1 /*
2 * message.c - synchronous message handling
3 *
4 * Released under the GPLv2 only.
5 * SPDX-License-Identifier: GPL-2.0
6 */
7
8 #include <linux/pci.h> /* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h> /* for usbcore internals */
21 #include <asm/byteorder.h>
22
23 #include "usb.h"
24
25 static void cancel_async_set_config(struct usb_device *udev);
26
27 struct api_context {
28 struct completion done;
29 int status;
30 };
31
usb_api_blocking_completion(struct urb * urb)32 static void usb_api_blocking_completion(struct urb *urb)
33 {
34 struct api_context *ctx = urb->context;
35
36 ctx->status = urb->status;
37 complete(&ctx->done);
38 }
39
40
41 /*
42 * Starts urb and waits for completion or timeout. Note that this call
43 * is NOT interruptible. Many device driver i/o requests should be
44 * interruptible and therefore these drivers should implement their
45 * own interruptible routines.
46 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48 {
49 struct api_context ctx;
50 unsigned long expire;
51 int retval;
52
53 init_completion(&ctx.done);
54 urb->context = &ctx;
55 urb->actual_length = 0;
56 retval = usb_submit_urb(urb, GFP_NOIO);
57 if (unlikely(retval))
58 goto out;
59
60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 usb_kill_urb(urb);
63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64
65 dev_dbg(&urb->dev->dev,
66 "%s timed out on ep%d%s len=%u/%u\n",
67 current->comm,
68 usb_endpoint_num(&urb->ep->desc),
69 usb_urb_dir_in(urb) ? "in" : "out",
70 urb->actual_length,
71 urb->transfer_buffer_length);
72 } else
73 retval = ctx.status;
74 out:
75 if (actual_length)
76 *actual_length = urb->actual_length;
77
78 usb_free_urb(urb);
79 return retval;
80 }
81
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 unsigned int pipe,
86 struct usb_ctrlrequest *cmd,
87 void *data, int len, int timeout)
88 {
89 struct urb *urb;
90 int retv;
91 int length;
92
93 urb = usb_alloc_urb(0, GFP_NOIO);
94 if (!urb)
95 return -ENOMEM;
96
97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 len, usb_api_blocking_completion, NULL);
99
100 retv = usb_start_wait_urb(urb, timeout, &length);
101 if (retv < 0)
102 return retv;
103 else
104 return length;
105 }
106
107 /**
108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
109 * @dev: pointer to the usb device to send the message to
110 * @pipe: endpoint "pipe" to send the message to
111 * @request: USB message request value
112 * @requesttype: USB message request type value
113 * @value: USB message value
114 * @index: USB message index value
115 * @data: pointer to the data to send
116 * @size: length in bytes of the data to send
117 * @timeout: time in msecs to wait for the message to complete before timing
118 * out (if 0 the wait is forever)
119 *
120 * Context: !in_interrupt ()
121 *
122 * This function sends a simple control message to a specified endpoint and
123 * waits for the message to complete, or timeout.
124 *
125 * Don't use this function from within an interrupt context. If you need
126 * an asynchronous message, or need to send a message from within interrupt
127 * context, use usb_submit_urb(). If a thread in your driver uses this call,
128 * make sure your disconnect() method can wait for it to complete. Since you
129 * don't have a handle on the URB used, you can't cancel the request.
130 *
131 * Return: If successful, the number of bytes transferred. Otherwise, a negative
132 * error number.
133 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
135 __u8 requesttype, __u16 value, __u16 index, void *data,
136 __u16 size, int timeout)
137 {
138 struct usb_ctrlrequest *dr;
139 int ret;
140
141 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
142 if (!dr)
143 return -ENOMEM;
144
145 dr->bRequestType = requesttype;
146 dr->bRequest = request;
147 dr->wValue = cpu_to_le16(value);
148 dr->wIndex = cpu_to_le16(index);
149 dr->wLength = cpu_to_le16(size);
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 /* Linger a bit, prior to the next control message. */
154 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
155 msleep(200);
156
157 kfree(dr);
158
159 return ret;
160 }
161 EXPORT_SYMBOL_GPL(usb_control_msg);
162
163 /**
164 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
165 * @usb_dev: pointer to the usb device to send the message to
166 * @pipe: endpoint "pipe" to send the message to
167 * @data: pointer to the data to send
168 * @len: length in bytes of the data to send
169 * @actual_length: pointer to a location to put the actual length transferred
170 * in bytes
171 * @timeout: time in msecs to wait for the message to complete before
172 * timing out (if 0 the wait is forever)
173 *
174 * Context: !in_interrupt ()
175 *
176 * This function sends a simple interrupt message to a specified endpoint and
177 * waits for the message to complete, or timeout.
178 *
179 * Don't use this function from within an interrupt context. If you need
180 * an asynchronous message, or need to send a message from within interrupt
181 * context, use usb_submit_urb() If a thread in your driver uses this call,
182 * make sure your disconnect() method can wait for it to complete. Since you
183 * don't have a handle on the URB used, you can't cancel the request.
184 *
185 * Return:
186 * If successful, 0. Otherwise a negative error number. The number of actual
187 * bytes transferred will be stored in the @actual_length parameter.
188 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)189 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
190 void *data, int len, int *actual_length, int timeout)
191 {
192 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
193 }
194 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
195
196 /**
197 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
198 * @usb_dev: pointer to the usb device to send the message to
199 * @pipe: endpoint "pipe" to send the message to
200 * @data: pointer to the data to send
201 * @len: length in bytes of the data to send
202 * @actual_length: pointer to a location to put the actual length transferred
203 * in bytes
204 * @timeout: time in msecs to wait for the message to complete before
205 * timing out (if 0 the wait is forever)
206 *
207 * Context: !in_interrupt ()
208 *
209 * This function sends a simple bulk message to a specified endpoint
210 * and waits for the message to complete, or timeout.
211 *
212 * Don't use this function from within an interrupt context. If you need
213 * an asynchronous message, or need to send a message from within interrupt
214 * context, use usb_submit_urb() If a thread in your driver uses this call,
215 * make sure your disconnect() method can wait for it to complete. Since you
216 * don't have a handle on the URB used, you can't cancel the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 *
223 * Return:
224 * If successful, 0. Otherwise a negative error number. The number of actual
225 * bytes transferred will be stored in the @actual_length parameter.
226 *
227 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)228 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
229 void *data, int len, int *actual_length, int timeout)
230 {
231 struct urb *urb;
232 struct usb_host_endpoint *ep;
233
234 ep = usb_pipe_endpoint(usb_dev, pipe);
235 if (!ep || len < 0)
236 return -EINVAL;
237
238 urb = usb_alloc_urb(0, GFP_KERNEL);
239 if (!urb)
240 return -ENOMEM;
241
242 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
243 USB_ENDPOINT_XFER_INT) {
244 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
245 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL,
247 ep->desc.bInterval);
248 } else
249 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
250 usb_api_blocking_completion, NULL);
251
252 return usb_start_wait_urb(urb, timeout, actual_length);
253 }
254 EXPORT_SYMBOL_GPL(usb_bulk_msg);
255
256 /*-------------------------------------------------------------------*/
257
sg_clean(struct usb_sg_request * io)258 static void sg_clean(struct usb_sg_request *io)
259 {
260 if (io->urbs) {
261 while (io->entries--)
262 usb_free_urb(io->urbs[io->entries]);
263 kfree(io->urbs);
264 io->urbs = NULL;
265 }
266 io->dev = NULL;
267 }
268
sg_complete(struct urb * urb)269 static void sg_complete(struct urb *urb)
270 {
271 struct usb_sg_request *io = urb->context;
272 int status = urb->status;
273
274 spin_lock(&io->lock);
275
276 /* In 2.5 we require hcds' endpoint queues not to progress after fault
277 * reports, until the completion callback (this!) returns. That lets
278 * device driver code (like this routine) unlink queued urbs first,
279 * if it needs to, since the HC won't work on them at all. So it's
280 * not possible for page N+1 to overwrite page N, and so on.
281 *
282 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
283 * complete before the HCD can get requests away from hardware,
284 * though never during cleanup after a hard fault.
285 */
286 if (io->status
287 && (io->status != -ECONNRESET
288 || status != -ECONNRESET)
289 && urb->actual_length) {
290 dev_err(io->dev->bus->controller,
291 "dev %s ep%d%s scatterlist error %d/%d\n",
292 io->dev->devpath,
293 usb_endpoint_num(&urb->ep->desc),
294 usb_urb_dir_in(urb) ? "in" : "out",
295 status, io->status);
296 /* BUG (); */
297 }
298
299 if (io->status == 0 && status && status != -ECONNRESET) {
300 int i, found, retval;
301
302 io->status = status;
303
304 /* the previous urbs, and this one, completed already.
305 * unlink pending urbs so they won't rx/tx bad data.
306 * careful: unlink can sometimes be synchronous...
307 */
308 spin_unlock(&io->lock);
309 for (i = 0, found = 0; i < io->entries; i++) {
310 if (!io->urbs[i])
311 continue;
312 if (found) {
313 usb_block_urb(io->urbs[i]);
314 retval = usb_unlink_urb(io->urbs[i]);
315 if (retval != -EINPROGRESS &&
316 retval != -ENODEV &&
317 retval != -EBUSY &&
318 retval != -EIDRM)
319 dev_err(&io->dev->dev,
320 "%s, unlink --> %d\n",
321 __func__, retval);
322 } else if (urb == io->urbs[i])
323 found = 1;
324 }
325 spin_lock(&io->lock);
326 }
327
328 /* on the last completion, signal usb_sg_wait() */
329 io->bytes += urb->actual_length;
330 io->count--;
331 if (!io->count)
332 complete(&io->complete);
333
334 spin_unlock(&io->lock);
335 }
336
337
338 /**
339 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
340 * @io: request block being initialized. until usb_sg_wait() returns,
341 * treat this as a pointer to an opaque block of memory,
342 * @dev: the usb device that will send or receive the data
343 * @pipe: endpoint "pipe" used to transfer the data
344 * @period: polling rate for interrupt endpoints, in frames or
345 * (for high speed endpoints) microframes; ignored for bulk
346 * @sg: scatterlist entries
347 * @nents: how many entries in the scatterlist
348 * @length: how many bytes to send from the scatterlist, or zero to
349 * send every byte identified in the list.
350 * @mem_flags: SLAB_* flags affecting memory allocations in this call
351 *
352 * This initializes a scatter/gather request, allocating resources such as
353 * I/O mappings and urb memory (except maybe memory used by USB controller
354 * drivers).
355 *
356 * The request must be issued using usb_sg_wait(), which waits for the I/O to
357 * complete (or to be canceled) and then cleans up all resources allocated by
358 * usb_sg_init().
359 *
360 * The request may be canceled with usb_sg_cancel(), either before or after
361 * usb_sg_wait() is called.
362 *
363 * Return: Zero for success, else a negative errno value.
364 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)365 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
366 unsigned pipe, unsigned period, struct scatterlist *sg,
367 int nents, size_t length, gfp_t mem_flags)
368 {
369 int i;
370 int urb_flags;
371 int use_sg;
372
373 if (!io || !dev || !sg
374 || usb_pipecontrol(pipe)
375 || usb_pipeisoc(pipe)
376 || nents <= 0)
377 return -EINVAL;
378
379 spin_lock_init(&io->lock);
380 io->dev = dev;
381 io->pipe = pipe;
382
383 if (dev->bus->sg_tablesize > 0) {
384 use_sg = true;
385 io->entries = 1;
386 } else {
387 use_sg = false;
388 io->entries = nents;
389 }
390
391 /* initialize all the urbs we'll use */
392 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
393 if (!io->urbs)
394 goto nomem;
395
396 urb_flags = URB_NO_INTERRUPT;
397 if (usb_pipein(pipe))
398 urb_flags |= URB_SHORT_NOT_OK;
399
400 for_each_sg(sg, sg, io->entries, i) {
401 struct urb *urb;
402 unsigned len;
403
404 urb = usb_alloc_urb(0, mem_flags);
405 if (!urb) {
406 io->entries = i;
407 goto nomem;
408 }
409 io->urbs[i] = urb;
410
411 urb->dev = NULL;
412 urb->pipe = pipe;
413 urb->interval = period;
414 urb->transfer_flags = urb_flags;
415 urb->complete = sg_complete;
416 urb->context = io;
417 urb->sg = sg;
418
419 if (use_sg) {
420 /* There is no single transfer buffer */
421 urb->transfer_buffer = NULL;
422 urb->num_sgs = nents;
423
424 /* A length of zero means transfer the whole sg list */
425 len = length;
426 if (len == 0) {
427 struct scatterlist *sg2;
428 int j;
429
430 for_each_sg(sg, sg2, nents, j)
431 len += sg2->length;
432 }
433 } else {
434 /*
435 * Some systems can't use DMA; they use PIO instead.
436 * For their sakes, transfer_buffer is set whenever
437 * possible.
438 */
439 if (!PageHighMem(sg_page(sg)))
440 urb->transfer_buffer = sg_virt(sg);
441 else
442 urb->transfer_buffer = NULL;
443
444 len = sg->length;
445 if (length) {
446 len = min_t(size_t, len, length);
447 length -= len;
448 if (length == 0)
449 io->entries = i + 1;
450 }
451 }
452 urb->transfer_buffer_length = len;
453 }
454 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
455
456 /* transaction state */
457 io->count = io->entries;
458 io->status = 0;
459 io->bytes = 0;
460 init_completion(&io->complete);
461 return 0;
462
463 nomem:
464 sg_clean(io);
465 return -ENOMEM;
466 }
467 EXPORT_SYMBOL_GPL(usb_sg_init);
468
469 /**
470 * usb_sg_wait - synchronously execute scatter/gather request
471 * @io: request block handle, as initialized with usb_sg_init().
472 * some fields become accessible when this call returns.
473 * Context: !in_interrupt ()
474 *
475 * This function blocks until the specified I/O operation completes. It
476 * leverages the grouping of the related I/O requests to get good transfer
477 * rates, by queueing the requests. At higher speeds, such queuing can
478 * significantly improve USB throughput.
479 *
480 * There are three kinds of completion for this function.
481 *
482 * (1) success, where io->status is zero. The number of io->bytes
483 * transferred is as requested.
484 * (2) error, where io->status is a negative errno value. The number
485 * of io->bytes transferred before the error is usually less
486 * than requested, and can be nonzero.
487 * (3) cancellation, a type of error with status -ECONNRESET that
488 * is initiated by usb_sg_cancel().
489 *
490 * When this function returns, all memory allocated through usb_sg_init() or
491 * this call will have been freed. The request block parameter may still be
492 * passed to usb_sg_cancel(), or it may be freed. It could also be
493 * reinitialized and then reused.
494 *
495 * Data Transfer Rates:
496 *
497 * Bulk transfers are valid for full or high speed endpoints.
498 * The best full speed data rate is 19 packets of 64 bytes each
499 * per frame, or 1216 bytes per millisecond.
500 * The best high speed data rate is 13 packets of 512 bytes each
501 * per microframe, or 52 KBytes per millisecond.
502 *
503 * The reason to use interrupt transfers through this API would most likely
504 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
505 * could be transferred. That capability is less useful for low or full
506 * speed interrupt endpoints, which allow at most one packet per millisecond,
507 * of at most 8 or 64 bytes (respectively).
508 *
509 * It is not necessary to call this function to reserve bandwidth for devices
510 * under an xHCI host controller, as the bandwidth is reserved when the
511 * configuration or interface alt setting is selected.
512 */
usb_sg_wait(struct usb_sg_request * io)513 void usb_sg_wait(struct usb_sg_request *io)
514 {
515 int i;
516 int entries = io->entries;
517
518 /* queue the urbs. */
519 spin_lock_irq(&io->lock);
520 i = 0;
521 while (i < entries && !io->status) {
522 int retval;
523
524 io->urbs[i]->dev = io->dev;
525 spin_unlock_irq(&io->lock);
526
527 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
528
529 switch (retval) {
530 /* maybe we retrying will recover */
531 case -ENXIO: /* hc didn't queue this one */
532 case -EAGAIN:
533 case -ENOMEM:
534 retval = 0;
535 yield();
536 break;
537
538 /* no error? continue immediately.
539 *
540 * NOTE: to work better with UHCI (4K I/O buffer may
541 * need 3K of TDs) it may be good to limit how many
542 * URBs are queued at once; N milliseconds?
543 */
544 case 0:
545 ++i;
546 cpu_relax();
547 break;
548
549 /* fail any uncompleted urbs */
550 default:
551 io->urbs[i]->status = retval;
552 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
553 __func__, retval);
554 usb_sg_cancel(io);
555 }
556 spin_lock_irq(&io->lock);
557 if (retval && (io->status == 0 || io->status == -ECONNRESET))
558 io->status = retval;
559 }
560 io->count -= entries - i;
561 if (io->count == 0)
562 complete(&io->complete);
563 spin_unlock_irq(&io->lock);
564
565 /* OK, yes, this could be packaged as non-blocking.
566 * So could the submit loop above ... but it's easier to
567 * solve neither problem than to solve both!
568 */
569 wait_for_completion(&io->complete);
570
571 sg_clean(io);
572 }
573 EXPORT_SYMBOL_GPL(usb_sg_wait);
574
575 /**
576 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
577 * @io: request block, initialized with usb_sg_init()
578 *
579 * This stops a request after it has been started by usb_sg_wait().
580 * It can also prevents one initialized by usb_sg_init() from starting,
581 * so that call just frees resources allocated to the request.
582 */
usb_sg_cancel(struct usb_sg_request * io)583 void usb_sg_cancel(struct usb_sg_request *io)
584 {
585 unsigned long flags;
586 int i, retval;
587
588 spin_lock_irqsave(&io->lock, flags);
589 if (io->status) {
590 spin_unlock_irqrestore(&io->lock, flags);
591 return;
592 }
593 /* shut everything down */
594 io->status = -ECONNRESET;
595 spin_unlock_irqrestore(&io->lock, flags);
596
597 for (i = io->entries - 1; i >= 0; --i) {
598 usb_block_urb(io->urbs[i]);
599
600 retval = usb_unlink_urb(io->urbs[i]);
601 if (retval != -EINPROGRESS
602 && retval != -ENODEV
603 && retval != -EBUSY
604 && retval != -EIDRM)
605 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
606 __func__, retval);
607 }
608 }
609 EXPORT_SYMBOL_GPL(usb_sg_cancel);
610
611 /*-------------------------------------------------------------------*/
612
613 /**
614 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
615 * @dev: the device whose descriptor is being retrieved
616 * @type: the descriptor type (USB_DT_*)
617 * @index: the number of the descriptor
618 * @buf: where to put the descriptor
619 * @size: how big is "buf"?
620 * Context: !in_interrupt ()
621 *
622 * Gets a USB descriptor. Convenience functions exist to simplify
623 * getting some types of descriptors. Use
624 * usb_get_string() or usb_string() for USB_DT_STRING.
625 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
626 * are part of the device structure.
627 * In addition to a number of USB-standard descriptors, some
628 * devices also use class-specific or vendor-specific descriptors.
629 *
630 * This call is synchronous, and may not be used in an interrupt context.
631 *
632 * Return: The number of bytes received on success, or else the status code
633 * returned by the underlying usb_control_msg() call.
634 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)635 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
636 unsigned char index, void *buf, int size)
637 {
638 int i;
639 int result;
640
641 memset(buf, 0, size); /* Make sure we parse really received data */
642
643 for (i = 0; i < 3; ++i) {
644 /* retry on length 0 or error; some devices are flakey */
645 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
646 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
647 (type << 8) + index, 0, buf, size,
648 USB_CTRL_GET_TIMEOUT);
649 if (result <= 0 && result != -ETIMEDOUT)
650 continue;
651 if (result > 1 && ((u8 *)buf)[1] != type) {
652 result = -ENODATA;
653 continue;
654 }
655 break;
656 }
657 return result;
658 }
659 EXPORT_SYMBOL_GPL(usb_get_descriptor);
660
661 /**
662 * usb_get_string - gets a string descriptor
663 * @dev: the device whose string descriptor is being retrieved
664 * @langid: code for language chosen (from string descriptor zero)
665 * @index: the number of the descriptor
666 * @buf: where to put the string
667 * @size: how big is "buf"?
668 * Context: !in_interrupt ()
669 *
670 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
671 * in little-endian byte order).
672 * The usb_string() function will often be a convenient way to turn
673 * these strings into kernel-printable form.
674 *
675 * Strings may be referenced in device, configuration, interface, or other
676 * descriptors, and could also be used in vendor-specific ways.
677 *
678 * This call is synchronous, and may not be used in an interrupt context.
679 *
680 * Return: The number of bytes received on success, or else the status code
681 * returned by the underlying usb_control_msg() call.
682 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)683 static int usb_get_string(struct usb_device *dev, unsigned short langid,
684 unsigned char index, void *buf, int size)
685 {
686 int i;
687 int result;
688
689 for (i = 0; i < 3; ++i) {
690 /* retry on length 0 or stall; some devices are flakey */
691 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
692 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
693 (USB_DT_STRING << 8) + index, langid, buf, size,
694 USB_CTRL_GET_TIMEOUT);
695 if (result == 0 || result == -EPIPE)
696 continue;
697 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
698 result = -ENODATA;
699 continue;
700 }
701 break;
702 }
703 return result;
704 }
705
usb_try_string_workarounds(unsigned char * buf,int * length)706 static void usb_try_string_workarounds(unsigned char *buf, int *length)
707 {
708 int newlength, oldlength = *length;
709
710 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
711 if (!isprint(buf[newlength]) || buf[newlength + 1])
712 break;
713
714 if (newlength > 2) {
715 buf[0] = newlength;
716 *length = newlength;
717 }
718 }
719
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)720 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
721 unsigned int index, unsigned char *buf)
722 {
723 int rc;
724
725 /* Try to read the string descriptor by asking for the maximum
726 * possible number of bytes */
727 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
728 rc = -EIO;
729 else
730 rc = usb_get_string(dev, langid, index, buf, 255);
731
732 /* If that failed try to read the descriptor length, then
733 * ask for just that many bytes */
734 if (rc < 2) {
735 rc = usb_get_string(dev, langid, index, buf, 2);
736 if (rc == 2)
737 rc = usb_get_string(dev, langid, index, buf, buf[0]);
738 }
739
740 if (rc >= 2) {
741 if (!buf[0] && !buf[1])
742 usb_try_string_workarounds(buf, &rc);
743
744 /* There might be extra junk at the end of the descriptor */
745 if (buf[0] < rc)
746 rc = buf[0];
747
748 rc = rc - (rc & 1); /* force a multiple of two */
749 }
750
751 if (rc < 2)
752 rc = (rc < 0 ? rc : -EINVAL);
753
754 return rc;
755 }
756
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)757 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
758 {
759 int err;
760
761 if (dev->have_langid)
762 return 0;
763
764 if (dev->string_langid < 0)
765 return -EPIPE;
766
767 err = usb_string_sub(dev, 0, 0, tbuf);
768
769 /* If the string was reported but is malformed, default to english
770 * (0x0409) */
771 if (err == -ENODATA || (err > 0 && err < 4)) {
772 dev->string_langid = 0x0409;
773 dev->have_langid = 1;
774 dev_err(&dev->dev,
775 "language id specifier not provided by device, defaulting to English\n");
776 return 0;
777 }
778
779 /* In case of all other errors, we assume the device is not able to
780 * deal with strings at all. Set string_langid to -1 in order to
781 * prevent any string to be retrieved from the device */
782 if (err < 0) {
783 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
784 err);
785 dev->string_langid = -1;
786 return -EPIPE;
787 }
788
789 /* always use the first langid listed */
790 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
791 dev->have_langid = 1;
792 dev_dbg(&dev->dev, "default language 0x%04x\n",
793 dev->string_langid);
794 return 0;
795 }
796
797 /**
798 * usb_string - returns UTF-8 version of a string descriptor
799 * @dev: the device whose string descriptor is being retrieved
800 * @index: the number of the descriptor
801 * @buf: where to put the string
802 * @size: how big is "buf"?
803 * Context: !in_interrupt ()
804 *
805 * This converts the UTF-16LE encoded strings returned by devices, from
806 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
807 * that are more usable in most kernel contexts. Note that this function
808 * chooses strings in the first language supported by the device.
809 *
810 * This call is synchronous, and may not be used in an interrupt context.
811 *
812 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
813 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)814 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
815 {
816 unsigned char *tbuf;
817 int err;
818
819 if (dev->state == USB_STATE_SUSPENDED)
820 return -EHOSTUNREACH;
821 if (size <= 0 || !buf)
822 return -EINVAL;
823 buf[0] = 0;
824 if (index <= 0 || index >= 256)
825 return -EINVAL;
826 tbuf = kmalloc(256, GFP_NOIO);
827 if (!tbuf)
828 return -ENOMEM;
829
830 err = usb_get_langid(dev, tbuf);
831 if (err < 0)
832 goto errout;
833
834 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
835 if (err < 0)
836 goto errout;
837
838 size--; /* leave room for trailing NULL char in output buffer */
839 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
840 UTF16_LITTLE_ENDIAN, buf, size);
841 buf[err] = 0;
842
843 if (tbuf[1] != USB_DT_STRING)
844 dev_dbg(&dev->dev,
845 "wrong descriptor type %02x for string %d (\"%s\")\n",
846 tbuf[1], index, buf);
847
848 errout:
849 kfree(tbuf);
850 return err;
851 }
852 EXPORT_SYMBOL_GPL(usb_string);
853
854 /* one UTF-8-encoded 16-bit character has at most three bytes */
855 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
856
857 /**
858 * usb_cache_string - read a string descriptor and cache it for later use
859 * @udev: the device whose string descriptor is being read
860 * @index: the descriptor index
861 *
862 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
863 * or %NULL if the index is 0 or the string could not be read.
864 */
usb_cache_string(struct usb_device * udev,int index)865 char *usb_cache_string(struct usb_device *udev, int index)
866 {
867 char *buf;
868 char *smallbuf = NULL;
869 int len;
870
871 if (index <= 0)
872 return NULL;
873
874 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
875 if (buf) {
876 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
877 if (len > 0) {
878 smallbuf = kmalloc(++len, GFP_NOIO);
879 if (!smallbuf)
880 return buf;
881 memcpy(smallbuf, buf, len);
882 }
883 kfree(buf);
884 }
885 return smallbuf;
886 }
887
888 /*
889 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
890 * @dev: the device whose device descriptor is being updated
891 * @size: how much of the descriptor to read
892 * Context: !in_interrupt ()
893 *
894 * Updates the copy of the device descriptor stored in the device structure,
895 * which dedicates space for this purpose.
896 *
897 * Not exported, only for use by the core. If drivers really want to read
898 * the device descriptor directly, they can call usb_get_descriptor() with
899 * type = USB_DT_DEVICE and index = 0.
900 *
901 * This call is synchronous, and may not be used in an interrupt context.
902 *
903 * Return: The number of bytes received on success, or else the status code
904 * returned by the underlying usb_control_msg() call.
905 */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)906 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
907 {
908 struct usb_device_descriptor *desc;
909 int ret;
910
911 if (size > sizeof(*desc))
912 return -EINVAL;
913 desc = kmalloc(sizeof(*desc), GFP_NOIO);
914 if (!desc)
915 return -ENOMEM;
916
917 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
918 if (ret >= 0)
919 memcpy(&dev->descriptor, desc, size);
920 kfree(desc);
921 return ret;
922 }
923
924 /**
925 * usb_get_status - issues a GET_STATUS call
926 * @dev: the device whose status is being checked
927 * @type: USB_RECIP_*; for device, interface, or endpoint
928 * @target: zero (for device), else interface or endpoint number
929 * @data: pointer to two bytes of bitmap data
930 * Context: !in_interrupt ()
931 *
932 * Returns device, interface, or endpoint status. Normally only of
933 * interest to see if the device is self powered, or has enabled the
934 * remote wakeup facility; or whether a bulk or interrupt endpoint
935 * is halted ("stalled").
936 *
937 * Bits in these status bitmaps are set using the SET_FEATURE request,
938 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
939 * function should be used to clear halt ("stall") status.
940 *
941 * This call is synchronous, and may not be used in an interrupt context.
942 *
943 * Returns 0 and the status value in *@data (in host byte order) on success,
944 * or else the status code from the underlying usb_control_msg() call.
945 */
usb_get_status(struct usb_device * dev,int type,int target,void * data)946 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
947 {
948 int ret;
949 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
950
951 if (!status)
952 return -ENOMEM;
953
954 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
955 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
956 sizeof(*status), USB_CTRL_GET_TIMEOUT);
957
958 if (ret == 2) {
959 *(u16 *) data = le16_to_cpu(*status);
960 ret = 0;
961 } else if (ret >= 0) {
962 ret = -EIO;
963 }
964 kfree(status);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(usb_get_status);
968
969 /**
970 * usb_clear_halt - tells device to clear endpoint halt/stall condition
971 * @dev: device whose endpoint is halted
972 * @pipe: endpoint "pipe" being cleared
973 * Context: !in_interrupt ()
974 *
975 * This is used to clear halt conditions for bulk and interrupt endpoints,
976 * as reported by URB completion status. Endpoints that are halted are
977 * sometimes referred to as being "stalled". Such endpoints are unable
978 * to transmit or receive data until the halt status is cleared. Any URBs
979 * queued for such an endpoint should normally be unlinked by the driver
980 * before clearing the halt condition, as described in sections 5.7.5
981 * and 5.8.5 of the USB 2.0 spec.
982 *
983 * Note that control and isochronous endpoints don't halt, although control
984 * endpoints report "protocol stall" (for unsupported requests) using the
985 * same status code used to report a true stall.
986 *
987 * This call is synchronous, and may not be used in an interrupt context.
988 *
989 * Return: Zero on success, or else the status code returned by the
990 * underlying usb_control_msg() call.
991 */
usb_clear_halt(struct usb_device * dev,int pipe)992 int usb_clear_halt(struct usb_device *dev, int pipe)
993 {
994 int result;
995 int endp = usb_pipeendpoint(pipe);
996
997 if (usb_pipein(pipe))
998 endp |= USB_DIR_IN;
999
1000 /* we don't care if it wasn't halted first. in fact some devices
1001 * (like some ibmcam model 1 units) seem to expect hosts to make
1002 * this request for iso endpoints, which can't halt!
1003 */
1004 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1005 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1006 USB_ENDPOINT_HALT, endp, NULL, 0,
1007 USB_CTRL_SET_TIMEOUT);
1008
1009 /* don't un-halt or force to DATA0 except on success */
1010 if (result < 0)
1011 return result;
1012
1013 /* NOTE: seems like Microsoft and Apple don't bother verifying
1014 * the clear "took", so some devices could lock up if you check...
1015 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1016 *
1017 * NOTE: make sure the logic here doesn't diverge much from
1018 * the copy in usb-storage, for as long as we need two copies.
1019 */
1020
1021 usb_reset_endpoint(dev, endp);
1022
1023 return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_clear_halt);
1026
create_intf_ep_devs(struct usb_interface * intf)1027 static int create_intf_ep_devs(struct usb_interface *intf)
1028 {
1029 struct usb_device *udev = interface_to_usbdev(intf);
1030 struct usb_host_interface *alt = intf->cur_altsetting;
1031 int i;
1032
1033 if (intf->ep_devs_created || intf->unregistering)
1034 return 0;
1035
1036 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1037 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1038 intf->ep_devs_created = 1;
1039 return 0;
1040 }
1041
remove_intf_ep_devs(struct usb_interface * intf)1042 static void remove_intf_ep_devs(struct usb_interface *intf)
1043 {
1044 struct usb_host_interface *alt = intf->cur_altsetting;
1045 int i;
1046
1047 if (!intf->ep_devs_created)
1048 return;
1049
1050 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1051 usb_remove_ep_devs(&alt->endpoint[i]);
1052 intf->ep_devs_created = 0;
1053 }
1054
1055 /**
1056 * usb_disable_endpoint -- Disable an endpoint by address
1057 * @dev: the device whose endpoint is being disabled
1058 * @epaddr: the endpoint's address. Endpoint number for output,
1059 * endpoint number + USB_DIR_IN for input
1060 * @reset_hardware: flag to erase any endpoint state stored in the
1061 * controller hardware
1062 *
1063 * Disables the endpoint for URB submission and nukes all pending URBs.
1064 * If @reset_hardware is set then also deallocates hcd/hardware state
1065 * for the endpoint.
1066 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1067 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1068 bool reset_hardware)
1069 {
1070 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1071 struct usb_host_endpoint *ep;
1072
1073 if (!dev)
1074 return;
1075
1076 if (usb_endpoint_out(epaddr)) {
1077 ep = dev->ep_out[epnum];
1078 if (reset_hardware)
1079 dev->ep_out[epnum] = NULL;
1080 } else {
1081 ep = dev->ep_in[epnum];
1082 if (reset_hardware)
1083 dev->ep_in[epnum] = NULL;
1084 }
1085 if (ep) {
1086 ep->enabled = 0;
1087 usb_hcd_flush_endpoint(dev, ep);
1088 if (reset_hardware)
1089 usb_hcd_disable_endpoint(dev, ep);
1090 }
1091 }
1092
1093 /**
1094 * usb_reset_endpoint - Reset an endpoint's state.
1095 * @dev: the device whose endpoint is to be reset
1096 * @epaddr: the endpoint's address. Endpoint number for output,
1097 * endpoint number + USB_DIR_IN for input
1098 *
1099 * Resets any host-side endpoint state such as the toggle bit,
1100 * sequence number or current window.
1101 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1102 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1103 {
1104 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1105 struct usb_host_endpoint *ep;
1106
1107 if (usb_endpoint_out(epaddr))
1108 ep = dev->ep_out[epnum];
1109 else
1110 ep = dev->ep_in[epnum];
1111 if (ep)
1112 usb_hcd_reset_endpoint(dev, ep);
1113 }
1114 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1115
1116
1117 /**
1118 * usb_disable_interface -- Disable all endpoints for an interface
1119 * @dev: the device whose interface is being disabled
1120 * @intf: pointer to the interface descriptor
1121 * @reset_hardware: flag to erase any endpoint state stored in the
1122 * controller hardware
1123 *
1124 * Disables all the endpoints for the interface's current altsetting.
1125 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1126 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1127 bool reset_hardware)
1128 {
1129 struct usb_host_interface *alt = intf->cur_altsetting;
1130 int i;
1131
1132 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1133 usb_disable_endpoint(dev,
1134 alt->endpoint[i].desc.bEndpointAddress,
1135 reset_hardware);
1136 }
1137 }
1138
1139 /**
1140 * usb_disable_device - Disable all the endpoints for a USB device
1141 * @dev: the device whose endpoints are being disabled
1142 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1143 *
1144 * Disables all the device's endpoints, potentially including endpoint 0.
1145 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1146 * pending urbs) and usbcore state for the interfaces, so that usbcore
1147 * must usb_set_configuration() before any interfaces could be used.
1148 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1149 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1150 {
1151 int i;
1152 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1153
1154 /* getting rid of interfaces will disconnect
1155 * any drivers bound to them (a key side effect)
1156 */
1157 if (dev->actconfig) {
1158 /*
1159 * FIXME: In order to avoid self-deadlock involving the
1160 * bandwidth_mutex, we have to mark all the interfaces
1161 * before unregistering any of them.
1162 */
1163 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1164 dev->actconfig->interface[i]->unregistering = 1;
1165
1166 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1167 struct usb_interface *interface;
1168
1169 /* remove this interface if it has been registered */
1170 interface = dev->actconfig->interface[i];
1171 if (!device_is_registered(&interface->dev))
1172 continue;
1173 dev_dbg(&dev->dev, "unregistering interface %s\n",
1174 dev_name(&interface->dev));
1175 remove_intf_ep_devs(interface);
1176 device_del(&interface->dev);
1177 }
1178
1179 /* Now that the interfaces are unbound, nobody should
1180 * try to access them.
1181 */
1182 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1183 put_device(&dev->actconfig->interface[i]->dev);
1184 dev->actconfig->interface[i] = NULL;
1185 }
1186
1187 usb_disable_usb2_hardware_lpm(dev);
1188 usb_unlocked_disable_lpm(dev);
1189 usb_disable_ltm(dev);
1190
1191 dev->actconfig = NULL;
1192 if (dev->state == USB_STATE_CONFIGURED)
1193 usb_set_device_state(dev, USB_STATE_ADDRESS);
1194 }
1195
1196 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1197 skip_ep0 ? "non-ep0" : "all");
1198 if (hcd->driver->check_bandwidth) {
1199 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1200 for (i = skip_ep0; i < 16; ++i) {
1201 usb_disable_endpoint(dev, i, false);
1202 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1203 }
1204 /* Remove endpoints from the host controller internal state */
1205 mutex_lock(hcd->bandwidth_mutex);
1206 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1207 mutex_unlock(hcd->bandwidth_mutex);
1208 /* Second pass: remove endpoint pointers */
1209 }
1210 for (i = skip_ep0; i < 16; ++i) {
1211 usb_disable_endpoint(dev, i, true);
1212 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1213 }
1214 }
1215
1216 /**
1217 * usb_enable_endpoint - Enable an endpoint for USB communications
1218 * @dev: the device whose interface is being enabled
1219 * @ep: the endpoint
1220 * @reset_ep: flag to reset the endpoint state
1221 *
1222 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1223 * For control endpoints, both the input and output sides are handled.
1224 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1225 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1226 bool reset_ep)
1227 {
1228 int epnum = usb_endpoint_num(&ep->desc);
1229 int is_out = usb_endpoint_dir_out(&ep->desc);
1230 int is_control = usb_endpoint_xfer_control(&ep->desc);
1231
1232 if (reset_ep)
1233 usb_hcd_reset_endpoint(dev, ep);
1234 if (is_out || is_control)
1235 dev->ep_out[epnum] = ep;
1236 if (!is_out || is_control)
1237 dev->ep_in[epnum] = ep;
1238 ep->enabled = 1;
1239 }
1240
1241 /**
1242 * usb_enable_interface - Enable all the endpoints for an interface
1243 * @dev: the device whose interface is being enabled
1244 * @intf: pointer to the interface descriptor
1245 * @reset_eps: flag to reset the endpoints' state
1246 *
1247 * Enables all the endpoints for the interface's current altsetting.
1248 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1249 void usb_enable_interface(struct usb_device *dev,
1250 struct usb_interface *intf, bool reset_eps)
1251 {
1252 struct usb_host_interface *alt = intf->cur_altsetting;
1253 int i;
1254
1255 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1256 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1257 }
1258
1259 /**
1260 * usb_set_interface - Makes a particular alternate setting be current
1261 * @dev: the device whose interface is being updated
1262 * @interface: the interface being updated
1263 * @alternate: the setting being chosen.
1264 * Context: !in_interrupt ()
1265 *
1266 * This is used to enable data transfers on interfaces that may not
1267 * be enabled by default. Not all devices support such configurability.
1268 * Only the driver bound to an interface may change its setting.
1269 *
1270 * Within any given configuration, each interface may have several
1271 * alternative settings. These are often used to control levels of
1272 * bandwidth consumption. For example, the default setting for a high
1273 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1274 * while interrupt transfers of up to 3KBytes per microframe are legal.
1275 * Also, isochronous endpoints may never be part of an
1276 * interface's default setting. To access such bandwidth, alternate
1277 * interface settings must be made current.
1278 *
1279 * Note that in the Linux USB subsystem, bandwidth associated with
1280 * an endpoint in a given alternate setting is not reserved until an URB
1281 * is submitted that needs that bandwidth. Some other operating systems
1282 * allocate bandwidth early, when a configuration is chosen.
1283 *
1284 * xHCI reserves bandwidth and configures the alternate setting in
1285 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1286 * may be disabled. Drivers cannot rely on any particular alternate
1287 * setting being in effect after a failure.
1288 *
1289 * This call is synchronous, and may not be used in an interrupt context.
1290 * Also, drivers must not change altsettings while urbs are scheduled for
1291 * endpoints in that interface; all such urbs must first be completed
1292 * (perhaps forced by unlinking).
1293 *
1294 * Return: Zero on success, or else the status code returned by the
1295 * underlying usb_control_msg() call.
1296 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1297 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1298 {
1299 struct usb_interface *iface;
1300 struct usb_host_interface *alt;
1301 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1302 int i, ret, manual = 0;
1303 unsigned int epaddr;
1304 unsigned int pipe;
1305
1306 if (dev->state == USB_STATE_SUSPENDED)
1307 return -EHOSTUNREACH;
1308
1309 iface = usb_ifnum_to_if(dev, interface);
1310 if (!iface) {
1311 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1312 interface);
1313 return -EINVAL;
1314 }
1315 if (iface->unregistering)
1316 return -ENODEV;
1317
1318 alt = usb_altnum_to_altsetting(iface, alternate);
1319 if (!alt) {
1320 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1321 alternate);
1322 return -EINVAL;
1323 }
1324 /*
1325 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1326 * including freeing dropped endpoint ring buffers.
1327 * Make sure the interface endpoints are flushed before that
1328 */
1329 usb_disable_interface(dev, iface, false);
1330
1331 /* Make sure we have enough bandwidth for this alternate interface.
1332 * Remove the current alt setting and add the new alt setting.
1333 */
1334 mutex_lock(hcd->bandwidth_mutex);
1335 /* Disable LPM, and re-enable it once the new alt setting is installed,
1336 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1337 */
1338 if (usb_disable_lpm(dev)) {
1339 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1340 mutex_unlock(hcd->bandwidth_mutex);
1341 return -ENOMEM;
1342 }
1343 /* Changing alt-setting also frees any allocated streams */
1344 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1345 iface->cur_altsetting->endpoint[i].streams = 0;
1346
1347 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1348 if (ret < 0) {
1349 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1350 alternate);
1351 usb_enable_lpm(dev);
1352 mutex_unlock(hcd->bandwidth_mutex);
1353 return ret;
1354 }
1355
1356 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1357 ret = -EPIPE;
1358 else
1359 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1360 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1361 alternate, interface, NULL, 0, 5000);
1362
1363 /* 9.4.10 says devices don't need this and are free to STALL the
1364 * request if the interface only has one alternate setting.
1365 */
1366 if (ret == -EPIPE && iface->num_altsetting == 1) {
1367 dev_dbg(&dev->dev,
1368 "manual set_interface for iface %d, alt %d\n",
1369 interface, alternate);
1370 manual = 1;
1371 } else if (ret < 0) {
1372 /* Re-instate the old alt setting */
1373 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1374 usb_enable_lpm(dev);
1375 mutex_unlock(hcd->bandwidth_mutex);
1376 return ret;
1377 }
1378 mutex_unlock(hcd->bandwidth_mutex);
1379
1380 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1381 * when they implement async or easily-killable versions of this or
1382 * other "should-be-internal" functions (like clear_halt).
1383 * should hcd+usbcore postprocess control requests?
1384 */
1385
1386 /* prevent submissions using previous endpoint settings */
1387 if (iface->cur_altsetting != alt) {
1388 remove_intf_ep_devs(iface);
1389 usb_remove_sysfs_intf_files(iface);
1390 }
1391 usb_disable_interface(dev, iface, true);
1392
1393 iface->cur_altsetting = alt;
1394
1395 /* Now that the interface is installed, re-enable LPM. */
1396 usb_unlocked_enable_lpm(dev);
1397
1398 /* If the interface only has one altsetting and the device didn't
1399 * accept the request, we attempt to carry out the equivalent action
1400 * by manually clearing the HALT feature for each endpoint in the
1401 * new altsetting.
1402 */
1403 if (manual) {
1404 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1405 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1406 pipe = __create_pipe(dev,
1407 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1408 (usb_endpoint_out(epaddr) ?
1409 USB_DIR_OUT : USB_DIR_IN);
1410
1411 usb_clear_halt(dev, pipe);
1412 }
1413 }
1414
1415 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1416 *
1417 * Note:
1418 * Despite EP0 is always present in all interfaces/AS, the list of
1419 * endpoints from the descriptor does not contain EP0. Due to its
1420 * omnipresence one might expect EP0 being considered "affected" by
1421 * any SetInterface request and hence assume toggles need to be reset.
1422 * However, EP0 toggles are re-synced for every individual transfer
1423 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1424 * (Likewise, EP0 never "halts" on well designed devices.)
1425 */
1426 usb_enable_interface(dev, iface, true);
1427 if (device_is_registered(&iface->dev)) {
1428 usb_create_sysfs_intf_files(iface);
1429 create_intf_ep_devs(iface);
1430 }
1431 return 0;
1432 }
1433 EXPORT_SYMBOL_GPL(usb_set_interface);
1434
1435 /**
1436 * usb_reset_configuration - lightweight device reset
1437 * @dev: the device whose configuration is being reset
1438 *
1439 * This issues a standard SET_CONFIGURATION request to the device using
1440 * the current configuration. The effect is to reset most USB-related
1441 * state in the device, including interface altsettings (reset to zero),
1442 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1443 * endpoints). Other usbcore state is unchanged, including bindings of
1444 * usb device drivers to interfaces.
1445 *
1446 * Because this affects multiple interfaces, avoid using this with composite
1447 * (multi-interface) devices. Instead, the driver for each interface may
1448 * use usb_set_interface() on the interfaces it claims. Be careful though;
1449 * some devices don't support the SET_INTERFACE request, and others won't
1450 * reset all the interface state (notably endpoint state). Resetting the whole
1451 * configuration would affect other drivers' interfaces.
1452 *
1453 * The caller must own the device lock.
1454 *
1455 * Return: Zero on success, else a negative error code.
1456 */
usb_reset_configuration(struct usb_device * dev)1457 int usb_reset_configuration(struct usb_device *dev)
1458 {
1459 int i, retval;
1460 struct usb_host_config *config;
1461 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1462
1463 if (dev->state == USB_STATE_SUSPENDED)
1464 return -EHOSTUNREACH;
1465
1466 /* caller must have locked the device and must own
1467 * the usb bus readlock (so driver bindings are stable);
1468 * calls during probe() are fine
1469 */
1470
1471 for (i = 1; i < 16; ++i) {
1472 usb_disable_endpoint(dev, i, true);
1473 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1474 }
1475
1476 config = dev->actconfig;
1477 retval = 0;
1478 mutex_lock(hcd->bandwidth_mutex);
1479 /* Disable LPM, and re-enable it once the configuration is reset, so
1480 * that the xHCI driver can recalculate the U1/U2 timeouts.
1481 */
1482 if (usb_disable_lpm(dev)) {
1483 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1484 mutex_unlock(hcd->bandwidth_mutex);
1485 return -ENOMEM;
1486 }
1487 /* Make sure we have enough bandwidth for each alternate setting 0 */
1488 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1489 struct usb_interface *intf = config->interface[i];
1490 struct usb_host_interface *alt;
1491
1492 alt = usb_altnum_to_altsetting(intf, 0);
1493 if (!alt)
1494 alt = &intf->altsetting[0];
1495 if (alt != intf->cur_altsetting)
1496 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1497 intf->cur_altsetting, alt);
1498 if (retval < 0)
1499 break;
1500 }
1501 /* If not, reinstate the old alternate settings */
1502 if (retval < 0) {
1503 reset_old_alts:
1504 for (i--; i >= 0; i--) {
1505 struct usb_interface *intf = config->interface[i];
1506 struct usb_host_interface *alt;
1507
1508 alt = usb_altnum_to_altsetting(intf, 0);
1509 if (!alt)
1510 alt = &intf->altsetting[0];
1511 if (alt != intf->cur_altsetting)
1512 usb_hcd_alloc_bandwidth(dev, NULL,
1513 alt, intf->cur_altsetting);
1514 }
1515 usb_enable_lpm(dev);
1516 mutex_unlock(hcd->bandwidth_mutex);
1517 return retval;
1518 }
1519 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1520 USB_REQ_SET_CONFIGURATION, 0,
1521 config->desc.bConfigurationValue, 0,
1522 NULL, 0, USB_CTRL_SET_TIMEOUT);
1523 if (retval < 0)
1524 goto reset_old_alts;
1525 mutex_unlock(hcd->bandwidth_mutex);
1526
1527 /* re-init hc/hcd interface/endpoint state */
1528 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1529 struct usb_interface *intf = config->interface[i];
1530 struct usb_host_interface *alt;
1531
1532 alt = usb_altnum_to_altsetting(intf, 0);
1533
1534 /* No altsetting 0? We'll assume the first altsetting.
1535 * We could use a GetInterface call, but if a device is
1536 * so non-compliant that it doesn't have altsetting 0
1537 * then I wouldn't trust its reply anyway.
1538 */
1539 if (!alt)
1540 alt = &intf->altsetting[0];
1541
1542 if (alt != intf->cur_altsetting) {
1543 remove_intf_ep_devs(intf);
1544 usb_remove_sysfs_intf_files(intf);
1545 }
1546 intf->cur_altsetting = alt;
1547 usb_enable_interface(dev, intf, true);
1548 if (device_is_registered(&intf->dev)) {
1549 usb_create_sysfs_intf_files(intf);
1550 create_intf_ep_devs(intf);
1551 }
1552 }
1553 /* Now that the interfaces are installed, re-enable LPM. */
1554 usb_unlocked_enable_lpm(dev);
1555 return 0;
1556 }
1557 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1558
usb_release_interface(struct device * dev)1559 static void usb_release_interface(struct device *dev)
1560 {
1561 struct usb_interface *intf = to_usb_interface(dev);
1562 struct usb_interface_cache *intfc =
1563 altsetting_to_usb_interface_cache(intf->altsetting);
1564
1565 kref_put(&intfc->ref, usb_release_interface_cache);
1566 usb_put_dev(interface_to_usbdev(intf));
1567 kfree(intf);
1568 }
1569
1570 /*
1571 * usb_deauthorize_interface - deauthorize an USB interface
1572 *
1573 * @intf: USB interface structure
1574 */
usb_deauthorize_interface(struct usb_interface * intf)1575 void usb_deauthorize_interface(struct usb_interface *intf)
1576 {
1577 struct device *dev = &intf->dev;
1578
1579 device_lock(dev->parent);
1580
1581 if (intf->authorized) {
1582 device_lock(dev);
1583 intf->authorized = 0;
1584 device_unlock(dev);
1585
1586 usb_forced_unbind_intf(intf);
1587 }
1588
1589 device_unlock(dev->parent);
1590 }
1591
1592 /*
1593 * usb_authorize_interface - authorize an USB interface
1594 *
1595 * @intf: USB interface structure
1596 */
usb_authorize_interface(struct usb_interface * intf)1597 void usb_authorize_interface(struct usb_interface *intf)
1598 {
1599 struct device *dev = &intf->dev;
1600
1601 if (!intf->authorized) {
1602 device_lock(dev);
1603 intf->authorized = 1; /* authorize interface */
1604 device_unlock(dev);
1605 }
1606 }
1607
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1608 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1609 {
1610 struct usb_device *usb_dev;
1611 struct usb_interface *intf;
1612 struct usb_host_interface *alt;
1613
1614 intf = to_usb_interface(dev);
1615 usb_dev = interface_to_usbdev(intf);
1616 alt = intf->cur_altsetting;
1617
1618 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1619 alt->desc.bInterfaceClass,
1620 alt->desc.bInterfaceSubClass,
1621 alt->desc.bInterfaceProtocol))
1622 return -ENOMEM;
1623
1624 if (add_uevent_var(env,
1625 "MODALIAS=usb:"
1626 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1627 le16_to_cpu(usb_dev->descriptor.idVendor),
1628 le16_to_cpu(usb_dev->descriptor.idProduct),
1629 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1630 usb_dev->descriptor.bDeviceClass,
1631 usb_dev->descriptor.bDeviceSubClass,
1632 usb_dev->descriptor.bDeviceProtocol,
1633 alt->desc.bInterfaceClass,
1634 alt->desc.bInterfaceSubClass,
1635 alt->desc.bInterfaceProtocol,
1636 alt->desc.bInterfaceNumber))
1637 return -ENOMEM;
1638
1639 return 0;
1640 }
1641
1642 struct device_type usb_if_device_type = {
1643 .name = "usb_interface",
1644 .release = usb_release_interface,
1645 .uevent = usb_if_uevent,
1646 };
1647
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1648 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1649 struct usb_host_config *config,
1650 u8 inum)
1651 {
1652 struct usb_interface_assoc_descriptor *retval = NULL;
1653 struct usb_interface_assoc_descriptor *intf_assoc;
1654 int first_intf;
1655 int last_intf;
1656 int i;
1657
1658 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1659 intf_assoc = config->intf_assoc[i];
1660 if (intf_assoc->bInterfaceCount == 0)
1661 continue;
1662
1663 first_intf = intf_assoc->bFirstInterface;
1664 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1665 if (inum >= first_intf && inum <= last_intf) {
1666 if (!retval)
1667 retval = intf_assoc;
1668 else
1669 dev_err(&dev->dev, "Interface #%d referenced"
1670 " by multiple IADs\n", inum);
1671 }
1672 }
1673
1674 return retval;
1675 }
1676
1677
1678 /*
1679 * Internal function to queue a device reset
1680 * See usb_queue_reset_device() for more details
1681 */
__usb_queue_reset_device(struct work_struct * ws)1682 static void __usb_queue_reset_device(struct work_struct *ws)
1683 {
1684 int rc;
1685 struct usb_interface *iface =
1686 container_of(ws, struct usb_interface, reset_ws);
1687 struct usb_device *udev = interface_to_usbdev(iface);
1688
1689 rc = usb_lock_device_for_reset(udev, iface);
1690 if (rc >= 0) {
1691 usb_reset_device(udev);
1692 usb_unlock_device(udev);
1693 }
1694 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1695 }
1696
1697
1698 /*
1699 * usb_set_configuration - Makes a particular device setting be current
1700 * @dev: the device whose configuration is being updated
1701 * @configuration: the configuration being chosen.
1702 * Context: !in_interrupt(), caller owns the device lock
1703 *
1704 * This is used to enable non-default device modes. Not all devices
1705 * use this kind of configurability; many devices only have one
1706 * configuration.
1707 *
1708 * @configuration is the value of the configuration to be installed.
1709 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1710 * must be non-zero; a value of zero indicates that the device in
1711 * unconfigured. However some devices erroneously use 0 as one of their
1712 * configuration values. To help manage such devices, this routine will
1713 * accept @configuration = -1 as indicating the device should be put in
1714 * an unconfigured state.
1715 *
1716 * USB device configurations may affect Linux interoperability,
1717 * power consumption and the functionality available. For example,
1718 * the default configuration is limited to using 100mA of bus power,
1719 * so that when certain device functionality requires more power,
1720 * and the device is bus powered, that functionality should be in some
1721 * non-default device configuration. Other device modes may also be
1722 * reflected as configuration options, such as whether two ISDN
1723 * channels are available independently; and choosing between open
1724 * standard device protocols (like CDC) or proprietary ones.
1725 *
1726 * Note that a non-authorized device (dev->authorized == 0) will only
1727 * be put in unconfigured mode.
1728 *
1729 * Note that USB has an additional level of device configurability,
1730 * associated with interfaces. That configurability is accessed using
1731 * usb_set_interface().
1732 *
1733 * This call is synchronous. The calling context must be able to sleep,
1734 * must own the device lock, and must not hold the driver model's USB
1735 * bus mutex; usb interface driver probe() methods cannot use this routine.
1736 *
1737 * Returns zero on success, or else the status code returned by the
1738 * underlying call that failed. On successful completion, each interface
1739 * in the original device configuration has been destroyed, and each one
1740 * in the new configuration has been probed by all relevant usb device
1741 * drivers currently known to the kernel.
1742 */
usb_set_configuration(struct usb_device * dev,int configuration)1743 int usb_set_configuration(struct usb_device *dev, int configuration)
1744 {
1745 int i, ret;
1746 struct usb_host_config *cp = NULL;
1747 struct usb_interface **new_interfaces = NULL;
1748 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1749 int n, nintf;
1750
1751 if (dev->authorized == 0 || configuration == -1)
1752 configuration = 0;
1753 else {
1754 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1755 if (dev->config[i].desc.bConfigurationValue ==
1756 configuration) {
1757 cp = &dev->config[i];
1758 break;
1759 }
1760 }
1761 }
1762 if ((!cp && configuration != 0))
1763 return -EINVAL;
1764
1765 /* The USB spec says configuration 0 means unconfigured.
1766 * But if a device includes a configuration numbered 0,
1767 * we will accept it as a correctly configured state.
1768 * Use -1 if you really want to unconfigure the device.
1769 */
1770 if (cp && configuration == 0)
1771 dev_warn(&dev->dev, "config 0 descriptor??\n");
1772
1773 /* Allocate memory for new interfaces before doing anything else,
1774 * so that if we run out then nothing will have changed. */
1775 n = nintf = 0;
1776 if (cp) {
1777 nintf = cp->desc.bNumInterfaces;
1778 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1779 GFP_NOIO);
1780 if (!new_interfaces)
1781 return -ENOMEM;
1782
1783 for (; n < nintf; ++n) {
1784 new_interfaces[n] = kzalloc(
1785 sizeof(struct usb_interface),
1786 GFP_NOIO);
1787 if (!new_interfaces[n]) {
1788 ret = -ENOMEM;
1789 free_interfaces:
1790 while (--n >= 0)
1791 kfree(new_interfaces[n]);
1792 kfree(new_interfaces);
1793 return ret;
1794 }
1795 }
1796
1797 i = dev->bus_mA - usb_get_max_power(dev, cp);
1798 if (i < 0)
1799 dev_warn(&dev->dev, "new config #%d exceeds power "
1800 "limit by %dmA\n",
1801 configuration, -i);
1802 }
1803
1804 /* Wake up the device so we can send it the Set-Config request */
1805 ret = usb_autoresume_device(dev);
1806 if (ret)
1807 goto free_interfaces;
1808
1809 /* if it's already configured, clear out old state first.
1810 * getting rid of old interfaces means unbinding their drivers.
1811 */
1812 if (dev->state != USB_STATE_ADDRESS)
1813 usb_disable_device(dev, 1); /* Skip ep0 */
1814
1815 /* Get rid of pending async Set-Config requests for this device */
1816 cancel_async_set_config(dev);
1817
1818 /* Make sure we have bandwidth (and available HCD resources) for this
1819 * configuration. Remove endpoints from the schedule if we're dropping
1820 * this configuration to set configuration 0. After this point, the
1821 * host controller will not allow submissions to dropped endpoints. If
1822 * this call fails, the device state is unchanged.
1823 */
1824 mutex_lock(hcd->bandwidth_mutex);
1825 /* Disable LPM, and re-enable it once the new configuration is
1826 * installed, so that the xHCI driver can recalculate the U1/U2
1827 * timeouts.
1828 */
1829 if (dev->actconfig && usb_disable_lpm(dev)) {
1830 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1831 mutex_unlock(hcd->bandwidth_mutex);
1832 ret = -ENOMEM;
1833 goto free_interfaces;
1834 }
1835 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1836 if (ret < 0) {
1837 if (dev->actconfig)
1838 usb_enable_lpm(dev);
1839 mutex_unlock(hcd->bandwidth_mutex);
1840 usb_autosuspend_device(dev);
1841 goto free_interfaces;
1842 }
1843
1844 /*
1845 * Initialize the new interface structures and the
1846 * hc/hcd/usbcore interface/endpoint state.
1847 */
1848 for (i = 0; i < nintf; ++i) {
1849 struct usb_interface_cache *intfc;
1850 struct usb_interface *intf;
1851 struct usb_host_interface *alt;
1852
1853 cp->interface[i] = intf = new_interfaces[i];
1854 intfc = cp->intf_cache[i];
1855 intf->altsetting = intfc->altsetting;
1856 intf->num_altsetting = intfc->num_altsetting;
1857 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1858 kref_get(&intfc->ref);
1859
1860 alt = usb_altnum_to_altsetting(intf, 0);
1861
1862 /* No altsetting 0? We'll assume the first altsetting.
1863 * We could use a GetInterface call, but if a device is
1864 * so non-compliant that it doesn't have altsetting 0
1865 * then I wouldn't trust its reply anyway.
1866 */
1867 if (!alt)
1868 alt = &intf->altsetting[0];
1869
1870 intf->intf_assoc =
1871 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1872 intf->cur_altsetting = alt;
1873 usb_enable_interface(dev, intf, true);
1874 intf->dev.parent = &dev->dev;
1875 intf->dev.driver = NULL;
1876 intf->dev.bus = &usb_bus_type;
1877 intf->dev.type = &usb_if_device_type;
1878 intf->dev.groups = usb_interface_groups;
1879 /*
1880 * Please refer to usb_alloc_dev() to see why we set
1881 * dma_mask and dma_pfn_offset.
1882 */
1883 intf->dev.dma_mask = dev->dev.dma_mask;
1884 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1885 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1886 intf->minor = -1;
1887 device_initialize(&intf->dev);
1888 pm_runtime_no_callbacks(&intf->dev);
1889 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1890 dev->bus->busnum, dev->devpath,
1891 configuration, alt->desc.bInterfaceNumber);
1892 usb_get_dev(dev);
1893 }
1894 kfree(new_interfaces);
1895
1896 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1897 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1898 NULL, 0, USB_CTRL_SET_TIMEOUT);
1899 if (ret < 0 && cp) {
1900 /*
1901 * All the old state is gone, so what else can we do?
1902 * The device is probably useless now anyway.
1903 */
1904 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1905 for (i = 0; i < nintf; ++i) {
1906 usb_disable_interface(dev, cp->interface[i], true);
1907 put_device(&cp->interface[i]->dev);
1908 cp->interface[i] = NULL;
1909 }
1910 cp = NULL;
1911 }
1912
1913 dev->actconfig = cp;
1914 mutex_unlock(hcd->bandwidth_mutex);
1915
1916 if (!cp) {
1917 usb_set_device_state(dev, USB_STATE_ADDRESS);
1918
1919 /* Leave LPM disabled while the device is unconfigured. */
1920 usb_autosuspend_device(dev);
1921 return ret;
1922 }
1923 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1924
1925 if (cp->string == NULL &&
1926 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1927 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1928
1929 /* Now that the interfaces are installed, re-enable LPM. */
1930 usb_unlocked_enable_lpm(dev);
1931 /* Enable LTM if it was turned off by usb_disable_device. */
1932 usb_enable_ltm(dev);
1933
1934 /* Now that all the interfaces are set up, register them
1935 * to trigger binding of drivers to interfaces. probe()
1936 * routines may install different altsettings and may
1937 * claim() any interfaces not yet bound. Many class drivers
1938 * need that: CDC, audio, video, etc.
1939 */
1940 for (i = 0; i < nintf; ++i) {
1941 struct usb_interface *intf = cp->interface[i];
1942
1943 dev_dbg(&dev->dev,
1944 "adding %s (config #%d, interface %d)\n",
1945 dev_name(&intf->dev), configuration,
1946 intf->cur_altsetting->desc.bInterfaceNumber);
1947 device_enable_async_suspend(&intf->dev);
1948 ret = device_add(&intf->dev);
1949 if (ret != 0) {
1950 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1951 dev_name(&intf->dev), ret);
1952 continue;
1953 }
1954 create_intf_ep_devs(intf);
1955 }
1956
1957 usb_autosuspend_device(dev);
1958 return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(usb_set_configuration);
1961
1962 static LIST_HEAD(set_config_list);
1963 static DEFINE_SPINLOCK(set_config_lock);
1964
1965 struct set_config_request {
1966 struct usb_device *udev;
1967 int config;
1968 struct work_struct work;
1969 struct list_head node;
1970 };
1971
1972 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1973 static void driver_set_config_work(struct work_struct *work)
1974 {
1975 struct set_config_request *req =
1976 container_of(work, struct set_config_request, work);
1977 struct usb_device *udev = req->udev;
1978
1979 usb_lock_device(udev);
1980 spin_lock(&set_config_lock);
1981 list_del(&req->node);
1982 spin_unlock(&set_config_lock);
1983
1984 if (req->config >= -1) /* Is req still valid? */
1985 usb_set_configuration(udev, req->config);
1986 usb_unlock_device(udev);
1987 usb_put_dev(udev);
1988 kfree(req);
1989 }
1990
1991 /* Cancel pending Set-Config requests for a device whose configuration
1992 * was just changed
1993 */
cancel_async_set_config(struct usb_device * udev)1994 static void cancel_async_set_config(struct usb_device *udev)
1995 {
1996 struct set_config_request *req;
1997
1998 spin_lock(&set_config_lock);
1999 list_for_each_entry(req, &set_config_list, node) {
2000 if (req->udev == udev)
2001 req->config = -999; /* Mark as cancelled */
2002 }
2003 spin_unlock(&set_config_lock);
2004 }
2005
2006 /**
2007 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2008 * @udev: the device whose configuration is being updated
2009 * @config: the configuration being chosen.
2010 * Context: In process context, must be able to sleep
2011 *
2012 * Device interface drivers are not allowed to change device configurations.
2013 * This is because changing configurations will destroy the interface the
2014 * driver is bound to and create new ones; it would be like a floppy-disk
2015 * driver telling the computer to replace the floppy-disk drive with a
2016 * tape drive!
2017 *
2018 * Still, in certain specialized circumstances the need may arise. This
2019 * routine gets around the normal restrictions by using a work thread to
2020 * submit the change-config request.
2021 *
2022 * Return: 0 if the request was successfully queued, error code otherwise.
2023 * The caller has no way to know whether the queued request will eventually
2024 * succeed.
2025 */
usb_driver_set_configuration(struct usb_device * udev,int config)2026 int usb_driver_set_configuration(struct usb_device *udev, int config)
2027 {
2028 struct set_config_request *req;
2029
2030 req = kmalloc(sizeof(*req), GFP_KERNEL);
2031 if (!req)
2032 return -ENOMEM;
2033 req->udev = udev;
2034 req->config = config;
2035 INIT_WORK(&req->work, driver_set_config_work);
2036
2037 spin_lock(&set_config_lock);
2038 list_add(&req->node, &set_config_list);
2039 spin_unlock(&set_config_lock);
2040
2041 usb_get_dev(udev);
2042 schedule_work(&req->work);
2043 return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2046
2047 /**
2048 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2049 * @hdr: the place to put the results of the parsing
2050 * @intf: the interface for which parsing is requested
2051 * @buffer: pointer to the extra headers to be parsed
2052 * @buflen: length of the extra headers
2053 *
2054 * This evaluates the extra headers present in CDC devices which
2055 * bind the interfaces for data and control and provide details
2056 * about the capabilities of the device.
2057 *
2058 * Return: number of descriptors parsed or -EINVAL
2059 * if the header is contradictory beyond salvage
2060 */
2061
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2062 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2063 struct usb_interface *intf,
2064 u8 *buffer,
2065 int buflen)
2066 {
2067 /* duplicates are ignored */
2068 struct usb_cdc_union_desc *union_header = NULL;
2069
2070 /* duplicates are not tolerated */
2071 struct usb_cdc_header_desc *header = NULL;
2072 struct usb_cdc_ether_desc *ether = NULL;
2073 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2074 struct usb_cdc_mdlm_desc *desc = NULL;
2075
2076 unsigned int elength;
2077 int cnt = 0;
2078
2079 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2080 hdr->phonet_magic_present = false;
2081 while (buflen > 0) {
2082 elength = buffer[0];
2083 if (!elength) {
2084 dev_err(&intf->dev, "skipping garbage byte\n");
2085 elength = 1;
2086 goto next_desc;
2087 }
2088 if ((buflen < elength) || (elength < 3)) {
2089 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2090 break;
2091 }
2092 if (buffer[1] != USB_DT_CS_INTERFACE) {
2093 dev_err(&intf->dev, "skipping garbage\n");
2094 goto next_desc;
2095 }
2096
2097 switch (buffer[2]) {
2098 case USB_CDC_UNION_TYPE: /* we've found it */
2099 if (elength < sizeof(struct usb_cdc_union_desc))
2100 goto next_desc;
2101 if (union_header) {
2102 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2103 goto next_desc;
2104 }
2105 union_header = (struct usb_cdc_union_desc *)buffer;
2106 break;
2107 case USB_CDC_COUNTRY_TYPE:
2108 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2109 goto next_desc;
2110 hdr->usb_cdc_country_functional_desc =
2111 (struct usb_cdc_country_functional_desc *)buffer;
2112 break;
2113 case USB_CDC_HEADER_TYPE:
2114 if (elength != sizeof(struct usb_cdc_header_desc))
2115 goto next_desc;
2116 if (header)
2117 return -EINVAL;
2118 header = (struct usb_cdc_header_desc *)buffer;
2119 break;
2120 case USB_CDC_ACM_TYPE:
2121 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2122 goto next_desc;
2123 hdr->usb_cdc_acm_descriptor =
2124 (struct usb_cdc_acm_descriptor *)buffer;
2125 break;
2126 case USB_CDC_ETHERNET_TYPE:
2127 if (elength != sizeof(struct usb_cdc_ether_desc))
2128 goto next_desc;
2129 if (ether)
2130 return -EINVAL;
2131 ether = (struct usb_cdc_ether_desc *)buffer;
2132 break;
2133 case USB_CDC_CALL_MANAGEMENT_TYPE:
2134 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2135 goto next_desc;
2136 hdr->usb_cdc_call_mgmt_descriptor =
2137 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2138 break;
2139 case USB_CDC_DMM_TYPE:
2140 if (elength < sizeof(struct usb_cdc_dmm_desc))
2141 goto next_desc;
2142 hdr->usb_cdc_dmm_desc =
2143 (struct usb_cdc_dmm_desc *)buffer;
2144 break;
2145 case USB_CDC_MDLM_TYPE:
2146 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2147 goto next_desc;
2148 if (desc)
2149 return -EINVAL;
2150 desc = (struct usb_cdc_mdlm_desc *)buffer;
2151 break;
2152 case USB_CDC_MDLM_DETAIL_TYPE:
2153 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2154 goto next_desc;
2155 if (detail)
2156 return -EINVAL;
2157 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2158 break;
2159 case USB_CDC_NCM_TYPE:
2160 if (elength < sizeof(struct usb_cdc_ncm_desc))
2161 goto next_desc;
2162 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2163 break;
2164 case USB_CDC_MBIM_TYPE:
2165 if (elength < sizeof(struct usb_cdc_mbim_desc))
2166 goto next_desc;
2167
2168 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2169 break;
2170 case USB_CDC_MBIM_EXTENDED_TYPE:
2171 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2172 break;
2173 hdr->usb_cdc_mbim_extended_desc =
2174 (struct usb_cdc_mbim_extended_desc *)buffer;
2175 break;
2176 case CDC_PHONET_MAGIC_NUMBER:
2177 hdr->phonet_magic_present = true;
2178 break;
2179 default:
2180 /*
2181 * there are LOTS more CDC descriptors that
2182 * could legitimately be found here.
2183 */
2184 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2185 buffer[2], elength);
2186 goto next_desc;
2187 }
2188 cnt++;
2189 next_desc:
2190 buflen -= elength;
2191 buffer += elength;
2192 }
2193 hdr->usb_cdc_union_desc = union_header;
2194 hdr->usb_cdc_header_desc = header;
2195 hdr->usb_cdc_mdlm_detail_desc = detail;
2196 hdr->usb_cdc_mdlm_desc = desc;
2197 hdr->usb_cdc_ether_desc = ether;
2198 return cnt;
2199 }
2200
2201 EXPORT_SYMBOL(cdc_parse_cdc_header);
2202