• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
disable_randmaps(char * s)120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
init_zero_pfn(void)135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
sync_mm_rss(struct mm_struct * mm)145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
check_sync_rss_stat(struct task_struct * task)184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 #ifdef HAVE_GENERIC_MMU_GATHER
191 
tlb_next_batch(struct mmu_gather * tlb)192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 	struct mmu_gather_batch *batch;
195 
196 	batch = tlb->active;
197 	if (batch->next) {
198 		tlb->active = batch->next;
199 		return true;
200 	}
201 
202 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 		return false;
204 
205 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 	if (!batch)
207 		return false;
208 
209 	tlb->batch_count++;
210 	batch->next = NULL;
211 	batch->nr   = 0;
212 	batch->max  = MAX_GATHER_BATCH;
213 
214 	tlb->active->next = batch;
215 	tlb->active = batch;
216 
217 	return true;
218 }
219 
arch_tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 				unsigned long start, unsigned long end)
222 {
223 	tlb->mm = mm;
224 
225 	/* Is it from 0 to ~0? */
226 	tlb->fullmm     = !(start | (end+1));
227 	tlb->need_flush_all = 0;
228 	tlb->local.next = NULL;
229 	tlb->local.nr   = 0;
230 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231 	tlb->active     = &tlb->local;
232 	tlb->batch_count = 0;
233 
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	tlb->batch = NULL;
236 #endif
237 	tlb->page_size = 0;
238 
239 	__tlb_reset_range(tlb);
240 }
241 
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 	if (!tlb->end)
245 		return;
246 
247 	tlb_flush(tlb);
248 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 	__tlb_reset_range(tlb);
250 }
251 
tlb_flush_mmu_free(struct mmu_gather * tlb)252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 	struct mmu_gather_batch *batch;
255 
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 	tlb_table_flush(tlb);
258 #endif
259 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
tlb_flush_mmu(struct mmu_gather * tlb)266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 	tlb_flush_mmu_tlbonly(tlb);
269 	tlb_flush_mmu_free(tlb);
270 }
271 
272 /* tlb_finish_mmu
273  *	Called at the end of the shootdown operation to free up any resources
274  *	that were required.
275  */
arch_tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end,bool force)276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 		unsigned long start, unsigned long end, bool force)
278 {
279 	struct mmu_gather_batch *batch, *next;
280 
281 	if (force)
282 		__tlb_adjust_range(tlb, start, end - start);
283 
284 	tlb_flush_mmu(tlb);
285 
286 	/* keep the page table cache within bounds */
287 	check_pgt_cache();
288 
289 	for (batch = tlb->local.next; batch; batch = next) {
290 		next = batch->next;
291 		free_pages((unsigned long)batch, 0);
292 	}
293 	tlb->local.next = NULL;
294 }
295 
296 /* __tlb_remove_page
297  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298  *	handling the additional races in SMP caused by other CPUs caching valid
299  *	mappings in their TLBs. Returns the number of free page slots left.
300  *	When out of page slots we must call tlb_flush_mmu().
301  *returns true if the caller should flush.
302  */
__tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 	struct mmu_gather_batch *batch;
306 
307 	VM_BUG_ON(!tlb->end);
308 	VM_WARN_ON(tlb->page_size != page_size);
309 
310 	batch = tlb->active;
311 	/*
312 	 * Add the page and check if we are full. If so
313 	 * force a flush.
314 	 */
315 	batch->pages[batch->nr++] = page;
316 	if (batch->nr == batch->max) {
317 		if (!tlb_next_batch(tlb))
318 			return true;
319 		batch = tlb->active;
320 	}
321 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 
323 	return false;
324 }
325 
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327 
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329 
330 /*
331  * See the comment near struct mmu_table_batch.
332  */
333 
334 /*
335  * If we want tlb_remove_table() to imply TLB invalidates.
336  */
tlb_table_invalidate(struct mmu_gather * tlb)337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338 {
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 	/*
341 	 * Invalidate page-table caches used by hardware walkers. Then we still
342 	 * need to RCU-sched wait while freeing the pages because software
343 	 * walkers can still be in-flight.
344 	 */
345 	tlb_flush_mmu_tlbonly(tlb);
346 #endif
347 }
348 
tlb_remove_table_smp_sync(void * arg)349 static void tlb_remove_table_smp_sync(void *arg)
350 {
351 	/* Simply deliver the interrupt */
352 }
353 
tlb_remove_table_one(void * table)354 static void tlb_remove_table_one(void *table)
355 {
356 	/*
357 	 * This isn't an RCU grace period and hence the page-tables cannot be
358 	 * assumed to be actually RCU-freed.
359 	 *
360 	 * It is however sufficient for software page-table walkers that rely on
361 	 * IRQ disabling. See the comment near struct mmu_table_batch.
362 	 */
363 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 	__tlb_remove_table(table);
365 }
366 
tlb_remove_table_rcu(struct rcu_head * head)367 static void tlb_remove_table_rcu(struct rcu_head *head)
368 {
369 	struct mmu_table_batch *batch;
370 	int i;
371 
372 	batch = container_of(head, struct mmu_table_batch, rcu);
373 
374 	for (i = 0; i < batch->nr; i++)
375 		__tlb_remove_table(batch->tables[i]);
376 
377 	free_page((unsigned long)batch);
378 }
379 
tlb_table_flush(struct mmu_gather * tlb)380 void tlb_table_flush(struct mmu_gather *tlb)
381 {
382 	struct mmu_table_batch **batch = &tlb->batch;
383 
384 	if (*batch) {
385 		tlb_table_invalidate(tlb);
386 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 		*batch = NULL;
388 	}
389 }
390 
tlb_remove_table(struct mmu_gather * tlb,void * table)391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
392 {
393 	struct mmu_table_batch **batch = &tlb->batch;
394 
395 	if (*batch == NULL) {
396 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 		if (*batch == NULL) {
398 			tlb_table_invalidate(tlb);
399 			tlb_remove_table_one(table);
400 			return;
401 		}
402 		(*batch)->nr = 0;
403 	}
404 
405 	(*batch)->tables[(*batch)->nr++] = table;
406 	if ((*batch)->nr == MAX_TABLE_BATCH)
407 		tlb_table_flush(tlb);
408 }
409 
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
411 
412 /* tlb_gather_mmu
413  *	Called to initialize an (on-stack) mmu_gather structure for page-table
414  *	tear-down from @mm. The @fullmm argument is used when @mm is without
415  *	users and we're going to destroy the full address space (exit/execve).
416  */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,unsigned long start,unsigned long end)417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 			unsigned long start, unsigned long end)
419 {
420 	arch_tlb_gather_mmu(tlb, mm, start, end);
421 	inc_tlb_flush_pending(tlb->mm);
422 }
423 
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 		unsigned long start, unsigned long end)
426 {
427 	/*
428 	 * If there are parallel threads are doing PTE changes on same range
429 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 	 * flush by batching, a thread has stable TLB entry can fail to flush
431 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 	 * forcefully if we detect parallel PTE batching threads.
433 	 */
434 	bool force = mm_tlb_flush_nested(tlb->mm);
435 
436 	arch_tlb_finish_mmu(tlb, start, end, force);
437 	dec_tlb_flush_pending(tlb->mm);
438 }
439 
440 /*
441  * Note: this doesn't free the actual pages themselves. That
442  * has been handled earlier when unmapping all the memory regions.
443  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 			   unsigned long addr)
446 {
447 	pgtable_t token = pmd_pgtable(*pmd);
448 	pmd_clear(pmd);
449 	pte_free_tlb(tlb, token, addr);
450 	atomic_long_dec(&tlb->mm->nr_ptes);
451 }
452 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 				unsigned long addr, unsigned long end,
455 				unsigned long floor, unsigned long ceiling)
456 {
457 	pmd_t *pmd;
458 	unsigned long next;
459 	unsigned long start;
460 
461 	start = addr;
462 	pmd = pmd_offset(pud, addr);
463 	do {
464 		next = pmd_addr_end(addr, end);
465 		if (pmd_none_or_clear_bad(pmd))
466 			continue;
467 		free_pte_range(tlb, pmd, addr);
468 	} while (pmd++, addr = next, addr != end);
469 
470 	start &= PUD_MASK;
471 	if (start < floor)
472 		return;
473 	if (ceiling) {
474 		ceiling &= PUD_MASK;
475 		if (!ceiling)
476 			return;
477 	}
478 	if (end - 1 > ceiling - 1)
479 		return;
480 
481 	pmd = pmd_offset(pud, start);
482 	pud_clear(pud);
483 	pmd_free_tlb(tlb, pmd, start);
484 	mm_dec_nr_pmds(tlb->mm);
485 }
486 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 				unsigned long addr, unsigned long end,
489 				unsigned long floor, unsigned long ceiling)
490 {
491 	pud_t *pud;
492 	unsigned long next;
493 	unsigned long start;
494 
495 	start = addr;
496 	pud = pud_offset(p4d, addr);
497 	do {
498 		next = pud_addr_end(addr, end);
499 		if (pud_none_or_clear_bad(pud))
500 			continue;
501 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 	} while (pud++, addr = next, addr != end);
503 
504 	start &= P4D_MASK;
505 	if (start < floor)
506 		return;
507 	if (ceiling) {
508 		ceiling &= P4D_MASK;
509 		if (!ceiling)
510 			return;
511 	}
512 	if (end - 1 > ceiling - 1)
513 		return;
514 
515 	pud = pud_offset(p4d, start);
516 	p4d_clear(p4d);
517 	pud_free_tlb(tlb, pud, start);
518 }
519 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)520 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
521 				unsigned long addr, unsigned long end,
522 				unsigned long floor, unsigned long ceiling)
523 {
524 	p4d_t *p4d;
525 	unsigned long next;
526 	unsigned long start;
527 
528 	start = addr;
529 	p4d = p4d_offset(pgd, addr);
530 	do {
531 		next = p4d_addr_end(addr, end);
532 		if (p4d_none_or_clear_bad(p4d))
533 			continue;
534 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
535 	} while (p4d++, addr = next, addr != end);
536 
537 	start &= PGDIR_MASK;
538 	if (start < floor)
539 		return;
540 	if (ceiling) {
541 		ceiling &= PGDIR_MASK;
542 		if (!ceiling)
543 			return;
544 	}
545 	if (end - 1 > ceiling - 1)
546 		return;
547 
548 	p4d = p4d_offset(pgd, start);
549 	pgd_clear(pgd);
550 	p4d_free_tlb(tlb, p4d, start);
551 }
552 
553 /*
554  * This function frees user-level page tables of a process.
555  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)556 void free_pgd_range(struct mmu_gather *tlb,
557 			unsigned long addr, unsigned long end,
558 			unsigned long floor, unsigned long ceiling)
559 {
560 	pgd_t *pgd;
561 	unsigned long next;
562 
563 	/*
564 	 * The next few lines have given us lots of grief...
565 	 *
566 	 * Why are we testing PMD* at this top level?  Because often
567 	 * there will be no work to do at all, and we'd prefer not to
568 	 * go all the way down to the bottom just to discover that.
569 	 *
570 	 * Why all these "- 1"s?  Because 0 represents both the bottom
571 	 * of the address space and the top of it (using -1 for the
572 	 * top wouldn't help much: the masks would do the wrong thing).
573 	 * The rule is that addr 0 and floor 0 refer to the bottom of
574 	 * the address space, but end 0 and ceiling 0 refer to the top
575 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
576 	 * that end 0 case should be mythical).
577 	 *
578 	 * Wherever addr is brought up or ceiling brought down, we must
579 	 * be careful to reject "the opposite 0" before it confuses the
580 	 * subsequent tests.  But what about where end is brought down
581 	 * by PMD_SIZE below? no, end can't go down to 0 there.
582 	 *
583 	 * Whereas we round start (addr) and ceiling down, by different
584 	 * masks at different levels, in order to test whether a table
585 	 * now has no other vmas using it, so can be freed, we don't
586 	 * bother to round floor or end up - the tests don't need that.
587 	 */
588 
589 	addr &= PMD_MASK;
590 	if (addr < floor) {
591 		addr += PMD_SIZE;
592 		if (!addr)
593 			return;
594 	}
595 	if (ceiling) {
596 		ceiling &= PMD_MASK;
597 		if (!ceiling)
598 			return;
599 	}
600 	if (end - 1 > ceiling - 1)
601 		end -= PMD_SIZE;
602 	if (addr > end - 1)
603 		return;
604 	/*
605 	 * We add page table cache pages with PAGE_SIZE,
606 	 * (see pte_free_tlb()), flush the tlb if we need
607 	 */
608 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
609 	pgd = pgd_offset(tlb->mm, addr);
610 	do {
611 		next = pgd_addr_end(addr, end);
612 		if (pgd_none_or_clear_bad(pgd))
613 			continue;
614 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
615 	} while (pgd++, addr = next, addr != end);
616 }
617 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)618 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
619 		unsigned long floor, unsigned long ceiling)
620 {
621 	while (vma) {
622 		struct vm_area_struct *next = vma->vm_next;
623 		unsigned long addr = vma->vm_start;
624 
625 		/*
626 		 * Hide vma from rmap and truncate_pagecache before freeing
627 		 * pgtables
628 		 */
629 		unlink_anon_vmas(vma);
630 		unlink_file_vma(vma);
631 
632 		if (is_vm_hugetlb_page(vma)) {
633 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
634 				floor, next ? next->vm_start : ceiling);
635 		} else {
636 			/*
637 			 * Optimization: gather nearby vmas into one call down
638 			 */
639 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
640 			       && !is_vm_hugetlb_page(next)) {
641 				vma = next;
642 				next = vma->vm_next;
643 				unlink_anon_vmas(vma);
644 				unlink_file_vma(vma);
645 			}
646 			free_pgd_range(tlb, addr, vma->vm_end,
647 				floor, next ? next->vm_start : ceiling);
648 		}
649 		vma = next;
650 	}
651 }
652 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd,unsigned long address)653 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
654 {
655 	spinlock_t *ptl;
656 	pgtable_t new = pte_alloc_one(mm, address);
657 	if (!new)
658 		return -ENOMEM;
659 
660 	/*
661 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
662 	 * visible before the pte is made visible to other CPUs by being
663 	 * put into page tables.
664 	 *
665 	 * The other side of the story is the pointer chasing in the page
666 	 * table walking code (when walking the page table without locking;
667 	 * ie. most of the time). Fortunately, these data accesses consist
668 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
669 	 * being the notable exception) will already guarantee loads are
670 	 * seen in-order. See the alpha page table accessors for the
671 	 * smp_read_barrier_depends() barriers in page table walking code.
672 	 */
673 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
674 
675 	ptl = pmd_lock(mm, pmd);
676 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
677 		atomic_long_inc(&mm->nr_ptes);
678 		pmd_populate(mm, pmd, new);
679 		new = NULL;
680 	}
681 	spin_unlock(ptl);
682 	if (new)
683 		pte_free(mm, new);
684 	return 0;
685 }
686 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)687 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
688 {
689 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
690 	if (!new)
691 		return -ENOMEM;
692 
693 	smp_wmb(); /* See comment in __pte_alloc */
694 
695 	spin_lock(&init_mm.page_table_lock);
696 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
697 		pmd_populate_kernel(&init_mm, pmd, new);
698 		new = NULL;
699 	}
700 	spin_unlock(&init_mm.page_table_lock);
701 	if (new)
702 		pte_free_kernel(&init_mm, new);
703 	return 0;
704 }
705 
init_rss_vec(int * rss)706 static inline void init_rss_vec(int *rss)
707 {
708 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
709 }
710 
add_mm_rss_vec(struct mm_struct * mm,int * rss)711 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
712 {
713 	int i;
714 
715 	if (current->mm == mm)
716 		sync_mm_rss(mm);
717 	for (i = 0; i < NR_MM_COUNTERS; i++)
718 		if (rss[i])
719 			add_mm_counter(mm, i, rss[i]);
720 }
721 
722 /*
723  * This function is called to print an error when a bad pte
724  * is found. For example, we might have a PFN-mapped pte in
725  * a region that doesn't allow it.
726  *
727  * The calling function must still handle the error.
728  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)729 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
730 			  pte_t pte, struct page *page)
731 {
732 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
733 	p4d_t *p4d = p4d_offset(pgd, addr);
734 	pud_t *pud = pud_offset(p4d, addr);
735 	pmd_t *pmd = pmd_offset(pud, addr);
736 	struct address_space *mapping;
737 	pgoff_t index;
738 	static unsigned long resume;
739 	static unsigned long nr_shown;
740 	static unsigned long nr_unshown;
741 
742 	/*
743 	 * Allow a burst of 60 reports, then keep quiet for that minute;
744 	 * or allow a steady drip of one report per second.
745 	 */
746 	if (nr_shown == 60) {
747 		if (time_before(jiffies, resume)) {
748 			nr_unshown++;
749 			return;
750 		}
751 		if (nr_unshown) {
752 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
753 				 nr_unshown);
754 			nr_unshown = 0;
755 		}
756 		nr_shown = 0;
757 	}
758 	if (nr_shown++ == 0)
759 		resume = jiffies + 60 * HZ;
760 
761 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
762 	index = linear_page_index(vma, addr);
763 
764 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
765 		 current->comm,
766 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
767 	if (page)
768 		dump_page(page, "bad pte");
769 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
770 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
771 	/*
772 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
773 	 */
774 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
775 		 vma->vm_file,
776 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
777 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
778 		 mapping ? mapping->a_ops->readpage : NULL);
779 	dump_stack();
780 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
781 }
782 
783 /*
784  * vm_normal_page -- This function gets the "struct page" associated with a pte.
785  *
786  * "Special" mappings do not wish to be associated with a "struct page" (either
787  * it doesn't exist, or it exists but they don't want to touch it). In this
788  * case, NULL is returned here. "Normal" mappings do have a struct page.
789  *
790  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
791  * pte bit, in which case this function is trivial. Secondly, an architecture
792  * may not have a spare pte bit, which requires a more complicated scheme,
793  * described below.
794  *
795  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
796  * special mapping (even if there are underlying and valid "struct pages").
797  * COWed pages of a VM_PFNMAP are always normal.
798  *
799  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
800  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
801  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
802  * mapping will always honor the rule
803  *
804  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
805  *
806  * And for normal mappings this is false.
807  *
808  * This restricts such mappings to be a linear translation from virtual address
809  * to pfn. To get around this restriction, we allow arbitrary mappings so long
810  * as the vma is not a COW mapping; in that case, we know that all ptes are
811  * special (because none can have been COWed).
812  *
813  *
814  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
815  *
816  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
817  * page" backing, however the difference is that _all_ pages with a struct
818  * page (that is, those where pfn_valid is true) are refcounted and considered
819  * normal pages by the VM. The disadvantage is that pages are refcounted
820  * (which can be slower and simply not an option for some PFNMAP users). The
821  * advantage is that we don't have to follow the strict linearity rule of
822  * PFNMAP mappings in order to support COWable mappings.
823  *
824  */
825 #ifdef __HAVE_ARCH_PTE_SPECIAL
826 # define HAVE_PTE_SPECIAL 1
827 #else
828 # define HAVE_PTE_SPECIAL 0
829 #endif
_vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte,bool with_public_device)830 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
831 			     pte_t pte, bool with_public_device)
832 {
833 	unsigned long pfn = pte_pfn(pte);
834 
835 	if (HAVE_PTE_SPECIAL) {
836 		if (likely(!pte_special(pte)))
837 			goto check_pfn;
838 		if (vma->vm_ops && vma->vm_ops->find_special_page)
839 			return vma->vm_ops->find_special_page(vma, addr);
840 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
841 			return NULL;
842 		if (is_zero_pfn(pfn))
843 			return NULL;
844 
845 		/*
846 		 * Device public pages are special pages (they are ZONE_DEVICE
847 		 * pages but different from persistent memory). They behave
848 		 * allmost like normal pages. The difference is that they are
849 		 * not on the lru and thus should never be involve with any-
850 		 * thing that involve lru manipulation (mlock, numa balancing,
851 		 * ...).
852 		 *
853 		 * This is why we still want to return NULL for such page from
854 		 * vm_normal_page() so that we do not have to special case all
855 		 * call site of vm_normal_page().
856 		 */
857 		if (likely(pfn <= highest_memmap_pfn)) {
858 			struct page *page = pfn_to_page(pfn);
859 
860 			if (is_device_public_page(page)) {
861 				if (with_public_device)
862 					return page;
863 				return NULL;
864 			}
865 		}
866 		print_bad_pte(vma, addr, pte, NULL);
867 		return NULL;
868 	}
869 
870 	/* !HAVE_PTE_SPECIAL case follows: */
871 
872 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 		if (vma->vm_flags & VM_MIXEDMAP) {
874 			if (!pfn_valid(pfn))
875 				return NULL;
876 			goto out;
877 		} else {
878 			unsigned long off;
879 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 			if (pfn == vma->vm_pgoff + off)
881 				return NULL;
882 			if (!is_cow_mapping(vma->vm_flags))
883 				return NULL;
884 		}
885 	}
886 
887 	if (is_zero_pfn(pfn))
888 		return NULL;
889 check_pfn:
890 	if (unlikely(pfn > highest_memmap_pfn)) {
891 		print_bad_pte(vma, addr, pte, NULL);
892 		return NULL;
893 	}
894 
895 	/*
896 	 * NOTE! We still have PageReserved() pages in the page tables.
897 	 * eg. VDSO mappings can cause them to exist.
898 	 */
899 out:
900 	return pfn_to_page(pfn);
901 }
902 
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)904 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
905 				pmd_t pmd)
906 {
907 	unsigned long pfn = pmd_pfn(pmd);
908 
909 	/*
910 	 * There is no pmd_special() but there may be special pmds, e.g.
911 	 * in a direct-access (dax) mapping, so let's just replicate the
912 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
913 	 */
914 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
915 		if (vma->vm_flags & VM_MIXEDMAP) {
916 			if (!pfn_valid(pfn))
917 				return NULL;
918 			goto out;
919 		} else {
920 			unsigned long off;
921 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
922 			if (pfn == vma->vm_pgoff + off)
923 				return NULL;
924 			if (!is_cow_mapping(vma->vm_flags))
925 				return NULL;
926 		}
927 	}
928 
929 	if (is_zero_pfn(pfn))
930 		return NULL;
931 	if (unlikely(pfn > highest_memmap_pfn))
932 		return NULL;
933 
934 	/*
935 	 * NOTE! We still have PageReserved() pages in the page tables.
936 	 * eg. VDSO mappings can cause them to exist.
937 	 */
938 out:
939 	return pfn_to_page(pfn);
940 }
941 #endif
942 
943 /*
944  * copy one vm_area from one task to the other. Assumes the page tables
945  * already present in the new task to be cleared in the whole range
946  * covered by this vma.
947  */
948 
949 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)950 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
952 		unsigned long addr, int *rss)
953 {
954 	unsigned long vm_flags = vma->vm_flags;
955 	pte_t pte = *src_pte;
956 	struct page *page;
957 
958 	/* pte contains position in swap or file, so copy. */
959 	if (unlikely(!pte_present(pte))) {
960 		swp_entry_t entry = pte_to_swp_entry(pte);
961 
962 		if (likely(!non_swap_entry(entry))) {
963 			if (swap_duplicate(entry) < 0)
964 				return entry.val;
965 
966 			/* make sure dst_mm is on swapoff's mmlist. */
967 			if (unlikely(list_empty(&dst_mm->mmlist))) {
968 				spin_lock(&mmlist_lock);
969 				if (list_empty(&dst_mm->mmlist))
970 					list_add(&dst_mm->mmlist,
971 							&src_mm->mmlist);
972 				spin_unlock(&mmlist_lock);
973 			}
974 			rss[MM_SWAPENTS]++;
975 		} else if (is_migration_entry(entry)) {
976 			page = migration_entry_to_page(entry);
977 
978 			rss[mm_counter(page)]++;
979 
980 			if (is_write_migration_entry(entry) &&
981 					is_cow_mapping(vm_flags)) {
982 				/*
983 				 * COW mappings require pages in both
984 				 * parent and child to be set to read.
985 				 */
986 				make_migration_entry_read(&entry);
987 				pte = swp_entry_to_pte(entry);
988 				if (pte_swp_soft_dirty(*src_pte))
989 					pte = pte_swp_mksoft_dirty(pte);
990 				set_pte_at(src_mm, addr, src_pte, pte);
991 			}
992 		} else if (is_device_private_entry(entry)) {
993 			page = device_private_entry_to_page(entry);
994 
995 			/*
996 			 * Update rss count even for unaddressable pages, as
997 			 * they should treated just like normal pages in this
998 			 * respect.
999 			 *
1000 			 * We will likely want to have some new rss counters
1001 			 * for unaddressable pages, at some point. But for now
1002 			 * keep things as they are.
1003 			 */
1004 			get_page(page);
1005 			rss[mm_counter(page)]++;
1006 			page_dup_rmap(page, false);
1007 
1008 			/*
1009 			 * We do not preserve soft-dirty information, because so
1010 			 * far, checkpoint/restore is the only feature that
1011 			 * requires that. And checkpoint/restore does not work
1012 			 * when a device driver is involved (you cannot easily
1013 			 * save and restore device driver state).
1014 			 */
1015 			if (is_write_device_private_entry(entry) &&
1016 			    is_cow_mapping(vm_flags)) {
1017 				make_device_private_entry_read(&entry);
1018 				pte = swp_entry_to_pte(entry);
1019 				set_pte_at(src_mm, addr, src_pte, pte);
1020 			}
1021 		}
1022 		goto out_set_pte;
1023 	}
1024 
1025 	/*
1026 	 * If it's a COW mapping, write protect it both
1027 	 * in the parent and the child
1028 	 */
1029 	if (is_cow_mapping(vm_flags)) {
1030 		ptep_set_wrprotect(src_mm, addr, src_pte);
1031 		pte = pte_wrprotect(pte);
1032 	}
1033 
1034 	/*
1035 	 * If it's a shared mapping, mark it clean in
1036 	 * the child
1037 	 */
1038 	if (vm_flags & VM_SHARED)
1039 		pte = pte_mkclean(pte);
1040 	pte = pte_mkold(pte);
1041 
1042 	page = vm_normal_page(vma, addr, pte);
1043 	if (page) {
1044 		get_page(page);
1045 		page_dup_rmap(page, false);
1046 		rss[mm_counter(page)]++;
1047 	} else if (pte_devmap(pte)) {
1048 		page = pte_page(pte);
1049 
1050 		/*
1051 		 * Cache coherent device memory behave like regular page and
1052 		 * not like persistent memory page. For more informations see
1053 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1054 		 */
1055 		if (is_device_public_page(page)) {
1056 			get_page(page);
1057 			page_dup_rmap(page, false);
1058 			rss[mm_counter(page)]++;
1059 		}
1060 	}
1061 
1062 out_set_pte:
1063 	set_pte_at(dst_mm, addr, dst_pte, pte);
1064 	return 0;
1065 }
1066 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1067 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1069 		   unsigned long addr, unsigned long end)
1070 {
1071 	pte_t *orig_src_pte, *orig_dst_pte;
1072 	pte_t *src_pte, *dst_pte;
1073 	spinlock_t *src_ptl, *dst_ptl;
1074 	int progress = 0;
1075 	int rss[NR_MM_COUNTERS];
1076 	swp_entry_t entry = (swp_entry_t){0};
1077 
1078 again:
1079 	init_rss_vec(rss);
1080 
1081 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1082 	if (!dst_pte)
1083 		return -ENOMEM;
1084 	src_pte = pte_offset_map(src_pmd, addr);
1085 	src_ptl = pte_lockptr(src_mm, src_pmd);
1086 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 	orig_src_pte = src_pte;
1088 	orig_dst_pte = dst_pte;
1089 	arch_enter_lazy_mmu_mode();
1090 
1091 	do {
1092 		/*
1093 		 * We are holding two locks at this point - either of them
1094 		 * could generate latencies in another task on another CPU.
1095 		 */
1096 		if (progress >= 32) {
1097 			progress = 0;
1098 			if (need_resched() ||
1099 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1100 				break;
1101 		}
1102 		if (pte_none(*src_pte)) {
1103 			progress++;
1104 			continue;
1105 		}
1106 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1107 							vma, addr, rss);
1108 		if (entry.val)
1109 			break;
1110 		progress += 8;
1111 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1112 
1113 	arch_leave_lazy_mmu_mode();
1114 	spin_unlock(src_ptl);
1115 	pte_unmap(orig_src_pte);
1116 	add_mm_rss_vec(dst_mm, rss);
1117 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1118 	cond_resched();
1119 
1120 	if (entry.val) {
1121 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1122 			return -ENOMEM;
1123 		progress = 0;
1124 	}
1125 	if (addr != end)
1126 		goto again;
1127 	return 0;
1128 }
1129 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1130 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1131 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1132 		unsigned long addr, unsigned long end)
1133 {
1134 	pmd_t *src_pmd, *dst_pmd;
1135 	unsigned long next;
1136 
1137 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 	if (!dst_pmd)
1139 		return -ENOMEM;
1140 	src_pmd = pmd_offset(src_pud, addr);
1141 	do {
1142 		next = pmd_addr_end(addr, end);
1143 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 			|| pmd_devmap(*src_pmd)) {
1145 			int err;
1146 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1147 			err = copy_huge_pmd(dst_mm, src_mm,
1148 					    dst_pmd, src_pmd, addr, vma);
1149 			if (err == -ENOMEM)
1150 				return -ENOMEM;
1151 			if (!err)
1152 				continue;
1153 			/* fall through */
1154 		}
1155 		if (pmd_none_or_clear_bad(src_pmd))
1156 			continue;
1157 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1158 						vma, addr, next))
1159 			return -ENOMEM;
1160 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 	return 0;
1162 }
1163 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1164 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1165 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1166 		unsigned long addr, unsigned long end)
1167 {
1168 	pud_t *src_pud, *dst_pud;
1169 	unsigned long next;
1170 
1171 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1172 	if (!dst_pud)
1173 		return -ENOMEM;
1174 	src_pud = pud_offset(src_p4d, addr);
1175 	do {
1176 		next = pud_addr_end(addr, end);
1177 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1178 			int err;
1179 
1180 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1181 			err = copy_huge_pud(dst_mm, src_mm,
1182 					    dst_pud, src_pud, addr, vma);
1183 			if (err == -ENOMEM)
1184 				return -ENOMEM;
1185 			if (!err)
1186 				continue;
1187 			/* fall through */
1188 		}
1189 		if (pud_none_or_clear_bad(src_pud))
1190 			continue;
1191 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1192 						vma, addr, next))
1193 			return -ENOMEM;
1194 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1195 	return 0;
1196 }
1197 
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1198 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1199 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1200 		unsigned long addr, unsigned long end)
1201 {
1202 	p4d_t *src_p4d, *dst_p4d;
1203 	unsigned long next;
1204 
1205 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1206 	if (!dst_p4d)
1207 		return -ENOMEM;
1208 	src_p4d = p4d_offset(src_pgd, addr);
1209 	do {
1210 		next = p4d_addr_end(addr, end);
1211 		if (p4d_none_or_clear_bad(src_p4d))
1212 			continue;
1213 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1214 						vma, addr, next))
1215 			return -ENOMEM;
1216 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1217 	return 0;
1218 }
1219 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1220 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1221 		struct vm_area_struct *vma)
1222 {
1223 	pgd_t *src_pgd, *dst_pgd;
1224 	unsigned long next;
1225 	unsigned long addr = vma->vm_start;
1226 	unsigned long end = vma->vm_end;
1227 	unsigned long mmun_start;	/* For mmu_notifiers */
1228 	unsigned long mmun_end;		/* For mmu_notifiers */
1229 	bool is_cow;
1230 	int ret;
1231 
1232 	/*
1233 	 * Don't copy ptes where a page fault will fill them correctly.
1234 	 * Fork becomes much lighter when there are big shared or private
1235 	 * readonly mappings. The tradeoff is that copy_page_range is more
1236 	 * efficient than faulting.
1237 	 */
1238 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1239 			!vma->anon_vma)
1240 		return 0;
1241 
1242 	if (is_vm_hugetlb_page(vma))
1243 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1244 
1245 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1246 		/*
1247 		 * We do not free on error cases below as remove_vma
1248 		 * gets called on error from higher level routine
1249 		 */
1250 		ret = track_pfn_copy(vma);
1251 		if (ret)
1252 			return ret;
1253 	}
1254 
1255 	/*
1256 	 * We need to invalidate the secondary MMU mappings only when
1257 	 * there could be a permission downgrade on the ptes of the
1258 	 * parent mm. And a permission downgrade will only happen if
1259 	 * is_cow_mapping() returns true.
1260 	 */
1261 	is_cow = is_cow_mapping(vma->vm_flags);
1262 	mmun_start = addr;
1263 	mmun_end   = end;
1264 	if (is_cow)
1265 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1266 						    mmun_end);
1267 
1268 	ret = 0;
1269 	dst_pgd = pgd_offset(dst_mm, addr);
1270 	src_pgd = pgd_offset(src_mm, addr);
1271 	do {
1272 		next = pgd_addr_end(addr, end);
1273 		if (pgd_none_or_clear_bad(src_pgd))
1274 			continue;
1275 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1276 					    vma, addr, next))) {
1277 			ret = -ENOMEM;
1278 			break;
1279 		}
1280 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1281 
1282 	if (is_cow)
1283 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1284 	return ret;
1285 }
1286 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1287 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1288 				struct vm_area_struct *vma, pmd_t *pmd,
1289 				unsigned long addr, unsigned long end,
1290 				struct zap_details *details)
1291 {
1292 	struct mm_struct *mm = tlb->mm;
1293 	int force_flush = 0;
1294 	int rss[NR_MM_COUNTERS];
1295 	spinlock_t *ptl;
1296 	pte_t *start_pte;
1297 	pte_t *pte;
1298 	swp_entry_t entry;
1299 
1300 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1301 again:
1302 	init_rss_vec(rss);
1303 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1304 	pte = start_pte;
1305 	flush_tlb_batched_pending(mm);
1306 	arch_enter_lazy_mmu_mode();
1307 	do {
1308 		pte_t ptent = *pte;
1309 		if (pte_none(ptent))
1310 			continue;
1311 
1312 		if (pte_present(ptent)) {
1313 			struct page *page;
1314 
1315 			page = _vm_normal_page(vma, addr, ptent, true);
1316 			if (unlikely(details) && page) {
1317 				/*
1318 				 * unmap_shared_mapping_pages() wants to
1319 				 * invalidate cache without truncating:
1320 				 * unmap shared but keep private pages.
1321 				 */
1322 				if (details->check_mapping &&
1323 				    details->check_mapping != page_rmapping(page))
1324 					continue;
1325 			}
1326 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1327 							tlb->fullmm);
1328 			tlb_remove_tlb_entry(tlb, pte, addr);
1329 			if (unlikely(!page))
1330 				continue;
1331 
1332 			if (!PageAnon(page)) {
1333 				if (pte_dirty(ptent)) {
1334 					force_flush = 1;
1335 					set_page_dirty(page);
1336 				}
1337 				if (pte_young(ptent) &&
1338 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1339 					mark_page_accessed(page);
1340 			}
1341 			rss[mm_counter(page)]--;
1342 			page_remove_rmap(page, false);
1343 			if (unlikely(page_mapcount(page) < 0))
1344 				print_bad_pte(vma, addr, ptent, page);
1345 			if (unlikely(__tlb_remove_page(tlb, page))) {
1346 				force_flush = 1;
1347 				addr += PAGE_SIZE;
1348 				break;
1349 			}
1350 			continue;
1351 		}
1352 
1353 		entry = pte_to_swp_entry(ptent);
1354 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1355 			struct page *page = device_private_entry_to_page(entry);
1356 
1357 			if (unlikely(details && details->check_mapping)) {
1358 				/*
1359 				 * unmap_shared_mapping_pages() wants to
1360 				 * invalidate cache without truncating:
1361 				 * unmap shared but keep private pages.
1362 				 */
1363 				if (details->check_mapping !=
1364 				    page_rmapping(page))
1365 					continue;
1366 			}
1367 
1368 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1369 			rss[mm_counter(page)]--;
1370 			page_remove_rmap(page, false);
1371 			put_page(page);
1372 			continue;
1373 		}
1374 
1375 		/* If details->check_mapping, we leave swap entries. */
1376 		if (unlikely(details))
1377 			continue;
1378 
1379 		entry = pte_to_swp_entry(ptent);
1380 		if (!non_swap_entry(entry))
1381 			rss[MM_SWAPENTS]--;
1382 		else if (is_migration_entry(entry)) {
1383 			struct page *page;
1384 
1385 			page = migration_entry_to_page(entry);
1386 			rss[mm_counter(page)]--;
1387 		}
1388 		if (unlikely(!free_swap_and_cache(entry)))
1389 			print_bad_pte(vma, addr, ptent, NULL);
1390 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1391 	} while (pte++, addr += PAGE_SIZE, addr != end);
1392 
1393 	add_mm_rss_vec(mm, rss);
1394 	arch_leave_lazy_mmu_mode();
1395 
1396 	/* Do the actual TLB flush before dropping ptl */
1397 	if (force_flush)
1398 		tlb_flush_mmu_tlbonly(tlb);
1399 	pte_unmap_unlock(start_pte, ptl);
1400 
1401 	/*
1402 	 * If we forced a TLB flush (either due to running out of
1403 	 * batch buffers or because we needed to flush dirty TLB
1404 	 * entries before releasing the ptl), free the batched
1405 	 * memory too. Restart if we didn't do everything.
1406 	 */
1407 	if (force_flush) {
1408 		force_flush = 0;
1409 		tlb_flush_mmu_free(tlb);
1410 		if (addr != end)
1411 			goto again;
1412 	}
1413 
1414 	return addr;
1415 }
1416 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1417 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1418 				struct vm_area_struct *vma, pud_t *pud,
1419 				unsigned long addr, unsigned long end,
1420 				struct zap_details *details)
1421 {
1422 	pmd_t *pmd;
1423 	unsigned long next;
1424 
1425 	pmd = pmd_offset(pud, addr);
1426 	do {
1427 		next = pmd_addr_end(addr, end);
1428 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1429 			if (next - addr != HPAGE_PMD_SIZE)
1430 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1431 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1432 				goto next;
1433 			/* fall through */
1434 		}
1435 		/*
1436 		 * Here there can be other concurrent MADV_DONTNEED or
1437 		 * trans huge page faults running, and if the pmd is
1438 		 * none or trans huge it can change under us. This is
1439 		 * because MADV_DONTNEED holds the mmap_sem in read
1440 		 * mode.
1441 		 */
1442 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1443 			goto next;
1444 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1445 next:
1446 		cond_resched();
1447 	} while (pmd++, addr = next, addr != end);
1448 
1449 	return addr;
1450 }
1451 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1452 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1453 				struct vm_area_struct *vma, p4d_t *p4d,
1454 				unsigned long addr, unsigned long end,
1455 				struct zap_details *details)
1456 {
1457 	pud_t *pud;
1458 	unsigned long next;
1459 
1460 	pud = pud_offset(p4d, addr);
1461 	do {
1462 		next = pud_addr_end(addr, end);
1463 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1464 			if (next - addr != HPAGE_PUD_SIZE) {
1465 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1466 				split_huge_pud(vma, pud, addr);
1467 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1468 				goto next;
1469 			/* fall through */
1470 		}
1471 		if (pud_none_or_clear_bad(pud))
1472 			continue;
1473 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1474 next:
1475 		cond_resched();
1476 	} while (pud++, addr = next, addr != end);
1477 
1478 	return addr;
1479 }
1480 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1481 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1482 				struct vm_area_struct *vma, pgd_t *pgd,
1483 				unsigned long addr, unsigned long end,
1484 				struct zap_details *details)
1485 {
1486 	p4d_t *p4d;
1487 	unsigned long next;
1488 
1489 	p4d = p4d_offset(pgd, addr);
1490 	do {
1491 		next = p4d_addr_end(addr, end);
1492 		if (p4d_none_or_clear_bad(p4d))
1493 			continue;
1494 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1495 	} while (p4d++, addr = next, addr != end);
1496 
1497 	return addr;
1498 }
1499 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1500 void unmap_page_range(struct mmu_gather *tlb,
1501 			     struct vm_area_struct *vma,
1502 			     unsigned long addr, unsigned long end,
1503 			     struct zap_details *details)
1504 {
1505 	pgd_t *pgd;
1506 	unsigned long next;
1507 
1508 	BUG_ON(addr >= end);
1509 	tlb_start_vma(tlb, vma);
1510 	pgd = pgd_offset(vma->vm_mm, addr);
1511 	do {
1512 		next = pgd_addr_end(addr, end);
1513 		if (pgd_none_or_clear_bad(pgd))
1514 			continue;
1515 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1516 	} while (pgd++, addr = next, addr != end);
1517 	tlb_end_vma(tlb, vma);
1518 }
1519 
1520 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1521 static void unmap_single_vma(struct mmu_gather *tlb,
1522 		struct vm_area_struct *vma, unsigned long start_addr,
1523 		unsigned long end_addr,
1524 		struct zap_details *details)
1525 {
1526 	unsigned long start = max(vma->vm_start, start_addr);
1527 	unsigned long end;
1528 
1529 	if (start >= vma->vm_end)
1530 		return;
1531 	end = min(vma->vm_end, end_addr);
1532 	if (end <= vma->vm_start)
1533 		return;
1534 
1535 	if (vma->vm_file)
1536 		uprobe_munmap(vma, start, end);
1537 
1538 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1539 		untrack_pfn(vma, 0, 0);
1540 
1541 	if (start != end) {
1542 		if (unlikely(is_vm_hugetlb_page(vma))) {
1543 			/*
1544 			 * It is undesirable to test vma->vm_file as it
1545 			 * should be non-null for valid hugetlb area.
1546 			 * However, vm_file will be NULL in the error
1547 			 * cleanup path of mmap_region. When
1548 			 * hugetlbfs ->mmap method fails,
1549 			 * mmap_region() nullifies vma->vm_file
1550 			 * before calling this function to clean up.
1551 			 * Since no pte has actually been setup, it is
1552 			 * safe to do nothing in this case.
1553 			 */
1554 			if (vma->vm_file) {
1555 				i_mmap_lock_write(vma->vm_file->f_mapping);
1556 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1557 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1558 			}
1559 		} else
1560 			unmap_page_range(tlb, vma, start, end, details);
1561 	}
1562 }
1563 
1564 /**
1565  * unmap_vmas - unmap a range of memory covered by a list of vma's
1566  * @tlb: address of the caller's struct mmu_gather
1567  * @vma: the starting vma
1568  * @start_addr: virtual address at which to start unmapping
1569  * @end_addr: virtual address at which to end unmapping
1570  *
1571  * Unmap all pages in the vma list.
1572  *
1573  * Only addresses between `start' and `end' will be unmapped.
1574  *
1575  * The VMA list must be sorted in ascending virtual address order.
1576  *
1577  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1578  * range after unmap_vmas() returns.  So the only responsibility here is to
1579  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1580  * drops the lock and schedules.
1581  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1582 void unmap_vmas(struct mmu_gather *tlb,
1583 		struct vm_area_struct *vma, unsigned long start_addr,
1584 		unsigned long end_addr)
1585 {
1586 	struct mm_struct *mm = vma->vm_mm;
1587 
1588 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1589 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1590 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1591 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1592 }
1593 
1594 /**
1595  * zap_page_range - remove user pages in a given range
1596  * @vma: vm_area_struct holding the applicable pages
1597  * @start: starting address of pages to zap
1598  * @size: number of bytes to zap
1599  *
1600  * Caller must protect the VMA list
1601  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1602 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1603 		unsigned long size)
1604 {
1605 	struct mm_struct *mm = vma->vm_mm;
1606 	struct mmu_gather tlb;
1607 	unsigned long end = start + size;
1608 
1609 	lru_add_drain();
1610 	tlb_gather_mmu(&tlb, mm, start, end);
1611 	update_hiwater_rss(mm);
1612 	mmu_notifier_invalidate_range_start(mm, start, end);
1613 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1614 		unmap_single_vma(&tlb, vma, start, end, NULL);
1615 
1616 		/*
1617 		 * zap_page_range does not specify whether mmap_sem should be
1618 		 * held for read or write. That allows parallel zap_page_range
1619 		 * operations to unmap a PTE and defer a flush meaning that
1620 		 * this call observes pte_none and fails to flush the TLB.
1621 		 * Rather than adding a complex API, ensure that no stale
1622 		 * TLB entries exist when this call returns.
1623 		 */
1624 		flush_tlb_range(vma, start, end);
1625 	}
1626 
1627 	mmu_notifier_invalidate_range_end(mm, start, end);
1628 	tlb_finish_mmu(&tlb, start, end);
1629 }
1630 
1631 /**
1632  * zap_page_range_single - remove user pages in a given range
1633  * @vma: vm_area_struct holding the applicable pages
1634  * @address: starting address of pages to zap
1635  * @size: number of bytes to zap
1636  * @details: details of shared cache invalidation
1637  *
1638  * The range must fit into one VMA.
1639  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1640 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1641 		unsigned long size, struct zap_details *details)
1642 {
1643 	struct mm_struct *mm = vma->vm_mm;
1644 	struct mmu_gather tlb;
1645 	unsigned long end = address + size;
1646 
1647 	lru_add_drain();
1648 	tlb_gather_mmu(&tlb, mm, address, end);
1649 	update_hiwater_rss(mm);
1650 	mmu_notifier_invalidate_range_start(mm, address, end);
1651 	unmap_single_vma(&tlb, vma, address, end, details);
1652 	mmu_notifier_invalidate_range_end(mm, address, end);
1653 	tlb_finish_mmu(&tlb, address, end);
1654 }
1655 
1656 /**
1657  * zap_vma_ptes - remove ptes mapping the vma
1658  * @vma: vm_area_struct holding ptes to be zapped
1659  * @address: starting address of pages to zap
1660  * @size: number of bytes to zap
1661  *
1662  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1663  *
1664  * The entire address range must be fully contained within the vma.
1665  *
1666  * Returns 0 if successful.
1667  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1668 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1669 		unsigned long size)
1670 {
1671 	if (address < vma->vm_start || address + size > vma->vm_end ||
1672 	    		!(vma->vm_flags & VM_PFNMAP))
1673 		return -1;
1674 	zap_page_range_single(vma, address, size, NULL);
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1678 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1679 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1680 			spinlock_t **ptl)
1681 {
1682 	pgd_t *pgd;
1683 	p4d_t *p4d;
1684 	pud_t *pud;
1685 	pmd_t *pmd;
1686 
1687 	pgd = pgd_offset(mm, addr);
1688 	p4d = p4d_alloc(mm, pgd, addr);
1689 	if (!p4d)
1690 		return NULL;
1691 	pud = pud_alloc(mm, p4d, addr);
1692 	if (!pud)
1693 		return NULL;
1694 	pmd = pmd_alloc(mm, pud, addr);
1695 	if (!pmd)
1696 		return NULL;
1697 
1698 	VM_BUG_ON(pmd_trans_huge(*pmd));
1699 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1700 }
1701 
1702 /*
1703  * This is the old fallback for page remapping.
1704  *
1705  * For historical reasons, it only allows reserved pages. Only
1706  * old drivers should use this, and they needed to mark their
1707  * pages reserved for the old functions anyway.
1708  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1709 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1710 			struct page *page, pgprot_t prot)
1711 {
1712 	struct mm_struct *mm = vma->vm_mm;
1713 	int retval;
1714 	pte_t *pte;
1715 	spinlock_t *ptl;
1716 
1717 	retval = -EINVAL;
1718 	if (PageAnon(page))
1719 		goto out;
1720 	retval = -ENOMEM;
1721 	flush_dcache_page(page);
1722 	pte = get_locked_pte(mm, addr, &ptl);
1723 	if (!pte)
1724 		goto out;
1725 	retval = -EBUSY;
1726 	if (!pte_none(*pte))
1727 		goto out_unlock;
1728 
1729 	/* Ok, finally just insert the thing.. */
1730 	get_page(page);
1731 	inc_mm_counter_fast(mm, mm_counter_file(page));
1732 	page_add_file_rmap(page, false);
1733 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1734 
1735 	retval = 0;
1736 	pte_unmap_unlock(pte, ptl);
1737 	return retval;
1738 out_unlock:
1739 	pte_unmap_unlock(pte, ptl);
1740 out:
1741 	return retval;
1742 }
1743 
1744 /**
1745  * vm_insert_page - insert single page into user vma
1746  * @vma: user vma to map to
1747  * @addr: target user address of this page
1748  * @page: source kernel page
1749  *
1750  * This allows drivers to insert individual pages they've allocated
1751  * into a user vma.
1752  *
1753  * The page has to be a nice clean _individual_ kernel allocation.
1754  * If you allocate a compound page, you need to have marked it as
1755  * such (__GFP_COMP), or manually just split the page up yourself
1756  * (see split_page()).
1757  *
1758  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1759  * took an arbitrary page protection parameter. This doesn't allow
1760  * that. Your vma protection will have to be set up correctly, which
1761  * means that if you want a shared writable mapping, you'd better
1762  * ask for a shared writable mapping!
1763  *
1764  * The page does not need to be reserved.
1765  *
1766  * Usually this function is called from f_op->mmap() handler
1767  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1768  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1769  * function from other places, for example from page-fault handler.
1770  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1771 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1772 			struct page *page)
1773 {
1774 	if (addr < vma->vm_start || addr >= vma->vm_end)
1775 		return -EFAULT;
1776 	if (!page_count(page))
1777 		return -EINVAL;
1778 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1779 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1780 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1781 		vma->vm_flags |= VM_MIXEDMAP;
1782 	}
1783 	return insert_page(vma, addr, page, vma->vm_page_prot);
1784 }
1785 EXPORT_SYMBOL(vm_insert_page);
1786 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1787 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1788 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1789 {
1790 	struct mm_struct *mm = vma->vm_mm;
1791 	int retval;
1792 	pte_t *pte, entry;
1793 	spinlock_t *ptl;
1794 
1795 	retval = -ENOMEM;
1796 	pte = get_locked_pte(mm, addr, &ptl);
1797 	if (!pte)
1798 		goto out;
1799 	retval = -EBUSY;
1800 	if (!pte_none(*pte)) {
1801 		if (mkwrite) {
1802 			/*
1803 			 * For read faults on private mappings the PFN passed
1804 			 * in may not match the PFN we have mapped if the
1805 			 * mapped PFN is a writeable COW page.  In the mkwrite
1806 			 * case we are creating a writable PTE for a shared
1807 			 * mapping and we expect the PFNs to match. If they
1808 			 * don't match, we are likely racing with block
1809 			 * allocation and mapping invalidation so just skip the
1810 			 * update.
1811 			 */
1812 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1813 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1814 				goto out_unlock;
1815 			}
1816 			entry = pte_mkyoung(*pte);
1817 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1818 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1819 				update_mmu_cache(vma, addr, pte);
1820 		}
1821 		goto out_unlock;
1822 	}
1823 
1824 	/* Ok, finally just insert the thing.. */
1825 	if (pfn_t_devmap(pfn))
1826 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1827 	else
1828 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1829 
1830 	if (mkwrite) {
1831 		entry = pte_mkyoung(entry);
1832 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1833 	}
1834 
1835 	set_pte_at(mm, addr, pte, entry);
1836 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1837 
1838 	retval = 0;
1839 out_unlock:
1840 	pte_unmap_unlock(pte, ptl);
1841 out:
1842 	return retval;
1843 }
1844 
1845 /**
1846  * vm_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return NULL.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1862 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1863 			unsigned long pfn)
1864 {
1865 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1866 }
1867 EXPORT_SYMBOL(vm_insert_pfn);
1868 
1869 /**
1870  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1871  * @vma: user vma to map to
1872  * @addr: target user address of this page
1873  * @pfn: source kernel pfn
1874  * @pgprot: pgprot flags for the inserted page
1875  *
1876  * This is exactly like vm_insert_pfn, except that it allows drivers to
1877  * to override pgprot on a per-page basis.
1878  *
1879  * This only makes sense for IO mappings, and it makes no sense for
1880  * cow mappings.  In general, using multiple vmas is preferable;
1881  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1882  * impractical.
1883  */
vm_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1884 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1885 			unsigned long pfn, pgprot_t pgprot)
1886 {
1887 	int ret;
1888 	/*
1889 	 * Technically, architectures with pte_special can avoid all these
1890 	 * restrictions (same for remap_pfn_range).  However we would like
1891 	 * consistency in testing and feature parity among all, so we should
1892 	 * try to keep these invariants in place for everybody.
1893 	 */
1894 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1895 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1896 						(VM_PFNMAP|VM_MIXEDMAP));
1897 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1898 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1899 
1900 	if (addr < vma->vm_start || addr >= vma->vm_end)
1901 		return -EFAULT;
1902 
1903 	if (!pfn_modify_allowed(pfn, pgprot))
1904 		return -EACCES;
1905 
1906 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1907 
1908 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1909 			false);
1910 
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL(vm_insert_pfn_prot);
1914 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1915 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1916 			pfn_t pfn, bool mkwrite)
1917 {
1918 	pgprot_t pgprot = vma->vm_page_prot;
1919 
1920 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1921 
1922 	if (addr < vma->vm_start || addr >= vma->vm_end)
1923 		return -EFAULT;
1924 
1925 	track_pfn_insert(vma, &pgprot, pfn);
1926 
1927 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1928 		return -EACCES;
1929 
1930 	/*
1931 	 * If we don't have pte special, then we have to use the pfn_valid()
1932 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1933 	 * refcount the page if pfn_valid is true (hence insert_page rather
1934 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1935 	 * without pte special, it would there be refcounted as a normal page.
1936 	 */
1937 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1938 		struct page *page;
1939 
1940 		/*
1941 		 * At this point we are committed to insert_page()
1942 		 * regardless of whether the caller specified flags that
1943 		 * result in pfn_t_has_page() == false.
1944 		 */
1945 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1946 		return insert_page(vma, addr, page, pgprot);
1947 	}
1948 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1949 }
1950 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1951 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1952 			pfn_t pfn)
1953 {
1954 	return __vm_insert_mixed(vma, addr, pfn, false);
1955 
1956 }
1957 EXPORT_SYMBOL(vm_insert_mixed);
1958 
vm_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1959 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1960 			pfn_t pfn)
1961 {
1962 	return __vm_insert_mixed(vma, addr, pfn, true);
1963 }
1964 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1965 
1966 /*
1967  * maps a range of physical memory into the requested pages. the old
1968  * mappings are removed. any references to nonexistent pages results
1969  * in null mappings (currently treated as "copy-on-access")
1970  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1971 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1972 			unsigned long addr, unsigned long end,
1973 			unsigned long pfn, pgprot_t prot)
1974 {
1975 	pte_t *pte;
1976 	spinlock_t *ptl;
1977 	int err = 0;
1978 
1979 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1980 	if (!pte)
1981 		return -ENOMEM;
1982 	arch_enter_lazy_mmu_mode();
1983 	do {
1984 		BUG_ON(!pte_none(*pte));
1985 		if (!pfn_modify_allowed(pfn, prot)) {
1986 			err = -EACCES;
1987 			break;
1988 		}
1989 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1990 		pfn++;
1991 	} while (pte++, addr += PAGE_SIZE, addr != end);
1992 	arch_leave_lazy_mmu_mode();
1993 	pte_unmap_unlock(pte - 1, ptl);
1994 	return err;
1995 }
1996 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1997 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1998 			unsigned long addr, unsigned long end,
1999 			unsigned long pfn, pgprot_t prot)
2000 {
2001 	pmd_t *pmd;
2002 	unsigned long next;
2003 	int err;
2004 
2005 	pfn -= addr >> PAGE_SHIFT;
2006 	pmd = pmd_alloc(mm, pud, addr);
2007 	if (!pmd)
2008 		return -ENOMEM;
2009 	VM_BUG_ON(pmd_trans_huge(*pmd));
2010 	do {
2011 		next = pmd_addr_end(addr, end);
2012 		err = remap_pte_range(mm, pmd, addr, next,
2013 				pfn + (addr >> PAGE_SHIFT), prot);
2014 		if (err)
2015 			return err;
2016 	} while (pmd++, addr = next, addr != end);
2017 	return 0;
2018 }
2019 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2020 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2021 			unsigned long addr, unsigned long end,
2022 			unsigned long pfn, pgprot_t prot)
2023 {
2024 	pud_t *pud;
2025 	unsigned long next;
2026 	int err;
2027 
2028 	pfn -= addr >> PAGE_SHIFT;
2029 	pud = pud_alloc(mm, p4d, addr);
2030 	if (!pud)
2031 		return -ENOMEM;
2032 	do {
2033 		next = pud_addr_end(addr, end);
2034 		err = remap_pmd_range(mm, pud, addr, next,
2035 				pfn + (addr >> PAGE_SHIFT), prot);
2036 		if (err)
2037 			return err;
2038 	} while (pud++, addr = next, addr != end);
2039 	return 0;
2040 }
2041 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2042 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2043 			unsigned long addr, unsigned long end,
2044 			unsigned long pfn, pgprot_t prot)
2045 {
2046 	p4d_t *p4d;
2047 	unsigned long next;
2048 	int err;
2049 
2050 	pfn -= addr >> PAGE_SHIFT;
2051 	p4d = p4d_alloc(mm, pgd, addr);
2052 	if (!p4d)
2053 		return -ENOMEM;
2054 	do {
2055 		next = p4d_addr_end(addr, end);
2056 		err = remap_pud_range(mm, p4d, addr, next,
2057 				pfn + (addr >> PAGE_SHIFT), prot);
2058 		if (err)
2059 			return err;
2060 	} while (p4d++, addr = next, addr != end);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * remap_pfn_range - remap kernel memory to userspace
2066  * @vma: user vma to map to
2067  * @addr: target user address to start at
2068  * @pfn: physical address of kernel memory
2069  * @size: size of map area
2070  * @prot: page protection flags for this mapping
2071  *
2072  *  Note: this is only safe if the mm semaphore is held when called.
2073  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2074 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2075 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2076 {
2077 	pgd_t *pgd;
2078 	unsigned long next;
2079 	unsigned long end = addr + PAGE_ALIGN(size);
2080 	struct mm_struct *mm = vma->vm_mm;
2081 	unsigned long remap_pfn = pfn;
2082 	int err;
2083 
2084 	/*
2085 	 * Physically remapped pages are special. Tell the
2086 	 * rest of the world about it:
2087 	 *   VM_IO tells people not to look at these pages
2088 	 *	(accesses can have side effects).
2089 	 *   VM_PFNMAP tells the core MM that the base pages are just
2090 	 *	raw PFN mappings, and do not have a "struct page" associated
2091 	 *	with them.
2092 	 *   VM_DONTEXPAND
2093 	 *      Disable vma merging and expanding with mremap().
2094 	 *   VM_DONTDUMP
2095 	 *      Omit vma from core dump, even when VM_IO turned off.
2096 	 *
2097 	 * There's a horrible special case to handle copy-on-write
2098 	 * behaviour that some programs depend on. We mark the "original"
2099 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2100 	 * See vm_normal_page() for details.
2101 	 */
2102 	if (is_cow_mapping(vma->vm_flags)) {
2103 		if (addr != vma->vm_start || end != vma->vm_end)
2104 			return -EINVAL;
2105 		vma->vm_pgoff = pfn;
2106 	}
2107 
2108 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2109 	if (err)
2110 		return -EINVAL;
2111 
2112 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2113 
2114 	BUG_ON(addr >= end);
2115 	pfn -= addr >> PAGE_SHIFT;
2116 	pgd = pgd_offset(mm, addr);
2117 	flush_cache_range(vma, addr, end);
2118 	do {
2119 		next = pgd_addr_end(addr, end);
2120 		err = remap_p4d_range(mm, pgd, addr, next,
2121 				pfn + (addr >> PAGE_SHIFT), prot);
2122 		if (err)
2123 			break;
2124 	} while (pgd++, addr = next, addr != end);
2125 
2126 	if (err)
2127 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2128 
2129 	return err;
2130 }
2131 EXPORT_SYMBOL(remap_pfn_range);
2132 
2133 /**
2134  * vm_iomap_memory - remap memory to userspace
2135  * @vma: user vma to map to
2136  * @start: start of area
2137  * @len: size of area
2138  *
2139  * This is a simplified io_remap_pfn_range() for common driver use. The
2140  * driver just needs to give us the physical memory range to be mapped,
2141  * we'll figure out the rest from the vma information.
2142  *
2143  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2144  * whatever write-combining details or similar.
2145  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2146 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2147 {
2148 	unsigned long vm_len, pfn, pages;
2149 
2150 	/* Check that the physical memory area passed in looks valid */
2151 	if (start + len < start)
2152 		return -EINVAL;
2153 	/*
2154 	 * You *really* shouldn't map things that aren't page-aligned,
2155 	 * but we've historically allowed it because IO memory might
2156 	 * just have smaller alignment.
2157 	 */
2158 	len += start & ~PAGE_MASK;
2159 	pfn = start >> PAGE_SHIFT;
2160 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2161 	if (pfn + pages < pfn)
2162 		return -EINVAL;
2163 
2164 	/* We start the mapping 'vm_pgoff' pages into the area */
2165 	if (vma->vm_pgoff > pages)
2166 		return -EINVAL;
2167 	pfn += vma->vm_pgoff;
2168 	pages -= vma->vm_pgoff;
2169 
2170 	/* Can we fit all of the mapping? */
2171 	vm_len = vma->vm_end - vma->vm_start;
2172 	if (vm_len >> PAGE_SHIFT > pages)
2173 		return -EINVAL;
2174 
2175 	/* Ok, let it rip */
2176 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_iomap_memory);
2179 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2180 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2181 				     unsigned long addr, unsigned long end,
2182 				     pte_fn_t fn, void *data)
2183 {
2184 	pte_t *pte;
2185 	int err;
2186 	pgtable_t token;
2187 	spinlock_t *uninitialized_var(ptl);
2188 
2189 	pte = (mm == &init_mm) ?
2190 		pte_alloc_kernel(pmd, addr) :
2191 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2192 	if (!pte)
2193 		return -ENOMEM;
2194 
2195 	BUG_ON(pmd_huge(*pmd));
2196 
2197 	arch_enter_lazy_mmu_mode();
2198 
2199 	token = pmd_pgtable(*pmd);
2200 
2201 	do {
2202 		err = fn(pte++, token, addr, data);
2203 		if (err)
2204 			break;
2205 	} while (addr += PAGE_SIZE, addr != end);
2206 
2207 	arch_leave_lazy_mmu_mode();
2208 
2209 	if (mm != &init_mm)
2210 		pte_unmap_unlock(pte-1, ptl);
2211 	return err;
2212 }
2213 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2214 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2215 				     unsigned long addr, unsigned long end,
2216 				     pte_fn_t fn, void *data)
2217 {
2218 	pmd_t *pmd;
2219 	unsigned long next;
2220 	int err;
2221 
2222 	BUG_ON(pud_huge(*pud));
2223 
2224 	pmd = pmd_alloc(mm, pud, addr);
2225 	if (!pmd)
2226 		return -ENOMEM;
2227 	do {
2228 		next = pmd_addr_end(addr, end);
2229 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2230 		if (err)
2231 			break;
2232 	} while (pmd++, addr = next, addr != end);
2233 	return err;
2234 }
2235 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2236 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2237 				     unsigned long addr, unsigned long end,
2238 				     pte_fn_t fn, void *data)
2239 {
2240 	pud_t *pud;
2241 	unsigned long next;
2242 	int err;
2243 
2244 	pud = pud_alloc(mm, p4d, addr);
2245 	if (!pud)
2246 		return -ENOMEM;
2247 	do {
2248 		next = pud_addr_end(addr, end);
2249 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2250 		if (err)
2251 			break;
2252 	} while (pud++, addr = next, addr != end);
2253 	return err;
2254 }
2255 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2256 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2257 				     unsigned long addr, unsigned long end,
2258 				     pte_fn_t fn, void *data)
2259 {
2260 	p4d_t *p4d;
2261 	unsigned long next;
2262 	int err;
2263 
2264 	p4d = p4d_alloc(mm, pgd, addr);
2265 	if (!p4d)
2266 		return -ENOMEM;
2267 	do {
2268 		next = p4d_addr_end(addr, end);
2269 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2270 		if (err)
2271 			break;
2272 	} while (p4d++, addr = next, addr != end);
2273 	return err;
2274 }
2275 
2276 /*
2277  * Scan a region of virtual memory, filling in page tables as necessary
2278  * and calling a provided function on each leaf page table.
2279  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2280 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2281 			unsigned long size, pte_fn_t fn, void *data)
2282 {
2283 	pgd_t *pgd;
2284 	unsigned long next;
2285 	unsigned long end = addr + size;
2286 	int err;
2287 
2288 	if (WARN_ON(addr >= end))
2289 		return -EINVAL;
2290 
2291 	pgd = pgd_offset(mm, addr);
2292 	do {
2293 		next = pgd_addr_end(addr, end);
2294 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2295 		if (err)
2296 			break;
2297 	} while (pgd++, addr = next, addr != end);
2298 
2299 	return err;
2300 }
2301 EXPORT_SYMBOL_GPL(apply_to_page_range);
2302 
2303 /*
2304  * handle_pte_fault chooses page fault handler according to an entry which was
2305  * read non-atomically.  Before making any commitment, on those architectures
2306  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2307  * parts, do_swap_page must check under lock before unmapping the pte and
2308  * proceeding (but do_wp_page is only called after already making such a check;
2309  * and do_anonymous_page can safely check later on).
2310  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2311 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2312 				pte_t *page_table, pte_t orig_pte)
2313 {
2314 	int same = 1;
2315 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2316 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2317 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2318 		spin_lock(ptl);
2319 		same = pte_same(*page_table, orig_pte);
2320 		spin_unlock(ptl);
2321 	}
2322 #endif
2323 	pte_unmap(page_table);
2324 	return same;
2325 }
2326 
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2327 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2328 {
2329 	debug_dma_assert_idle(src);
2330 
2331 	/*
2332 	 * If the source page was a PFN mapping, we don't have
2333 	 * a "struct page" for it. We do a best-effort copy by
2334 	 * just copying from the original user address. If that
2335 	 * fails, we just zero-fill it. Live with it.
2336 	 */
2337 	if (unlikely(!src)) {
2338 		void *kaddr = kmap_atomic(dst);
2339 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2340 
2341 		/*
2342 		 * This really shouldn't fail, because the page is there
2343 		 * in the page tables. But it might just be unreadable,
2344 		 * in which case we just give up and fill the result with
2345 		 * zeroes.
2346 		 */
2347 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2348 			clear_page(kaddr);
2349 		kunmap_atomic(kaddr);
2350 		flush_dcache_page(dst);
2351 	} else
2352 		copy_user_highpage(dst, src, va, vma);
2353 }
2354 
__get_fault_gfp_mask(struct vm_area_struct * vma)2355 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2356 {
2357 	struct file *vm_file = vma->vm_file;
2358 
2359 	if (vm_file)
2360 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2361 
2362 	/*
2363 	 * Special mappings (e.g. VDSO) do not have any file so fake
2364 	 * a default GFP_KERNEL for them.
2365 	 */
2366 	return GFP_KERNEL;
2367 }
2368 
2369 /*
2370  * Notify the address space that the page is about to become writable so that
2371  * it can prohibit this or wait for the page to get into an appropriate state.
2372  *
2373  * We do this without the lock held, so that it can sleep if it needs to.
2374  */
do_page_mkwrite(struct vm_fault * vmf)2375 static int do_page_mkwrite(struct vm_fault *vmf)
2376 {
2377 	int ret;
2378 	struct page *page = vmf->page;
2379 	unsigned int old_flags = vmf->flags;
2380 
2381 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2382 
2383 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384 	/* Restore original flags so that caller is not surprised */
2385 	vmf->flags = old_flags;
2386 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2387 		return ret;
2388 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2389 		lock_page(page);
2390 		if (!page->mapping) {
2391 			unlock_page(page);
2392 			return 0; /* retry */
2393 		}
2394 		ret |= VM_FAULT_LOCKED;
2395 	} else
2396 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2397 	return ret;
2398 }
2399 
2400 /*
2401  * Handle dirtying of a page in shared file mapping on a write fault.
2402  *
2403  * The function expects the page to be locked and unlocks it.
2404  */
fault_dirty_shared_page(struct vm_area_struct * vma,struct page * page)2405 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2406 				    struct page *page)
2407 {
2408 	struct address_space *mapping;
2409 	bool dirtied;
2410 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2411 
2412 	dirtied = set_page_dirty(page);
2413 	VM_BUG_ON_PAGE(PageAnon(page), page);
2414 	/*
2415 	 * Take a local copy of the address_space - page.mapping may be zeroed
2416 	 * by truncate after unlock_page().   The address_space itself remains
2417 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2418 	 * release semantics to prevent the compiler from undoing this copying.
2419 	 */
2420 	mapping = page_rmapping(page);
2421 	unlock_page(page);
2422 
2423 	if ((dirtied || page_mkwrite) && mapping) {
2424 		/*
2425 		 * Some device drivers do not set page.mapping
2426 		 * but still dirty their pages
2427 		 */
2428 		balance_dirty_pages_ratelimited(mapping);
2429 	}
2430 
2431 	if (!page_mkwrite)
2432 		file_update_time(vma->vm_file);
2433 }
2434 
2435 /*
2436  * Handle write page faults for pages that can be reused in the current vma
2437  *
2438  * This can happen either due to the mapping being with the VM_SHARED flag,
2439  * or due to us being the last reference standing to the page. In either
2440  * case, all we need to do here is to mark the page as writable and update
2441  * any related book-keeping.
2442  */
wp_page_reuse(struct vm_fault * vmf)2443 static inline void wp_page_reuse(struct vm_fault *vmf)
2444 	__releases(vmf->ptl)
2445 {
2446 	struct vm_area_struct *vma = vmf->vma;
2447 	struct page *page = vmf->page;
2448 	pte_t entry;
2449 	/*
2450 	 * Clear the pages cpupid information as the existing
2451 	 * information potentially belongs to a now completely
2452 	 * unrelated process.
2453 	 */
2454 	if (page)
2455 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2456 
2457 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2458 	entry = pte_mkyoung(vmf->orig_pte);
2459 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2460 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2461 		update_mmu_cache(vma, vmf->address, vmf->pte);
2462 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2463 }
2464 
2465 /*
2466  * Handle the case of a page which we actually need to copy to a new page.
2467  *
2468  * Called with mmap_sem locked and the old page referenced, but
2469  * without the ptl held.
2470  *
2471  * High level logic flow:
2472  *
2473  * - Allocate a page, copy the content of the old page to the new one.
2474  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2475  * - Take the PTL. If the pte changed, bail out and release the allocated page
2476  * - If the pte is still the way we remember it, update the page table and all
2477  *   relevant references. This includes dropping the reference the page-table
2478  *   held to the old page, as well as updating the rmap.
2479  * - In any case, unlock the PTL and drop the reference we took to the old page.
2480  */
wp_page_copy(struct vm_fault * vmf)2481 static int wp_page_copy(struct vm_fault *vmf)
2482 {
2483 	struct vm_area_struct *vma = vmf->vma;
2484 	struct mm_struct *mm = vma->vm_mm;
2485 	struct page *old_page = vmf->page;
2486 	struct page *new_page = NULL;
2487 	pte_t entry;
2488 	int page_copied = 0;
2489 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2490 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2491 	struct mem_cgroup *memcg;
2492 
2493 	if (unlikely(anon_vma_prepare(vma)))
2494 		goto oom;
2495 
2496 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2497 		new_page = alloc_zeroed_user_highpage_movable(vma,
2498 							      vmf->address);
2499 		if (!new_page)
2500 			goto oom;
2501 	} else {
2502 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2503 				vmf->address);
2504 		if (!new_page)
2505 			goto oom;
2506 		cow_user_page(new_page, old_page, vmf->address, vma);
2507 	}
2508 
2509 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2510 		goto oom_free_new;
2511 
2512 	__SetPageUptodate(new_page);
2513 
2514 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2515 
2516 	/*
2517 	 * Re-check the pte - we dropped the lock
2518 	 */
2519 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2520 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2521 		if (old_page) {
2522 			if (!PageAnon(old_page)) {
2523 				dec_mm_counter_fast(mm,
2524 						mm_counter_file(old_page));
2525 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2526 			}
2527 		} else {
2528 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2529 		}
2530 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2531 		entry = mk_pte(new_page, vma->vm_page_prot);
2532 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2533 		/*
2534 		 * Clear the pte entry and flush it first, before updating the
2535 		 * pte with the new entry. This will avoid a race condition
2536 		 * seen in the presence of one thread doing SMC and another
2537 		 * thread doing COW.
2538 		 */
2539 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2540 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2541 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2542 		lru_cache_add_active_or_unevictable(new_page, vma);
2543 		/*
2544 		 * We call the notify macro here because, when using secondary
2545 		 * mmu page tables (such as kvm shadow page tables), we want the
2546 		 * new page to be mapped directly into the secondary page table.
2547 		 */
2548 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2549 		update_mmu_cache(vma, vmf->address, vmf->pte);
2550 		if (old_page) {
2551 			/*
2552 			 * Only after switching the pte to the new page may
2553 			 * we remove the mapcount here. Otherwise another
2554 			 * process may come and find the rmap count decremented
2555 			 * before the pte is switched to the new page, and
2556 			 * "reuse" the old page writing into it while our pte
2557 			 * here still points into it and can be read by other
2558 			 * threads.
2559 			 *
2560 			 * The critical issue is to order this
2561 			 * page_remove_rmap with the ptp_clear_flush above.
2562 			 * Those stores are ordered by (if nothing else,)
2563 			 * the barrier present in the atomic_add_negative
2564 			 * in page_remove_rmap.
2565 			 *
2566 			 * Then the TLB flush in ptep_clear_flush ensures that
2567 			 * no process can access the old page before the
2568 			 * decremented mapcount is visible. And the old page
2569 			 * cannot be reused until after the decremented
2570 			 * mapcount is visible. So transitively, TLBs to
2571 			 * old page will be flushed before it can be reused.
2572 			 */
2573 			page_remove_rmap(old_page, false);
2574 		}
2575 
2576 		/* Free the old page.. */
2577 		new_page = old_page;
2578 		page_copied = 1;
2579 	} else {
2580 		mem_cgroup_cancel_charge(new_page, memcg, false);
2581 	}
2582 
2583 	if (new_page)
2584 		put_page(new_page);
2585 
2586 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2588 	if (old_page) {
2589 		/*
2590 		 * Don't let another task, with possibly unlocked vma,
2591 		 * keep the mlocked page.
2592 		 */
2593 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2594 			lock_page(old_page);	/* LRU manipulation */
2595 			if (PageMlocked(old_page))
2596 				munlock_vma_page(old_page);
2597 			unlock_page(old_page);
2598 		}
2599 		put_page(old_page);
2600 	}
2601 	return page_copied ? VM_FAULT_WRITE : 0;
2602 oom_free_new:
2603 	put_page(new_page);
2604 oom:
2605 	if (old_page)
2606 		put_page(old_page);
2607 	return VM_FAULT_OOM;
2608 }
2609 
2610 /**
2611  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2612  *			  writeable once the page is prepared
2613  *
2614  * @vmf: structure describing the fault
2615  *
2616  * This function handles all that is needed to finish a write page fault in a
2617  * shared mapping due to PTE being read-only once the mapped page is prepared.
2618  * It handles locking of PTE and modifying it. The function returns
2619  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2620  * lock.
2621  *
2622  * The function expects the page to be locked or other protection against
2623  * concurrent faults / writeback (such as DAX radix tree locks).
2624  */
finish_mkwrite_fault(struct vm_fault * vmf)2625 int finish_mkwrite_fault(struct vm_fault *vmf)
2626 {
2627 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2628 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2629 				       &vmf->ptl);
2630 	/*
2631 	 * We might have raced with another page fault while we released the
2632 	 * pte_offset_map_lock.
2633 	 */
2634 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2635 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2636 		return VM_FAULT_NOPAGE;
2637 	}
2638 	wp_page_reuse(vmf);
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2644  * mapping
2645  */
wp_pfn_shared(struct vm_fault * vmf)2646 static int wp_pfn_shared(struct vm_fault *vmf)
2647 {
2648 	struct vm_area_struct *vma = vmf->vma;
2649 
2650 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2651 		int ret;
2652 
2653 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2654 		vmf->flags |= FAULT_FLAG_MKWRITE;
2655 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2656 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2657 			return ret;
2658 		return finish_mkwrite_fault(vmf);
2659 	}
2660 	wp_page_reuse(vmf);
2661 	return VM_FAULT_WRITE;
2662 }
2663 
wp_page_shared(struct vm_fault * vmf)2664 static int wp_page_shared(struct vm_fault *vmf)
2665 	__releases(vmf->ptl)
2666 {
2667 	struct vm_area_struct *vma = vmf->vma;
2668 
2669 	get_page(vmf->page);
2670 
2671 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2672 		int tmp;
2673 
2674 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2675 		tmp = do_page_mkwrite(vmf);
2676 		if (unlikely(!tmp || (tmp &
2677 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2678 			put_page(vmf->page);
2679 			return tmp;
2680 		}
2681 		tmp = finish_mkwrite_fault(vmf);
2682 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2683 			unlock_page(vmf->page);
2684 			put_page(vmf->page);
2685 			return tmp;
2686 		}
2687 	} else {
2688 		wp_page_reuse(vmf);
2689 		lock_page(vmf->page);
2690 	}
2691 	fault_dirty_shared_page(vma, vmf->page);
2692 	put_page(vmf->page);
2693 
2694 	return VM_FAULT_WRITE;
2695 }
2696 
2697 /*
2698  * This routine handles present pages, when users try to write
2699  * to a shared page. It is done by copying the page to a new address
2700  * and decrementing the shared-page counter for the old page.
2701  *
2702  * Note that this routine assumes that the protection checks have been
2703  * done by the caller (the low-level page fault routine in most cases).
2704  * Thus we can safely just mark it writable once we've done any necessary
2705  * COW.
2706  *
2707  * We also mark the page dirty at this point even though the page will
2708  * change only once the write actually happens. This avoids a few races,
2709  * and potentially makes it more efficient.
2710  *
2711  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2712  * but allow concurrent faults), with pte both mapped and locked.
2713  * We return with mmap_sem still held, but pte unmapped and unlocked.
2714  */
do_wp_page(struct vm_fault * vmf)2715 static int do_wp_page(struct vm_fault *vmf)
2716 	__releases(vmf->ptl)
2717 {
2718 	struct vm_area_struct *vma = vmf->vma;
2719 
2720 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2721 	if (!vmf->page) {
2722 		/*
2723 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2724 		 * VM_PFNMAP VMA.
2725 		 *
2726 		 * We should not cow pages in a shared writeable mapping.
2727 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2728 		 */
2729 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2730 				     (VM_WRITE|VM_SHARED))
2731 			return wp_pfn_shared(vmf);
2732 
2733 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2734 		return wp_page_copy(vmf);
2735 	}
2736 
2737 	/*
2738 	 * Take out anonymous pages first, anonymous shared vmas are
2739 	 * not dirty accountable.
2740 	 */
2741 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2742 		int total_map_swapcount;
2743 		if (!trylock_page(vmf->page)) {
2744 			get_page(vmf->page);
2745 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2746 			lock_page(vmf->page);
2747 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2748 					vmf->address, &vmf->ptl);
2749 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2750 				unlock_page(vmf->page);
2751 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2752 				put_page(vmf->page);
2753 				return 0;
2754 			}
2755 			put_page(vmf->page);
2756 		}
2757 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2758 			if (total_map_swapcount == 1) {
2759 				/*
2760 				 * The page is all ours. Move it to
2761 				 * our anon_vma so the rmap code will
2762 				 * not search our parent or siblings.
2763 				 * Protected against the rmap code by
2764 				 * the page lock.
2765 				 */
2766 				page_move_anon_rmap(vmf->page, vma);
2767 			}
2768 			unlock_page(vmf->page);
2769 			wp_page_reuse(vmf);
2770 			return VM_FAULT_WRITE;
2771 		}
2772 		unlock_page(vmf->page);
2773 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2774 					(VM_WRITE|VM_SHARED))) {
2775 		return wp_page_shared(vmf);
2776 	}
2777 
2778 	/*
2779 	 * Ok, we need to copy. Oh, well..
2780 	 */
2781 	get_page(vmf->page);
2782 
2783 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2784 	return wp_page_copy(vmf);
2785 }
2786 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2787 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2788 		unsigned long start_addr, unsigned long end_addr,
2789 		struct zap_details *details)
2790 {
2791 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2792 }
2793 
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2794 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2795 					    struct zap_details *details)
2796 {
2797 	struct vm_area_struct *vma;
2798 	pgoff_t vba, vea, zba, zea;
2799 
2800 	vma_interval_tree_foreach(vma, root,
2801 			details->first_index, details->last_index) {
2802 
2803 		vba = vma->vm_pgoff;
2804 		vea = vba + vma_pages(vma) - 1;
2805 		zba = details->first_index;
2806 		if (zba < vba)
2807 			zba = vba;
2808 		zea = details->last_index;
2809 		if (zea > vea)
2810 			zea = vea;
2811 
2812 		unmap_mapping_range_vma(vma,
2813 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2814 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2815 				details);
2816 	}
2817 }
2818 
2819 /**
2820  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2821  * address_space corresponding to the specified page range in the underlying
2822  * file.
2823  *
2824  * @mapping: the address space containing mmaps to be unmapped.
2825  * @holebegin: byte in first page to unmap, relative to the start of
2826  * the underlying file.  This will be rounded down to a PAGE_SIZE
2827  * boundary.  Note that this is different from truncate_pagecache(), which
2828  * must keep the partial page.  In contrast, we must get rid of
2829  * partial pages.
2830  * @holelen: size of prospective hole in bytes.  This will be rounded
2831  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2832  * end of the file.
2833  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2834  * but 0 when invalidating pagecache, don't throw away private data.
2835  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2836 void unmap_mapping_range(struct address_space *mapping,
2837 		loff_t const holebegin, loff_t const holelen, int even_cows)
2838 {
2839 	struct zap_details details = { };
2840 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2841 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842 
2843 	/* Check for overflow. */
2844 	if (sizeof(holelen) > sizeof(hlen)) {
2845 		long long holeend =
2846 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2847 		if (holeend & ~(long long)ULONG_MAX)
2848 			hlen = ULONG_MAX - hba + 1;
2849 	}
2850 
2851 	details.check_mapping = even_cows ? NULL : mapping;
2852 	details.first_index = hba;
2853 	details.last_index = hba + hlen - 1;
2854 	if (details.last_index < details.first_index)
2855 		details.last_index = ULONG_MAX;
2856 
2857 	i_mmap_lock_write(mapping);
2858 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2859 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2860 	i_mmap_unlock_write(mapping);
2861 }
2862 EXPORT_SYMBOL(unmap_mapping_range);
2863 
2864 /*
2865  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2866  * but allow concurrent faults), and pte mapped but not yet locked.
2867  * We return with pte unmapped and unlocked.
2868  *
2869  * We return with the mmap_sem locked or unlocked in the same cases
2870  * as does filemap_fault().
2871  */
do_swap_page(struct vm_fault * vmf)2872 int do_swap_page(struct vm_fault *vmf)
2873 {
2874 	struct vm_area_struct *vma = vmf->vma;
2875 	struct page *page = NULL, *swapcache;
2876 	struct mem_cgroup *memcg;
2877 	struct vma_swap_readahead swap_ra;
2878 	swp_entry_t entry;
2879 	pte_t pte;
2880 	int locked;
2881 	int exclusive = 0;
2882 	int ret = 0;
2883 	bool vma_readahead = swap_use_vma_readahead();
2884 
2885 	if (vma_readahead)
2886 		page = swap_readahead_detect(vmf, &swap_ra);
2887 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2888 		if (page)
2889 			put_page(page);
2890 		goto out;
2891 	}
2892 
2893 	entry = pte_to_swp_entry(vmf->orig_pte);
2894 	if (unlikely(non_swap_entry(entry))) {
2895 		if (is_migration_entry(entry)) {
2896 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2897 					     vmf->address);
2898 		} else if (is_device_private_entry(entry)) {
2899 			/*
2900 			 * For un-addressable device memory we call the pgmap
2901 			 * fault handler callback. The callback must migrate
2902 			 * the page back to some CPU accessible page.
2903 			 */
2904 			ret = device_private_entry_fault(vma, vmf->address, entry,
2905 						 vmf->flags, vmf->pmd);
2906 		} else if (is_hwpoison_entry(entry)) {
2907 			ret = VM_FAULT_HWPOISON;
2908 		} else {
2909 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2910 			ret = VM_FAULT_SIGBUS;
2911 		}
2912 		goto out;
2913 	}
2914 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2915 	if (!page)
2916 		page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2917 					 vmf->address);
2918 	if (!page) {
2919 		if (vma_readahead)
2920 			page = do_swap_page_readahead(entry,
2921 				GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2922 		else
2923 			page = swapin_readahead(entry,
2924 				GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2925 		if (!page) {
2926 			/*
2927 			 * Back out if somebody else faulted in this pte
2928 			 * while we released the pte lock.
2929 			 */
2930 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2931 					vmf->address, &vmf->ptl);
2932 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2933 				ret = VM_FAULT_OOM;
2934 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2935 			goto unlock;
2936 		}
2937 
2938 		/* Had to read the page from swap area: Major fault */
2939 		ret = VM_FAULT_MAJOR;
2940 		count_vm_event(PGMAJFAULT);
2941 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2942 	} else if (PageHWPoison(page)) {
2943 		/*
2944 		 * hwpoisoned dirty swapcache pages are kept for killing
2945 		 * owner processes (which may be unknown at hwpoison time)
2946 		 */
2947 		ret = VM_FAULT_HWPOISON;
2948 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949 		swapcache = page;
2950 		goto out_release;
2951 	}
2952 
2953 	swapcache = page;
2954 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2955 
2956 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2957 	if (!locked) {
2958 		ret |= VM_FAULT_RETRY;
2959 		goto out_release;
2960 	}
2961 
2962 	/*
2963 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2964 	 * release the swapcache from under us.  The page pin, and pte_same
2965 	 * test below, are not enough to exclude that.  Even if it is still
2966 	 * swapcache, we need to check that the page's swap has not changed.
2967 	 */
2968 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2969 		goto out_page;
2970 
2971 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2972 	if (unlikely(!page)) {
2973 		ret = VM_FAULT_OOM;
2974 		page = swapcache;
2975 		goto out_page;
2976 	}
2977 
2978 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2979 				&memcg, false)) {
2980 		ret = VM_FAULT_OOM;
2981 		goto out_page;
2982 	}
2983 
2984 	/*
2985 	 * Back out if somebody else already faulted in this pte.
2986 	 */
2987 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2988 			&vmf->ptl);
2989 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2990 		goto out_nomap;
2991 
2992 	if (unlikely(!PageUptodate(page))) {
2993 		ret = VM_FAULT_SIGBUS;
2994 		goto out_nomap;
2995 	}
2996 
2997 	/*
2998 	 * The page isn't present yet, go ahead with the fault.
2999 	 *
3000 	 * Be careful about the sequence of operations here.
3001 	 * To get its accounting right, reuse_swap_page() must be called
3002 	 * while the page is counted on swap but not yet in mapcount i.e.
3003 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3004 	 * must be called after the swap_free(), or it will never succeed.
3005 	 */
3006 
3007 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3008 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3009 	pte = mk_pte(page, vma->vm_page_prot);
3010 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3011 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012 		vmf->flags &= ~FAULT_FLAG_WRITE;
3013 		ret |= VM_FAULT_WRITE;
3014 		exclusive = RMAP_EXCLUSIVE;
3015 	}
3016 	flush_icache_page(vma, page);
3017 	if (pte_swp_soft_dirty(vmf->orig_pte))
3018 		pte = pte_mksoft_dirty(pte);
3019 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3020 	vmf->orig_pte = pte;
3021 	if (page == swapcache) {
3022 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3023 		mem_cgroup_commit_charge(page, memcg, true, false);
3024 		activate_page(page);
3025 	} else { /* ksm created a completely new copy */
3026 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3027 		mem_cgroup_commit_charge(page, memcg, false, false);
3028 		lru_cache_add_active_or_unevictable(page, vma);
3029 	}
3030 
3031 	swap_free(entry);
3032 	if (mem_cgroup_swap_full(page) ||
3033 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3034 		try_to_free_swap(page);
3035 	unlock_page(page);
3036 	if (page != swapcache) {
3037 		/*
3038 		 * Hold the lock to avoid the swap entry to be reused
3039 		 * until we take the PT lock for the pte_same() check
3040 		 * (to avoid false positives from pte_same). For
3041 		 * further safety release the lock after the swap_free
3042 		 * so that the swap count won't change under a
3043 		 * parallel locked swapcache.
3044 		 */
3045 		unlock_page(swapcache);
3046 		put_page(swapcache);
3047 	}
3048 
3049 	if (vmf->flags & FAULT_FLAG_WRITE) {
3050 		ret |= do_wp_page(vmf);
3051 		if (ret & VM_FAULT_ERROR)
3052 			ret &= VM_FAULT_ERROR;
3053 		goto out;
3054 	}
3055 
3056 	/* No need to invalidate - it was non-present before */
3057 	update_mmu_cache(vma, vmf->address, vmf->pte);
3058 unlock:
3059 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3060 out:
3061 	return ret;
3062 out_nomap:
3063 	mem_cgroup_cancel_charge(page, memcg, false);
3064 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3065 out_page:
3066 	unlock_page(page);
3067 out_release:
3068 	put_page(page);
3069 	if (page != swapcache) {
3070 		unlock_page(swapcache);
3071 		put_page(swapcache);
3072 	}
3073 	return ret;
3074 }
3075 
3076 /*
3077  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3078  * but allow concurrent faults), and pte mapped but not yet locked.
3079  * We return with mmap_sem still held, but pte unmapped and unlocked.
3080  */
do_anonymous_page(struct vm_fault * vmf)3081 static int do_anonymous_page(struct vm_fault *vmf)
3082 {
3083 	struct vm_area_struct *vma = vmf->vma;
3084 	struct mem_cgroup *memcg;
3085 	struct page *page;
3086 	int ret = 0;
3087 	pte_t entry;
3088 
3089 	/* File mapping without ->vm_ops ? */
3090 	if (vma->vm_flags & VM_SHARED)
3091 		return VM_FAULT_SIGBUS;
3092 
3093 	/*
3094 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3095 	 * pte_offset_map() on pmds where a huge pmd might be created
3096 	 * from a different thread.
3097 	 *
3098 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3099 	 * parallel threads are excluded by other means.
3100 	 *
3101 	 * Here we only have down_read(mmap_sem).
3102 	 */
3103 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3104 		return VM_FAULT_OOM;
3105 
3106 	/* See the comment in pte_alloc_one_map() */
3107 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3108 		return 0;
3109 
3110 	/* Use the zero-page for reads */
3111 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3112 			!mm_forbids_zeropage(vma->vm_mm)) {
3113 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3114 						vma->vm_page_prot));
3115 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3116 				vmf->address, &vmf->ptl);
3117 		if (!pte_none(*vmf->pte))
3118 			goto unlock;
3119 		ret = check_stable_address_space(vma->vm_mm);
3120 		if (ret)
3121 			goto unlock;
3122 		/* Deliver the page fault to userland, check inside PT lock */
3123 		if (userfaultfd_missing(vma)) {
3124 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3125 			return handle_userfault(vmf, VM_UFFD_MISSING);
3126 		}
3127 		goto setpte;
3128 	}
3129 
3130 	/* Allocate our own private page. */
3131 	if (unlikely(anon_vma_prepare(vma)))
3132 		goto oom;
3133 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3134 	if (!page)
3135 		goto oom;
3136 
3137 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3138 		goto oom_free_page;
3139 
3140 	/*
3141 	 * The memory barrier inside __SetPageUptodate makes sure that
3142 	 * preceeding stores to the page contents become visible before
3143 	 * the set_pte_at() write.
3144 	 */
3145 	__SetPageUptodate(page);
3146 
3147 	entry = mk_pte(page, vma->vm_page_prot);
3148 	if (vma->vm_flags & VM_WRITE)
3149 		entry = pte_mkwrite(pte_mkdirty(entry));
3150 
3151 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3152 			&vmf->ptl);
3153 	if (!pte_none(*vmf->pte))
3154 		goto release;
3155 
3156 	ret = check_stable_address_space(vma->vm_mm);
3157 	if (ret)
3158 		goto release;
3159 
3160 	/* Deliver the page fault to userland, check inside PT lock */
3161 	if (userfaultfd_missing(vma)) {
3162 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3163 		mem_cgroup_cancel_charge(page, memcg, false);
3164 		put_page(page);
3165 		return handle_userfault(vmf, VM_UFFD_MISSING);
3166 	}
3167 
3168 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3169 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3170 	mem_cgroup_commit_charge(page, memcg, false, false);
3171 	lru_cache_add_active_or_unevictable(page, vma);
3172 setpte:
3173 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3174 
3175 	/* No need to invalidate - it was non-present before */
3176 	update_mmu_cache(vma, vmf->address, vmf->pte);
3177 unlock:
3178 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3179 	return ret;
3180 release:
3181 	mem_cgroup_cancel_charge(page, memcg, false);
3182 	put_page(page);
3183 	goto unlock;
3184 oom_free_page:
3185 	put_page(page);
3186 oom:
3187 	return VM_FAULT_OOM;
3188 }
3189 
3190 /*
3191  * The mmap_sem must have been held on entry, and may have been
3192  * released depending on flags and vma->vm_ops->fault() return value.
3193  * See filemap_fault() and __lock_page_retry().
3194  */
__do_fault(struct vm_fault * vmf)3195 static int __do_fault(struct vm_fault *vmf)
3196 {
3197 	struct vm_area_struct *vma = vmf->vma;
3198 	int ret;
3199 
3200 	/*
3201 	 * Preallocate pte before we take page_lock because this might lead to
3202 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3203 	 *				lock_page(A)
3204 	 *				SetPageWriteback(A)
3205 	 *				unlock_page(A)
3206 	 * lock_page(B)
3207 	 *				lock_page(B)
3208 	 * pte_alloc_pne
3209 	 *   shrink_page_list
3210 	 *     wait_on_page_writeback(A)
3211 	 *				SetPageWriteback(B)
3212 	 *				unlock_page(B)
3213 	 *				# flush A, B to clear the writeback
3214 	 */
3215 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3216 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3217 						  vmf->address);
3218 		if (!vmf->prealloc_pte)
3219 			return VM_FAULT_OOM;
3220 		smp_wmb(); /* See comment in __pte_alloc() */
3221 	}
3222 
3223 	ret = vma->vm_ops->fault(vmf);
3224 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3225 			    VM_FAULT_DONE_COW)))
3226 		return ret;
3227 
3228 	if (unlikely(PageHWPoison(vmf->page))) {
3229 		if (ret & VM_FAULT_LOCKED)
3230 			unlock_page(vmf->page);
3231 		put_page(vmf->page);
3232 		vmf->page = NULL;
3233 		return VM_FAULT_HWPOISON;
3234 	}
3235 
3236 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3237 		lock_page(vmf->page);
3238 	else
3239 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3240 
3241 	return ret;
3242 }
3243 
3244 /*
3245  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3246  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3247  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3248  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3249  */
pmd_devmap_trans_unstable(pmd_t * pmd)3250 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3251 {
3252 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3253 }
3254 
pte_alloc_one_map(struct vm_fault * vmf)3255 static int pte_alloc_one_map(struct vm_fault *vmf)
3256 {
3257 	struct vm_area_struct *vma = vmf->vma;
3258 
3259 	if (!pmd_none(*vmf->pmd))
3260 		goto map_pte;
3261 	if (vmf->prealloc_pte) {
3262 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3263 		if (unlikely(!pmd_none(*vmf->pmd))) {
3264 			spin_unlock(vmf->ptl);
3265 			goto map_pte;
3266 		}
3267 
3268 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3269 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3270 		spin_unlock(vmf->ptl);
3271 		vmf->prealloc_pte = NULL;
3272 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3273 		return VM_FAULT_OOM;
3274 	}
3275 map_pte:
3276 	/*
3277 	 * If a huge pmd materialized under us just retry later.  Use
3278 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3279 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3280 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3281 	 * running immediately after a huge pmd fault in a different thread of
3282 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3283 	 * All we have to ensure is that it is a regular pmd that we can walk
3284 	 * with pte_offset_map() and we can do that through an atomic read in
3285 	 * C, which is what pmd_trans_unstable() provides.
3286 	 */
3287 	if (pmd_devmap_trans_unstable(vmf->pmd))
3288 		return VM_FAULT_NOPAGE;
3289 
3290 	/*
3291 	 * At this point we know that our vmf->pmd points to a page of ptes
3292 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3293 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3294 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3295 	 * be valid and we will re-check to make sure the vmf->pte isn't
3296 	 * pte_none() under vmf->ptl protection when we return to
3297 	 * alloc_set_pte().
3298 	 */
3299 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3300 			&vmf->ptl);
3301 	return 0;
3302 }
3303 
3304 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3305 
3306 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
transhuge_vma_suitable(struct vm_area_struct * vma,unsigned long haddr)3307 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3308 		unsigned long haddr)
3309 {
3310 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3311 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3312 		return false;
3313 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3314 		return false;
3315 	return true;
3316 }
3317 
deposit_prealloc_pte(struct vm_fault * vmf)3318 static void deposit_prealloc_pte(struct vm_fault *vmf)
3319 {
3320 	struct vm_area_struct *vma = vmf->vma;
3321 
3322 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3323 	/*
3324 	 * We are going to consume the prealloc table,
3325 	 * count that as nr_ptes.
3326 	 */
3327 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3328 	vmf->prealloc_pte = NULL;
3329 }
3330 
do_set_pmd(struct vm_fault * vmf,struct page * page)3331 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3332 {
3333 	struct vm_area_struct *vma = vmf->vma;
3334 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3335 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3336 	pmd_t entry;
3337 	int i, ret;
3338 
3339 	if (!transhuge_vma_suitable(vma, haddr))
3340 		return VM_FAULT_FALLBACK;
3341 
3342 	ret = VM_FAULT_FALLBACK;
3343 	page = compound_head(page);
3344 
3345 	/*
3346 	 * Archs like ppc64 need additonal space to store information
3347 	 * related to pte entry. Use the preallocated table for that.
3348 	 */
3349 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3350 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3351 		if (!vmf->prealloc_pte)
3352 			return VM_FAULT_OOM;
3353 		smp_wmb(); /* See comment in __pte_alloc() */
3354 	}
3355 
3356 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3357 	if (unlikely(!pmd_none(*vmf->pmd)))
3358 		goto out;
3359 
3360 	for (i = 0; i < HPAGE_PMD_NR; i++)
3361 		flush_icache_page(vma, page + i);
3362 
3363 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3364 	if (write)
3365 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3366 
3367 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3368 	page_add_file_rmap(page, true);
3369 	/*
3370 	 * deposit and withdraw with pmd lock held
3371 	 */
3372 	if (arch_needs_pgtable_deposit())
3373 		deposit_prealloc_pte(vmf);
3374 
3375 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3376 
3377 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3378 
3379 	/* fault is handled */
3380 	ret = 0;
3381 	count_vm_event(THP_FILE_MAPPED);
3382 out:
3383 	spin_unlock(vmf->ptl);
3384 	return ret;
3385 }
3386 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3387 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3388 {
3389 	BUILD_BUG();
3390 	return 0;
3391 }
3392 #endif
3393 
3394 /**
3395  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3396  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3397  *
3398  * @vmf: fault environment
3399  * @memcg: memcg to charge page (only for private mappings)
3400  * @page: page to map
3401  *
3402  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3403  * return.
3404  *
3405  * Target users are page handler itself and implementations of
3406  * vm_ops->map_pages.
3407  */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3408 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3409 		struct page *page)
3410 {
3411 	struct vm_area_struct *vma = vmf->vma;
3412 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3413 	pte_t entry;
3414 	int ret;
3415 
3416 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3417 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3418 		/* THP on COW? */
3419 		VM_BUG_ON_PAGE(memcg, page);
3420 
3421 		ret = do_set_pmd(vmf, page);
3422 		if (ret != VM_FAULT_FALLBACK)
3423 			return ret;
3424 	}
3425 
3426 	if (!vmf->pte) {
3427 		ret = pte_alloc_one_map(vmf);
3428 		if (ret)
3429 			return ret;
3430 	}
3431 
3432 	/* Re-check under ptl */
3433 	if (unlikely(!pte_none(*vmf->pte)))
3434 		return VM_FAULT_NOPAGE;
3435 
3436 	flush_icache_page(vma, page);
3437 	entry = mk_pte(page, vma->vm_page_prot);
3438 	if (write)
3439 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3440 	/* copy-on-write page */
3441 	if (write && !(vma->vm_flags & VM_SHARED)) {
3442 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3443 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3444 		mem_cgroup_commit_charge(page, memcg, false, false);
3445 		lru_cache_add_active_or_unevictable(page, vma);
3446 	} else {
3447 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3448 		page_add_file_rmap(page, false);
3449 	}
3450 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3451 
3452 	/* no need to invalidate: a not-present page won't be cached */
3453 	update_mmu_cache(vma, vmf->address, vmf->pte);
3454 
3455 	return 0;
3456 }
3457 
3458 
3459 /**
3460  * finish_fault - finish page fault once we have prepared the page to fault
3461  *
3462  * @vmf: structure describing the fault
3463  *
3464  * This function handles all that is needed to finish a page fault once the
3465  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3466  * given page, adds reverse page mapping, handles memcg charges and LRU
3467  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3468  * error.
3469  *
3470  * The function expects the page to be locked and on success it consumes a
3471  * reference of a page being mapped (for the PTE which maps it).
3472  */
finish_fault(struct vm_fault * vmf)3473 int finish_fault(struct vm_fault *vmf)
3474 {
3475 	struct page *page;
3476 	int ret = 0;
3477 
3478 	/* Did we COW the page? */
3479 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3480 	    !(vmf->vma->vm_flags & VM_SHARED))
3481 		page = vmf->cow_page;
3482 	else
3483 		page = vmf->page;
3484 
3485 	/*
3486 	 * check even for read faults because we might have lost our CoWed
3487 	 * page
3488 	 */
3489 	if (!(vmf->vma->vm_flags & VM_SHARED))
3490 		ret = check_stable_address_space(vmf->vma->vm_mm);
3491 	if (!ret)
3492 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3493 	if (vmf->pte)
3494 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 	return ret;
3496 }
3497 
3498 static unsigned long fault_around_bytes __read_mostly =
3499 	rounddown_pow_of_two(65536);
3500 
3501 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3502 static int fault_around_bytes_get(void *data, u64 *val)
3503 {
3504 	*val = fault_around_bytes;
3505 	return 0;
3506 }
3507 
3508 /*
3509  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3510  * rounded down to nearest page order. It's what do_fault_around() expects to
3511  * see.
3512  */
fault_around_bytes_set(void * data,u64 val)3513 static int fault_around_bytes_set(void *data, u64 val)
3514 {
3515 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3516 		return -EINVAL;
3517 	if (val > PAGE_SIZE)
3518 		fault_around_bytes = rounddown_pow_of_two(val);
3519 	else
3520 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3521 	return 0;
3522 }
3523 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3524 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3525 
fault_around_debugfs(void)3526 static int __init fault_around_debugfs(void)
3527 {
3528 	void *ret;
3529 
3530 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3531 			&fault_around_bytes_fops);
3532 	if (!ret)
3533 		pr_warn("Failed to create fault_around_bytes in debugfs");
3534 	return 0;
3535 }
3536 late_initcall(fault_around_debugfs);
3537 #endif
3538 
3539 /*
3540  * do_fault_around() tries to map few pages around the fault address. The hope
3541  * is that the pages will be needed soon and this will lower the number of
3542  * faults to handle.
3543  *
3544  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3545  * not ready to be mapped: not up-to-date, locked, etc.
3546  *
3547  * This function is called with the page table lock taken. In the split ptlock
3548  * case the page table lock only protects only those entries which belong to
3549  * the page table corresponding to the fault address.
3550  *
3551  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3552  * only once.
3553  *
3554  * fault_around_pages() defines how many pages we'll try to map.
3555  * do_fault_around() expects it to return a power of two less than or equal to
3556  * PTRS_PER_PTE.
3557  *
3558  * The virtual address of the area that we map is naturally aligned to the
3559  * fault_around_pages() value (and therefore to page order).  This way it's
3560  * easier to guarantee that we don't cross page table boundaries.
3561  */
do_fault_around(struct vm_fault * vmf)3562 static int do_fault_around(struct vm_fault *vmf)
3563 {
3564 	unsigned long address = vmf->address, nr_pages, mask;
3565 	pgoff_t start_pgoff = vmf->pgoff;
3566 	pgoff_t end_pgoff;
3567 	int off, ret = 0;
3568 
3569 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3570 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3571 
3572 	vmf->address = max(address & mask, vmf->vma->vm_start);
3573 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3574 	start_pgoff -= off;
3575 
3576 	/*
3577 	 *  end_pgoff is either end of page table or end of vma
3578 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3579 	 */
3580 	end_pgoff = start_pgoff -
3581 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3582 		PTRS_PER_PTE - 1;
3583 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3584 			start_pgoff + nr_pages - 1);
3585 
3586 	if (pmd_none(*vmf->pmd)) {
3587 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3588 						  vmf->address);
3589 		if (!vmf->prealloc_pte)
3590 			goto out;
3591 		smp_wmb(); /* See comment in __pte_alloc() */
3592 	}
3593 
3594 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3595 
3596 	/* Huge page is mapped? Page fault is solved */
3597 	if (pmd_trans_huge(*vmf->pmd)) {
3598 		ret = VM_FAULT_NOPAGE;
3599 		goto out;
3600 	}
3601 
3602 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3603 	if (!vmf->pte)
3604 		goto out;
3605 
3606 	/* check if the page fault is solved */
3607 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3608 	if (!pte_none(*vmf->pte))
3609 		ret = VM_FAULT_NOPAGE;
3610 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3611 out:
3612 	vmf->address = address;
3613 	vmf->pte = NULL;
3614 	return ret;
3615 }
3616 
do_read_fault(struct vm_fault * vmf)3617 static int do_read_fault(struct vm_fault *vmf)
3618 {
3619 	struct vm_area_struct *vma = vmf->vma;
3620 	int ret = 0;
3621 
3622 	/*
3623 	 * Let's call ->map_pages() first and use ->fault() as fallback
3624 	 * if page by the offset is not ready to be mapped (cold cache or
3625 	 * something).
3626 	 */
3627 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3628 		ret = do_fault_around(vmf);
3629 		if (ret)
3630 			return ret;
3631 	}
3632 
3633 	ret = __do_fault(vmf);
3634 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3635 		return ret;
3636 
3637 	ret |= finish_fault(vmf);
3638 	unlock_page(vmf->page);
3639 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3640 		put_page(vmf->page);
3641 	return ret;
3642 }
3643 
do_cow_fault(struct vm_fault * vmf)3644 static int do_cow_fault(struct vm_fault *vmf)
3645 {
3646 	struct vm_area_struct *vma = vmf->vma;
3647 	int ret;
3648 
3649 	if (unlikely(anon_vma_prepare(vma)))
3650 		return VM_FAULT_OOM;
3651 
3652 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3653 	if (!vmf->cow_page)
3654 		return VM_FAULT_OOM;
3655 
3656 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3657 				&vmf->memcg, false)) {
3658 		put_page(vmf->cow_page);
3659 		return VM_FAULT_OOM;
3660 	}
3661 
3662 	ret = __do_fault(vmf);
3663 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664 		goto uncharge_out;
3665 	if (ret & VM_FAULT_DONE_COW)
3666 		return ret;
3667 
3668 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3669 	__SetPageUptodate(vmf->cow_page);
3670 
3671 	ret |= finish_fault(vmf);
3672 	unlock_page(vmf->page);
3673 	put_page(vmf->page);
3674 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3675 		goto uncharge_out;
3676 	return ret;
3677 uncharge_out:
3678 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3679 	put_page(vmf->cow_page);
3680 	return ret;
3681 }
3682 
do_shared_fault(struct vm_fault * vmf)3683 static int do_shared_fault(struct vm_fault *vmf)
3684 {
3685 	struct vm_area_struct *vma = vmf->vma;
3686 	int ret, tmp;
3687 
3688 	ret = __do_fault(vmf);
3689 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3690 		return ret;
3691 
3692 	/*
3693 	 * Check if the backing address space wants to know that the page is
3694 	 * about to become writable
3695 	 */
3696 	if (vma->vm_ops->page_mkwrite) {
3697 		unlock_page(vmf->page);
3698 		tmp = do_page_mkwrite(vmf);
3699 		if (unlikely(!tmp ||
3700 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3701 			put_page(vmf->page);
3702 			return tmp;
3703 		}
3704 	}
3705 
3706 	ret |= finish_fault(vmf);
3707 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3708 					VM_FAULT_RETRY))) {
3709 		unlock_page(vmf->page);
3710 		put_page(vmf->page);
3711 		return ret;
3712 	}
3713 
3714 	fault_dirty_shared_page(vma, vmf->page);
3715 	return ret;
3716 }
3717 
3718 /*
3719  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3720  * but allow concurrent faults).
3721  * The mmap_sem may have been released depending on flags and our
3722  * return value.  See filemap_fault() and __lock_page_or_retry().
3723  */
do_fault(struct vm_fault * vmf)3724 static int do_fault(struct vm_fault *vmf)
3725 {
3726 	struct vm_area_struct *vma = vmf->vma;
3727 	int ret;
3728 
3729 	/*
3730 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3731 	 */
3732 	if (!vma->vm_ops->fault) {
3733 		/*
3734 		 * If we find a migration pmd entry or a none pmd entry, which
3735 		 * should never happen, return SIGBUS
3736 		 */
3737 		if (unlikely(!pmd_present(*vmf->pmd)))
3738 			ret = VM_FAULT_SIGBUS;
3739 		else {
3740 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3741 						       vmf->pmd,
3742 						       vmf->address,
3743 						       &vmf->ptl);
3744 			/*
3745 			 * Make sure this is not a temporary clearing of pte
3746 			 * by holding ptl and checking again. A R/M/W update
3747 			 * of pte involves: take ptl, clearing the pte so that
3748 			 * we don't have concurrent modification by hardware
3749 			 * followed by an update.
3750 			 */
3751 			if (unlikely(pte_none(*vmf->pte)))
3752 				ret = VM_FAULT_SIGBUS;
3753 			else
3754 				ret = VM_FAULT_NOPAGE;
3755 
3756 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3757 		}
3758 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3759 		ret = do_read_fault(vmf);
3760 	else if (!(vma->vm_flags & VM_SHARED))
3761 		ret = do_cow_fault(vmf);
3762 	else
3763 		ret = do_shared_fault(vmf);
3764 
3765 	/* preallocated pagetable is unused: free it */
3766 	if (vmf->prealloc_pte) {
3767 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3768 		vmf->prealloc_pte = NULL;
3769 	}
3770 	return ret;
3771 }
3772 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3773 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3774 				unsigned long addr, int page_nid,
3775 				int *flags)
3776 {
3777 	get_page(page);
3778 
3779 	count_vm_numa_event(NUMA_HINT_FAULTS);
3780 	if (page_nid == numa_node_id()) {
3781 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3782 		*flags |= TNF_FAULT_LOCAL;
3783 	}
3784 
3785 	return mpol_misplaced(page, vma, addr);
3786 }
3787 
do_numa_page(struct vm_fault * vmf)3788 static int do_numa_page(struct vm_fault *vmf)
3789 {
3790 	struct vm_area_struct *vma = vmf->vma;
3791 	struct page *page = NULL;
3792 	int page_nid = -1;
3793 	int last_cpupid;
3794 	int target_nid;
3795 	bool migrated = false;
3796 	pte_t pte;
3797 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3798 	int flags = 0;
3799 
3800 	/*
3801 	 * The "pte" at this point cannot be used safely without
3802 	 * validation through pte_unmap_same(). It's of NUMA type but
3803 	 * the pfn may be screwed if the read is non atomic.
3804 	 */
3805 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3806 	spin_lock(vmf->ptl);
3807 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3808 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3809 		goto out;
3810 	}
3811 
3812 	/*
3813 	 * Make it present again, Depending on how arch implementes non
3814 	 * accessible ptes, some can allow access by kernel mode.
3815 	 */
3816 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3817 	pte = pte_modify(pte, vma->vm_page_prot);
3818 	pte = pte_mkyoung(pte);
3819 	if (was_writable)
3820 		pte = pte_mkwrite(pte);
3821 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3822 	update_mmu_cache(vma, vmf->address, vmf->pte);
3823 
3824 	page = vm_normal_page(vma, vmf->address, pte);
3825 	if (!page) {
3826 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 		return 0;
3828 	}
3829 
3830 	/* TODO: handle PTE-mapped THP */
3831 	if (PageCompound(page)) {
3832 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3833 		return 0;
3834 	}
3835 
3836 	/*
3837 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3838 	 * much anyway since they can be in shared cache state. This misses
3839 	 * the case where a mapping is writable but the process never writes
3840 	 * to it but pte_write gets cleared during protection updates and
3841 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3842 	 * background writeback, dirty balancing and application behaviour.
3843 	 */
3844 	if (!pte_write(pte))
3845 		flags |= TNF_NO_GROUP;
3846 
3847 	/*
3848 	 * Flag if the page is shared between multiple address spaces. This
3849 	 * is later used when determining whether to group tasks together
3850 	 */
3851 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3852 		flags |= TNF_SHARED;
3853 
3854 	last_cpupid = page_cpupid_last(page);
3855 	page_nid = page_to_nid(page);
3856 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3857 			&flags);
3858 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 	if (target_nid == -1) {
3860 		put_page(page);
3861 		goto out;
3862 	}
3863 
3864 	/* Migrate to the requested node */
3865 	migrated = migrate_misplaced_page(page, vma, target_nid);
3866 	if (migrated) {
3867 		page_nid = target_nid;
3868 		flags |= TNF_MIGRATED;
3869 	} else
3870 		flags |= TNF_MIGRATE_FAIL;
3871 
3872 out:
3873 	if (page_nid != -1)
3874 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3875 	return 0;
3876 }
3877 
create_huge_pmd(struct vm_fault * vmf)3878 static inline int create_huge_pmd(struct vm_fault *vmf)
3879 {
3880 	if (vma_is_anonymous(vmf->vma))
3881 		return do_huge_pmd_anonymous_page(vmf);
3882 	if (vmf->vma->vm_ops->huge_fault)
3883 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3884 	return VM_FAULT_FALLBACK;
3885 }
3886 
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)3887 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3888 {
3889 	if (vma_is_anonymous(vmf->vma))
3890 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3891 	if (vmf->vma->vm_ops->huge_fault)
3892 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3893 
3894 	/* COW handled on pte level: split pmd */
3895 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3896 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3897 
3898 	return VM_FAULT_FALLBACK;
3899 }
3900 
vma_is_accessible(struct vm_area_struct * vma)3901 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3902 {
3903 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3904 }
3905 
create_huge_pud(struct vm_fault * vmf)3906 static int create_huge_pud(struct vm_fault *vmf)
3907 {
3908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3909 	/* No support for anonymous transparent PUD pages yet */
3910 	if (vma_is_anonymous(vmf->vma))
3911 		return VM_FAULT_FALLBACK;
3912 	if (vmf->vma->vm_ops->huge_fault)
3913 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3914 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3915 	return VM_FAULT_FALLBACK;
3916 }
3917 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)3918 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3919 {
3920 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3921 	/* No support for anonymous transparent PUD pages yet */
3922 	if (vma_is_anonymous(vmf->vma))
3923 		return VM_FAULT_FALLBACK;
3924 	if (vmf->vma->vm_ops->huge_fault)
3925 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3927 	return VM_FAULT_FALLBACK;
3928 }
3929 
3930 /*
3931  * These routines also need to handle stuff like marking pages dirty
3932  * and/or accessed for architectures that don't do it in hardware (most
3933  * RISC architectures).  The early dirtying is also good on the i386.
3934  *
3935  * There is also a hook called "update_mmu_cache()" that architectures
3936  * with external mmu caches can use to update those (ie the Sparc or
3937  * PowerPC hashed page tables that act as extended TLBs).
3938  *
3939  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3940  * concurrent faults).
3941  *
3942  * The mmap_sem may have been released depending on flags and our return value.
3943  * See filemap_fault() and __lock_page_or_retry().
3944  */
handle_pte_fault(struct vm_fault * vmf)3945 static int handle_pte_fault(struct vm_fault *vmf)
3946 {
3947 	pte_t entry;
3948 
3949 	if (unlikely(pmd_none(*vmf->pmd))) {
3950 		/*
3951 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3952 		 * want to allocate huge page, and if we expose page table
3953 		 * for an instant, it will be difficult to retract from
3954 		 * concurrent faults and from rmap lookups.
3955 		 */
3956 		vmf->pte = NULL;
3957 	} else {
3958 		/* See comment in pte_alloc_one_map() */
3959 		if (pmd_devmap_trans_unstable(vmf->pmd))
3960 			return 0;
3961 		/*
3962 		 * A regular pmd is established and it can't morph into a huge
3963 		 * pmd from under us anymore at this point because we hold the
3964 		 * mmap_sem read mode and khugepaged takes it in write mode.
3965 		 * So now it's safe to run pte_offset_map().
3966 		 */
3967 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3968 		vmf->orig_pte = *vmf->pte;
3969 
3970 		/*
3971 		 * some architectures can have larger ptes than wordsize,
3972 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3973 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3974 		 * atomic accesses.  The code below just needs a consistent
3975 		 * view for the ifs and we later double check anyway with the
3976 		 * ptl lock held. So here a barrier will do.
3977 		 */
3978 		barrier();
3979 		if (pte_none(vmf->orig_pte)) {
3980 			pte_unmap(vmf->pte);
3981 			vmf->pte = NULL;
3982 		}
3983 	}
3984 
3985 	if (!vmf->pte) {
3986 		if (vma_is_anonymous(vmf->vma))
3987 			return do_anonymous_page(vmf);
3988 		else
3989 			return do_fault(vmf);
3990 	}
3991 
3992 	if (!pte_present(vmf->orig_pte))
3993 		return do_swap_page(vmf);
3994 
3995 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3996 		return do_numa_page(vmf);
3997 
3998 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3999 	spin_lock(vmf->ptl);
4000 	entry = vmf->orig_pte;
4001 	if (unlikely(!pte_same(*vmf->pte, entry)))
4002 		goto unlock;
4003 	if (vmf->flags & FAULT_FLAG_WRITE) {
4004 		if (!pte_write(entry))
4005 			return do_wp_page(vmf);
4006 		entry = pte_mkdirty(entry);
4007 	}
4008 	entry = pte_mkyoung(entry);
4009 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4010 				vmf->flags & FAULT_FLAG_WRITE)) {
4011 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4012 	} else {
4013 		/*
4014 		 * This is needed only for protection faults but the arch code
4015 		 * is not yet telling us if this is a protection fault or not.
4016 		 * This still avoids useless tlb flushes for .text page faults
4017 		 * with threads.
4018 		 */
4019 		if (vmf->flags & FAULT_FLAG_WRITE)
4020 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4021 	}
4022 unlock:
4023 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4024 	return 0;
4025 }
4026 
4027 /*
4028  * By the time we get here, we already hold the mm semaphore
4029  *
4030  * The mmap_sem may have been released depending on flags and our
4031  * return value.  See filemap_fault() and __lock_page_or_retry().
4032  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4033 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4034 		unsigned int flags)
4035 {
4036 	struct vm_fault vmf = {
4037 		.vma = vma,
4038 		.address = address & PAGE_MASK,
4039 		.flags = flags,
4040 		.pgoff = linear_page_index(vma, address),
4041 		.gfp_mask = __get_fault_gfp_mask(vma),
4042 	};
4043 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4044 	struct mm_struct *mm = vma->vm_mm;
4045 	pgd_t *pgd;
4046 	p4d_t *p4d;
4047 	int ret;
4048 
4049 	pgd = pgd_offset(mm, address);
4050 	p4d = p4d_alloc(mm, pgd, address);
4051 	if (!p4d)
4052 		return VM_FAULT_OOM;
4053 
4054 	vmf.pud = pud_alloc(mm, p4d, address);
4055 	if (!vmf.pud)
4056 		return VM_FAULT_OOM;
4057 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4058 		ret = create_huge_pud(&vmf);
4059 		if (!(ret & VM_FAULT_FALLBACK))
4060 			return ret;
4061 	} else {
4062 		pud_t orig_pud = *vmf.pud;
4063 
4064 		barrier();
4065 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4066 
4067 			/* NUMA case for anonymous PUDs would go here */
4068 
4069 			if (dirty && !pud_write(orig_pud)) {
4070 				ret = wp_huge_pud(&vmf, orig_pud);
4071 				if (!(ret & VM_FAULT_FALLBACK))
4072 					return ret;
4073 			} else {
4074 				huge_pud_set_accessed(&vmf, orig_pud);
4075 				return 0;
4076 			}
4077 		}
4078 	}
4079 
4080 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4081 	if (!vmf.pmd)
4082 		return VM_FAULT_OOM;
4083 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4084 		ret = create_huge_pmd(&vmf);
4085 		if (!(ret & VM_FAULT_FALLBACK))
4086 			return ret;
4087 	} else {
4088 		pmd_t orig_pmd = *vmf.pmd;
4089 
4090 		barrier();
4091 		if (unlikely(is_swap_pmd(orig_pmd))) {
4092 			VM_BUG_ON(thp_migration_supported() &&
4093 					  !is_pmd_migration_entry(orig_pmd));
4094 			if (is_pmd_migration_entry(orig_pmd))
4095 				pmd_migration_entry_wait(mm, vmf.pmd);
4096 			return 0;
4097 		}
4098 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4099 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4100 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4101 
4102 			if (dirty && !pmd_write(orig_pmd)) {
4103 				ret = wp_huge_pmd(&vmf, orig_pmd);
4104 				if (!(ret & VM_FAULT_FALLBACK))
4105 					return ret;
4106 			} else {
4107 				huge_pmd_set_accessed(&vmf, orig_pmd);
4108 				return 0;
4109 			}
4110 		}
4111 	}
4112 
4113 	return handle_pte_fault(&vmf);
4114 }
4115 
4116 /*
4117  * By the time we get here, we already hold the mm semaphore
4118  *
4119  * The mmap_sem may have been released depending on flags and our
4120  * return value.  See filemap_fault() and __lock_page_or_retry().
4121  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4122 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4123 		unsigned int flags)
4124 {
4125 	int ret;
4126 
4127 	__set_current_state(TASK_RUNNING);
4128 
4129 	count_vm_event(PGFAULT);
4130 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4131 
4132 	/* do counter updates before entering really critical section. */
4133 	check_sync_rss_stat(current);
4134 
4135 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4136 					    flags & FAULT_FLAG_INSTRUCTION,
4137 					    flags & FAULT_FLAG_REMOTE))
4138 		return VM_FAULT_SIGSEGV;
4139 
4140 	/*
4141 	 * Enable the memcg OOM handling for faults triggered in user
4142 	 * space.  Kernel faults are handled more gracefully.
4143 	 */
4144 	if (flags & FAULT_FLAG_USER)
4145 		mem_cgroup_oom_enable();
4146 
4147 	if (unlikely(is_vm_hugetlb_page(vma)))
4148 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4149 	else
4150 		ret = __handle_mm_fault(vma, address, flags);
4151 
4152 	if (flags & FAULT_FLAG_USER) {
4153 		mem_cgroup_oom_disable();
4154 		/*
4155 		 * The task may have entered a memcg OOM situation but
4156 		 * if the allocation error was handled gracefully (no
4157 		 * VM_FAULT_OOM), there is no need to kill anything.
4158 		 * Just clean up the OOM state peacefully.
4159 		 */
4160 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4161 			mem_cgroup_oom_synchronize(false);
4162 	}
4163 
4164 	return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(handle_mm_fault);
4167 
4168 #ifndef __PAGETABLE_P4D_FOLDED
4169 /*
4170  * Allocate p4d page table.
4171  * We've already handled the fast-path in-line.
4172  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4173 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4174 {
4175 	p4d_t *new = p4d_alloc_one(mm, address);
4176 	if (!new)
4177 		return -ENOMEM;
4178 
4179 	smp_wmb(); /* See comment in __pte_alloc */
4180 
4181 	spin_lock(&mm->page_table_lock);
4182 	if (pgd_present(*pgd))		/* Another has populated it */
4183 		p4d_free(mm, new);
4184 	else
4185 		pgd_populate(mm, pgd, new);
4186 	spin_unlock(&mm->page_table_lock);
4187 	return 0;
4188 }
4189 #endif /* __PAGETABLE_P4D_FOLDED */
4190 
4191 #ifndef __PAGETABLE_PUD_FOLDED
4192 /*
4193  * Allocate page upper directory.
4194  * We've already handled the fast-path in-line.
4195  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4196 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4197 {
4198 	pud_t *new = pud_alloc_one(mm, address);
4199 	if (!new)
4200 		return -ENOMEM;
4201 
4202 	smp_wmb(); /* See comment in __pte_alloc */
4203 
4204 	spin_lock(&mm->page_table_lock);
4205 #ifndef __ARCH_HAS_5LEVEL_HACK
4206 	if (p4d_present(*p4d))		/* Another has populated it */
4207 		pud_free(mm, new);
4208 	else
4209 		p4d_populate(mm, p4d, new);
4210 #else
4211 	if (pgd_present(*p4d))		/* Another has populated it */
4212 		pud_free(mm, new);
4213 	else
4214 		pgd_populate(mm, p4d, new);
4215 #endif /* __ARCH_HAS_5LEVEL_HACK */
4216 	spin_unlock(&mm->page_table_lock);
4217 	return 0;
4218 }
4219 #endif /* __PAGETABLE_PUD_FOLDED */
4220 
4221 #ifndef __PAGETABLE_PMD_FOLDED
4222 /*
4223  * Allocate page middle directory.
4224  * We've already handled the fast-path in-line.
4225  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4226 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4227 {
4228 	spinlock_t *ptl;
4229 	pmd_t *new = pmd_alloc_one(mm, address);
4230 	if (!new)
4231 		return -ENOMEM;
4232 
4233 	smp_wmb(); /* See comment in __pte_alloc */
4234 
4235 	ptl = pud_lock(mm, pud);
4236 #ifndef __ARCH_HAS_4LEVEL_HACK
4237 	if (!pud_present(*pud)) {
4238 		mm_inc_nr_pmds(mm);
4239 		pud_populate(mm, pud, new);
4240 	} else	/* Another has populated it */
4241 		pmd_free(mm, new);
4242 #else
4243 	if (!pgd_present(*pud)) {
4244 		mm_inc_nr_pmds(mm);
4245 		pgd_populate(mm, pud, new);
4246 	} else /* Another has populated it */
4247 		pmd_free(mm, new);
4248 #endif /* __ARCH_HAS_4LEVEL_HACK */
4249 	spin_unlock(ptl);
4250 	return 0;
4251 }
4252 #endif /* __PAGETABLE_PMD_FOLDED */
4253 
__follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4254 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4255 			    unsigned long *start, unsigned long *end,
4256 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4257 {
4258 	pgd_t *pgd;
4259 	p4d_t *p4d;
4260 	pud_t *pud;
4261 	pmd_t *pmd;
4262 	pte_t *ptep;
4263 
4264 	pgd = pgd_offset(mm, address);
4265 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4266 		goto out;
4267 
4268 	p4d = p4d_offset(pgd, address);
4269 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4270 		goto out;
4271 
4272 	pud = pud_offset(p4d, address);
4273 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4274 		goto out;
4275 
4276 	pmd = pmd_offset(pud, address);
4277 	VM_BUG_ON(pmd_trans_huge(*pmd));
4278 
4279 	if (pmd_huge(*pmd)) {
4280 		if (!pmdpp)
4281 			goto out;
4282 
4283 		if (start && end) {
4284 			*start = address & PMD_MASK;
4285 			*end = *start + PMD_SIZE;
4286 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4287 		}
4288 		*ptlp = pmd_lock(mm, pmd);
4289 		if (pmd_huge(*pmd)) {
4290 			*pmdpp = pmd;
4291 			return 0;
4292 		}
4293 		spin_unlock(*ptlp);
4294 		if (start && end)
4295 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4296 	}
4297 
4298 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4299 		goto out;
4300 
4301 	if (start && end) {
4302 		*start = address & PAGE_MASK;
4303 		*end = *start + PAGE_SIZE;
4304 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4305 	}
4306 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4307 	if (!pte_present(*ptep))
4308 		goto unlock;
4309 	*ptepp = ptep;
4310 	return 0;
4311 unlock:
4312 	pte_unmap_unlock(ptep, *ptlp);
4313 	if (start && end)
4314 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4315 out:
4316 	return -EINVAL;
4317 }
4318 
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4319 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4320 			     pte_t **ptepp, spinlock_t **ptlp)
4321 {
4322 	int res;
4323 
4324 	/* (void) is needed to make gcc happy */
4325 	(void) __cond_lock(*ptlp,
4326 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4327 						    ptepp, NULL, ptlp)));
4328 	return res;
4329 }
4330 
follow_pte_pmd(struct mm_struct * mm,unsigned long address,unsigned long * start,unsigned long * end,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4331 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4332 			     unsigned long *start, unsigned long *end,
4333 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4334 {
4335 	int res;
4336 
4337 	/* (void) is needed to make gcc happy */
4338 	(void) __cond_lock(*ptlp,
4339 			   !(res = __follow_pte_pmd(mm, address, start, end,
4340 						    ptepp, pmdpp, ptlp)));
4341 	return res;
4342 }
4343 EXPORT_SYMBOL(follow_pte_pmd);
4344 
4345 /**
4346  * follow_pfn - look up PFN at a user virtual address
4347  * @vma: memory mapping
4348  * @address: user virtual address
4349  * @pfn: location to store found PFN
4350  *
4351  * Only IO mappings and raw PFN mappings are allowed.
4352  *
4353  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4354  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4355 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4356 	unsigned long *pfn)
4357 {
4358 	int ret = -EINVAL;
4359 	spinlock_t *ptl;
4360 	pte_t *ptep;
4361 
4362 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4363 		return ret;
4364 
4365 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4366 	if (ret)
4367 		return ret;
4368 	*pfn = pte_pfn(*ptep);
4369 	pte_unmap_unlock(ptep, ptl);
4370 	return 0;
4371 }
4372 EXPORT_SYMBOL(follow_pfn);
4373 
4374 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4375 int follow_phys(struct vm_area_struct *vma,
4376 		unsigned long address, unsigned int flags,
4377 		unsigned long *prot, resource_size_t *phys)
4378 {
4379 	int ret = -EINVAL;
4380 	pte_t *ptep, pte;
4381 	spinlock_t *ptl;
4382 
4383 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4384 		goto out;
4385 
4386 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4387 		goto out;
4388 	pte = *ptep;
4389 
4390 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4391 		goto unlock;
4392 
4393 	*prot = pgprot_val(pte_pgprot(pte));
4394 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4395 
4396 	ret = 0;
4397 unlock:
4398 	pte_unmap_unlock(ptep, ptl);
4399 out:
4400 	return ret;
4401 }
4402 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4404 			void *buf, int len, int write)
4405 {
4406 	resource_size_t phys_addr;
4407 	unsigned long prot = 0;
4408 	void __iomem *maddr;
4409 	int offset = addr & (PAGE_SIZE-1);
4410 
4411 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4412 		return -EINVAL;
4413 
4414 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4415 	if (!maddr)
4416 		return -ENOMEM;
4417 
4418 	if (write)
4419 		memcpy_toio(maddr + offset, buf, len);
4420 	else
4421 		memcpy_fromio(buf, maddr + offset, len);
4422 	iounmap(maddr);
4423 
4424 	return len;
4425 }
4426 EXPORT_SYMBOL_GPL(generic_access_phys);
4427 #endif
4428 
4429 /*
4430  * Access another process' address space as given in mm.  If non-NULL, use the
4431  * given task for page fault accounting.
4432  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4433 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4434 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4435 {
4436 	struct vm_area_struct *vma;
4437 	void *old_buf = buf;
4438 	int write = gup_flags & FOLL_WRITE;
4439 
4440 	down_read(&mm->mmap_sem);
4441 	/* ignore errors, just check how much was successfully transferred */
4442 	while (len) {
4443 		int bytes, ret, offset;
4444 		void *maddr;
4445 		struct page *page = NULL;
4446 
4447 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4448 				gup_flags, &page, &vma, NULL);
4449 		if (ret <= 0) {
4450 #ifndef CONFIG_HAVE_IOREMAP_PROT
4451 			break;
4452 #else
4453 			/*
4454 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4455 			 * we can access using slightly different code.
4456 			 */
4457 			vma = find_vma(mm, addr);
4458 			if (!vma || vma->vm_start > addr)
4459 				break;
4460 			if (vma->vm_ops && vma->vm_ops->access)
4461 				ret = vma->vm_ops->access(vma, addr, buf,
4462 							  len, write);
4463 			if (ret <= 0)
4464 				break;
4465 			bytes = ret;
4466 #endif
4467 		} else {
4468 			bytes = len;
4469 			offset = addr & (PAGE_SIZE-1);
4470 			if (bytes > PAGE_SIZE-offset)
4471 				bytes = PAGE_SIZE-offset;
4472 
4473 			maddr = kmap(page);
4474 			if (write) {
4475 				copy_to_user_page(vma, page, addr,
4476 						  maddr + offset, buf, bytes);
4477 				set_page_dirty_lock(page);
4478 			} else {
4479 				copy_from_user_page(vma, page, addr,
4480 						    buf, maddr + offset, bytes);
4481 			}
4482 			kunmap(page);
4483 			put_page(page);
4484 		}
4485 		len -= bytes;
4486 		buf += bytes;
4487 		addr += bytes;
4488 	}
4489 	up_read(&mm->mmap_sem);
4490 
4491 	return buf - old_buf;
4492 }
4493 
4494 /**
4495  * access_remote_vm - access another process' address space
4496  * @mm:		the mm_struct of the target address space
4497  * @addr:	start address to access
4498  * @buf:	source or destination buffer
4499  * @len:	number of bytes to transfer
4500  * @gup_flags:	flags modifying lookup behaviour
4501  *
4502  * The caller must hold a reference on @mm.
4503  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4504 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4505 		void *buf, int len, unsigned int gup_flags)
4506 {
4507 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4508 }
4509 
4510 /*
4511  * Access another process' address space.
4512  * Source/target buffer must be kernel space,
4513  * Do not walk the page table directly, use get_user_pages
4514  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4515 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4516 		void *buf, int len, unsigned int gup_flags)
4517 {
4518 	struct mm_struct *mm;
4519 	int ret;
4520 
4521 	mm = get_task_mm(tsk);
4522 	if (!mm)
4523 		return 0;
4524 
4525 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4526 
4527 	mmput(mm);
4528 
4529 	return ret;
4530 }
4531 EXPORT_SYMBOL_GPL(access_process_vm);
4532 
4533 /*
4534  * Print the name of a VMA.
4535  */
print_vma_addr(char * prefix,unsigned long ip)4536 void print_vma_addr(char *prefix, unsigned long ip)
4537 {
4538 	struct mm_struct *mm = current->mm;
4539 	struct vm_area_struct *vma;
4540 
4541 	/*
4542 	 * Do not print if we are in atomic
4543 	 * contexts (in exception stacks, etc.):
4544 	 */
4545 	if (preempt_count())
4546 		return;
4547 
4548 	down_read(&mm->mmap_sem);
4549 	vma = find_vma(mm, ip);
4550 	if (vma && vma->vm_file) {
4551 		struct file *f = vma->vm_file;
4552 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4553 		if (buf) {
4554 			char *p;
4555 
4556 			p = file_path(f, buf, PAGE_SIZE);
4557 			if (IS_ERR(p))
4558 				p = "?";
4559 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4560 					vma->vm_start,
4561 					vma->vm_end - vma->vm_start);
4562 			free_page((unsigned long)buf);
4563 		}
4564 	}
4565 	up_read(&mm->mmap_sem);
4566 }
4567 
4568 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4569 void __might_fault(const char *file, int line)
4570 {
4571 	/*
4572 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4573 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4574 	 * get paged out, therefore we'll never actually fault, and the
4575 	 * below annotations will generate false positives.
4576 	 */
4577 	if (uaccess_kernel())
4578 		return;
4579 	if (pagefault_disabled())
4580 		return;
4581 	__might_sleep(file, line, 0);
4582 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4583 	if (current->mm)
4584 		might_lock_read(&current->mm->mmap_sem);
4585 #endif
4586 }
4587 EXPORT_SYMBOL(__might_fault);
4588 #endif
4589 
4590 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4591 static void clear_gigantic_page(struct page *page,
4592 				unsigned long addr,
4593 				unsigned int pages_per_huge_page)
4594 {
4595 	int i;
4596 	struct page *p = page;
4597 
4598 	might_sleep();
4599 	for (i = 0; i < pages_per_huge_page;
4600 	     i++, p = mem_map_next(p, page, i)) {
4601 		cond_resched();
4602 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4603 	}
4604 }
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4605 void clear_huge_page(struct page *page,
4606 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4607 {
4608 	int i, n, base, l;
4609 	unsigned long addr = addr_hint &
4610 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4611 
4612 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4613 		clear_gigantic_page(page, addr, pages_per_huge_page);
4614 		return;
4615 	}
4616 
4617 	/* Clear sub-page to access last to keep its cache lines hot */
4618 	might_sleep();
4619 	n = (addr_hint - addr) / PAGE_SIZE;
4620 	if (2 * n <= pages_per_huge_page) {
4621 		/* If sub-page to access in first half of huge page */
4622 		base = 0;
4623 		l = n;
4624 		/* Clear sub-pages at the end of huge page */
4625 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4626 			cond_resched();
4627 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4628 		}
4629 	} else {
4630 		/* If sub-page to access in second half of huge page */
4631 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4632 		l = pages_per_huge_page - n;
4633 		/* Clear sub-pages at the begin of huge page */
4634 		for (i = 0; i < base; i++) {
4635 			cond_resched();
4636 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4637 		}
4638 	}
4639 	/*
4640 	 * Clear remaining sub-pages in left-right-left-right pattern
4641 	 * towards the sub-page to access
4642 	 */
4643 	for (i = 0; i < l; i++) {
4644 		int left_idx = base + i;
4645 		int right_idx = base + 2 * l - 1 - i;
4646 
4647 		cond_resched();
4648 		clear_user_highpage(page + left_idx,
4649 				    addr + left_idx * PAGE_SIZE);
4650 		cond_resched();
4651 		clear_user_highpage(page + right_idx,
4652 				    addr + right_idx * PAGE_SIZE);
4653 	}
4654 }
4655 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4656 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4657 				    unsigned long addr,
4658 				    struct vm_area_struct *vma,
4659 				    unsigned int pages_per_huge_page)
4660 {
4661 	int i;
4662 	struct page *dst_base = dst;
4663 	struct page *src_base = src;
4664 
4665 	for (i = 0; i < pages_per_huge_page; ) {
4666 		cond_resched();
4667 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4668 
4669 		i++;
4670 		dst = mem_map_next(dst, dst_base, i);
4671 		src = mem_map_next(src, src_base, i);
4672 	}
4673 }
4674 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4675 void copy_user_huge_page(struct page *dst, struct page *src,
4676 			 unsigned long addr, struct vm_area_struct *vma,
4677 			 unsigned int pages_per_huge_page)
4678 {
4679 	int i;
4680 
4681 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4682 		copy_user_gigantic_page(dst, src, addr, vma,
4683 					pages_per_huge_page);
4684 		return;
4685 	}
4686 
4687 	might_sleep();
4688 	for (i = 0; i < pages_per_huge_page; i++) {
4689 		cond_resched();
4690 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4691 	}
4692 }
4693 
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4694 long copy_huge_page_from_user(struct page *dst_page,
4695 				const void __user *usr_src,
4696 				unsigned int pages_per_huge_page,
4697 				bool allow_pagefault)
4698 {
4699 	void *src = (void *)usr_src;
4700 	void *page_kaddr;
4701 	unsigned long i, rc = 0;
4702 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4703 
4704 	for (i = 0; i < pages_per_huge_page; i++) {
4705 		if (allow_pagefault)
4706 			page_kaddr = kmap(dst_page + i);
4707 		else
4708 			page_kaddr = kmap_atomic(dst_page + i);
4709 		rc = copy_from_user(page_kaddr,
4710 				(const void __user *)(src + i * PAGE_SIZE),
4711 				PAGE_SIZE);
4712 		if (allow_pagefault)
4713 			kunmap(dst_page + i);
4714 		else
4715 			kunmap_atomic(page_kaddr);
4716 
4717 		ret_val -= (PAGE_SIZE - rc);
4718 		if (rc)
4719 			break;
4720 
4721 		cond_resched();
4722 	}
4723 	return ret_val;
4724 }
4725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4726 
4727 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4728 
4729 static struct kmem_cache *page_ptl_cachep;
4730 
ptlock_cache_init(void)4731 void __init ptlock_cache_init(void)
4732 {
4733 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4734 			SLAB_PANIC, NULL);
4735 }
4736 
ptlock_alloc(struct page * page)4737 bool ptlock_alloc(struct page *page)
4738 {
4739 	spinlock_t *ptl;
4740 
4741 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4742 	if (!ptl)
4743 		return false;
4744 	page->ptl = ptl;
4745 	return true;
4746 }
4747 
ptlock_free(struct page * page)4748 void ptlock_free(struct page *page)
4749 {
4750 	kmem_cache_free(page_ptl_cachep, page->ptl);
4751 }
4752 #endif
4753