1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
55
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
58
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61 /*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
71 {
72 /*
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
77 */
78 return queue_delayed_work(system_freezable_wq, work, delay);
79 }
80
81 #ifdef CONFIG_FAIL_MMC_REQUEST
82
83 /*
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
86 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)87 static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
89 {
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
96 };
97
98 if (!data)
99 return;
100
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
104
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107 }
108
109 #else /* CONFIG_FAIL_MMC_REQUEST */
110
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
113 {
114 }
115
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
117
mmc_complete_cmd(struct mmc_request * mrq)118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
119 {
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
122 }
123
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125 {
126 if (!mrq->cap_cmd_during_tfr)
127 return;
128
129 mmc_complete_cmd(mrq);
130
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
133 }
134 EXPORT_SYMBOL(mmc_command_done);
135
136 /**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
156
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
160 }
161
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
164
165 mmc_complete_cmd(mrq);
166
167 trace_mmc_request_done(host, mrq);
168
169 /*
170 * We list various conditions for the command to be considered
171 * properly done:
172 *
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
177 */
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
180
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
183
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 }
191
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
196
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
201 }
202
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
209 }
210 }
211 /*
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
214 */
215 if (mrq->done)
216 mrq->done(mrq);
217 }
218
219 EXPORT_SYMBOL(mmc_request_done);
220
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
237 */
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
241
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
244
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
249 }
250 }
251
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
254 /*
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
257 */
258 reinit_completion(&mrq->cmd_completion);
259 }
260
261 trace_mmc_request_start(host, mrq);
262
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
265
266 host->ops->request(host, mrq);
267 }
268
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq)269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
270 {
271 if (mrq->sbc) {
272 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
273 mmc_hostname(host), mrq->sbc->opcode,
274 mrq->sbc->arg, mrq->sbc->flags);
275 }
276
277 if (mrq->cmd) {
278 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
279 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
280 mrq->cmd->flags);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297 }
298
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334 }
335
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 int err;
339
340 mmc_retune_hold(host);
341
342 if (mmc_card_removed(host->card))
343 return -ENOMEDIUM;
344
345 mmc_mrq_pr_debug(host, mrq);
346
347 WARN_ON(!host->claimed);
348
349 err = mmc_mrq_prep(host, mrq);
350 if (err)
351 return err;
352
353 led_trigger_event(host->led, LED_FULL);
354 __mmc_start_request(host, mrq);
355
356 return 0;
357 }
358
359 /*
360 * mmc_wait_data_done() - done callback for data request
361 * @mrq: done data request
362 *
363 * Wakes up mmc context, passed as a callback to host controller driver
364 */
mmc_wait_data_done(struct mmc_request * mrq)365 static void mmc_wait_data_done(struct mmc_request *mrq)
366 {
367 struct mmc_context_info *context_info = &mrq->host->context_info;
368
369 context_info->is_done_rcv = true;
370 wake_up_interruptible(&context_info->wait);
371 }
372
mmc_wait_done(struct mmc_request * mrq)373 static void mmc_wait_done(struct mmc_request *mrq)
374 {
375 complete(&mrq->completion);
376 }
377
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)378 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
379 {
380 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
381
382 /*
383 * If there is an ongoing transfer, wait for the command line to become
384 * available.
385 */
386 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
387 wait_for_completion(&ongoing_mrq->cmd_completion);
388 }
389
390 /*
391 *__mmc_start_data_req() - starts data request
392 * @host: MMC host to start the request
393 * @mrq: data request to start
394 *
395 * Sets the done callback to be called when request is completed by the card.
396 * Starts data mmc request execution
397 * If an ongoing transfer is already in progress, wait for the command line
398 * to become available before sending another command.
399 */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)400 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
401 {
402 int err;
403
404 mmc_wait_ongoing_tfr_cmd(host);
405
406 mrq->done = mmc_wait_data_done;
407 mrq->host = host;
408
409 init_completion(&mrq->cmd_completion);
410
411 err = mmc_start_request(host, mrq);
412 if (err) {
413 mrq->cmd->error = err;
414 mmc_complete_cmd(mrq);
415 mmc_wait_data_done(mrq);
416 }
417
418 return err;
419 }
420
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)421 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
422 {
423 int err;
424
425 mmc_wait_ongoing_tfr_cmd(host);
426
427 init_completion(&mrq->completion);
428 mrq->done = mmc_wait_done;
429
430 init_completion(&mrq->cmd_completion);
431
432 err = mmc_start_request(host, mrq);
433 if (err) {
434 mrq->cmd->error = err;
435 mmc_complete_cmd(mrq);
436 complete(&mrq->completion);
437 }
438
439 return err;
440 }
441
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)442 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
443 {
444 struct mmc_command *cmd;
445
446 while (1) {
447 wait_for_completion(&mrq->completion);
448
449 cmd = mrq->cmd;
450
451 /*
452 * If host has timed out waiting for the sanitize
453 * to complete, card might be still in programming state
454 * so let's try to bring the card out of programming
455 * state.
456 */
457 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
458 if (!mmc_interrupt_hpi(host->card)) {
459 pr_warn("%s: %s: Interrupted sanitize\n",
460 mmc_hostname(host), __func__);
461 cmd->error = 0;
462 break;
463 } else {
464 pr_err("%s: %s: Failed to interrupt sanitize\n",
465 mmc_hostname(host), __func__);
466 }
467 }
468 if (!cmd->error || !cmd->retries ||
469 mmc_card_removed(host->card))
470 break;
471
472 mmc_retune_recheck(host);
473
474 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
475 mmc_hostname(host), cmd->opcode, cmd->error);
476 cmd->retries--;
477 cmd->error = 0;
478 __mmc_start_request(host, mrq);
479 }
480
481 mmc_retune_release(host);
482 }
483 EXPORT_SYMBOL(mmc_wait_for_req_done);
484
485 /**
486 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
487 * @host: MMC host
488 * @mrq: MMC request
489 *
490 * mmc_is_req_done() is used with requests that have
491 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
492 * starting a request and before waiting for it to complete. That is,
493 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
494 * and before mmc_wait_for_req_done(). If it is called at other times the
495 * result is not meaningful.
496 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)497 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
498 {
499 if (host->areq)
500 return host->context_info.is_done_rcv;
501 else
502 return completion_done(&mrq->completion);
503 }
504 EXPORT_SYMBOL(mmc_is_req_done);
505
506 /**
507 * mmc_pre_req - Prepare for a new request
508 * @host: MMC host to prepare command
509 * @mrq: MMC request to prepare for
510 *
511 * mmc_pre_req() is called in prior to mmc_start_req() to let
512 * host prepare for the new request. Preparation of a request may be
513 * performed while another request is running on the host.
514 */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq)515 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 if (host->ops->pre_req)
518 host->ops->pre_req(host, mrq);
519 }
520
521 /**
522 * mmc_post_req - Post process a completed request
523 * @host: MMC host to post process command
524 * @mrq: MMC request to post process for
525 * @err: Error, if non zero, clean up any resources made in pre_req
526 *
527 * Let the host post process a completed request. Post processing of
528 * a request may be performed while another reuqest is running.
529 */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)530 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
531 int err)
532 {
533 if (host->ops->post_req)
534 host->ops->post_req(host, mrq, err);
535 }
536
537 /**
538 * mmc_finalize_areq() - finalize an asynchronous request
539 * @host: MMC host to finalize any ongoing request on
540 *
541 * Returns the status of the ongoing asynchronous request, but
542 * MMC_BLK_SUCCESS if no request was going on.
543 */
mmc_finalize_areq(struct mmc_host * host)544 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
545 {
546 struct mmc_context_info *context_info = &host->context_info;
547 enum mmc_blk_status status;
548
549 if (!host->areq)
550 return MMC_BLK_SUCCESS;
551
552 while (1) {
553 wait_event_interruptible(context_info->wait,
554 (context_info->is_done_rcv ||
555 context_info->is_new_req));
556
557 if (context_info->is_done_rcv) {
558 struct mmc_command *cmd;
559
560 context_info->is_done_rcv = false;
561 cmd = host->areq->mrq->cmd;
562
563 if (!cmd->error || !cmd->retries ||
564 mmc_card_removed(host->card)) {
565 status = host->areq->err_check(host->card,
566 host->areq);
567 break; /* return status */
568 } else {
569 mmc_retune_recheck(host);
570 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
571 mmc_hostname(host),
572 cmd->opcode, cmd->error);
573 cmd->retries--;
574 cmd->error = 0;
575 __mmc_start_request(host, host->areq->mrq);
576 continue; /* wait for done/new event again */
577 }
578 }
579
580 return MMC_BLK_NEW_REQUEST;
581 }
582
583 mmc_retune_release(host);
584
585 /*
586 * Check BKOPS urgency for each R1 response
587 */
588 if (host->card && mmc_card_mmc(host->card) &&
589 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
590 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
591 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
592 mmc_start_bkops(host->card, true);
593 }
594
595 return status;
596 }
597
598 /**
599 * mmc_start_areq - start an asynchronous request
600 * @host: MMC host to start command
601 * @areq: asynchronous request to start
602 * @ret_stat: out parameter for status
603 *
604 * Start a new MMC custom command request for a host.
605 * If there is on ongoing async request wait for completion
606 * of that request and start the new one and return.
607 * Does not wait for the new request to complete.
608 *
609 * Returns the completed request, NULL in case of none completed.
610 * Wait for the an ongoing request (previoulsy started) to complete and
611 * return the completed request. If there is no ongoing request, NULL
612 * is returned without waiting. NULL is not an error condition.
613 */
mmc_start_areq(struct mmc_host * host,struct mmc_async_req * areq,enum mmc_blk_status * ret_stat)614 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
615 struct mmc_async_req *areq,
616 enum mmc_blk_status *ret_stat)
617 {
618 enum mmc_blk_status status;
619 int start_err = 0;
620 struct mmc_async_req *previous = host->areq;
621
622 /* Prepare a new request */
623 if (areq)
624 mmc_pre_req(host, areq->mrq);
625
626 /* Finalize previous request */
627 status = mmc_finalize_areq(host);
628 if (ret_stat)
629 *ret_stat = status;
630
631 /* The previous request is still going on... */
632 if (status == MMC_BLK_NEW_REQUEST)
633 return NULL;
634
635 /* Fine so far, start the new request! */
636 if (status == MMC_BLK_SUCCESS && areq)
637 start_err = __mmc_start_data_req(host, areq->mrq);
638
639 /* Postprocess the old request at this point */
640 if (host->areq)
641 mmc_post_req(host, host->areq->mrq, 0);
642
643 /* Cancel a prepared request if it was not started. */
644 if ((status != MMC_BLK_SUCCESS || start_err) && areq)
645 mmc_post_req(host, areq->mrq, -EINVAL);
646
647 if (status != MMC_BLK_SUCCESS)
648 host->areq = NULL;
649 else
650 host->areq = areq;
651
652 return previous;
653 }
654 EXPORT_SYMBOL(mmc_start_areq);
655
656 /**
657 * mmc_wait_for_req - start a request and wait for completion
658 * @host: MMC host to start command
659 * @mrq: MMC request to start
660 *
661 * Start a new MMC custom command request for a host, and wait
662 * for the command to complete. In the case of 'cap_cmd_during_tfr'
663 * requests, the transfer is ongoing and the caller can issue further
664 * commands that do not use the data lines, and then wait by calling
665 * mmc_wait_for_req_done().
666 * Does not attempt to parse the response.
667 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)668 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
669 {
670 __mmc_start_req(host, mrq);
671
672 if (!mrq->cap_cmd_during_tfr)
673 mmc_wait_for_req_done(host, mrq);
674 }
675 EXPORT_SYMBOL(mmc_wait_for_req);
676
677 /**
678 * mmc_wait_for_cmd - start a command and wait for completion
679 * @host: MMC host to start command
680 * @cmd: MMC command to start
681 * @retries: maximum number of retries
682 *
683 * Start a new MMC command for a host, and wait for the command
684 * to complete. Return any error that occurred while the command
685 * was executing. Do not attempt to parse the response.
686 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)687 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
688 {
689 struct mmc_request mrq = {};
690
691 WARN_ON(!host->claimed);
692
693 memset(cmd->resp, 0, sizeof(cmd->resp));
694 cmd->retries = retries;
695
696 mrq.cmd = cmd;
697 cmd->data = NULL;
698
699 mmc_wait_for_req(host, &mrq);
700
701 return cmd->error;
702 }
703
704 EXPORT_SYMBOL(mmc_wait_for_cmd);
705
706 /**
707 * mmc_set_data_timeout - set the timeout for a data command
708 * @data: data phase for command
709 * @card: the MMC card associated with the data transfer
710 *
711 * Computes the data timeout parameters according to the
712 * correct algorithm given the card type.
713 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)714 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
715 {
716 unsigned int mult;
717
718 /*
719 * SDIO cards only define an upper 1 s limit on access.
720 */
721 if (mmc_card_sdio(card)) {
722 data->timeout_ns = 1000000000;
723 data->timeout_clks = 0;
724 return;
725 }
726
727 /*
728 * SD cards use a 100 multiplier rather than 10
729 */
730 mult = mmc_card_sd(card) ? 100 : 10;
731
732 /*
733 * Scale up the multiplier (and therefore the timeout) by
734 * the r2w factor for writes.
735 */
736 if (data->flags & MMC_DATA_WRITE)
737 mult <<= card->csd.r2w_factor;
738
739 data->timeout_ns = card->csd.taac_ns * mult;
740 data->timeout_clks = card->csd.taac_clks * mult;
741
742 /*
743 * SD cards also have an upper limit on the timeout.
744 */
745 if (mmc_card_sd(card)) {
746 unsigned int timeout_us, limit_us;
747
748 timeout_us = data->timeout_ns / 1000;
749 if (card->host->ios.clock)
750 timeout_us += data->timeout_clks * 1000 /
751 (card->host->ios.clock / 1000);
752
753 if (data->flags & MMC_DATA_WRITE)
754 /*
755 * The MMC spec "It is strongly recommended
756 * for hosts to implement more than 500ms
757 * timeout value even if the card indicates
758 * the 250ms maximum busy length." Even the
759 * previous value of 300ms is known to be
760 * insufficient for some cards.
761 */
762 limit_us = 3000000;
763 else
764 limit_us = 100000;
765
766 /*
767 * SDHC cards always use these fixed values.
768 */
769 if (timeout_us > limit_us) {
770 data->timeout_ns = limit_us * 1000;
771 data->timeout_clks = 0;
772 }
773
774 /* assign limit value if invalid */
775 if (timeout_us == 0)
776 data->timeout_ns = limit_us * 1000;
777 }
778
779 /*
780 * Some cards require longer data read timeout than indicated in CSD.
781 * Address this by setting the read timeout to a "reasonably high"
782 * value. For the cards tested, 600ms has proven enough. If necessary,
783 * this value can be increased if other problematic cards require this.
784 */
785 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
786 data->timeout_ns = 600000000;
787 data->timeout_clks = 0;
788 }
789
790 /*
791 * Some cards need very high timeouts if driven in SPI mode.
792 * The worst observed timeout was 900ms after writing a
793 * continuous stream of data until the internal logic
794 * overflowed.
795 */
796 if (mmc_host_is_spi(card->host)) {
797 if (data->flags & MMC_DATA_WRITE) {
798 if (data->timeout_ns < 1000000000)
799 data->timeout_ns = 1000000000; /* 1s */
800 } else {
801 if (data->timeout_ns < 100000000)
802 data->timeout_ns = 100000000; /* 100ms */
803 }
804 }
805 }
806 EXPORT_SYMBOL(mmc_set_data_timeout);
807
808 /**
809 * mmc_align_data_size - pads a transfer size to a more optimal value
810 * @card: the MMC card associated with the data transfer
811 * @sz: original transfer size
812 *
813 * Pads the original data size with a number of extra bytes in
814 * order to avoid controller bugs and/or performance hits
815 * (e.g. some controllers revert to PIO for certain sizes).
816 *
817 * Returns the improved size, which might be unmodified.
818 *
819 * Note that this function is only relevant when issuing a
820 * single scatter gather entry.
821 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)822 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
823 {
824 /*
825 * FIXME: We don't have a system for the controller to tell
826 * the core about its problems yet, so for now we just 32-bit
827 * align the size.
828 */
829 sz = ((sz + 3) / 4) * 4;
830
831 return sz;
832 }
833 EXPORT_SYMBOL(mmc_align_data_size);
834
835 /**
836 * __mmc_claim_host - exclusively claim a host
837 * @host: mmc host to claim
838 * @abort: whether or not the operation should be aborted
839 *
840 * Claim a host for a set of operations. If @abort is non null and
841 * dereference a non-zero value then this will return prematurely with
842 * that non-zero value without acquiring the lock. Returns zero
843 * with the lock held otherwise.
844 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)845 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
846 {
847 DECLARE_WAITQUEUE(wait, current);
848 unsigned long flags;
849 int stop;
850 bool pm = false;
851
852 might_sleep();
853
854 add_wait_queue(&host->wq, &wait);
855 spin_lock_irqsave(&host->lock, flags);
856 while (1) {
857 set_current_state(TASK_UNINTERRUPTIBLE);
858 stop = abort ? atomic_read(abort) : 0;
859 if (stop || !host->claimed || host->claimer == current)
860 break;
861 spin_unlock_irqrestore(&host->lock, flags);
862 schedule();
863 spin_lock_irqsave(&host->lock, flags);
864 }
865 set_current_state(TASK_RUNNING);
866 if (!stop) {
867 host->claimed = 1;
868 host->claimer = current;
869 host->claim_cnt += 1;
870 if (host->claim_cnt == 1)
871 pm = true;
872 } else
873 wake_up(&host->wq);
874 spin_unlock_irqrestore(&host->lock, flags);
875 remove_wait_queue(&host->wq, &wait);
876
877 if (pm)
878 pm_runtime_get_sync(mmc_dev(host));
879
880 return stop;
881 }
882 EXPORT_SYMBOL(__mmc_claim_host);
883
884 /**
885 * mmc_release_host - release a host
886 * @host: mmc host to release
887 *
888 * Release a MMC host, allowing others to claim the host
889 * for their operations.
890 */
mmc_release_host(struct mmc_host * host)891 void mmc_release_host(struct mmc_host *host)
892 {
893 unsigned long flags;
894
895 WARN_ON(!host->claimed);
896
897 spin_lock_irqsave(&host->lock, flags);
898 if (--host->claim_cnt) {
899 /* Release for nested claim */
900 spin_unlock_irqrestore(&host->lock, flags);
901 } else {
902 host->claimed = 0;
903 host->claimer = NULL;
904 spin_unlock_irqrestore(&host->lock, flags);
905 wake_up(&host->wq);
906 pm_runtime_mark_last_busy(mmc_dev(host));
907 pm_runtime_put_autosuspend(mmc_dev(host));
908 }
909 }
910 EXPORT_SYMBOL(mmc_release_host);
911
912 /*
913 * This is a helper function, which fetches a runtime pm reference for the
914 * card device and also claims the host.
915 */
mmc_get_card(struct mmc_card * card)916 void mmc_get_card(struct mmc_card *card)
917 {
918 pm_runtime_get_sync(&card->dev);
919 mmc_claim_host(card->host);
920 }
921 EXPORT_SYMBOL(mmc_get_card);
922
923 /*
924 * This is a helper function, which releases the host and drops the runtime
925 * pm reference for the card device.
926 */
mmc_put_card(struct mmc_card * card)927 void mmc_put_card(struct mmc_card *card)
928 {
929 mmc_release_host(card->host);
930 pm_runtime_mark_last_busy(&card->dev);
931 pm_runtime_put_autosuspend(&card->dev);
932 }
933 EXPORT_SYMBOL(mmc_put_card);
934
935 /*
936 * Internal function that does the actual ios call to the host driver,
937 * optionally printing some debug output.
938 */
mmc_set_ios(struct mmc_host * host)939 static inline void mmc_set_ios(struct mmc_host *host)
940 {
941 struct mmc_ios *ios = &host->ios;
942
943 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
944 "width %u timing %u\n",
945 mmc_hostname(host), ios->clock, ios->bus_mode,
946 ios->power_mode, ios->chip_select, ios->vdd,
947 1 << ios->bus_width, ios->timing);
948
949 host->ops->set_ios(host, ios);
950 }
951
952 /*
953 * Control chip select pin on a host.
954 */
mmc_set_chip_select(struct mmc_host * host,int mode)955 void mmc_set_chip_select(struct mmc_host *host, int mode)
956 {
957 host->ios.chip_select = mode;
958 mmc_set_ios(host);
959 }
960
961 /*
962 * Sets the host clock to the highest possible frequency that
963 * is below "hz".
964 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)965 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
966 {
967 WARN_ON(hz && hz < host->f_min);
968
969 if (hz > host->f_max)
970 hz = host->f_max;
971
972 host->ios.clock = hz;
973 mmc_set_ios(host);
974 }
975
mmc_execute_tuning(struct mmc_card * card)976 int mmc_execute_tuning(struct mmc_card *card)
977 {
978 struct mmc_host *host = card->host;
979 u32 opcode;
980 int err;
981
982 if (!host->ops->execute_tuning)
983 return 0;
984
985 if (host->cqe_on)
986 host->cqe_ops->cqe_off(host);
987
988 if (mmc_card_mmc(card))
989 opcode = MMC_SEND_TUNING_BLOCK_HS200;
990 else
991 opcode = MMC_SEND_TUNING_BLOCK;
992
993 err = host->ops->execute_tuning(host, opcode);
994
995 if (err)
996 pr_err("%s: tuning execution failed: %d\n",
997 mmc_hostname(host), err);
998 else
999 mmc_retune_enable(host);
1000
1001 return err;
1002 }
1003
1004 /*
1005 * Change the bus mode (open drain/push-pull) of a host.
1006 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1007 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1008 {
1009 host->ios.bus_mode = mode;
1010 mmc_set_ios(host);
1011 }
1012
1013 /*
1014 * Change data bus width of a host.
1015 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1016 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1017 {
1018 host->ios.bus_width = width;
1019 mmc_set_ios(host);
1020 }
1021
1022 /*
1023 * Set initial state after a power cycle or a hw_reset.
1024 */
mmc_set_initial_state(struct mmc_host * host)1025 void mmc_set_initial_state(struct mmc_host *host)
1026 {
1027 if (host->cqe_on)
1028 host->cqe_ops->cqe_off(host);
1029
1030 mmc_retune_disable(host);
1031
1032 if (mmc_host_is_spi(host))
1033 host->ios.chip_select = MMC_CS_HIGH;
1034 else
1035 host->ios.chip_select = MMC_CS_DONTCARE;
1036 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1037 host->ios.bus_width = MMC_BUS_WIDTH_1;
1038 host->ios.timing = MMC_TIMING_LEGACY;
1039 host->ios.drv_type = 0;
1040 host->ios.enhanced_strobe = false;
1041
1042 /*
1043 * Make sure we are in non-enhanced strobe mode before we
1044 * actually enable it in ext_csd.
1045 */
1046 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1047 host->ops->hs400_enhanced_strobe)
1048 host->ops->hs400_enhanced_strobe(host, &host->ios);
1049
1050 mmc_set_ios(host);
1051 }
1052
1053 /**
1054 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1055 * @vdd: voltage (mV)
1056 * @low_bits: prefer low bits in boundary cases
1057 *
1058 * This function returns the OCR bit number according to the provided @vdd
1059 * value. If conversion is not possible a negative errno value returned.
1060 *
1061 * Depending on the @low_bits flag the function prefers low or high OCR bits
1062 * on boundary voltages. For example,
1063 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1064 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1065 *
1066 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1067 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1068 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1069 {
1070 const int max_bit = ilog2(MMC_VDD_35_36);
1071 int bit;
1072
1073 if (vdd < 1650 || vdd > 3600)
1074 return -EINVAL;
1075
1076 if (vdd >= 1650 && vdd <= 1950)
1077 return ilog2(MMC_VDD_165_195);
1078
1079 if (low_bits)
1080 vdd -= 1;
1081
1082 /* Base 2000 mV, step 100 mV, bit's base 8. */
1083 bit = (vdd - 2000) / 100 + 8;
1084 if (bit > max_bit)
1085 return max_bit;
1086 return bit;
1087 }
1088
1089 /**
1090 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1091 * @vdd_min: minimum voltage value (mV)
1092 * @vdd_max: maximum voltage value (mV)
1093 *
1094 * This function returns the OCR mask bits according to the provided @vdd_min
1095 * and @vdd_max values. If conversion is not possible the function returns 0.
1096 *
1097 * Notes wrt boundary cases:
1098 * This function sets the OCR bits for all boundary voltages, for example
1099 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1100 * MMC_VDD_34_35 mask.
1101 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1102 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1103 {
1104 u32 mask = 0;
1105
1106 if (vdd_max < vdd_min)
1107 return 0;
1108
1109 /* Prefer high bits for the boundary vdd_max values. */
1110 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1111 if (vdd_max < 0)
1112 return 0;
1113
1114 /* Prefer low bits for the boundary vdd_min values. */
1115 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1116 if (vdd_min < 0)
1117 return 0;
1118
1119 /* Fill the mask, from max bit to min bit. */
1120 while (vdd_max >= vdd_min)
1121 mask |= 1 << vdd_max--;
1122
1123 return mask;
1124 }
1125 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1126
1127 #ifdef CONFIG_OF
1128
1129 /**
1130 * mmc_of_parse_voltage - return mask of supported voltages
1131 * @np: The device node need to be parsed.
1132 * @mask: mask of voltages available for MMC/SD/SDIO
1133 *
1134 * Parse the "voltage-ranges" DT property, returning zero if it is not
1135 * found, negative errno if the voltage-range specification is invalid,
1136 * or one if the voltage-range is specified and successfully parsed.
1137 */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1138 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1139 {
1140 const u32 *voltage_ranges;
1141 int num_ranges, i;
1142
1143 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1144 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1145 if (!voltage_ranges) {
1146 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1147 return 0;
1148 }
1149 if (!num_ranges) {
1150 pr_err("%pOF: voltage-ranges empty\n", np);
1151 return -EINVAL;
1152 }
1153
1154 for (i = 0; i < num_ranges; i++) {
1155 const int j = i * 2;
1156 u32 ocr_mask;
1157
1158 ocr_mask = mmc_vddrange_to_ocrmask(
1159 be32_to_cpu(voltage_ranges[j]),
1160 be32_to_cpu(voltage_ranges[j + 1]));
1161 if (!ocr_mask) {
1162 pr_err("%pOF: voltage-range #%d is invalid\n",
1163 np, i);
1164 return -EINVAL;
1165 }
1166 *mask |= ocr_mask;
1167 }
1168
1169 return 1;
1170 }
1171 EXPORT_SYMBOL(mmc_of_parse_voltage);
1172
1173 #endif /* CONFIG_OF */
1174
mmc_of_get_func_num(struct device_node * node)1175 static int mmc_of_get_func_num(struct device_node *node)
1176 {
1177 u32 reg;
1178 int ret;
1179
1180 ret = of_property_read_u32(node, "reg", ®);
1181 if (ret < 0)
1182 return ret;
1183
1184 return reg;
1185 }
1186
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1187 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1188 unsigned func_num)
1189 {
1190 struct device_node *node;
1191
1192 if (!host->parent || !host->parent->of_node)
1193 return NULL;
1194
1195 for_each_child_of_node(host->parent->of_node, node) {
1196 if (mmc_of_get_func_num(node) == func_num)
1197 return node;
1198 }
1199
1200 return NULL;
1201 }
1202
1203 #ifdef CONFIG_REGULATOR
1204
1205 /**
1206 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1207 * @vdd_bit: OCR bit number
1208 * @min_uV: minimum voltage value (mV)
1209 * @max_uV: maximum voltage value (mV)
1210 *
1211 * This function returns the voltage range according to the provided OCR
1212 * bit number. If conversion is not possible a negative errno value returned.
1213 */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1214 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1215 {
1216 int tmp;
1217
1218 if (!vdd_bit)
1219 return -EINVAL;
1220
1221 /*
1222 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1223 * bits this regulator doesn't quite support ... don't
1224 * be too picky, most cards and regulators are OK with
1225 * a 0.1V range goof (it's a small error percentage).
1226 */
1227 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1228 if (tmp == 0) {
1229 *min_uV = 1650 * 1000;
1230 *max_uV = 1950 * 1000;
1231 } else {
1232 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1233 *max_uV = *min_uV + 100 * 1000;
1234 }
1235
1236 return 0;
1237 }
1238
1239 /**
1240 * mmc_regulator_get_ocrmask - return mask of supported voltages
1241 * @supply: regulator to use
1242 *
1243 * This returns either a negative errno, or a mask of voltages that
1244 * can be provided to MMC/SD/SDIO devices using the specified voltage
1245 * regulator. This would normally be called before registering the
1246 * MMC host adapter.
1247 */
mmc_regulator_get_ocrmask(struct regulator * supply)1248 int mmc_regulator_get_ocrmask(struct regulator *supply)
1249 {
1250 int result = 0;
1251 int count;
1252 int i;
1253 int vdd_uV;
1254 int vdd_mV;
1255
1256 count = regulator_count_voltages(supply);
1257 if (count < 0)
1258 return count;
1259
1260 for (i = 0; i < count; i++) {
1261 vdd_uV = regulator_list_voltage(supply, i);
1262 if (vdd_uV <= 0)
1263 continue;
1264
1265 vdd_mV = vdd_uV / 1000;
1266 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1267 }
1268
1269 if (!result) {
1270 vdd_uV = regulator_get_voltage(supply);
1271 if (vdd_uV <= 0)
1272 return vdd_uV;
1273
1274 vdd_mV = vdd_uV / 1000;
1275 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1276 }
1277
1278 return result;
1279 }
1280 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1281
1282 /**
1283 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1284 * @mmc: the host to regulate
1285 * @supply: regulator to use
1286 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1287 *
1288 * Returns zero on success, else negative errno.
1289 *
1290 * MMC host drivers may use this to enable or disable a regulator using
1291 * a particular supply voltage. This would normally be called from the
1292 * set_ios() method.
1293 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1294 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1295 struct regulator *supply,
1296 unsigned short vdd_bit)
1297 {
1298 int result = 0;
1299 int min_uV, max_uV;
1300
1301 if (vdd_bit) {
1302 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1303
1304 result = regulator_set_voltage(supply, min_uV, max_uV);
1305 if (result == 0 && !mmc->regulator_enabled) {
1306 result = regulator_enable(supply);
1307 if (!result)
1308 mmc->regulator_enabled = true;
1309 }
1310 } else if (mmc->regulator_enabled) {
1311 result = regulator_disable(supply);
1312 if (result == 0)
1313 mmc->regulator_enabled = false;
1314 }
1315
1316 if (result)
1317 dev_err(mmc_dev(mmc),
1318 "could not set regulator OCR (%d)\n", result);
1319 return result;
1320 }
1321 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1322
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1323 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1324 int min_uV, int target_uV,
1325 int max_uV)
1326 {
1327 /*
1328 * Check if supported first to avoid errors since we may try several
1329 * signal levels during power up and don't want to show errors.
1330 */
1331 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1332 return -EINVAL;
1333
1334 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1335 max_uV);
1336 }
1337
1338 /**
1339 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1340 *
1341 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1342 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1343 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1344 * SD card spec also define VQMMC in terms of VMMC.
1345 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1346 *
1347 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1348 * requested voltage. This is definitely a good idea for UHS where there's a
1349 * separate regulator on the card that's trying to make 1.8V and it's best if
1350 * we match.
1351 *
1352 * This function is expected to be used by a controller's
1353 * start_signal_voltage_switch() function.
1354 */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1355 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1356 {
1357 struct device *dev = mmc_dev(mmc);
1358 int ret, volt, min_uV, max_uV;
1359
1360 /* If no vqmmc supply then we can't change the voltage */
1361 if (IS_ERR(mmc->supply.vqmmc))
1362 return -EINVAL;
1363
1364 switch (ios->signal_voltage) {
1365 case MMC_SIGNAL_VOLTAGE_120:
1366 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1367 1100000, 1200000, 1300000);
1368 case MMC_SIGNAL_VOLTAGE_180:
1369 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1370 1700000, 1800000, 1950000);
1371 case MMC_SIGNAL_VOLTAGE_330:
1372 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1373 if (ret < 0)
1374 return ret;
1375
1376 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1377 __func__, volt, max_uV);
1378
1379 min_uV = max(volt - 300000, 2700000);
1380 max_uV = min(max_uV + 200000, 3600000);
1381
1382 /*
1383 * Due to a limitation in the current implementation of
1384 * regulator_set_voltage_triplet() which is taking the lowest
1385 * voltage possible if below the target, search for a suitable
1386 * voltage in two steps and try to stay close to vmmc
1387 * with a 0.3V tolerance at first.
1388 */
1389 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1390 min_uV, volt, max_uV))
1391 return 0;
1392
1393 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1394 2700000, volt, 3600000);
1395 default:
1396 return -EINVAL;
1397 }
1398 }
1399 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1400
1401 #endif /* CONFIG_REGULATOR */
1402
mmc_regulator_get_supply(struct mmc_host * mmc)1403 int mmc_regulator_get_supply(struct mmc_host *mmc)
1404 {
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433 /*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438 {
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469 }
1470
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472 {
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485 }
1486
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1487 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1488 {
1489 struct mmc_command cmd = {};
1490 int err = 0;
1491 u32 clock;
1492
1493 /*
1494 * If we cannot switch voltages, return failure so the caller
1495 * can continue without UHS mode
1496 */
1497 if (!host->ops->start_signal_voltage_switch)
1498 return -EPERM;
1499 if (!host->ops->card_busy)
1500 pr_warn("%s: cannot verify signal voltage switch\n",
1501 mmc_hostname(host));
1502
1503 cmd.opcode = SD_SWITCH_VOLTAGE;
1504 cmd.arg = 0;
1505 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1506
1507 err = mmc_wait_for_cmd(host, &cmd, 0);
1508 if (err)
1509 return err;
1510
1511 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1512 return -EIO;
1513
1514 /*
1515 * The card should drive cmd and dat[0:3] low immediately
1516 * after the response of cmd11, but wait 1 ms to be sure
1517 */
1518 mmc_delay(1);
1519 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1520 err = -EAGAIN;
1521 goto power_cycle;
1522 }
1523 /*
1524 * During a signal voltage level switch, the clock must be gated
1525 * for 5 ms according to the SD spec
1526 */
1527 clock = host->ios.clock;
1528 host->ios.clock = 0;
1529 mmc_set_ios(host);
1530
1531 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
1532 /*
1533 * Voltages may not have been switched, but we've already
1534 * sent CMD11, so a power cycle is required anyway
1535 */
1536 err = -EAGAIN;
1537 goto power_cycle;
1538 }
1539
1540 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1541 mmc_delay(10);
1542 host->ios.clock = clock;
1543 mmc_set_ios(host);
1544
1545 /* Wait for at least 1 ms according to spec */
1546 mmc_delay(1);
1547
1548 /*
1549 * Failure to switch is indicated by the card holding
1550 * dat[0:3] low
1551 */
1552 if (host->ops->card_busy && host->ops->card_busy(host))
1553 err = -EAGAIN;
1554
1555 power_cycle:
1556 if (err) {
1557 pr_debug("%s: Signal voltage switch failed, "
1558 "power cycling card\n", mmc_hostname(host));
1559 mmc_power_cycle(host, ocr);
1560 }
1561
1562 return err;
1563 }
1564
1565 /*
1566 * Select timing parameters for host.
1567 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1568 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1569 {
1570 host->ios.timing = timing;
1571 mmc_set_ios(host);
1572 }
1573
1574 /*
1575 * Select appropriate driver type for host.
1576 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1577 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1578 {
1579 host->ios.drv_type = drv_type;
1580 mmc_set_ios(host);
1581 }
1582
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1583 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1584 int card_drv_type, int *drv_type)
1585 {
1586 struct mmc_host *host = card->host;
1587 int host_drv_type = SD_DRIVER_TYPE_B;
1588
1589 *drv_type = 0;
1590
1591 if (!host->ops->select_drive_strength)
1592 return 0;
1593
1594 /* Use SD definition of driver strength for hosts */
1595 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1596 host_drv_type |= SD_DRIVER_TYPE_A;
1597
1598 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1599 host_drv_type |= SD_DRIVER_TYPE_C;
1600
1601 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1602 host_drv_type |= SD_DRIVER_TYPE_D;
1603
1604 /*
1605 * The drive strength that the hardware can support
1606 * depends on the board design. Pass the appropriate
1607 * information and let the hardware specific code
1608 * return what is possible given the options
1609 */
1610 return host->ops->select_drive_strength(card, max_dtr,
1611 host_drv_type,
1612 card_drv_type,
1613 drv_type);
1614 }
1615
1616 /*
1617 * Apply power to the MMC stack. This is a two-stage process.
1618 * First, we enable power to the card without the clock running.
1619 * We then wait a bit for the power to stabilise. Finally,
1620 * enable the bus drivers and clock to the card.
1621 *
1622 * We must _NOT_ enable the clock prior to power stablising.
1623 *
1624 * If a host does all the power sequencing itself, ignore the
1625 * initial MMC_POWER_UP stage.
1626 */
mmc_power_up(struct mmc_host * host,u32 ocr)1627 void mmc_power_up(struct mmc_host *host, u32 ocr)
1628 {
1629 if (host->ios.power_mode == MMC_POWER_ON)
1630 return;
1631
1632 mmc_pwrseq_pre_power_on(host);
1633
1634 host->ios.vdd = fls(ocr) - 1;
1635 host->ios.power_mode = MMC_POWER_UP;
1636 /* Set initial state and call mmc_set_ios */
1637 mmc_set_initial_state(host);
1638
1639 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1640 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1641 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1642 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1643 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1644 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1645 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1646
1647 /*
1648 * This delay should be sufficient to allow the power supply
1649 * to reach the minimum voltage.
1650 */
1651 mmc_delay(10);
1652
1653 mmc_pwrseq_post_power_on(host);
1654
1655 host->ios.clock = host->f_init;
1656
1657 host->ios.power_mode = MMC_POWER_ON;
1658 mmc_set_ios(host);
1659
1660 /*
1661 * This delay must be at least 74 clock sizes, or 1 ms, or the
1662 * time required to reach a stable voltage.
1663 */
1664 mmc_delay(10);
1665 }
1666
mmc_power_off(struct mmc_host * host)1667 void mmc_power_off(struct mmc_host *host)
1668 {
1669 if (host->ios.power_mode == MMC_POWER_OFF)
1670 return;
1671
1672 mmc_pwrseq_power_off(host);
1673
1674 host->ios.clock = 0;
1675 host->ios.vdd = 0;
1676
1677 host->ios.power_mode = MMC_POWER_OFF;
1678 /* Set initial state and call mmc_set_ios */
1679 mmc_set_initial_state(host);
1680
1681 /*
1682 * Some configurations, such as the 802.11 SDIO card in the OLPC
1683 * XO-1.5, require a short delay after poweroff before the card
1684 * can be successfully turned on again.
1685 */
1686 mmc_delay(1);
1687 }
1688
mmc_power_cycle(struct mmc_host * host,u32 ocr)1689 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1690 {
1691 mmc_power_off(host);
1692 /* Wait at least 1 ms according to SD spec */
1693 mmc_delay(1);
1694 mmc_power_up(host, ocr);
1695 }
1696
1697 /*
1698 * Cleanup when the last reference to the bus operator is dropped.
1699 */
__mmc_release_bus(struct mmc_host * host)1700 static void __mmc_release_bus(struct mmc_host *host)
1701 {
1702 WARN_ON(!host->bus_dead);
1703
1704 host->bus_ops = NULL;
1705 }
1706
1707 /*
1708 * Increase reference count of bus operator
1709 */
mmc_bus_get(struct mmc_host * host)1710 static inline void mmc_bus_get(struct mmc_host *host)
1711 {
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&host->lock, flags);
1715 host->bus_refs++;
1716 spin_unlock_irqrestore(&host->lock, flags);
1717 }
1718
1719 /*
1720 * Decrease reference count of bus operator and free it if
1721 * it is the last reference.
1722 */
mmc_bus_put(struct mmc_host * host)1723 static inline void mmc_bus_put(struct mmc_host *host)
1724 {
1725 unsigned long flags;
1726
1727 spin_lock_irqsave(&host->lock, flags);
1728 host->bus_refs--;
1729 if ((host->bus_refs == 0) && host->bus_ops)
1730 __mmc_release_bus(host);
1731 spin_unlock_irqrestore(&host->lock, flags);
1732 }
1733
1734 /*
1735 * Assign a mmc bus handler to a host. Only one bus handler may control a
1736 * host at any given time.
1737 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1738 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1739 {
1740 unsigned long flags;
1741
1742 WARN_ON(!host->claimed);
1743
1744 spin_lock_irqsave(&host->lock, flags);
1745
1746 WARN_ON(host->bus_ops);
1747 WARN_ON(host->bus_refs);
1748
1749 host->bus_ops = ops;
1750 host->bus_refs = 1;
1751 host->bus_dead = 0;
1752
1753 spin_unlock_irqrestore(&host->lock, flags);
1754 }
1755
1756 /*
1757 * Remove the current bus handler from a host.
1758 */
mmc_detach_bus(struct mmc_host * host)1759 void mmc_detach_bus(struct mmc_host *host)
1760 {
1761 unsigned long flags;
1762
1763 WARN_ON(!host->claimed);
1764 WARN_ON(!host->bus_ops);
1765
1766 spin_lock_irqsave(&host->lock, flags);
1767
1768 host->bus_dead = 1;
1769
1770 spin_unlock_irqrestore(&host->lock, flags);
1771
1772 mmc_bus_put(host);
1773 }
1774
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1775 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1776 bool cd_irq)
1777 {
1778 /*
1779 * If the device is configured as wakeup, we prevent a new sleep for
1780 * 5 s to give provision for user space to consume the event.
1781 */
1782 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1783 device_can_wakeup(mmc_dev(host)))
1784 pm_wakeup_event(mmc_dev(host), 5000);
1785
1786 host->detect_change = 1;
1787 mmc_schedule_delayed_work(&host->detect, delay);
1788 }
1789
1790 /**
1791 * mmc_detect_change - process change of state on a MMC socket
1792 * @host: host which changed state.
1793 * @delay: optional delay to wait before detection (jiffies)
1794 *
1795 * MMC drivers should call this when they detect a card has been
1796 * inserted or removed. The MMC layer will confirm that any
1797 * present card is still functional, and initialize any newly
1798 * inserted.
1799 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1800 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1801 {
1802 _mmc_detect_change(host, delay, true);
1803 }
1804 EXPORT_SYMBOL(mmc_detect_change);
1805
mmc_init_erase(struct mmc_card * card)1806 void mmc_init_erase(struct mmc_card *card)
1807 {
1808 unsigned int sz;
1809
1810 if (is_power_of_2(card->erase_size))
1811 card->erase_shift = ffs(card->erase_size) - 1;
1812 else
1813 card->erase_shift = 0;
1814
1815 /*
1816 * It is possible to erase an arbitrarily large area of an SD or MMC
1817 * card. That is not desirable because it can take a long time
1818 * (minutes) potentially delaying more important I/O, and also the
1819 * timeout calculations become increasingly hugely over-estimated.
1820 * Consequently, 'pref_erase' is defined as a guide to limit erases
1821 * to that size and alignment.
1822 *
1823 * For SD cards that define Allocation Unit size, limit erases to one
1824 * Allocation Unit at a time.
1825 * For MMC, have a stab at ai good value and for modern cards it will
1826 * end up being 4MiB. Note that if the value is too small, it can end
1827 * up taking longer to erase. Also note, erase_size is already set to
1828 * High Capacity Erase Size if available when this function is called.
1829 */
1830 if (mmc_card_sd(card) && card->ssr.au) {
1831 card->pref_erase = card->ssr.au;
1832 card->erase_shift = ffs(card->ssr.au) - 1;
1833 } else if (card->erase_size) {
1834 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1835 if (sz < 128)
1836 card->pref_erase = 512 * 1024 / 512;
1837 else if (sz < 512)
1838 card->pref_erase = 1024 * 1024 / 512;
1839 else if (sz < 1024)
1840 card->pref_erase = 2 * 1024 * 1024 / 512;
1841 else
1842 card->pref_erase = 4 * 1024 * 1024 / 512;
1843 if (card->pref_erase < card->erase_size)
1844 card->pref_erase = card->erase_size;
1845 else {
1846 sz = card->pref_erase % card->erase_size;
1847 if (sz)
1848 card->pref_erase += card->erase_size - sz;
1849 }
1850 } else
1851 card->pref_erase = 0;
1852 }
1853
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1854 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1855 unsigned int arg, unsigned int qty)
1856 {
1857 unsigned int erase_timeout;
1858
1859 if (arg == MMC_DISCARD_ARG ||
1860 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1861 erase_timeout = card->ext_csd.trim_timeout;
1862 } else if (card->ext_csd.erase_group_def & 1) {
1863 /* High Capacity Erase Group Size uses HC timeouts */
1864 if (arg == MMC_TRIM_ARG)
1865 erase_timeout = card->ext_csd.trim_timeout;
1866 else
1867 erase_timeout = card->ext_csd.hc_erase_timeout;
1868 } else {
1869 /* CSD Erase Group Size uses write timeout */
1870 unsigned int mult = (10 << card->csd.r2w_factor);
1871 unsigned int timeout_clks = card->csd.taac_clks * mult;
1872 unsigned int timeout_us;
1873
1874 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1875 if (card->csd.taac_ns < 1000000)
1876 timeout_us = (card->csd.taac_ns * mult) / 1000;
1877 else
1878 timeout_us = (card->csd.taac_ns / 1000) * mult;
1879
1880 /*
1881 * ios.clock is only a target. The real clock rate might be
1882 * less but not that much less, so fudge it by multiplying by 2.
1883 */
1884 timeout_clks <<= 1;
1885 timeout_us += (timeout_clks * 1000) /
1886 (card->host->ios.clock / 1000);
1887
1888 erase_timeout = timeout_us / 1000;
1889
1890 /*
1891 * Theoretically, the calculation could underflow so round up
1892 * to 1ms in that case.
1893 */
1894 if (!erase_timeout)
1895 erase_timeout = 1;
1896 }
1897
1898 /* Multiplier for secure operations */
1899 if (arg & MMC_SECURE_ARGS) {
1900 if (arg == MMC_SECURE_ERASE_ARG)
1901 erase_timeout *= card->ext_csd.sec_erase_mult;
1902 else
1903 erase_timeout *= card->ext_csd.sec_trim_mult;
1904 }
1905
1906 erase_timeout *= qty;
1907
1908 /*
1909 * Ensure at least a 1 second timeout for SPI as per
1910 * 'mmc_set_data_timeout()'
1911 */
1912 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1913 erase_timeout = 1000;
1914
1915 return erase_timeout;
1916 }
1917
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1918 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1919 unsigned int arg,
1920 unsigned int qty)
1921 {
1922 unsigned int erase_timeout;
1923
1924 if (card->ssr.erase_timeout) {
1925 /* Erase timeout specified in SD Status Register (SSR) */
1926 erase_timeout = card->ssr.erase_timeout * qty +
1927 card->ssr.erase_offset;
1928 } else {
1929 /*
1930 * Erase timeout not specified in SD Status Register (SSR) so
1931 * use 250ms per write block.
1932 */
1933 erase_timeout = 250 * qty;
1934 }
1935
1936 /* Must not be less than 1 second */
1937 if (erase_timeout < 1000)
1938 erase_timeout = 1000;
1939
1940 return erase_timeout;
1941 }
1942
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1943 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1944 unsigned int arg,
1945 unsigned int qty)
1946 {
1947 if (mmc_card_sd(card))
1948 return mmc_sd_erase_timeout(card, arg, qty);
1949 else
1950 return mmc_mmc_erase_timeout(card, arg, qty);
1951 }
1952
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1953 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1954 unsigned int to, unsigned int arg)
1955 {
1956 struct mmc_command cmd = {};
1957 unsigned int qty = 0, busy_timeout = 0;
1958 bool use_r1b_resp = false;
1959 unsigned long timeout;
1960 int err;
1961
1962 mmc_retune_hold(card->host);
1963
1964 /*
1965 * qty is used to calculate the erase timeout which depends on how many
1966 * erase groups (or allocation units in SD terminology) are affected.
1967 * We count erasing part of an erase group as one erase group.
1968 * For SD, the allocation units are always a power of 2. For MMC, the
1969 * erase group size is almost certainly also power of 2, but it does not
1970 * seem to insist on that in the JEDEC standard, so we fall back to
1971 * division in that case. SD may not specify an allocation unit size,
1972 * in which case the timeout is based on the number of write blocks.
1973 *
1974 * Note that the timeout for secure trim 2 will only be correct if the
1975 * number of erase groups specified is the same as the total of all
1976 * preceding secure trim 1 commands. Since the power may have been
1977 * lost since the secure trim 1 commands occurred, it is generally
1978 * impossible to calculate the secure trim 2 timeout correctly.
1979 */
1980 if (card->erase_shift)
1981 qty += ((to >> card->erase_shift) -
1982 (from >> card->erase_shift)) + 1;
1983 else if (mmc_card_sd(card))
1984 qty += to - from + 1;
1985 else
1986 qty += ((to / card->erase_size) -
1987 (from / card->erase_size)) + 1;
1988
1989 if (!mmc_card_blockaddr(card)) {
1990 from <<= 9;
1991 to <<= 9;
1992 }
1993
1994 if (mmc_card_sd(card))
1995 cmd.opcode = SD_ERASE_WR_BLK_START;
1996 else
1997 cmd.opcode = MMC_ERASE_GROUP_START;
1998 cmd.arg = from;
1999 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2001 if (err) {
2002 pr_err("mmc_erase: group start error %d, "
2003 "status %#x\n", err, cmd.resp[0]);
2004 err = -EIO;
2005 goto out;
2006 }
2007
2008 memset(&cmd, 0, sizeof(struct mmc_command));
2009 if (mmc_card_sd(card))
2010 cmd.opcode = SD_ERASE_WR_BLK_END;
2011 else
2012 cmd.opcode = MMC_ERASE_GROUP_END;
2013 cmd.arg = to;
2014 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2015 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2016 if (err) {
2017 pr_err("mmc_erase: group end error %d, status %#x\n",
2018 err, cmd.resp[0]);
2019 err = -EIO;
2020 goto out;
2021 }
2022
2023 memset(&cmd, 0, sizeof(struct mmc_command));
2024 cmd.opcode = MMC_ERASE;
2025 cmd.arg = arg;
2026 busy_timeout = mmc_erase_timeout(card, arg, qty);
2027 /*
2028 * If the host controller supports busy signalling and the timeout for
2029 * the erase operation does not exceed the max_busy_timeout, we should
2030 * use R1B response. Or we need to prevent the host from doing hw busy
2031 * detection, which is done by converting to a R1 response instead.
2032 */
2033 if (card->host->max_busy_timeout &&
2034 busy_timeout > card->host->max_busy_timeout) {
2035 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2036 } else {
2037 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2038 cmd.busy_timeout = busy_timeout;
2039 use_r1b_resp = true;
2040 }
2041
2042 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2043 if (err) {
2044 pr_err("mmc_erase: erase error %d, status %#x\n",
2045 err, cmd.resp[0]);
2046 err = -EIO;
2047 goto out;
2048 }
2049
2050 if (mmc_host_is_spi(card->host))
2051 goto out;
2052
2053 /*
2054 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2055 * shall be avoided.
2056 */
2057 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2058 goto out;
2059
2060 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2061 do {
2062 memset(&cmd, 0, sizeof(struct mmc_command));
2063 cmd.opcode = MMC_SEND_STATUS;
2064 cmd.arg = card->rca << 16;
2065 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2066 /* Do not retry else we can't see errors */
2067 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2068 if (err || (cmd.resp[0] & 0xFDF92000)) {
2069 pr_err("error %d requesting status %#x\n",
2070 err, cmd.resp[0]);
2071 err = -EIO;
2072 goto out;
2073 }
2074
2075 /* Timeout if the device never becomes ready for data and
2076 * never leaves the program state.
2077 */
2078 if (time_after(jiffies, timeout)) {
2079 pr_err("%s: Card stuck in programming state! %s\n",
2080 mmc_hostname(card->host), __func__);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2086 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2087 out:
2088 mmc_retune_release(card->host);
2089 return err;
2090 }
2091
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)2092 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2093 unsigned int *from,
2094 unsigned int *to,
2095 unsigned int nr)
2096 {
2097 unsigned int from_new = *from, nr_new = nr, rem;
2098
2099 /*
2100 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2101 * to align the erase size efficiently.
2102 */
2103 if (is_power_of_2(card->erase_size)) {
2104 unsigned int temp = from_new;
2105
2106 from_new = round_up(temp, card->erase_size);
2107 rem = from_new - temp;
2108
2109 if (nr_new > rem)
2110 nr_new -= rem;
2111 else
2112 return 0;
2113
2114 nr_new = round_down(nr_new, card->erase_size);
2115 } else {
2116 rem = from_new % card->erase_size;
2117 if (rem) {
2118 rem = card->erase_size - rem;
2119 from_new += rem;
2120 if (nr_new > rem)
2121 nr_new -= rem;
2122 else
2123 return 0;
2124 }
2125
2126 rem = nr_new % card->erase_size;
2127 if (rem)
2128 nr_new -= rem;
2129 }
2130
2131 if (nr_new == 0)
2132 return 0;
2133
2134 *to = from_new + nr_new;
2135 *from = from_new;
2136
2137 return nr_new;
2138 }
2139
2140 /**
2141 * mmc_erase - erase sectors.
2142 * @card: card to erase
2143 * @from: first sector to erase
2144 * @nr: number of sectors to erase
2145 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2146 *
2147 * Caller must claim host before calling this function.
2148 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2149 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2150 unsigned int arg)
2151 {
2152 unsigned int rem, to = from + nr;
2153 int err;
2154
2155 if (!(card->host->caps & MMC_CAP_ERASE) ||
2156 !(card->csd.cmdclass & CCC_ERASE))
2157 return -EOPNOTSUPP;
2158
2159 if (!card->erase_size)
2160 return -EOPNOTSUPP;
2161
2162 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2163 return -EOPNOTSUPP;
2164
2165 if ((arg & MMC_SECURE_ARGS) &&
2166 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2167 return -EOPNOTSUPP;
2168
2169 if ((arg & MMC_TRIM_ARGS) &&
2170 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2171 return -EOPNOTSUPP;
2172
2173 if (arg == MMC_SECURE_ERASE_ARG) {
2174 if (from % card->erase_size || nr % card->erase_size)
2175 return -EINVAL;
2176 }
2177
2178 if (arg == MMC_ERASE_ARG)
2179 nr = mmc_align_erase_size(card, &from, &to, nr);
2180
2181 if (nr == 0)
2182 return 0;
2183
2184 if (to <= from)
2185 return -EINVAL;
2186
2187 /* 'from' and 'to' are inclusive */
2188 to -= 1;
2189
2190 /*
2191 * Special case where only one erase-group fits in the timeout budget:
2192 * If the region crosses an erase-group boundary on this particular
2193 * case, we will be trimming more than one erase-group which, does not
2194 * fit in the timeout budget of the controller, so we need to split it
2195 * and call mmc_do_erase() twice if necessary. This special case is
2196 * identified by the card->eg_boundary flag.
2197 */
2198 rem = card->erase_size - (from % card->erase_size);
2199 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2200 err = mmc_do_erase(card, from, from + rem - 1, arg);
2201 from += rem;
2202 if ((err) || (to <= from))
2203 return err;
2204 }
2205
2206 return mmc_do_erase(card, from, to, arg);
2207 }
2208 EXPORT_SYMBOL(mmc_erase);
2209
mmc_can_erase(struct mmc_card * card)2210 int mmc_can_erase(struct mmc_card *card)
2211 {
2212 if ((card->host->caps & MMC_CAP_ERASE) &&
2213 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2214 return 1;
2215 return 0;
2216 }
2217 EXPORT_SYMBOL(mmc_can_erase);
2218
mmc_can_trim(struct mmc_card * card)2219 int mmc_can_trim(struct mmc_card *card)
2220 {
2221 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2222 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2223 return 1;
2224 return 0;
2225 }
2226 EXPORT_SYMBOL(mmc_can_trim);
2227
mmc_can_discard(struct mmc_card * card)2228 int mmc_can_discard(struct mmc_card *card)
2229 {
2230 /*
2231 * As there's no way to detect the discard support bit at v4.5
2232 * use the s/w feature support filed.
2233 */
2234 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2235 return 1;
2236 return 0;
2237 }
2238 EXPORT_SYMBOL(mmc_can_discard);
2239
mmc_can_sanitize(struct mmc_card * card)2240 int mmc_can_sanitize(struct mmc_card *card)
2241 {
2242 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2243 return 0;
2244 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2245 return 1;
2246 return 0;
2247 }
2248 EXPORT_SYMBOL(mmc_can_sanitize);
2249
mmc_can_secure_erase_trim(struct mmc_card * card)2250 int mmc_can_secure_erase_trim(struct mmc_card *card)
2251 {
2252 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2253 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2254 return 1;
2255 return 0;
2256 }
2257 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2258
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2259 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2260 unsigned int nr)
2261 {
2262 if (!card->erase_size)
2263 return 0;
2264 if (from % card->erase_size || nr % card->erase_size)
2265 return 0;
2266 return 1;
2267 }
2268 EXPORT_SYMBOL(mmc_erase_group_aligned);
2269
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2270 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2271 unsigned int arg)
2272 {
2273 struct mmc_host *host = card->host;
2274 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2275 unsigned int last_timeout = 0;
2276 unsigned int max_busy_timeout = host->max_busy_timeout ?
2277 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2278
2279 if (card->erase_shift) {
2280 max_qty = UINT_MAX >> card->erase_shift;
2281 min_qty = card->pref_erase >> card->erase_shift;
2282 } else if (mmc_card_sd(card)) {
2283 max_qty = UINT_MAX;
2284 min_qty = card->pref_erase;
2285 } else {
2286 max_qty = UINT_MAX / card->erase_size;
2287 min_qty = card->pref_erase / card->erase_size;
2288 }
2289
2290 /*
2291 * We should not only use 'host->max_busy_timeout' as the limitation
2292 * when deciding the max discard sectors. We should set a balance value
2293 * to improve the erase speed, and it can not get too long timeout at
2294 * the same time.
2295 *
2296 * Here we set 'card->pref_erase' as the minimal discard sectors no
2297 * matter what size of 'host->max_busy_timeout', but if the
2298 * 'host->max_busy_timeout' is large enough for more discard sectors,
2299 * then we can continue to increase the max discard sectors until we
2300 * get a balance value. In cases when the 'host->max_busy_timeout'
2301 * isn't specified, use the default max erase timeout.
2302 */
2303 do {
2304 y = 0;
2305 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2306 timeout = mmc_erase_timeout(card, arg, qty + x);
2307
2308 if (qty + x > min_qty && timeout > max_busy_timeout)
2309 break;
2310
2311 if (timeout < last_timeout)
2312 break;
2313 last_timeout = timeout;
2314 y = x;
2315 }
2316 qty += y;
2317 } while (y);
2318
2319 if (!qty)
2320 return 0;
2321
2322 /*
2323 * When specifying a sector range to trim, chances are we might cross
2324 * an erase-group boundary even if the amount of sectors is less than
2325 * one erase-group.
2326 * If we can only fit one erase-group in the controller timeout budget,
2327 * we have to care that erase-group boundaries are not crossed by a
2328 * single trim operation. We flag that special case with "eg_boundary".
2329 * In all other cases we can just decrement qty and pretend that we
2330 * always touch (qty + 1) erase-groups as a simple optimization.
2331 */
2332 if (qty == 1)
2333 card->eg_boundary = 1;
2334 else
2335 qty--;
2336
2337 /* Convert qty to sectors */
2338 if (card->erase_shift)
2339 max_discard = qty << card->erase_shift;
2340 else if (mmc_card_sd(card))
2341 max_discard = qty + 1;
2342 else
2343 max_discard = qty * card->erase_size;
2344
2345 return max_discard;
2346 }
2347
mmc_calc_max_discard(struct mmc_card * card)2348 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2349 {
2350 struct mmc_host *host = card->host;
2351 unsigned int max_discard, max_trim;
2352
2353 /*
2354 * Without erase_group_def set, MMC erase timeout depends on clock
2355 * frequence which can change. In that case, the best choice is
2356 * just the preferred erase size.
2357 */
2358 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2359 return card->pref_erase;
2360
2361 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2362 if (mmc_can_trim(card)) {
2363 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2364 if (max_trim < max_discard)
2365 max_discard = max_trim;
2366 } else if (max_discard < card->erase_size) {
2367 max_discard = 0;
2368 }
2369 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2370 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2371 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2372 return max_discard;
2373 }
2374 EXPORT_SYMBOL(mmc_calc_max_discard);
2375
mmc_card_is_blockaddr(struct mmc_card * card)2376 bool mmc_card_is_blockaddr(struct mmc_card *card)
2377 {
2378 return card ? mmc_card_blockaddr(card) : false;
2379 }
2380 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2381
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2382 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2383 {
2384 struct mmc_command cmd = {};
2385
2386 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2387 mmc_card_hs400(card) || mmc_card_hs400es(card))
2388 return 0;
2389
2390 cmd.opcode = MMC_SET_BLOCKLEN;
2391 cmd.arg = blocklen;
2392 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2393 return mmc_wait_for_cmd(card->host, &cmd, 5);
2394 }
2395 EXPORT_SYMBOL(mmc_set_blocklen);
2396
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2397 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2398 bool is_rel_write)
2399 {
2400 struct mmc_command cmd = {};
2401
2402 cmd.opcode = MMC_SET_BLOCK_COUNT;
2403 cmd.arg = blockcount & 0x0000FFFF;
2404 if (is_rel_write)
2405 cmd.arg |= 1 << 31;
2406 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2407 return mmc_wait_for_cmd(card->host, &cmd, 5);
2408 }
2409 EXPORT_SYMBOL(mmc_set_blockcount);
2410
mmc_hw_reset_for_init(struct mmc_host * host)2411 static void mmc_hw_reset_for_init(struct mmc_host *host)
2412 {
2413 mmc_pwrseq_reset(host);
2414
2415 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2416 return;
2417 host->ops->hw_reset(host);
2418 }
2419
mmc_hw_reset(struct mmc_host * host)2420 int mmc_hw_reset(struct mmc_host *host)
2421 {
2422 int ret;
2423
2424 if (!host->card)
2425 return -EINVAL;
2426
2427 mmc_bus_get(host);
2428 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2429 mmc_bus_put(host);
2430 return -EOPNOTSUPP;
2431 }
2432
2433 ret = host->bus_ops->reset(host);
2434 mmc_bus_put(host);
2435
2436 if (ret)
2437 pr_warn("%s: tried to reset card, got error %d\n",
2438 mmc_hostname(host), ret);
2439
2440 return ret;
2441 }
2442 EXPORT_SYMBOL(mmc_hw_reset);
2443
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2444 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2445 {
2446 host->f_init = freq;
2447
2448 pr_debug("%s: %s: trying to init card at %u Hz\n",
2449 mmc_hostname(host), __func__, host->f_init);
2450
2451 mmc_power_up(host, host->ocr_avail);
2452
2453 /*
2454 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2455 * do a hardware reset if possible.
2456 */
2457 mmc_hw_reset_for_init(host);
2458
2459 /*
2460 * sdio_reset sends CMD52 to reset card. Since we do not know
2461 * if the card is being re-initialized, just send it. CMD52
2462 * should be ignored by SD/eMMC cards.
2463 * Skip it if we already know that we do not support SDIO commands
2464 */
2465 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2466 sdio_reset(host);
2467
2468 mmc_go_idle(host);
2469
2470 if (!(host->caps2 & MMC_CAP2_NO_SD))
2471 mmc_send_if_cond(host, host->ocr_avail);
2472
2473 /* Order's important: probe SDIO, then SD, then MMC */
2474 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2475 if (!mmc_attach_sdio(host))
2476 return 0;
2477
2478 if (!(host->caps2 & MMC_CAP2_NO_SD))
2479 if (!mmc_attach_sd(host))
2480 return 0;
2481
2482 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2483 if (!mmc_attach_mmc(host))
2484 return 0;
2485
2486 mmc_power_off(host);
2487 return -EIO;
2488 }
2489
_mmc_detect_card_removed(struct mmc_host * host)2490 int _mmc_detect_card_removed(struct mmc_host *host)
2491 {
2492 int ret;
2493
2494 if (!host->card || mmc_card_removed(host->card))
2495 return 1;
2496
2497 ret = host->bus_ops->alive(host);
2498
2499 /*
2500 * Card detect status and alive check may be out of sync if card is
2501 * removed slowly, when card detect switch changes while card/slot
2502 * pads are still contacted in hardware (refer to "SD Card Mechanical
2503 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2504 * detect work 200ms later for this case.
2505 */
2506 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2507 mmc_detect_change(host, msecs_to_jiffies(200));
2508 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2509 }
2510
2511 if (ret) {
2512 mmc_card_set_removed(host->card);
2513 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2514 }
2515
2516 return ret;
2517 }
2518
mmc_detect_card_removed(struct mmc_host * host)2519 int mmc_detect_card_removed(struct mmc_host *host)
2520 {
2521 struct mmc_card *card = host->card;
2522 int ret;
2523
2524 WARN_ON(!host->claimed);
2525
2526 if (!card)
2527 return 1;
2528
2529 if (!mmc_card_is_removable(host))
2530 return 0;
2531
2532 ret = mmc_card_removed(card);
2533 /*
2534 * The card will be considered unchanged unless we have been asked to
2535 * detect a change or host requires polling to provide card detection.
2536 */
2537 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2538 return ret;
2539
2540 host->detect_change = 0;
2541 if (!ret) {
2542 ret = _mmc_detect_card_removed(host);
2543 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2544 /*
2545 * Schedule a detect work as soon as possible to let a
2546 * rescan handle the card removal.
2547 */
2548 cancel_delayed_work(&host->detect);
2549 _mmc_detect_change(host, 0, false);
2550 }
2551 }
2552
2553 return ret;
2554 }
2555 EXPORT_SYMBOL(mmc_detect_card_removed);
2556
mmc_rescan(struct work_struct * work)2557 void mmc_rescan(struct work_struct *work)
2558 {
2559 struct mmc_host *host =
2560 container_of(work, struct mmc_host, detect.work);
2561 int i;
2562
2563 if (host->rescan_disable)
2564 return;
2565
2566 /* If there is a non-removable card registered, only scan once */
2567 if (!mmc_card_is_removable(host) && host->rescan_entered)
2568 return;
2569 host->rescan_entered = 1;
2570
2571 if (host->trigger_card_event && host->ops->card_event) {
2572 mmc_claim_host(host);
2573 host->ops->card_event(host);
2574 mmc_release_host(host);
2575 host->trigger_card_event = false;
2576 }
2577
2578 mmc_bus_get(host);
2579
2580 /*
2581 * if there is a _removable_ card registered, check whether it is
2582 * still present
2583 */
2584 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2585 host->bus_ops->detect(host);
2586
2587 host->detect_change = 0;
2588
2589 /*
2590 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2591 * the card is no longer present.
2592 */
2593 mmc_bus_put(host);
2594 mmc_bus_get(host);
2595
2596 /* if there still is a card present, stop here */
2597 if (host->bus_ops != NULL) {
2598 mmc_bus_put(host);
2599 goto out;
2600 }
2601
2602 /*
2603 * Only we can add a new handler, so it's safe to
2604 * release the lock here.
2605 */
2606 mmc_bus_put(host);
2607
2608 mmc_claim_host(host);
2609 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2610 host->ops->get_cd(host) == 0) {
2611 mmc_power_off(host);
2612 mmc_release_host(host);
2613 goto out;
2614 }
2615
2616 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2617 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2618 break;
2619 if (freqs[i] <= host->f_min)
2620 break;
2621 }
2622 mmc_release_host(host);
2623
2624 out:
2625 if (host->caps & MMC_CAP_NEEDS_POLL)
2626 mmc_schedule_delayed_work(&host->detect, HZ);
2627 }
2628
mmc_start_host(struct mmc_host * host)2629 void mmc_start_host(struct mmc_host *host)
2630 {
2631 host->f_init = max(freqs[0], host->f_min);
2632 host->rescan_disable = 0;
2633 host->ios.power_mode = MMC_POWER_UNDEFINED;
2634
2635 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2636 mmc_claim_host(host);
2637 mmc_power_up(host, host->ocr_avail);
2638 mmc_release_host(host);
2639 }
2640
2641 mmc_gpiod_request_cd_irq(host);
2642 _mmc_detect_change(host, 0, false);
2643 }
2644
mmc_stop_host(struct mmc_host * host)2645 void mmc_stop_host(struct mmc_host *host)
2646 {
2647 if (host->slot.cd_irq >= 0) {
2648 if (host->slot.cd_wake_enabled)
2649 disable_irq_wake(host->slot.cd_irq);
2650 disable_irq(host->slot.cd_irq);
2651 }
2652
2653 host->rescan_disable = 1;
2654 cancel_delayed_work_sync(&host->detect);
2655
2656 /* clear pm flags now and let card drivers set them as needed */
2657 host->pm_flags = 0;
2658
2659 mmc_bus_get(host);
2660 if (host->bus_ops && !host->bus_dead) {
2661 /* Calling bus_ops->remove() with a claimed host can deadlock */
2662 host->bus_ops->remove(host);
2663 mmc_claim_host(host);
2664 mmc_detach_bus(host);
2665 mmc_power_off(host);
2666 mmc_release_host(host);
2667 mmc_bus_put(host);
2668 return;
2669 }
2670 mmc_bus_put(host);
2671
2672 mmc_claim_host(host);
2673 mmc_power_off(host);
2674 mmc_release_host(host);
2675 }
2676
mmc_power_save_host(struct mmc_host * host)2677 int mmc_power_save_host(struct mmc_host *host)
2678 {
2679 int ret = 0;
2680
2681 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2682
2683 mmc_bus_get(host);
2684
2685 if (!host->bus_ops || host->bus_dead) {
2686 mmc_bus_put(host);
2687 return -EINVAL;
2688 }
2689
2690 if (host->bus_ops->power_save)
2691 ret = host->bus_ops->power_save(host);
2692
2693 mmc_bus_put(host);
2694
2695 mmc_power_off(host);
2696
2697 return ret;
2698 }
2699 EXPORT_SYMBOL(mmc_power_save_host);
2700
mmc_power_restore_host(struct mmc_host * host)2701 int mmc_power_restore_host(struct mmc_host *host)
2702 {
2703 int ret;
2704
2705 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2706
2707 mmc_bus_get(host);
2708
2709 if (!host->bus_ops || host->bus_dead) {
2710 mmc_bus_put(host);
2711 return -EINVAL;
2712 }
2713
2714 mmc_power_up(host, host->card->ocr);
2715 ret = host->bus_ops->power_restore(host);
2716
2717 mmc_bus_put(host);
2718
2719 return ret;
2720 }
2721 EXPORT_SYMBOL(mmc_power_restore_host);
2722
2723 #ifdef CONFIG_PM_SLEEP
2724 /* Do the card removal on suspend if card is assumed removeable
2725 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2726 to sync the card.
2727 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2728 static int mmc_pm_notify(struct notifier_block *notify_block,
2729 unsigned long mode, void *unused)
2730 {
2731 struct mmc_host *host = container_of(
2732 notify_block, struct mmc_host, pm_notify);
2733 unsigned long flags;
2734 int err = 0;
2735
2736 switch (mode) {
2737 case PM_HIBERNATION_PREPARE:
2738 case PM_SUSPEND_PREPARE:
2739 case PM_RESTORE_PREPARE:
2740 spin_lock_irqsave(&host->lock, flags);
2741 host->rescan_disable = 1;
2742 spin_unlock_irqrestore(&host->lock, flags);
2743 cancel_delayed_work_sync(&host->detect);
2744
2745 if (!host->bus_ops)
2746 break;
2747
2748 /* Validate prerequisites for suspend */
2749 if (host->bus_ops->pre_suspend)
2750 err = host->bus_ops->pre_suspend(host);
2751 if (!err)
2752 break;
2753
2754 if (!mmc_card_is_removable(host)) {
2755 dev_warn(mmc_dev(host),
2756 "pre_suspend failed for non-removable host: "
2757 "%d\n", err);
2758 /* Avoid removing non-removable hosts */
2759 break;
2760 }
2761
2762 /* Calling bus_ops->remove() with a claimed host can deadlock */
2763 host->bus_ops->remove(host);
2764 mmc_claim_host(host);
2765 mmc_detach_bus(host);
2766 mmc_power_off(host);
2767 mmc_release_host(host);
2768 host->pm_flags = 0;
2769 break;
2770
2771 case PM_POST_SUSPEND:
2772 case PM_POST_HIBERNATION:
2773 case PM_POST_RESTORE:
2774
2775 spin_lock_irqsave(&host->lock, flags);
2776 host->rescan_disable = 0;
2777 spin_unlock_irqrestore(&host->lock, flags);
2778 _mmc_detect_change(host, 0, false);
2779
2780 }
2781
2782 return 0;
2783 }
2784
mmc_register_pm_notifier(struct mmc_host * host)2785 void mmc_register_pm_notifier(struct mmc_host *host)
2786 {
2787 host->pm_notify.notifier_call = mmc_pm_notify;
2788 register_pm_notifier(&host->pm_notify);
2789 }
2790
mmc_unregister_pm_notifier(struct mmc_host * host)2791 void mmc_unregister_pm_notifier(struct mmc_host *host)
2792 {
2793 unregister_pm_notifier(&host->pm_notify);
2794 }
2795 #endif
2796
2797 /**
2798 * mmc_init_context_info() - init synchronization context
2799 * @host: mmc host
2800 *
2801 * Init struct context_info needed to implement asynchronous
2802 * request mechanism, used by mmc core, host driver and mmc requests
2803 * supplier.
2804 */
mmc_init_context_info(struct mmc_host * host)2805 void mmc_init_context_info(struct mmc_host *host)
2806 {
2807 host->context_info.is_new_req = false;
2808 host->context_info.is_done_rcv = false;
2809 host->context_info.is_waiting_last_req = false;
2810 init_waitqueue_head(&host->context_info.wait);
2811 }
2812
2813 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)2814 void mmc_set_embedded_sdio_data(struct mmc_host *host,
2815 struct sdio_cis *cis,
2816 struct sdio_cccr *cccr,
2817 struct sdio_embedded_func *funcs,
2818 int num_funcs)
2819 {
2820 host->embedded_sdio_data.cis = cis;
2821 host->embedded_sdio_data.cccr = cccr;
2822 host->embedded_sdio_data.funcs = funcs;
2823 host->embedded_sdio_data.num_funcs = num_funcs;
2824 }
2825
2826 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2827 #endif
2828
mmc_init(void)2829 static int __init mmc_init(void)
2830 {
2831 int ret;
2832
2833 ret = mmc_register_bus();
2834 if (ret)
2835 return ret;
2836
2837 ret = mmc_register_host_class();
2838 if (ret)
2839 goto unregister_bus;
2840
2841 ret = sdio_register_bus();
2842 if (ret)
2843 goto unregister_host_class;
2844
2845 return 0;
2846
2847 unregister_host_class:
2848 mmc_unregister_host_class();
2849 unregister_bus:
2850 mmc_unregister_bus();
2851 return ret;
2852 }
2853
mmc_exit(void)2854 static void __exit mmc_exit(void)
2855 {
2856 sdio_unregister_bus();
2857 mmc_unregister_host_class();
2858 mmc_unregister_bus();
2859 }
2860
2861 subsys_initcall(mmc_init);
2862 module_exit(mmc_exit);
2863
2864 MODULE_LICENSE("GPL");
2865