• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1999-2003		Andre Hedrick <andre@linux-ide.org>
3  * Portions Copyright (C) 2001	        Sun Microsystems, Inc.
4  * Portions Copyright (C) 2003		Red Hat Inc
5  * Portions Copyright (C) 2007		Bartlomiej Zolnierkiewicz
6  * Portions Copyright (C) 2005-2009	MontaVista Software, Inc.
7  *
8  * Thanks to HighPoint Technologies for their assistance, and hardware.
9  * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10  * donation of an ABit BP6 mainboard, processor, and memory acellerated
11  * development and support.
12  *
13  *
14  * HighPoint has its own drivers (open source except for the RAID part)
15  * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16  * This may be useful to anyone wanting to work on this driver, however  do not
17  * trust  them too much since the code tends to become less and less meaningful
18  * as the time passes... :-/
19  *
20  * Note that final HPT370 support was done by force extraction of GPL.
21  *
22  * - add function for getting/setting power status of drive
23  * - the HPT370's state machine can get confused. reset it before each dma
24  *   xfer to prevent that from happening.
25  * - reset state engine whenever we get an error.
26  * - check for busmaster state at end of dma.
27  * - use new highpoint timings.
28  * - detect bus speed using highpoint register.
29  * - use pll if we don't have a clock table. added a 66MHz table that's
30  *   just 2x the 33MHz table.
31  * - removed turnaround. NOTE: we never want to switch between pll and
32  *   pci clocks as the chip can glitch in those cases. the highpoint
33  *   approved workaround slows everything down too much to be useful. in
34  *   addition, we would have to serialize access to each chip.
35  * 	Adrian Sun <a.sun@sun.com>
36  *
37  * add drive timings for 66MHz PCI bus,
38  * fix ATA Cable signal detection, fix incorrect /proc info
39  * add /proc display for per-drive PIO/DMA/UDMA mode and
40  * per-channel ATA-33/66 Cable detect.
41  * 	Duncan Laurie <void@sun.com>
42  *
43  * fixup /proc output for multiple controllers
44  *	Tim Hockin <thockin@sun.com>
45  *
46  * On hpt366:
47  * Reset the hpt366 on error, reset on dma
48  * Fix disabling Fast Interrupt hpt366.
49  * 	Mike Waychison <crlf@sun.com>
50  *
51  * Added support for 372N clocking and clock switching. The 372N needs
52  * different clocks on read/write. This requires overloading rw_disk and
53  * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54  * keeping me sane.
55  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
56  *
57  * - fix the clock turnaround code: it was writing to the wrong ports when
58  *   called for the secondary channel, caching the current clock mode per-
59  *   channel caused the cached register value to get out of sync with the
60  *   actual one, the channels weren't serialized, the turnaround shouldn't
61  *   be done on 66 MHz PCI bus
62  * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63  *   does not allow for this speed anyway
64  * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65  *   their primary channel is kind of virtual, it isn't tied to any pins)
66  * - fix/remove bad/unused timing tables and use one set of tables for the whole
67  *   HPT37x chip family; save space by introducing the separate transfer mode
68  *   table in which the mode lookup is done
69  * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
70  *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71  *   read it only from the function 0 of HPT374 chips
72  * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
73  *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74  * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75  *   they tamper with its fields
76  * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
77  *   since they may tamper with its fields
78  * - prefix the driver startup messages with the real chip name
79  * - claim the extra 240 bytes of I/O space for all chips
80  * - optimize the UltraDMA filtering and the drive list lookup code
81  * - use pci_get_slot() to get to the function 1 of HPT36x/374
82  * - cache offset of the channel's misc. control registers (MCRs) being used
83  *   throughout the driver
84  * - only touch the relevant MCR when detecting the cable type on HPT374's
85  *   function 1
86  * - rename all the register related variables consistently
87  * - move all the interrupt twiddling code from the speedproc handlers into
88  *   init_hwif_hpt366(), also grouping all the DMA related code together there
89  * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90  *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91  *   when setting an UltraDMA mode
92  * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93  *   the best possible one
94  * - clean up DMA timeout handling for HPT370
95  * - switch to using the enumeration type to differ between the numerous chip
96  *   variants, matching PCI device/revision ID with the chip type early, at the
97  *   init_setup stage
98  * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99  *   stop duplicating it for each channel by storing the pointer in the pci_dev
100  *   structure: first, at the init_setup stage, point it to a static "template"
101  *   with only the chip type and its specific base DPLL frequency, the highest
102  *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
103  *   init_chipset stage, allocate per-chip instance  and fill it with the rest
104  *   of the necessary information
105  * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106  *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
107  *   frequency
108  * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
109  *   anything  newer than HPT370/A (except HPT374 that is not capable of this
110  *   mode according to the manual)
111  * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112  *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113  *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
114  *   the register setting lists into the table indexed by the clock selected
115  * - set the correct hwif->ultra_mask for each individual chip
116  * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117  * - stop resetting HPT370's state machine before each DMA transfer as that has
118  *   caused more harm than good
119  *	Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120  */
121 
122 #include <linux/types.h>
123 #include <linux/module.h>
124 #include <linux/kernel.h>
125 #include <linux/delay.h>
126 #include <linux/blkdev.h>
127 #include <linux/interrupt.h>
128 #include <linux/pci.h>
129 #include <linux/init.h>
130 #include <linux/ide.h>
131 #include <linux/slab.h>
132 
133 #include <linux/uaccess.h>
134 #include <asm/io.h>
135 
136 #define DRV_NAME "hpt366"
137 
138 /* various tuning parameters */
139 #undef	HPT_RESET_STATE_ENGINE
140 #undef	HPT_DELAY_INTERRUPT
141 
142 static const char *bad_ata100_5[] = {
143 	"IBM-DTLA-307075",
144 	"IBM-DTLA-307060",
145 	"IBM-DTLA-307045",
146 	"IBM-DTLA-307030",
147 	"IBM-DTLA-307020",
148 	"IBM-DTLA-307015",
149 	"IBM-DTLA-305040",
150 	"IBM-DTLA-305030",
151 	"IBM-DTLA-305020",
152 	"IC35L010AVER07-0",
153 	"IC35L020AVER07-0",
154 	"IC35L030AVER07-0",
155 	"IC35L040AVER07-0",
156 	"IC35L060AVER07-0",
157 	"WDC AC310200R",
158 	NULL
159 };
160 
161 static const char *bad_ata66_4[] = {
162 	"IBM-DTLA-307075",
163 	"IBM-DTLA-307060",
164 	"IBM-DTLA-307045",
165 	"IBM-DTLA-307030",
166 	"IBM-DTLA-307020",
167 	"IBM-DTLA-307015",
168 	"IBM-DTLA-305040",
169 	"IBM-DTLA-305030",
170 	"IBM-DTLA-305020",
171 	"IC35L010AVER07-0",
172 	"IC35L020AVER07-0",
173 	"IC35L030AVER07-0",
174 	"IC35L040AVER07-0",
175 	"IC35L060AVER07-0",
176 	"WDC AC310200R",
177 	"MAXTOR STM3320620A",
178 	NULL
179 };
180 
181 static const char *bad_ata66_3[] = {
182 	"WDC AC310200R",
183 	NULL
184 };
185 
186 static const char *bad_ata33[] = {
187 	"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188 	"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189 	"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190 	"Maxtor 90510D4",
191 	"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192 	"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193 	"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194 	NULL
195 };
196 
197 static u8 xfer_speeds[] = {
198 	XFER_UDMA_6,
199 	XFER_UDMA_5,
200 	XFER_UDMA_4,
201 	XFER_UDMA_3,
202 	XFER_UDMA_2,
203 	XFER_UDMA_1,
204 	XFER_UDMA_0,
205 
206 	XFER_MW_DMA_2,
207 	XFER_MW_DMA_1,
208 	XFER_MW_DMA_0,
209 
210 	XFER_PIO_4,
211 	XFER_PIO_3,
212 	XFER_PIO_2,
213 	XFER_PIO_1,
214 	XFER_PIO_0
215 };
216 
217 /* Key for bus clock timings
218  * 36x   37x
219  * bits  bits
220  * 0:3	 0:3	data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221  *		cycles = value + 1
222  * 4:7	 4:8	data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223  *		cycles = value + 1
224  * 8:11  9:12	cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225  *		register access.
226  * 12:15 13:17	cmd_low_time. Active time of DIOW_/DIOR_ during task file
227  *		register access.
228  * 16:18 18:20	udma_cycle_time. Clock cycles for UDMA xfer.
229  * -	 21	CLK frequency: 0=ATA clock, 1=dual ATA clock.
230  * 19:21 22:24	pre_high_time. Time to initialize the 1st cycle for PIO and
231  *		MW DMA xfer.
232  * 22:24 25:27	cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233  *		task file register access.
234  * 28	 28	UDMA enable.
235  * 29	 29	DMA  enable.
236  * 30	 30	PIO MST enable. If set, the chip is in bus master mode during
237  *		PIO xfer.
238  * 31	 31	FIFO enable.
239  */
240 
241 static u32 forty_base_hpt36x[] = {
242 	/* XFER_UDMA_6 */	0x900fd943,
243 	/* XFER_UDMA_5 */	0x900fd943,
244 	/* XFER_UDMA_4 */	0x900fd943,
245 	/* XFER_UDMA_3 */	0x900ad943,
246 	/* XFER_UDMA_2 */	0x900bd943,
247 	/* XFER_UDMA_1 */	0x9008d943,
248 	/* XFER_UDMA_0 */	0x9008d943,
249 
250 	/* XFER_MW_DMA_2 */	0xa008d943,
251 	/* XFER_MW_DMA_1 */	0xa010d955,
252 	/* XFER_MW_DMA_0 */	0xa010d9fc,
253 
254 	/* XFER_PIO_4 */	0xc008d963,
255 	/* XFER_PIO_3 */	0xc010d974,
256 	/* XFER_PIO_2 */	0xc010d997,
257 	/* XFER_PIO_1 */	0xc010d9c7,
258 	/* XFER_PIO_0 */	0xc018d9d9
259 };
260 
261 static u32 thirty_three_base_hpt36x[] = {
262 	/* XFER_UDMA_6 */	0x90c9a731,
263 	/* XFER_UDMA_5 */	0x90c9a731,
264 	/* XFER_UDMA_4 */	0x90c9a731,
265 	/* XFER_UDMA_3 */	0x90cfa731,
266 	/* XFER_UDMA_2 */	0x90caa731,
267 	/* XFER_UDMA_1 */	0x90cba731,
268 	/* XFER_UDMA_0 */	0x90c8a731,
269 
270 	/* XFER_MW_DMA_2 */	0xa0c8a731,
271 	/* XFER_MW_DMA_1 */	0xa0c8a732,	/* 0xa0c8a733 */
272 	/* XFER_MW_DMA_0 */	0xa0c8a797,
273 
274 	/* XFER_PIO_4 */	0xc0c8a731,
275 	/* XFER_PIO_3 */	0xc0c8a742,
276 	/* XFER_PIO_2 */	0xc0d0a753,
277 	/* XFER_PIO_1 */	0xc0d0a7a3,	/* 0xc0d0a793 */
278 	/* XFER_PIO_0 */	0xc0d0a7aa	/* 0xc0d0a7a7 */
279 };
280 
281 static u32 twenty_five_base_hpt36x[] = {
282 	/* XFER_UDMA_6 */	0x90c98521,
283 	/* XFER_UDMA_5 */	0x90c98521,
284 	/* XFER_UDMA_4 */	0x90c98521,
285 	/* XFER_UDMA_3 */	0x90cf8521,
286 	/* XFER_UDMA_2 */	0x90cf8521,
287 	/* XFER_UDMA_1 */	0x90cb8521,
288 	/* XFER_UDMA_0 */	0x90cb8521,
289 
290 	/* XFER_MW_DMA_2 */	0xa0ca8521,
291 	/* XFER_MW_DMA_1 */	0xa0ca8532,
292 	/* XFER_MW_DMA_0 */	0xa0ca8575,
293 
294 	/* XFER_PIO_4 */	0xc0ca8521,
295 	/* XFER_PIO_3 */	0xc0ca8532,
296 	/* XFER_PIO_2 */	0xc0ca8542,
297 	/* XFER_PIO_1 */	0xc0d08572,
298 	/* XFER_PIO_0 */	0xc0d08585
299 };
300 
301 /*
302  * The following are the new timing tables with PIO mode data/taskfile transfer
303  * overclocking fixed...
304  */
305 
306 /* This table is taken from the HPT370 data manual rev. 1.02 */
307 static u32 thirty_three_base_hpt37x[] = {
308 	/* XFER_UDMA_6 */	0x16455031,	/* 0x16655031 ?? */
309 	/* XFER_UDMA_5 */	0x16455031,
310 	/* XFER_UDMA_4 */	0x16455031,
311 	/* XFER_UDMA_3 */	0x166d5031,
312 	/* XFER_UDMA_2 */	0x16495031,
313 	/* XFER_UDMA_1 */	0x164d5033,
314 	/* XFER_UDMA_0 */	0x16515097,
315 
316 	/* XFER_MW_DMA_2 */	0x26515031,
317 	/* XFER_MW_DMA_1 */	0x26515033,
318 	/* XFER_MW_DMA_0 */	0x26515097,
319 
320 	/* XFER_PIO_4 */	0x06515021,
321 	/* XFER_PIO_3 */	0x06515022,
322 	/* XFER_PIO_2 */	0x06515033,
323 	/* XFER_PIO_1 */	0x06915065,
324 	/* XFER_PIO_0 */	0x06d1508a
325 };
326 
327 static u32 fifty_base_hpt37x[] = {
328 	/* XFER_UDMA_6 */	0x1a861842,
329 	/* XFER_UDMA_5 */	0x1a861842,
330 	/* XFER_UDMA_4 */	0x1aae1842,
331 	/* XFER_UDMA_3 */	0x1a8e1842,
332 	/* XFER_UDMA_2 */	0x1a0e1842,
333 	/* XFER_UDMA_1 */	0x1a161854,
334 	/* XFER_UDMA_0 */	0x1a1a18ea,
335 
336 	/* XFER_MW_DMA_2 */	0x2a821842,
337 	/* XFER_MW_DMA_1 */	0x2a821854,
338 	/* XFER_MW_DMA_0 */	0x2a8218ea,
339 
340 	/* XFER_PIO_4 */	0x0a821842,
341 	/* XFER_PIO_3 */	0x0a821843,
342 	/* XFER_PIO_2 */	0x0a821855,
343 	/* XFER_PIO_1 */	0x0ac218a8,
344 	/* XFER_PIO_0 */	0x0b02190c
345 };
346 
347 static u32 sixty_six_base_hpt37x[] = {
348 	/* XFER_UDMA_6 */	0x1c86fe62,
349 	/* XFER_UDMA_5 */	0x1caefe62,	/* 0x1c8afe62 */
350 	/* XFER_UDMA_4 */	0x1c8afe62,
351 	/* XFER_UDMA_3 */	0x1c8efe62,
352 	/* XFER_UDMA_2 */	0x1c92fe62,
353 	/* XFER_UDMA_1 */	0x1c9afe62,
354 	/* XFER_UDMA_0 */	0x1c82fe62,
355 
356 	/* XFER_MW_DMA_2 */	0x2c82fe62,
357 	/* XFER_MW_DMA_1 */	0x2c82fe66,
358 	/* XFER_MW_DMA_0 */	0x2c82ff2e,
359 
360 	/* XFER_PIO_4 */	0x0c82fe62,
361 	/* XFER_PIO_3 */	0x0c82fe84,
362 	/* XFER_PIO_2 */	0x0c82fea6,
363 	/* XFER_PIO_1 */	0x0d02ff26,
364 	/* XFER_PIO_0 */	0x0d42ff7f
365 };
366 
367 #define HPT371_ALLOW_ATA133_6		1
368 #define HPT302_ALLOW_ATA133_6		1
369 #define HPT372_ALLOW_ATA133_6		1
370 #define HPT370_ALLOW_ATA100_5		0
371 #define HPT366_ALLOW_ATA66_4		1
372 #define HPT366_ALLOW_ATA66_3		1
373 
374 /* Supported ATA clock frequencies */
375 enum ata_clock {
376 	ATA_CLOCK_25MHZ,
377 	ATA_CLOCK_33MHZ,
378 	ATA_CLOCK_40MHZ,
379 	ATA_CLOCK_50MHZ,
380 	ATA_CLOCK_66MHZ,
381 	NUM_ATA_CLOCKS
382 };
383 
384 struct hpt_timings {
385 	u32 pio_mask;
386 	u32 dma_mask;
387 	u32 ultra_mask;
388 	u32 *clock_table[NUM_ATA_CLOCKS];
389 };
390 
391 /*
392  *	Hold all the HighPoint chip information in one place.
393  */
394 
395 struct hpt_info {
396 	char *chip_name;	/* Chip name */
397 	u8 chip_type;		/* Chip type */
398 	u8 udma_mask;		/* Allowed UltraDMA modes mask. */
399 	u8 dpll_clk;		/* DPLL clock in MHz */
400 	u8 pci_clk;		/* PCI  clock in MHz */
401 	struct hpt_timings *timings; /* Chipset timing data */
402 	u8 clock;		/* ATA clock selected */
403 };
404 
405 /* Supported HighPoint chips */
406 enum {
407 	HPT36x,
408 	HPT370,
409 	HPT370A,
410 	HPT374,
411 	HPT372,
412 	HPT372A,
413 	HPT302,
414 	HPT371,
415 	HPT372N,
416 	HPT302N,
417 	HPT371N
418 };
419 
420 static struct hpt_timings hpt36x_timings = {
421 	.pio_mask	= 0xc1f8ffff,
422 	.dma_mask	= 0x303800ff,
423 	.ultra_mask	= 0x30070000,
424 	.clock_table	= {
425 		[ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427 		[ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428 		[ATA_CLOCK_50MHZ] = NULL,
429 		[ATA_CLOCK_66MHZ] = NULL
430 	}
431 };
432 
433 static struct hpt_timings hpt37x_timings = {
434 	.pio_mask	= 0xcfc3ffff,
435 	.dma_mask	= 0x31c001ff,
436 	.ultra_mask	= 0x303c0000,
437 	.clock_table	= {
438 		[ATA_CLOCK_25MHZ] = NULL,
439 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440 		[ATA_CLOCK_40MHZ] = NULL,
441 		[ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442 		[ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443 	}
444 };
445 
446 static const struct hpt_info hpt36x = {
447 	.chip_name	= "HPT36x",
448 	.chip_type	= HPT36x,
449 	.udma_mask	= HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450 	.dpll_clk	= 0,	/* no DPLL */
451 	.timings	= &hpt36x_timings
452 };
453 
454 static const struct hpt_info hpt370 = {
455 	.chip_name	= "HPT370",
456 	.chip_type	= HPT370,
457 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458 	.dpll_clk	= 48,
459 	.timings	= &hpt37x_timings
460 };
461 
462 static const struct hpt_info hpt370a = {
463 	.chip_name	= "HPT370A",
464 	.chip_type	= HPT370A,
465 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466 	.dpll_clk	= 48,
467 	.timings	= &hpt37x_timings
468 };
469 
470 static const struct hpt_info hpt374 = {
471 	.chip_name	= "HPT374",
472 	.chip_type	= HPT374,
473 	.udma_mask	= ATA_UDMA5,
474 	.dpll_clk	= 48,
475 	.timings	= &hpt37x_timings
476 };
477 
478 static const struct hpt_info hpt372 = {
479 	.chip_name	= "HPT372",
480 	.chip_type	= HPT372,
481 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482 	.dpll_clk	= 55,
483 	.timings	= &hpt37x_timings
484 };
485 
486 static const struct hpt_info hpt372a = {
487 	.chip_name	= "HPT372A",
488 	.chip_type	= HPT372A,
489 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490 	.dpll_clk	= 66,
491 	.timings	= &hpt37x_timings
492 };
493 
494 static const struct hpt_info hpt302 = {
495 	.chip_name	= "HPT302",
496 	.chip_type	= HPT302,
497 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498 	.dpll_clk	= 66,
499 	.timings	= &hpt37x_timings
500 };
501 
502 static const struct hpt_info hpt371 = {
503 	.chip_name	= "HPT371",
504 	.chip_type	= HPT371,
505 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506 	.dpll_clk	= 66,
507 	.timings	= &hpt37x_timings
508 };
509 
510 static const struct hpt_info hpt372n = {
511 	.chip_name	= "HPT372N",
512 	.chip_type	= HPT372N,
513 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514 	.dpll_clk	= 77,
515 	.timings	= &hpt37x_timings
516 };
517 
518 static const struct hpt_info hpt302n = {
519 	.chip_name	= "HPT302N",
520 	.chip_type	= HPT302N,
521 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522 	.dpll_clk	= 77,
523 	.timings	= &hpt37x_timings
524 };
525 
526 static const struct hpt_info hpt371n = {
527 	.chip_name	= "HPT371N",
528 	.chip_type	= HPT371N,
529 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530 	.dpll_clk	= 77,
531 	.timings	= &hpt37x_timings
532 };
533 
check_in_drive_list(ide_drive_t * drive,const char ** list)534 static bool check_in_drive_list(ide_drive_t *drive, const char **list)
535 {
536 	return match_string(list, -1, (char *)&drive->id[ATA_ID_PROD]) >= 0;
537 }
538 
hpt3xx_get_info(struct device * dev)539 static struct hpt_info *hpt3xx_get_info(struct device *dev)
540 {
541 	struct ide_host *host	= dev_get_drvdata(dev);
542 	struct hpt_info *info	= (struct hpt_info *)host->host_priv;
543 
544 	return dev == host->dev[1] ? info + 1 : info;
545 }
546 
547 /*
548  * The Marvell bridge chips used on the HighPoint SATA cards do not seem
549  * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
550  */
551 
hpt3xx_udma_filter(ide_drive_t * drive)552 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
553 {
554 	ide_hwif_t *hwif	= drive->hwif;
555 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
556 	u8 mask 		= hwif->ultra_mask;
557 
558 	switch (info->chip_type) {
559 	case HPT36x:
560 		if (!HPT366_ALLOW_ATA66_4 ||
561 		    check_in_drive_list(drive, bad_ata66_4))
562 			mask = ATA_UDMA3;
563 
564 		if (!HPT366_ALLOW_ATA66_3 ||
565 		    check_in_drive_list(drive, bad_ata66_3))
566 			mask = ATA_UDMA2;
567 		break;
568 	case HPT370:
569 		if (!HPT370_ALLOW_ATA100_5 ||
570 		    check_in_drive_list(drive, bad_ata100_5))
571 			mask = ATA_UDMA4;
572 		break;
573 	case HPT370A:
574 		if (!HPT370_ALLOW_ATA100_5 ||
575 		    check_in_drive_list(drive, bad_ata100_5))
576 			return ATA_UDMA4;
577 	case HPT372 :
578 	case HPT372A:
579 	case HPT372N:
580 	case HPT374 :
581 		if (ata_id_is_sata(drive->id))
582 			mask &= ~0x0e;
583 		/* Fall thru */
584 	default:
585 		return mask;
586 	}
587 
588 	return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
589 }
590 
hpt3xx_mdma_filter(ide_drive_t * drive)591 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
592 {
593 	ide_hwif_t *hwif	= drive->hwif;
594 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
595 
596 	switch (info->chip_type) {
597 	case HPT372 :
598 	case HPT372A:
599 	case HPT372N:
600 	case HPT374 :
601 		if (ata_id_is_sata(drive->id))
602 			return 0x00;
603 		/* Fall thru */
604 	default:
605 		return 0x07;
606 	}
607 }
608 
get_speed_setting(u8 speed,struct hpt_info * info)609 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
610 {
611 	int i;
612 
613 	/*
614 	 * Lookup the transfer mode table to get the index into
615 	 * the timing table.
616 	 *
617 	 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
618 	 */
619 	for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
620 		if (xfer_speeds[i] == speed)
621 			break;
622 
623 	return info->timings->clock_table[info->clock][i];
624 }
625 
hpt3xx_set_mode(ide_hwif_t * hwif,ide_drive_t * drive)626 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
627 {
628 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
629 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
630 	struct hpt_timings *t	= info->timings;
631 	u8  itr_addr		= 0x40 + (drive->dn * 4);
632 	u32 old_itr		= 0;
633 	const u8 speed		= drive->dma_mode;
634 	u32 new_itr		= get_speed_setting(speed, info);
635 	u32 itr_mask		= speed < XFER_MW_DMA_0 ? t->pio_mask :
636 				 (speed < XFER_UDMA_0   ? t->dma_mask :
637 							  t->ultra_mask);
638 
639 	pci_read_config_dword(dev, itr_addr, &old_itr);
640 	new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
641 	/*
642 	 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
643 	 * to avoid problems handling I/O errors later
644 	 */
645 	new_itr &= ~0xc0000000;
646 
647 	pci_write_config_dword(dev, itr_addr, new_itr);
648 }
649 
hpt3xx_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)650 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
651 {
652 	drive->dma_mode = drive->pio_mode;
653 	hpt3xx_set_mode(hwif, drive);
654 }
655 
hpt3xx_maskproc(ide_drive_t * drive,int mask)656 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
657 {
658 	ide_hwif_t *hwif	= drive->hwif;
659 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
660 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
661 
662 	if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
663 		return;
664 
665 	if (info->chip_type >= HPT370) {
666 		u8 scr1 = 0;
667 
668 		pci_read_config_byte(dev, 0x5a, &scr1);
669 		if (((scr1 & 0x10) >> 4) != mask) {
670 			if (mask)
671 				scr1 |=  0x10;
672 			else
673 				scr1 &= ~0x10;
674 			pci_write_config_byte(dev, 0x5a, scr1);
675 		}
676 	} else if (mask)
677 		disable_irq(hwif->irq);
678 	else
679 		enable_irq(hwif->irq);
680 }
681 
682 /*
683  * This is specific to the HPT366 UDMA chipset
684  * by HighPoint|Triones Technologies, Inc.
685  */
hpt366_dma_lost_irq(ide_drive_t * drive)686 static void hpt366_dma_lost_irq(ide_drive_t *drive)
687 {
688 	struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
689 	u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
690 
691 	pci_read_config_byte(dev, 0x50, &mcr1);
692 	pci_read_config_byte(dev, 0x52, &mcr3);
693 	pci_read_config_byte(dev, 0x5a, &scr1);
694 	printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
695 		drive->name, __func__, mcr1, mcr3, scr1);
696 	if (scr1 & 0x10)
697 		pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
698 	ide_dma_lost_irq(drive);
699 }
700 
hpt370_clear_engine(ide_drive_t * drive)701 static void hpt370_clear_engine(ide_drive_t *drive)
702 {
703 	ide_hwif_t *hwif = drive->hwif;
704 	struct pci_dev *dev = to_pci_dev(hwif->dev);
705 
706 	pci_write_config_byte(dev, hwif->select_data, 0x37);
707 	udelay(10);
708 }
709 
hpt370_irq_timeout(ide_drive_t * drive)710 static void hpt370_irq_timeout(ide_drive_t *drive)
711 {
712 	ide_hwif_t *hwif	= drive->hwif;
713 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
714 	u16 bfifo		= 0;
715 	u8  dma_cmd;
716 
717 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
718 	printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
719 
720 	/* get DMA command mode */
721 	dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
722 	/* stop DMA */
723 	outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
724 	hpt370_clear_engine(drive);
725 }
726 
hpt370_dma_start(ide_drive_t * drive)727 static void hpt370_dma_start(ide_drive_t *drive)
728 {
729 #ifdef HPT_RESET_STATE_ENGINE
730 	hpt370_clear_engine(drive);
731 #endif
732 	ide_dma_start(drive);
733 }
734 
hpt370_dma_end(ide_drive_t * drive)735 static int hpt370_dma_end(ide_drive_t *drive)
736 {
737 	ide_hwif_t *hwif	= drive->hwif;
738 	u8  dma_stat		= inb(hwif->dma_base + ATA_DMA_STATUS);
739 
740 	if (dma_stat & ATA_DMA_ACTIVE) {
741 		/* wait a little */
742 		udelay(20);
743 		dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
744 		if (dma_stat & ATA_DMA_ACTIVE)
745 			hpt370_irq_timeout(drive);
746 	}
747 	return ide_dma_end(drive);
748 }
749 
750 /* returns 1 if DMA IRQ issued, 0 otherwise */
hpt374_dma_test_irq(ide_drive_t * drive)751 static int hpt374_dma_test_irq(ide_drive_t *drive)
752 {
753 	ide_hwif_t *hwif	= drive->hwif;
754 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
755 	u16 bfifo		= 0;
756 	u8  dma_stat;
757 
758 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
759 	if (bfifo & 0x1FF) {
760 //		printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
761 		return 0;
762 	}
763 
764 	dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
765 	/* return 1 if INTR asserted */
766 	if (dma_stat & ATA_DMA_INTR)
767 		return 1;
768 
769 	return 0;
770 }
771 
hpt374_dma_end(ide_drive_t * drive)772 static int hpt374_dma_end(ide_drive_t *drive)
773 {
774 	ide_hwif_t *hwif	= drive->hwif;
775 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
776 	u8 mcr	= 0, mcr_addr	= hwif->select_data;
777 	u8 bwsr = 0, mask	= hwif->channel ? 0x02 : 0x01;
778 
779 	pci_read_config_byte(dev, 0x6a, &bwsr);
780 	pci_read_config_byte(dev, mcr_addr, &mcr);
781 	if (bwsr & mask)
782 		pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
783 	return ide_dma_end(drive);
784 }
785 
786 /**
787  *	hpt3xxn_set_clock	-	perform clock switching dance
788  *	@hwif: hwif to switch
789  *	@mode: clocking mode (0x21 for write, 0x23 otherwise)
790  *
791  *	Switch the DPLL clock on the HPT3xxN devices. This is a	right mess.
792  */
793 
hpt3xxn_set_clock(ide_hwif_t * hwif,u8 mode)794 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
795 {
796 	unsigned long base = hwif->extra_base;
797 	u8 scr2 = inb(base + 0x6b);
798 
799 	if ((scr2 & 0x7f) == mode)
800 		return;
801 
802 	/* Tristate the bus */
803 	outb(0x80, base + 0x63);
804 	outb(0x80, base + 0x67);
805 
806 	/* Switch clock and reset channels */
807 	outb(mode, base + 0x6b);
808 	outb(0xc0, base + 0x69);
809 
810 	/*
811 	 * Reset the state machines.
812 	 * NOTE: avoid accidentally enabling the disabled channels.
813 	 */
814 	outb(inb(base + 0x60) | 0x32, base + 0x60);
815 	outb(inb(base + 0x64) | 0x32, base + 0x64);
816 
817 	/* Complete reset */
818 	outb(0x00, base + 0x69);
819 
820 	/* Reconnect channels to bus */
821 	outb(0x00, base + 0x63);
822 	outb(0x00, base + 0x67);
823 }
824 
825 /**
826  *	hpt3xxn_rw_disk		-	prepare for I/O
827  *	@drive: drive for command
828  *	@rq: block request structure
829  *
830  *	This is called when a disk I/O is issued to HPT3xxN.
831  *	We need it because of the clock switching.
832  */
833 
hpt3xxn_rw_disk(ide_drive_t * drive,struct request * rq)834 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
835 {
836 	hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
837 }
838 
839 /**
840  *	hpt37x_calibrate_dpll	-	calibrate the DPLL
841  *	@dev: PCI device
842  *
843  *	Perform a calibration cycle on the DPLL.
844  *	Returns 1 if this succeeds
845  */
hpt37x_calibrate_dpll(struct pci_dev * dev,u16 f_low,u16 f_high)846 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
847 {
848 	u32 dpll = (f_high << 16) | f_low | 0x100;
849 	u8  scr2;
850 	int i;
851 
852 	pci_write_config_dword(dev, 0x5c, dpll);
853 
854 	/* Wait for oscillator ready */
855 	for(i = 0; i < 0x5000; ++i) {
856 		udelay(50);
857 		pci_read_config_byte(dev, 0x5b, &scr2);
858 		if (scr2 & 0x80)
859 			break;
860 	}
861 	/* See if it stays ready (we'll just bail out if it's not yet) */
862 	for(i = 0; i < 0x1000; ++i) {
863 		pci_read_config_byte(dev, 0x5b, &scr2);
864 		/* DPLL destabilized? */
865 		if(!(scr2 & 0x80))
866 			return 0;
867 	}
868 	/* Turn off tuning, we have the DPLL set */
869 	pci_read_config_dword (dev, 0x5c, &dpll);
870 	pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
871 	return 1;
872 }
873 
hpt3xx_disable_fast_irq(struct pci_dev * dev,u8 mcr_addr)874 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
875 {
876 	struct ide_host *host	= pci_get_drvdata(dev);
877 	struct hpt_info *info	= host->host_priv + (&dev->dev == host->dev[1]);
878 	u8  chip_type		= info->chip_type;
879 	u8  new_mcr, old_mcr	= 0;
880 
881 	/*
882 	 * Disable the "fast interrupt" prediction.  Don't hold off
883 	 * on interrupts. (== 0x01 despite what the docs say)
884 	 */
885 	pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
886 
887 	if (chip_type >= HPT374)
888 		new_mcr = old_mcr & ~0x07;
889 	else if (chip_type >= HPT370) {
890 		new_mcr = old_mcr;
891 		new_mcr &= ~0x02;
892 #ifdef HPT_DELAY_INTERRUPT
893 		new_mcr &= ~0x01;
894 #else
895 		new_mcr |=  0x01;
896 #endif
897 	} else					/* HPT366 and HPT368  */
898 		new_mcr = old_mcr & ~0x80;
899 
900 	if (new_mcr != old_mcr)
901 		pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
902 }
903 
init_chipset_hpt366(struct pci_dev * dev)904 static int init_chipset_hpt366(struct pci_dev *dev)
905 {
906 	unsigned long io_base	= pci_resource_start(dev, 4);
907 	struct hpt_info *info	= hpt3xx_get_info(&dev->dev);
908 	const char *name	= DRV_NAME;
909 	u8 pci_clk,  dpll_clk	= 0;	/* PCI and DPLL clock in MHz */
910 	u8 chip_type;
911 	enum ata_clock	clock;
912 
913 	chip_type = info->chip_type;
914 
915 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
916 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
917 	pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
918 	pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
919 
920 	/*
921 	 * First, try to estimate the PCI clock frequency...
922 	 */
923 	if (chip_type >= HPT370) {
924 		u8  scr1  = 0;
925 		u16 f_cnt = 0;
926 		u32 temp  = 0;
927 
928 		/* Interrupt force enable. */
929 		pci_read_config_byte(dev, 0x5a, &scr1);
930 		if (scr1 & 0x10)
931 			pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
932 
933 		/*
934 		 * HighPoint does this for HPT372A.
935 		 * NOTE: This register is only writeable via I/O space.
936 		 */
937 		if (chip_type == HPT372A)
938 			outb(0x0e, io_base + 0x9c);
939 
940 		/*
941 		 * Default to PCI clock. Make sure MA15/16 are set to output
942 		 * to prevent drives having problems with 40-pin cables.
943 		 */
944 		pci_write_config_byte(dev, 0x5b, 0x23);
945 
946 		/*
947 		 * We'll have to read f_CNT value in order to determine
948 		 * the PCI clock frequency according to the following ratio:
949 		 *
950 		 * f_CNT = Fpci * 192 / Fdpll
951 		 *
952 		 * First try reading the register in which the HighPoint BIOS
953 		 * saves f_CNT value before  reprogramming the DPLL from its
954 		 * default setting (which differs for the various chips).
955 		 *
956 		 * NOTE: This register is only accessible via I/O space;
957 		 * HPT374 BIOS only saves it for the function 0, so we have to
958 		 * always read it from there -- no need to check the result of
959 		 * pci_get_slot() for the function 0 as the whole device has
960 		 * been already "pinned" (via function 1) in init_setup_hpt374()
961 		 */
962 		if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
963 			struct pci_dev	*dev1 = pci_get_slot(dev->bus,
964 							     dev->devfn - 1);
965 			unsigned long io_base = pci_resource_start(dev1, 4);
966 
967 			temp =	inl(io_base + 0x90);
968 			pci_dev_put(dev1);
969 		} else
970 			temp =	inl(io_base + 0x90);
971 
972 		/*
973 		 * In case the signature check fails, we'll have to
974 		 * resort to reading the f_CNT register itself in hopes
975 		 * that nobody has touched the DPLL yet...
976 		 */
977 		if ((temp & 0xFFFFF000) != 0xABCDE000) {
978 			int i;
979 
980 			printk(KERN_WARNING "%s %s: no clock data saved by "
981 				"BIOS\n", name, pci_name(dev));
982 
983 			/* Calculate the average value of f_CNT. */
984 			for (temp = i = 0; i < 128; i++) {
985 				pci_read_config_word(dev, 0x78, &f_cnt);
986 				temp += f_cnt & 0x1ff;
987 				mdelay(1);
988 			}
989 			f_cnt = temp / 128;
990 		} else
991 			f_cnt = temp & 0x1ff;
992 
993 		dpll_clk = info->dpll_clk;
994 		pci_clk  = (f_cnt * dpll_clk) / 192;
995 
996 		/* Clamp PCI clock to bands. */
997 		if (pci_clk < 40)
998 			pci_clk = 33;
999 		else if(pci_clk < 45)
1000 			pci_clk = 40;
1001 		else if(pci_clk < 55)
1002 			pci_clk = 50;
1003 		else
1004 			pci_clk = 66;
1005 
1006 		printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1007 			"assuming %d MHz PCI\n", name, pci_name(dev),
1008 			dpll_clk, f_cnt, pci_clk);
1009 	} else {
1010 		u32 itr1 = 0;
1011 
1012 		pci_read_config_dword(dev, 0x40, &itr1);
1013 
1014 		/* Detect PCI clock by looking at cmd_high_time. */
1015 		switch ((itr1 >> 8) & 0x0f) {
1016 			case 0x09:
1017 				pci_clk = 40;
1018 				break;
1019 			case 0x05:
1020 				pci_clk = 25;
1021 				break;
1022 			case 0x07:
1023 			default:
1024 				pci_clk = 33;
1025 				break;
1026 		}
1027 	}
1028 
1029 	/* Let's assume we'll use PCI clock for the ATA clock... */
1030 	switch (pci_clk) {
1031 		case 25:
1032 			clock = ATA_CLOCK_25MHZ;
1033 			break;
1034 		case 33:
1035 		default:
1036 			clock = ATA_CLOCK_33MHZ;
1037 			break;
1038 		case 40:
1039 			clock = ATA_CLOCK_40MHZ;
1040 			break;
1041 		case 50:
1042 			clock = ATA_CLOCK_50MHZ;
1043 			break;
1044 		case 66:
1045 			clock = ATA_CLOCK_66MHZ;
1046 			break;
1047 	}
1048 
1049 	/*
1050 	 * Only try the DPLL if we don't have a table for the PCI clock that
1051 	 * we are running at for HPT370/A, always use it  for anything newer...
1052 	 *
1053 	 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1054 	 * We also  don't like using  the DPLL because this causes glitches
1055 	 * on PRST-/SRST- when the state engine gets reset...
1056 	 */
1057 	if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1058 		u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1059 		int adjust;
1060 
1061 		 /*
1062 		  * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1063 		  * supported/enabled, use 50 MHz DPLL clock otherwise...
1064 		  */
1065 		if (info->udma_mask == ATA_UDMA6) {
1066 			dpll_clk = 66;
1067 			clock = ATA_CLOCK_66MHZ;
1068 		} else if (dpll_clk) {	/* HPT36x chips don't have DPLL */
1069 			dpll_clk = 50;
1070 			clock = ATA_CLOCK_50MHZ;
1071 		}
1072 
1073 		if (info->timings->clock_table[clock] == NULL) {
1074 			printk(KERN_ERR "%s %s: unknown bus timing!\n",
1075 				name, pci_name(dev));
1076 			return -EIO;
1077 		}
1078 
1079 		/* Select the DPLL clock. */
1080 		pci_write_config_byte(dev, 0x5b, 0x21);
1081 
1082 		/*
1083 		 * Adjust the DPLL based upon PCI clock, enable it,
1084 		 * and wait for stabilization...
1085 		 */
1086 		f_low = (pci_clk * 48) / dpll_clk;
1087 
1088 		for (adjust = 0; adjust < 8; adjust++) {
1089 			if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1090 				break;
1091 
1092 			/*
1093 			 * See if it'll settle at a fractionally different clock
1094 			 */
1095 			if (adjust & 1)
1096 				f_low -= adjust >> 1;
1097 			else
1098 				f_low += adjust >> 1;
1099 		}
1100 		if (adjust == 8) {
1101 			printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1102 				name, pci_name(dev));
1103 			return -EIO;
1104 		}
1105 
1106 		printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1107 			name, pci_name(dev), dpll_clk);
1108 	} else {
1109 		/* Mark the fact that we're not using the DPLL. */
1110 		dpll_clk = 0;
1111 
1112 		printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1113 			name, pci_name(dev), pci_clk);
1114 	}
1115 
1116 	/* Store the clock frequencies. */
1117 	info->dpll_clk	= dpll_clk;
1118 	info->pci_clk	= pci_clk;
1119 	info->clock	= clock;
1120 
1121 	if (chip_type >= HPT370) {
1122 		u8  mcr1, mcr4;
1123 
1124 		/*
1125 		 * Reset the state engines.
1126 		 * NOTE: Avoid accidentally enabling the disabled channels.
1127 		 */
1128 		pci_read_config_byte (dev, 0x50, &mcr1);
1129 		pci_read_config_byte (dev, 0x54, &mcr4);
1130 		pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1131 		pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1132 		udelay(100);
1133 	}
1134 
1135 	/*
1136 	 * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1137 	 * the MISC. register to stretch the UltraDMA Tss timing.
1138 	 * NOTE: This register is only writeable via I/O space.
1139 	 */
1140 	if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1141 		outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1142 
1143 	hpt3xx_disable_fast_irq(dev, 0x50);
1144 	hpt3xx_disable_fast_irq(dev, 0x54);
1145 
1146 	return 0;
1147 }
1148 
hpt3xx_cable_detect(ide_hwif_t * hwif)1149 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1150 {
1151 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
1152 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1153 	u8 chip_type		= info->chip_type;
1154 	u8 scr1 = 0, ata66	= hwif->channel ? 0x01 : 0x02;
1155 
1156 	/*
1157 	 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1158 	 * address lines to access an external EEPROM.  To read valid
1159 	 * cable detect state the pins must be enabled as inputs.
1160 	 */
1161 	if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1162 		/*
1163 		 * HPT374 PCI function 1
1164 		 * - set bit 15 of reg 0x52 to enable TCBLID as input
1165 		 * - set bit 15 of reg 0x56 to enable FCBLID as input
1166 		 */
1167 		u8  mcr_addr = hwif->select_data + 2;
1168 		u16 mcr;
1169 
1170 		pci_read_config_word(dev, mcr_addr, &mcr);
1171 		pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1172 		/* Debounce, then read cable ID register */
1173 		udelay(10);
1174 		pci_read_config_byte(dev, 0x5a, &scr1);
1175 		pci_write_config_word(dev, mcr_addr, mcr);
1176 	} else if (chip_type >= HPT370) {
1177 		/*
1178 		 * HPT370/372 and 374 pcifn 0
1179 		 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1180 		 */
1181 		u8 scr2 = 0;
1182 
1183 		pci_read_config_byte(dev, 0x5b, &scr2);
1184 		pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1185 		/* Debounce, then read cable ID register */
1186 		udelay(10);
1187 		pci_read_config_byte(dev, 0x5a, &scr1);
1188 		pci_write_config_byte(dev, 0x5b, scr2);
1189 	} else
1190 		pci_read_config_byte(dev, 0x5a, &scr1);
1191 
1192 	return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1193 }
1194 
init_hwif_hpt366(ide_hwif_t * hwif)1195 static void init_hwif_hpt366(ide_hwif_t *hwif)
1196 {
1197 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1198 	u8  chip_type		= info->chip_type;
1199 
1200 	/* Cache the channel's MISC. control registers' offset */
1201 	hwif->select_data	= hwif->channel ? 0x54 : 0x50;
1202 
1203 	/*
1204 	 * HPT3xxN chips have some complications:
1205 	 *
1206 	 * - on 33 MHz PCI we must clock switch
1207 	 * - on 66 MHz PCI we must NOT use the PCI clock
1208 	 */
1209 	if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1210 		/*
1211 		 * Clock is shared between the channels,
1212 		 * so we'll have to serialize them... :-(
1213 		 */
1214 		hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1215 		hwif->rw_disk = &hpt3xxn_rw_disk;
1216 	}
1217 }
1218 
init_dma_hpt366(ide_hwif_t * hwif,const struct ide_port_info * d)1219 static int init_dma_hpt366(ide_hwif_t *hwif,
1220 				     const struct ide_port_info *d)
1221 {
1222 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1223 	unsigned long flags, base = ide_pci_dma_base(hwif, d);
1224 	u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1225 
1226 	if (base == 0)
1227 		return -1;
1228 
1229 	hwif->dma_base = base;
1230 
1231 	if (ide_pci_check_simplex(hwif, d) < 0)
1232 		return -1;
1233 
1234 	if (ide_pci_set_master(dev, d->name) < 0)
1235 		return -1;
1236 
1237 	dma_old = inb(base + 2);
1238 
1239 	local_irq_save(flags);
1240 
1241 	dma_new = dma_old;
1242 	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1243 	pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1244 
1245 	if (masterdma & 0x30)	dma_new |= 0x20;
1246 	if ( slavedma & 0x30)	dma_new |= 0x40;
1247 	if (dma_new != dma_old)
1248 		outb(dma_new, base + 2);
1249 
1250 	local_irq_restore(flags);
1251 
1252 	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1253 			 hwif->name, base, base + 7);
1254 
1255 	hwif->extra_base = base + (hwif->channel ? 8 : 16);
1256 
1257 	if (ide_allocate_dma_engine(hwif))
1258 		return -1;
1259 
1260 	return 0;
1261 }
1262 
hpt374_init(struct pci_dev * dev,struct pci_dev * dev2)1263 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1264 {
1265 	if (dev2->irq != dev->irq) {
1266 		/* FIXME: we need a core pci_set_interrupt() */
1267 		dev2->irq = dev->irq;
1268 		printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1269 			"fixed\n", pci_name(dev2));
1270 	}
1271 }
1272 
hpt371_init(struct pci_dev * dev)1273 static void hpt371_init(struct pci_dev *dev)
1274 {
1275 	u8 mcr1 = 0;
1276 
1277 	/*
1278 	 * HPT371 chips physically have only one channel, the secondary one,
1279 	 * but the primary channel registers do exist!  Go figure...
1280 	 * So,  we manually disable the non-existing channel here
1281 	 * (if the BIOS hasn't done this already).
1282 	 */
1283 	pci_read_config_byte(dev, 0x50, &mcr1);
1284 	if (mcr1 & 0x04)
1285 		pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1286 }
1287 
hpt36x_init(struct pci_dev * dev,struct pci_dev * dev2)1288 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1289 {
1290 	u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1291 
1292 	/*
1293 	 * Now we'll have to force both channels enabled if
1294 	 * at least one of them has been enabled by BIOS...
1295 	 */
1296 	pci_read_config_byte(dev, 0x50, &mcr1);
1297 	if (mcr1 & 0x30)
1298 		pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1299 
1300 	pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1301 	pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1302 
1303 	if (pin1 != pin2 && dev->irq == dev2->irq) {
1304 		printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1305 			"pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1306 		return 1;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 #define IDE_HFLAGS_HPT3XX \
1313 	(IDE_HFLAG_NO_ATAPI_DMA | \
1314 	 IDE_HFLAG_OFF_BOARD)
1315 
1316 static const struct ide_port_ops hpt3xx_port_ops = {
1317 	.set_pio_mode		= hpt3xx_set_pio_mode,
1318 	.set_dma_mode		= hpt3xx_set_mode,
1319 	.maskproc		= hpt3xx_maskproc,
1320 	.mdma_filter		= hpt3xx_mdma_filter,
1321 	.udma_filter		= hpt3xx_udma_filter,
1322 	.cable_detect		= hpt3xx_cable_detect,
1323 };
1324 
1325 static const struct ide_dma_ops hpt37x_dma_ops = {
1326 	.dma_host_set		= ide_dma_host_set,
1327 	.dma_setup		= ide_dma_setup,
1328 	.dma_start		= ide_dma_start,
1329 	.dma_end		= hpt374_dma_end,
1330 	.dma_test_irq		= hpt374_dma_test_irq,
1331 	.dma_lost_irq		= ide_dma_lost_irq,
1332 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1333 	.dma_sff_read_status	= ide_dma_sff_read_status,
1334 };
1335 
1336 static const struct ide_dma_ops hpt370_dma_ops = {
1337 	.dma_host_set		= ide_dma_host_set,
1338 	.dma_setup		= ide_dma_setup,
1339 	.dma_start		= hpt370_dma_start,
1340 	.dma_end		= hpt370_dma_end,
1341 	.dma_test_irq		= ide_dma_test_irq,
1342 	.dma_lost_irq		= ide_dma_lost_irq,
1343 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1344 	.dma_clear		= hpt370_irq_timeout,
1345 	.dma_sff_read_status	= ide_dma_sff_read_status,
1346 };
1347 
1348 static const struct ide_dma_ops hpt36x_dma_ops = {
1349 	.dma_host_set		= ide_dma_host_set,
1350 	.dma_setup		= ide_dma_setup,
1351 	.dma_start		= ide_dma_start,
1352 	.dma_end		= ide_dma_end,
1353 	.dma_test_irq		= ide_dma_test_irq,
1354 	.dma_lost_irq		= hpt366_dma_lost_irq,
1355 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1356 	.dma_sff_read_status	= ide_dma_sff_read_status,
1357 };
1358 
1359 static const struct ide_port_info hpt366_chipsets[] = {
1360 	{	/* 0: HPT36x */
1361 		.name		= DRV_NAME,
1362 		.init_chipset	= init_chipset_hpt366,
1363 		.init_hwif	= init_hwif_hpt366,
1364 		.init_dma	= init_dma_hpt366,
1365 		/*
1366 		 * HPT36x chips have one channel per function and have
1367 		 * both channel enable bits located differently and visible
1368 		 * to both functions -- really stupid design decision... :-(
1369 		 * Bit 4 is for the primary channel, bit 5 for the secondary.
1370 		 */
1371 		.enablebits	= {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1372 		.port_ops	= &hpt3xx_port_ops,
1373 		.dma_ops	= &hpt36x_dma_ops,
1374 		.host_flags	= IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1375 		.pio_mask	= ATA_PIO4,
1376 		.mwdma_mask	= ATA_MWDMA2,
1377 	},
1378 	{	/* 1: HPT3xx */
1379 		.name		= DRV_NAME,
1380 		.init_chipset	= init_chipset_hpt366,
1381 		.init_hwif	= init_hwif_hpt366,
1382 		.init_dma	= init_dma_hpt366,
1383 		.enablebits	= {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1384 		.port_ops	= &hpt3xx_port_ops,
1385 		.dma_ops	= &hpt37x_dma_ops,
1386 		.host_flags	= IDE_HFLAGS_HPT3XX,
1387 		.pio_mask	= ATA_PIO4,
1388 		.mwdma_mask	= ATA_MWDMA2,
1389 	}
1390 };
1391 
1392 /**
1393  *	hpt366_init_one	-	called when an HPT366 is found
1394  *	@dev: the hpt366 device
1395  *	@id: the matching pci id
1396  *
1397  *	Called when the PCI registration layer (or the IDE initialization)
1398  *	finds a device matching our IDE device tables.
1399  */
hpt366_init_one(struct pci_dev * dev,const struct pci_device_id * id)1400 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1401 {
1402 	const struct hpt_info *info = NULL;
1403 	struct hpt_info *dyn_info;
1404 	struct pci_dev *dev2 = NULL;
1405 	struct ide_port_info d;
1406 	u8 idx = id->driver_data;
1407 	u8 rev = dev->revision;
1408 	int ret;
1409 
1410 	if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1411 		return -ENODEV;
1412 
1413 	switch (idx) {
1414 	case 0:
1415 		if (rev < 3)
1416 			info = &hpt36x;
1417 		else {
1418 			switch (min_t(u8, rev, 6)) {
1419 			case 3: info = &hpt370;  break;
1420 			case 4: info = &hpt370a; break;
1421 			case 5: info = &hpt372;  break;
1422 			case 6: info = &hpt372n; break;
1423 			}
1424 			idx++;
1425 		}
1426 		break;
1427 	case 1:
1428 		info = (rev > 1) ? &hpt372n : &hpt372a;
1429 		break;
1430 	case 2:
1431 		info = (rev > 1) ? &hpt302n : &hpt302;
1432 		break;
1433 	case 3:
1434 		hpt371_init(dev);
1435 		info = (rev > 1) ? &hpt371n : &hpt371;
1436 		break;
1437 	case 4:
1438 		info = &hpt374;
1439 		break;
1440 	case 5:
1441 		info = &hpt372n;
1442 		break;
1443 	}
1444 
1445 	printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1446 
1447 	d = hpt366_chipsets[min_t(u8, idx, 1)];
1448 
1449 	d.udma_mask = info->udma_mask;
1450 
1451 	/* fixup ->dma_ops for HPT370/HPT370A */
1452 	if (info == &hpt370 || info == &hpt370a)
1453 		d.dma_ops = &hpt370_dma_ops;
1454 
1455 	if (info == &hpt36x || info == &hpt374)
1456 		dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1457 
1458 	dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1459 	if (dyn_info == NULL) {
1460 		printk(KERN_ERR "%s %s: out of memory!\n",
1461 			d.name, pci_name(dev));
1462 		pci_dev_put(dev2);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	/*
1467 	 * Copy everything from a static "template" structure
1468 	 * to just allocated per-chip hpt_info structure.
1469 	 */
1470 	memcpy(dyn_info, info, sizeof(*dyn_info));
1471 
1472 	if (dev2) {
1473 		memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1474 
1475 		if (info == &hpt374)
1476 			hpt374_init(dev, dev2);
1477 		else {
1478 			if (hpt36x_init(dev, dev2))
1479 				d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1480 		}
1481 
1482 		ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1483 		if (ret < 0) {
1484 			pci_dev_put(dev2);
1485 			kfree(dyn_info);
1486 		}
1487 		return ret;
1488 	}
1489 
1490 	ret = ide_pci_init_one(dev, &d, dyn_info);
1491 	if (ret < 0)
1492 		kfree(dyn_info);
1493 
1494 	return ret;
1495 }
1496 
hpt366_remove(struct pci_dev * dev)1497 static void hpt366_remove(struct pci_dev *dev)
1498 {
1499 	struct ide_host *host = pci_get_drvdata(dev);
1500 	struct ide_info *info = host->host_priv;
1501 	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1502 
1503 	ide_pci_remove(dev);
1504 	pci_dev_put(dev2);
1505 	kfree(info);
1506 }
1507 
1508 static const struct pci_device_id hpt366_pci_tbl[] = {
1509 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1510 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1511 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1512 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1513 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1514 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1515 	{ 0, },
1516 };
1517 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1518 
1519 static struct pci_driver hpt366_pci_driver = {
1520 	.name		= "HPT366_IDE",
1521 	.id_table	= hpt366_pci_tbl,
1522 	.probe		= hpt366_init_one,
1523 	.remove		= hpt366_remove,
1524 	.suspend	= ide_pci_suspend,
1525 	.resume		= ide_pci_resume,
1526 };
1527 
hpt366_ide_init(void)1528 static int __init hpt366_ide_init(void)
1529 {
1530 	return ide_pci_register_driver(&hpt366_pci_driver);
1531 }
1532 
hpt366_ide_exit(void)1533 static void __exit hpt366_ide_exit(void)
1534 {
1535 	pci_unregister_driver(&hpt366_pci_driver);
1536 }
1537 
1538 module_init(hpt366_ide_init);
1539 module_exit(hpt366_ide_exit);
1540 
1541 MODULE_AUTHOR("Andre Hedrick");
1542 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1543 MODULE_LICENSE("GPL");
1544