1 /*
2 * Released under the GPLv2 only.
3 * SPDX-License-Identifier: GPL-2.0
4 */
5
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15
16 #define to_urb(d) container_of(d, struct urb, kref)
17
18
urb_destroy(struct kref * kref)19 static void urb_destroy(struct kref *kref)
20 {
21 struct urb *urb = to_urb(kref);
22
23 if (urb->transfer_flags & URB_FREE_BUFFER)
24 kfree(urb->transfer_buffer);
25
26 kfree(urb);
27 }
28
29 /**
30 * usb_init_urb - initializes a urb so that it can be used by a USB driver
31 * @urb: pointer to the urb to initialize
32 *
33 * Initializes a urb so that the USB subsystem can use it properly.
34 *
35 * If a urb is created with a call to usb_alloc_urb() it is not
36 * necessary to call this function. Only use this if you allocate the
37 * space for a struct urb on your own. If you call this function, be
38 * careful when freeing the memory for your urb that it is no longer in
39 * use by the USB core.
40 *
41 * Only use this function if you _really_ understand what you are doing.
42 */
usb_init_urb(struct urb * urb)43 void usb_init_urb(struct urb *urb)
44 {
45 if (urb) {
46 memset(urb, 0, sizeof(*urb));
47 kref_init(&urb->kref);
48 INIT_LIST_HEAD(&urb->urb_list);
49 INIT_LIST_HEAD(&urb->anchor_list);
50 }
51 }
52 EXPORT_SYMBOL_GPL(usb_init_urb);
53
54 /**
55 * usb_alloc_urb - creates a new urb for a USB driver to use
56 * @iso_packets: number of iso packets for this urb
57 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
58 * valid options for this.
59 *
60 * Creates an urb for the USB driver to use, initializes a few internal
61 * structures, increments the usage counter, and returns a pointer to it.
62 *
63 * If the driver want to use this urb for interrupt, control, or bulk
64 * endpoints, pass '0' as the number of iso packets.
65 *
66 * The driver must call usb_free_urb() when it is finished with the urb.
67 *
68 * Return: A pointer to the new urb, or %NULL if no memory is available.
69 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
71 {
72 struct urb *urb;
73
74 urb = kmalloc(sizeof(struct urb) +
75 iso_packets * sizeof(struct usb_iso_packet_descriptor),
76 mem_flags);
77 if (!urb)
78 return NULL;
79 usb_init_urb(urb);
80 return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83
84 /**
85 * usb_free_urb - frees the memory used by a urb when all users of it are finished
86 * @urb: pointer to the urb to free, may be NULL
87 *
88 * Must be called when a user of a urb is finished with it. When the last user
89 * of the urb calls this function, the memory of the urb is freed.
90 *
91 * Note: The transfer buffer associated with the urb is not freed unless the
92 * URB_FREE_BUFFER transfer flag is set.
93 */
usb_free_urb(struct urb * urb)94 void usb_free_urb(struct urb *urb)
95 {
96 if (urb)
97 kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100
101 /**
102 * usb_get_urb - increments the reference count of the urb
103 * @urb: pointer to the urb to modify, may be NULL
104 *
105 * This must be called whenever a urb is transferred from a device driver to a
106 * host controller driver. This allows proper reference counting to happen
107 * for urbs.
108 *
109 * Return: A pointer to the urb with the incremented reference counter.
110 */
usb_get_urb(struct urb * urb)111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 if (urb)
114 kref_get(&urb->kref);
115 return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118
119 /**
120 * usb_anchor_urb - anchors an URB while it is processed
121 * @urb: pointer to the urb to anchor
122 * @anchor: pointer to the anchor
123 *
124 * This can be called to have access to URBs which are to be executed
125 * without bothering to track them
126 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 unsigned long flags;
130
131 spin_lock_irqsave(&anchor->lock, flags);
132 usb_get_urb(urb);
133 list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 urb->anchor = anchor;
135
136 if (unlikely(anchor->poisoned))
137 atomic_inc(&urb->reject);
138
139 spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142
usb_anchor_check_wakeup(struct usb_anchor * anchor)143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 list_empty(&anchor->urb_list);
147 }
148
149 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 urb->anchor = NULL;
153 list_del(&urb->anchor_list);
154 usb_put_urb(urb);
155 if (usb_anchor_check_wakeup(anchor))
156 wake_up(&anchor->wait);
157 }
158
159 /**
160 * usb_unanchor_urb - unanchors an URB
161 * @urb: pointer to the urb to anchor
162 *
163 * Call this to stop the system keeping track of this URB
164 */
usb_unanchor_urb(struct urb * urb)165 void usb_unanchor_urb(struct urb *urb)
166 {
167 unsigned long flags;
168 struct usb_anchor *anchor;
169
170 if (!urb)
171 return;
172
173 anchor = urb->anchor;
174 if (!anchor)
175 return;
176
177 spin_lock_irqsave(&anchor->lock, flags);
178 /*
179 * At this point, we could be competing with another thread which
180 * has the same intention. To protect the urb from being unanchored
181 * twice, only the winner of the race gets the job.
182 */
183 if (likely(anchor == urb->anchor))
184 __usb_unanchor_urb(urb, anchor);
185 spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188
189 /*-------------------------------------------------------------------*/
190
191 static const int pipetypes[4] = {
192 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194
195 /**
196 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
197 * @urb: urb to be checked
198 *
199 * This performs a light-weight sanity check for the endpoint in the
200 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
201 * a negative error code.
202 */
usb_urb_ep_type_check(const struct urb * urb)203 int usb_urb_ep_type_check(const struct urb *urb)
204 {
205 const struct usb_host_endpoint *ep;
206
207 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
208 if (!ep)
209 return -EINVAL;
210 if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
211 return -EINVAL;
212 return 0;
213 }
214 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
215
216 /**
217 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
218 * @urb: pointer to the urb describing the request
219 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
220 * of valid options for this.
221 *
222 * This submits a transfer request, and transfers control of the URB
223 * describing that request to the USB subsystem. Request completion will
224 * be indicated later, asynchronously, by calling the completion handler.
225 * The three types of completion are success, error, and unlink
226 * (a software-induced fault, also called "request cancellation").
227 *
228 * URBs may be submitted in interrupt context.
229 *
230 * The caller must have correctly initialized the URB before submitting
231 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
232 * available to ensure that most fields are correctly initialized, for
233 * the particular kind of transfer, although they will not initialize
234 * any transfer flags.
235 *
236 * If the submission is successful, the complete() callback from the URB
237 * will be called exactly once, when the USB core and Host Controller Driver
238 * (HCD) are finished with the URB. When the completion function is called,
239 * control of the URB is returned to the device driver which issued the
240 * request. The completion handler may then immediately free or reuse that
241 * URB.
242 *
243 * With few exceptions, USB device drivers should never access URB fields
244 * provided by usbcore or the HCD until its complete() is called.
245 * The exceptions relate to periodic transfer scheduling. For both
246 * interrupt and isochronous urbs, as part of successful URB submission
247 * urb->interval is modified to reflect the actual transfer period used
248 * (normally some power of two units). And for isochronous urbs,
249 * urb->start_frame is modified to reflect when the URB's transfers were
250 * scheduled to start.
251 *
252 * Not all isochronous transfer scheduling policies will work, but most
253 * host controller drivers should easily handle ISO queues going from now
254 * until 10-200 msec into the future. Drivers should try to keep at
255 * least one or two msec of data in the queue; many controllers require
256 * that new transfers start at least 1 msec in the future when they are
257 * added. If the driver is unable to keep up and the queue empties out,
258 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
259 * If the flag is set, or if the queue is idle, then the URB is always
260 * assigned to the first available (and not yet expired) slot in the
261 * endpoint's schedule. If the flag is not set and the queue is active
262 * then the URB is always assigned to the next slot in the schedule
263 * following the end of the endpoint's previous URB, even if that slot is
264 * in the past. When a packet is assigned in this way to a slot that has
265 * already expired, the packet is not transmitted and the corresponding
266 * usb_iso_packet_descriptor's status field will return -EXDEV. If this
267 * would happen to all the packets in the URB, submission fails with a
268 * -EXDEV error code.
269 *
270 * For control endpoints, the synchronous usb_control_msg() call is
271 * often used (in non-interrupt context) instead of this call.
272 * That is often used through convenience wrappers, for the requests
273 * that are standardized in the USB 2.0 specification. For bulk
274 * endpoints, a synchronous usb_bulk_msg() call is available.
275 *
276 * Return:
277 * 0 on successful submissions. A negative error number otherwise.
278 *
279 * Request Queuing:
280 *
281 * URBs may be submitted to endpoints before previous ones complete, to
282 * minimize the impact of interrupt latencies and system overhead on data
283 * throughput. With that queuing policy, an endpoint's queue would never
284 * be empty. This is required for continuous isochronous data streams,
285 * and may also be required for some kinds of interrupt transfers. Such
286 * queuing also maximizes bandwidth utilization by letting USB controllers
287 * start work on later requests before driver software has finished the
288 * completion processing for earlier (successful) requests.
289 *
290 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
291 * than one. This was previously a HCD-specific behavior, except for ISO
292 * transfers. Non-isochronous endpoint queues are inactive during cleanup
293 * after faults (transfer errors or cancellation).
294 *
295 * Reserved Bandwidth Transfers:
296 *
297 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
298 * using the interval specified in the urb. Submitting the first urb to
299 * the endpoint reserves the bandwidth necessary to make those transfers.
300 * If the USB subsystem can't allocate sufficient bandwidth to perform
301 * the periodic request, submitting such a periodic request should fail.
302 *
303 * For devices under xHCI, the bandwidth is reserved at configuration time, or
304 * when the alt setting is selected. If there is not enough bus bandwidth, the
305 * configuration/alt setting request will fail. Therefore, submissions to
306 * periodic endpoints on devices under xHCI should never fail due to bandwidth
307 * constraints.
308 *
309 * Device drivers must explicitly request that repetition, by ensuring that
310 * some URB is always on the endpoint's queue (except possibly for short
311 * periods during completion callbacks). When there is no longer an urb
312 * queued, the endpoint's bandwidth reservation is canceled. This means
313 * drivers can use their completion handlers to ensure they keep bandwidth
314 * they need, by reinitializing and resubmitting the just-completed urb
315 * until the driver longer needs that periodic bandwidth.
316 *
317 * Memory Flags:
318 *
319 * The general rules for how to decide which mem_flags to use
320 * are the same as for kmalloc. There are four
321 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
322 * GFP_ATOMIC.
323 *
324 * GFP_NOFS is not ever used, as it has not been implemented yet.
325 *
326 * GFP_ATOMIC is used when
327 * (a) you are inside a completion handler, an interrupt, bottom half,
328 * tasklet or timer, or
329 * (b) you are holding a spinlock or rwlock (does not apply to
330 * semaphores), or
331 * (c) current->state != TASK_RUNNING, this is the case only after
332 * you've changed it.
333 *
334 * GFP_NOIO is used in the block io path and error handling of storage
335 * devices.
336 *
337 * All other situations use GFP_KERNEL.
338 *
339 * Some more specific rules for mem_flags can be inferred, such as
340 * (1) start_xmit, timeout, and receive methods of network drivers must
341 * use GFP_ATOMIC (they are called with a spinlock held);
342 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
343 * called with a spinlock held);
344 * (3) If you use a kernel thread with a network driver you must use
345 * GFP_NOIO, unless (b) or (c) apply;
346 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
347 * apply or your are in a storage driver's block io path;
348 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
349 * (6) changing firmware on a running storage or net device uses
350 * GFP_NOIO, unless b) or c) apply
351 *
352 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)353 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
354 {
355 int xfertype, max;
356 struct usb_device *dev;
357 struct usb_host_endpoint *ep;
358 int is_out;
359 unsigned int allowed;
360
361 if (!urb || !urb->complete)
362 return -EINVAL;
363 if (urb->hcpriv) {
364 WARN_ONCE(1, "URB %pK submitted while active\n", urb);
365 return -EBUSY;
366 }
367
368 dev = urb->dev;
369 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
370 return -ENODEV;
371
372 /* For now, get the endpoint from the pipe. Eventually drivers
373 * will be required to set urb->ep directly and we will eliminate
374 * urb->pipe.
375 */
376 ep = usb_pipe_endpoint(dev, urb->pipe);
377 if (!ep)
378 return -ENOENT;
379
380 urb->ep = ep;
381 urb->status = -EINPROGRESS;
382 urb->actual_length = 0;
383
384 /* Lots of sanity checks, so HCDs can rely on clean data
385 * and don't need to duplicate tests
386 */
387 xfertype = usb_endpoint_type(&ep->desc);
388 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
389 struct usb_ctrlrequest *setup =
390 (struct usb_ctrlrequest *) urb->setup_packet;
391
392 if (!setup)
393 return -ENOEXEC;
394 is_out = !(setup->bRequestType & USB_DIR_IN) ||
395 !setup->wLength;
396 } else {
397 is_out = usb_endpoint_dir_out(&ep->desc);
398 }
399
400 /* Clear the internal flags and cache the direction for later use */
401 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
402 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
403 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
404 URB_DMA_SG_COMBINED);
405 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
406
407 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
408 dev->state < USB_STATE_CONFIGURED)
409 return -ENODEV;
410
411 max = usb_endpoint_maxp(&ep->desc);
412 if (max <= 0) {
413 dev_dbg(&dev->dev,
414 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
415 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
416 __func__, max);
417 return -EMSGSIZE;
418 }
419
420 /* periodic transfers limit size per frame/uframe,
421 * but drivers only control those sizes for ISO.
422 * while we're checking, initialize return status.
423 */
424 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
425 int n, len;
426
427 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
428 * 3 packets each
429 */
430 if (dev->speed >= USB_SPEED_SUPER) {
431 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
432 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
433 max *= burst;
434 max *= mult;
435 }
436
437 /* "high bandwidth" mode, 1-3 packets/uframe? */
438 if (dev->speed == USB_SPEED_HIGH)
439 max *= usb_endpoint_maxp_mult(&ep->desc);
440
441 if (urb->number_of_packets <= 0)
442 return -EINVAL;
443 for (n = 0; n < urb->number_of_packets; n++) {
444 len = urb->iso_frame_desc[n].length;
445 if (len < 0 || len > max)
446 return -EMSGSIZE;
447 urb->iso_frame_desc[n].status = -EXDEV;
448 urb->iso_frame_desc[n].actual_length = 0;
449 }
450 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
451 dev->speed != USB_SPEED_WIRELESS) {
452 struct scatterlist *sg;
453 int i;
454
455 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
456 if (sg->length % max)
457 return -EINVAL;
458 }
459
460 /* the I/O buffer must be mapped/unmapped, except when length=0 */
461 if (urb->transfer_buffer_length > INT_MAX)
462 return -EMSGSIZE;
463
464 /*
465 * stuff that drivers shouldn't do, but which shouldn't
466 * cause problems in HCDs if they get it wrong.
467 */
468
469 /* Check that the pipe's type matches the endpoint's type */
470 if (usb_urb_ep_type_check(urb))
471 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
472 usb_pipetype(urb->pipe), pipetypes[xfertype]);
473
474 /* Check against a simple/standard policy */
475 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
476 URB_FREE_BUFFER);
477 switch (xfertype) {
478 case USB_ENDPOINT_XFER_BULK:
479 case USB_ENDPOINT_XFER_INT:
480 if (is_out)
481 allowed |= URB_ZERO_PACKET;
482 /* FALLTHROUGH */
483 case USB_ENDPOINT_XFER_CONTROL:
484 allowed |= URB_NO_FSBR; /* only affects UHCI */
485 /* FALLTHROUGH */
486 default: /* all non-iso endpoints */
487 if (!is_out)
488 allowed |= URB_SHORT_NOT_OK;
489 break;
490 case USB_ENDPOINT_XFER_ISOC:
491 allowed |= URB_ISO_ASAP;
492 break;
493 }
494 allowed &= urb->transfer_flags;
495
496 /* warn if submitter gave bogus flags */
497 if (allowed != urb->transfer_flags)
498 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
499 urb->transfer_flags, allowed);
500
501 /*
502 * Force periodic transfer intervals to be legal values that are
503 * a power of two (so HCDs don't need to).
504 *
505 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
506 * supports different values... this uses EHCI/UHCI defaults (and
507 * EHCI can use smaller non-default values).
508 */
509 switch (xfertype) {
510 case USB_ENDPOINT_XFER_ISOC:
511 case USB_ENDPOINT_XFER_INT:
512 /* too small? */
513 switch (dev->speed) {
514 case USB_SPEED_WIRELESS:
515 if ((urb->interval < 6)
516 && (xfertype == USB_ENDPOINT_XFER_INT))
517 return -EINVAL;
518 default:
519 if (urb->interval <= 0)
520 return -EINVAL;
521 break;
522 }
523 /* too big? */
524 switch (dev->speed) {
525 case USB_SPEED_SUPER_PLUS:
526 case USB_SPEED_SUPER: /* units are 125us */
527 /* Handle up to 2^(16-1) microframes */
528 if (urb->interval > (1 << 15))
529 return -EINVAL;
530 max = 1 << 15;
531 break;
532 case USB_SPEED_WIRELESS:
533 if (urb->interval > 16)
534 return -EINVAL;
535 break;
536 case USB_SPEED_HIGH: /* units are microframes */
537 /* NOTE usb handles 2^15 */
538 if (urb->interval > (1024 * 8))
539 urb->interval = 1024 * 8;
540 max = 1024 * 8;
541 break;
542 case USB_SPEED_FULL: /* units are frames/msec */
543 case USB_SPEED_LOW:
544 if (xfertype == USB_ENDPOINT_XFER_INT) {
545 if (urb->interval > 255)
546 return -EINVAL;
547 /* NOTE ohci only handles up to 32 */
548 max = 128;
549 } else {
550 if (urb->interval > 1024)
551 urb->interval = 1024;
552 /* NOTE usb and ohci handle up to 2^15 */
553 max = 1024;
554 }
555 break;
556 default:
557 return -EINVAL;
558 }
559 if (dev->speed != USB_SPEED_WIRELESS) {
560 /* Round down to a power of 2, no more than max */
561 urb->interval = min(max, 1 << ilog2(urb->interval));
562 }
563 }
564
565 return usb_hcd_submit_urb(urb, mem_flags);
566 }
567 EXPORT_SYMBOL_GPL(usb_submit_urb);
568
569 /*-------------------------------------------------------------------*/
570
571 /**
572 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
573 * @urb: pointer to urb describing a previously submitted request,
574 * may be NULL
575 *
576 * This routine cancels an in-progress request. URBs complete only once
577 * per submission, and may be canceled only once per submission.
578 * Successful cancellation means termination of @urb will be expedited
579 * and the completion handler will be called with a status code
580 * indicating that the request has been canceled (rather than any other
581 * code).
582 *
583 * Drivers should not call this routine or related routines, such as
584 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
585 * method has returned. The disconnect function should synchronize with
586 * a driver's I/O routines to insure that all URB-related activity has
587 * completed before it returns.
588 *
589 * This request is asynchronous, however the HCD might call the ->complete()
590 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
591 * must not hold any locks that may be taken by the completion function.
592 * Success is indicated by returning -EINPROGRESS, at which time the URB will
593 * probably not yet have been given back to the device driver. When it is
594 * eventually called, the completion function will see @urb->status ==
595 * -ECONNRESET.
596 * Failure is indicated by usb_unlink_urb() returning any other value.
597 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
598 * never submitted, or it was unlinked before, or the hardware is already
599 * finished with it), even if the completion handler has not yet run.
600 *
601 * The URB must not be deallocated while this routine is running. In
602 * particular, when a driver calls this routine, it must insure that the
603 * completion handler cannot deallocate the URB.
604 *
605 * Return: -EINPROGRESS on success. See description for other values on
606 * failure.
607 *
608 * Unlinking and Endpoint Queues:
609 *
610 * [The behaviors and guarantees described below do not apply to virtual
611 * root hubs but only to endpoint queues for physical USB devices.]
612 *
613 * Host Controller Drivers (HCDs) place all the URBs for a particular
614 * endpoint in a queue. Normally the queue advances as the controller
615 * hardware processes each request. But when an URB terminates with an
616 * error its queue generally stops (see below), at least until that URB's
617 * completion routine returns. It is guaranteed that a stopped queue
618 * will not restart until all its unlinked URBs have been fully retired,
619 * with their completion routines run, even if that's not until some time
620 * after the original completion handler returns. The same behavior and
621 * guarantee apply when an URB terminates because it was unlinked.
622 *
623 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
624 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
625 * and -EREMOTEIO. Control endpoint queues behave the same way except
626 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
627 * for isochronous endpoints are treated differently, because they must
628 * advance at fixed rates. Such queues do not stop when an URB
629 * encounters an error or is unlinked. An unlinked isochronous URB may
630 * leave a gap in the stream of packets; it is undefined whether such
631 * gaps can be filled in.
632 *
633 * Note that early termination of an URB because a short packet was
634 * received will generate a -EREMOTEIO error if and only if the
635 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
636 * drivers can build deep queues for large or complex bulk transfers
637 * and clean them up reliably after any sort of aborted transfer by
638 * unlinking all pending URBs at the first fault.
639 *
640 * When a control URB terminates with an error other than -EREMOTEIO, it
641 * is quite likely that the status stage of the transfer will not take
642 * place.
643 */
usb_unlink_urb(struct urb * urb)644 int usb_unlink_urb(struct urb *urb)
645 {
646 if (!urb)
647 return -EINVAL;
648 if (!urb->dev)
649 return -ENODEV;
650 if (!urb->ep)
651 return -EIDRM;
652 return usb_hcd_unlink_urb(urb, -ECONNRESET);
653 }
654 EXPORT_SYMBOL_GPL(usb_unlink_urb);
655
656 /**
657 * usb_kill_urb - cancel a transfer request and wait for it to finish
658 * @urb: pointer to URB describing a previously submitted request,
659 * may be NULL
660 *
661 * This routine cancels an in-progress request. It is guaranteed that
662 * upon return all completion handlers will have finished and the URB
663 * will be totally idle and available for reuse. These features make
664 * this an ideal way to stop I/O in a disconnect() callback or close()
665 * function. If the request has not already finished or been unlinked
666 * the completion handler will see urb->status == -ENOENT.
667 *
668 * While the routine is running, attempts to resubmit the URB will fail
669 * with error -EPERM. Thus even if the URB's completion handler always
670 * tries to resubmit, it will not succeed and the URB will become idle.
671 *
672 * The URB must not be deallocated while this routine is running. In
673 * particular, when a driver calls this routine, it must insure that the
674 * completion handler cannot deallocate the URB.
675 *
676 * This routine may not be used in an interrupt context (such as a bottom
677 * half or a completion handler), or when holding a spinlock, or in other
678 * situations where the caller can't schedule().
679 *
680 * This routine should not be called by a driver after its disconnect
681 * method has returned.
682 */
usb_kill_urb(struct urb * urb)683 void usb_kill_urb(struct urb *urb)
684 {
685 might_sleep();
686 if (!(urb && urb->dev && urb->ep))
687 return;
688 atomic_inc(&urb->reject);
689
690 usb_hcd_unlink_urb(urb, -ENOENT);
691 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
692
693 atomic_dec(&urb->reject);
694 }
695 EXPORT_SYMBOL_GPL(usb_kill_urb);
696
697 /**
698 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
699 * @urb: pointer to URB describing a previously submitted request,
700 * may be NULL
701 *
702 * This routine cancels an in-progress request. It is guaranteed that
703 * upon return all completion handlers will have finished and the URB
704 * will be totally idle and cannot be reused. These features make
705 * this an ideal way to stop I/O in a disconnect() callback.
706 * If the request has not already finished or been unlinked
707 * the completion handler will see urb->status == -ENOENT.
708 *
709 * After and while the routine runs, attempts to resubmit the URB will fail
710 * with error -EPERM. Thus even if the URB's completion handler always
711 * tries to resubmit, it will not succeed and the URB will become idle.
712 *
713 * The URB must not be deallocated while this routine is running. In
714 * particular, when a driver calls this routine, it must insure that the
715 * completion handler cannot deallocate the URB.
716 *
717 * This routine may not be used in an interrupt context (such as a bottom
718 * half or a completion handler), or when holding a spinlock, or in other
719 * situations where the caller can't schedule().
720 *
721 * This routine should not be called by a driver after its disconnect
722 * method has returned.
723 */
usb_poison_urb(struct urb * urb)724 void usb_poison_urb(struct urb *urb)
725 {
726 might_sleep();
727 if (!urb)
728 return;
729 atomic_inc(&urb->reject);
730
731 if (!urb->dev || !urb->ep)
732 return;
733
734 usb_hcd_unlink_urb(urb, -ENOENT);
735 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
736 }
737 EXPORT_SYMBOL_GPL(usb_poison_urb);
738
usb_unpoison_urb(struct urb * urb)739 void usb_unpoison_urb(struct urb *urb)
740 {
741 if (!urb)
742 return;
743
744 atomic_dec(&urb->reject);
745 }
746 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
747
748 /**
749 * usb_block_urb - reliably prevent further use of an URB
750 * @urb: pointer to URB to be blocked, may be NULL
751 *
752 * After the routine has run, attempts to resubmit the URB will fail
753 * with error -EPERM. Thus even if the URB's completion handler always
754 * tries to resubmit, it will not succeed and the URB will become idle.
755 *
756 * The URB must not be deallocated while this routine is running. In
757 * particular, when a driver calls this routine, it must insure that the
758 * completion handler cannot deallocate the URB.
759 */
usb_block_urb(struct urb * urb)760 void usb_block_urb(struct urb *urb)
761 {
762 if (!urb)
763 return;
764
765 atomic_inc(&urb->reject);
766 }
767 EXPORT_SYMBOL_GPL(usb_block_urb);
768
769 /**
770 * usb_kill_anchored_urbs - cancel transfer requests en masse
771 * @anchor: anchor the requests are bound to
772 *
773 * this allows all outstanding URBs to be killed starting
774 * from the back of the queue
775 *
776 * This routine should not be called by a driver after its disconnect
777 * method has returned.
778 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)779 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
780 {
781 struct urb *victim;
782
783 spin_lock_irq(&anchor->lock);
784 while (!list_empty(&anchor->urb_list)) {
785 victim = list_entry(anchor->urb_list.prev, struct urb,
786 anchor_list);
787 /* we must make sure the URB isn't freed before we kill it*/
788 usb_get_urb(victim);
789 spin_unlock_irq(&anchor->lock);
790 /* this will unanchor the URB */
791 usb_kill_urb(victim);
792 usb_put_urb(victim);
793 spin_lock_irq(&anchor->lock);
794 }
795 spin_unlock_irq(&anchor->lock);
796 }
797 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
798
799
800 /**
801 * usb_poison_anchored_urbs - cease all traffic from an anchor
802 * @anchor: anchor the requests are bound to
803 *
804 * this allows all outstanding URBs to be poisoned starting
805 * from the back of the queue. Newly added URBs will also be
806 * poisoned
807 *
808 * This routine should not be called by a driver after its disconnect
809 * method has returned.
810 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)811 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
812 {
813 struct urb *victim;
814
815 spin_lock_irq(&anchor->lock);
816 anchor->poisoned = 1;
817 while (!list_empty(&anchor->urb_list)) {
818 victim = list_entry(anchor->urb_list.prev, struct urb,
819 anchor_list);
820 /* we must make sure the URB isn't freed before we kill it*/
821 usb_get_urb(victim);
822 spin_unlock_irq(&anchor->lock);
823 /* this will unanchor the URB */
824 usb_poison_urb(victim);
825 usb_put_urb(victim);
826 spin_lock_irq(&anchor->lock);
827 }
828 spin_unlock_irq(&anchor->lock);
829 }
830 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
831
832 /**
833 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
834 * @anchor: anchor the requests are bound to
835 *
836 * Reverses the effect of usb_poison_anchored_urbs
837 * the anchor can be used normally after it returns
838 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)839 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
840 {
841 unsigned long flags;
842 struct urb *lazarus;
843
844 spin_lock_irqsave(&anchor->lock, flags);
845 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
846 usb_unpoison_urb(lazarus);
847 }
848 anchor->poisoned = 0;
849 spin_unlock_irqrestore(&anchor->lock, flags);
850 }
851 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
852 /**
853 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
854 * @anchor: anchor the requests are bound to
855 *
856 * this allows all outstanding URBs to be unlinked starting
857 * from the back of the queue. This function is asynchronous.
858 * The unlinking is just triggered. It may happen after this
859 * function has returned.
860 *
861 * This routine should not be called by a driver after its disconnect
862 * method has returned.
863 */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)864 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
865 {
866 struct urb *victim;
867
868 while ((victim = usb_get_from_anchor(anchor)) != NULL) {
869 usb_unlink_urb(victim);
870 usb_put_urb(victim);
871 }
872 }
873 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
874
875 /**
876 * usb_anchor_suspend_wakeups
877 * @anchor: the anchor you want to suspend wakeups on
878 *
879 * Call this to stop the last urb being unanchored from waking up any
880 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
881 * back path to delay waking up until after the completion handler has run.
882 */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)883 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
884 {
885 if (anchor)
886 atomic_inc(&anchor->suspend_wakeups);
887 }
888 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
889
890 /**
891 * usb_anchor_resume_wakeups
892 * @anchor: the anchor you want to resume wakeups on
893 *
894 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
895 * wake up any current waiters if the anchor is empty.
896 */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)897 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
898 {
899 if (!anchor)
900 return;
901
902 atomic_dec(&anchor->suspend_wakeups);
903 if (usb_anchor_check_wakeup(anchor))
904 wake_up(&anchor->wait);
905 }
906 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
907
908 /**
909 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
910 * @anchor: the anchor you want to become unused
911 * @timeout: how long you are willing to wait in milliseconds
912 *
913 * Call this is you want to be sure all an anchor's
914 * URBs have finished
915 *
916 * Return: Non-zero if the anchor became unused. Zero on timeout.
917 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)918 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
919 unsigned int timeout)
920 {
921 return wait_event_timeout(anchor->wait,
922 usb_anchor_check_wakeup(anchor),
923 msecs_to_jiffies(timeout));
924 }
925 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
926
927 /**
928 * usb_get_from_anchor - get an anchor's oldest urb
929 * @anchor: the anchor whose urb you want
930 *
931 * This will take the oldest urb from an anchor,
932 * unanchor and return it
933 *
934 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
935 * urbs associated with it.
936 */
usb_get_from_anchor(struct usb_anchor * anchor)937 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
938 {
939 struct urb *victim;
940 unsigned long flags;
941
942 spin_lock_irqsave(&anchor->lock, flags);
943 if (!list_empty(&anchor->urb_list)) {
944 victim = list_entry(anchor->urb_list.next, struct urb,
945 anchor_list);
946 usb_get_urb(victim);
947 __usb_unanchor_urb(victim, anchor);
948 } else {
949 victim = NULL;
950 }
951 spin_unlock_irqrestore(&anchor->lock, flags);
952
953 return victim;
954 }
955
956 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
957
958 /**
959 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
960 * @anchor: the anchor whose urbs you want to unanchor
961 *
962 * use this to get rid of all an anchor's urbs
963 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)964 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
965 {
966 struct urb *victim;
967 unsigned long flags;
968
969 spin_lock_irqsave(&anchor->lock, flags);
970 while (!list_empty(&anchor->urb_list)) {
971 victim = list_entry(anchor->urb_list.prev, struct urb,
972 anchor_list);
973 __usb_unanchor_urb(victim, anchor);
974 }
975 spin_unlock_irqrestore(&anchor->lock, flags);
976 }
977
978 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
979
980 /**
981 * usb_anchor_empty - is an anchor empty
982 * @anchor: the anchor you want to query
983 *
984 * Return: 1 if the anchor has no urbs associated with it.
985 */
usb_anchor_empty(struct usb_anchor * anchor)986 int usb_anchor_empty(struct usb_anchor *anchor)
987 {
988 return list_empty(&anchor->urb_list);
989 }
990
991 EXPORT_SYMBOL_GPL(usb_anchor_empty);
992
993