1963 }
1964 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1965
1966 /*
1967 * maps a range of physical memory into the requested pages. the old
1968 * mappings are removed. any references to nonexistent pages results
1969 * in null mappings (currently treated as "copy-on-access")
1970 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1971 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1972 unsigned long addr, unsigned long end,
1973 unsigned long pfn, pgprot_t prot)
1974 {
1975 pte_t *pte;
1976 spinlock_t *ptl;
1977 int err = 0;
1978
1979 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1980 if (!pte)
1981 return -ENOMEM;
1982 arch_enter_lazy_mmu_mode();
1983 do {
1984 BUG_ON(!pte_none(*pte));
1985 if (!pfn_modify_allowed(pfn, prot)) {
1986 err = -EACCES;
1987 break;
1988 }
1989 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1990 pfn++;
1991 } while (pte++, addr += PAGE_SIZE, addr != end);
1992 arch_leave_lazy_mmu_mode();
1993 pte_unmap_unlock(pte - 1, ptl);
1994 return err;
1995 }
1996
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1997 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1998 unsigned long addr, unsigned long end,
1999 unsigned long pfn, pgprot_t prot)
2000 {
2001 pmd_t *pmd;
2002 unsigned long next;
2003 int err;
2004
2005 pfn -= addr >> PAGE_SHIFT;
2006 pmd = pmd_alloc(mm, pud, addr);
2007 if (!pmd)
2008 return -ENOMEM;
2009 VM_BUG_ON(pmd_trans_huge(*pmd));
2010 do {
2011 next = pmd_addr_end(addr, end);
2012 err = remap_pte_range(mm, pmd, addr, next,
2013 pfn + (addr >> PAGE_SHIFT), prot);
2014 if (err)
2015 return err;
2016 } while (pmd++, addr = next, addr != end);
2017 return 0;
2018 }
2019
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2020 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2021 unsigned long addr, unsigned long end,
2022 unsigned long pfn, pgprot_t prot)
2023 {
2024 pud_t *pud;
2025 unsigned long next;
2026 int err;
2027
2028 pfn -= addr >> PAGE_SHIFT;
2029 pud = pud_alloc(mm, p4d, addr);
2030 if (!pud)
2031 return -ENOMEM;
2032 do {
2033 next = pud_addr_end(addr, end);
2034 err = remap_pmd_range(mm, pud, addr, next,
2035 pfn + (addr >> PAGE_SHIFT), prot);
2036 if (err)
2037 return err;
2038 } while (pud++, addr = next, addr != end);
2039 return 0;
2040 }
2041
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2042 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2043 unsigned long addr, unsigned long end,
2044 unsigned long pfn, pgprot_t prot)
2045 {
2046 p4d_t *p4d;
2047 unsigned long next;
2048 int err;
2049
2050 pfn -= addr >> PAGE_SHIFT;
2051 p4d = p4d_alloc(mm, pgd, addr);
2052 if (!p4d)
2053 return -ENOMEM;
2054 do {
2055 next = p4d_addr_end(addr, end);
2056 err = remap_pud_range(mm, p4d, addr, next,
2057 pfn + (addr >> PAGE_SHIFT), prot);
2058 if (err)
2059 return err;
2060 } while (p4d++, addr = next, addr != end);
2061 return 0;
2062 }
2063
2064 /**
2065 * remap_pfn_range - remap kernel memory to userspace
2066 * @vma: user vma to map to
2067 * @addr: target user address to start at
2068 * @pfn: physical address of kernel memory
2069 * @size: size of map area
2070 * @prot: page protection flags for this mapping
2071 *
2072 * Note: this is only safe if the mm semaphore is held when called.
2073 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2074 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2075 unsigned long pfn, unsigned long size, pgprot_t prot)
2076 {
2077 pgd_t *pgd;
2078 unsigned long next;
2079 unsigned long end = addr + PAGE_ALIGN(size);
2080 struct mm_struct *mm = vma->vm_mm;
2081 unsigned long remap_pfn = pfn;
2082 int err;
2083
2084 /*
2085 * Physically remapped pages are special. Tell the
2086 * rest of the world about it:
2087 * VM_IO tells people not to look at these pages
2088 * (accesses can have side effects).
2089 * VM_PFNMAP tells the core MM that the base pages are just
2090 * raw PFN mappings, and do not have a "struct page" associated
2091 * with them.
2092 * VM_DONTEXPAND
2093 * Disable vma merging and expanding with mremap().
2094 * VM_DONTDUMP
2095 * Omit vma from core dump, even when VM_IO turned off.
2096 *
2097 * There's a horrible special case to handle copy-on-write
2098 * behaviour that some programs depend on. We mark the "original"
2099 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2100 * See vm_normal_page() for details.
2101 */
2102 if (is_cow_mapping(vma->vm_flags)) {
2103 if (addr != vma->vm_start || end != vma->vm_end)
2104 return -EINVAL;
2105 vma->vm_pgoff = pfn;
2106 }
2107
2108 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2109 if (err)
2110 return -EINVAL;
2111
2112 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2113
2114 BUG_ON(addr >= end);
2115 pfn -= addr >> PAGE_SHIFT;
2116 pgd = pgd_offset(mm, addr);
2117 flush_cache_range(vma, addr, end);
2118 do {
2119 next = pgd_addr_end(addr, end);
2120 err = remap_p4d_range(mm, pgd, addr, next,
2121 pfn + (addr >> PAGE_SHIFT), prot);
2122 if (err)
2123 break;
2124 } while (pgd++, addr = next, addr != end);
2125
2126 if (err)
2127 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2128
2129 return err;
2130 }
2131 EXPORT_SYMBOL(remap_pfn_range);
2132
2133 /**
2134 * vm_iomap_memory - remap memory to userspace
2135 * @vma: user vma to map to
2136 * @start: start of area
2137 * @len: size of area
2138 *
2139 * This is a simplified io_remap_pfn_range() for common driver use. The
2140 * driver just needs to give us the physical memory range to be mapped,
2141 * we'll figure out the rest from the vma information.
2142 *
2143 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2144 * whatever write-combining details or similar.
2145 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2146 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2147 {
2148 unsigned long vm_len, pfn, pages;
2149
2150 /* Check that the physical memory area passed in looks valid */
2151 if (start + len < start)
2152 return -EINVAL;
2153 /*
2154 * You *really* shouldn't map things that aren't page-aligned,
2155 * but we've historically allowed it because IO memory might
2156 * just have smaller alignment.
2157 */
2158 len += start & ~PAGE_MASK;
2159 pfn = start >> PAGE_SHIFT;
2160 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2161 if (pfn + pages < pfn)
2162 return -EINVAL;
2163
2164 /* We start the mapping 'vm_pgoff' pages into the area */
2165 if (vma->vm_pgoff > pages)
2166 return -EINVAL;
2167 pfn += vma->vm_pgoff;
2168 pages -= vma->vm_pgoff;
2169
2170 /* Can we fit all of the mapping? */
2171 vm_len = vma->vm_end - vma->vm_start;
2172 if (vm_len >> PAGE_SHIFT > pages)
2173 return -EINVAL;
2174
2175 /* Ok, let it rip */
2176 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_iomap_memory);
2179
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2180 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2181 unsigned long addr, unsigned long end,
2182 pte_fn_t fn, void *data)
2183 {
2184 pte_t *pte;
2185 int err;
2186 pgtable_t token;
2187 spinlock_t *uninitialized_var(ptl);
2188
2189 pte = (mm == &init_mm) ?
2190 pte_alloc_kernel(pmd, addr) :
2191 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2192 if (!pte)
2193 return -ENOMEM;
2194
2195 BUG_ON(pmd_huge(*pmd));
2196
2197 arch_enter_lazy_mmu_mode();
2198
2199 token = pmd_pgtable(*pmd);
2200
2201 do {
2202 err = fn(pte++, token, addr, data);
2203 if (err)
2204 break;
2205 } while (addr += PAGE_SIZE, addr != end);
2206
2207 arch_leave_lazy_mmu_mode();
2208
2209 if (mm != &init_mm)
2210 pte_unmap_unlock(pte-1, ptl);
2211 return err;
2212 }
2213
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2214 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2215 unsigned long addr, unsigned long end,
2216 pte_fn_t fn, void *data)
2217 {
2218 pmd_t *pmd;
2219 unsigned long next;
2220 int err;
2221
2222 BUG_ON(pud_huge(*pud));
2223
2224 pmd = pmd_alloc(mm, pud, addr);
2225 if (!pmd)
2226 return -ENOMEM;
2227 do {
2228 next = pmd_addr_end(addr, end);
2229 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2230 if (err)
2231 break;
2232 } while (pmd++, addr = next, addr != end);
2233 return err;
2234 }
2235
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2236 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2237 unsigned long addr, unsigned long end,
2238 pte_fn_t fn, void *data)
2239 {
2240 pud_t *pud;
2241 unsigned long next;
2242 int err;
2243
2244 pud = pud_alloc(mm, p4d, addr);
2245 if (!pud)
2246 return -ENOMEM;
2247 do {
2248 next = pud_addr_end(addr, end);
2249 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2250 if (err)
2251 break;
2252 } while (pud++, addr = next, addr != end);
2253 return err;
2254 }
2255
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2256 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2257 unsigned long addr, unsigned long end,
2258 pte_fn_t fn, void *data)
2259 {
2260 p4d_t *p4d;
2261 unsigned long next;
2262 int err;
2263
2264 p4d = p4d_alloc(mm, pgd, addr);
2265 if (!p4d)
2266 return -ENOMEM;
2267 do {
2268 next = p4d_addr_end(addr, end);
2269 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2270 if (err)
2271 break;
2272 } while (p4d++, addr = next, addr != end);
2273 return err;
2274 }
2275
2276 /*
2277 * Scan a region of virtual memory, filling in page tables as necessary
2278 * and calling a provided function on each leaf page table.
2279 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2280 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2281 unsigned long size, pte_fn_t fn, void *data)
2282 {
2283 pgd_t *pgd;
2284 unsigned long next;
2285 unsigned long end = addr + size;
2286 int err;
2287
2288 if (WARN_ON(addr >= end))
2289 return -EINVAL;
2290
2291 pgd = pgd_offset(mm, addr);
2292 do {
2293 next = pgd_addr_end(addr, end);
2294 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2295 if (err)
2296 break;
2297 } while (pgd++, addr = next, addr != end);
2298
2299 return err;
2300 }
2301 EXPORT_SYMBOL_GPL(apply_to_page_range);
2302
2303 /*
2304 * handle_pte_fault chooses page fault handler according to an entry which was
2305 * read non-atomically. Before making any commitment, on those architectures
2306 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2307 * parts, do_swap_page must check under lock before unmapping the pte and
2308 * proceeding (but do_wp_page is only called after already making such a check;
2309 * and do_anonymous_page can safely check later on).
2310 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2311 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2312 pte_t *page_table, pte_t orig_pte)
2313 {
2314 int same = 1;
2315 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2316 if (sizeof(pte_t) > sizeof(unsigned long)) {
2317 spinlock_t *ptl = pte_lockptr(mm, pmd);
2318 spin_lock(ptl);
2319 same = pte_same(*page_table, orig_pte);
2320 spin_unlock(ptl);
2321 }
2322 #endif
2323 pte_unmap(page_table);
2324 return same;
2325 }
2326
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2327 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2328 {
2329 debug_dma_assert_idle(src);
2330
2331 /*
2332 * If the source page was a PFN mapping, we don't have
2333 * a "struct page" for it. We do a best-effort copy by
2334 * just copying from the original user address. If that
2335 * fails, we just zero-fill it. Live with it.
2336 */
2337 if (unlikely(!src)) {
2338 void *kaddr = kmap_atomic(dst);
2339 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2340
2341 /*
2342 * This really shouldn't fail, because the page is there
2343 * in the page tables. But it might just be unreadable,
2344 * in which case we just give up and fill the result with
2345 * zeroes.
2346 */
2347 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2348 clear_page(kaddr);
2349 kunmap_atomic(kaddr);
2350 flush_dcache_page(dst);
2351 } else
2352 copy_user_highpage(dst, src, va, vma);
2353 }
2354
__get_fault_gfp_mask(struct vm_area_struct * vma)2355 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2356 {
2357 struct file *vm_file = vma->vm_file;
2358
2359 if (vm_file)
2360 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2361
2362 /*
2363 * Special mappings (e.g. VDSO) do not have any file so fake
2364 * a default GFP_KERNEL for them.
2365 */
2366 return GFP_KERNEL;
2367 }
2368
2369 /*
2370 * Notify the address space that the page is about to become writable so that
2371 * it can prohibit this or wait for the page to get into an appropriate state.
2372 *
2373 * We do this without the lock held, so that it can sleep if it needs to.
2374 */
do_page_mkwrite(struct vm_fault * vmf)2375 static int do_page_mkwrite(struct vm_fault *vmf)
2376 {
2377 int ret;
2378 struct page *page = vmf->page;
2379 unsigned int old_flags = vmf->flags;
2380
2381 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2382
2383 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384 /* Restore original flags so that caller is not surprised */
2385 vmf->flags = old_flags;
2386 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2387 return ret;
2388 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2389 lock_page(page);
2390 if (!page->mapping) {
2391 unlock_page(page);
2392 return 0; /* retry */
2393 }
2394 ret |= VM_FAULT_LOCKED;
2395 } else
2396 VM_BUG_ON_PAGE(!PageLocked(page), page);
2397 return ret;
2398 }
2399
2400 /*
2401 * Handle dirtying of a page in shared file mapping on a write fault.
2402 *
2403 * The function expects the page to be locked and unlocks it.
2404 */
fault_dirty_shared_page(struct vm_area_struct * vma,struct page * page)2405 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2406 struct page *page)
2407 {
2408 struct address_space *mapping;
2409 bool dirtied;
2410 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2411
2412 dirtied = set_page_dirty(page);
2413 VM_BUG_ON_PAGE(PageAnon(page), page);
2414 /*
2415 * Take a local copy of the address_space - page.mapping may be zeroed
2416 * by truncate after unlock_page(). The address_space itself remains
2417 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2418 * release semantics to prevent the compiler from undoing this copying.
2419 */
2420 mapping = page_rmapping(page);
2421 unlock_page(page);
2422
2423 if ((dirtied || page_mkwrite) && mapping) {
2424 /*
2425 * Some device drivers do not set page.mapping
2426 * but still dirty their pages
2427 */
2428 balance_dirty_pages_ratelimited(mapping);
2429 }
2430
2431 if (!page_mkwrite)
2432 file_update_time(vma->vm_file);
2433 }
2434
2435 /*
2436 * Handle write page faults for pages that can be reused in the current vma
2437 *
2438 * This can happen either due to the mapping being with the VM_SHARED flag,
2439 * or due to us being the last reference standing to the page. In either
2440 * case, all we need to do here is to mark the page as writable and update
2441 * any related book-keeping.
2442 */
wp_page_reuse(struct vm_fault * vmf)2443 static inline void wp_page_reuse(struct vm_fault *vmf)
2444 __releases(vmf->ptl)
2445 {
2446 struct vm_area_struct *vma = vmf->vma;
2447 struct page *page = vmf->page;
2448 pte_t entry;
2449 /*
2450 * Clear the pages cpupid information as the existing
2451 * information potentially belongs to a now completely
2452 * unrelated process.
2453 */
2454 if (page)
2455 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2456
2457 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2458 entry = pte_mkyoung(vmf->orig_pte);
2459 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2460 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2461 update_mmu_cache(vma, vmf->address, vmf->pte);
2462 pte_unmap_unlock(vmf->pte, vmf->ptl);
2463 }
2464
2465 /*
2466 * Handle the case of a page which we actually need to copy to a new page.
2467 *
2468 * Called with mmap_sem locked and the old page referenced, but
2469 * without the ptl held.
2470 *
2471 * High level logic flow:
2472 *
2473 * - Allocate a page, copy the content of the old page to the new one.
2474 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2475 * - Take the PTL. If the pte changed, bail out and release the allocated page
2476 * - If the pte is still the way we remember it, update the page table and all
2477 * relevant references. This includes dropping the reference the page-table
2478 * held to the old page, as well as updating the rmap.
2479 * - In any case, unlock the PTL and drop the reference we took to the old page.
2480 */
wp_page_copy(struct vm_fault * vmf)2481 static int wp_page_copy(struct vm_fault *vmf)
2482 {
2483 struct vm_area_struct *vma = vmf->vma;
2484 struct mm_struct *mm = vma->vm_mm;
2485 struct page *old_page = vmf->page;
2486 struct page *new_page = NULL;
2487 pte_t entry;
2488 int page_copied = 0;
2489 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2490 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2491 struct mem_cgroup *memcg;
2492
2493 if (unlikely(anon_vma_prepare(vma)))
2494 goto oom;
2495
2496 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2497 new_page = alloc_zeroed_user_highpage_movable(vma,
2498 vmf->address);
2499 if (!new_page)
2500 goto oom;
2501 } else {
2502 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2503 vmf->address);
2504 if (!new_page)
2505 goto oom;
2506 cow_user_page(new_page, old_page, vmf->address, vma);
2507 }
2508
2509 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2510 goto oom_free_new;
2511
2512 __SetPageUptodate(new_page);
2513
2514 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2515
2516 /*
2517 * Re-check the pte - we dropped the lock
2518 */
2519 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2520 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2521 if (old_page) {
2522 if (!PageAnon(old_page)) {
2523 dec_mm_counter_fast(mm,
2524 mm_counter_file(old_page));
2525 inc_mm_counter_fast(mm, MM_ANONPAGES);
2526 }
2527 } else {
2528 inc_mm_counter_fast(mm, MM_ANONPAGES);
2529 }
2530 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2531 entry = mk_pte(new_page, vma->vm_page_prot);
2532 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2533 /*
2534 * Clear the pte entry and flush it first, before updating the
2535 * pte with the new entry. This will avoid a race condition
2536 * seen in the presence of one thread doing SMC and another
2537 * thread doing COW.
2538 */
2539 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2540 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2541 mem_cgroup_commit_charge(new_page, memcg, false, false);
2542 lru_cache_add_active_or_unevictable(new_page, vma);
2543 /*
2544 * We call the notify macro here because, when using secondary
2545 * mmu page tables (such as kvm shadow page tables), we want the
2546 * new page to be mapped directly into the secondary page table.
2547 */
2548 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2549 update_mmu_cache(vma, vmf->address, vmf->pte);
2550 if (old_page) {
2551 /*
2552 * Only after switching the pte to the new page may
2553 * we remove the mapcount here. Otherwise another
2554 * process may come and find the rmap count decremented
2555 * before the pte is switched to the new page, and
2556 * "reuse" the old page writing into it while our pte
2557 * here still points into it and can be read by other
2558 * threads.
2559 *
2560 * The critical issue is to order this
2561 * page_remove_rmap with the ptp_clear_flush above.
2562 * Those stores are ordered by (if nothing else,)
2563 * the barrier present in the atomic_add_negative
2564 * in page_remove_rmap.
2565 *
2566 * Then the TLB flush in ptep_clear_flush ensures that
2567 * no process can access the old page before the
2568 * decremented mapcount is visible. And the old page
2569 * cannot be reused until after the decremented
2570 * mapcount is visible. So transitively, TLBs to
2571 * old page will be flushed before it can be reused.
2572 */
2573 page_remove_rmap(old_page, false);
2574 }
2575
2576 /* Free the old page.. */
2577 new_page = old_page;
2578 page_copied = 1;
2579 } else {
2580 mem_cgroup_cancel_charge(new_page, memcg, false);
2581 }
2582
2583 if (new_page)
2584 put_page(new_page);
2585
2586 pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2588 if (old_page) {
2589 /*
2590 * Don't let another task, with possibly unlocked vma,
2591 * keep the mlocked page.
2592 */
2593 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2594 lock_page(old_page); /* LRU manipulation */
2595 if (PageMlocked(old_page))
2596 munlock_vma_page(old_page);
2597 unlock_page(old_page);
2598 }
2599 put_page(old_page);
2600 }
2601 return page_copied ? VM_FAULT_WRITE : 0;
2602 oom_free_new:
2603 put_page(new_page);
2604 oom:
2605 if (old_page)
2606 put_page(old_page);
2607 return VM_FAULT_OOM;
2608 }
2609
2610 /**
2611 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2612 * writeable once the page is prepared
2613 *
2614 * @vmf: structure describing the fault
2615 *
2616 * This function handles all that is needed to finish a write page fault in a
2617 * shared mapping due to PTE being read-only once the mapped page is prepared.
2618 * It handles locking of PTE and modifying it. The function returns
2619 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2620 * lock.
2621 *
2622 * The function expects the page to be locked or other protection against
2623 * concurrent faults / writeback (such as DAX radix tree locks).
2624 */
finish_mkwrite_fault(struct vm_fault * vmf)2625 int finish_mkwrite_fault(struct vm_fault *vmf)
2626 {
2627 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2628 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2629 &vmf->ptl);
2630 /*
2631 * We might have raced with another page fault while we released the
2632 * pte_offset_map_lock.
2633 */
2634 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2635 pte_unmap_unlock(vmf->pte, vmf->ptl);
2636 return VM_FAULT_NOPAGE;
2637 }
2638 wp_page_reuse(vmf);
2639 return 0;
2640 }
2641
2642 /*
2643 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2644 * mapping
2645 */
wp_pfn_shared(struct vm_fault * vmf)2646 static int wp_pfn_shared(struct vm_fault *vmf)
2647 {
2648 struct vm_area_struct *vma = vmf->vma;
2649
2650 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2651 int ret;
2652
2653 pte_unmap_unlock(vmf->pte, vmf->ptl);
2654 vmf->flags |= FAULT_FLAG_MKWRITE;
2655 ret = vma->vm_ops->pfn_mkwrite(vmf);
2656 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2657 return ret;
2658 return finish_mkwrite_fault(vmf);
2659 }
2660 wp_page_reuse(vmf);
2661 return VM_FAULT_WRITE;
2662 }
2663
wp_page_shared(struct vm_fault * vmf)2664 static int wp_page_shared(struct vm_fault *vmf)
2665 __releases(vmf->ptl)
2666 {
2667 struct vm_area_struct *vma = vmf->vma;
2668
2669 get_page(vmf->page);
2670
2671 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2672 int tmp;
2673
2674 pte_unmap_unlock(vmf->pte, vmf->ptl);
2675 tmp = do_page_mkwrite(vmf);
2676 if (unlikely(!tmp || (tmp &
2677 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2678 put_page(vmf->page);
2679 return tmp;
2680 }
2681 tmp = finish_mkwrite_fault(vmf);
2682 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2683 unlock_page(vmf->page);
2684 put_page(vmf->page);
2685 return tmp;
2686 }
2687 } else {
2688 wp_page_reuse(vmf);
2689 lock_page(vmf->page);
2690 }
2691 fault_dirty_shared_page(vma, vmf->page);
2692 put_page(vmf->page);
2693
2694 return VM_FAULT_WRITE;
2695 }
2696
2697 /*
2698 * This routine handles present pages, when users try to write
2699 * to a shared page. It is done by copying the page to a new address
2700 * and decrementing the shared-page counter for the old page.
2701 *
2702 * Note that this routine assumes that the protection checks have been
2703 * done by the caller (the low-level page fault routine in most cases).
2704 * Thus we can safely just mark it writable once we've done any necessary
2705 * COW.
2706 *
2707 * We also mark the page dirty at this point even though the page will
2708 * change only once the write actually happens. This avoids a few races,
2709 * and potentially makes it more efficient.
2710 *
2711 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2712 * but allow concurrent faults), with pte both mapped and locked.
2713 * We return with mmap_sem still held, but pte unmapped and unlocked.
2714 */
do_wp_page(struct vm_fault * vmf)2715 static int do_wp_page(struct vm_fault *vmf)
2716 __releases(vmf->ptl)
2717 {
2718 struct vm_area_struct *vma = vmf->vma;
2719
2720 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2721 if (!vmf->page) {
2722 /*
2723 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2724 * VM_PFNMAP VMA.
2725 *
2726 * We should not cow pages in a shared writeable mapping.
2727 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2728 */
2729 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2730 (VM_WRITE|VM_SHARED))
2731 return wp_pfn_shared(vmf);
2732
2733 pte_unmap_unlock(vmf->pte, vmf->ptl);
2734 return wp_page_copy(vmf);
2735 }
2736
2737 /*
2738 * Take out anonymous pages first, anonymous shared vmas are
2739 * not dirty accountable.
2740 */
2741 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2742 int total_map_swapcount;
2743 if (!trylock_page(vmf->page)) {
2744 get_page(vmf->page);
2745 pte_unmap_unlock(vmf->pte, vmf->ptl);
2746 lock_page(vmf->page);
2747 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2748 vmf->address, &vmf->ptl);
2749 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2750 unlock_page(vmf->page);
2751 pte_unmap_unlock(vmf->pte, vmf->ptl);
2752 put_page(vmf->page);
2753 return 0;
2754 }
2755 put_page(vmf->page);
2756 }
2757 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2758 if (total_map_swapcount == 1) {
2759 /*
2760 * The page is all ours. Move it to
2761 * our anon_vma so the rmap code will
2762 * not search our parent or siblings.
2763 * Protected against the rmap code by
2764 * the page lock.
2765 */
2766 page_move_anon_rmap(vmf->page, vma);
2767 }
2768 unlock_page(vmf->page);
2769 wp_page_reuse(vmf);
2770 return VM_FAULT_WRITE;
2771 }
2772 unlock_page(vmf->page);
2773 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2774 (VM_WRITE|VM_SHARED))) {
2775 return wp_page_shared(vmf);
2776 }
2777
2778 /*
2779 * Ok, we need to copy. Oh, well..
2780 */
2781 get_page(vmf->page);
2782
2783 pte_unmap_unlock(vmf->pte, vmf->ptl);
2784 return wp_page_copy(vmf);
2785 }
2786
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2787 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2788 unsigned long start_addr, unsigned long end_addr,
2789 struct zap_details *details)
2790 {
2791 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2792 }
2793
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2794 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2795 struct zap_details *details)
2796 {
2797 struct vm_area_struct *vma;
2798 pgoff_t vba, vea, zba, zea;
2799
2800 vma_interval_tree_foreach(vma, root,
2801 details->first_index, details->last_index) {
2802
2803 vba = vma->vm_pgoff;
2804 vea = vba + vma_pages(vma) - 1;
2805 zba = details->first_index;
2806 if (zba < vba)
2807 zba = vba;
2808 zea = details->last_index;
2809 if (zea > vea)
2810 zea = vea;
2811
2812 unmap_mapping_range_vma(vma,
2813 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2814 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2815 details);
2816 }
2817 }
2818
2819 /**
2820 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2821 * address_space corresponding to the specified page range in the underlying
2822 * file.
2823 *
2824 * @mapping: the address space containing mmaps to be unmapped.
2825 * @holebegin: byte in first page to unmap, relative to the start of
2826 * the underlying file. This will be rounded down to a PAGE_SIZE
2827 * boundary. Note that this is different from truncate_pagecache(), which
2828 * must keep the partial page. In contrast, we must get rid of
2829 * partial pages.
2830 * @holelen: size of prospective hole in bytes. This will be rounded
2831 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2832 * end of the file.
2833 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2834 * but 0 when invalidating pagecache, don't throw away private data.
2835 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2836 void unmap_mapping_range(struct address_space *mapping,
2837 loff_t const holebegin, loff_t const holelen, int even_cows)
2838 {
2839 struct zap_details details = { };
2840 pgoff_t hba = holebegin >> PAGE_SHIFT;
2841 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842
2843 /* Check for overflow. */
2844 if (sizeof(holelen) > sizeof(hlen)) {
2845 long long holeend =
2846 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2847 if (holeend & ~(long long)ULONG_MAX)
2848 hlen = ULONG_MAX - hba + 1;
2849 }
2850
2851 details.check_mapping = even_cows ? NULL : mapping;
2852 details.first_index = hba;
2853 details.last_index = hba + hlen - 1;
2854 if (details.last_index < details.first_index)
2855 details.last_index = ULONG_MAX;
2856
2857 i_mmap_lock_write(mapping);
2858 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2859 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2860 i_mmap_unlock_write(mapping);
2861 }
2862 EXPORT_SYMBOL(unmap_mapping_range);
2863
2864 /*
2865 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2866 * but allow concurrent faults), and pte mapped but not yet locked.
2867 * We return with pte unmapped and unlocked.
2868 *
2869 * We return with the mmap_sem locked or unlocked in the same cases
2870 * as does filemap_fault().
2871 */
do_swap_page(struct vm_fault * vmf)2872 int do_swap_page(struct vm_fault *vmf)
2873 {
2874 struct vm_area_struct *vma = vmf->vma;
2875 struct page *page = NULL, *swapcache;
2876 struct mem_cgroup *memcg;
2877 struct vma_swap_readahead swap_ra;
2878 swp_entry_t entry;
2879 pte_t pte;
2880 int locked;
2881 int exclusive = 0;
2882 int ret = 0;
2883 bool vma_readahead = swap_use_vma_readahead();
2884
2885 if (vma_readahead)
2886 page = swap_readahead_detect(vmf, &swap_ra);
2887 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2888 if (page)
2889 put_page(page);
2890 goto out;
2891 }
2892
2893 entry = pte_to_swp_entry(vmf->orig_pte);
2894 if (unlikely(non_swap_entry(entry))) {
2895 if (is_migration_entry(entry)) {
2896 migration_entry_wait(vma->vm_mm, vmf->pmd,
2897 vmf->address);
2898 } else if (is_device_private_entry(entry)) {
2899 /*
2900 * For un-addressable device memory we call the pgmap
2901 * fault handler callback. The callback must migrate
2902 * the page back to some CPU accessible page.
2903 */
2904 ret = device_private_entry_fault(vma, vmf->address, entry,
2905 vmf->flags, vmf->pmd);
2906 } else if (is_hwpoison_entry(entry)) {
2907 ret = VM_FAULT_HWPOISON;
2908 } else {
2909 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2910 ret = VM_FAULT_SIGBUS;
2911 }
2912 goto out;
2913 }
2914 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2915 if (!page)
2916 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2917 vmf->address);
2918 if (!page) {
2919 if (vma_readahead)
2920 page = do_swap_page_readahead(entry,
2921 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2922 else
2923 page = swapin_readahead(entry,
2924 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2925 if (!page) {
2926 /*
2927 * Back out if somebody else faulted in this pte
2928 * while we released the pte lock.
2929 */
2930 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2931 vmf->address, &vmf->ptl);
2932 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2933 ret = VM_FAULT_OOM;
2934 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2935 goto unlock;
2936 }
2937
2938 /* Had to read the page from swap area: Major fault */
2939 ret = VM_FAULT_MAJOR;
2940 count_vm_event(PGMAJFAULT);
2941 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2942 } else if (PageHWPoison(page)) {
2943 /*
2944 * hwpoisoned dirty swapcache pages are kept for killing
2945 * owner processes (which may be unknown at hwpoison time)
2946 */
2947 ret = VM_FAULT_HWPOISON;
2948 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949 swapcache = page;
2950 goto out_release;
2951 }
2952
2953 swapcache = page;
2954 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2955
2956 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2957 if (!locked) {
2958 ret |= VM_FAULT_RETRY;
2959 goto out_release;
2960 }
2961
2962 /*
2963 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2964 * release the swapcache from under us. The page pin, and pte_same
2965 * test below, are not enough to exclude that. Even if it is still
2966 * swapcache, we need to check that the page's swap has not changed.
2967 */
2968 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2969 goto out_page;
2970
2971 page = ksm_might_need_to_copy(page, vma, vmf->address);
2972 if (unlikely(!page)) {
2973 ret = VM_FAULT_OOM;
2974 page = swapcache;
2975 goto out_page;
2976 }
2977
2978 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2979 &memcg, false)) {
2980 ret = VM_FAULT_OOM;
2981 goto out_page;
2982 }
2983
2984 /*
2985 * Back out if somebody else already faulted in this pte.
2986 */
2987 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2988 &vmf->ptl);
2989 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2990 goto out_nomap;
2991
2992 if (unlikely(!PageUptodate(page))) {
2993 ret = VM_FAULT_SIGBUS;
2994 goto out_nomap;
2995 }
2996
2997 /*
2998 * The page isn't present yet, go ahead with the fault.
2999 *
3000 * Be careful about the sequence of operations here.
3001 * To get its accounting right, reuse_swap_page() must be called
3002 * while the page is counted on swap but not yet in mapcount i.e.
3003 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3004 * must be called after the swap_free(), or it will never succeed.
3005 */
3006
3007 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3008 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3009 pte = mk_pte(page, vma->vm_page_prot);
3010 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3011 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012 vmf->flags &= ~FAULT_FLAG_WRITE;
3013 ret |= VM_FAULT_WRITE;
3014 exclusive = RMAP_EXCLUSIVE;
3015 }
3016 flush_icache_page(vma, page);
3017 if (pte_swp_soft_dirty(vmf->orig_pte))
3018 pte = pte_mksoft_dirty(pte);
3019 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3020 vmf->orig_pte = pte;
3021 if (page == swapcache) {
3022 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3023 mem_cgroup_commit_charge(page, memcg, true, false);
3024 activate_page(page);
3025 } else { /* ksm created a completely new copy */
3026 page_add_new_anon_rmap(page, vma, vmf->address, false);
3027 mem_cgroup_commit_charge(page, memcg, false, false);
3028 lru_cache_add_active_or_unevictable(page, vma);
3029 }
3030
3031 swap_free(entry);
3032 if (mem_cgroup_swap_full(page) ||
3033 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3034 try_to_free_swap(page);
3035 unlock_page(page);
3036 if (page != swapcache) {
3037 /*
3038 * Hold the lock to avoid the swap entry to be reused
3039 * until we take the PT lock for the pte_same() check
3040 * (to avoid false positives from pte_same). For
3041 * further safety release the lock after the swap_free
3042 * so that the swap count won't change under a
3043 * parallel locked swapcache.
3044 */
3045 unlock_page(swapcache);
3046 put_page(swapcache);
3047 }
3048
3049 if (vmf->flags & FAULT_FLAG_WRITE) {
3050 ret |= do_wp_page(vmf);
3051 if (ret & VM_FAULT_ERROR)
3052 ret &= VM_FAULT_ERROR;
3053 goto out;
3054 }
3055
3056 /* No need to invalidate - it was non-present before */
3057 update_mmu_cache(vma, vmf->address, vmf->pte);
3058 unlock:
3059 pte_unmap_unlock(vmf->pte, vmf->ptl);
3060 out:
3061 return ret;
3062 out_nomap:
3063 mem_cgroup_cancel_charge(page, memcg, false);
3064 pte_unmap_unlock(vmf->pte, vmf->ptl);
3065 out_page:
3066 unlock_page(page);
3067 out_release:
3068 put_page(page);
3069 if (page != swapcache) {
3070 unlock_page(swapcache);
3071 put_page(swapcache);
3072 }
3073 return ret;
3074 }
3075
3076 /*
3077 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3078 * but allow concurrent faults), and pte mapped but not yet locked.
3079 * We return with mmap_sem still held, but pte unmapped and unlocked.
3080 */
do_anonymous_page(struct vm_fault * vmf)3081 static int do_anonymous_page(struct vm_fault *vmf)
3082 {
3083 struct vm_area_struct *vma = vmf->vma;
3084 struct mem_cgroup *memcg;
3085 struct page *page;
3086 int ret = 0;
3087 pte_t entry;
3088
3089 /* File mapping without ->vm_ops ? */
3090 if (vma->vm_flags & VM_SHARED)
3091 return VM_FAULT_SIGBUS;
3092
3093 /*
3094 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3095 * pte_offset_map() on pmds where a huge pmd might be created
3096 * from a different thread.
3097 *
3098 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3099 * parallel threads are excluded by other means.
3100 *
3101 * Here we only have down_read(mmap_sem).
3102 */
3103 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3104 return VM_FAULT_OOM;
3105
3106 /* See the comment in pte_alloc_one_map() */
3107 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3108 return 0;
3109
3110 /* Use the zero-page for reads */
3111 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3112 !mm_forbids_zeropage(vma->vm_mm)) {
3113 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3114 vma->vm_page_prot));
3115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3116 vmf->address, &vmf->ptl);
3117 if (!pte_none(*vmf->pte))
3118 goto unlock;
3119 ret = check_stable_address_space(vma->vm_mm);
3120 if (ret)
3121 goto unlock;
3122 /* Deliver the page fault to userland, check inside PT lock */
3123 if (userfaultfd_missing(vma)) {
3124 pte_unmap_unlock(vmf->pte, vmf->ptl);
3125 return handle_userfault(vmf, VM_UFFD_MISSING);
3126 }
3127 goto setpte;
3128 }
3129
3130 /* Allocate our own private page. */
3131 if (unlikely(anon_vma_prepare(vma)))
3132 goto oom;
3133 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3134 if (!page)
3135 goto oom;
3136
3137 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3138 goto oom_free_page;
3139
3140 /*
3141 * The memory barrier inside __SetPageUptodate makes sure that
3142 * preceeding stores to the page contents become visible before
3143 * the set_pte_at() write.
3144 */
3145 __SetPageUptodate(page);
3146
3147 entry = mk_pte(page, vma->vm_page_prot);
3148 if (vma->vm_flags & VM_WRITE)
3149 entry = pte_mkwrite(pte_mkdirty(entry));
3150
3151 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3152 &vmf->ptl);
3153 if (!pte_none(*vmf->pte))
3154 goto release;
3155
3156 ret = check_stable_address_space(vma->vm_mm);
3157 if (ret)
3158 goto release;
3159
3160 /* Deliver the page fault to userland, check inside PT lock */
3161 if (userfaultfd_missing(vma)) {
3162 pte_unmap_unlock(vmf->pte, vmf->ptl);
3163 mem_cgroup_cancel_charge(page, memcg, false);
3164 put_page(page);
3165 return handle_userfault(vmf, VM_UFFD_MISSING);
3166 }
3167
3168 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3169 page_add_new_anon_rmap(page, vma, vmf->address, false);
3170 mem_cgroup_commit_charge(page, memcg, false, false);
3171 lru_cache_add_active_or_unevictable(page, vma);
3172 setpte:
3173 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3174
3175 /* No need to invalidate - it was non-present before */
3176 update_mmu_cache(vma, vmf->address, vmf->pte);
3177 unlock:
3178 pte_unmap_unlock(vmf->pte, vmf->ptl);
3179 return ret;
3180 release:
3181 mem_cgroup_cancel_charge(page, memcg, false);
3182 put_page(page);
3183 goto unlock;
3184 oom_free_page:
3185 put_page(page);
3186 oom:
3187 return VM_FAULT_OOM;
3188 }
3189
3190 /*
3191 * The mmap_sem must have been held on entry, and may have been
3192 * released depending on flags and vma->vm_ops->fault() return value.
3193 * See filemap_fault() and __lock_page_retry().
3194 */
__do_fault(struct vm_fault * vmf)3195 static int __do_fault(struct vm_fault *vmf)
3196 {
3197 struct vm_area_struct *vma = vmf->vma;
3198 int ret;
3199
3200 /*
3201 * Preallocate pte before we take page_lock because this might lead to
3202 * deadlocks for memcg reclaim which waits for pages under writeback:
3203 * lock_page(A)
3204 * SetPageWriteback(A)
3205 * unlock_page(A)
3206 * lock_page(B)
3207 * lock_page(B)
3208 * pte_alloc_pne
3209 * shrink_page_list
3210 * wait_on_page_writeback(A)
3211 * SetPageWriteback(B)
3212 * unlock_page(B)
3213 * # flush A, B to clear the writeback
3214 */
3215 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3216 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3217 vmf->address);
3218 if (!vmf->prealloc_pte)
3219 return VM_FAULT_OOM;
3220 smp_wmb(); /* See comment in __pte_alloc() */
3221 }
3222
3223 ret = vma->vm_ops->fault(vmf);
3224 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3225 VM_FAULT_DONE_COW)))
3226 return ret;
3227
3228 if (unlikely(PageHWPoison(vmf->page))) {
3229 if (ret & VM_FAULT_LOCKED)
3230 unlock_page(vmf->page);
3231 put_page(vmf->page);
3232 vmf->page = NULL;
3233 return VM_FAULT_HWPOISON;
3234 }
3235
3236 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3237 lock_page(vmf->page);
3238 else
3239 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3240
3241 return ret;
3242 }
3243
3244 /*
3245 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3246 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3247 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3248 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3249 */
pmd_devmap_trans_unstable(pmd_t * pmd)3250 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3251 {
3252 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3253 }
3254
pte_alloc_one_map(struct vm_fault * vmf)3255 static int pte_alloc_one_map(struct vm_fault *vmf)
3256 {
3257 struct vm_area_struct *vma = vmf->vma;
3258
3259 if (!pmd_none(*vmf->pmd))
3260 goto map_pte;
3261 if (vmf->prealloc_pte) {
3262 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3263 if (unlikely(!pmd_none(*vmf->pmd))) {
3264 spin_unlock(vmf->ptl);
3265 goto map_pte;
3266 }
3267
3268 atomic_long_inc(&vma->vm_mm->nr_ptes);
3269 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3270 spin_unlock(vmf->ptl);
3271 vmf->prealloc_pte = NULL;
3272 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3273 return VM_FAULT_OOM;
3274 }
3275 map_pte:
3276 /*
3277 * If a huge pmd materialized under us just retry later. Use
3278 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3279 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3280 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3281 * running immediately after a huge pmd fault in a different thread of
3282 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3283 * All we have to ensure is that it is a regular pmd that we can walk
3284 * with pte_offset_map() and we can do that through an atomic read in
3285 * C, which is what pmd_trans_unstable() provides.
3286 */
3287 if (pmd_devmap_trans_unstable(vmf->pmd))
3288 return VM_FAULT_NOPAGE;
3289
3290 /*
3291 * At this point we know that our vmf->pmd points to a page of ptes
3292 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3293 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3294 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3295 * be valid and we will re-check to make sure the vmf->pte isn't
3296 * pte_none() under vmf->ptl protection when we return to
3297 * alloc_set_pte().
3298 */
3299 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3300 &vmf->ptl);
3301 return 0;
3302 }
3303
3304 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3305
3306 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
transhuge_vma_suitable(struct vm_area_struct * vma,unsigned long haddr)3307 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3308 unsigned long haddr)
3309 {
3310 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3311 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3312 return false;
3313 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3314 return false;
3315 return true;
3316 }
3317
deposit_prealloc_pte(struct vm_fault * vmf)3318 static void deposit_prealloc_pte(struct vm_fault *vmf)
3319 {
3320 struct vm_area_struct *vma = vmf->vma;
3321
3322 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3323 /*
3324 * We are going to consume the prealloc table,
3325 * count that as nr_ptes.
3326 */
3327 atomic_long_inc(&vma->vm_mm->nr_ptes);
3328 vmf->prealloc_pte = NULL;
3329 }
3330
do_set_pmd(struct vm_fault * vmf,struct page * page)3331 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3332 {
3333 struct vm_area_struct *vma = vmf->vma;
3334 bool write = vmf->flags & FAULT_FLAG_WRITE;
3335 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3336 pmd_t entry;
3337 int i, ret;
3338
3339 if (!transhuge_vma_suitable(vma, haddr))
3340 return VM_FAULT_FALLBACK;
3341
3342 ret = VM_FAULT_FALLBACK;
3343 page = compound_head(page);
3344
3345 /*
3346 * Archs like ppc64 need additonal space to store information
3347 * related to pte entry. Use the preallocated table for that.
3348 */
3349 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3350 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3351 if (!vmf->prealloc_pte)
3352 return VM_FAULT_OOM;
3353 smp_wmb(); /* See comment in __pte_alloc() */
3354 }
3355
3356 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3357 if (unlikely(!pmd_none(*vmf->pmd)))
3358 goto out;
3359
3360 for (i = 0; i < HPAGE_PMD_NR; i++)
3361 flush_icache_page(vma, page + i);
3362
3363 entry = mk_huge_pmd(page, vma->vm_page_prot);
3364 if (write)
3365 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3366
3367 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3368 page_add_file_rmap(page, true);
3369 /*
3370 * deposit and withdraw with pmd lock held
3371 */
3372 if (arch_needs_pgtable_deposit())
3373 deposit_prealloc_pte(vmf);
3374
3375 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3376
3377 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3378
3379 /* fault is handled */
3380 ret = 0;
3381 count_vm_event(THP_FILE_MAPPED);
3382 out:
3383 spin_unlock(vmf->ptl);
3384 return ret;
3385 }
3386 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3387 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3388 {
3389 BUILD_BUG();
3390 return 0;
3391 }
3392 #endif
3393
3394 /**
3395 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3396 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3397 *
3398 * @vmf: fault environment
3399 * @memcg: memcg to charge page (only for private mappings)
3400 * @page: page to map
3401 *
3402 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3403 * return.
3404 *
3405 * Target users are page handler itself and implementations of
3406 * vm_ops->map_pages.
3407 */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3408 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3409 struct page *page)
3410 {
3411 struct vm_area_struct *vma = vmf->vma;
3412 bool write = vmf->flags & FAULT_FLAG_WRITE;
3413 pte_t entry;
3414 int ret;
3415
3416 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3417 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3418 /* THP on COW? */
3419 VM_BUG_ON_PAGE(memcg, page);
3420
3421 ret = do_set_pmd(vmf, page);
3422 if (ret != VM_FAULT_FALLBACK)
3423 return ret;
3424 }
3425
3426 if (!vmf->pte) {
3427 ret = pte_alloc_one_map(vmf);
3428 if (ret)
3429 return ret;
3430 }
3431
3432 /* Re-check under ptl */
3433 if (unlikely(!pte_none(*vmf->pte)))
3434 return VM_FAULT_NOPAGE;
3435
3436 flush_icache_page(vma, page);
3437 entry = mk_pte(page, vma->vm_page_prot);
3438 if (write)
3439 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3440 /* copy-on-write page */
3441 if (write && !(vma->vm_flags & VM_SHARED)) {
3442 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3443 page_add_new_anon_rmap(page, vma, vmf->address, false);
3444 mem_cgroup_commit_charge(page, memcg, false, false);
3445 lru_cache_add_active_or_unevictable(page, vma);
3446 } else {
3447 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3448 page_add_file_rmap(page, false);
3449 }
3450 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3451
3452 /* no need to invalidate: a not-present page won't be cached */
3453 update_mmu_cache(vma, vmf->address, vmf->pte);
3454
3455 return 0;
3456 }
3457
3458
3459 /**
3460 * finish_fault - finish page fault once we have prepared the page to fault
3461 *
3462 * @vmf: structure describing the fault
3463 *
3464 * This function handles all that is needed to finish a page fault once the
3465 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3466 * given page, adds reverse page mapping, handles memcg charges and LRU
3467 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3468 * error.
3469 *
3470 * The function expects the page to be locked and on success it consumes a
3471 * reference of a page being mapped (for the PTE which maps it).
3472 */
finish_fault(struct vm_fault * vmf)3473 int finish_fault(struct vm_fault *vmf)
3474 {
3475 struct page *page;
3476 int ret = 0;
3477
3478 /* Did we COW the page? */
3479 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3480 !(vmf->vma->vm_flags & VM_SHARED))
3481 page = vmf->cow_page;
3482 else
3483 page = vmf->page;
3484
3485 /*
3486 * check even for read faults because we might have lost our CoWed
3487 * page
3488 */
3489 if (!(vmf->vma->vm_flags & VM_SHARED))
3490 ret = check_stable_address_space(vmf->vma->vm_mm);
3491 if (!ret)
3492 ret = alloc_set_pte(vmf, vmf->memcg, page);
3493 if (vmf->pte)
3494 pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 return ret;
3496 }
3497
3498 static unsigned long fault_around_bytes __read_mostly =
3499 rounddown_pow_of_two(65536);
3500
3501 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3502 static int fault_around_bytes_get(void *data, u64 *val)
3503 {
3504 *val = fault_around_bytes;
3505 return 0;
3506 }
3507
3508 /*
3509 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3510 * rounded down to nearest page order. It's what do_fault_around() expects to
3511 * see.
3512 */
fault_around_bytes_set(void * data,u64 val)3513 static int fault_around_bytes_set(void *data, u64 val)
3514 {
3515 if (val / PAGE_SIZE > PTRS_PER_PTE)
3516 return -EINVAL;
3517 if (val > PAGE_SIZE)
3518 fault_around_bytes = rounddown_pow_of_two(val);
3519 else
3520 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3521 return 0;
3522 }
3523 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3524 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3525
fault_around_debugfs(void)3526 static int __init fault_around_debugfs(void)
3527 {
3528 void *ret;
3529
3530 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3531 &fault_around_bytes_fops);
3532 if (!ret)
3533 pr_warn("Failed to create fault_around_bytes in debugfs");
3534 return 0;
3535 }
3536 late_initcall(fault_around_debugfs);
3537 #endif
3538
3539 /*
3540 * do_fault_around() tries to map few pages around the fault address. The hope
3541 * is that the pages will be needed soon and this will lower the number of
3542 * faults to handle.
3543 *
3544 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3545 * not ready to be mapped: not up-to-date, locked, etc.
3546 *
3547 * This function is called with the page table lock taken. In the split ptlock
3548 * case the page table lock only protects only those entries which belong to
3549 * the page table corresponding to the fault address.
3550 *
3551 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3552 * only once.
3553 *
3554 * fault_around_pages() defines how many pages we'll try to map.
3555 * do_fault_around() expects it to return a power of two less than or equal to
3556 * PTRS_PER_PTE.
3557 *
3558 * The virtual address of the area that we map is naturally aligned to the
3559 * fault_around_pages() value (and therefore to page order). This way it's
3560 * easier to guarantee that we don't cross page table boundaries.
3561 */
do_fault_around(struct vm_fault * vmf)3562 static int do_fault_around(struct vm_fault *vmf)
3563 {
3564 unsigned long address = vmf->address, nr_pages, mask;
3565 pgoff_t start_pgoff = vmf->pgoff;
3566 pgoff_t end_pgoff;
3567 int off, ret = 0;
3568
3569 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3570 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3571
3572 vmf->address = max(address & mask, vmf->vma->vm_start);
3573 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3574 start_pgoff -= off;
3575
3576 /*
3577 * end_pgoff is either end of page table or end of vma
3578 * or fault_around_pages() from start_pgoff, depending what is nearest.
3579 */
3580 end_pgoff = start_pgoff -
3581 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3582 PTRS_PER_PTE - 1;
3583 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3584 start_pgoff + nr_pages - 1);
3585
3586 if (pmd_none(*vmf->pmd)) {
3587 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3588 vmf->address);
3589 if (!vmf->prealloc_pte)
3590 goto out;
3591 smp_wmb(); /* See comment in __pte_alloc() */
3592 }
3593
3594 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3595
3596 /* Huge page is mapped? Page fault is solved */
3597 if (pmd_trans_huge(*vmf->pmd)) {
3598 ret = VM_FAULT_NOPAGE;
3599 goto out;
3600 }
3601
3602 /* ->map_pages() haven't done anything useful. Cold page cache? */
3603 if (!vmf->pte)
3604 goto out;
3605
3606 /* check if the page fault is solved */
3607 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3608 if (!pte_none(*vmf->pte))
3609 ret = VM_FAULT_NOPAGE;
3610 pte_unmap_unlock(vmf->pte, vmf->ptl);
3611 out:
3612 vmf->address = address;
3613 vmf->pte = NULL;
3614 return ret;
3615 }
3616
do_read_fault(struct vm_fault * vmf)3617 static int do_read_fault(struct vm_fault *vmf)
3618 {
3619 struct vm_area_struct *vma = vmf->vma;
3620 int ret = 0;
3621
3622 /*
3623 * Let's call ->map_pages() first and use ->fault() as fallback
3624 * if page by the offset is not ready to be mapped (cold cache or
3625 * something).
3626 */
3627 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3628 ret = do_fault_around(vmf);
3629 if (ret)
3630 return ret;
3631 }
3632
3633 ret = __do_fault(vmf);
3634 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3635 return ret;
3636
3637 ret |= finish_fault(vmf);
3638 unlock_page(vmf->page);
3639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3640 put_page(vmf->page);
3641 return ret;
3642 }
3643
do_cow_fault(struct vm_fault * vmf)3644 static int do_cow_fault(struct vm_fault *vmf)
3645 {
3646 struct vm_area_struct *vma = vmf->vma;
3647 int ret;
3648
3649 if (unlikely(anon_vma_prepare(vma)))
3650 return VM_FAULT_OOM;
3651
3652 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3653 if (!vmf->cow_page)
3654 return VM_FAULT_OOM;
3655
3656 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3657 &vmf->memcg, false)) {
3658 put_page(vmf->cow_page);
3659 return VM_FAULT_OOM;
3660 }
3661
3662 ret = __do_fault(vmf);
3663 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664 goto uncharge_out;
3665 if (ret & VM_FAULT_DONE_COW)
3666 return ret;
3667
3668 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3669 __SetPageUptodate(vmf->cow_page);
3670
3671 ret |= finish_fault(vmf);
3672 unlock_page(vmf->page);
3673 put_page(vmf->page);
3674 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3675 goto uncharge_out;
3676 return ret;
3677 uncharge_out:
3678 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3679 put_page(vmf->cow_page);
3680 return ret;
3681 }
3682
do_shared_fault(struct vm_fault * vmf)3683 static int do_shared_fault(struct vm_fault *vmf)
3684 {
3685 struct vm_area_struct *vma = vmf->vma;
3686 int ret, tmp;
3687
3688 ret = __do_fault(vmf);
3689 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3690 return ret;
3691
3692 /*
3693 * Check if the backing address space wants to know that the page is
3694 * about to become writable
3695 */
3696 if (vma->vm_ops->page_mkwrite) {
3697 unlock_page(vmf->page);
3698 tmp = do_page_mkwrite(vmf);
3699 if (unlikely(!tmp ||
3700 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3701 put_page(vmf->page);
3702 return tmp;
3703 }
3704 }
3705
3706 ret |= finish_fault(vmf);
3707 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3708 VM_FAULT_RETRY))) {
3709 unlock_page(vmf->page);
3710 put_page(vmf->page);
3711 return ret;
3712 }
3713
3714 fault_dirty_shared_page(vma, vmf->page);
3715 return ret;
3716 }
3717
3718 /*
3719 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3720 * but allow concurrent faults).
3721 * The mmap_sem may have been released depending on flags and our
3722 * return value. See filemap_fault() and __lock_page_or_retry().
3723 */
do_fault(struct vm_fault * vmf)3724 static int do_fault(struct vm_fault *vmf)
3725 {
3726 struct vm_area_struct *vma = vmf->vma;
3727 int ret;
3728
3729 /*
3730 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3731 */
3732 if (!vma->vm_ops->fault) {
3733 /*
3734 * If we find a migration pmd entry or a none pmd entry, which
3735 * should never happen, return SIGBUS
3736 */
3737 if (unlikely(!pmd_present(*vmf->pmd)))
3738 ret = VM_FAULT_SIGBUS;
3739 else {
3740 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3741 vmf->pmd,
3742 vmf->address,
3743 &vmf->ptl);
3744 /*
3745 * Make sure this is not a temporary clearing of pte
3746 * by holding ptl and checking again. A R/M/W update
3747 * of pte involves: take ptl, clearing the pte so that
3748 * we don't have concurrent modification by hardware
3749 * followed by an update.
3750 */
3751 if (unlikely(pte_none(*vmf->pte)))
3752 ret = VM_FAULT_SIGBUS;
3753 else
3754 ret = VM_FAULT_NOPAGE;
3755
3756 pte_unmap_unlock(vmf->pte, vmf->ptl);
3757 }
3758 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3759 ret = do_read_fault(vmf);
3760 else if (!(vma->vm_flags & VM_SHARED))
3761 ret = do_cow_fault(vmf);
3762 else
3763 ret = do_shared_fault(vmf);
3764
3765 /* preallocated pagetable is unused: free it */
3766 if (vmf->prealloc_pte) {
3767 pte_free(vma->vm_mm, vmf->prealloc_pte);
3768 vmf->prealloc_pte = NULL;
3769 }
3770 return ret;
3771 }
3772
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3773 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3774 unsigned long addr, int page_nid,
3775 int *flags)
3776 {
3777 get_page(page);
3778
3779 count_vm_numa_event(NUMA_HINT_FAULTS);
3780 if (page_nid == numa_node_id()) {
3781 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3782 *flags |= TNF_FAULT_LOCAL;
3783 }
3784
3785 return mpol_misplaced(page, vma, addr);
3786 }
3787
do_numa_page(struct vm_fault * vmf)3788 static int do_numa_page(struct vm_fault *vmf)
3789 {
3790 struct vm_area_struct *vma = vmf->vma;
3791 struct page *page = NULL;
3792 int page_nid = -1;
3793 int last_cpupid;
3794 int target_nid;
3795 bool migrated = false;
3796 pte_t pte;
3797 bool was_writable = pte_savedwrite(vmf->orig_pte);
3798 int flags = 0;
3799
3800 /*
3801 * The "pte" at this point cannot be used safely without
3802 * validation through pte_unmap_same(). It's of NUMA type but
3803 * the pfn may be screwed if the read is non atomic.
3804 */
3805 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3806 spin_lock(vmf->ptl);
3807 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3808 pte_unmap_unlock(vmf->pte, vmf->ptl);
3809 goto out;
3810 }
3811
3812 /*
3813 * Make it present again, Depending on how arch implementes non
3814 * accessible ptes, some can allow access by kernel mode.
3815 */
3816 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3817 pte = pte_modify(pte, vma->vm_page_prot);
3818 pte = pte_mkyoung(pte);
3819 if (was_writable)
3820 pte = pte_mkwrite(pte);
3821 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3822 update_mmu_cache(vma, vmf->address, vmf->pte);
3823
3824 page = vm_normal_page(vma, vmf->address, pte);
3825 if (!page) {
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 return 0;
3828 }
3829
3830 /* TODO: handle PTE-mapped THP */
3831 if (PageCompound(page)) {
3832 pte_unmap_unlock(vmf->pte, vmf->ptl);
3833 return 0;
3834 }
3835
3836 /*
3837 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3838 * much anyway since they can be in shared cache state. This misses
3839 * the case where a mapping is writable but the process never writes
3840 * to it but pte_write gets cleared during protection updates and
3841 * pte_dirty has unpredictable behaviour between PTE scan updates,
3842 * background writeback, dirty balancing and application behaviour.
3843 */
3844 if (!pte_write(pte))
3845 flags |= TNF_NO_GROUP;
3846
3847 /*
3848 * Flag if the page is shared between multiple address spaces. This
3849 * is later used when determining whether to group tasks together
3850 */
3851 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3852 flags |= TNF_SHARED;
3853
3854 last_cpupid = page_cpupid_last(page);
3855 page_nid = page_to_nid(page);
3856 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3857 &flags);
3858 pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 if (target_nid == -1) {
3860 put_page(page);
3861 goto out;
3862 }
3863
3864 /* Migrate to the requested node */
3865 migrated = migrate_misplaced_page(page, vma, target_nid);
3866 if (migrated) {
3867 page_nid = target_nid;
3868 flags |= TNF_MIGRATED;
3869 } else
3870 flags |= TNF_MIGRATE_FAIL;
3871
3872 out:
3873 if (page_nid != -1)
3874 task_numa_fault(last_cpupid, page_nid, 1, flags);
3875 return 0;
3876 }
3877
create_huge_pmd(struct vm_fault * vmf)3878 static inline int create_huge_pmd(struct vm_fault *vmf)
3879 {
3880 if (vma_is_anonymous(vmf->vma))
3881 return do_huge_pmd_anonymous_page(vmf);
3882 if (vmf->vma->vm_ops->huge_fault)
3883 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3884 return VM_FAULT_FALLBACK;
3885 }
3886
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)3887 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3888 {
3889 if (vma_is_anonymous(vmf->vma))
3890 return do_huge_pmd_wp_page(vmf, orig_pmd);
3891 if (vmf->vma->vm_ops->huge_fault)
3892 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3893
3894 /* COW handled on pte level: split pmd */
3895 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3896 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3897
3898 return VM_FAULT_FALLBACK;
3899 }
3900
vma_is_accessible(struct vm_area_struct * vma)3901 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3902 {
3903 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3904 }
3905
create_huge_pud(struct vm_fault * vmf)3906 static int create_huge_pud(struct vm_fault *vmf)
3907 {
3908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3909 /* No support for anonymous transparent PUD pages yet */
3910 if (vma_is_anonymous(vmf->vma))
3911 return VM_FAULT_FALLBACK;
3912 if (vmf->vma->vm_ops->huge_fault)
3913 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3914 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3915 return VM_FAULT_FALLBACK;
3916 }
3917
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)3918 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3919 {
3920 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3921 /* No support for anonymous transparent PUD pages yet */
3922 if (vma_is_anonymous(vmf->vma))
3923 return VM_FAULT_FALLBACK;
3924 if (vmf->vma->vm_ops->huge_fault)
3925 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3927 return VM_FAULT_FALLBACK;
3928 }
3929
3930 /*
3931 * These routines also need to handle stuff like marking pages dirty
3932 * and/or accessed for architectures that don't do it in hardware (most
3933 * RISC architectures). The early dirtying is also good on the i386.
3934 *
3935 * There is also a hook called "update_mmu_cache()" that architectures
3936 * with external mmu caches can use to update those (ie the Sparc or
3937 * PowerPC hashed page tables that act as extended TLBs).
3938 *
3939 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3940 * concurrent faults).
3941 *
3942 * The mmap_sem may have been released depending on flags and our return value.
3943 * See filemap_fault() and __lock_page_or_retry().
3944 */
handle_pte_fault(struct vm_fault * vmf)3945 static int handle_pte_fault(struct vm_fault *vmf)
3946 {
3947 pte_t entry;
3948
3949 if (unlikely(pmd_none(*vmf->pmd))) {
3950 /*
3951 * Leave __pte_alloc() until later: because vm_ops->fault may
3952 * want to allocate huge page, and if we expose page table
3953 * for an instant, it will be difficult to retract from
3954 * concurrent faults and from rmap lookups.
3955 */
3956 vmf->pte = NULL;
3957 } else {
3958 /* See comment in pte_alloc_one_map() */
3959 if (pmd_devmap_trans_unstable(vmf->pmd))
3960 return 0;
3961 /*
3962 * A regular pmd is established and it can't morph into a huge
3963 * pmd from under us anymore at this point because we hold the
3964 * mmap_sem read mode and khugepaged takes it in write mode.
3965 * So now it's safe to run pte_offset_map().
3966 */
3967 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3968 vmf->orig_pte = *vmf->pte;
3969
3970 /*
3971 * some architectures can have larger ptes than wordsize,
3972 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3973 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3974 * atomic accesses. The code below just needs a consistent
3975 * view for the ifs and we later double check anyway with the
3976 * ptl lock held. So here a barrier will do.
3977 */
3978 barrier();
3979 if (pte_none(vmf->orig_pte)) {
3980 pte_unmap(vmf->pte);
3981 vmf->pte = NULL;
3982 }
3983 }
3984
3985 if (!vmf->pte) {
3986 if (vma_is_anonymous(vmf->vma))
3987 return do_anonymous_page(vmf);
3988 else
3989 return do_fault(vmf);
3990 }
3991
3992 if (!pte_present(vmf->orig_pte))
3993 return do_swap_page(vmf);
3994
3995 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3996 return do_numa_page(vmf);
3997
3998 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3999 spin_lock(vmf->ptl);
4000 entry = vmf->orig_pte;
4001 if (unlikely(!pte_same(*vmf->pte, entry)))
4002 goto unlock;
4003 if (vmf->flags & FAULT_FLAG_WRITE) {
4004 if (!pte_write(entry))
4005 return do_wp_page(vmf);
4006 entry = pte_mkdirty(entry);
4007 }
4008 entry = pte_mkyoung(entry);
4009 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4010 vmf->flags & FAULT_FLAG_WRITE)) {
4011 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4012 } else {
4013 /*
4014 * This is needed only for protection faults but the arch code
4015 * is not yet telling us if this is a protection fault or not.
4016 * This still avoids useless tlb flushes for .text page faults
4017 * with threads.
4018 */
4019 if (vmf->flags & FAULT_FLAG_WRITE)
4020 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4021 }
4022 unlock:
4023 pte_unmap_unlock(vmf->pte, vmf->ptl);
4024 return 0;
4025 }
4026
4027 /*
4028 * By the time we get here, we already hold the mm semaphore
4029 *
4030 * The mmap_sem may have been released depending on flags and our
4031 * return value. See filemap_fault() and __lock_page_or_retry().
4032 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4033 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4034 unsigned int flags)
4035 {
4036 struct vm_fault vmf = {
4037 .vma = vma,
4038 .address = address & PAGE_MASK,
4039 .flags = flags,
4040 .pgoff = linear_page_index(vma, address),
4041 .gfp_mask = __get_fault_gfp_mask(vma),
4042 };
4043 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4044 struct mm_struct *mm = vma->vm_mm;
4045 pgd_t *pgd;
4046 p4d_t *p4d;
4047 int ret;
4048
4049 pgd = pgd_offset(mm, address);
4050 p4d = p4d_alloc(mm, pgd, address);
4051 if (!p4d)
4052 return VM_FAULT_OOM;
4053
4054 vmf.pud = pud_alloc(mm, p4d, address);
4055 if (!vmf.pud)
4056 return VM_FAULT_OOM;
4057 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4058 ret = create_huge_pud(&vmf);
4059 if (!(ret & VM_FAULT_FALLBACK))
4060 return ret;
4061 } else {
4062 pud_t orig_pud = *vmf.pud;
4063
4064 barrier();
4065 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4066
4067 /* NUMA case for anonymous PUDs would go here */
4068
4069 if (dirty && !pud_write(orig_pud)) {
4070 ret = wp_huge_pud(&vmf, orig_pud);
4071 if (!(ret & VM_FAULT_FALLBACK))
4072 return ret;
4073 } else {
4074 huge_pud_set_accessed(&vmf, orig_pud);
4075 return 0;
4076 }
4077 }
4078 }
4079
4080 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4081 if (!vmf.pmd)
4082 return VM_FAULT_OOM;
4083 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4084 ret = create_huge_pmd(&vmf);
4085 if (!(ret & VM_FAULT_FALLBACK))
4086 return ret;
4087 } else {
4088 pmd_t orig_pmd = *vmf.pmd;
4089
4090 barrier();
4091 if (unlikely(is_swap_pmd(orig_pmd))) {
4092 VM_BUG_ON(thp_migration_supported() &&
4093 !is_pmd_migration_entry(orig_pmd));
4094 if (is_pmd_migration_entry(orig_pmd))
4095 pmd_migration_entry_wait(mm, vmf.pmd);
4096 return 0;
4097 }
4098 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4099 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4100 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4101
4102 if (dirty && !pmd_write(orig_pmd)) {
4103 ret = wp_huge_pmd(&vmf, orig_pmd);
4104 if (!(ret & VM_FAULT_FALLBACK))
4105 return ret;
4106 } else {
4107 huge_pmd_set_accessed(&vmf, orig_pmd);
4108 return 0;
4109 }
4110 }
4111 }
4112
4113 return handle_pte_fault(&vmf);
4114 }
4115
4116 /*
4117 * By the time we get here, we already hold the mm semaphore
4118 *
4119 * The mmap_sem may have been released depending on flags and our
4120 * return value. See filemap_fault() and __lock_page_or_retry().
4121 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4122 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4123 unsigned int flags)
4124 {
4125 int ret;
4126
4127 __set_current_state(TASK_RUNNING);
4128
4129 count_vm_event(PGFAULT);
4130 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4131
4132 /* do counter updates before entering really critical section. */
4133 check_sync_rss_stat(current);
4134
4135 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4136 flags & FAULT_FLAG_INSTRUCTION,
4137 flags & FAULT_FLAG_REMOTE))
4138 return VM_FAULT_SIGSEGV;
4139
4140 /*
4141 * Enable the memcg OOM handling for faults triggered in user
4142 * space. Kernel faults are handled more gracefully.
4143 */
4144 if (flags & FAULT_FLAG_USER)
4145 mem_cgroup_oom_enable();
4146
4147 if (unlikely(is_vm_hugetlb_page(vma)))
4148 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4149 else
4150 ret = __handle_mm_fault(vma, address, flags);
4151
4152 if (flags & FAULT_FLAG_USER) {
4153 mem_cgroup_oom_disable();
4154 /*
4155 * The task may have entered a memcg OOM situation but
4156 * if the allocation error was handled gracefully (no
4157 * VM_FAULT_OOM), there is no need to kill anything.
4158 * Just clean up the OOM state peacefully.
4159 */
4160 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4161 mem_cgroup_oom_synchronize(false);
4162 }
4163
4164 return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(handle_mm_fault);
4167
4168 #ifndef __PAGETABLE_P4D_FOLDED
4169 /*
4170 * Allocate p4d page table.
4171 * We've already handled the fast-path in-line.
4172 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4173 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4174 {
4175 p4d_t *new = p4d_alloc_one(mm, address);
4176 if (!new)
4177 return -ENOMEM;
4178
4179 smp_wmb(); /* See comment in __pte_alloc */
4180
4181 spin_lock(&mm->page_table_lock);
4182 if (pgd_present(*pgd)) /* Another has populated it */
4183 p4d_free(mm, new);
4184 else
4185 pgd_populate(mm, pgd, new);
4186 spin_unlock(&mm->page_table_lock);
4187 return 0;
4188 }
4189 #endif /* __PAGETABLE_P4D_FOLDED */
4190
4191 #ifndef __PAGETABLE_PUD_FOLDED
4192 /*
4193 * Allocate page upper directory.
4194 * We've already handled the fast-path in-line.
4195 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4196 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4197 {
4198 pud_t *new = pud_alloc_one(mm, address);
4199 if (!new)
4200 return -ENOMEM;
4201
4202 smp_wmb(); /* See comment in __pte_alloc */
4203
4204 spin_lock(&mm->page_table_lock);
4205 #ifndef __ARCH_HAS_5LEVEL_HACK
4206 if (p4d_present(*p4d)) /* Another has populated it */
4207 pud_free(mm, new);
4208 else
4209 p4d_populate(mm, p4d, new);
4210 #else
4211 if (pgd_present(*p4d)) /* Another has populated it */
4212 pud_free(mm, new);
4213 else
4214 pgd_populate(mm, p4d, new);
4215 #endif /* __ARCH_HAS_5LEVEL_HACK */
4216 spin_unlock(&mm->page_table_lock);
4217 return 0;
4218 }
4219 #endif /* __PAGETABLE_PUD_FOLDED */
4220
4221 #ifndef __PAGETABLE_PMD_FOLDED
4222 /*
4223 * Allocate page middle directory.
4224 * We've already handled the fast-path in-line.
4225 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4226 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4227 {
4228 spinlock_t *ptl;
4229 pmd_t *new = pmd_alloc_one(mm, address);
4230 if (!new)
4231 return -ENOMEM;
4232
4233 smp_wmb(); /* See comment in __pte_alloc */
4234
4235 ptl = pud_lock(mm, pud);
4236 #ifndef __ARCH_HAS_4LEVEL_HACK
4237 if (!pud_present(*pud)) {
4238 mm_inc_nr_pmds(mm);
4239 pud_populate(mm, pud, new);
4240 } else /* Another has populated it */
4241 pmd_free(mm, new);
4242 #else
4243 if (!pgd_present(*pud)) {
4244 mm_inc_nr_pmds(mm);
4245 pgd_populate(mm, pud, new);
4246 } else /* Another has populated it */
4247 pmd_free(mm, new);
4248 #endif /* __ARCH_HAS_4LEVEL_HACK */
4249 spin_unlock(ptl);
4250 return 0;
4251 }
4252 #endif /* __PAGETABLE_PMD_FOLDED */
4253
__follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4254 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4255 unsigned long *start, unsigned long *end,
4256 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4257 {
4258 pgd_t *pgd;
4259 p4d_t *p4d;
4260 pud_t *pud;
4261 pmd_t *pmd;
4262 pte_t *ptep;
4263
4264 pgd = pgd_offset(mm, address);
4265 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4266 goto out;
4267
4268 p4d = p4d_offset(pgd, address);
4269 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4270 goto out;
4271
4272 pud = pud_offset(p4d, address);
4273 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4274 goto out;
4275
4276 pmd = pmd_offset(pud, address);
4277 VM_BUG_ON(pmd_trans_huge(*pmd));
4278
4279 if (pmd_huge(*pmd)) {
4280 if (!pmdpp)
4281 goto out;
4282
4283 if (start && end) {
4284 *start = address & PMD_MASK;
4285 *end = *start + PMD_SIZE;
4286 mmu_notifier_invalidate_range_start(mm, *start, *end);
4287 }
4288 *ptlp = pmd_lock(mm, pmd);
4289 if (pmd_huge(*pmd)) {
4290 *pmdpp = pmd;
4291 return 0;
4292 }
4293 spin_unlock(*ptlp);
4294 if (start && end)
4295 mmu_notifier_invalidate_range_end(mm, *start, *end);
4296 }
4297
4298 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4299 goto out;
4300
4301 if (start && end) {
4302 *start = address & PAGE_MASK;
4303 *end = *start + PAGE_SIZE;
4304 mmu_notifier_invalidate_range_start(mm, *start, *end);
4305 }
4306 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4307 if (!pte_present(*ptep))
4308 goto unlock;
4309 *ptepp = ptep;
4310 return 0;
4311 unlock:
4312 pte_unmap_unlock(ptep, *ptlp);
4313 if (start && end)
4314 mmu_notifier_invalidate_range_end(mm, *start, *end);
4315 out:
4316 return -EINVAL;
4317 }
4318
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4319 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4320 pte_t **ptepp, spinlock_t **ptlp)
4321 {
4322 int res;
4323
4324 /* (void) is needed to make gcc happy */
4325 (void) __cond_lock(*ptlp,
4326 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4327 ptepp, NULL, ptlp)));
4328 return res;
4329 }
4330
follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4331 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4332 unsigned long *start, unsigned long *end,
4333 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4334 {
4335 int res;
4336
4337 /* (void) is needed to make gcc happy */
4338 (void) __cond_lock(*ptlp,
4339 !(res = __follow_pte_pmd(mm, address, start, end,
4340 ptepp, pmdpp, ptlp)));
4341 return res;
4342 }
4343 EXPORT_SYMBOL(follow_pte_pmd);
4344
4345 /**
4346 * follow_pfn - look up PFN at a user virtual address
4347 * @vma: memory mapping
4348 * @address: user virtual address
4349 * @pfn: location to store found PFN
4350 *
4351 * Only IO mappings and raw PFN mappings are allowed.
4352 *
4353 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4354 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4355 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4356 unsigned long *pfn)
4357 {
4358 int ret = -EINVAL;
4359 spinlock_t *ptl;
4360 pte_t *ptep;
4361
4362 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4363 return ret;
4364
4365 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4366 if (ret)
4367 return ret;
4368 *pfn = pte_pfn(*ptep);
4369 pte_unmap_unlock(ptep, ptl);
4370 return 0;
4371 }
4372 EXPORT_SYMBOL(follow_pfn);
4373
4374 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4375 int follow_phys(struct vm_area_struct *vma,
4376 unsigned long address, unsigned int flags,
4377 unsigned long *prot, resource_size_t *phys)
4378 {
4379 int ret = -EINVAL;
4380 pte_t *ptep, pte;
4381 spinlock_t *ptl;
4382
4383 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4384 goto out;
4385
4386 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4387 goto out;
4388 pte = *ptep;
4389
4390 if ((flags & FOLL_WRITE) && !pte_write(pte))
4391 goto unlock;
4392
4393 *prot = pgprot_val(pte_pgprot(pte));
4394 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4395
4396 ret = 0;
4397 unlock:
4398 pte_unmap_unlock(ptep, ptl);
4399 out:
4400 return ret;
4401 }
4402
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4404 void *buf, int len, int write)
4405 {
4406 resource_size_t phys_addr;
4407 unsigned long prot = 0;
4408 void __iomem *maddr;
4409 int offset = addr & (PAGE_SIZE-1);
4410
4411 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4412 return -EINVAL;
4413
4414 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4415 if (!maddr)
4416 return -ENOMEM;
4417
4418 if (write)
4419 memcpy_toio(maddr + offset, buf, len);
4420 else
4421 memcpy_fromio(buf, maddr + offset, len);
4422 iounmap(maddr);
4423
4424 return len;
4425 }
4426 EXPORT_SYMBOL_GPL(generic_access_phys);
4427 #endif
4428
4429 /*
4430 * Access another process' address space as given in mm. If non-NULL, use the
4431 * given task for page fault accounting.
4432 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4433 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4434 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4435 {
4436 struct vm_area_struct *vma;
4437 void *old_buf = buf;
4438 int write = gup_flags & FOLL_WRITE;
4439
4440 down_read(&mm->mmap_sem);
4441 /* ignore errors, just check how much was successfully transferred */
4442 while (len) {
4443 int bytes, ret, offset;
4444 void *maddr;
4445 struct page *page = NULL;
4446
4447 ret = get_user_pages_remote(tsk, mm, addr, 1,
4448 gup_flags, &page, &vma, NULL);
4449 if (ret <= 0) {
4450 #ifndef CONFIG_HAVE_IOREMAP_PROT
4451 break;
4452 #else
4453 /*
4454 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4455 * we can access using slightly different code.
4456 */
4457 vma = find_vma(mm, addr);
4458 if (!vma || vma->vm_start > addr)
4459 break;
4460 if (vma->vm_ops && vma->vm_ops->access)
4461 ret = vma->vm_ops->access(vma, addr, buf,
4462 len, write);
4463 if (ret <= 0)
4464 break;
4465 bytes = ret;
4466 #endif
4467 } else {
4468 bytes = len;
4469 offset = addr & (PAGE_SIZE-1);
4470 if (bytes > PAGE_SIZE-offset)
4471 bytes = PAGE_SIZE-offset;
4472
4473 maddr = kmap(page);
4474 if (write) {
4475 copy_to_user_page(vma, page, addr,
4476 maddr + offset, buf, bytes);
4477 set_page_dirty_lock(page);
4478 } else {
4479 copy_from_user_page(vma, page, addr,
4480 buf, maddr + offset, bytes);
4481 }
4482 kunmap(page);
4483 put_page(page);
4484 }
4485 len -= bytes;
4486 buf += bytes;
4487 addr += bytes;
4488 }
4489 up_read(&mm->mmap_sem);
4490
4491 return buf - old_buf;
4492 }
4493
4494 /**
4495 * access_remote_vm - access another process' address space
4496 * @mm: the mm_struct of the target address space
4497 * @addr: start address to access
4498 * @buf: source or destination buffer
4499 * @len: number of bytes to transfer
4500 * @gup_flags: flags modifying lookup behaviour
4501 *
4502 * The caller must hold a reference on @mm.
4503 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4504 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4505 void *buf, int len, unsigned int gup_flags)
4506 {
4507 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4508 }
4509
4510 /*
4511 * Access another process' address space.
4512 * Source/target buffer must be kernel space,
4513 * Do not walk the page table directly, use get_user_pages
4514 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4515 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4516 void *buf, int len, unsigned int gup_flags)
4517 {
4518 struct mm_struct *mm;
4519 int ret;
4520
4521 mm = get_task_mm(tsk);
4522 if (!mm)
4523 return 0;
4524
4525 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4526
4527 mmput(mm);
4528
4529 return ret;
4530 }
4531 EXPORT_SYMBOL_GPL(access_process_vm);
4532
4533 /*
4534 * Print the name of a VMA.
4535 */
print_vma_addr(char * prefix,unsigned long ip)4536 void print_vma_addr(char *prefix, unsigned long ip)
4537 {
4538 struct mm_struct *mm = current->mm;
4539 struct vm_area_struct *vma;
4540
4541 /*
4542 * Do not print if we are in atomic
4543 * contexts (in exception stacks, etc.):
4544 */
4545 if (preempt_count())
4546 return;
4547
4548 down_read(&mm->mmap_sem);
4549 vma = find_vma(mm, ip);
4550 if (vma && vma->vm_file) {
4551 struct file *f = vma->vm_file;
4552 char *buf = (char *)__get_free_page(GFP_KERNEL);
4553 if (buf) {
4554 char *p;
4555
4556 p = file_path(f, buf, PAGE_SIZE);
4557 if (IS_ERR(p))
4558 p = "?";
4559 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4560 vma->vm_start,
4561 vma->vm_end - vma->vm_start);
4562 free_page((unsigned long)buf);
4563 }
4564 }
4565 up_read(&mm->mmap_sem);
4566 }
4567
4568 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4569 void __might_fault(const char *file, int line)
4570 {
4571 /*
4572 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4573 * holding the mmap_sem, this is safe because kernel memory doesn't
4574 * get paged out, therefore we'll never actually fault, and the
4575 * below annotations will generate false positives.
4576 */
4577 if (uaccess_kernel())
4578 return;
4579 if (pagefault_disabled())
4580 return;
4581 __might_sleep(file, line, 0);
4582 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4583 if (current->mm)
4584 might_lock_read(¤t->mm->mmap_sem);
4585 #endif
4586 }
4587 EXPORT_SYMBOL(__might_fault);
4588 #endif
4589
4590 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4591 static void clear_gigantic_page(struct page *page,
4592 unsigned long addr,
4593 unsigned int pages_per_huge_page)
4594 {
4595 int i;
4596 struct page *p = page;
4597
4598 might_sleep();
4599 for (i = 0; i < pages_per_huge_page;
4600 i++, p = mem_map_next(p, page, i)) {
4601 cond_resched();
4602 clear_user_highpage(p, addr + i * PAGE_SIZE);
4603 }
4604 }
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4605 void clear_huge_page(struct page *page,
4606 unsigned long addr_hint, unsigned int pages_per_huge_page)
4607 {
4608 int i, n, base, l;
4609 unsigned long addr = addr_hint &
4610 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4611
4612 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4613 clear_gigantic_page(page, addr, pages_per_huge_page);
4614 return;
4615 }
4616
4617 /* Clear sub-page to access last to keep its cache lines hot */
4618 might_sleep();
4619 n = (addr_hint - addr) / PAGE_SIZE;
4620 if (2 * n <= pages_per_huge_page) {
4621 /* If sub-page to access in first half of huge page */
4622 base = 0;
4623 l = n;
4624 /* Clear sub-pages at the end of huge page */
4625 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4626 cond_resched();
4627 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4628 }
4629 } else {
4630 /* If sub-page to access in second half of huge page */
4631 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4632 l = pages_per_huge_page - n;
4633 /* Clear sub-pages at the begin of huge page */
4634 for (i = 0; i < base; i++) {
4635 cond_resched();
4636 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4637 }
4638 }
4639 /*
4640 * Clear remaining sub-pages in left-right-left-right pattern
4641 * towards the sub-page to access
4642 */
4643 for (i = 0; i < l; i++) {
4644 int left_idx = base + i;
4645 int right_idx = base + 2 * l - 1 - i;
4646
4647 cond_resched();
4648 clear_user_highpage(page + left_idx,
4649 addr + left_idx * PAGE_SIZE);
4650 cond_resched();
4651 clear_user_highpage(page + right_idx,
4652 addr + right_idx * PAGE_SIZE);
4653 }
4654 }
4655
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4656 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4657 unsigned long addr,
4658 struct vm_area_struct *vma,
4659 unsigned int pages_per_huge_page)
4660 {
4661 int i;
4662 struct page *dst_base = dst;
4663 struct page *src_base = src;
4664
4665 for (i = 0; i < pages_per_huge_page; ) {
4666 cond_resched();
4667 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4668
4669 i++;
4670 dst = mem_map_next(dst, dst_base, i);
4671 src = mem_map_next(src, src_base, i);
4672 }
4673 }
4674
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4675 void copy_user_huge_page(struct page *dst, struct page *src,
4676 unsigned long addr, struct vm_area_struct *vma,
4677 unsigned int pages_per_huge_page)
4678 {
4679 int i;
4680
4681 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4682 copy_user_gigantic_page(dst, src, addr, vma,
4683 pages_per_huge_page);
4684 return;
4685 }
4686
4687 might_sleep();
4688 for (i = 0; i < pages_per_huge_page; i++) {
4689 cond_resched();
4690 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4691 }
4692 }
4693
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4694 long copy_huge_page_from_user(struct page *dst_page,
4695 const void __user *usr_src,
4696 unsigned int pages_per_huge_page,
4697 bool allow_pagefault)
4698 {
4699 void *src = (void *)usr_src;
4700 void *page_kaddr;
4701 unsigned long i, rc = 0;
4702 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4703
4704 for (i = 0; i < pages_per_huge_page; i++) {
4705 if (allow_pagefault)
4706 page_kaddr = kmap(dst_page + i);
4707 else
4708 page_kaddr = kmap_atomic(dst_page + i);
4709 rc = copy_from_user(page_kaddr,
4710 (const void __user *)(src + i * PAGE_SIZE),
4711 PAGE_SIZE);
4712 if (allow_pagefault)
4713 kunmap(dst_page + i);
4714 else
4715 kunmap_atomic(page_kaddr);
4716
4717 ret_val -= (PAGE_SIZE - rc);
4718 if (rc)
4719 break;
4720
4721 cond_resched();
4722 }
4723 return ret_val;
4724 }
4725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4726
4727 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4728
4729 static struct kmem_cache *page_ptl_cachep;
4730
ptlock_cache_init(void)4731 void __init ptlock_cache_init(void)
4732 {
4733 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4734 SLAB_PANIC, NULL);
4735 }
4736
ptlock_alloc(struct page * page)4737 bool ptlock_alloc(struct page *page)
4738 {
4739 spinlock_t *ptl;
4740
4741 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4742 if (!ptl)
4743 return false;
4744 page->ptl = ptl;
4745 return true;
4746 }
4747
ptlock_free(struct page * page)4748 void ptlock_free(struct page *page)
4749 {
4750 kmem_cache_free(page_ptl_cachep, page->ptl);
4751 }
4752 #endif
4753