1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
get_nr_inodes(void)78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
get_nr_inodes_unused(void)87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
get_nr_dirty_inodes(void)96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
no_open(struct inode * inode,struct file * file)116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
inode_init_always(struct super_block * sb,struct inode * inode)129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic64_set(&inode->i_sequence, 0);
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166 #endif
167
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 mapping->wb_err = 0;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195 #endif
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200 out:
201 return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204
alloc_inode(struct super_block * sb)205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226 }
227
free_inode_nonrcu(struct inode * inode)228 void free_inode_nonrcu(struct inode *inode)
229 {
230 kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233
__destroy_inode(struct inode * inode)234 void __destroy_inode(struct inode *inode)
235 {
236 BUG_ON(inode_has_buffers(inode));
237 inode_detach_wb(inode);
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 posix_acl_release(inode->i_default_acl);
251 #endif
252 this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255
i_callback(struct rcu_head * head)256 static void i_callback(struct rcu_head *head)
257 {
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260 }
261
destroy_inode(struct inode * inode)262 static void destroy_inode(struct inode *inode)
263 {
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270 }
271
272 /**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
drop_nlink(struct inode * inode)283 void drop_nlink(struct inode *inode)
284 {
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291
292 /**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
clear_nlink(struct inode * inode)300 void clear_nlink(struct inode *inode)
301 {
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 }
307 EXPORT_SYMBOL(clear_nlink);
308
309 /**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
set_nlink(struct inode * inode,unsigned int nlink)317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328 }
329 EXPORT_SYMBOL(set_nlink);
330
331 /**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
inc_nlink(struct inode * inode)339 void inc_nlink(struct inode *inode)
340 {
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349
address_space_init_once(struct address_space * mapping)350 void address_space_init_once(struct address_space *mapping)
351 {
352 memset(mapping, 0, sizeof(*mapping));
353 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
354 spin_lock_init(&mapping->tree_lock);
355 init_rwsem(&mapping->i_mmap_rwsem);
356 INIT_LIST_HEAD(&mapping->private_list);
357 spin_lock_init(&mapping->private_lock);
358 mapping->i_mmap = RB_ROOT_CACHED;
359 }
360 EXPORT_SYMBOL(address_space_init_once);
361
362 /*
363 * These are initializations that only need to be done
364 * once, because the fields are idempotent across use
365 * of the inode, so let the slab aware of that.
366 */
inode_init_once(struct inode * inode)367 void inode_init_once(struct inode *inode)
368 {
369 memset(inode, 0, sizeof(*inode));
370 INIT_HLIST_NODE(&inode->i_hash);
371 INIT_LIST_HEAD(&inode->i_devices);
372 INIT_LIST_HEAD(&inode->i_io_list);
373 INIT_LIST_HEAD(&inode->i_wb_list);
374 INIT_LIST_HEAD(&inode->i_lru);
375 address_space_init_once(&inode->i_data);
376 i_size_ordered_init(inode);
377 }
378 EXPORT_SYMBOL(inode_init_once);
379
init_once(void * foo)380 static void init_once(void *foo)
381 {
382 struct inode *inode = (struct inode *) foo;
383
384 inode_init_once(inode);
385 }
386
387 /*
388 * inode->i_lock must be held
389 */
__iget(struct inode * inode)390 void __iget(struct inode *inode)
391 {
392 atomic_inc(&inode->i_count);
393 }
394
395 /*
396 * get additional reference to inode; caller must already hold one.
397 */
ihold(struct inode * inode)398 void ihold(struct inode *inode)
399 {
400 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
401 }
402 EXPORT_SYMBOL(ihold);
403
inode_lru_list_add(struct inode * inode)404 static void inode_lru_list_add(struct inode *inode)
405 {
406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
407 this_cpu_inc(nr_unused);
408 else
409 inode->i_state |= I_REFERENCED;
410 }
411
412 /*
413 * Add inode to LRU if needed (inode is unused and clean).
414 *
415 * Needs inode->i_lock held.
416 */
inode_add_lru(struct inode * inode)417 void inode_add_lru(struct inode *inode)
418 {
419 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
420 I_FREEING | I_WILL_FREE)) &&
421 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
422 inode_lru_list_add(inode);
423 }
424
425
inode_lru_list_del(struct inode * inode)426 static void inode_lru_list_del(struct inode *inode)
427 {
428
429 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_dec(nr_unused);
431 }
432
433 /**
434 * inode_sb_list_add - add inode to the superblock list of inodes
435 * @inode: inode to add
436 */
inode_sb_list_add(struct inode * inode)437 void inode_sb_list_add(struct inode *inode)
438 {
439 spin_lock(&inode->i_sb->s_inode_list_lock);
440 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
441 spin_unlock(&inode->i_sb->s_inode_list_lock);
442 }
443 EXPORT_SYMBOL_GPL(inode_sb_list_add);
444
inode_sb_list_del(struct inode * inode)445 static inline void inode_sb_list_del(struct inode *inode)
446 {
447 if (!list_empty(&inode->i_sb_list)) {
448 spin_lock(&inode->i_sb->s_inode_list_lock);
449 list_del_init(&inode->i_sb_list);
450 spin_unlock(&inode->i_sb->s_inode_list_lock);
451 }
452 }
453
hash(struct super_block * sb,unsigned long hashval)454 static unsigned long hash(struct super_block *sb, unsigned long hashval)
455 {
456 unsigned long tmp;
457
458 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
459 L1_CACHE_BYTES;
460 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
461 return tmp & i_hash_mask;
462 }
463
464 /**
465 * __insert_inode_hash - hash an inode
466 * @inode: unhashed inode
467 * @hashval: unsigned long value used to locate this object in the
468 * inode_hashtable.
469 *
470 * Add an inode to the inode hash for this superblock.
471 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)472 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
473 {
474 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
475
476 spin_lock(&inode_hash_lock);
477 spin_lock(&inode->i_lock);
478 hlist_add_head(&inode->i_hash, b);
479 spin_unlock(&inode->i_lock);
480 spin_unlock(&inode_hash_lock);
481 }
482 EXPORT_SYMBOL(__insert_inode_hash);
483
484 /**
485 * __remove_inode_hash - remove an inode from the hash
486 * @inode: inode to unhash
487 *
488 * Remove an inode from the superblock.
489 */
__remove_inode_hash(struct inode * inode)490 void __remove_inode_hash(struct inode *inode)
491 {
492 spin_lock(&inode_hash_lock);
493 spin_lock(&inode->i_lock);
494 hlist_del_init(&inode->i_hash);
495 spin_unlock(&inode->i_lock);
496 spin_unlock(&inode_hash_lock);
497 }
498 EXPORT_SYMBOL(__remove_inode_hash);
499
clear_inode(struct inode * inode)500 void clear_inode(struct inode *inode)
501 {
502 might_sleep();
503 /*
504 * We have to cycle tree_lock here because reclaim can be still in the
505 * process of removing the last page (in __delete_from_page_cache())
506 * and we must not free mapping under it.
507 */
508 spin_lock_irq(&inode->i_data.tree_lock);
509 BUG_ON(inode->i_data.nrpages);
510 BUG_ON(inode->i_data.nrexceptional);
511 spin_unlock_irq(&inode->i_data.tree_lock);
512 BUG_ON(!list_empty(&inode->i_data.private_list));
513 BUG_ON(!(inode->i_state & I_FREEING));
514 BUG_ON(inode->i_state & I_CLEAR);
515 BUG_ON(!list_empty(&inode->i_wb_list));
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode->i_state = I_FREEING | I_CLEAR;
518 }
519 EXPORT_SYMBOL(clear_inode);
520
521 /*
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
525 *
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
529 *
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
533 */
evict(struct inode * inode)534 static void evict(struct inode *inode)
535 {
536 const struct super_operations *op = inode->i_sb->s_op;
537
538 BUG_ON(!(inode->i_state & I_FREEING));
539 BUG_ON(!list_empty(&inode->i_lru));
540
541 if (!list_empty(&inode->i_io_list))
542 inode_io_list_del(inode);
543
544 inode_sb_list_del(inode);
545
546 /*
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
551 */
552 inode_wait_for_writeback(inode);
553
554 if (op->evict_inode) {
555 op->evict_inode(inode);
556 } else {
557 truncate_inode_pages_final(&inode->i_data);
558 clear_inode(inode);
559 }
560 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
561 bd_forget(inode);
562 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
563 cd_forget(inode);
564
565 remove_inode_hash(inode);
566
567 spin_lock(&inode->i_lock);
568 wake_up_bit(&inode->i_state, __I_NEW);
569 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
570 spin_unlock(&inode->i_lock);
571
572 destroy_inode(inode);
573 }
574
575 /*
576 * dispose_list - dispose of the contents of a local list
577 * @head: the head of the list to free
578 *
579 * Dispose-list gets a local list with local inodes in it, so it doesn't
580 * need to worry about list corruption and SMP locks.
581 */
dispose_list(struct list_head * head)582 static void dispose_list(struct list_head *head)
583 {
584 while (!list_empty(head)) {
585 struct inode *inode;
586
587 inode = list_first_entry(head, struct inode, i_lru);
588 list_del_init(&inode->i_lru);
589
590 evict(inode);
591 cond_resched();
592 }
593 }
594
595 /**
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
598 *
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
603 */
evict_inodes(struct super_block * sb)604 void evict_inodes(struct super_block *sb)
605 {
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
608
609 again:
610 spin_lock(&sb->s_inode_list_lock);
611 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
612 if (atomic_read(&inode->i_count))
613 continue;
614
615 spin_lock(&inode->i_lock);
616 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
617 spin_unlock(&inode->i_lock);
618 continue;
619 }
620
621 inode->i_state |= I_FREEING;
622 inode_lru_list_del(inode);
623 spin_unlock(&inode->i_lock);
624 list_add(&inode->i_lru, &dispose);
625
626 /*
627 * We can have a ton of inodes to evict at unmount time given
628 * enough memory, check to see if we need to go to sleep for a
629 * bit so we don't livelock.
630 */
631 if (need_resched()) {
632 spin_unlock(&sb->s_inode_list_lock);
633 cond_resched();
634 dispose_list(&dispose);
635 goto again;
636 }
637 }
638 spin_unlock(&sb->s_inode_list_lock);
639
640 dispose_list(&dispose);
641 }
642 EXPORT_SYMBOL_GPL(evict_inodes);
643
644 /**
645 * invalidate_inodes - attempt to free all inodes on a superblock
646 * @sb: superblock to operate on
647 * @kill_dirty: flag to guide handling of dirty inodes
648 *
649 * Attempts to free all inodes for a given superblock. If there were any
650 * busy inodes return a non-zero value, else zero.
651 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
652 * them as busy.
653 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)654 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
655 {
656 int busy = 0;
657 struct inode *inode, *next;
658 LIST_HEAD(dispose);
659
660 again:
661 spin_lock(&sb->s_inode_list_lock);
662 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
663 spin_lock(&inode->i_lock);
664 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
665 spin_unlock(&inode->i_lock);
666 continue;
667 }
668 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
669 spin_unlock(&inode->i_lock);
670 busy = 1;
671 continue;
672 }
673 if (atomic_read(&inode->i_count)) {
674 spin_unlock(&inode->i_lock);
675 busy = 1;
676 continue;
677 }
678
679 inode->i_state |= I_FREEING;
680 inode_lru_list_del(inode);
681 spin_unlock(&inode->i_lock);
682 list_add(&inode->i_lru, &dispose);
683 if (need_resched()) {
684 spin_unlock(&sb->s_inode_list_lock);
685 cond_resched();
686 dispose_list(&dispose);
687 goto again;
688 }
689 }
690 spin_unlock(&sb->s_inode_list_lock);
691
692 dispose_list(&dispose);
693
694 return busy;
695 }
696
697 /*
698 * Isolate the inode from the LRU in preparation for freeing it.
699 *
700 * Any inodes which are pinned purely because of attached pagecache have their
701 * pagecache removed. If the inode has metadata buffers attached to
702 * mapping->private_list then try to remove them.
703 *
704 * If the inode has the I_REFERENCED flag set, then it means that it has been
705 * used recently - the flag is set in iput_final(). When we encounter such an
706 * inode, clear the flag and move it to the back of the LRU so it gets another
707 * pass through the LRU before it gets reclaimed. This is necessary because of
708 * the fact we are doing lazy LRU updates to minimise lock contention so the
709 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
710 * with this flag set because they are the inodes that are out of order.
711 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)712 static enum lru_status inode_lru_isolate(struct list_head *item,
713 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
714 {
715 struct list_head *freeable = arg;
716 struct inode *inode = container_of(item, struct inode, i_lru);
717
718 /*
719 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
720 * If we fail to get the lock, just skip it.
721 */
722 if (!spin_trylock(&inode->i_lock))
723 return LRU_SKIP;
724
725 /*
726 * Referenced or dirty inodes are still in use. Give them another pass
727 * through the LRU as we canot reclaim them now.
728 */
729 if (atomic_read(&inode->i_count) ||
730 (inode->i_state & ~I_REFERENCED)) {
731 list_lru_isolate(lru, &inode->i_lru);
732 spin_unlock(&inode->i_lock);
733 this_cpu_dec(nr_unused);
734 return LRU_REMOVED;
735 }
736
737 /* recently referenced inodes get one more pass */
738 if (inode->i_state & I_REFERENCED) {
739 inode->i_state &= ~I_REFERENCED;
740 spin_unlock(&inode->i_lock);
741 return LRU_ROTATE;
742 }
743
744 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
745 __iget(inode);
746 spin_unlock(&inode->i_lock);
747 spin_unlock(lru_lock);
748 if (remove_inode_buffers(inode)) {
749 unsigned long reap;
750 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
751 if (current_is_kswapd())
752 __count_vm_events(KSWAPD_INODESTEAL, reap);
753 else
754 __count_vm_events(PGINODESTEAL, reap);
755 if (current->reclaim_state)
756 current->reclaim_state->reclaimed_slab += reap;
757 }
758 iput(inode);
759 spin_lock(lru_lock);
760 return LRU_RETRY;
761 }
762
763 WARN_ON(inode->i_state & I_NEW);
764 inode->i_state |= I_FREEING;
765 list_lru_isolate_move(lru, &inode->i_lru, freeable);
766 spin_unlock(&inode->i_lock);
767
768 this_cpu_dec(nr_unused);
769 return LRU_REMOVED;
770 }
771
772 /*
773 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
774 * This is called from the superblock shrinker function with a number of inodes
775 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
776 * then are freed outside inode_lock by dispose_list().
777 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)778 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
779 {
780 LIST_HEAD(freeable);
781 long freed;
782
783 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
784 inode_lru_isolate, &freeable);
785 dispose_list(&freeable);
786 return freed;
787 }
788
789 static void __wait_on_freeing_inode(struct inode *inode);
790 /*
791 * Called with the inode lock held.
792 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)793 static struct inode *find_inode(struct super_block *sb,
794 struct hlist_head *head,
795 int (*test)(struct inode *, void *),
796 void *data)
797 {
798 struct inode *inode = NULL;
799
800 repeat:
801 hlist_for_each_entry(inode, head, i_hash) {
802 if (inode->i_sb != sb)
803 continue;
804 if (!test(inode, data))
805 continue;
806 spin_lock(&inode->i_lock);
807 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
808 __wait_on_freeing_inode(inode);
809 goto repeat;
810 }
811 __iget(inode);
812 spin_unlock(&inode->i_lock);
813 return inode;
814 }
815 return NULL;
816 }
817
818 /*
819 * find_inode_fast is the fast path version of find_inode, see the comment at
820 * iget_locked for details.
821 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)822 static struct inode *find_inode_fast(struct super_block *sb,
823 struct hlist_head *head, unsigned long ino)
824 {
825 struct inode *inode = NULL;
826
827 repeat:
828 hlist_for_each_entry(inode, head, i_hash) {
829 if (inode->i_ino != ino)
830 continue;
831 if (inode->i_sb != sb)
832 continue;
833 spin_lock(&inode->i_lock);
834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 __wait_on_freeing_inode(inode);
836 goto repeat;
837 }
838 __iget(inode);
839 spin_unlock(&inode->i_lock);
840 return inode;
841 }
842 return NULL;
843 }
844
845 /*
846 * Each cpu owns a range of LAST_INO_BATCH numbers.
847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848 * to renew the exhausted range.
849 *
850 * This does not significantly increase overflow rate because every CPU can
851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854 * overflow rate by 2x, which does not seem too significant.
855 *
856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857 * error if st_ino won't fit in target struct field. Use 32bit counter
858 * here to attempt to avoid that.
859 */
860 #define LAST_INO_BATCH 1024
861 static DEFINE_PER_CPU(unsigned int, last_ino);
862
get_next_ino(void)863 unsigned int get_next_ino(void)
864 {
865 unsigned int *p = &get_cpu_var(last_ino);
866 unsigned int res = *p;
867
868 #ifdef CONFIG_SMP
869 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
870 static atomic_t shared_last_ino;
871 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
872
873 res = next - LAST_INO_BATCH;
874 }
875 #endif
876
877 res++;
878 /* get_next_ino should not provide a 0 inode number */
879 if (unlikely(!res))
880 res++;
881 *p = res;
882 put_cpu_var(last_ino);
883 return res;
884 }
885 EXPORT_SYMBOL(get_next_ino);
886
887 /**
888 * new_inode_pseudo - obtain an inode
889 * @sb: superblock
890 *
891 * Allocates a new inode for given superblock.
892 * Inode wont be chained in superblock s_inodes list
893 * This means :
894 * - fs can't be unmount
895 * - quotas, fsnotify, writeback can't work
896 */
new_inode_pseudo(struct super_block * sb)897 struct inode *new_inode_pseudo(struct super_block *sb)
898 {
899 struct inode *inode = alloc_inode(sb);
900
901 if (inode) {
902 spin_lock(&inode->i_lock);
903 inode->i_state = 0;
904 spin_unlock(&inode->i_lock);
905 INIT_LIST_HEAD(&inode->i_sb_list);
906 }
907 return inode;
908 }
909
910 /**
911 * new_inode - obtain an inode
912 * @sb: superblock
913 *
914 * Allocates a new inode for given superblock. The default gfp_mask
915 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
916 * If HIGHMEM pages are unsuitable or it is known that pages allocated
917 * for the page cache are not reclaimable or migratable,
918 * mapping_set_gfp_mask() must be called with suitable flags on the
919 * newly created inode's mapping
920 *
921 */
new_inode(struct super_block * sb)922 struct inode *new_inode(struct super_block *sb)
923 {
924 struct inode *inode;
925
926 spin_lock_prefetch(&sb->s_inode_list_lock);
927
928 inode = new_inode_pseudo(sb);
929 if (inode)
930 inode_sb_list_add(inode);
931 return inode;
932 }
933 EXPORT_SYMBOL(new_inode);
934
935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)936 void lockdep_annotate_inode_mutex_key(struct inode *inode)
937 {
938 if (S_ISDIR(inode->i_mode)) {
939 struct file_system_type *type = inode->i_sb->s_type;
940
941 /* Set new key only if filesystem hasn't already changed it */
942 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
943 /*
944 * ensure nobody is actually holding i_mutex
945 */
946 // mutex_destroy(&inode->i_mutex);
947 init_rwsem(&inode->i_rwsem);
948 lockdep_set_class(&inode->i_rwsem,
949 &type->i_mutex_dir_key);
950 }
951 }
952 }
953 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
954 #endif
955
956 /**
957 * unlock_new_inode - clear the I_NEW state and wake up any waiters
958 * @inode: new inode to unlock
959 *
960 * Called when the inode is fully initialised to clear the new state of the
961 * inode and wake up anyone waiting for the inode to finish initialisation.
962 */
unlock_new_inode(struct inode * inode)963 void unlock_new_inode(struct inode *inode)
964 {
965 lockdep_annotate_inode_mutex_key(inode);
966 spin_lock(&inode->i_lock);
967 WARN_ON(!(inode->i_state & I_NEW));
968 inode->i_state &= ~I_NEW;
969 smp_mb();
970 wake_up_bit(&inode->i_state, __I_NEW);
971 spin_unlock(&inode->i_lock);
972 }
973 EXPORT_SYMBOL(unlock_new_inode);
974
975 /**
976 * lock_two_nondirectories - take two i_mutexes on non-directory objects
977 *
978 * Lock any non-NULL argument that is not a directory.
979 * Zero, one or two objects may be locked by this function.
980 *
981 * @inode1: first inode to lock
982 * @inode2: second inode to lock
983 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)984 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
985 {
986 if (inode1 > inode2)
987 swap(inode1, inode2);
988
989 if (inode1 && !S_ISDIR(inode1->i_mode))
990 inode_lock(inode1);
991 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
992 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
993 }
994 EXPORT_SYMBOL(lock_two_nondirectories);
995
996 /**
997 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
998 * @inode1: first inode to unlock
999 * @inode2: second inode to unlock
1000 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1001 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1002 {
1003 if (inode1 && !S_ISDIR(inode1->i_mode))
1004 inode_unlock(inode1);
1005 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1006 inode_unlock(inode2);
1007 }
1008 EXPORT_SYMBOL(unlock_two_nondirectories);
1009
1010 /**
1011 * iget5_locked - obtain an inode from a mounted file system
1012 * @sb: super block of file system
1013 * @hashval: hash value (usually inode number) to get
1014 * @test: callback used for comparisons between inodes
1015 * @set: callback used to initialize a new struct inode
1016 * @data: opaque data pointer to pass to @test and @set
1017 *
1018 * Search for the inode specified by @hashval and @data in the inode cache,
1019 * and if present it is return it with an increased reference count. This is
1020 * a generalized version of iget_locked() for file systems where the inode
1021 * number is not sufficient for unique identification of an inode.
1022 *
1023 * If the inode is not in cache, allocate a new inode and return it locked,
1024 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1025 * before unlocking it via unlock_new_inode().
1026 *
1027 * Note both @test and @set are called with the inode_hash_lock held, so can't
1028 * sleep.
1029 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1030 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1031 int (*test)(struct inode *, void *),
1032 int (*set)(struct inode *, void *), void *data)
1033 {
1034 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1035 struct inode *inode;
1036 again:
1037 spin_lock(&inode_hash_lock);
1038 inode = find_inode(sb, head, test, data);
1039 spin_unlock(&inode_hash_lock);
1040
1041 if (inode) {
1042 wait_on_inode(inode);
1043 if (unlikely(inode_unhashed(inode))) {
1044 iput(inode);
1045 goto again;
1046 }
1047 return inode;
1048 }
1049
1050 inode = alloc_inode(sb);
1051 if (inode) {
1052 struct inode *old;
1053
1054 spin_lock(&inode_hash_lock);
1055 /* We released the lock, so.. */
1056 old = find_inode(sb, head, test, data);
1057 if (!old) {
1058 if (set(inode, data))
1059 goto set_failed;
1060
1061 spin_lock(&inode->i_lock);
1062 inode->i_state = I_NEW;
1063 hlist_add_head(&inode->i_hash, head);
1064 spin_unlock(&inode->i_lock);
1065 inode_sb_list_add(inode);
1066 spin_unlock(&inode_hash_lock);
1067
1068 /* Return the locked inode with I_NEW set, the
1069 * caller is responsible for filling in the contents
1070 */
1071 return inode;
1072 }
1073
1074 /*
1075 * Uhhuh, somebody else created the same inode under
1076 * us. Use the old inode instead of the one we just
1077 * allocated.
1078 */
1079 spin_unlock(&inode_hash_lock);
1080 destroy_inode(inode);
1081 inode = old;
1082 wait_on_inode(inode);
1083 if (unlikely(inode_unhashed(inode))) {
1084 iput(inode);
1085 goto again;
1086 }
1087 }
1088 return inode;
1089
1090 set_failed:
1091 spin_unlock(&inode_hash_lock);
1092 destroy_inode(inode);
1093 return NULL;
1094 }
1095 EXPORT_SYMBOL(iget5_locked);
1096
1097 /**
1098 * iget_locked - obtain an inode from a mounted file system
1099 * @sb: super block of file system
1100 * @ino: inode number to get
1101 *
1102 * Search for the inode specified by @ino in the inode cache and if present
1103 * return it with an increased reference count. This is for file systems
1104 * where the inode number is sufficient for unique identification of an inode.
1105 *
1106 * If the inode is not in cache, allocate a new inode and return it locked,
1107 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1108 * before unlocking it via unlock_new_inode().
1109 */
iget_locked(struct super_block * sb,unsigned long ino)1110 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1111 {
1112 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1113 struct inode *inode;
1114 again:
1115 spin_lock(&inode_hash_lock);
1116 inode = find_inode_fast(sb, head, ino);
1117 spin_unlock(&inode_hash_lock);
1118 if (inode) {
1119 wait_on_inode(inode);
1120 if (unlikely(inode_unhashed(inode))) {
1121 iput(inode);
1122 goto again;
1123 }
1124 return inode;
1125 }
1126
1127 inode = alloc_inode(sb);
1128 if (inode) {
1129 struct inode *old;
1130
1131 spin_lock(&inode_hash_lock);
1132 /* We released the lock, so.. */
1133 old = find_inode_fast(sb, head, ino);
1134 if (!old) {
1135 inode->i_ino = ino;
1136 spin_lock(&inode->i_lock);
1137 inode->i_state = I_NEW;
1138 hlist_add_head(&inode->i_hash, head);
1139 spin_unlock(&inode->i_lock);
1140 inode_sb_list_add(inode);
1141 spin_unlock(&inode_hash_lock);
1142
1143 /* Return the locked inode with I_NEW set, the
1144 * caller is responsible for filling in the contents
1145 */
1146 return inode;
1147 }
1148
1149 /*
1150 * Uhhuh, somebody else created the same inode under
1151 * us. Use the old inode instead of the one we just
1152 * allocated.
1153 */
1154 spin_unlock(&inode_hash_lock);
1155 destroy_inode(inode);
1156 inode = old;
1157 wait_on_inode(inode);
1158 if (unlikely(inode_unhashed(inode))) {
1159 iput(inode);
1160 goto again;
1161 }
1162 }
1163 return inode;
1164 }
1165 EXPORT_SYMBOL(iget_locked);
1166
1167 /*
1168 * search the inode cache for a matching inode number.
1169 * If we find one, then the inode number we are trying to
1170 * allocate is not unique and so we should not use it.
1171 *
1172 * Returns 1 if the inode number is unique, 0 if it is not.
1173 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1174 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1175 {
1176 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1177 struct inode *inode;
1178
1179 spin_lock(&inode_hash_lock);
1180 hlist_for_each_entry(inode, b, i_hash) {
1181 if (inode->i_ino == ino && inode->i_sb == sb) {
1182 spin_unlock(&inode_hash_lock);
1183 return 0;
1184 }
1185 }
1186 spin_unlock(&inode_hash_lock);
1187
1188 return 1;
1189 }
1190
1191 /**
1192 * iunique - get a unique inode number
1193 * @sb: superblock
1194 * @max_reserved: highest reserved inode number
1195 *
1196 * Obtain an inode number that is unique on the system for a given
1197 * superblock. This is used by file systems that have no natural
1198 * permanent inode numbering system. An inode number is returned that
1199 * is higher than the reserved limit but unique.
1200 *
1201 * BUGS:
1202 * With a large number of inodes live on the file system this function
1203 * currently becomes quite slow.
1204 */
iunique(struct super_block * sb,ino_t max_reserved)1205 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1206 {
1207 /*
1208 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1209 * error if st_ino won't fit in target struct field. Use 32bit counter
1210 * here to attempt to avoid that.
1211 */
1212 static DEFINE_SPINLOCK(iunique_lock);
1213 static unsigned int counter;
1214 ino_t res;
1215
1216 spin_lock(&iunique_lock);
1217 do {
1218 if (counter <= max_reserved)
1219 counter = max_reserved + 1;
1220 res = counter++;
1221 } while (!test_inode_iunique(sb, res));
1222 spin_unlock(&iunique_lock);
1223
1224 return res;
1225 }
1226 EXPORT_SYMBOL(iunique);
1227
igrab(struct inode * inode)1228 struct inode *igrab(struct inode *inode)
1229 {
1230 spin_lock(&inode->i_lock);
1231 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1232 __iget(inode);
1233 spin_unlock(&inode->i_lock);
1234 } else {
1235 spin_unlock(&inode->i_lock);
1236 /*
1237 * Handle the case where s_op->clear_inode is not been
1238 * called yet, and somebody is calling igrab
1239 * while the inode is getting freed.
1240 */
1241 inode = NULL;
1242 }
1243 return inode;
1244 }
1245 EXPORT_SYMBOL(igrab);
1246
1247 /**
1248 * ilookup5_nowait - search for an inode in the inode cache
1249 * @sb: super block of file system to search
1250 * @hashval: hash value (usually inode number) to search for
1251 * @test: callback used for comparisons between inodes
1252 * @data: opaque data pointer to pass to @test
1253 *
1254 * Search for the inode specified by @hashval and @data in the inode cache.
1255 * If the inode is in the cache, the inode is returned with an incremented
1256 * reference count.
1257 *
1258 * Note: I_NEW is not waited upon so you have to be very careful what you do
1259 * with the returned inode. You probably should be using ilookup5() instead.
1260 *
1261 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1262 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1263 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1264 int (*test)(struct inode *, void *), void *data)
1265 {
1266 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1267 struct inode *inode;
1268
1269 spin_lock(&inode_hash_lock);
1270 inode = find_inode(sb, head, test, data);
1271 spin_unlock(&inode_hash_lock);
1272
1273 return inode;
1274 }
1275 EXPORT_SYMBOL(ilookup5_nowait);
1276
1277 /**
1278 * ilookup5 - search for an inode in the inode cache
1279 * @sb: super block of file system to search
1280 * @hashval: hash value (usually inode number) to search for
1281 * @test: callback used for comparisons between inodes
1282 * @data: opaque data pointer to pass to @test
1283 *
1284 * Search for the inode specified by @hashval and @data in the inode cache,
1285 * and if the inode is in the cache, return the inode with an incremented
1286 * reference count. Waits on I_NEW before returning the inode.
1287 * returned with an incremented reference count.
1288 *
1289 * This is a generalized version of ilookup() for file systems where the
1290 * inode number is not sufficient for unique identification of an inode.
1291 *
1292 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1293 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1294 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1295 int (*test)(struct inode *, void *), void *data)
1296 {
1297 struct inode *inode;
1298 again:
1299 inode = ilookup5_nowait(sb, hashval, test, data);
1300 if (inode) {
1301 wait_on_inode(inode);
1302 if (unlikely(inode_unhashed(inode))) {
1303 iput(inode);
1304 goto again;
1305 }
1306 }
1307 return inode;
1308 }
1309 EXPORT_SYMBOL(ilookup5);
1310
1311 /**
1312 * ilookup - search for an inode in the inode cache
1313 * @sb: super block of file system to search
1314 * @ino: inode number to search for
1315 *
1316 * Search for the inode @ino in the inode cache, and if the inode is in the
1317 * cache, the inode is returned with an incremented reference count.
1318 */
ilookup(struct super_block * sb,unsigned long ino)1319 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1320 {
1321 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1322 struct inode *inode;
1323 again:
1324 spin_lock(&inode_hash_lock);
1325 inode = find_inode_fast(sb, head, ino);
1326 spin_unlock(&inode_hash_lock);
1327
1328 if (inode) {
1329 wait_on_inode(inode);
1330 if (unlikely(inode_unhashed(inode))) {
1331 iput(inode);
1332 goto again;
1333 }
1334 }
1335 return inode;
1336 }
1337 EXPORT_SYMBOL(ilookup);
1338
1339 /**
1340 * find_inode_nowait - find an inode in the inode cache
1341 * @sb: super block of file system to search
1342 * @hashval: hash value (usually inode number) to search for
1343 * @match: callback used for comparisons between inodes
1344 * @data: opaque data pointer to pass to @match
1345 *
1346 * Search for the inode specified by @hashval and @data in the inode
1347 * cache, where the helper function @match will return 0 if the inode
1348 * does not match, 1 if the inode does match, and -1 if the search
1349 * should be stopped. The @match function must be responsible for
1350 * taking the i_lock spin_lock and checking i_state for an inode being
1351 * freed or being initialized, and incrementing the reference count
1352 * before returning 1. It also must not sleep, since it is called with
1353 * the inode_hash_lock spinlock held.
1354 *
1355 * This is a even more generalized version of ilookup5() when the
1356 * function must never block --- find_inode() can block in
1357 * __wait_on_freeing_inode() --- or when the caller can not increment
1358 * the reference count because the resulting iput() might cause an
1359 * inode eviction. The tradeoff is that the @match funtion must be
1360 * very carefully implemented.
1361 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1362 struct inode *find_inode_nowait(struct super_block *sb,
1363 unsigned long hashval,
1364 int (*match)(struct inode *, unsigned long,
1365 void *),
1366 void *data)
1367 {
1368 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1369 struct inode *inode, *ret_inode = NULL;
1370 int mval;
1371
1372 spin_lock(&inode_hash_lock);
1373 hlist_for_each_entry(inode, head, i_hash) {
1374 if (inode->i_sb != sb)
1375 continue;
1376 mval = match(inode, hashval, data);
1377 if (mval == 0)
1378 continue;
1379 if (mval == 1)
1380 ret_inode = inode;
1381 goto out;
1382 }
1383 out:
1384 spin_unlock(&inode_hash_lock);
1385 return ret_inode;
1386 }
1387 EXPORT_SYMBOL(find_inode_nowait);
1388
insert_inode_locked(struct inode * inode)1389 int insert_inode_locked(struct inode *inode)
1390 {
1391 struct super_block *sb = inode->i_sb;
1392 ino_t ino = inode->i_ino;
1393 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1394
1395 while (1) {
1396 struct inode *old = NULL;
1397 spin_lock(&inode_hash_lock);
1398 hlist_for_each_entry(old, head, i_hash) {
1399 if (old->i_ino != ino)
1400 continue;
1401 if (old->i_sb != sb)
1402 continue;
1403 spin_lock(&old->i_lock);
1404 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1405 spin_unlock(&old->i_lock);
1406 continue;
1407 }
1408 break;
1409 }
1410 if (likely(!old)) {
1411 spin_lock(&inode->i_lock);
1412 inode->i_state |= I_NEW;
1413 hlist_add_head(&inode->i_hash, head);
1414 spin_unlock(&inode->i_lock);
1415 spin_unlock(&inode_hash_lock);
1416 return 0;
1417 }
1418 __iget(old);
1419 spin_unlock(&old->i_lock);
1420 spin_unlock(&inode_hash_lock);
1421 wait_on_inode(old);
1422 if (unlikely(!inode_unhashed(old))) {
1423 iput(old);
1424 return -EBUSY;
1425 }
1426 iput(old);
1427 }
1428 }
1429 EXPORT_SYMBOL(insert_inode_locked);
1430
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1431 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1432 int (*test)(struct inode *, void *), void *data)
1433 {
1434 struct super_block *sb = inode->i_sb;
1435 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436
1437 while (1) {
1438 struct inode *old = NULL;
1439
1440 spin_lock(&inode_hash_lock);
1441 hlist_for_each_entry(old, head, i_hash) {
1442 if (old->i_sb != sb)
1443 continue;
1444 if (!test(old, data))
1445 continue;
1446 spin_lock(&old->i_lock);
1447 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1448 spin_unlock(&old->i_lock);
1449 continue;
1450 }
1451 break;
1452 }
1453 if (likely(!old)) {
1454 spin_lock(&inode->i_lock);
1455 inode->i_state |= I_NEW;
1456 hlist_add_head(&inode->i_hash, head);
1457 spin_unlock(&inode->i_lock);
1458 spin_unlock(&inode_hash_lock);
1459 return 0;
1460 }
1461 __iget(old);
1462 spin_unlock(&old->i_lock);
1463 spin_unlock(&inode_hash_lock);
1464 wait_on_inode(old);
1465 if (unlikely(!inode_unhashed(old))) {
1466 iput(old);
1467 return -EBUSY;
1468 }
1469 iput(old);
1470 }
1471 }
1472 EXPORT_SYMBOL(insert_inode_locked4);
1473
1474
generic_delete_inode(struct inode * inode)1475 int generic_delete_inode(struct inode *inode)
1476 {
1477 return 1;
1478 }
1479 EXPORT_SYMBOL(generic_delete_inode);
1480
1481 /*
1482 * Called when we're dropping the last reference
1483 * to an inode.
1484 *
1485 * Call the FS "drop_inode()" function, defaulting to
1486 * the legacy UNIX filesystem behaviour. If it tells
1487 * us to evict inode, do so. Otherwise, retain inode
1488 * in cache if fs is alive, sync and evict if fs is
1489 * shutting down.
1490 */
iput_final(struct inode * inode)1491 static void iput_final(struct inode *inode)
1492 {
1493 struct super_block *sb = inode->i_sb;
1494 const struct super_operations *op = inode->i_sb->s_op;
1495 int drop;
1496
1497 WARN_ON(inode->i_state & I_NEW);
1498
1499 if (op->drop_inode)
1500 drop = op->drop_inode(inode);
1501 else
1502 drop = generic_drop_inode(inode);
1503
1504 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1505 inode_add_lru(inode);
1506 spin_unlock(&inode->i_lock);
1507 return;
1508 }
1509
1510 if (!drop) {
1511 inode->i_state |= I_WILL_FREE;
1512 spin_unlock(&inode->i_lock);
1513 write_inode_now(inode, 1);
1514 spin_lock(&inode->i_lock);
1515 WARN_ON(inode->i_state & I_NEW);
1516 inode->i_state &= ~I_WILL_FREE;
1517 }
1518
1519 inode->i_state |= I_FREEING;
1520 if (!list_empty(&inode->i_lru))
1521 inode_lru_list_del(inode);
1522 spin_unlock(&inode->i_lock);
1523
1524 evict(inode);
1525 }
1526
1527 /**
1528 * iput - put an inode
1529 * @inode: inode to put
1530 *
1531 * Puts an inode, dropping its usage count. If the inode use count hits
1532 * zero, the inode is then freed and may also be destroyed.
1533 *
1534 * Consequently, iput() can sleep.
1535 */
iput(struct inode * inode)1536 void iput(struct inode *inode)
1537 {
1538 if (!inode)
1539 return;
1540 BUG_ON(inode->i_state & I_CLEAR);
1541 retry:
1542 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1543 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1544 atomic_inc(&inode->i_count);
1545 inode->i_state &= ~I_DIRTY_TIME;
1546 spin_unlock(&inode->i_lock);
1547 trace_writeback_lazytime_iput(inode);
1548 mark_inode_dirty_sync(inode);
1549 goto retry;
1550 }
1551 iput_final(inode);
1552 }
1553 }
1554 EXPORT_SYMBOL(iput);
1555
1556 /**
1557 * bmap - find a block number in a file
1558 * @inode: inode of file
1559 * @block: block to find
1560 *
1561 * Returns the block number on the device holding the inode that
1562 * is the disk block number for the block of the file requested.
1563 * That is, asked for block 4 of inode 1 the function will return the
1564 * disk block relative to the disk start that holds that block of the
1565 * file.
1566 */
bmap(struct inode * inode,sector_t block)1567 sector_t bmap(struct inode *inode, sector_t block)
1568 {
1569 sector_t res = 0;
1570 if (inode->i_mapping->a_ops->bmap)
1571 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1572 return res;
1573 }
1574 EXPORT_SYMBOL(bmap);
1575
1576 /*
1577 * Update times in overlayed inode from underlying real inode
1578 */
update_ovl_inode_times(struct dentry * dentry,struct inode * inode,bool rcu)1579 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1580 bool rcu)
1581 {
1582 struct dentry *upperdentry;
1583
1584 /*
1585 * Nothing to do if in rcu or if non-overlayfs
1586 */
1587 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1588 return;
1589
1590 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1591
1592 /*
1593 * If file is on lower then we can't update atime, so no worries about
1594 * stale mtime/ctime.
1595 */
1596 if (upperdentry) {
1597 struct inode *realinode = d_inode(upperdentry);
1598
1599 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1600 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1601 inode->i_mtime = realinode->i_mtime;
1602 inode->i_ctime = realinode->i_ctime;
1603 }
1604 }
1605 }
1606
1607 /*
1608 * With relative atime, only update atime if the previous atime is
1609 * earlier than either the ctime or mtime or if at least a day has
1610 * passed since the last atime update.
1611 */
relatime_need_update(const struct path * path,struct inode * inode,struct timespec now,bool rcu)1612 static int relatime_need_update(const struct path *path, struct inode *inode,
1613 struct timespec now, bool rcu)
1614 {
1615
1616 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1617 return 1;
1618
1619 update_ovl_inode_times(path->dentry, inode, rcu);
1620 /*
1621 * Is mtime younger than atime? If yes, update atime:
1622 */
1623 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1624 return 1;
1625 /*
1626 * Is ctime younger than atime? If yes, update atime:
1627 */
1628 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1629 return 1;
1630
1631 /*
1632 * Is the previous atime value older than a day? If yes,
1633 * update atime:
1634 */
1635 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1636 return 1;
1637 /*
1638 * Good, we can skip the atime update:
1639 */
1640 return 0;
1641 }
1642
generic_update_time(struct inode * inode,struct timespec * time,int flags)1643 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1644 {
1645 int iflags = I_DIRTY_TIME;
1646
1647 if (flags & S_ATIME)
1648 inode->i_atime = *time;
1649 if (flags & S_VERSION)
1650 inode_inc_iversion(inode);
1651 if (flags & S_CTIME)
1652 inode->i_ctime = *time;
1653 if (flags & S_MTIME)
1654 inode->i_mtime = *time;
1655
1656 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1657 iflags |= I_DIRTY_SYNC;
1658 __mark_inode_dirty(inode, iflags);
1659 return 0;
1660 }
1661 EXPORT_SYMBOL(generic_update_time);
1662
1663 /*
1664 * This does the actual work of updating an inodes time or version. Must have
1665 * had called mnt_want_write() before calling this.
1666 */
update_time(struct inode * inode,struct timespec * time,int flags)1667 static int update_time(struct inode *inode, struct timespec *time, int flags)
1668 {
1669 int (*update_time)(struct inode *, struct timespec *, int);
1670
1671 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1672 generic_update_time;
1673
1674 return update_time(inode, time, flags);
1675 }
1676
1677 /**
1678 * touch_atime - update the access time
1679 * @path: the &struct path to update
1680 * @inode: inode to update
1681 *
1682 * Update the accessed time on an inode and mark it for writeback.
1683 * This function automatically handles read only file systems and media,
1684 * as well as the "noatime" flag and inode specific "noatime" markers.
1685 */
__atime_needs_update(const struct path * path,struct inode * inode,bool rcu)1686 bool __atime_needs_update(const struct path *path, struct inode *inode,
1687 bool rcu)
1688 {
1689 struct vfsmount *mnt = path->mnt;
1690 struct timespec now;
1691
1692 if (inode->i_flags & S_NOATIME)
1693 return false;
1694
1695 /* Atime updates will likely cause i_uid and i_gid to be written
1696 * back improprely if their true value is unknown to the vfs.
1697 */
1698 if (HAS_UNMAPPED_ID(inode))
1699 return false;
1700
1701 if (IS_NOATIME(inode))
1702 return false;
1703 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1704 return false;
1705
1706 if (mnt->mnt_flags & MNT_NOATIME)
1707 return false;
1708 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1709 return false;
1710
1711 now = current_time(inode);
1712
1713 if (!relatime_need_update(path, inode, now, rcu))
1714 return false;
1715
1716 if (timespec_equal(&inode->i_atime, &now))
1717 return false;
1718
1719 return true;
1720 }
1721
touch_atime(const struct path * path)1722 void touch_atime(const struct path *path)
1723 {
1724 struct vfsmount *mnt = path->mnt;
1725 struct inode *inode = d_inode(path->dentry);
1726 struct timespec now;
1727
1728 if (!__atime_needs_update(path, inode, false))
1729 return;
1730
1731 if (!sb_start_write_trylock(inode->i_sb))
1732 return;
1733
1734 if (__mnt_want_write(mnt) != 0)
1735 goto skip_update;
1736 /*
1737 * File systems can error out when updating inodes if they need to
1738 * allocate new space to modify an inode (such is the case for
1739 * Btrfs), but since we touch atime while walking down the path we
1740 * really don't care if we failed to update the atime of the file,
1741 * so just ignore the return value.
1742 * We may also fail on filesystems that have the ability to make parts
1743 * of the fs read only, e.g. subvolumes in Btrfs.
1744 */
1745 now = current_time(inode);
1746 update_time(inode, &now, S_ATIME);
1747 __mnt_drop_write(mnt);
1748 skip_update:
1749 sb_end_write(inode->i_sb);
1750 }
1751 EXPORT_SYMBOL(touch_atime);
1752
1753 /*
1754 * The logic we want is
1755 *
1756 * if suid or (sgid and xgrp)
1757 * remove privs
1758 */
should_remove_suid(struct dentry * dentry)1759 int should_remove_suid(struct dentry *dentry)
1760 {
1761 umode_t mode = d_inode(dentry)->i_mode;
1762 int kill = 0;
1763
1764 /* suid always must be killed */
1765 if (unlikely(mode & S_ISUID))
1766 kill = ATTR_KILL_SUID;
1767
1768 /*
1769 * sgid without any exec bits is just a mandatory locking mark; leave
1770 * it alone. If some exec bits are set, it's a real sgid; kill it.
1771 */
1772 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1773 kill |= ATTR_KILL_SGID;
1774
1775 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1776 return kill;
1777
1778 return 0;
1779 }
1780 EXPORT_SYMBOL(should_remove_suid);
1781
1782 /*
1783 * Return mask of changes for notify_change() that need to be done as a
1784 * response to write or truncate. Return 0 if nothing has to be changed.
1785 * Negative value on error (change should be denied).
1786 */
dentry_needs_remove_privs(struct dentry * dentry)1787 int dentry_needs_remove_privs(struct dentry *dentry)
1788 {
1789 struct inode *inode = d_inode(dentry);
1790 int mask = 0;
1791 int ret;
1792
1793 if (IS_NOSEC(inode))
1794 return 0;
1795
1796 mask = should_remove_suid(dentry);
1797 ret = security_inode_need_killpriv(dentry);
1798 if (ret < 0)
1799 return ret;
1800 if (ret)
1801 mask |= ATTR_KILL_PRIV;
1802 return mask;
1803 }
1804
__remove_privs(struct vfsmount * mnt,struct dentry * dentry,int kill)1805 static int __remove_privs(struct vfsmount *mnt, struct dentry *dentry, int kill)
1806 {
1807 struct iattr newattrs;
1808
1809 newattrs.ia_valid = ATTR_FORCE | kill;
1810 /*
1811 * Note we call this on write, so notify_change will not
1812 * encounter any conflicting delegations:
1813 */
1814 return notify_change2(mnt, dentry, &newattrs, NULL);
1815 }
1816
1817 /*
1818 * Remove special file priviledges (suid, capabilities) when file is written
1819 * to or truncated.
1820 */
file_remove_privs(struct file * file)1821 int file_remove_privs(struct file *file)
1822 {
1823 struct dentry *dentry = file_dentry(file);
1824 struct inode *inode = file_inode(file);
1825 int kill;
1826 int error = 0;
1827
1828 /*
1829 * Fast path for nothing security related.
1830 * As well for non-regular files, e.g. blkdev inodes.
1831 * For example, blkdev_write_iter() might get here
1832 * trying to remove privs which it is not allowed to.
1833 */
1834 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1835 return 0;
1836
1837 kill = dentry_needs_remove_privs(dentry);
1838 if (kill < 0)
1839 return kill;
1840 if (kill)
1841 error = __remove_privs(file->f_path.mnt, dentry, kill);
1842 if (!error)
1843 inode_has_no_xattr(inode);
1844
1845 return error;
1846 }
1847 EXPORT_SYMBOL(file_remove_privs);
1848
1849 /**
1850 * file_update_time - update mtime and ctime time
1851 * @file: file accessed
1852 *
1853 * Update the mtime and ctime members of an inode and mark the inode
1854 * for writeback. Note that this function is meant exclusively for
1855 * usage in the file write path of filesystems, and filesystems may
1856 * choose to explicitly ignore update via this function with the
1857 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1858 * timestamps are handled by the server. This can return an error for
1859 * file systems who need to allocate space in order to update an inode.
1860 */
1861
file_update_time(struct file * file)1862 int file_update_time(struct file *file)
1863 {
1864 struct inode *inode = file_inode(file);
1865 struct timespec now;
1866 int sync_it = 0;
1867 int ret;
1868
1869 /* First try to exhaust all avenues to not sync */
1870 if (IS_NOCMTIME(inode))
1871 return 0;
1872
1873 now = current_time(inode);
1874 if (!timespec_equal(&inode->i_mtime, &now))
1875 sync_it = S_MTIME;
1876
1877 if (!timespec_equal(&inode->i_ctime, &now))
1878 sync_it |= S_CTIME;
1879
1880 if (IS_I_VERSION(inode))
1881 sync_it |= S_VERSION;
1882
1883 if (!sync_it)
1884 return 0;
1885
1886 /* Finally allowed to write? Takes lock. */
1887 if (__mnt_want_write_file(file))
1888 return 0;
1889
1890 ret = update_time(inode, &now, sync_it);
1891 __mnt_drop_write_file(file);
1892
1893 return ret;
1894 }
1895 EXPORT_SYMBOL(file_update_time);
1896
inode_needs_sync(struct inode * inode)1897 int inode_needs_sync(struct inode *inode)
1898 {
1899 if (IS_SYNC(inode))
1900 return 1;
1901 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1902 return 1;
1903 return 0;
1904 }
1905 EXPORT_SYMBOL(inode_needs_sync);
1906
1907 /*
1908 * If we try to find an inode in the inode hash while it is being
1909 * deleted, we have to wait until the filesystem completes its
1910 * deletion before reporting that it isn't found. This function waits
1911 * until the deletion _might_ have completed. Callers are responsible
1912 * to recheck inode state.
1913 *
1914 * It doesn't matter if I_NEW is not set initially, a call to
1915 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1916 * will DTRT.
1917 */
__wait_on_freeing_inode(struct inode * inode)1918 static void __wait_on_freeing_inode(struct inode *inode)
1919 {
1920 wait_queue_head_t *wq;
1921 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1922 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1923 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1924 spin_unlock(&inode->i_lock);
1925 spin_unlock(&inode_hash_lock);
1926 schedule();
1927 finish_wait(wq, &wait.wq_entry);
1928 spin_lock(&inode_hash_lock);
1929 }
1930
1931 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1932 static int __init set_ihash_entries(char *str)
1933 {
1934 if (!str)
1935 return 0;
1936 ihash_entries = simple_strtoul(str, &str, 0);
1937 return 1;
1938 }
1939 __setup("ihash_entries=", set_ihash_entries);
1940
1941 /*
1942 * Initialize the waitqueues and inode hash table.
1943 */
inode_init_early(void)1944 void __init inode_init_early(void)
1945 {
1946 /* If hashes are distributed across NUMA nodes, defer
1947 * hash allocation until vmalloc space is available.
1948 */
1949 if (hashdist)
1950 return;
1951
1952 inode_hashtable =
1953 alloc_large_system_hash("Inode-cache",
1954 sizeof(struct hlist_head),
1955 ihash_entries,
1956 14,
1957 HASH_EARLY | HASH_ZERO,
1958 &i_hash_shift,
1959 &i_hash_mask,
1960 0,
1961 0);
1962 }
1963
inode_init(void)1964 void __init inode_init(void)
1965 {
1966 /* inode slab cache */
1967 inode_cachep = kmem_cache_create("inode_cache",
1968 sizeof(struct inode),
1969 0,
1970 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1971 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1972 init_once);
1973
1974 /* Hash may have been set up in inode_init_early */
1975 if (!hashdist)
1976 return;
1977
1978 inode_hashtable =
1979 alloc_large_system_hash("Inode-cache",
1980 sizeof(struct hlist_head),
1981 ihash_entries,
1982 14,
1983 HASH_ZERO,
1984 &i_hash_shift,
1985 &i_hash_mask,
1986 0,
1987 0);
1988 }
1989
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1990 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1991 {
1992 inode->i_mode = mode;
1993 if (S_ISCHR(mode)) {
1994 inode->i_fop = &def_chr_fops;
1995 inode->i_rdev = rdev;
1996 } else if (S_ISBLK(mode)) {
1997 inode->i_fop = &def_blk_fops;
1998 inode->i_rdev = rdev;
1999 } else if (S_ISFIFO(mode))
2000 inode->i_fop = &pipefifo_fops;
2001 else if (S_ISSOCK(mode))
2002 ; /* leave it no_open_fops */
2003 else
2004 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2005 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2006 inode->i_ino);
2007 }
2008 EXPORT_SYMBOL(init_special_inode);
2009
2010 /**
2011 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2012 * @inode: New inode
2013 * @dir: Directory inode
2014 * @mode: mode of the new inode
2015 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2016 void inode_init_owner(struct inode *inode, const struct inode *dir,
2017 umode_t mode)
2018 {
2019 inode->i_uid = current_fsuid();
2020 if (dir && dir->i_mode & S_ISGID) {
2021 inode->i_gid = dir->i_gid;
2022
2023 /* Directories are special, and always inherit S_ISGID */
2024 if (S_ISDIR(mode))
2025 mode |= S_ISGID;
2026 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2027 !in_group_p(inode->i_gid) &&
2028 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2029 mode &= ~S_ISGID;
2030 } else
2031 inode->i_gid = current_fsgid();
2032 inode->i_mode = mode;
2033 }
2034 EXPORT_SYMBOL(inode_init_owner);
2035
2036 /**
2037 * inode_owner_or_capable - check current task permissions to inode
2038 * @inode: inode being checked
2039 *
2040 * Return true if current either has CAP_FOWNER in a namespace with the
2041 * inode owner uid mapped, or owns the file.
2042 */
inode_owner_or_capable(const struct inode * inode)2043 bool inode_owner_or_capable(const struct inode *inode)
2044 {
2045 struct user_namespace *ns;
2046
2047 if (uid_eq(current_fsuid(), inode->i_uid))
2048 return true;
2049
2050 ns = current_user_ns();
2051 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2052 return true;
2053 return false;
2054 }
2055 EXPORT_SYMBOL(inode_owner_or_capable);
2056
2057 /*
2058 * Direct i/o helper functions
2059 */
__inode_dio_wait(struct inode * inode)2060 static void __inode_dio_wait(struct inode *inode)
2061 {
2062 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2063 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2064
2065 do {
2066 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2067 if (atomic_read(&inode->i_dio_count))
2068 schedule();
2069 } while (atomic_read(&inode->i_dio_count));
2070 finish_wait(wq, &q.wq_entry);
2071 }
2072
2073 /**
2074 * inode_dio_wait - wait for outstanding DIO requests to finish
2075 * @inode: inode to wait for
2076 *
2077 * Waits for all pending direct I/O requests to finish so that we can
2078 * proceed with a truncate or equivalent operation.
2079 *
2080 * Must be called under a lock that serializes taking new references
2081 * to i_dio_count, usually by inode->i_mutex.
2082 */
inode_dio_wait(struct inode * inode)2083 void inode_dio_wait(struct inode *inode)
2084 {
2085 if (atomic_read(&inode->i_dio_count))
2086 __inode_dio_wait(inode);
2087 }
2088 EXPORT_SYMBOL(inode_dio_wait);
2089
2090 /*
2091 * inode_set_flags - atomically set some inode flags
2092 *
2093 * Note: the caller should be holding i_mutex, or else be sure that
2094 * they have exclusive access to the inode structure (i.e., while the
2095 * inode is being instantiated). The reason for the cmpxchg() loop
2096 * --- which wouldn't be necessary if all code paths which modify
2097 * i_flags actually followed this rule, is that there is at least one
2098 * code path which doesn't today so we use cmpxchg() out of an abundance
2099 * of caution.
2100 *
2101 * In the long run, i_mutex is overkill, and we should probably look
2102 * at using the i_lock spinlock to protect i_flags, and then make sure
2103 * it is so documented in include/linux/fs.h and that all code follows
2104 * the locking convention!!
2105 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2106 void inode_set_flags(struct inode *inode, unsigned int flags,
2107 unsigned int mask)
2108 {
2109 unsigned int old_flags, new_flags;
2110
2111 WARN_ON_ONCE(flags & ~mask);
2112 do {
2113 old_flags = ACCESS_ONCE(inode->i_flags);
2114 new_flags = (old_flags & ~mask) | flags;
2115 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2116 new_flags) != old_flags));
2117 }
2118 EXPORT_SYMBOL(inode_set_flags);
2119
inode_nohighmem(struct inode * inode)2120 void inode_nohighmem(struct inode *inode)
2121 {
2122 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2123 }
2124 EXPORT_SYMBOL(inode_nohighmem);
2125
2126 /**
2127 * current_time - Return FS time
2128 * @inode: inode.
2129 *
2130 * Return the current time truncated to the time granularity supported by
2131 * the fs.
2132 *
2133 * Note that inode and inode->sb cannot be NULL.
2134 * Otherwise, the function warns and returns time without truncation.
2135 */
current_time(struct inode * inode)2136 struct timespec current_time(struct inode *inode)
2137 {
2138 struct timespec now = current_kernel_time();
2139
2140 if (unlikely(!inode->i_sb)) {
2141 WARN(1, "current_time() called with uninitialized super_block in the inode");
2142 return now;
2143 }
2144
2145 return timespec_trunc(now, inode->i_sb->s_time_gran);
2146 }
2147 EXPORT_SYMBOL(current_time);
2148