• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Released under the GPLv2 only.
3  * SPDX-License-Identifier: GPL-2.0
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
urb_destroy(struct kref * kref)19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
usb_init_urb(struct urb * urb)43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->urb_list);
49 		INIT_LIST_HEAD(&urb->anchor_list);
50 	}
51 }
52 EXPORT_SYMBOL_GPL(usb_init_urb);
53 
54 /**
55  * usb_alloc_urb - creates a new urb for a USB driver to use
56  * @iso_packets: number of iso packets for this urb
57  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
58  *	valid options for this.
59  *
60  * Creates an urb for the USB driver to use, initializes a few internal
61  * structures, increments the usage counter, and returns a pointer to it.
62  *
63  * If the driver want to use this urb for interrupt, control, or bulk
64  * endpoints, pass '0' as the number of iso packets.
65  *
66  * The driver must call usb_free_urb() when it is finished with the urb.
67  *
68  * Return: A pointer to the new urb, or %NULL if no memory is available.
69  */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
71 {
72 	struct urb *urb;
73 
74 	urb = kmalloc(sizeof(struct urb) +
75 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
76 		mem_flags);
77 	if (!urb)
78 		return NULL;
79 	usb_init_urb(urb);
80 	return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83 
84 /**
85  * usb_free_urb - frees the memory used by a urb when all users of it are finished
86  * @urb: pointer to the urb to free, may be NULL
87  *
88  * Must be called when a user of a urb is finished with it.  When the last user
89  * of the urb calls this function, the memory of the urb is freed.
90  *
91  * Note: The transfer buffer associated with the urb is not freed unless the
92  * URB_FREE_BUFFER transfer flag is set.
93  */
usb_free_urb(struct urb * urb)94 void usb_free_urb(struct urb *urb)
95 {
96 	if (urb)
97 		kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100 
101 /**
102  * usb_get_urb - increments the reference count of the urb
103  * @urb: pointer to the urb to modify, may be NULL
104  *
105  * This must be  called whenever a urb is transferred from a device driver to a
106  * host controller driver.  This allows proper reference counting to happen
107  * for urbs.
108  *
109  * Return: A pointer to the urb with the incremented reference counter.
110  */
usb_get_urb(struct urb * urb)111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 	if (urb)
114 		kref_get(&urb->kref);
115 	return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118 
119 /**
120  * usb_anchor_urb - anchors an URB while it is processed
121  * @urb: pointer to the urb to anchor
122  * @anchor: pointer to the anchor
123  *
124  * This can be called to have access to URBs which are to be executed
125  * without bothering to track them
126  */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&anchor->lock, flags);
132 	usb_get_urb(urb);
133 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 	urb->anchor = anchor;
135 
136 	if (unlikely(anchor->poisoned))
137 		atomic_inc(&urb->reject);
138 
139 	spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142 
usb_anchor_check_wakeup(struct usb_anchor * anchor)143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 		list_empty(&anchor->urb_list);
147 }
148 
149 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 	urb->anchor = NULL;
153 	list_del(&urb->anchor_list);
154 	usb_put_urb(urb);
155 	if (usb_anchor_check_wakeup(anchor))
156 		wake_up(&anchor->wait);
157 }
158 
159 /**
160  * usb_unanchor_urb - unanchors an URB
161  * @urb: pointer to the urb to anchor
162  *
163  * Call this to stop the system keeping track of this URB
164  */
usb_unanchor_urb(struct urb * urb)165 void usb_unanchor_urb(struct urb *urb)
166 {
167 	unsigned long flags;
168 	struct usb_anchor *anchor;
169 
170 	if (!urb)
171 		return;
172 
173 	anchor = urb->anchor;
174 	if (!anchor)
175 		return;
176 
177 	spin_lock_irqsave(&anchor->lock, flags);
178 	/*
179 	 * At this point, we could be competing with another thread which
180 	 * has the same intention. To protect the urb from being unanchored
181 	 * twice, only the winner of the race gets the job.
182 	 */
183 	if (likely(anchor == urb->anchor))
184 		__usb_unanchor_urb(urb, anchor);
185 	spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188 
189 /*-------------------------------------------------------------------*/
190 
191 static const int pipetypes[4] = {
192 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194 
195 /**
196  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
197  * @urb: urb to be checked
198  *
199  * This performs a light-weight sanity check for the endpoint in the
200  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
201  * a negative error code.
202  */
usb_urb_ep_type_check(const struct urb * urb)203 int usb_urb_ep_type_check(const struct urb *urb)
204 {
205 	const struct usb_host_endpoint *ep;
206 
207 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
208 	if (!ep)
209 		return -EINVAL;
210 	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
211 		return -EINVAL;
212 	return 0;
213 }
214 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
215 
216 /**
217  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
218  * @urb: pointer to the urb describing the request
219  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
220  *	of valid options for this.
221  *
222  * This submits a transfer request, and transfers control of the URB
223  * describing that request to the USB subsystem.  Request completion will
224  * be indicated later, asynchronously, by calling the completion handler.
225  * The three types of completion are success, error, and unlink
226  * (a software-induced fault, also called "request cancellation").
227  *
228  * URBs may be submitted in interrupt context.
229  *
230  * The caller must have correctly initialized the URB before submitting
231  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
232  * available to ensure that most fields are correctly initialized, for
233  * the particular kind of transfer, although they will not initialize
234  * any transfer flags.
235  *
236  * If the submission is successful, the complete() callback from the URB
237  * will be called exactly once, when the USB core and Host Controller Driver
238  * (HCD) are finished with the URB.  When the completion function is called,
239  * control of the URB is returned to the device driver which issued the
240  * request.  The completion handler may then immediately free or reuse that
241  * URB.
242  *
243  * With few exceptions, USB device drivers should never access URB fields
244  * provided by usbcore or the HCD until its complete() is called.
245  * The exceptions relate to periodic transfer scheduling.  For both
246  * interrupt and isochronous urbs, as part of successful URB submission
247  * urb->interval is modified to reflect the actual transfer period used
248  * (normally some power of two units).  And for isochronous urbs,
249  * urb->start_frame is modified to reflect when the URB's transfers were
250  * scheduled to start.
251  *
252  * Not all isochronous transfer scheduling policies will work, but most
253  * host controller drivers should easily handle ISO queues going from now
254  * until 10-200 msec into the future.  Drivers should try to keep at
255  * least one or two msec of data in the queue; many controllers require
256  * that new transfers start at least 1 msec in the future when they are
257  * added.  If the driver is unable to keep up and the queue empties out,
258  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
259  * If the flag is set, or if the queue is idle, then the URB is always
260  * assigned to the first available (and not yet expired) slot in the
261  * endpoint's schedule.  If the flag is not set and the queue is active
262  * then the URB is always assigned to the next slot in the schedule
263  * following the end of the endpoint's previous URB, even if that slot is
264  * in the past.  When a packet is assigned in this way to a slot that has
265  * already expired, the packet is not transmitted and the corresponding
266  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
267  * would happen to all the packets in the URB, submission fails with a
268  * -EXDEV error code.
269  *
270  * For control endpoints, the synchronous usb_control_msg() call is
271  * often used (in non-interrupt context) instead of this call.
272  * That is often used through convenience wrappers, for the requests
273  * that are standardized in the USB 2.0 specification.  For bulk
274  * endpoints, a synchronous usb_bulk_msg() call is available.
275  *
276  * Return:
277  * 0 on successful submissions. A negative error number otherwise.
278  *
279  * Request Queuing:
280  *
281  * URBs may be submitted to endpoints before previous ones complete, to
282  * minimize the impact of interrupt latencies and system overhead on data
283  * throughput.  With that queuing policy, an endpoint's queue would never
284  * be empty.  This is required for continuous isochronous data streams,
285  * and may also be required for some kinds of interrupt transfers. Such
286  * queuing also maximizes bandwidth utilization by letting USB controllers
287  * start work on later requests before driver software has finished the
288  * completion processing for earlier (successful) requests.
289  *
290  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
291  * than one.  This was previously a HCD-specific behavior, except for ISO
292  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
293  * after faults (transfer errors or cancellation).
294  *
295  * Reserved Bandwidth Transfers:
296  *
297  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
298  * using the interval specified in the urb.  Submitting the first urb to
299  * the endpoint reserves the bandwidth necessary to make those transfers.
300  * If the USB subsystem can't allocate sufficient bandwidth to perform
301  * the periodic request, submitting such a periodic request should fail.
302  *
303  * For devices under xHCI, the bandwidth is reserved at configuration time, or
304  * when the alt setting is selected.  If there is not enough bus bandwidth, the
305  * configuration/alt setting request will fail.  Therefore, submissions to
306  * periodic endpoints on devices under xHCI should never fail due to bandwidth
307  * constraints.
308  *
309  * Device drivers must explicitly request that repetition, by ensuring that
310  * some URB is always on the endpoint's queue (except possibly for short
311  * periods during completion callbacks).  When there is no longer an urb
312  * queued, the endpoint's bandwidth reservation is canceled.  This means
313  * drivers can use their completion handlers to ensure they keep bandwidth
314  * they need, by reinitializing and resubmitting the just-completed urb
315  * until the driver longer needs that periodic bandwidth.
316  *
317  * Memory Flags:
318  *
319  * The general rules for how to decide which mem_flags to use
320  * are the same as for kmalloc.  There are four
321  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
322  * GFP_ATOMIC.
323  *
324  * GFP_NOFS is not ever used, as it has not been implemented yet.
325  *
326  * GFP_ATOMIC is used when
327  *   (a) you are inside a completion handler, an interrupt, bottom half,
328  *       tasklet or timer, or
329  *   (b) you are holding a spinlock or rwlock (does not apply to
330  *       semaphores), or
331  *   (c) current->state != TASK_RUNNING, this is the case only after
332  *       you've changed it.
333  *
334  * GFP_NOIO is used in the block io path and error handling of storage
335  * devices.
336  *
337  * All other situations use GFP_KERNEL.
338  *
339  * Some more specific rules for mem_flags can be inferred, such as
340  *  (1) start_xmit, timeout, and receive methods of network drivers must
341  *      use GFP_ATOMIC (they are called with a spinlock held);
342  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
343  *      called with a spinlock held);
344  *  (3) If you use a kernel thread with a network driver you must use
345  *      GFP_NOIO, unless (b) or (c) apply;
346  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
347  *      apply or your are in a storage driver's block io path;
348  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
349  *  (6) changing firmware on a running storage or net device uses
350  *      GFP_NOIO, unless b) or c) apply
351  *
352  */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)353 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
354 {
355 	int				xfertype, max;
356 	struct usb_device		*dev;
357 	struct usb_host_endpoint	*ep;
358 	int				is_out;
359 	unsigned int			allowed;
360 
361 	if (!urb || !urb->complete)
362 		return -EINVAL;
363 	if (urb->hcpriv) {
364 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
365 		return -EBUSY;
366 	}
367 
368 	dev = urb->dev;
369 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
370 		return -ENODEV;
371 
372 	/* For now, get the endpoint from the pipe.  Eventually drivers
373 	 * will be required to set urb->ep directly and we will eliminate
374 	 * urb->pipe.
375 	 */
376 	ep = usb_pipe_endpoint(dev, urb->pipe);
377 	if (!ep)
378 		return -ENOENT;
379 
380 	urb->ep = ep;
381 	urb->status = -EINPROGRESS;
382 	urb->actual_length = 0;
383 
384 	/* Lots of sanity checks, so HCDs can rely on clean data
385 	 * and don't need to duplicate tests
386 	 */
387 	xfertype = usb_endpoint_type(&ep->desc);
388 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
389 		struct usb_ctrlrequest *setup =
390 				(struct usb_ctrlrequest *) urb->setup_packet;
391 
392 		if (!setup)
393 			return -ENOEXEC;
394 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
395 				!setup->wLength;
396 	} else {
397 		is_out = usb_endpoint_dir_out(&ep->desc);
398 	}
399 
400 	/* Clear the internal flags and cache the direction for later use */
401 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
402 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
403 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
404 			URB_DMA_SG_COMBINED);
405 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
406 
407 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
408 			dev->state < USB_STATE_CONFIGURED)
409 		return -ENODEV;
410 
411 	max = usb_endpoint_maxp(&ep->desc);
412 	if (max <= 0) {
413 		dev_dbg(&dev->dev,
414 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
415 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
416 			__func__, max);
417 		return -EMSGSIZE;
418 	}
419 
420 	/* periodic transfers limit size per frame/uframe,
421 	 * but drivers only control those sizes for ISO.
422 	 * while we're checking, initialize return status.
423 	 */
424 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
425 		int	n, len;
426 
427 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
428 		 * 3 packets each
429 		 */
430 		if (dev->speed >= USB_SPEED_SUPER) {
431 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
432 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
433 			max *= burst;
434 			max *= mult;
435 		}
436 
437 		/* "high bandwidth" mode, 1-3 packets/uframe? */
438 		if (dev->speed == USB_SPEED_HIGH)
439 			max *= usb_endpoint_maxp_mult(&ep->desc);
440 
441 		if (urb->number_of_packets <= 0)
442 			return -EINVAL;
443 		for (n = 0; n < urb->number_of_packets; n++) {
444 			len = urb->iso_frame_desc[n].length;
445 			if (len < 0 || len > max)
446 				return -EMSGSIZE;
447 			urb->iso_frame_desc[n].status = -EXDEV;
448 			urb->iso_frame_desc[n].actual_length = 0;
449 		}
450 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
451 			dev->speed != USB_SPEED_WIRELESS) {
452 		struct scatterlist *sg;
453 		int i;
454 
455 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
456 			if (sg->length % max)
457 				return -EINVAL;
458 	}
459 
460 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
461 	if (urb->transfer_buffer_length > INT_MAX)
462 		return -EMSGSIZE;
463 
464 	/*
465 	 * stuff that drivers shouldn't do, but which shouldn't
466 	 * cause problems in HCDs if they get it wrong.
467 	 */
468 
469 	/* Check that the pipe's type matches the endpoint's type */
470 	if (usb_urb_ep_type_check(urb))
471 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
472 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
473 
474 	/* Check against a simple/standard policy */
475 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
476 			URB_FREE_BUFFER);
477 	switch (xfertype) {
478 	case USB_ENDPOINT_XFER_BULK:
479 	case USB_ENDPOINT_XFER_INT:
480 		if (is_out)
481 			allowed |= URB_ZERO_PACKET;
482 		/* FALLTHROUGH */
483 	case USB_ENDPOINT_XFER_CONTROL:
484 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
485 		/* FALLTHROUGH */
486 	default:			/* all non-iso endpoints */
487 		if (!is_out)
488 			allowed |= URB_SHORT_NOT_OK;
489 		break;
490 	case USB_ENDPOINT_XFER_ISOC:
491 		allowed |= URB_ISO_ASAP;
492 		break;
493 	}
494 	allowed &= urb->transfer_flags;
495 
496 	/* warn if submitter gave bogus flags */
497 	if (allowed != urb->transfer_flags)
498 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
499 			urb->transfer_flags, allowed);
500 
501 	/*
502 	 * Force periodic transfer intervals to be legal values that are
503 	 * a power of two (so HCDs don't need to).
504 	 *
505 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
506 	 * supports different values... this uses EHCI/UHCI defaults (and
507 	 * EHCI can use smaller non-default values).
508 	 */
509 	switch (xfertype) {
510 	case USB_ENDPOINT_XFER_ISOC:
511 	case USB_ENDPOINT_XFER_INT:
512 		/* too small? */
513 		switch (dev->speed) {
514 		case USB_SPEED_WIRELESS:
515 			if ((urb->interval < 6)
516 				&& (xfertype == USB_ENDPOINT_XFER_INT))
517 				return -EINVAL;
518 		default:
519 			if (urb->interval <= 0)
520 				return -EINVAL;
521 			break;
522 		}
523 		/* too big? */
524 		switch (dev->speed) {
525 		case USB_SPEED_SUPER_PLUS:
526 		case USB_SPEED_SUPER:	/* units are 125us */
527 			/* Handle up to 2^(16-1) microframes */
528 			if (urb->interval > (1 << 15))
529 				return -EINVAL;
530 			max = 1 << 15;
531 			break;
532 		case USB_SPEED_WIRELESS:
533 			if (urb->interval > 16)
534 				return -EINVAL;
535 			break;
536 		case USB_SPEED_HIGH:	/* units are microframes */
537 			/* NOTE usb handles 2^15 */
538 			if (urb->interval > (1024 * 8))
539 				urb->interval = 1024 * 8;
540 			max = 1024 * 8;
541 			break;
542 		case USB_SPEED_FULL:	/* units are frames/msec */
543 		case USB_SPEED_LOW:
544 			if (xfertype == USB_ENDPOINT_XFER_INT) {
545 				if (urb->interval > 255)
546 					return -EINVAL;
547 				/* NOTE ohci only handles up to 32 */
548 				max = 128;
549 			} else {
550 				if (urb->interval > 1024)
551 					urb->interval = 1024;
552 				/* NOTE usb and ohci handle up to 2^15 */
553 				max = 1024;
554 			}
555 			break;
556 		default:
557 			return -EINVAL;
558 		}
559 		if (dev->speed != USB_SPEED_WIRELESS) {
560 			/* Round down to a power of 2, no more than max */
561 			urb->interval = min(max, 1 << ilog2(urb->interval));
562 		}
563 	}
564 
565 	return usb_hcd_submit_urb(urb, mem_flags);
566 }
567 EXPORT_SYMBOL_GPL(usb_submit_urb);
568 
569 /*-------------------------------------------------------------------*/
570 
571 /**
572  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
573  * @urb: pointer to urb describing a previously submitted request,
574  *	may be NULL
575  *
576  * This routine cancels an in-progress request.  URBs complete only once
577  * per submission, and may be canceled only once per submission.
578  * Successful cancellation means termination of @urb will be expedited
579  * and the completion handler will be called with a status code
580  * indicating that the request has been canceled (rather than any other
581  * code).
582  *
583  * Drivers should not call this routine or related routines, such as
584  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
585  * method has returned.  The disconnect function should synchronize with
586  * a driver's I/O routines to insure that all URB-related activity has
587  * completed before it returns.
588  *
589  * This request is asynchronous, however the HCD might call the ->complete()
590  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
591  * must not hold any locks that may be taken by the completion function.
592  * Success is indicated by returning -EINPROGRESS, at which time the URB will
593  * probably not yet have been given back to the device driver. When it is
594  * eventually called, the completion function will see @urb->status ==
595  * -ECONNRESET.
596  * Failure is indicated by usb_unlink_urb() returning any other value.
597  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
598  * never submitted, or it was unlinked before, or the hardware is already
599  * finished with it), even if the completion handler has not yet run.
600  *
601  * The URB must not be deallocated while this routine is running.  In
602  * particular, when a driver calls this routine, it must insure that the
603  * completion handler cannot deallocate the URB.
604  *
605  * Return: -EINPROGRESS on success. See description for other values on
606  * failure.
607  *
608  * Unlinking and Endpoint Queues:
609  *
610  * [The behaviors and guarantees described below do not apply to virtual
611  * root hubs but only to endpoint queues for physical USB devices.]
612  *
613  * Host Controller Drivers (HCDs) place all the URBs for a particular
614  * endpoint in a queue.  Normally the queue advances as the controller
615  * hardware processes each request.  But when an URB terminates with an
616  * error its queue generally stops (see below), at least until that URB's
617  * completion routine returns.  It is guaranteed that a stopped queue
618  * will not restart until all its unlinked URBs have been fully retired,
619  * with their completion routines run, even if that's not until some time
620  * after the original completion handler returns.  The same behavior and
621  * guarantee apply when an URB terminates because it was unlinked.
622  *
623  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
624  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
625  * and -EREMOTEIO.  Control endpoint queues behave the same way except
626  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
627  * for isochronous endpoints are treated differently, because they must
628  * advance at fixed rates.  Such queues do not stop when an URB
629  * encounters an error or is unlinked.  An unlinked isochronous URB may
630  * leave a gap in the stream of packets; it is undefined whether such
631  * gaps can be filled in.
632  *
633  * Note that early termination of an URB because a short packet was
634  * received will generate a -EREMOTEIO error if and only if the
635  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
636  * drivers can build deep queues for large or complex bulk transfers
637  * and clean them up reliably after any sort of aborted transfer by
638  * unlinking all pending URBs at the first fault.
639  *
640  * When a control URB terminates with an error other than -EREMOTEIO, it
641  * is quite likely that the status stage of the transfer will not take
642  * place.
643  */
usb_unlink_urb(struct urb * urb)644 int usb_unlink_urb(struct urb *urb)
645 {
646 	if (!urb)
647 		return -EINVAL;
648 	if (!urb->dev)
649 		return -ENODEV;
650 	if (!urb->ep)
651 		return -EIDRM;
652 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
653 }
654 EXPORT_SYMBOL_GPL(usb_unlink_urb);
655 
656 /**
657  * usb_kill_urb - cancel a transfer request and wait for it to finish
658  * @urb: pointer to URB describing a previously submitted request,
659  *	may be NULL
660  *
661  * This routine cancels an in-progress request.  It is guaranteed that
662  * upon return all completion handlers will have finished and the URB
663  * will be totally idle and available for reuse.  These features make
664  * this an ideal way to stop I/O in a disconnect() callback or close()
665  * function.  If the request has not already finished or been unlinked
666  * the completion handler will see urb->status == -ENOENT.
667  *
668  * While the routine is running, attempts to resubmit the URB will fail
669  * with error -EPERM.  Thus even if the URB's completion handler always
670  * tries to resubmit, it will not succeed and the URB will become idle.
671  *
672  * The URB must not be deallocated while this routine is running.  In
673  * particular, when a driver calls this routine, it must insure that the
674  * completion handler cannot deallocate the URB.
675  *
676  * This routine may not be used in an interrupt context (such as a bottom
677  * half or a completion handler), or when holding a spinlock, or in other
678  * situations where the caller can't schedule().
679  *
680  * This routine should not be called by a driver after its disconnect
681  * method has returned.
682  */
usb_kill_urb(struct urb * urb)683 void usb_kill_urb(struct urb *urb)
684 {
685 	might_sleep();
686 	if (!(urb && urb->dev && urb->ep))
687 		return;
688 	atomic_inc(&urb->reject);
689 
690 	usb_hcd_unlink_urb(urb, -ENOENT);
691 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
692 
693 	atomic_dec(&urb->reject);
694 }
695 EXPORT_SYMBOL_GPL(usb_kill_urb);
696 
697 /**
698  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
699  * @urb: pointer to URB describing a previously submitted request,
700  *	may be NULL
701  *
702  * This routine cancels an in-progress request.  It is guaranteed that
703  * upon return all completion handlers will have finished and the URB
704  * will be totally idle and cannot be reused.  These features make
705  * this an ideal way to stop I/O in a disconnect() callback.
706  * If the request has not already finished or been unlinked
707  * the completion handler will see urb->status == -ENOENT.
708  *
709  * After and while the routine runs, attempts to resubmit the URB will fail
710  * with error -EPERM.  Thus even if the URB's completion handler always
711  * tries to resubmit, it will not succeed and the URB will become idle.
712  *
713  * The URB must not be deallocated while this routine is running.  In
714  * particular, when a driver calls this routine, it must insure that the
715  * completion handler cannot deallocate the URB.
716  *
717  * This routine may not be used in an interrupt context (such as a bottom
718  * half or a completion handler), or when holding a spinlock, or in other
719  * situations where the caller can't schedule().
720  *
721  * This routine should not be called by a driver after its disconnect
722  * method has returned.
723  */
usb_poison_urb(struct urb * urb)724 void usb_poison_urb(struct urb *urb)
725 {
726 	might_sleep();
727 	if (!urb)
728 		return;
729 	atomic_inc(&urb->reject);
730 
731 	if (!urb->dev || !urb->ep)
732 		return;
733 
734 	usb_hcd_unlink_urb(urb, -ENOENT);
735 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
736 }
737 EXPORT_SYMBOL_GPL(usb_poison_urb);
738 
usb_unpoison_urb(struct urb * urb)739 void usb_unpoison_urb(struct urb *urb)
740 {
741 	if (!urb)
742 		return;
743 
744 	atomic_dec(&urb->reject);
745 }
746 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
747 
748 /**
749  * usb_block_urb - reliably prevent further use of an URB
750  * @urb: pointer to URB to be blocked, may be NULL
751  *
752  * After the routine has run, attempts to resubmit the URB will fail
753  * with error -EPERM.  Thus even if the URB's completion handler always
754  * tries to resubmit, it will not succeed and the URB will become idle.
755  *
756  * The URB must not be deallocated while this routine is running.  In
757  * particular, when a driver calls this routine, it must insure that the
758  * completion handler cannot deallocate the URB.
759  */
usb_block_urb(struct urb * urb)760 void usb_block_urb(struct urb *urb)
761 {
762 	if (!urb)
763 		return;
764 
765 	atomic_inc(&urb->reject);
766 }
767 EXPORT_SYMBOL_GPL(usb_block_urb);
768 
769 /**
770  * usb_kill_anchored_urbs - cancel transfer requests en masse
771  * @anchor: anchor the requests are bound to
772  *
773  * this allows all outstanding URBs to be killed starting
774  * from the back of the queue
775  *
776  * This routine should not be called by a driver after its disconnect
777  * method has returned.
778  */
usb_kill_anchored_urbs(struct usb_anchor * anchor)779 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
780 {
781 	struct urb *victim;
782 
783 	spin_lock_irq(&anchor->lock);
784 	while (!list_empty(&anchor->urb_list)) {
785 		victim = list_entry(anchor->urb_list.prev, struct urb,
786 				    anchor_list);
787 		/* we must make sure the URB isn't freed before we kill it*/
788 		usb_get_urb(victim);
789 		spin_unlock_irq(&anchor->lock);
790 		/* this will unanchor the URB */
791 		usb_kill_urb(victim);
792 		usb_put_urb(victim);
793 		spin_lock_irq(&anchor->lock);
794 	}
795 	spin_unlock_irq(&anchor->lock);
796 }
797 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
798 
799 
800 /**
801  * usb_poison_anchored_urbs - cease all traffic from an anchor
802  * @anchor: anchor the requests are bound to
803  *
804  * this allows all outstanding URBs to be poisoned starting
805  * from the back of the queue. Newly added URBs will also be
806  * poisoned
807  *
808  * This routine should not be called by a driver after its disconnect
809  * method has returned.
810  */
usb_poison_anchored_urbs(struct usb_anchor * anchor)811 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
812 {
813 	struct urb *victim;
814 
815 	spin_lock_irq(&anchor->lock);
816 	anchor->poisoned = 1;
817 	while (!list_empty(&anchor->urb_list)) {
818 		victim = list_entry(anchor->urb_list.prev, struct urb,
819 				    anchor_list);
820 		/* we must make sure the URB isn't freed before we kill it*/
821 		usb_get_urb(victim);
822 		spin_unlock_irq(&anchor->lock);
823 		/* this will unanchor the URB */
824 		usb_poison_urb(victim);
825 		usb_put_urb(victim);
826 		spin_lock_irq(&anchor->lock);
827 	}
828 	spin_unlock_irq(&anchor->lock);
829 }
830 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
831 
832 /**
833  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
834  * @anchor: anchor the requests are bound to
835  *
836  * Reverses the effect of usb_poison_anchored_urbs
837  * the anchor can be used normally after it returns
838  */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)839 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
840 {
841 	unsigned long flags;
842 	struct urb *lazarus;
843 
844 	spin_lock_irqsave(&anchor->lock, flags);
845 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
846 		usb_unpoison_urb(lazarus);
847 	}
848 	anchor->poisoned = 0;
849 	spin_unlock_irqrestore(&anchor->lock, flags);
850 }
851 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
852 /**
853  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
854  * @anchor: anchor the requests are bound to
855  *
856  * this allows all outstanding URBs to be unlinked starting
857  * from the back of the queue. This function is asynchronous.
858  * The unlinking is just triggered. It may happen after this
859  * function has returned.
860  *
861  * This routine should not be called by a driver after its disconnect
862  * method has returned.
863  */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)864 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
865 {
866 	struct urb *victim;
867 
868 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
869 		usb_unlink_urb(victim);
870 		usb_put_urb(victim);
871 	}
872 }
873 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
874 
875 /**
876  * usb_anchor_suspend_wakeups
877  * @anchor: the anchor you want to suspend wakeups on
878  *
879  * Call this to stop the last urb being unanchored from waking up any
880  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
881  * back path to delay waking up until after the completion handler has run.
882  */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)883 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
884 {
885 	if (anchor)
886 		atomic_inc(&anchor->suspend_wakeups);
887 }
888 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
889 
890 /**
891  * usb_anchor_resume_wakeups
892  * @anchor: the anchor you want to resume wakeups on
893  *
894  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
895  * wake up any current waiters if the anchor is empty.
896  */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)897 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
898 {
899 	if (!anchor)
900 		return;
901 
902 	atomic_dec(&anchor->suspend_wakeups);
903 	if (usb_anchor_check_wakeup(anchor))
904 		wake_up(&anchor->wait);
905 }
906 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
907 
908 /**
909  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
910  * @anchor: the anchor you want to become unused
911  * @timeout: how long you are willing to wait in milliseconds
912  *
913  * Call this is you want to be sure all an anchor's
914  * URBs have finished
915  *
916  * Return: Non-zero if the anchor became unused. Zero on timeout.
917  */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)918 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
919 				  unsigned int timeout)
920 {
921 	return wait_event_timeout(anchor->wait,
922 				  usb_anchor_check_wakeup(anchor),
923 				  msecs_to_jiffies(timeout));
924 }
925 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
926 
927 /**
928  * usb_get_from_anchor - get an anchor's oldest urb
929  * @anchor: the anchor whose urb you want
930  *
931  * This will take the oldest urb from an anchor,
932  * unanchor and return it
933  *
934  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
935  * urbs associated with it.
936  */
usb_get_from_anchor(struct usb_anchor * anchor)937 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
938 {
939 	struct urb *victim;
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&anchor->lock, flags);
943 	if (!list_empty(&anchor->urb_list)) {
944 		victim = list_entry(anchor->urb_list.next, struct urb,
945 				    anchor_list);
946 		usb_get_urb(victim);
947 		__usb_unanchor_urb(victim, anchor);
948 	} else {
949 		victim = NULL;
950 	}
951 	spin_unlock_irqrestore(&anchor->lock, flags);
952 
953 	return victim;
954 }
955 
956 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
957 
958 /**
959  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
960  * @anchor: the anchor whose urbs you want to unanchor
961  *
962  * use this to get rid of all an anchor's urbs
963  */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)964 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
965 {
966 	struct urb *victim;
967 	unsigned long flags;
968 
969 	spin_lock_irqsave(&anchor->lock, flags);
970 	while (!list_empty(&anchor->urb_list)) {
971 		victim = list_entry(anchor->urb_list.prev, struct urb,
972 				    anchor_list);
973 		__usb_unanchor_urb(victim, anchor);
974 	}
975 	spin_unlock_irqrestore(&anchor->lock, flags);
976 }
977 
978 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
979 
980 /**
981  * usb_anchor_empty - is an anchor empty
982  * @anchor: the anchor you want to query
983  *
984  * Return: 1 if the anchor has no urbs associated with it.
985  */
usb_anchor_empty(struct usb_anchor * anchor)986 int usb_anchor_empty(struct usb_anchor *anchor)
987 {
988 	return list_empty(&anchor->urb_list);
989 }
990 
991 EXPORT_SYMBOL_GPL(usb_anchor_empty);
992 
993