• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * message.c - synchronous message handling
3  *
4  * Released under the GPLv2 only.
5  * SPDX-License-Identifier: GPL-2.0
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <asm/byteorder.h>
22 
23 #include "usb.h"
24 
25 static void cancel_async_set_config(struct usb_device *udev);
26 
27 struct api_context {
28 	struct completion	done;
29 	int			status;
30 };
31 
usb_api_blocking_completion(struct urb * urb)32 static void usb_api_blocking_completion(struct urb *urb)
33 {
34 	struct api_context *ctx = urb->context;
35 
36 	ctx->status = urb->status;
37 	complete(&ctx->done);
38 }
39 
40 
41 /*
42  * Starts urb and waits for completion or timeout. Note that this call
43  * is NOT interruptible. Many device driver i/o requests should be
44  * interruptible and therefore these drivers should implement their
45  * own interruptible routines.
46  */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48 {
49 	struct api_context ctx;
50 	unsigned long expire;
51 	int retval;
52 
53 	init_completion(&ctx.done);
54 	urb->context = &ctx;
55 	urb->actual_length = 0;
56 	retval = usb_submit_urb(urb, GFP_NOIO);
57 	if (unlikely(retval))
58 		goto out;
59 
60 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 		usb_kill_urb(urb);
63 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64 
65 		dev_dbg(&urb->dev->dev,
66 			"%s timed out on ep%d%s len=%u/%u\n",
67 			current->comm,
68 			usb_endpoint_num(&urb->ep->desc),
69 			usb_urb_dir_in(urb) ? "in" : "out",
70 			urb->actual_length,
71 			urb->transfer_buffer_length);
72 	} else
73 		retval = ctx.status;
74 out:
75 	if (actual_length)
76 		*actual_length = urb->actual_length;
77 
78 	usb_free_urb(urb);
79 	return retval;
80 }
81 
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 				    unsigned int pipe,
86 				    struct usb_ctrlrequest *cmd,
87 				    void *data, int len, int timeout)
88 {
89 	struct urb *urb;
90 	int retv;
91 	int length;
92 
93 	urb = usb_alloc_urb(0, GFP_NOIO);
94 	if (!urb)
95 		return -ENOMEM;
96 
97 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 			     len, usb_api_blocking_completion, NULL);
99 
100 	retv = usb_start_wait_urb(urb, timeout, &length);
101 	if (retv < 0)
102 		return retv;
103 	else
104 		return length;
105 }
106 
107 /**
108  * usb_control_msg - Builds a control urb, sends it off and waits for completion
109  * @dev: pointer to the usb device to send the message to
110  * @pipe: endpoint "pipe" to send the message to
111  * @request: USB message request value
112  * @requesttype: USB message request type value
113  * @value: USB message value
114  * @index: USB message index value
115  * @data: pointer to the data to send
116  * @size: length in bytes of the data to send
117  * @timeout: time in msecs to wait for the message to complete before timing
118  *	out (if 0 the wait is forever)
119  *
120  * Context: !in_interrupt ()
121  *
122  * This function sends a simple control message to a specified endpoint and
123  * waits for the message to complete, or timeout.
124  *
125  * Don't use this function from within an interrupt context. If you need
126  * an asynchronous message, or need to send a message from within interrupt
127  * context, use usb_submit_urb(). If a thread in your driver uses this call,
128  * make sure your disconnect() method can wait for it to complete. Since you
129  * don't have a handle on the URB used, you can't cancel the request.
130  *
131  * Return: If successful, the number of bytes transferred. Otherwise, a negative
132  * error number.
133  */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
135 		    __u8 requesttype, __u16 value, __u16 index, void *data,
136 		    __u16 size, int timeout)
137 {
138 	struct usb_ctrlrequest *dr;
139 	int ret;
140 
141 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
142 	if (!dr)
143 		return -ENOMEM;
144 
145 	dr->bRequestType = requesttype;
146 	dr->bRequest = request;
147 	dr->wValue = cpu_to_le16(value);
148 	dr->wIndex = cpu_to_le16(index);
149 	dr->wLength = cpu_to_le16(size);
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	/* Linger a bit, prior to the next control message. */
154 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
155 		msleep(200);
156 
157 	kfree(dr);
158 
159 	return ret;
160 }
161 EXPORT_SYMBOL_GPL(usb_control_msg);
162 
163 /**
164  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
165  * @usb_dev: pointer to the usb device to send the message to
166  * @pipe: endpoint "pipe" to send the message to
167  * @data: pointer to the data to send
168  * @len: length in bytes of the data to send
169  * @actual_length: pointer to a location to put the actual length transferred
170  *	in bytes
171  * @timeout: time in msecs to wait for the message to complete before
172  *	timing out (if 0 the wait is forever)
173  *
174  * Context: !in_interrupt ()
175  *
176  * This function sends a simple interrupt message to a specified endpoint and
177  * waits for the message to complete, or timeout.
178  *
179  * Don't use this function from within an interrupt context. If you need
180  * an asynchronous message, or need to send a message from within interrupt
181  * context, use usb_submit_urb() If a thread in your driver uses this call,
182  * make sure your disconnect() method can wait for it to complete. Since you
183  * don't have a handle on the URB used, you can't cancel the request.
184  *
185  * Return:
186  * If successful, 0. Otherwise a negative error number. The number of actual
187  * bytes transferred will be stored in the @actual_length parameter.
188  */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)189 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
190 		      void *data, int len, int *actual_length, int timeout)
191 {
192 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
193 }
194 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
195 
196 /**
197  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
198  * @usb_dev: pointer to the usb device to send the message to
199  * @pipe: endpoint "pipe" to send the message to
200  * @data: pointer to the data to send
201  * @len: length in bytes of the data to send
202  * @actual_length: pointer to a location to put the actual length transferred
203  *	in bytes
204  * @timeout: time in msecs to wait for the message to complete before
205  *	timing out (if 0 the wait is forever)
206  *
207  * Context: !in_interrupt ()
208  *
209  * This function sends a simple bulk message to a specified endpoint
210  * and waits for the message to complete, or timeout.
211  *
212  * Don't use this function from within an interrupt context. If you need
213  * an asynchronous message, or need to send a message from within interrupt
214  * context, use usb_submit_urb() If a thread in your driver uses this call,
215  * make sure your disconnect() method can wait for it to complete. Since you
216  * don't have a handle on the URB used, you can't cancel the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  *
223  * Return:
224  * If successful, 0. Otherwise a negative error number. The number of actual
225  * bytes transferred will be stored in the @actual_length parameter.
226  *
227  */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)228 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
229 		 void *data, int len, int *actual_length, int timeout)
230 {
231 	struct urb *urb;
232 	struct usb_host_endpoint *ep;
233 
234 	ep = usb_pipe_endpoint(usb_dev, pipe);
235 	if (!ep || len < 0)
236 		return -EINVAL;
237 
238 	urb = usb_alloc_urb(0, GFP_KERNEL);
239 	if (!urb)
240 		return -ENOMEM;
241 
242 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
243 			USB_ENDPOINT_XFER_INT) {
244 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
245 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL,
247 				ep->desc.bInterval);
248 	} else
249 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
250 				usb_api_blocking_completion, NULL);
251 
252 	return usb_start_wait_urb(urb, timeout, actual_length);
253 }
254 EXPORT_SYMBOL_GPL(usb_bulk_msg);
255 
256 /*-------------------------------------------------------------------*/
257 
sg_clean(struct usb_sg_request * io)258 static void sg_clean(struct usb_sg_request *io)
259 {
260 	if (io->urbs) {
261 		while (io->entries--)
262 			usb_free_urb(io->urbs[io->entries]);
263 		kfree(io->urbs);
264 		io->urbs = NULL;
265 	}
266 	io->dev = NULL;
267 }
268 
sg_complete(struct urb * urb)269 static void sg_complete(struct urb *urb)
270 {
271 	struct usb_sg_request *io = urb->context;
272 	int status = urb->status;
273 
274 	spin_lock(&io->lock);
275 
276 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
277 	 * reports, until the completion callback (this!) returns.  That lets
278 	 * device driver code (like this routine) unlink queued urbs first,
279 	 * if it needs to, since the HC won't work on them at all.  So it's
280 	 * not possible for page N+1 to overwrite page N, and so on.
281 	 *
282 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
283 	 * complete before the HCD can get requests away from hardware,
284 	 * though never during cleanup after a hard fault.
285 	 */
286 	if (io->status
287 			&& (io->status != -ECONNRESET
288 				|| status != -ECONNRESET)
289 			&& urb->actual_length) {
290 		dev_err(io->dev->bus->controller,
291 			"dev %s ep%d%s scatterlist error %d/%d\n",
292 			io->dev->devpath,
293 			usb_endpoint_num(&urb->ep->desc),
294 			usb_urb_dir_in(urb) ? "in" : "out",
295 			status, io->status);
296 		/* BUG (); */
297 	}
298 
299 	if (io->status == 0 && status && status != -ECONNRESET) {
300 		int i, found, retval;
301 
302 		io->status = status;
303 
304 		/* the previous urbs, and this one, completed already.
305 		 * unlink pending urbs so they won't rx/tx bad data.
306 		 * careful: unlink can sometimes be synchronous...
307 		 */
308 		spin_unlock(&io->lock);
309 		for (i = 0, found = 0; i < io->entries; i++) {
310 			if (!io->urbs[i])
311 				continue;
312 			if (found) {
313 				usb_block_urb(io->urbs[i]);
314 				retval = usb_unlink_urb(io->urbs[i]);
315 				if (retval != -EINPROGRESS &&
316 				    retval != -ENODEV &&
317 				    retval != -EBUSY &&
318 				    retval != -EIDRM)
319 					dev_err(&io->dev->dev,
320 						"%s, unlink --> %d\n",
321 						__func__, retval);
322 			} else if (urb == io->urbs[i])
323 				found = 1;
324 		}
325 		spin_lock(&io->lock);
326 	}
327 
328 	/* on the last completion, signal usb_sg_wait() */
329 	io->bytes += urb->actual_length;
330 	io->count--;
331 	if (!io->count)
332 		complete(&io->complete);
333 
334 	spin_unlock(&io->lock);
335 }
336 
337 
338 /**
339  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
340  * @io: request block being initialized.  until usb_sg_wait() returns,
341  *	treat this as a pointer to an opaque block of memory,
342  * @dev: the usb device that will send or receive the data
343  * @pipe: endpoint "pipe" used to transfer the data
344  * @period: polling rate for interrupt endpoints, in frames or
345  * 	(for high speed endpoints) microframes; ignored for bulk
346  * @sg: scatterlist entries
347  * @nents: how many entries in the scatterlist
348  * @length: how many bytes to send from the scatterlist, or zero to
349  * 	send every byte identified in the list.
350  * @mem_flags: SLAB_* flags affecting memory allocations in this call
351  *
352  * This initializes a scatter/gather request, allocating resources such as
353  * I/O mappings and urb memory (except maybe memory used by USB controller
354  * drivers).
355  *
356  * The request must be issued using usb_sg_wait(), which waits for the I/O to
357  * complete (or to be canceled) and then cleans up all resources allocated by
358  * usb_sg_init().
359  *
360  * The request may be canceled with usb_sg_cancel(), either before or after
361  * usb_sg_wait() is called.
362  *
363  * Return: Zero for success, else a negative errno value.
364  */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)365 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
366 		unsigned pipe, unsigned	period, struct scatterlist *sg,
367 		int nents, size_t length, gfp_t mem_flags)
368 {
369 	int i;
370 	int urb_flags;
371 	int use_sg;
372 
373 	if (!io || !dev || !sg
374 			|| usb_pipecontrol(pipe)
375 			|| usb_pipeisoc(pipe)
376 			|| nents <= 0)
377 		return -EINVAL;
378 
379 	spin_lock_init(&io->lock);
380 	io->dev = dev;
381 	io->pipe = pipe;
382 
383 	if (dev->bus->sg_tablesize > 0) {
384 		use_sg = true;
385 		io->entries = 1;
386 	} else {
387 		use_sg = false;
388 		io->entries = nents;
389 	}
390 
391 	/* initialize all the urbs we'll use */
392 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
393 	if (!io->urbs)
394 		goto nomem;
395 
396 	urb_flags = URB_NO_INTERRUPT;
397 	if (usb_pipein(pipe))
398 		urb_flags |= URB_SHORT_NOT_OK;
399 
400 	for_each_sg(sg, sg, io->entries, i) {
401 		struct urb *urb;
402 		unsigned len;
403 
404 		urb = usb_alloc_urb(0, mem_flags);
405 		if (!urb) {
406 			io->entries = i;
407 			goto nomem;
408 		}
409 		io->urbs[i] = urb;
410 
411 		urb->dev = NULL;
412 		urb->pipe = pipe;
413 		urb->interval = period;
414 		urb->transfer_flags = urb_flags;
415 		urb->complete = sg_complete;
416 		urb->context = io;
417 		urb->sg = sg;
418 
419 		if (use_sg) {
420 			/* There is no single transfer buffer */
421 			urb->transfer_buffer = NULL;
422 			urb->num_sgs = nents;
423 
424 			/* A length of zero means transfer the whole sg list */
425 			len = length;
426 			if (len == 0) {
427 				struct scatterlist	*sg2;
428 				int			j;
429 
430 				for_each_sg(sg, sg2, nents, j)
431 					len += sg2->length;
432 			}
433 		} else {
434 			/*
435 			 * Some systems can't use DMA; they use PIO instead.
436 			 * For their sakes, transfer_buffer is set whenever
437 			 * possible.
438 			 */
439 			if (!PageHighMem(sg_page(sg)))
440 				urb->transfer_buffer = sg_virt(sg);
441 			else
442 				urb->transfer_buffer = NULL;
443 
444 			len = sg->length;
445 			if (length) {
446 				len = min_t(size_t, len, length);
447 				length -= len;
448 				if (length == 0)
449 					io->entries = i + 1;
450 			}
451 		}
452 		urb->transfer_buffer_length = len;
453 	}
454 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
455 
456 	/* transaction state */
457 	io->count = io->entries;
458 	io->status = 0;
459 	io->bytes = 0;
460 	init_completion(&io->complete);
461 	return 0;
462 
463 nomem:
464 	sg_clean(io);
465 	return -ENOMEM;
466 }
467 EXPORT_SYMBOL_GPL(usb_sg_init);
468 
469 /**
470  * usb_sg_wait - synchronously execute scatter/gather request
471  * @io: request block handle, as initialized with usb_sg_init().
472  * 	some fields become accessible when this call returns.
473  * Context: !in_interrupt ()
474  *
475  * This function blocks until the specified I/O operation completes.  It
476  * leverages the grouping of the related I/O requests to get good transfer
477  * rates, by queueing the requests.  At higher speeds, such queuing can
478  * significantly improve USB throughput.
479  *
480  * There are three kinds of completion for this function.
481  *
482  * (1) success, where io->status is zero.  The number of io->bytes
483  *     transferred is as requested.
484  * (2) error, where io->status is a negative errno value.  The number
485  *     of io->bytes transferred before the error is usually less
486  *     than requested, and can be nonzero.
487  * (3) cancellation, a type of error with status -ECONNRESET that
488  *     is initiated by usb_sg_cancel().
489  *
490  * When this function returns, all memory allocated through usb_sg_init() or
491  * this call will have been freed.  The request block parameter may still be
492  * passed to usb_sg_cancel(), or it may be freed.  It could also be
493  * reinitialized and then reused.
494  *
495  * Data Transfer Rates:
496  *
497  * Bulk transfers are valid for full or high speed endpoints.
498  * The best full speed data rate is 19 packets of 64 bytes each
499  * per frame, or 1216 bytes per millisecond.
500  * The best high speed data rate is 13 packets of 512 bytes each
501  * per microframe, or 52 KBytes per millisecond.
502  *
503  * The reason to use interrupt transfers through this API would most likely
504  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
505  * could be transferred.  That capability is less useful for low or full
506  * speed interrupt endpoints, which allow at most one packet per millisecond,
507  * of at most 8 or 64 bytes (respectively).
508  *
509  * It is not necessary to call this function to reserve bandwidth for devices
510  * under an xHCI host controller, as the bandwidth is reserved when the
511  * configuration or interface alt setting is selected.
512  */
usb_sg_wait(struct usb_sg_request * io)513 void usb_sg_wait(struct usb_sg_request *io)
514 {
515 	int i;
516 	int entries = io->entries;
517 
518 	/* queue the urbs.  */
519 	spin_lock_irq(&io->lock);
520 	i = 0;
521 	while (i < entries && !io->status) {
522 		int retval;
523 
524 		io->urbs[i]->dev = io->dev;
525 		spin_unlock_irq(&io->lock);
526 
527 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
528 
529 		switch (retval) {
530 			/* maybe we retrying will recover */
531 		case -ENXIO:	/* hc didn't queue this one */
532 		case -EAGAIN:
533 		case -ENOMEM:
534 			retval = 0;
535 			yield();
536 			break;
537 
538 			/* no error? continue immediately.
539 			 *
540 			 * NOTE: to work better with UHCI (4K I/O buffer may
541 			 * need 3K of TDs) it may be good to limit how many
542 			 * URBs are queued at once; N milliseconds?
543 			 */
544 		case 0:
545 			++i;
546 			cpu_relax();
547 			break;
548 
549 			/* fail any uncompleted urbs */
550 		default:
551 			io->urbs[i]->status = retval;
552 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
553 				__func__, retval);
554 			usb_sg_cancel(io);
555 		}
556 		spin_lock_irq(&io->lock);
557 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
558 			io->status = retval;
559 	}
560 	io->count -= entries - i;
561 	if (io->count == 0)
562 		complete(&io->complete);
563 	spin_unlock_irq(&io->lock);
564 
565 	/* OK, yes, this could be packaged as non-blocking.
566 	 * So could the submit loop above ... but it's easier to
567 	 * solve neither problem than to solve both!
568 	 */
569 	wait_for_completion(&io->complete);
570 
571 	sg_clean(io);
572 }
573 EXPORT_SYMBOL_GPL(usb_sg_wait);
574 
575 /**
576  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
577  * @io: request block, initialized with usb_sg_init()
578  *
579  * This stops a request after it has been started by usb_sg_wait().
580  * It can also prevents one initialized by usb_sg_init() from starting,
581  * so that call just frees resources allocated to the request.
582  */
usb_sg_cancel(struct usb_sg_request * io)583 void usb_sg_cancel(struct usb_sg_request *io)
584 {
585 	unsigned long flags;
586 	int i, retval;
587 
588 	spin_lock_irqsave(&io->lock, flags);
589 	if (io->status) {
590 		spin_unlock_irqrestore(&io->lock, flags);
591 		return;
592 	}
593 	/* shut everything down */
594 	io->status = -ECONNRESET;
595 	spin_unlock_irqrestore(&io->lock, flags);
596 
597 	for (i = io->entries - 1; i >= 0; --i) {
598 		usb_block_urb(io->urbs[i]);
599 
600 		retval = usb_unlink_urb(io->urbs[i]);
601 		if (retval != -EINPROGRESS
602 		    && retval != -ENODEV
603 		    && retval != -EBUSY
604 		    && retval != -EIDRM)
605 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
606 				 __func__, retval);
607 	}
608 }
609 EXPORT_SYMBOL_GPL(usb_sg_cancel);
610 
611 /*-------------------------------------------------------------------*/
612 
613 /**
614  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
615  * @dev: the device whose descriptor is being retrieved
616  * @type: the descriptor type (USB_DT_*)
617  * @index: the number of the descriptor
618  * @buf: where to put the descriptor
619  * @size: how big is "buf"?
620  * Context: !in_interrupt ()
621  *
622  * Gets a USB descriptor.  Convenience functions exist to simplify
623  * getting some types of descriptors.  Use
624  * usb_get_string() or usb_string() for USB_DT_STRING.
625  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
626  * are part of the device structure.
627  * In addition to a number of USB-standard descriptors, some
628  * devices also use class-specific or vendor-specific descriptors.
629  *
630  * This call is synchronous, and may not be used in an interrupt context.
631  *
632  * Return: The number of bytes received on success, or else the status code
633  * returned by the underlying usb_control_msg() call.
634  */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)635 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
636 		       unsigned char index, void *buf, int size)
637 {
638 	int i;
639 	int result;
640 
641 	memset(buf, 0, size);	/* Make sure we parse really received data */
642 
643 	for (i = 0; i < 3; ++i) {
644 		/* retry on length 0 or error; some devices are flakey */
645 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
646 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
647 				(type << 8) + index, 0, buf, size,
648 				USB_CTRL_GET_TIMEOUT);
649 		if (result <= 0 && result != -ETIMEDOUT)
650 			continue;
651 		if (result > 1 && ((u8 *)buf)[1] != type) {
652 			result = -ENODATA;
653 			continue;
654 		}
655 		break;
656 	}
657 	return result;
658 }
659 EXPORT_SYMBOL_GPL(usb_get_descriptor);
660 
661 /**
662  * usb_get_string - gets a string descriptor
663  * @dev: the device whose string descriptor is being retrieved
664  * @langid: code for language chosen (from string descriptor zero)
665  * @index: the number of the descriptor
666  * @buf: where to put the string
667  * @size: how big is "buf"?
668  * Context: !in_interrupt ()
669  *
670  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
671  * in little-endian byte order).
672  * The usb_string() function will often be a convenient way to turn
673  * these strings into kernel-printable form.
674  *
675  * Strings may be referenced in device, configuration, interface, or other
676  * descriptors, and could also be used in vendor-specific ways.
677  *
678  * This call is synchronous, and may not be used in an interrupt context.
679  *
680  * Return: The number of bytes received on success, or else the status code
681  * returned by the underlying usb_control_msg() call.
682  */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)683 static int usb_get_string(struct usb_device *dev, unsigned short langid,
684 			  unsigned char index, void *buf, int size)
685 {
686 	int i;
687 	int result;
688 
689 	for (i = 0; i < 3; ++i) {
690 		/* retry on length 0 or stall; some devices are flakey */
691 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
692 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
693 			(USB_DT_STRING << 8) + index, langid, buf, size,
694 			USB_CTRL_GET_TIMEOUT);
695 		if (result == 0 || result == -EPIPE)
696 			continue;
697 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
698 			result = -ENODATA;
699 			continue;
700 		}
701 		break;
702 	}
703 	return result;
704 }
705 
usb_try_string_workarounds(unsigned char * buf,int * length)706 static void usb_try_string_workarounds(unsigned char *buf, int *length)
707 {
708 	int newlength, oldlength = *length;
709 
710 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
711 		if (!isprint(buf[newlength]) || buf[newlength + 1])
712 			break;
713 
714 	if (newlength > 2) {
715 		buf[0] = newlength;
716 		*length = newlength;
717 	}
718 }
719 
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)720 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
721 			  unsigned int index, unsigned char *buf)
722 {
723 	int rc;
724 
725 	/* Try to read the string descriptor by asking for the maximum
726 	 * possible number of bytes */
727 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
728 		rc = -EIO;
729 	else
730 		rc = usb_get_string(dev, langid, index, buf, 255);
731 
732 	/* If that failed try to read the descriptor length, then
733 	 * ask for just that many bytes */
734 	if (rc < 2) {
735 		rc = usb_get_string(dev, langid, index, buf, 2);
736 		if (rc == 2)
737 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
738 	}
739 
740 	if (rc >= 2) {
741 		if (!buf[0] && !buf[1])
742 			usb_try_string_workarounds(buf, &rc);
743 
744 		/* There might be extra junk at the end of the descriptor */
745 		if (buf[0] < rc)
746 			rc = buf[0];
747 
748 		rc = rc - (rc & 1); /* force a multiple of two */
749 	}
750 
751 	if (rc < 2)
752 		rc = (rc < 0 ? rc : -EINVAL);
753 
754 	return rc;
755 }
756 
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)757 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
758 {
759 	int err;
760 
761 	if (dev->have_langid)
762 		return 0;
763 
764 	if (dev->string_langid < 0)
765 		return -EPIPE;
766 
767 	err = usb_string_sub(dev, 0, 0, tbuf);
768 
769 	/* If the string was reported but is malformed, default to english
770 	 * (0x0409) */
771 	if (err == -ENODATA || (err > 0 && err < 4)) {
772 		dev->string_langid = 0x0409;
773 		dev->have_langid = 1;
774 		dev_err(&dev->dev,
775 			"language id specifier not provided by device, defaulting to English\n");
776 		return 0;
777 	}
778 
779 	/* In case of all other errors, we assume the device is not able to
780 	 * deal with strings at all. Set string_langid to -1 in order to
781 	 * prevent any string to be retrieved from the device */
782 	if (err < 0) {
783 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
784 					err);
785 		dev->string_langid = -1;
786 		return -EPIPE;
787 	}
788 
789 	/* always use the first langid listed */
790 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
791 	dev->have_langid = 1;
792 	dev_dbg(&dev->dev, "default language 0x%04x\n",
793 				dev->string_langid);
794 	return 0;
795 }
796 
797 /**
798  * usb_string - returns UTF-8 version of a string descriptor
799  * @dev: the device whose string descriptor is being retrieved
800  * @index: the number of the descriptor
801  * @buf: where to put the string
802  * @size: how big is "buf"?
803  * Context: !in_interrupt ()
804  *
805  * This converts the UTF-16LE encoded strings returned by devices, from
806  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
807  * that are more usable in most kernel contexts.  Note that this function
808  * chooses strings in the first language supported by the device.
809  *
810  * This call is synchronous, and may not be used in an interrupt context.
811  *
812  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
813  */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)814 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
815 {
816 	unsigned char *tbuf;
817 	int err;
818 
819 	if (dev->state == USB_STATE_SUSPENDED)
820 		return -EHOSTUNREACH;
821 	if (size <= 0 || !buf)
822 		return -EINVAL;
823 	buf[0] = 0;
824 	if (index <= 0 || index >= 256)
825 		return -EINVAL;
826 	tbuf = kmalloc(256, GFP_NOIO);
827 	if (!tbuf)
828 		return -ENOMEM;
829 
830 	err = usb_get_langid(dev, tbuf);
831 	if (err < 0)
832 		goto errout;
833 
834 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
835 	if (err < 0)
836 		goto errout;
837 
838 	size--;		/* leave room for trailing NULL char in output buffer */
839 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
840 			UTF16_LITTLE_ENDIAN, buf, size);
841 	buf[err] = 0;
842 
843 	if (tbuf[1] != USB_DT_STRING)
844 		dev_dbg(&dev->dev,
845 			"wrong descriptor type %02x for string %d (\"%s\")\n",
846 			tbuf[1], index, buf);
847 
848  errout:
849 	kfree(tbuf);
850 	return err;
851 }
852 EXPORT_SYMBOL_GPL(usb_string);
853 
854 /* one UTF-8-encoded 16-bit character has at most three bytes */
855 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
856 
857 /**
858  * usb_cache_string - read a string descriptor and cache it for later use
859  * @udev: the device whose string descriptor is being read
860  * @index: the descriptor index
861  *
862  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
863  * or %NULL if the index is 0 or the string could not be read.
864  */
usb_cache_string(struct usb_device * udev,int index)865 char *usb_cache_string(struct usb_device *udev, int index)
866 {
867 	char *buf;
868 	char *smallbuf = NULL;
869 	int len;
870 
871 	if (index <= 0)
872 		return NULL;
873 
874 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
875 	if (buf) {
876 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
877 		if (len > 0) {
878 			smallbuf = kmalloc(++len, GFP_NOIO);
879 			if (!smallbuf)
880 				return buf;
881 			memcpy(smallbuf, buf, len);
882 		}
883 		kfree(buf);
884 	}
885 	return smallbuf;
886 }
887 
888 /*
889  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
890  * @dev: the device whose device descriptor is being updated
891  * @size: how much of the descriptor to read
892  * Context: !in_interrupt ()
893  *
894  * Updates the copy of the device descriptor stored in the device structure,
895  * which dedicates space for this purpose.
896  *
897  * Not exported, only for use by the core.  If drivers really want to read
898  * the device descriptor directly, they can call usb_get_descriptor() with
899  * type = USB_DT_DEVICE and index = 0.
900  *
901  * This call is synchronous, and may not be used in an interrupt context.
902  *
903  * Return: The number of bytes received on success, or else the status code
904  * returned by the underlying usb_control_msg() call.
905  */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)906 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
907 {
908 	struct usb_device_descriptor *desc;
909 	int ret;
910 
911 	if (size > sizeof(*desc))
912 		return -EINVAL;
913 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
914 	if (!desc)
915 		return -ENOMEM;
916 
917 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
918 	if (ret >= 0)
919 		memcpy(&dev->descriptor, desc, size);
920 	kfree(desc);
921 	return ret;
922 }
923 
924 /**
925  * usb_get_status - issues a GET_STATUS call
926  * @dev: the device whose status is being checked
927  * @type: USB_RECIP_*; for device, interface, or endpoint
928  * @target: zero (for device), else interface or endpoint number
929  * @data: pointer to two bytes of bitmap data
930  * Context: !in_interrupt ()
931  *
932  * Returns device, interface, or endpoint status.  Normally only of
933  * interest to see if the device is self powered, or has enabled the
934  * remote wakeup facility; or whether a bulk or interrupt endpoint
935  * is halted ("stalled").
936  *
937  * Bits in these status bitmaps are set using the SET_FEATURE request,
938  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
939  * function should be used to clear halt ("stall") status.
940  *
941  * This call is synchronous, and may not be used in an interrupt context.
942  *
943  * Returns 0 and the status value in *@data (in host byte order) on success,
944  * or else the status code from the underlying usb_control_msg() call.
945  */
usb_get_status(struct usb_device * dev,int type,int target,void * data)946 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
947 {
948 	int ret;
949 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
950 
951 	if (!status)
952 		return -ENOMEM;
953 
954 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
955 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
956 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
957 
958 	if (ret == 2) {
959 		*(u16 *) data = le16_to_cpu(*status);
960 		ret = 0;
961 	} else if (ret >= 0) {
962 		ret = -EIO;
963 	}
964 	kfree(status);
965 	return ret;
966 }
967 EXPORT_SYMBOL_GPL(usb_get_status);
968 
969 /**
970  * usb_clear_halt - tells device to clear endpoint halt/stall condition
971  * @dev: device whose endpoint is halted
972  * @pipe: endpoint "pipe" being cleared
973  * Context: !in_interrupt ()
974  *
975  * This is used to clear halt conditions for bulk and interrupt endpoints,
976  * as reported by URB completion status.  Endpoints that are halted are
977  * sometimes referred to as being "stalled".  Such endpoints are unable
978  * to transmit or receive data until the halt status is cleared.  Any URBs
979  * queued for such an endpoint should normally be unlinked by the driver
980  * before clearing the halt condition, as described in sections 5.7.5
981  * and 5.8.5 of the USB 2.0 spec.
982  *
983  * Note that control and isochronous endpoints don't halt, although control
984  * endpoints report "protocol stall" (for unsupported requests) using the
985  * same status code used to report a true stall.
986  *
987  * This call is synchronous, and may not be used in an interrupt context.
988  *
989  * Return: Zero on success, or else the status code returned by the
990  * underlying usb_control_msg() call.
991  */
usb_clear_halt(struct usb_device * dev,int pipe)992 int usb_clear_halt(struct usb_device *dev, int pipe)
993 {
994 	int result;
995 	int endp = usb_pipeendpoint(pipe);
996 
997 	if (usb_pipein(pipe))
998 		endp |= USB_DIR_IN;
999 
1000 	/* we don't care if it wasn't halted first. in fact some devices
1001 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1002 	 * this request for iso endpoints, which can't halt!
1003 	 */
1004 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1005 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1006 		USB_ENDPOINT_HALT, endp, NULL, 0,
1007 		USB_CTRL_SET_TIMEOUT);
1008 
1009 	/* don't un-halt or force to DATA0 except on success */
1010 	if (result < 0)
1011 		return result;
1012 
1013 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1014 	 * the clear "took", so some devices could lock up if you check...
1015 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1016 	 *
1017 	 * NOTE:  make sure the logic here doesn't diverge much from
1018 	 * the copy in usb-storage, for as long as we need two copies.
1019 	 */
1020 
1021 	usb_reset_endpoint(dev, endp);
1022 
1023 	return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_clear_halt);
1026 
create_intf_ep_devs(struct usb_interface * intf)1027 static int create_intf_ep_devs(struct usb_interface *intf)
1028 {
1029 	struct usb_device *udev = interface_to_usbdev(intf);
1030 	struct usb_host_interface *alt = intf->cur_altsetting;
1031 	int i;
1032 
1033 	if (intf->ep_devs_created || intf->unregistering)
1034 		return 0;
1035 
1036 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1037 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1038 	intf->ep_devs_created = 1;
1039 	return 0;
1040 }
1041 
remove_intf_ep_devs(struct usb_interface * intf)1042 static void remove_intf_ep_devs(struct usb_interface *intf)
1043 {
1044 	struct usb_host_interface *alt = intf->cur_altsetting;
1045 	int i;
1046 
1047 	if (!intf->ep_devs_created)
1048 		return;
1049 
1050 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1051 		usb_remove_ep_devs(&alt->endpoint[i]);
1052 	intf->ep_devs_created = 0;
1053 }
1054 
1055 /**
1056  * usb_disable_endpoint -- Disable an endpoint by address
1057  * @dev: the device whose endpoint is being disabled
1058  * @epaddr: the endpoint's address.  Endpoint number for output,
1059  *	endpoint number + USB_DIR_IN for input
1060  * @reset_hardware: flag to erase any endpoint state stored in the
1061  *	controller hardware
1062  *
1063  * Disables the endpoint for URB submission and nukes all pending URBs.
1064  * If @reset_hardware is set then also deallocates hcd/hardware state
1065  * for the endpoint.
1066  */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1067 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1068 		bool reset_hardware)
1069 {
1070 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1071 	struct usb_host_endpoint *ep;
1072 
1073 	if (!dev)
1074 		return;
1075 
1076 	if (usb_endpoint_out(epaddr)) {
1077 		ep = dev->ep_out[epnum];
1078 		if (reset_hardware)
1079 			dev->ep_out[epnum] = NULL;
1080 	} else {
1081 		ep = dev->ep_in[epnum];
1082 		if (reset_hardware)
1083 			dev->ep_in[epnum] = NULL;
1084 	}
1085 	if (ep) {
1086 		ep->enabled = 0;
1087 		usb_hcd_flush_endpoint(dev, ep);
1088 		if (reset_hardware)
1089 			usb_hcd_disable_endpoint(dev, ep);
1090 	}
1091 }
1092 
1093 /**
1094  * usb_reset_endpoint - Reset an endpoint's state.
1095  * @dev: the device whose endpoint is to be reset
1096  * @epaddr: the endpoint's address.  Endpoint number for output,
1097  *	endpoint number + USB_DIR_IN for input
1098  *
1099  * Resets any host-side endpoint state such as the toggle bit,
1100  * sequence number or current window.
1101  */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1102 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1103 {
1104 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1105 	struct usb_host_endpoint *ep;
1106 
1107 	if (usb_endpoint_out(epaddr))
1108 		ep = dev->ep_out[epnum];
1109 	else
1110 		ep = dev->ep_in[epnum];
1111 	if (ep)
1112 		usb_hcd_reset_endpoint(dev, ep);
1113 }
1114 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1115 
1116 
1117 /**
1118  * usb_disable_interface -- Disable all endpoints for an interface
1119  * @dev: the device whose interface is being disabled
1120  * @intf: pointer to the interface descriptor
1121  * @reset_hardware: flag to erase any endpoint state stored in the
1122  *	controller hardware
1123  *
1124  * Disables all the endpoints for the interface's current altsetting.
1125  */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1126 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1127 		bool reset_hardware)
1128 {
1129 	struct usb_host_interface *alt = intf->cur_altsetting;
1130 	int i;
1131 
1132 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1133 		usb_disable_endpoint(dev,
1134 				alt->endpoint[i].desc.bEndpointAddress,
1135 				reset_hardware);
1136 	}
1137 }
1138 
1139 /**
1140  * usb_disable_device - Disable all the endpoints for a USB device
1141  * @dev: the device whose endpoints are being disabled
1142  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1143  *
1144  * Disables all the device's endpoints, potentially including endpoint 0.
1145  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1146  * pending urbs) and usbcore state for the interfaces, so that usbcore
1147  * must usb_set_configuration() before any interfaces could be used.
1148  */
usb_disable_device(struct usb_device * dev,int skip_ep0)1149 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1150 {
1151 	int i;
1152 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1153 
1154 	/* getting rid of interfaces will disconnect
1155 	 * any drivers bound to them (a key side effect)
1156 	 */
1157 	if (dev->actconfig) {
1158 		/*
1159 		 * FIXME: In order to avoid self-deadlock involving the
1160 		 * bandwidth_mutex, we have to mark all the interfaces
1161 		 * before unregistering any of them.
1162 		 */
1163 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1164 			dev->actconfig->interface[i]->unregistering = 1;
1165 
1166 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1167 			struct usb_interface	*interface;
1168 
1169 			/* remove this interface if it has been registered */
1170 			interface = dev->actconfig->interface[i];
1171 			if (!device_is_registered(&interface->dev))
1172 				continue;
1173 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1174 				dev_name(&interface->dev));
1175 			remove_intf_ep_devs(interface);
1176 			device_del(&interface->dev);
1177 		}
1178 
1179 		/* Now that the interfaces are unbound, nobody should
1180 		 * try to access them.
1181 		 */
1182 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1183 			put_device(&dev->actconfig->interface[i]->dev);
1184 			dev->actconfig->interface[i] = NULL;
1185 		}
1186 
1187 		usb_disable_usb2_hardware_lpm(dev);
1188 		usb_unlocked_disable_lpm(dev);
1189 		usb_disable_ltm(dev);
1190 
1191 		dev->actconfig = NULL;
1192 		if (dev->state == USB_STATE_CONFIGURED)
1193 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1194 	}
1195 
1196 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1197 		skip_ep0 ? "non-ep0" : "all");
1198 	if (hcd->driver->check_bandwidth) {
1199 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1200 		for (i = skip_ep0; i < 16; ++i) {
1201 			usb_disable_endpoint(dev, i, false);
1202 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1203 		}
1204 		/* Remove endpoints from the host controller internal state */
1205 		mutex_lock(hcd->bandwidth_mutex);
1206 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1207 		mutex_unlock(hcd->bandwidth_mutex);
1208 		/* Second pass: remove endpoint pointers */
1209 	}
1210 	for (i = skip_ep0; i < 16; ++i) {
1211 		usb_disable_endpoint(dev, i, true);
1212 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1213 	}
1214 }
1215 
1216 /**
1217  * usb_enable_endpoint - Enable an endpoint for USB communications
1218  * @dev: the device whose interface is being enabled
1219  * @ep: the endpoint
1220  * @reset_ep: flag to reset the endpoint state
1221  *
1222  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1223  * For control endpoints, both the input and output sides are handled.
1224  */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1225 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1226 		bool reset_ep)
1227 {
1228 	int epnum = usb_endpoint_num(&ep->desc);
1229 	int is_out = usb_endpoint_dir_out(&ep->desc);
1230 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1231 
1232 	if (reset_ep)
1233 		usb_hcd_reset_endpoint(dev, ep);
1234 	if (is_out || is_control)
1235 		dev->ep_out[epnum] = ep;
1236 	if (!is_out || is_control)
1237 		dev->ep_in[epnum] = ep;
1238 	ep->enabled = 1;
1239 }
1240 
1241 /**
1242  * usb_enable_interface - Enable all the endpoints for an interface
1243  * @dev: the device whose interface is being enabled
1244  * @intf: pointer to the interface descriptor
1245  * @reset_eps: flag to reset the endpoints' state
1246  *
1247  * Enables all the endpoints for the interface's current altsetting.
1248  */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1249 void usb_enable_interface(struct usb_device *dev,
1250 		struct usb_interface *intf, bool reset_eps)
1251 {
1252 	struct usb_host_interface *alt = intf->cur_altsetting;
1253 	int i;
1254 
1255 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1256 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1257 }
1258 
1259 /**
1260  * usb_set_interface - Makes a particular alternate setting be current
1261  * @dev: the device whose interface is being updated
1262  * @interface: the interface being updated
1263  * @alternate: the setting being chosen.
1264  * Context: !in_interrupt ()
1265  *
1266  * This is used to enable data transfers on interfaces that may not
1267  * be enabled by default.  Not all devices support such configurability.
1268  * Only the driver bound to an interface may change its setting.
1269  *
1270  * Within any given configuration, each interface may have several
1271  * alternative settings.  These are often used to control levels of
1272  * bandwidth consumption.  For example, the default setting for a high
1273  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1274  * while interrupt transfers of up to 3KBytes per microframe are legal.
1275  * Also, isochronous endpoints may never be part of an
1276  * interface's default setting.  To access such bandwidth, alternate
1277  * interface settings must be made current.
1278  *
1279  * Note that in the Linux USB subsystem, bandwidth associated with
1280  * an endpoint in a given alternate setting is not reserved until an URB
1281  * is submitted that needs that bandwidth.  Some other operating systems
1282  * allocate bandwidth early, when a configuration is chosen.
1283  *
1284  * xHCI reserves bandwidth and configures the alternate setting in
1285  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1286  * may be disabled. Drivers cannot rely on any particular alternate
1287  * setting being in effect after a failure.
1288  *
1289  * This call is synchronous, and may not be used in an interrupt context.
1290  * Also, drivers must not change altsettings while urbs are scheduled for
1291  * endpoints in that interface; all such urbs must first be completed
1292  * (perhaps forced by unlinking).
1293  *
1294  * Return: Zero on success, or else the status code returned by the
1295  * underlying usb_control_msg() call.
1296  */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1297 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1298 {
1299 	struct usb_interface *iface;
1300 	struct usb_host_interface *alt;
1301 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1302 	int i, ret, manual = 0;
1303 	unsigned int epaddr;
1304 	unsigned int pipe;
1305 
1306 	if (dev->state == USB_STATE_SUSPENDED)
1307 		return -EHOSTUNREACH;
1308 
1309 	iface = usb_ifnum_to_if(dev, interface);
1310 	if (!iface) {
1311 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1312 			interface);
1313 		return -EINVAL;
1314 	}
1315 	if (iface->unregistering)
1316 		return -ENODEV;
1317 
1318 	alt = usb_altnum_to_altsetting(iface, alternate);
1319 	if (!alt) {
1320 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1321 			 alternate);
1322 		return -EINVAL;
1323 	}
1324 	/*
1325 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1326 	 * including freeing dropped endpoint ring buffers.
1327 	 * Make sure the interface endpoints are flushed before that
1328 	 */
1329 	usb_disable_interface(dev, iface, false);
1330 
1331 	/* Make sure we have enough bandwidth for this alternate interface.
1332 	 * Remove the current alt setting and add the new alt setting.
1333 	 */
1334 	mutex_lock(hcd->bandwidth_mutex);
1335 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1336 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1337 	 */
1338 	if (usb_disable_lpm(dev)) {
1339 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1340 		mutex_unlock(hcd->bandwidth_mutex);
1341 		return -ENOMEM;
1342 	}
1343 	/* Changing alt-setting also frees any allocated streams */
1344 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1345 		iface->cur_altsetting->endpoint[i].streams = 0;
1346 
1347 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1348 	if (ret < 0) {
1349 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1350 				alternate);
1351 		usb_enable_lpm(dev);
1352 		mutex_unlock(hcd->bandwidth_mutex);
1353 		return ret;
1354 	}
1355 
1356 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1357 		ret = -EPIPE;
1358 	else
1359 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1360 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1361 				   alternate, interface, NULL, 0, 5000);
1362 
1363 	/* 9.4.10 says devices don't need this and are free to STALL the
1364 	 * request if the interface only has one alternate setting.
1365 	 */
1366 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1367 		dev_dbg(&dev->dev,
1368 			"manual set_interface for iface %d, alt %d\n",
1369 			interface, alternate);
1370 		manual = 1;
1371 	} else if (ret < 0) {
1372 		/* Re-instate the old alt setting */
1373 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1374 		usb_enable_lpm(dev);
1375 		mutex_unlock(hcd->bandwidth_mutex);
1376 		return ret;
1377 	}
1378 	mutex_unlock(hcd->bandwidth_mutex);
1379 
1380 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1381 	 * when they implement async or easily-killable versions of this or
1382 	 * other "should-be-internal" functions (like clear_halt).
1383 	 * should hcd+usbcore postprocess control requests?
1384 	 */
1385 
1386 	/* prevent submissions using previous endpoint settings */
1387 	if (iface->cur_altsetting != alt) {
1388 		remove_intf_ep_devs(iface);
1389 		usb_remove_sysfs_intf_files(iface);
1390 	}
1391 	usb_disable_interface(dev, iface, true);
1392 
1393 	iface->cur_altsetting = alt;
1394 
1395 	/* Now that the interface is installed, re-enable LPM. */
1396 	usb_unlocked_enable_lpm(dev);
1397 
1398 	/* If the interface only has one altsetting and the device didn't
1399 	 * accept the request, we attempt to carry out the equivalent action
1400 	 * by manually clearing the HALT feature for each endpoint in the
1401 	 * new altsetting.
1402 	 */
1403 	if (manual) {
1404 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1405 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1406 			pipe = __create_pipe(dev,
1407 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1408 					(usb_endpoint_out(epaddr) ?
1409 					USB_DIR_OUT : USB_DIR_IN);
1410 
1411 			usb_clear_halt(dev, pipe);
1412 		}
1413 	}
1414 
1415 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1416 	 *
1417 	 * Note:
1418 	 * Despite EP0 is always present in all interfaces/AS, the list of
1419 	 * endpoints from the descriptor does not contain EP0. Due to its
1420 	 * omnipresence one might expect EP0 being considered "affected" by
1421 	 * any SetInterface request and hence assume toggles need to be reset.
1422 	 * However, EP0 toggles are re-synced for every individual transfer
1423 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1424 	 * (Likewise, EP0 never "halts" on well designed devices.)
1425 	 */
1426 	usb_enable_interface(dev, iface, true);
1427 	if (device_is_registered(&iface->dev)) {
1428 		usb_create_sysfs_intf_files(iface);
1429 		create_intf_ep_devs(iface);
1430 	}
1431 	return 0;
1432 }
1433 EXPORT_SYMBOL_GPL(usb_set_interface);
1434 
1435 /**
1436  * usb_reset_configuration - lightweight device reset
1437  * @dev: the device whose configuration is being reset
1438  *
1439  * This issues a standard SET_CONFIGURATION request to the device using
1440  * the current configuration.  The effect is to reset most USB-related
1441  * state in the device, including interface altsettings (reset to zero),
1442  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1443  * endpoints).  Other usbcore state is unchanged, including bindings of
1444  * usb device drivers to interfaces.
1445  *
1446  * Because this affects multiple interfaces, avoid using this with composite
1447  * (multi-interface) devices.  Instead, the driver for each interface may
1448  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1449  * some devices don't support the SET_INTERFACE request, and others won't
1450  * reset all the interface state (notably endpoint state).  Resetting the whole
1451  * configuration would affect other drivers' interfaces.
1452  *
1453  * The caller must own the device lock.
1454  *
1455  * Return: Zero on success, else a negative error code.
1456  */
usb_reset_configuration(struct usb_device * dev)1457 int usb_reset_configuration(struct usb_device *dev)
1458 {
1459 	int			i, retval;
1460 	struct usb_host_config	*config;
1461 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1462 
1463 	if (dev->state == USB_STATE_SUSPENDED)
1464 		return -EHOSTUNREACH;
1465 
1466 	/* caller must have locked the device and must own
1467 	 * the usb bus readlock (so driver bindings are stable);
1468 	 * calls during probe() are fine
1469 	 */
1470 
1471 	for (i = 1; i < 16; ++i) {
1472 		usb_disable_endpoint(dev, i, true);
1473 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1474 	}
1475 
1476 	config = dev->actconfig;
1477 	retval = 0;
1478 	mutex_lock(hcd->bandwidth_mutex);
1479 	/* Disable LPM, and re-enable it once the configuration is reset, so
1480 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1481 	 */
1482 	if (usb_disable_lpm(dev)) {
1483 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1484 		mutex_unlock(hcd->bandwidth_mutex);
1485 		return -ENOMEM;
1486 	}
1487 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1488 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1489 		struct usb_interface *intf = config->interface[i];
1490 		struct usb_host_interface *alt;
1491 
1492 		alt = usb_altnum_to_altsetting(intf, 0);
1493 		if (!alt)
1494 			alt = &intf->altsetting[0];
1495 		if (alt != intf->cur_altsetting)
1496 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1497 					intf->cur_altsetting, alt);
1498 		if (retval < 0)
1499 			break;
1500 	}
1501 	/* If not, reinstate the old alternate settings */
1502 	if (retval < 0) {
1503 reset_old_alts:
1504 		for (i--; i >= 0; i--) {
1505 			struct usb_interface *intf = config->interface[i];
1506 			struct usb_host_interface *alt;
1507 
1508 			alt = usb_altnum_to_altsetting(intf, 0);
1509 			if (!alt)
1510 				alt = &intf->altsetting[0];
1511 			if (alt != intf->cur_altsetting)
1512 				usb_hcd_alloc_bandwidth(dev, NULL,
1513 						alt, intf->cur_altsetting);
1514 		}
1515 		usb_enable_lpm(dev);
1516 		mutex_unlock(hcd->bandwidth_mutex);
1517 		return retval;
1518 	}
1519 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1520 			USB_REQ_SET_CONFIGURATION, 0,
1521 			config->desc.bConfigurationValue, 0,
1522 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1523 	if (retval < 0)
1524 		goto reset_old_alts;
1525 	mutex_unlock(hcd->bandwidth_mutex);
1526 
1527 	/* re-init hc/hcd interface/endpoint state */
1528 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1529 		struct usb_interface *intf = config->interface[i];
1530 		struct usb_host_interface *alt;
1531 
1532 		alt = usb_altnum_to_altsetting(intf, 0);
1533 
1534 		/* No altsetting 0?  We'll assume the first altsetting.
1535 		 * We could use a GetInterface call, but if a device is
1536 		 * so non-compliant that it doesn't have altsetting 0
1537 		 * then I wouldn't trust its reply anyway.
1538 		 */
1539 		if (!alt)
1540 			alt = &intf->altsetting[0];
1541 
1542 		if (alt != intf->cur_altsetting) {
1543 			remove_intf_ep_devs(intf);
1544 			usb_remove_sysfs_intf_files(intf);
1545 		}
1546 		intf->cur_altsetting = alt;
1547 		usb_enable_interface(dev, intf, true);
1548 		if (device_is_registered(&intf->dev)) {
1549 			usb_create_sysfs_intf_files(intf);
1550 			create_intf_ep_devs(intf);
1551 		}
1552 	}
1553 	/* Now that the interfaces are installed, re-enable LPM. */
1554 	usb_unlocked_enable_lpm(dev);
1555 	return 0;
1556 }
1557 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1558 
usb_release_interface(struct device * dev)1559 static void usb_release_interface(struct device *dev)
1560 {
1561 	struct usb_interface *intf = to_usb_interface(dev);
1562 	struct usb_interface_cache *intfc =
1563 			altsetting_to_usb_interface_cache(intf->altsetting);
1564 
1565 	kref_put(&intfc->ref, usb_release_interface_cache);
1566 	usb_put_dev(interface_to_usbdev(intf));
1567 	kfree(intf);
1568 }
1569 
1570 /*
1571  * usb_deauthorize_interface - deauthorize an USB interface
1572  *
1573  * @intf: USB interface structure
1574  */
usb_deauthorize_interface(struct usb_interface * intf)1575 void usb_deauthorize_interface(struct usb_interface *intf)
1576 {
1577 	struct device *dev = &intf->dev;
1578 
1579 	device_lock(dev->parent);
1580 
1581 	if (intf->authorized) {
1582 		device_lock(dev);
1583 		intf->authorized = 0;
1584 		device_unlock(dev);
1585 
1586 		usb_forced_unbind_intf(intf);
1587 	}
1588 
1589 	device_unlock(dev->parent);
1590 }
1591 
1592 /*
1593  * usb_authorize_interface - authorize an USB interface
1594  *
1595  * @intf: USB interface structure
1596  */
usb_authorize_interface(struct usb_interface * intf)1597 void usb_authorize_interface(struct usb_interface *intf)
1598 {
1599 	struct device *dev = &intf->dev;
1600 
1601 	if (!intf->authorized) {
1602 		device_lock(dev);
1603 		intf->authorized = 1; /* authorize interface */
1604 		device_unlock(dev);
1605 	}
1606 }
1607 
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1608 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1609 {
1610 	struct usb_device *usb_dev;
1611 	struct usb_interface *intf;
1612 	struct usb_host_interface *alt;
1613 
1614 	intf = to_usb_interface(dev);
1615 	usb_dev = interface_to_usbdev(intf);
1616 	alt = intf->cur_altsetting;
1617 
1618 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1619 		   alt->desc.bInterfaceClass,
1620 		   alt->desc.bInterfaceSubClass,
1621 		   alt->desc.bInterfaceProtocol))
1622 		return -ENOMEM;
1623 
1624 	if (add_uevent_var(env,
1625 		   "MODALIAS=usb:"
1626 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1627 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1628 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1629 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1630 		   usb_dev->descriptor.bDeviceClass,
1631 		   usb_dev->descriptor.bDeviceSubClass,
1632 		   usb_dev->descriptor.bDeviceProtocol,
1633 		   alt->desc.bInterfaceClass,
1634 		   alt->desc.bInterfaceSubClass,
1635 		   alt->desc.bInterfaceProtocol,
1636 		   alt->desc.bInterfaceNumber))
1637 		return -ENOMEM;
1638 
1639 	return 0;
1640 }
1641 
1642 struct device_type usb_if_device_type = {
1643 	.name =		"usb_interface",
1644 	.release =	usb_release_interface,
1645 	.uevent =	usb_if_uevent,
1646 };
1647 
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1648 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1649 						struct usb_host_config *config,
1650 						u8 inum)
1651 {
1652 	struct usb_interface_assoc_descriptor *retval = NULL;
1653 	struct usb_interface_assoc_descriptor *intf_assoc;
1654 	int first_intf;
1655 	int last_intf;
1656 	int i;
1657 
1658 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1659 		intf_assoc = config->intf_assoc[i];
1660 		if (intf_assoc->bInterfaceCount == 0)
1661 			continue;
1662 
1663 		first_intf = intf_assoc->bFirstInterface;
1664 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1665 		if (inum >= first_intf && inum <= last_intf) {
1666 			if (!retval)
1667 				retval = intf_assoc;
1668 			else
1669 				dev_err(&dev->dev, "Interface #%d referenced"
1670 					" by multiple IADs\n", inum);
1671 		}
1672 	}
1673 
1674 	return retval;
1675 }
1676 
1677 
1678 /*
1679  * Internal function to queue a device reset
1680  * See usb_queue_reset_device() for more details
1681  */
__usb_queue_reset_device(struct work_struct * ws)1682 static void __usb_queue_reset_device(struct work_struct *ws)
1683 {
1684 	int rc;
1685 	struct usb_interface *iface =
1686 		container_of(ws, struct usb_interface, reset_ws);
1687 	struct usb_device *udev = interface_to_usbdev(iface);
1688 
1689 	rc = usb_lock_device_for_reset(udev, iface);
1690 	if (rc >= 0) {
1691 		usb_reset_device(udev);
1692 		usb_unlock_device(udev);
1693 	}
1694 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1695 }
1696 
1697 
1698 /*
1699  * usb_set_configuration - Makes a particular device setting be current
1700  * @dev: the device whose configuration is being updated
1701  * @configuration: the configuration being chosen.
1702  * Context: !in_interrupt(), caller owns the device lock
1703  *
1704  * This is used to enable non-default device modes.  Not all devices
1705  * use this kind of configurability; many devices only have one
1706  * configuration.
1707  *
1708  * @configuration is the value of the configuration to be installed.
1709  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1710  * must be non-zero; a value of zero indicates that the device in
1711  * unconfigured.  However some devices erroneously use 0 as one of their
1712  * configuration values.  To help manage such devices, this routine will
1713  * accept @configuration = -1 as indicating the device should be put in
1714  * an unconfigured state.
1715  *
1716  * USB device configurations may affect Linux interoperability,
1717  * power consumption and the functionality available.  For example,
1718  * the default configuration is limited to using 100mA of bus power,
1719  * so that when certain device functionality requires more power,
1720  * and the device is bus powered, that functionality should be in some
1721  * non-default device configuration.  Other device modes may also be
1722  * reflected as configuration options, such as whether two ISDN
1723  * channels are available independently; and choosing between open
1724  * standard device protocols (like CDC) or proprietary ones.
1725  *
1726  * Note that a non-authorized device (dev->authorized == 0) will only
1727  * be put in unconfigured mode.
1728  *
1729  * Note that USB has an additional level of device configurability,
1730  * associated with interfaces.  That configurability is accessed using
1731  * usb_set_interface().
1732  *
1733  * This call is synchronous. The calling context must be able to sleep,
1734  * must own the device lock, and must not hold the driver model's USB
1735  * bus mutex; usb interface driver probe() methods cannot use this routine.
1736  *
1737  * Returns zero on success, or else the status code returned by the
1738  * underlying call that failed.  On successful completion, each interface
1739  * in the original device configuration has been destroyed, and each one
1740  * in the new configuration has been probed by all relevant usb device
1741  * drivers currently known to the kernel.
1742  */
usb_set_configuration(struct usb_device * dev,int configuration)1743 int usb_set_configuration(struct usb_device *dev, int configuration)
1744 {
1745 	int i, ret;
1746 	struct usb_host_config *cp = NULL;
1747 	struct usb_interface **new_interfaces = NULL;
1748 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1749 	int n, nintf;
1750 
1751 	if (dev->authorized == 0 || configuration == -1)
1752 		configuration = 0;
1753 	else {
1754 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1755 			if (dev->config[i].desc.bConfigurationValue ==
1756 					configuration) {
1757 				cp = &dev->config[i];
1758 				break;
1759 			}
1760 		}
1761 	}
1762 	if ((!cp && configuration != 0))
1763 		return -EINVAL;
1764 
1765 	/* The USB spec says configuration 0 means unconfigured.
1766 	 * But if a device includes a configuration numbered 0,
1767 	 * we will accept it as a correctly configured state.
1768 	 * Use -1 if you really want to unconfigure the device.
1769 	 */
1770 	if (cp && configuration == 0)
1771 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1772 
1773 	/* Allocate memory for new interfaces before doing anything else,
1774 	 * so that if we run out then nothing will have changed. */
1775 	n = nintf = 0;
1776 	if (cp) {
1777 		nintf = cp->desc.bNumInterfaces;
1778 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1779 				GFP_NOIO);
1780 		if (!new_interfaces)
1781 			return -ENOMEM;
1782 
1783 		for (; n < nintf; ++n) {
1784 			new_interfaces[n] = kzalloc(
1785 					sizeof(struct usb_interface),
1786 					GFP_NOIO);
1787 			if (!new_interfaces[n]) {
1788 				ret = -ENOMEM;
1789 free_interfaces:
1790 				while (--n >= 0)
1791 					kfree(new_interfaces[n]);
1792 				kfree(new_interfaces);
1793 				return ret;
1794 			}
1795 		}
1796 
1797 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1798 		if (i < 0)
1799 			dev_warn(&dev->dev, "new config #%d exceeds power "
1800 					"limit by %dmA\n",
1801 					configuration, -i);
1802 	}
1803 
1804 	/* Wake up the device so we can send it the Set-Config request */
1805 	ret = usb_autoresume_device(dev);
1806 	if (ret)
1807 		goto free_interfaces;
1808 
1809 	/* if it's already configured, clear out old state first.
1810 	 * getting rid of old interfaces means unbinding their drivers.
1811 	 */
1812 	if (dev->state != USB_STATE_ADDRESS)
1813 		usb_disable_device(dev, 1);	/* Skip ep0 */
1814 
1815 	/* Get rid of pending async Set-Config requests for this device */
1816 	cancel_async_set_config(dev);
1817 
1818 	/* Make sure we have bandwidth (and available HCD resources) for this
1819 	 * configuration.  Remove endpoints from the schedule if we're dropping
1820 	 * this configuration to set configuration 0.  After this point, the
1821 	 * host controller will not allow submissions to dropped endpoints.  If
1822 	 * this call fails, the device state is unchanged.
1823 	 */
1824 	mutex_lock(hcd->bandwidth_mutex);
1825 	/* Disable LPM, and re-enable it once the new configuration is
1826 	 * installed, so that the xHCI driver can recalculate the U1/U2
1827 	 * timeouts.
1828 	 */
1829 	if (dev->actconfig && usb_disable_lpm(dev)) {
1830 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1831 		mutex_unlock(hcd->bandwidth_mutex);
1832 		ret = -ENOMEM;
1833 		goto free_interfaces;
1834 	}
1835 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1836 	if (ret < 0) {
1837 		if (dev->actconfig)
1838 			usb_enable_lpm(dev);
1839 		mutex_unlock(hcd->bandwidth_mutex);
1840 		usb_autosuspend_device(dev);
1841 		goto free_interfaces;
1842 	}
1843 
1844 	/*
1845 	 * Initialize the new interface structures and the
1846 	 * hc/hcd/usbcore interface/endpoint state.
1847 	 */
1848 	for (i = 0; i < nintf; ++i) {
1849 		struct usb_interface_cache *intfc;
1850 		struct usb_interface *intf;
1851 		struct usb_host_interface *alt;
1852 
1853 		cp->interface[i] = intf = new_interfaces[i];
1854 		intfc = cp->intf_cache[i];
1855 		intf->altsetting = intfc->altsetting;
1856 		intf->num_altsetting = intfc->num_altsetting;
1857 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1858 		kref_get(&intfc->ref);
1859 
1860 		alt = usb_altnum_to_altsetting(intf, 0);
1861 
1862 		/* No altsetting 0?  We'll assume the first altsetting.
1863 		 * We could use a GetInterface call, but if a device is
1864 		 * so non-compliant that it doesn't have altsetting 0
1865 		 * then I wouldn't trust its reply anyway.
1866 		 */
1867 		if (!alt)
1868 			alt = &intf->altsetting[0];
1869 
1870 		intf->intf_assoc =
1871 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1872 		intf->cur_altsetting = alt;
1873 		usb_enable_interface(dev, intf, true);
1874 		intf->dev.parent = &dev->dev;
1875 		intf->dev.driver = NULL;
1876 		intf->dev.bus = &usb_bus_type;
1877 		intf->dev.type = &usb_if_device_type;
1878 		intf->dev.groups = usb_interface_groups;
1879 		/*
1880 		 * Please refer to usb_alloc_dev() to see why we set
1881 		 * dma_mask and dma_pfn_offset.
1882 		 */
1883 		intf->dev.dma_mask = dev->dev.dma_mask;
1884 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1885 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1886 		intf->minor = -1;
1887 		device_initialize(&intf->dev);
1888 		pm_runtime_no_callbacks(&intf->dev);
1889 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1890 			dev->bus->busnum, dev->devpath,
1891 			configuration, alt->desc.bInterfaceNumber);
1892 		usb_get_dev(dev);
1893 	}
1894 	kfree(new_interfaces);
1895 
1896 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1897 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1898 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1899 	if (ret < 0 && cp) {
1900 		/*
1901 		 * All the old state is gone, so what else can we do?
1902 		 * The device is probably useless now anyway.
1903 		 */
1904 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1905 		for (i = 0; i < nintf; ++i) {
1906 			usb_disable_interface(dev, cp->interface[i], true);
1907 			put_device(&cp->interface[i]->dev);
1908 			cp->interface[i] = NULL;
1909 		}
1910 		cp = NULL;
1911 	}
1912 
1913 	dev->actconfig = cp;
1914 	mutex_unlock(hcd->bandwidth_mutex);
1915 
1916 	if (!cp) {
1917 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1918 
1919 		/* Leave LPM disabled while the device is unconfigured. */
1920 		usb_autosuspend_device(dev);
1921 		return ret;
1922 	}
1923 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1924 
1925 	if (cp->string == NULL &&
1926 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1927 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1928 
1929 	/* Now that the interfaces are installed, re-enable LPM. */
1930 	usb_unlocked_enable_lpm(dev);
1931 	/* Enable LTM if it was turned off by usb_disable_device. */
1932 	usb_enable_ltm(dev);
1933 
1934 	/* Now that all the interfaces are set up, register them
1935 	 * to trigger binding of drivers to interfaces.  probe()
1936 	 * routines may install different altsettings and may
1937 	 * claim() any interfaces not yet bound.  Many class drivers
1938 	 * need that: CDC, audio, video, etc.
1939 	 */
1940 	for (i = 0; i < nintf; ++i) {
1941 		struct usb_interface *intf = cp->interface[i];
1942 
1943 		dev_dbg(&dev->dev,
1944 			"adding %s (config #%d, interface %d)\n",
1945 			dev_name(&intf->dev), configuration,
1946 			intf->cur_altsetting->desc.bInterfaceNumber);
1947 		device_enable_async_suspend(&intf->dev);
1948 		ret = device_add(&intf->dev);
1949 		if (ret != 0) {
1950 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1951 				dev_name(&intf->dev), ret);
1952 			continue;
1953 		}
1954 		create_intf_ep_devs(intf);
1955 	}
1956 
1957 	usb_autosuspend_device(dev);
1958 	return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(usb_set_configuration);
1961 
1962 static LIST_HEAD(set_config_list);
1963 static DEFINE_SPINLOCK(set_config_lock);
1964 
1965 struct set_config_request {
1966 	struct usb_device	*udev;
1967 	int			config;
1968 	struct work_struct	work;
1969 	struct list_head	node;
1970 };
1971 
1972 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1973 static void driver_set_config_work(struct work_struct *work)
1974 {
1975 	struct set_config_request *req =
1976 		container_of(work, struct set_config_request, work);
1977 	struct usb_device *udev = req->udev;
1978 
1979 	usb_lock_device(udev);
1980 	spin_lock(&set_config_lock);
1981 	list_del(&req->node);
1982 	spin_unlock(&set_config_lock);
1983 
1984 	if (req->config >= -1)		/* Is req still valid? */
1985 		usb_set_configuration(udev, req->config);
1986 	usb_unlock_device(udev);
1987 	usb_put_dev(udev);
1988 	kfree(req);
1989 }
1990 
1991 /* Cancel pending Set-Config requests for a device whose configuration
1992  * was just changed
1993  */
cancel_async_set_config(struct usb_device * udev)1994 static void cancel_async_set_config(struct usb_device *udev)
1995 {
1996 	struct set_config_request *req;
1997 
1998 	spin_lock(&set_config_lock);
1999 	list_for_each_entry(req, &set_config_list, node) {
2000 		if (req->udev == udev)
2001 			req->config = -999;	/* Mark as cancelled */
2002 	}
2003 	spin_unlock(&set_config_lock);
2004 }
2005 
2006 /**
2007  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2008  * @udev: the device whose configuration is being updated
2009  * @config: the configuration being chosen.
2010  * Context: In process context, must be able to sleep
2011  *
2012  * Device interface drivers are not allowed to change device configurations.
2013  * This is because changing configurations will destroy the interface the
2014  * driver is bound to and create new ones; it would be like a floppy-disk
2015  * driver telling the computer to replace the floppy-disk drive with a
2016  * tape drive!
2017  *
2018  * Still, in certain specialized circumstances the need may arise.  This
2019  * routine gets around the normal restrictions by using a work thread to
2020  * submit the change-config request.
2021  *
2022  * Return: 0 if the request was successfully queued, error code otherwise.
2023  * The caller has no way to know whether the queued request will eventually
2024  * succeed.
2025  */
usb_driver_set_configuration(struct usb_device * udev,int config)2026 int usb_driver_set_configuration(struct usb_device *udev, int config)
2027 {
2028 	struct set_config_request *req;
2029 
2030 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2031 	if (!req)
2032 		return -ENOMEM;
2033 	req->udev = udev;
2034 	req->config = config;
2035 	INIT_WORK(&req->work, driver_set_config_work);
2036 
2037 	spin_lock(&set_config_lock);
2038 	list_add(&req->node, &set_config_list);
2039 	spin_unlock(&set_config_lock);
2040 
2041 	usb_get_dev(udev);
2042 	schedule_work(&req->work);
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2046 
2047 /**
2048  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2049  * @hdr: the place to put the results of the parsing
2050  * @intf: the interface for which parsing is requested
2051  * @buffer: pointer to the extra headers to be parsed
2052  * @buflen: length of the extra headers
2053  *
2054  * This evaluates the extra headers present in CDC devices which
2055  * bind the interfaces for data and control and provide details
2056  * about the capabilities of the device.
2057  *
2058  * Return: number of descriptors parsed or -EINVAL
2059  * if the header is contradictory beyond salvage
2060  */
2061 
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2062 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2063 				struct usb_interface *intf,
2064 				u8 *buffer,
2065 				int buflen)
2066 {
2067 	/* duplicates are ignored */
2068 	struct usb_cdc_union_desc *union_header = NULL;
2069 
2070 	/* duplicates are not tolerated */
2071 	struct usb_cdc_header_desc *header = NULL;
2072 	struct usb_cdc_ether_desc *ether = NULL;
2073 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2074 	struct usb_cdc_mdlm_desc *desc = NULL;
2075 
2076 	unsigned int elength;
2077 	int cnt = 0;
2078 
2079 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2080 	hdr->phonet_magic_present = false;
2081 	while (buflen > 0) {
2082 		elength = buffer[0];
2083 		if (!elength) {
2084 			dev_err(&intf->dev, "skipping garbage byte\n");
2085 			elength = 1;
2086 			goto next_desc;
2087 		}
2088 		if ((buflen < elength) || (elength < 3)) {
2089 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2090 			break;
2091 		}
2092 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2093 			dev_err(&intf->dev, "skipping garbage\n");
2094 			goto next_desc;
2095 		}
2096 
2097 		switch (buffer[2]) {
2098 		case USB_CDC_UNION_TYPE: /* we've found it */
2099 			if (elength < sizeof(struct usb_cdc_union_desc))
2100 				goto next_desc;
2101 			if (union_header) {
2102 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2103 				goto next_desc;
2104 			}
2105 			union_header = (struct usb_cdc_union_desc *)buffer;
2106 			break;
2107 		case USB_CDC_COUNTRY_TYPE:
2108 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2109 				goto next_desc;
2110 			hdr->usb_cdc_country_functional_desc =
2111 				(struct usb_cdc_country_functional_desc *)buffer;
2112 			break;
2113 		case USB_CDC_HEADER_TYPE:
2114 			if (elength != sizeof(struct usb_cdc_header_desc))
2115 				goto next_desc;
2116 			if (header)
2117 				return -EINVAL;
2118 			header = (struct usb_cdc_header_desc *)buffer;
2119 			break;
2120 		case USB_CDC_ACM_TYPE:
2121 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2122 				goto next_desc;
2123 			hdr->usb_cdc_acm_descriptor =
2124 				(struct usb_cdc_acm_descriptor *)buffer;
2125 			break;
2126 		case USB_CDC_ETHERNET_TYPE:
2127 			if (elength != sizeof(struct usb_cdc_ether_desc))
2128 				goto next_desc;
2129 			if (ether)
2130 				return -EINVAL;
2131 			ether = (struct usb_cdc_ether_desc *)buffer;
2132 			break;
2133 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2134 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2135 				goto next_desc;
2136 			hdr->usb_cdc_call_mgmt_descriptor =
2137 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2138 			break;
2139 		case USB_CDC_DMM_TYPE:
2140 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2141 				goto next_desc;
2142 			hdr->usb_cdc_dmm_desc =
2143 				(struct usb_cdc_dmm_desc *)buffer;
2144 			break;
2145 		case USB_CDC_MDLM_TYPE:
2146 			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2147 				goto next_desc;
2148 			if (desc)
2149 				return -EINVAL;
2150 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2151 			break;
2152 		case USB_CDC_MDLM_DETAIL_TYPE:
2153 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2154 				goto next_desc;
2155 			if (detail)
2156 				return -EINVAL;
2157 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2158 			break;
2159 		case USB_CDC_NCM_TYPE:
2160 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2161 				goto next_desc;
2162 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2163 			break;
2164 		case USB_CDC_MBIM_TYPE:
2165 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2166 				goto next_desc;
2167 
2168 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2169 			break;
2170 		case USB_CDC_MBIM_EXTENDED_TYPE:
2171 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2172 				break;
2173 			hdr->usb_cdc_mbim_extended_desc =
2174 				(struct usb_cdc_mbim_extended_desc *)buffer;
2175 			break;
2176 		case CDC_PHONET_MAGIC_NUMBER:
2177 			hdr->phonet_magic_present = true;
2178 			break;
2179 		default:
2180 			/*
2181 			 * there are LOTS more CDC descriptors that
2182 			 * could legitimately be found here.
2183 			 */
2184 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2185 					buffer[2], elength);
2186 			goto next_desc;
2187 		}
2188 		cnt++;
2189 next_desc:
2190 		buflen -= elength;
2191 		buffer += elength;
2192 	}
2193 	hdr->usb_cdc_union_desc = union_header;
2194 	hdr->usb_cdc_header_desc = header;
2195 	hdr->usb_cdc_mdlm_detail_desc = detail;
2196 	hdr->usb_cdc_mdlm_desc = desc;
2197 	hdr->usb_cdc_ether_desc = ether;
2198 	return cnt;
2199 }
2200 
2201 EXPORT_SYMBOL(cdc_parse_cdc_header);
2202