• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
55 
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
58 
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 				     unsigned long delay)
71 {
72 	/*
73 	 * We use the system_freezable_wq, because of two reasons.
74 	 * First, it allows several works (not the same work item) to be
75 	 * executed simultaneously. Second, the queue becomes frozen when
76 	 * userspace becomes frozen during system PM.
77 	 */
78 	return queue_delayed_work(system_freezable_wq, work, delay);
79 }
80 
81 #ifdef CONFIG_FAIL_MMC_REQUEST
82 
83 /*
84  * Internal function. Inject random data errors.
85  * If mmc_data is NULL no errors are injected.
86  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)87 static void mmc_should_fail_request(struct mmc_host *host,
88 				    struct mmc_request *mrq)
89 {
90 	struct mmc_command *cmd = mrq->cmd;
91 	struct mmc_data *data = mrq->data;
92 	static const int data_errors[] = {
93 		-ETIMEDOUT,
94 		-EILSEQ,
95 		-EIO,
96 	};
97 
98 	if (!data)
99 		return;
100 
101 	if (cmd->error || data->error ||
102 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 		return;
104 
105 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107 }
108 
109 #else /* CONFIG_FAIL_MMC_REQUEST */
110 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 					   struct mmc_request *mrq)
113 {
114 }
115 
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
117 
mmc_complete_cmd(struct mmc_request * mrq)118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
119 {
120 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 		complete_all(&mrq->cmd_completion);
122 }
123 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125 {
126 	if (!mrq->cap_cmd_during_tfr)
127 		return;
128 
129 	mmc_complete_cmd(mrq);
130 
131 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 		 mmc_hostname(host), mrq->cmd->opcode);
133 }
134 EXPORT_SYMBOL(mmc_command_done);
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	/* Flag re-tuning needed on CRC errors */
150 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 	    (mrq->data && mrq->data->error == -EILSEQ) ||
154 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
155 		mmc_retune_needed(host);
156 
157 	if (err && cmd->retries && mmc_host_is_spi(host)) {
158 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 			cmd->retries = 0;
160 	}
161 
162 	if (host->ongoing_mrq == mrq)
163 		host->ongoing_mrq = NULL;
164 
165 	mmc_complete_cmd(mrq);
166 
167 	trace_mmc_request_done(host, mrq);
168 
169 	/*
170 	 * We list various conditions for the command to be considered
171 	 * properly done:
172 	 *
173 	 * - There was no error, OK fine then
174 	 * - We are not doing some kind of retry
175 	 * - The card was removed (...so just complete everything no matter
176 	 *   if there are errors or retries)
177 	 */
178 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 		mmc_should_fail_request(host, mrq);
180 
181 		if (!host->ongoing_mrq)
182 			led_trigger_event(host->led, LED_OFF);
183 
184 		if (mrq->sbc) {
185 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 				mmc_hostname(host), mrq->sbc->opcode,
187 				mrq->sbc->error,
188 				mrq->sbc->resp[0], mrq->sbc->resp[1],
189 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 		}
191 
192 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 			mmc_hostname(host), cmd->opcode, err,
194 			cmd->resp[0], cmd->resp[1],
195 			cmd->resp[2], cmd->resp[3]);
196 
197 		if (mrq->data) {
198 			pr_debug("%s:     %d bytes transferred: %d\n",
199 				mmc_hostname(host),
200 				mrq->data->bytes_xfered, mrq->data->error);
201 		}
202 
203 		if (mrq->stop) {
204 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
205 				mmc_hostname(host), mrq->stop->opcode,
206 				mrq->stop->error,
207 				mrq->stop->resp[0], mrq->stop->resp[1],
208 				mrq->stop->resp[2], mrq->stop->resp[3]);
209 		}
210 	}
211 	/*
212 	 * Request starter must handle retries - see
213 	 * mmc_wait_for_req_done().
214 	 */
215 	if (mrq->done)
216 		mrq->done(mrq);
217 }
218 
219 EXPORT_SYMBOL(mmc_request_done);
220 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 	int err;
224 
225 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
226 	err = mmc_retune(host);
227 	if (err) {
228 		mrq->cmd->error = err;
229 		mmc_request_done(host, mrq);
230 		return;
231 	}
232 
233 	/*
234 	 * For sdio rw commands we must wait for card busy otherwise some
235 	 * sdio devices won't work properly.
236 	 * And bypass I/O abort, reset and bus suspend operations.
237 	 */
238 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 	    host->ops->card_busy) {
240 		int tries = 500; /* Wait aprox 500ms at maximum */
241 
242 		while (host->ops->card_busy(host) && --tries)
243 			mmc_delay(1);
244 
245 		if (tries == 0) {
246 			mrq->cmd->error = -EBUSY;
247 			mmc_request_done(host, mrq);
248 			return;
249 		}
250 	}
251 
252 	if (mrq->cap_cmd_during_tfr) {
253 		host->ongoing_mrq = mrq;
254 		/*
255 		 * Retry path could come through here without having waiting on
256 		 * cmd_completion, so ensure it is reinitialised.
257 		 */
258 		reinit_completion(&mrq->cmd_completion);
259 	}
260 
261 	trace_mmc_request_start(host, mrq);
262 
263 	if (host->cqe_on)
264 		host->cqe_ops->cqe_off(host);
265 
266 	host->ops->request(host, mrq);
267 }
268 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq)269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
270 {
271 	if (mrq->sbc) {
272 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
273 			 mmc_hostname(host), mrq->sbc->opcode,
274 			 mrq->sbc->arg, mrq->sbc->flags);
275 	}
276 
277 	if (mrq->cmd) {
278 		pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
279 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
280 			 mrq->cmd->flags);
281 	}
282 
283 	if (mrq->data) {
284 		pr_debug("%s:     blksz %d blocks %d flags %08x "
285 			"tsac %d ms nsac %d\n",
286 			mmc_hostname(host), mrq->data->blksz,
287 			mrq->data->blocks, mrq->data->flags,
288 			mrq->data->timeout_ns / 1000000,
289 			mrq->data->timeout_clks);
290 	}
291 
292 	if (mrq->stop) {
293 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294 			 mmc_hostname(host), mrq->stop->opcode,
295 			 mrq->stop->arg, mrq->stop->flags);
296 	}
297 }
298 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 	unsigned int i, sz = 0;
302 	struct scatterlist *sg;
303 
304 	if (mrq->cmd) {
305 		mrq->cmd->error = 0;
306 		mrq->cmd->mrq = mrq;
307 		mrq->cmd->data = mrq->data;
308 	}
309 	if (mrq->sbc) {
310 		mrq->sbc->error = 0;
311 		mrq->sbc->mrq = mrq;
312 	}
313 	if (mrq->data) {
314 		if (mrq->data->blksz > host->max_blk_size ||
315 		    mrq->data->blocks > host->max_blk_count ||
316 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 			return -EINVAL;
318 
319 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 			sz += sg->length;
321 		if (sz != mrq->data->blocks * mrq->data->blksz)
322 			return -EINVAL;
323 
324 		mrq->data->error = 0;
325 		mrq->data->mrq = mrq;
326 		if (mrq->stop) {
327 			mrq->data->stop = mrq->stop;
328 			mrq->stop->error = 0;
329 			mrq->stop->mrq = mrq;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 	int err;
339 
340 	mmc_retune_hold(host);
341 
342 	if (mmc_card_removed(host->card))
343 		return -ENOMEDIUM;
344 
345 	mmc_mrq_pr_debug(host, mrq);
346 
347 	WARN_ON(!host->claimed);
348 
349 	err = mmc_mrq_prep(host, mrq);
350 	if (err)
351 		return err;
352 
353 	led_trigger_event(host->led, LED_FULL);
354 	__mmc_start_request(host, mrq);
355 
356 	return 0;
357 }
358 
359 /*
360  * mmc_wait_data_done() - done callback for data request
361  * @mrq: done data request
362  *
363  * Wakes up mmc context, passed as a callback to host controller driver
364  */
mmc_wait_data_done(struct mmc_request * mrq)365 static void mmc_wait_data_done(struct mmc_request *mrq)
366 {
367 	struct mmc_context_info *context_info = &mrq->host->context_info;
368 
369 	context_info->is_done_rcv = true;
370 	wake_up_interruptible(&context_info->wait);
371 }
372 
mmc_wait_done(struct mmc_request * mrq)373 static void mmc_wait_done(struct mmc_request *mrq)
374 {
375 	complete(&mrq->completion);
376 }
377 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)378 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
379 {
380 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
381 
382 	/*
383 	 * If there is an ongoing transfer, wait for the command line to become
384 	 * available.
385 	 */
386 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
387 		wait_for_completion(&ongoing_mrq->cmd_completion);
388 }
389 
390 /*
391  *__mmc_start_data_req() - starts data request
392  * @host: MMC host to start the request
393  * @mrq: data request to start
394  *
395  * Sets the done callback to be called when request is completed by the card.
396  * Starts data mmc request execution
397  * If an ongoing transfer is already in progress, wait for the command line
398  * to become available before sending another command.
399  */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)400 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
401 {
402 	int err;
403 
404 	mmc_wait_ongoing_tfr_cmd(host);
405 
406 	mrq->done = mmc_wait_data_done;
407 	mrq->host = host;
408 
409 	init_completion(&mrq->cmd_completion);
410 
411 	err = mmc_start_request(host, mrq);
412 	if (err) {
413 		mrq->cmd->error = err;
414 		mmc_complete_cmd(mrq);
415 		mmc_wait_data_done(mrq);
416 	}
417 
418 	return err;
419 }
420 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)421 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
422 {
423 	int err;
424 
425 	mmc_wait_ongoing_tfr_cmd(host);
426 
427 	init_completion(&mrq->completion);
428 	mrq->done = mmc_wait_done;
429 
430 	init_completion(&mrq->cmd_completion);
431 
432 	err = mmc_start_request(host, mrq);
433 	if (err) {
434 		mrq->cmd->error = err;
435 		mmc_complete_cmd(mrq);
436 		complete(&mrq->completion);
437 	}
438 
439 	return err;
440 }
441 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)442 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
443 {
444 	struct mmc_command *cmd;
445 
446 	while (1) {
447 		wait_for_completion(&mrq->completion);
448 
449 		cmd = mrq->cmd;
450 
451 		/*
452 		 * If host has timed out waiting for the sanitize
453 		 * to complete, card might be still in programming state
454 		 * so let's try to bring the card out of programming
455 		 * state.
456 		 */
457 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
458 			if (!mmc_interrupt_hpi(host->card)) {
459 				pr_warn("%s: %s: Interrupted sanitize\n",
460 					mmc_hostname(host), __func__);
461 				cmd->error = 0;
462 				break;
463 			} else {
464 				pr_err("%s: %s: Failed to interrupt sanitize\n",
465 				       mmc_hostname(host), __func__);
466 			}
467 		}
468 		if (!cmd->error || !cmd->retries ||
469 		    mmc_card_removed(host->card))
470 			break;
471 
472 		mmc_retune_recheck(host);
473 
474 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
475 			 mmc_hostname(host), cmd->opcode, cmd->error);
476 		cmd->retries--;
477 		cmd->error = 0;
478 		__mmc_start_request(host, mrq);
479 	}
480 
481 	mmc_retune_release(host);
482 }
483 EXPORT_SYMBOL(mmc_wait_for_req_done);
484 
485 /**
486  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
487  *	@host: MMC host
488  *	@mrq: MMC request
489  *
490  *	mmc_is_req_done() is used with requests that have
491  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
492  *	starting a request and before waiting for it to complete. That is,
493  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
494  *	and before mmc_wait_for_req_done(). If it is called at other times the
495  *	result is not meaningful.
496  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)497 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
498 {
499 	if (host->areq)
500 		return host->context_info.is_done_rcv;
501 	else
502 		return completion_done(&mrq->completion);
503 }
504 EXPORT_SYMBOL(mmc_is_req_done);
505 
506 /**
507  *	mmc_pre_req - Prepare for a new request
508  *	@host: MMC host to prepare command
509  *	@mrq: MMC request to prepare for
510  *
511  *	mmc_pre_req() is called in prior to mmc_start_req() to let
512  *	host prepare for the new request. Preparation of a request may be
513  *	performed while another request is running on the host.
514  */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq)515 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 	if (host->ops->pre_req)
518 		host->ops->pre_req(host, mrq);
519 }
520 
521 /**
522  *	mmc_post_req - Post process a completed request
523  *	@host: MMC host to post process command
524  *	@mrq: MMC request to post process for
525  *	@err: Error, if non zero, clean up any resources made in pre_req
526  *
527  *	Let the host post process a completed request. Post processing of
528  *	a request may be performed while another reuqest is running.
529  */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)530 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
531 			 int err)
532 {
533 	if (host->ops->post_req)
534 		host->ops->post_req(host, mrq, err);
535 }
536 
537 /**
538  * mmc_finalize_areq() - finalize an asynchronous request
539  * @host: MMC host to finalize any ongoing request on
540  *
541  * Returns the status of the ongoing asynchronous request, but
542  * MMC_BLK_SUCCESS if no request was going on.
543  */
mmc_finalize_areq(struct mmc_host * host)544 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
545 {
546 	struct mmc_context_info *context_info = &host->context_info;
547 	enum mmc_blk_status status;
548 
549 	if (!host->areq)
550 		return MMC_BLK_SUCCESS;
551 
552 	while (1) {
553 		wait_event_interruptible(context_info->wait,
554 				(context_info->is_done_rcv ||
555 				 context_info->is_new_req));
556 
557 		if (context_info->is_done_rcv) {
558 			struct mmc_command *cmd;
559 
560 			context_info->is_done_rcv = false;
561 			cmd = host->areq->mrq->cmd;
562 
563 			if (!cmd->error || !cmd->retries ||
564 			    mmc_card_removed(host->card)) {
565 				status = host->areq->err_check(host->card,
566 							       host->areq);
567 				break; /* return status */
568 			} else {
569 				mmc_retune_recheck(host);
570 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
571 					mmc_hostname(host),
572 					cmd->opcode, cmd->error);
573 				cmd->retries--;
574 				cmd->error = 0;
575 				__mmc_start_request(host, host->areq->mrq);
576 				continue; /* wait for done/new event again */
577 			}
578 		}
579 
580 		return MMC_BLK_NEW_REQUEST;
581 	}
582 
583 	mmc_retune_release(host);
584 
585 	/*
586 	 * Check BKOPS urgency for each R1 response
587 	 */
588 	if (host->card && mmc_card_mmc(host->card) &&
589 	    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
590 	     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
591 	    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
592 		mmc_start_bkops(host->card, true);
593 	}
594 
595 	return status;
596 }
597 
598 /**
599  *	mmc_start_areq - start an asynchronous request
600  *	@host: MMC host to start command
601  *	@areq: asynchronous request to start
602  *	@ret_stat: out parameter for status
603  *
604  *	Start a new MMC custom command request for a host.
605  *	If there is on ongoing async request wait for completion
606  *	of that request and start the new one and return.
607  *	Does not wait for the new request to complete.
608  *
609  *      Returns the completed request, NULL in case of none completed.
610  *	Wait for the an ongoing request (previoulsy started) to complete and
611  *	return the completed request. If there is no ongoing request, NULL
612  *	is returned without waiting. NULL is not an error condition.
613  */
mmc_start_areq(struct mmc_host * host,struct mmc_async_req * areq,enum mmc_blk_status * ret_stat)614 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
615 				     struct mmc_async_req *areq,
616 				     enum mmc_blk_status *ret_stat)
617 {
618 	enum mmc_blk_status status;
619 	int start_err = 0;
620 	struct mmc_async_req *previous = host->areq;
621 
622 	/* Prepare a new request */
623 	if (areq)
624 		mmc_pre_req(host, areq->mrq);
625 
626 	/* Finalize previous request */
627 	status = mmc_finalize_areq(host);
628 	if (ret_stat)
629 		*ret_stat = status;
630 
631 	/* The previous request is still going on... */
632 	if (status == MMC_BLK_NEW_REQUEST)
633 		return NULL;
634 
635 	/* Fine so far, start the new request! */
636 	if (status == MMC_BLK_SUCCESS && areq)
637 		start_err = __mmc_start_data_req(host, areq->mrq);
638 
639 	/* Postprocess the old request at this point */
640 	if (host->areq)
641 		mmc_post_req(host, host->areq->mrq, 0);
642 
643 	/* Cancel a prepared request if it was not started. */
644 	if ((status != MMC_BLK_SUCCESS || start_err) && areq)
645 		mmc_post_req(host, areq->mrq, -EINVAL);
646 
647 	if (status != MMC_BLK_SUCCESS)
648 		host->areq = NULL;
649 	else
650 		host->areq = areq;
651 
652 	return previous;
653 }
654 EXPORT_SYMBOL(mmc_start_areq);
655 
656 /**
657  *	mmc_wait_for_req - start a request and wait for completion
658  *	@host: MMC host to start command
659  *	@mrq: MMC request to start
660  *
661  *	Start a new MMC custom command request for a host, and wait
662  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
663  *	requests, the transfer is ongoing and the caller can issue further
664  *	commands that do not use the data lines, and then wait by calling
665  *	mmc_wait_for_req_done().
666  *	Does not attempt to parse the response.
667  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)668 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
669 {
670 	__mmc_start_req(host, mrq);
671 
672 	if (!mrq->cap_cmd_during_tfr)
673 		mmc_wait_for_req_done(host, mrq);
674 }
675 EXPORT_SYMBOL(mmc_wait_for_req);
676 
677 /**
678  *	mmc_wait_for_cmd - start a command and wait for completion
679  *	@host: MMC host to start command
680  *	@cmd: MMC command to start
681  *	@retries: maximum number of retries
682  *
683  *	Start a new MMC command for a host, and wait for the command
684  *	to complete.  Return any error that occurred while the command
685  *	was executing.  Do not attempt to parse the response.
686  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)687 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
688 {
689 	struct mmc_request mrq = {};
690 
691 	WARN_ON(!host->claimed);
692 
693 	memset(cmd->resp, 0, sizeof(cmd->resp));
694 	cmd->retries = retries;
695 
696 	mrq.cmd = cmd;
697 	cmd->data = NULL;
698 
699 	mmc_wait_for_req(host, &mrq);
700 
701 	return cmd->error;
702 }
703 
704 EXPORT_SYMBOL(mmc_wait_for_cmd);
705 
706 /**
707  *	mmc_set_data_timeout - set the timeout for a data command
708  *	@data: data phase for command
709  *	@card: the MMC card associated with the data transfer
710  *
711  *	Computes the data timeout parameters according to the
712  *	correct algorithm given the card type.
713  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)714 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
715 {
716 	unsigned int mult;
717 
718 	/*
719 	 * SDIO cards only define an upper 1 s limit on access.
720 	 */
721 	if (mmc_card_sdio(card)) {
722 		data->timeout_ns = 1000000000;
723 		data->timeout_clks = 0;
724 		return;
725 	}
726 
727 	/*
728 	 * SD cards use a 100 multiplier rather than 10
729 	 */
730 	mult = mmc_card_sd(card) ? 100 : 10;
731 
732 	/*
733 	 * Scale up the multiplier (and therefore the timeout) by
734 	 * the r2w factor for writes.
735 	 */
736 	if (data->flags & MMC_DATA_WRITE)
737 		mult <<= card->csd.r2w_factor;
738 
739 	data->timeout_ns = card->csd.taac_ns * mult;
740 	data->timeout_clks = card->csd.taac_clks * mult;
741 
742 	/*
743 	 * SD cards also have an upper limit on the timeout.
744 	 */
745 	if (mmc_card_sd(card)) {
746 		unsigned int timeout_us, limit_us;
747 
748 		timeout_us = data->timeout_ns / 1000;
749 		if (card->host->ios.clock)
750 			timeout_us += data->timeout_clks * 1000 /
751 				(card->host->ios.clock / 1000);
752 
753 		if (data->flags & MMC_DATA_WRITE)
754 			/*
755 			 * The MMC spec "It is strongly recommended
756 			 * for hosts to implement more than 500ms
757 			 * timeout value even if the card indicates
758 			 * the 250ms maximum busy length."  Even the
759 			 * previous value of 300ms is known to be
760 			 * insufficient for some cards.
761 			 */
762 			limit_us = 3000000;
763 		else
764 			limit_us = 100000;
765 
766 		/*
767 		 * SDHC cards always use these fixed values.
768 		 */
769 		if (timeout_us > limit_us) {
770 			data->timeout_ns = limit_us * 1000;
771 			data->timeout_clks = 0;
772 		}
773 
774 		/* assign limit value if invalid */
775 		if (timeout_us == 0)
776 			data->timeout_ns = limit_us * 1000;
777 	}
778 
779 	/*
780 	 * Some cards require longer data read timeout than indicated in CSD.
781 	 * Address this by setting the read timeout to a "reasonably high"
782 	 * value. For the cards tested, 600ms has proven enough. If necessary,
783 	 * this value can be increased if other problematic cards require this.
784 	 */
785 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
786 		data->timeout_ns = 600000000;
787 		data->timeout_clks = 0;
788 	}
789 
790 	/*
791 	 * Some cards need very high timeouts if driven in SPI mode.
792 	 * The worst observed timeout was 900ms after writing a
793 	 * continuous stream of data until the internal logic
794 	 * overflowed.
795 	 */
796 	if (mmc_host_is_spi(card->host)) {
797 		if (data->flags & MMC_DATA_WRITE) {
798 			if (data->timeout_ns < 1000000000)
799 				data->timeout_ns = 1000000000;	/* 1s */
800 		} else {
801 			if (data->timeout_ns < 100000000)
802 				data->timeout_ns =  100000000;	/* 100ms */
803 		}
804 	}
805 }
806 EXPORT_SYMBOL(mmc_set_data_timeout);
807 
808 /**
809  *	mmc_align_data_size - pads a transfer size to a more optimal value
810  *	@card: the MMC card associated with the data transfer
811  *	@sz: original transfer size
812  *
813  *	Pads the original data size with a number of extra bytes in
814  *	order to avoid controller bugs and/or performance hits
815  *	(e.g. some controllers revert to PIO for certain sizes).
816  *
817  *	Returns the improved size, which might be unmodified.
818  *
819  *	Note that this function is only relevant when issuing a
820  *	single scatter gather entry.
821  */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)822 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
823 {
824 	/*
825 	 * FIXME: We don't have a system for the controller to tell
826 	 * the core about its problems yet, so for now we just 32-bit
827 	 * align the size.
828 	 */
829 	sz = ((sz + 3) / 4) * 4;
830 
831 	return sz;
832 }
833 EXPORT_SYMBOL(mmc_align_data_size);
834 
835 /**
836  *	__mmc_claim_host - exclusively claim a host
837  *	@host: mmc host to claim
838  *	@abort: whether or not the operation should be aborted
839  *
840  *	Claim a host for a set of operations.  If @abort is non null and
841  *	dereference a non-zero value then this will return prematurely with
842  *	that non-zero value without acquiring the lock.  Returns zero
843  *	with the lock held otherwise.
844  */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)845 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
846 {
847 	DECLARE_WAITQUEUE(wait, current);
848 	unsigned long flags;
849 	int stop;
850 	bool pm = false;
851 
852 	might_sleep();
853 
854 	add_wait_queue(&host->wq, &wait);
855 	spin_lock_irqsave(&host->lock, flags);
856 	while (1) {
857 		set_current_state(TASK_UNINTERRUPTIBLE);
858 		stop = abort ? atomic_read(abort) : 0;
859 		if (stop || !host->claimed || host->claimer == current)
860 			break;
861 		spin_unlock_irqrestore(&host->lock, flags);
862 		schedule();
863 		spin_lock_irqsave(&host->lock, flags);
864 	}
865 	set_current_state(TASK_RUNNING);
866 	if (!stop) {
867 		host->claimed = 1;
868 		host->claimer = current;
869 		host->claim_cnt += 1;
870 		if (host->claim_cnt == 1)
871 			pm = true;
872 	} else
873 		wake_up(&host->wq);
874 	spin_unlock_irqrestore(&host->lock, flags);
875 	remove_wait_queue(&host->wq, &wait);
876 
877 	if (pm)
878 		pm_runtime_get_sync(mmc_dev(host));
879 
880 	return stop;
881 }
882 EXPORT_SYMBOL(__mmc_claim_host);
883 
884 /**
885  *	mmc_release_host - release a host
886  *	@host: mmc host to release
887  *
888  *	Release a MMC host, allowing others to claim the host
889  *	for their operations.
890  */
mmc_release_host(struct mmc_host * host)891 void mmc_release_host(struct mmc_host *host)
892 {
893 	unsigned long flags;
894 
895 	WARN_ON(!host->claimed);
896 
897 	spin_lock_irqsave(&host->lock, flags);
898 	if (--host->claim_cnt) {
899 		/* Release for nested claim */
900 		spin_unlock_irqrestore(&host->lock, flags);
901 	} else {
902 		host->claimed = 0;
903 		host->claimer = NULL;
904 		spin_unlock_irqrestore(&host->lock, flags);
905 		wake_up(&host->wq);
906 		pm_runtime_mark_last_busy(mmc_dev(host));
907 		pm_runtime_put_autosuspend(mmc_dev(host));
908 	}
909 }
910 EXPORT_SYMBOL(mmc_release_host);
911 
912 /*
913  * This is a helper function, which fetches a runtime pm reference for the
914  * card device and also claims the host.
915  */
mmc_get_card(struct mmc_card * card)916 void mmc_get_card(struct mmc_card *card)
917 {
918 	pm_runtime_get_sync(&card->dev);
919 	mmc_claim_host(card->host);
920 }
921 EXPORT_SYMBOL(mmc_get_card);
922 
923 /*
924  * This is a helper function, which releases the host and drops the runtime
925  * pm reference for the card device.
926  */
mmc_put_card(struct mmc_card * card)927 void mmc_put_card(struct mmc_card *card)
928 {
929 	mmc_release_host(card->host);
930 	pm_runtime_mark_last_busy(&card->dev);
931 	pm_runtime_put_autosuspend(&card->dev);
932 }
933 EXPORT_SYMBOL(mmc_put_card);
934 
935 /*
936  * Internal function that does the actual ios call to the host driver,
937  * optionally printing some debug output.
938  */
mmc_set_ios(struct mmc_host * host)939 static inline void mmc_set_ios(struct mmc_host *host)
940 {
941 	struct mmc_ios *ios = &host->ios;
942 
943 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
944 		"width %u timing %u\n",
945 		 mmc_hostname(host), ios->clock, ios->bus_mode,
946 		 ios->power_mode, ios->chip_select, ios->vdd,
947 		 1 << ios->bus_width, ios->timing);
948 
949 	host->ops->set_ios(host, ios);
950 }
951 
952 /*
953  * Control chip select pin on a host.
954  */
mmc_set_chip_select(struct mmc_host * host,int mode)955 void mmc_set_chip_select(struct mmc_host *host, int mode)
956 {
957 	host->ios.chip_select = mode;
958 	mmc_set_ios(host);
959 }
960 
961 /*
962  * Sets the host clock to the highest possible frequency that
963  * is below "hz".
964  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)965 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
966 {
967 	WARN_ON(hz && hz < host->f_min);
968 
969 	if (hz > host->f_max)
970 		hz = host->f_max;
971 
972 	host->ios.clock = hz;
973 	mmc_set_ios(host);
974 }
975 
mmc_execute_tuning(struct mmc_card * card)976 int mmc_execute_tuning(struct mmc_card *card)
977 {
978 	struct mmc_host *host = card->host;
979 	u32 opcode;
980 	int err;
981 
982 	if (!host->ops->execute_tuning)
983 		return 0;
984 
985 	if (host->cqe_on)
986 		host->cqe_ops->cqe_off(host);
987 
988 	if (mmc_card_mmc(card))
989 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
990 	else
991 		opcode = MMC_SEND_TUNING_BLOCK;
992 
993 	err = host->ops->execute_tuning(host, opcode);
994 
995 	if (err)
996 		pr_err("%s: tuning execution failed: %d\n",
997 			mmc_hostname(host), err);
998 	else
999 		mmc_retune_enable(host);
1000 
1001 	return err;
1002 }
1003 
1004 /*
1005  * Change the bus mode (open drain/push-pull) of a host.
1006  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1007 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1008 {
1009 	host->ios.bus_mode = mode;
1010 	mmc_set_ios(host);
1011 }
1012 
1013 /*
1014  * Change data bus width of a host.
1015  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1016 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1017 {
1018 	host->ios.bus_width = width;
1019 	mmc_set_ios(host);
1020 }
1021 
1022 /*
1023  * Set initial state after a power cycle or a hw_reset.
1024  */
mmc_set_initial_state(struct mmc_host * host)1025 void mmc_set_initial_state(struct mmc_host *host)
1026 {
1027 	if (host->cqe_on)
1028 		host->cqe_ops->cqe_off(host);
1029 
1030 	mmc_retune_disable(host);
1031 
1032 	if (mmc_host_is_spi(host))
1033 		host->ios.chip_select = MMC_CS_HIGH;
1034 	else
1035 		host->ios.chip_select = MMC_CS_DONTCARE;
1036 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1037 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1038 	host->ios.timing = MMC_TIMING_LEGACY;
1039 	host->ios.drv_type = 0;
1040 	host->ios.enhanced_strobe = false;
1041 
1042 	/*
1043 	 * Make sure we are in non-enhanced strobe mode before we
1044 	 * actually enable it in ext_csd.
1045 	 */
1046 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1047 	     host->ops->hs400_enhanced_strobe)
1048 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1049 
1050 	mmc_set_ios(host);
1051 }
1052 
1053 /**
1054  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1055  * @vdd:	voltage (mV)
1056  * @low_bits:	prefer low bits in boundary cases
1057  *
1058  * This function returns the OCR bit number according to the provided @vdd
1059  * value. If conversion is not possible a negative errno value returned.
1060  *
1061  * Depending on the @low_bits flag the function prefers low or high OCR bits
1062  * on boundary voltages. For example,
1063  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1064  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1065  *
1066  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1067  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1068 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1069 {
1070 	const int max_bit = ilog2(MMC_VDD_35_36);
1071 	int bit;
1072 
1073 	if (vdd < 1650 || vdd > 3600)
1074 		return -EINVAL;
1075 
1076 	if (vdd >= 1650 && vdd <= 1950)
1077 		return ilog2(MMC_VDD_165_195);
1078 
1079 	if (low_bits)
1080 		vdd -= 1;
1081 
1082 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1083 	bit = (vdd - 2000) / 100 + 8;
1084 	if (bit > max_bit)
1085 		return max_bit;
1086 	return bit;
1087 }
1088 
1089 /**
1090  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1091  * @vdd_min:	minimum voltage value (mV)
1092  * @vdd_max:	maximum voltage value (mV)
1093  *
1094  * This function returns the OCR mask bits according to the provided @vdd_min
1095  * and @vdd_max values. If conversion is not possible the function returns 0.
1096  *
1097  * Notes wrt boundary cases:
1098  * This function sets the OCR bits for all boundary voltages, for example
1099  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1100  * MMC_VDD_34_35 mask.
1101  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1102 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1103 {
1104 	u32 mask = 0;
1105 
1106 	if (vdd_max < vdd_min)
1107 		return 0;
1108 
1109 	/* Prefer high bits for the boundary vdd_max values. */
1110 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1111 	if (vdd_max < 0)
1112 		return 0;
1113 
1114 	/* Prefer low bits for the boundary vdd_min values. */
1115 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1116 	if (vdd_min < 0)
1117 		return 0;
1118 
1119 	/* Fill the mask, from max bit to min bit. */
1120 	while (vdd_max >= vdd_min)
1121 		mask |= 1 << vdd_max--;
1122 
1123 	return mask;
1124 }
1125 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1126 
1127 #ifdef CONFIG_OF
1128 
1129 /**
1130  * mmc_of_parse_voltage - return mask of supported voltages
1131  * @np: The device node need to be parsed.
1132  * @mask: mask of voltages available for MMC/SD/SDIO
1133  *
1134  * Parse the "voltage-ranges" DT property, returning zero if it is not
1135  * found, negative errno if the voltage-range specification is invalid,
1136  * or one if the voltage-range is specified and successfully parsed.
1137  */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1138 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1139 {
1140 	const u32 *voltage_ranges;
1141 	int num_ranges, i;
1142 
1143 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1144 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1145 	if (!voltage_ranges) {
1146 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1147 		return 0;
1148 	}
1149 	if (!num_ranges) {
1150 		pr_err("%pOF: voltage-ranges empty\n", np);
1151 		return -EINVAL;
1152 	}
1153 
1154 	for (i = 0; i < num_ranges; i++) {
1155 		const int j = i * 2;
1156 		u32 ocr_mask;
1157 
1158 		ocr_mask = mmc_vddrange_to_ocrmask(
1159 				be32_to_cpu(voltage_ranges[j]),
1160 				be32_to_cpu(voltage_ranges[j + 1]));
1161 		if (!ocr_mask) {
1162 			pr_err("%pOF: voltage-range #%d is invalid\n",
1163 				np, i);
1164 			return -EINVAL;
1165 		}
1166 		*mask |= ocr_mask;
1167 	}
1168 
1169 	return 1;
1170 }
1171 EXPORT_SYMBOL(mmc_of_parse_voltage);
1172 
1173 #endif /* CONFIG_OF */
1174 
mmc_of_get_func_num(struct device_node * node)1175 static int mmc_of_get_func_num(struct device_node *node)
1176 {
1177 	u32 reg;
1178 	int ret;
1179 
1180 	ret = of_property_read_u32(node, "reg", &reg);
1181 	if (ret < 0)
1182 		return ret;
1183 
1184 	return reg;
1185 }
1186 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1187 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1188 		unsigned func_num)
1189 {
1190 	struct device_node *node;
1191 
1192 	if (!host->parent || !host->parent->of_node)
1193 		return NULL;
1194 
1195 	for_each_child_of_node(host->parent->of_node, node) {
1196 		if (mmc_of_get_func_num(node) == func_num)
1197 			return node;
1198 	}
1199 
1200 	return NULL;
1201 }
1202 
1203 #ifdef CONFIG_REGULATOR
1204 
1205 /**
1206  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1207  * @vdd_bit:	OCR bit number
1208  * @min_uV:	minimum voltage value (mV)
1209  * @max_uV:	maximum voltage value (mV)
1210  *
1211  * This function returns the voltage range according to the provided OCR
1212  * bit number. If conversion is not possible a negative errno value returned.
1213  */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1214 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1215 {
1216 	int		tmp;
1217 
1218 	if (!vdd_bit)
1219 		return -EINVAL;
1220 
1221 	/*
1222 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1223 	 * bits this regulator doesn't quite support ... don't
1224 	 * be too picky, most cards and regulators are OK with
1225 	 * a 0.1V range goof (it's a small error percentage).
1226 	 */
1227 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1228 	if (tmp == 0) {
1229 		*min_uV = 1650 * 1000;
1230 		*max_uV = 1950 * 1000;
1231 	} else {
1232 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1233 		*max_uV = *min_uV + 100 * 1000;
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * mmc_regulator_get_ocrmask - return mask of supported voltages
1241  * @supply: regulator to use
1242  *
1243  * This returns either a negative errno, or a mask of voltages that
1244  * can be provided to MMC/SD/SDIO devices using the specified voltage
1245  * regulator.  This would normally be called before registering the
1246  * MMC host adapter.
1247  */
mmc_regulator_get_ocrmask(struct regulator * supply)1248 int mmc_regulator_get_ocrmask(struct regulator *supply)
1249 {
1250 	int			result = 0;
1251 	int			count;
1252 	int			i;
1253 	int			vdd_uV;
1254 	int			vdd_mV;
1255 
1256 	count = regulator_count_voltages(supply);
1257 	if (count < 0)
1258 		return count;
1259 
1260 	for (i = 0; i < count; i++) {
1261 		vdd_uV = regulator_list_voltage(supply, i);
1262 		if (vdd_uV <= 0)
1263 			continue;
1264 
1265 		vdd_mV = vdd_uV / 1000;
1266 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1267 	}
1268 
1269 	if (!result) {
1270 		vdd_uV = regulator_get_voltage(supply);
1271 		if (vdd_uV <= 0)
1272 			return vdd_uV;
1273 
1274 		vdd_mV = vdd_uV / 1000;
1275 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1276 	}
1277 
1278 	return result;
1279 }
1280 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1281 
1282 /**
1283  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1284  * @mmc: the host to regulate
1285  * @supply: regulator to use
1286  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1287  *
1288  * Returns zero on success, else negative errno.
1289  *
1290  * MMC host drivers may use this to enable or disable a regulator using
1291  * a particular supply voltage.  This would normally be called from the
1292  * set_ios() method.
1293  */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1294 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1295 			struct regulator *supply,
1296 			unsigned short vdd_bit)
1297 {
1298 	int			result = 0;
1299 	int			min_uV, max_uV;
1300 
1301 	if (vdd_bit) {
1302 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1303 
1304 		result = regulator_set_voltage(supply, min_uV, max_uV);
1305 		if (result == 0 && !mmc->regulator_enabled) {
1306 			result = regulator_enable(supply);
1307 			if (!result)
1308 				mmc->regulator_enabled = true;
1309 		}
1310 	} else if (mmc->regulator_enabled) {
1311 		result = regulator_disable(supply);
1312 		if (result == 0)
1313 			mmc->regulator_enabled = false;
1314 	}
1315 
1316 	if (result)
1317 		dev_err(mmc_dev(mmc),
1318 			"could not set regulator OCR (%d)\n", result);
1319 	return result;
1320 }
1321 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1322 
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1323 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1324 						  int min_uV, int target_uV,
1325 						  int max_uV)
1326 {
1327 	/*
1328 	 * Check if supported first to avoid errors since we may try several
1329 	 * signal levels during power up and don't want to show errors.
1330 	 */
1331 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1332 		return -EINVAL;
1333 
1334 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1335 					     max_uV);
1336 }
1337 
1338 /**
1339  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1340  *
1341  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1342  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1343  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1344  * SD card spec also define VQMMC in terms of VMMC.
1345  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1346  *
1347  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1348  * requested voltage.  This is definitely a good idea for UHS where there's a
1349  * separate regulator on the card that's trying to make 1.8V and it's best if
1350  * we match.
1351  *
1352  * This function is expected to be used by a controller's
1353  * start_signal_voltage_switch() function.
1354  */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1355 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1356 {
1357 	struct device *dev = mmc_dev(mmc);
1358 	int ret, volt, min_uV, max_uV;
1359 
1360 	/* If no vqmmc supply then we can't change the voltage */
1361 	if (IS_ERR(mmc->supply.vqmmc))
1362 		return -EINVAL;
1363 
1364 	switch (ios->signal_voltage) {
1365 	case MMC_SIGNAL_VOLTAGE_120:
1366 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1367 						1100000, 1200000, 1300000);
1368 	case MMC_SIGNAL_VOLTAGE_180:
1369 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1370 						1700000, 1800000, 1950000);
1371 	case MMC_SIGNAL_VOLTAGE_330:
1372 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1373 		if (ret < 0)
1374 			return ret;
1375 
1376 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1377 			__func__, volt, max_uV);
1378 
1379 		min_uV = max(volt - 300000, 2700000);
1380 		max_uV = min(max_uV + 200000, 3600000);
1381 
1382 		/*
1383 		 * Due to a limitation in the current implementation of
1384 		 * regulator_set_voltage_triplet() which is taking the lowest
1385 		 * voltage possible if below the target, search for a suitable
1386 		 * voltage in two steps and try to stay close to vmmc
1387 		 * with a 0.3V tolerance at first.
1388 		 */
1389 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1390 						min_uV, volt, max_uV))
1391 			return 0;
1392 
1393 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1394 						2700000, volt, 3600000);
1395 	default:
1396 		return -EINVAL;
1397 	}
1398 }
1399 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1400 
1401 #endif /* CONFIG_REGULATOR */
1402 
mmc_regulator_get_supply(struct mmc_host * mmc)1403 int mmc_regulator_get_supply(struct mmc_host *mmc)
1404 {
1405 	struct device *dev = mmc_dev(mmc);
1406 	int ret;
1407 
1408 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410 
1411 	if (IS_ERR(mmc->supply.vmmc)) {
1412 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 			return -EPROBE_DEFER;
1414 		dev_dbg(dev, "No vmmc regulator found\n");
1415 	} else {
1416 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 		if (ret > 0)
1418 			mmc->ocr_avail = ret;
1419 		else
1420 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 	}
1422 
1423 	if (IS_ERR(mmc->supply.vqmmc)) {
1424 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 			return -EPROBE_DEFER;
1426 		dev_dbg(dev, "No vqmmc regulator found\n");
1427 	}
1428 
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432 
1433 /*
1434  * Mask off any voltages we don't support and select
1435  * the lowest voltage
1436  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438 {
1439 	int bit;
1440 
1441 	/*
1442 	 * Sanity check the voltages that the card claims to
1443 	 * support.
1444 	 */
1445 	if (ocr & 0x7F) {
1446 		dev_warn(mmc_dev(host),
1447 		"card claims to support voltages below defined range\n");
1448 		ocr &= ~0x7F;
1449 	}
1450 
1451 	ocr &= host->ocr_avail;
1452 	if (!ocr) {
1453 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 		return 0;
1455 	}
1456 
1457 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 		bit = ffs(ocr) - 1;
1459 		ocr &= 3 << bit;
1460 		mmc_power_cycle(host, ocr);
1461 	} else {
1462 		bit = fls(ocr) - 1;
1463 		ocr &= 3 << bit;
1464 		if (bit != host->ios.vdd)
1465 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 	}
1467 
1468 	return ocr;
1469 }
1470 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472 {
1473 	int err = 0;
1474 	int old_signal_voltage = host->ios.signal_voltage;
1475 
1476 	host->ios.signal_voltage = signal_voltage;
1477 	if (host->ops->start_signal_voltage_switch)
1478 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479 
1480 	if (err)
1481 		host->ios.signal_voltage = old_signal_voltage;
1482 
1483 	return err;
1484 
1485 }
1486 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1487 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1488 {
1489 	struct mmc_command cmd = {};
1490 	int err = 0;
1491 	u32 clock;
1492 
1493 	/*
1494 	 * If we cannot switch voltages, return failure so the caller
1495 	 * can continue without UHS mode
1496 	 */
1497 	if (!host->ops->start_signal_voltage_switch)
1498 		return -EPERM;
1499 	if (!host->ops->card_busy)
1500 		pr_warn("%s: cannot verify signal voltage switch\n",
1501 			mmc_hostname(host));
1502 
1503 	cmd.opcode = SD_SWITCH_VOLTAGE;
1504 	cmd.arg = 0;
1505 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1506 
1507 	err = mmc_wait_for_cmd(host, &cmd, 0);
1508 	if (err)
1509 		return err;
1510 
1511 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1512 		return -EIO;
1513 
1514 	/*
1515 	 * The card should drive cmd and dat[0:3] low immediately
1516 	 * after the response of cmd11, but wait 1 ms to be sure
1517 	 */
1518 	mmc_delay(1);
1519 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1520 		err = -EAGAIN;
1521 		goto power_cycle;
1522 	}
1523 	/*
1524 	 * During a signal voltage level switch, the clock must be gated
1525 	 * for 5 ms according to the SD spec
1526 	 */
1527 	clock = host->ios.clock;
1528 	host->ios.clock = 0;
1529 	mmc_set_ios(host);
1530 
1531 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
1532 		/*
1533 		 * Voltages may not have been switched, but we've already
1534 		 * sent CMD11, so a power cycle is required anyway
1535 		 */
1536 		err = -EAGAIN;
1537 		goto power_cycle;
1538 	}
1539 
1540 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1541 	mmc_delay(10);
1542 	host->ios.clock = clock;
1543 	mmc_set_ios(host);
1544 
1545 	/* Wait for at least 1 ms according to spec */
1546 	mmc_delay(1);
1547 
1548 	/*
1549 	 * Failure to switch is indicated by the card holding
1550 	 * dat[0:3] low
1551 	 */
1552 	if (host->ops->card_busy && host->ops->card_busy(host))
1553 		err = -EAGAIN;
1554 
1555 power_cycle:
1556 	if (err) {
1557 		pr_debug("%s: Signal voltage switch failed, "
1558 			"power cycling card\n", mmc_hostname(host));
1559 		mmc_power_cycle(host, ocr);
1560 	}
1561 
1562 	return err;
1563 }
1564 
1565 /*
1566  * Select timing parameters for host.
1567  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1568 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1569 {
1570 	host->ios.timing = timing;
1571 	mmc_set_ios(host);
1572 }
1573 
1574 /*
1575  * Select appropriate driver type for host.
1576  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1577 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1578 {
1579 	host->ios.drv_type = drv_type;
1580 	mmc_set_ios(host);
1581 }
1582 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1583 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1584 			      int card_drv_type, int *drv_type)
1585 {
1586 	struct mmc_host *host = card->host;
1587 	int host_drv_type = SD_DRIVER_TYPE_B;
1588 
1589 	*drv_type = 0;
1590 
1591 	if (!host->ops->select_drive_strength)
1592 		return 0;
1593 
1594 	/* Use SD definition of driver strength for hosts */
1595 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1596 		host_drv_type |= SD_DRIVER_TYPE_A;
1597 
1598 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1599 		host_drv_type |= SD_DRIVER_TYPE_C;
1600 
1601 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1602 		host_drv_type |= SD_DRIVER_TYPE_D;
1603 
1604 	/*
1605 	 * The drive strength that the hardware can support
1606 	 * depends on the board design.  Pass the appropriate
1607 	 * information and let the hardware specific code
1608 	 * return what is possible given the options
1609 	 */
1610 	return host->ops->select_drive_strength(card, max_dtr,
1611 						host_drv_type,
1612 						card_drv_type,
1613 						drv_type);
1614 }
1615 
1616 /*
1617  * Apply power to the MMC stack.  This is a two-stage process.
1618  * First, we enable power to the card without the clock running.
1619  * We then wait a bit for the power to stabilise.  Finally,
1620  * enable the bus drivers and clock to the card.
1621  *
1622  * We must _NOT_ enable the clock prior to power stablising.
1623  *
1624  * If a host does all the power sequencing itself, ignore the
1625  * initial MMC_POWER_UP stage.
1626  */
mmc_power_up(struct mmc_host * host,u32 ocr)1627 void mmc_power_up(struct mmc_host *host, u32 ocr)
1628 {
1629 	if (host->ios.power_mode == MMC_POWER_ON)
1630 		return;
1631 
1632 	mmc_pwrseq_pre_power_on(host);
1633 
1634 	host->ios.vdd = fls(ocr) - 1;
1635 	host->ios.power_mode = MMC_POWER_UP;
1636 	/* Set initial state and call mmc_set_ios */
1637 	mmc_set_initial_state(host);
1638 
1639 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1640 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1641 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1642 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1643 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1644 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1645 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1646 
1647 	/*
1648 	 * This delay should be sufficient to allow the power supply
1649 	 * to reach the minimum voltage.
1650 	 */
1651 	mmc_delay(10);
1652 
1653 	mmc_pwrseq_post_power_on(host);
1654 
1655 	host->ios.clock = host->f_init;
1656 
1657 	host->ios.power_mode = MMC_POWER_ON;
1658 	mmc_set_ios(host);
1659 
1660 	/*
1661 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1662 	 * time required to reach a stable voltage.
1663 	 */
1664 	mmc_delay(10);
1665 }
1666 
mmc_power_off(struct mmc_host * host)1667 void mmc_power_off(struct mmc_host *host)
1668 {
1669 	if (host->ios.power_mode == MMC_POWER_OFF)
1670 		return;
1671 
1672 	mmc_pwrseq_power_off(host);
1673 
1674 	host->ios.clock = 0;
1675 	host->ios.vdd = 0;
1676 
1677 	host->ios.power_mode = MMC_POWER_OFF;
1678 	/* Set initial state and call mmc_set_ios */
1679 	mmc_set_initial_state(host);
1680 
1681 	/*
1682 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1683 	 * XO-1.5, require a short delay after poweroff before the card
1684 	 * can be successfully turned on again.
1685 	 */
1686 	mmc_delay(1);
1687 }
1688 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1689 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1690 {
1691 	mmc_power_off(host);
1692 	/* Wait at least 1 ms according to SD spec */
1693 	mmc_delay(1);
1694 	mmc_power_up(host, ocr);
1695 }
1696 
1697 /*
1698  * Cleanup when the last reference to the bus operator is dropped.
1699  */
__mmc_release_bus(struct mmc_host * host)1700 static void __mmc_release_bus(struct mmc_host *host)
1701 {
1702 	WARN_ON(!host->bus_dead);
1703 
1704 	host->bus_ops = NULL;
1705 }
1706 
1707 /*
1708  * Increase reference count of bus operator
1709  */
mmc_bus_get(struct mmc_host * host)1710 static inline void mmc_bus_get(struct mmc_host *host)
1711 {
1712 	unsigned long flags;
1713 
1714 	spin_lock_irqsave(&host->lock, flags);
1715 	host->bus_refs++;
1716 	spin_unlock_irqrestore(&host->lock, flags);
1717 }
1718 
1719 /*
1720  * Decrease reference count of bus operator and free it if
1721  * it is the last reference.
1722  */
mmc_bus_put(struct mmc_host * host)1723 static inline void mmc_bus_put(struct mmc_host *host)
1724 {
1725 	unsigned long flags;
1726 
1727 	spin_lock_irqsave(&host->lock, flags);
1728 	host->bus_refs--;
1729 	if ((host->bus_refs == 0) && host->bus_ops)
1730 		__mmc_release_bus(host);
1731 	spin_unlock_irqrestore(&host->lock, flags);
1732 }
1733 
1734 /*
1735  * Assign a mmc bus handler to a host. Only one bus handler may control a
1736  * host at any given time.
1737  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1738 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1739 {
1740 	unsigned long flags;
1741 
1742 	WARN_ON(!host->claimed);
1743 
1744 	spin_lock_irqsave(&host->lock, flags);
1745 
1746 	WARN_ON(host->bus_ops);
1747 	WARN_ON(host->bus_refs);
1748 
1749 	host->bus_ops = ops;
1750 	host->bus_refs = 1;
1751 	host->bus_dead = 0;
1752 
1753 	spin_unlock_irqrestore(&host->lock, flags);
1754 }
1755 
1756 /*
1757  * Remove the current bus handler from a host.
1758  */
mmc_detach_bus(struct mmc_host * host)1759 void mmc_detach_bus(struct mmc_host *host)
1760 {
1761 	unsigned long flags;
1762 
1763 	WARN_ON(!host->claimed);
1764 	WARN_ON(!host->bus_ops);
1765 
1766 	spin_lock_irqsave(&host->lock, flags);
1767 
1768 	host->bus_dead = 1;
1769 
1770 	spin_unlock_irqrestore(&host->lock, flags);
1771 
1772 	mmc_bus_put(host);
1773 }
1774 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1775 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1776 				bool cd_irq)
1777 {
1778 	/*
1779 	 * If the device is configured as wakeup, we prevent a new sleep for
1780 	 * 5 s to give provision for user space to consume the event.
1781 	 */
1782 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1783 		device_can_wakeup(mmc_dev(host)))
1784 		pm_wakeup_event(mmc_dev(host), 5000);
1785 
1786 	host->detect_change = 1;
1787 	mmc_schedule_delayed_work(&host->detect, delay);
1788 }
1789 
1790 /**
1791  *	mmc_detect_change - process change of state on a MMC socket
1792  *	@host: host which changed state.
1793  *	@delay: optional delay to wait before detection (jiffies)
1794  *
1795  *	MMC drivers should call this when they detect a card has been
1796  *	inserted or removed. The MMC layer will confirm that any
1797  *	present card is still functional, and initialize any newly
1798  *	inserted.
1799  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1800 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1801 {
1802 	_mmc_detect_change(host, delay, true);
1803 }
1804 EXPORT_SYMBOL(mmc_detect_change);
1805 
mmc_init_erase(struct mmc_card * card)1806 void mmc_init_erase(struct mmc_card *card)
1807 {
1808 	unsigned int sz;
1809 
1810 	if (is_power_of_2(card->erase_size))
1811 		card->erase_shift = ffs(card->erase_size) - 1;
1812 	else
1813 		card->erase_shift = 0;
1814 
1815 	/*
1816 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1817 	 * card.  That is not desirable because it can take a long time
1818 	 * (minutes) potentially delaying more important I/O, and also the
1819 	 * timeout calculations become increasingly hugely over-estimated.
1820 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1821 	 * to that size and alignment.
1822 	 *
1823 	 * For SD cards that define Allocation Unit size, limit erases to one
1824 	 * Allocation Unit at a time.
1825 	 * For MMC, have a stab at ai good value and for modern cards it will
1826 	 * end up being 4MiB. Note that if the value is too small, it can end
1827 	 * up taking longer to erase. Also note, erase_size is already set to
1828 	 * High Capacity Erase Size if available when this function is called.
1829 	 */
1830 	if (mmc_card_sd(card) && card->ssr.au) {
1831 		card->pref_erase = card->ssr.au;
1832 		card->erase_shift = ffs(card->ssr.au) - 1;
1833 	} else if (card->erase_size) {
1834 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1835 		if (sz < 128)
1836 			card->pref_erase = 512 * 1024 / 512;
1837 		else if (sz < 512)
1838 			card->pref_erase = 1024 * 1024 / 512;
1839 		else if (sz < 1024)
1840 			card->pref_erase = 2 * 1024 * 1024 / 512;
1841 		else
1842 			card->pref_erase = 4 * 1024 * 1024 / 512;
1843 		if (card->pref_erase < card->erase_size)
1844 			card->pref_erase = card->erase_size;
1845 		else {
1846 			sz = card->pref_erase % card->erase_size;
1847 			if (sz)
1848 				card->pref_erase += card->erase_size - sz;
1849 		}
1850 	} else
1851 		card->pref_erase = 0;
1852 }
1853 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1854 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1855 				          unsigned int arg, unsigned int qty)
1856 {
1857 	unsigned int erase_timeout;
1858 
1859 	if (arg == MMC_DISCARD_ARG ||
1860 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1861 		erase_timeout = card->ext_csd.trim_timeout;
1862 	} else if (card->ext_csd.erase_group_def & 1) {
1863 		/* High Capacity Erase Group Size uses HC timeouts */
1864 		if (arg == MMC_TRIM_ARG)
1865 			erase_timeout = card->ext_csd.trim_timeout;
1866 		else
1867 			erase_timeout = card->ext_csd.hc_erase_timeout;
1868 	} else {
1869 		/* CSD Erase Group Size uses write timeout */
1870 		unsigned int mult = (10 << card->csd.r2w_factor);
1871 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1872 		unsigned int timeout_us;
1873 
1874 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1875 		if (card->csd.taac_ns < 1000000)
1876 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1877 		else
1878 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1879 
1880 		/*
1881 		 * ios.clock is only a target.  The real clock rate might be
1882 		 * less but not that much less, so fudge it by multiplying by 2.
1883 		 */
1884 		timeout_clks <<= 1;
1885 		timeout_us += (timeout_clks * 1000) /
1886 			      (card->host->ios.clock / 1000);
1887 
1888 		erase_timeout = timeout_us / 1000;
1889 
1890 		/*
1891 		 * Theoretically, the calculation could underflow so round up
1892 		 * to 1ms in that case.
1893 		 */
1894 		if (!erase_timeout)
1895 			erase_timeout = 1;
1896 	}
1897 
1898 	/* Multiplier for secure operations */
1899 	if (arg & MMC_SECURE_ARGS) {
1900 		if (arg == MMC_SECURE_ERASE_ARG)
1901 			erase_timeout *= card->ext_csd.sec_erase_mult;
1902 		else
1903 			erase_timeout *= card->ext_csd.sec_trim_mult;
1904 	}
1905 
1906 	erase_timeout *= qty;
1907 
1908 	/*
1909 	 * Ensure at least a 1 second timeout for SPI as per
1910 	 * 'mmc_set_data_timeout()'
1911 	 */
1912 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1913 		erase_timeout = 1000;
1914 
1915 	return erase_timeout;
1916 }
1917 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1918 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1919 					 unsigned int arg,
1920 					 unsigned int qty)
1921 {
1922 	unsigned int erase_timeout;
1923 
1924 	if (card->ssr.erase_timeout) {
1925 		/* Erase timeout specified in SD Status Register (SSR) */
1926 		erase_timeout = card->ssr.erase_timeout * qty +
1927 				card->ssr.erase_offset;
1928 	} else {
1929 		/*
1930 		 * Erase timeout not specified in SD Status Register (SSR) so
1931 		 * use 250ms per write block.
1932 		 */
1933 		erase_timeout = 250 * qty;
1934 	}
1935 
1936 	/* Must not be less than 1 second */
1937 	if (erase_timeout < 1000)
1938 		erase_timeout = 1000;
1939 
1940 	return erase_timeout;
1941 }
1942 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1943 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1944 				      unsigned int arg,
1945 				      unsigned int qty)
1946 {
1947 	if (mmc_card_sd(card))
1948 		return mmc_sd_erase_timeout(card, arg, qty);
1949 	else
1950 		return mmc_mmc_erase_timeout(card, arg, qty);
1951 }
1952 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1953 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1954 			unsigned int to, unsigned int arg)
1955 {
1956 	struct mmc_command cmd = {};
1957 	unsigned int qty = 0, busy_timeout = 0;
1958 	bool use_r1b_resp = false;
1959 	unsigned long timeout;
1960 	int err;
1961 
1962 	mmc_retune_hold(card->host);
1963 
1964 	/*
1965 	 * qty is used to calculate the erase timeout which depends on how many
1966 	 * erase groups (or allocation units in SD terminology) are affected.
1967 	 * We count erasing part of an erase group as one erase group.
1968 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1969 	 * erase group size is almost certainly also power of 2, but it does not
1970 	 * seem to insist on that in the JEDEC standard, so we fall back to
1971 	 * division in that case.  SD may not specify an allocation unit size,
1972 	 * in which case the timeout is based on the number of write blocks.
1973 	 *
1974 	 * Note that the timeout for secure trim 2 will only be correct if the
1975 	 * number of erase groups specified is the same as the total of all
1976 	 * preceding secure trim 1 commands.  Since the power may have been
1977 	 * lost since the secure trim 1 commands occurred, it is generally
1978 	 * impossible to calculate the secure trim 2 timeout correctly.
1979 	 */
1980 	if (card->erase_shift)
1981 		qty += ((to >> card->erase_shift) -
1982 			(from >> card->erase_shift)) + 1;
1983 	else if (mmc_card_sd(card))
1984 		qty += to - from + 1;
1985 	else
1986 		qty += ((to / card->erase_size) -
1987 			(from / card->erase_size)) + 1;
1988 
1989 	if (!mmc_card_blockaddr(card)) {
1990 		from <<= 9;
1991 		to <<= 9;
1992 	}
1993 
1994 	if (mmc_card_sd(card))
1995 		cmd.opcode = SD_ERASE_WR_BLK_START;
1996 	else
1997 		cmd.opcode = MMC_ERASE_GROUP_START;
1998 	cmd.arg = from;
1999 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2001 	if (err) {
2002 		pr_err("mmc_erase: group start error %d, "
2003 		       "status %#x\n", err, cmd.resp[0]);
2004 		err = -EIO;
2005 		goto out;
2006 	}
2007 
2008 	memset(&cmd, 0, sizeof(struct mmc_command));
2009 	if (mmc_card_sd(card))
2010 		cmd.opcode = SD_ERASE_WR_BLK_END;
2011 	else
2012 		cmd.opcode = MMC_ERASE_GROUP_END;
2013 	cmd.arg = to;
2014 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2015 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2016 	if (err) {
2017 		pr_err("mmc_erase: group end error %d, status %#x\n",
2018 		       err, cmd.resp[0]);
2019 		err = -EIO;
2020 		goto out;
2021 	}
2022 
2023 	memset(&cmd, 0, sizeof(struct mmc_command));
2024 	cmd.opcode = MMC_ERASE;
2025 	cmd.arg = arg;
2026 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2027 	/*
2028 	 * If the host controller supports busy signalling and the timeout for
2029 	 * the erase operation does not exceed the max_busy_timeout, we should
2030 	 * use R1B response. Or we need to prevent the host from doing hw busy
2031 	 * detection, which is done by converting to a R1 response instead.
2032 	 */
2033 	if (card->host->max_busy_timeout &&
2034 	    busy_timeout > card->host->max_busy_timeout) {
2035 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2036 	} else {
2037 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2038 		cmd.busy_timeout = busy_timeout;
2039 		use_r1b_resp = true;
2040 	}
2041 
2042 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2043 	if (err) {
2044 		pr_err("mmc_erase: erase error %d, status %#x\n",
2045 		       err, cmd.resp[0]);
2046 		err = -EIO;
2047 		goto out;
2048 	}
2049 
2050 	if (mmc_host_is_spi(card->host))
2051 		goto out;
2052 
2053 	/*
2054 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2055 	 * shall be avoided.
2056 	 */
2057 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2058 		goto out;
2059 
2060 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2061 	do {
2062 		memset(&cmd, 0, sizeof(struct mmc_command));
2063 		cmd.opcode = MMC_SEND_STATUS;
2064 		cmd.arg = card->rca << 16;
2065 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2066 		/* Do not retry else we can't see errors */
2067 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2068 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2069 			pr_err("error %d requesting status %#x\n",
2070 				err, cmd.resp[0]);
2071 			err = -EIO;
2072 			goto out;
2073 		}
2074 
2075 		/* Timeout if the device never becomes ready for data and
2076 		 * never leaves the program state.
2077 		 */
2078 		if (time_after(jiffies, timeout)) {
2079 			pr_err("%s: Card stuck in programming state! %s\n",
2080 				mmc_hostname(card->host), __func__);
2081 			err =  -EIO;
2082 			goto out;
2083 		}
2084 
2085 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2086 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2087 out:
2088 	mmc_retune_release(card->host);
2089 	return err;
2090 }
2091 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)2092 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2093 					 unsigned int *from,
2094 					 unsigned int *to,
2095 					 unsigned int nr)
2096 {
2097 	unsigned int from_new = *from, nr_new = nr, rem;
2098 
2099 	/*
2100 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2101 	 * to align the erase size efficiently.
2102 	 */
2103 	if (is_power_of_2(card->erase_size)) {
2104 		unsigned int temp = from_new;
2105 
2106 		from_new = round_up(temp, card->erase_size);
2107 		rem = from_new - temp;
2108 
2109 		if (nr_new > rem)
2110 			nr_new -= rem;
2111 		else
2112 			return 0;
2113 
2114 		nr_new = round_down(nr_new, card->erase_size);
2115 	} else {
2116 		rem = from_new % card->erase_size;
2117 		if (rem) {
2118 			rem = card->erase_size - rem;
2119 			from_new += rem;
2120 			if (nr_new > rem)
2121 				nr_new -= rem;
2122 			else
2123 				return 0;
2124 		}
2125 
2126 		rem = nr_new % card->erase_size;
2127 		if (rem)
2128 			nr_new -= rem;
2129 	}
2130 
2131 	if (nr_new == 0)
2132 		return 0;
2133 
2134 	*to = from_new + nr_new;
2135 	*from = from_new;
2136 
2137 	return nr_new;
2138 }
2139 
2140 /**
2141  * mmc_erase - erase sectors.
2142  * @card: card to erase
2143  * @from: first sector to erase
2144  * @nr: number of sectors to erase
2145  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2146  *
2147  * Caller must claim host before calling this function.
2148  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2149 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2150 	      unsigned int arg)
2151 {
2152 	unsigned int rem, to = from + nr;
2153 	int err;
2154 
2155 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2156 	    !(card->csd.cmdclass & CCC_ERASE))
2157 		return -EOPNOTSUPP;
2158 
2159 	if (!card->erase_size)
2160 		return -EOPNOTSUPP;
2161 
2162 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2163 		return -EOPNOTSUPP;
2164 
2165 	if ((arg & MMC_SECURE_ARGS) &&
2166 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2167 		return -EOPNOTSUPP;
2168 
2169 	if ((arg & MMC_TRIM_ARGS) &&
2170 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2171 		return -EOPNOTSUPP;
2172 
2173 	if (arg == MMC_SECURE_ERASE_ARG) {
2174 		if (from % card->erase_size || nr % card->erase_size)
2175 			return -EINVAL;
2176 	}
2177 
2178 	if (arg == MMC_ERASE_ARG)
2179 		nr = mmc_align_erase_size(card, &from, &to, nr);
2180 
2181 	if (nr == 0)
2182 		return 0;
2183 
2184 	if (to <= from)
2185 		return -EINVAL;
2186 
2187 	/* 'from' and 'to' are inclusive */
2188 	to -= 1;
2189 
2190 	/*
2191 	 * Special case where only one erase-group fits in the timeout budget:
2192 	 * If the region crosses an erase-group boundary on this particular
2193 	 * case, we will be trimming more than one erase-group which, does not
2194 	 * fit in the timeout budget of the controller, so we need to split it
2195 	 * and call mmc_do_erase() twice if necessary. This special case is
2196 	 * identified by the card->eg_boundary flag.
2197 	 */
2198 	rem = card->erase_size - (from % card->erase_size);
2199 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2200 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2201 		from += rem;
2202 		if ((err) || (to <= from))
2203 			return err;
2204 	}
2205 
2206 	return mmc_do_erase(card, from, to, arg);
2207 }
2208 EXPORT_SYMBOL(mmc_erase);
2209 
mmc_can_erase(struct mmc_card * card)2210 int mmc_can_erase(struct mmc_card *card)
2211 {
2212 	if ((card->host->caps & MMC_CAP_ERASE) &&
2213 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2214 		return 1;
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL(mmc_can_erase);
2218 
mmc_can_trim(struct mmc_card * card)2219 int mmc_can_trim(struct mmc_card *card)
2220 {
2221 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2222 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2223 		return 1;
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL(mmc_can_trim);
2227 
mmc_can_discard(struct mmc_card * card)2228 int mmc_can_discard(struct mmc_card *card)
2229 {
2230 	/*
2231 	 * As there's no way to detect the discard support bit at v4.5
2232 	 * use the s/w feature support filed.
2233 	 */
2234 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2235 		return 1;
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL(mmc_can_discard);
2239 
mmc_can_sanitize(struct mmc_card * card)2240 int mmc_can_sanitize(struct mmc_card *card)
2241 {
2242 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2243 		return 0;
2244 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2245 		return 1;
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL(mmc_can_sanitize);
2249 
mmc_can_secure_erase_trim(struct mmc_card * card)2250 int mmc_can_secure_erase_trim(struct mmc_card *card)
2251 {
2252 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2253 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2254 		return 1;
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2258 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2259 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2260 			    unsigned int nr)
2261 {
2262 	if (!card->erase_size)
2263 		return 0;
2264 	if (from % card->erase_size || nr % card->erase_size)
2265 		return 0;
2266 	return 1;
2267 }
2268 EXPORT_SYMBOL(mmc_erase_group_aligned);
2269 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2270 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2271 					    unsigned int arg)
2272 {
2273 	struct mmc_host *host = card->host;
2274 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2275 	unsigned int last_timeout = 0;
2276 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2277 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2278 
2279 	if (card->erase_shift) {
2280 		max_qty = UINT_MAX >> card->erase_shift;
2281 		min_qty = card->pref_erase >> card->erase_shift;
2282 	} else if (mmc_card_sd(card)) {
2283 		max_qty = UINT_MAX;
2284 		min_qty = card->pref_erase;
2285 	} else {
2286 		max_qty = UINT_MAX / card->erase_size;
2287 		min_qty = card->pref_erase / card->erase_size;
2288 	}
2289 
2290 	/*
2291 	 * We should not only use 'host->max_busy_timeout' as the limitation
2292 	 * when deciding the max discard sectors. We should set a balance value
2293 	 * to improve the erase speed, and it can not get too long timeout at
2294 	 * the same time.
2295 	 *
2296 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2297 	 * matter what size of 'host->max_busy_timeout', but if the
2298 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2299 	 * then we can continue to increase the max discard sectors until we
2300 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2301 	 * isn't specified, use the default max erase timeout.
2302 	 */
2303 	do {
2304 		y = 0;
2305 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2306 			timeout = mmc_erase_timeout(card, arg, qty + x);
2307 
2308 			if (qty + x > min_qty && timeout > max_busy_timeout)
2309 				break;
2310 
2311 			if (timeout < last_timeout)
2312 				break;
2313 			last_timeout = timeout;
2314 			y = x;
2315 		}
2316 		qty += y;
2317 	} while (y);
2318 
2319 	if (!qty)
2320 		return 0;
2321 
2322 	/*
2323 	 * When specifying a sector range to trim, chances are we might cross
2324 	 * an erase-group boundary even if the amount of sectors is less than
2325 	 * one erase-group.
2326 	 * If we can only fit one erase-group in the controller timeout budget,
2327 	 * we have to care that erase-group boundaries are not crossed by a
2328 	 * single trim operation. We flag that special case with "eg_boundary".
2329 	 * In all other cases we can just decrement qty and pretend that we
2330 	 * always touch (qty + 1) erase-groups as a simple optimization.
2331 	 */
2332 	if (qty == 1)
2333 		card->eg_boundary = 1;
2334 	else
2335 		qty--;
2336 
2337 	/* Convert qty to sectors */
2338 	if (card->erase_shift)
2339 		max_discard = qty << card->erase_shift;
2340 	else if (mmc_card_sd(card))
2341 		max_discard = qty + 1;
2342 	else
2343 		max_discard = qty * card->erase_size;
2344 
2345 	return max_discard;
2346 }
2347 
mmc_calc_max_discard(struct mmc_card * card)2348 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2349 {
2350 	struct mmc_host *host = card->host;
2351 	unsigned int max_discard, max_trim;
2352 
2353 	/*
2354 	 * Without erase_group_def set, MMC erase timeout depends on clock
2355 	 * frequence which can change.  In that case, the best choice is
2356 	 * just the preferred erase size.
2357 	 */
2358 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2359 		return card->pref_erase;
2360 
2361 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2362 	if (mmc_can_trim(card)) {
2363 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2364 		if (max_trim < max_discard)
2365 			max_discard = max_trim;
2366 	} else if (max_discard < card->erase_size) {
2367 		max_discard = 0;
2368 	}
2369 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2370 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2371 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2372 	return max_discard;
2373 }
2374 EXPORT_SYMBOL(mmc_calc_max_discard);
2375 
mmc_card_is_blockaddr(struct mmc_card * card)2376 bool mmc_card_is_blockaddr(struct mmc_card *card)
2377 {
2378 	return card ? mmc_card_blockaddr(card) : false;
2379 }
2380 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2381 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2382 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2383 {
2384 	struct mmc_command cmd = {};
2385 
2386 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2387 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2388 		return 0;
2389 
2390 	cmd.opcode = MMC_SET_BLOCKLEN;
2391 	cmd.arg = blocklen;
2392 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2393 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2394 }
2395 EXPORT_SYMBOL(mmc_set_blocklen);
2396 
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2397 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2398 			bool is_rel_write)
2399 {
2400 	struct mmc_command cmd = {};
2401 
2402 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2403 	cmd.arg = blockcount & 0x0000FFFF;
2404 	if (is_rel_write)
2405 		cmd.arg |= 1 << 31;
2406 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2407 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2408 }
2409 EXPORT_SYMBOL(mmc_set_blockcount);
2410 
mmc_hw_reset_for_init(struct mmc_host * host)2411 static void mmc_hw_reset_for_init(struct mmc_host *host)
2412 {
2413 	mmc_pwrseq_reset(host);
2414 
2415 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2416 		return;
2417 	host->ops->hw_reset(host);
2418 }
2419 
mmc_hw_reset(struct mmc_host * host)2420 int mmc_hw_reset(struct mmc_host *host)
2421 {
2422 	int ret;
2423 
2424 	if (!host->card)
2425 		return -EINVAL;
2426 
2427 	mmc_bus_get(host);
2428 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2429 		mmc_bus_put(host);
2430 		return -EOPNOTSUPP;
2431 	}
2432 
2433 	ret = host->bus_ops->reset(host);
2434 	mmc_bus_put(host);
2435 
2436 	if (ret)
2437 		pr_warn("%s: tried to reset card, got error %d\n",
2438 			mmc_hostname(host), ret);
2439 
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL(mmc_hw_reset);
2443 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2444 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2445 {
2446 	host->f_init = freq;
2447 
2448 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2449 		mmc_hostname(host), __func__, host->f_init);
2450 
2451 	mmc_power_up(host, host->ocr_avail);
2452 
2453 	/*
2454 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2455 	 * do a hardware reset if possible.
2456 	 */
2457 	mmc_hw_reset_for_init(host);
2458 
2459 	/*
2460 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2461 	 * if the card is being re-initialized, just send it.  CMD52
2462 	 * should be ignored by SD/eMMC cards.
2463 	 * Skip it if we already know that we do not support SDIO commands
2464 	 */
2465 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2466 		sdio_reset(host);
2467 
2468 	mmc_go_idle(host);
2469 
2470 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2471 		mmc_send_if_cond(host, host->ocr_avail);
2472 
2473 	/* Order's important: probe SDIO, then SD, then MMC */
2474 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2475 		if (!mmc_attach_sdio(host))
2476 			return 0;
2477 
2478 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2479 		if (!mmc_attach_sd(host))
2480 			return 0;
2481 
2482 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2483 		if (!mmc_attach_mmc(host))
2484 			return 0;
2485 
2486 	mmc_power_off(host);
2487 	return -EIO;
2488 }
2489 
_mmc_detect_card_removed(struct mmc_host * host)2490 int _mmc_detect_card_removed(struct mmc_host *host)
2491 {
2492 	int ret;
2493 
2494 	if (!host->card || mmc_card_removed(host->card))
2495 		return 1;
2496 
2497 	ret = host->bus_ops->alive(host);
2498 
2499 	/*
2500 	 * Card detect status and alive check may be out of sync if card is
2501 	 * removed slowly, when card detect switch changes while card/slot
2502 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2503 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2504 	 * detect work 200ms later for this case.
2505 	 */
2506 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2507 		mmc_detect_change(host, msecs_to_jiffies(200));
2508 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2509 	}
2510 
2511 	if (ret) {
2512 		mmc_card_set_removed(host->card);
2513 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2514 	}
2515 
2516 	return ret;
2517 }
2518 
mmc_detect_card_removed(struct mmc_host * host)2519 int mmc_detect_card_removed(struct mmc_host *host)
2520 {
2521 	struct mmc_card *card = host->card;
2522 	int ret;
2523 
2524 	WARN_ON(!host->claimed);
2525 
2526 	if (!card)
2527 		return 1;
2528 
2529 	if (!mmc_card_is_removable(host))
2530 		return 0;
2531 
2532 	ret = mmc_card_removed(card);
2533 	/*
2534 	 * The card will be considered unchanged unless we have been asked to
2535 	 * detect a change or host requires polling to provide card detection.
2536 	 */
2537 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2538 		return ret;
2539 
2540 	host->detect_change = 0;
2541 	if (!ret) {
2542 		ret = _mmc_detect_card_removed(host);
2543 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2544 			/*
2545 			 * Schedule a detect work as soon as possible to let a
2546 			 * rescan handle the card removal.
2547 			 */
2548 			cancel_delayed_work(&host->detect);
2549 			_mmc_detect_change(host, 0, false);
2550 		}
2551 	}
2552 
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(mmc_detect_card_removed);
2556 
mmc_rescan(struct work_struct * work)2557 void mmc_rescan(struct work_struct *work)
2558 {
2559 	struct mmc_host *host =
2560 		container_of(work, struct mmc_host, detect.work);
2561 	int i;
2562 
2563 	if (host->rescan_disable)
2564 		return;
2565 
2566 	/* If there is a non-removable card registered, only scan once */
2567 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2568 		return;
2569 	host->rescan_entered = 1;
2570 
2571 	if (host->trigger_card_event && host->ops->card_event) {
2572 		mmc_claim_host(host);
2573 		host->ops->card_event(host);
2574 		mmc_release_host(host);
2575 		host->trigger_card_event = false;
2576 	}
2577 
2578 	mmc_bus_get(host);
2579 
2580 	/*
2581 	 * if there is a _removable_ card registered, check whether it is
2582 	 * still present
2583 	 */
2584 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2585 		host->bus_ops->detect(host);
2586 
2587 	host->detect_change = 0;
2588 
2589 	/*
2590 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2591 	 * the card is no longer present.
2592 	 */
2593 	mmc_bus_put(host);
2594 	mmc_bus_get(host);
2595 
2596 	/* if there still is a card present, stop here */
2597 	if (host->bus_ops != NULL) {
2598 		mmc_bus_put(host);
2599 		goto out;
2600 	}
2601 
2602 	/*
2603 	 * Only we can add a new handler, so it's safe to
2604 	 * release the lock here.
2605 	 */
2606 	mmc_bus_put(host);
2607 
2608 	mmc_claim_host(host);
2609 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2610 			host->ops->get_cd(host) == 0) {
2611 		mmc_power_off(host);
2612 		mmc_release_host(host);
2613 		goto out;
2614 	}
2615 
2616 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2617 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2618 			break;
2619 		if (freqs[i] <= host->f_min)
2620 			break;
2621 	}
2622 	mmc_release_host(host);
2623 
2624  out:
2625 	if (host->caps & MMC_CAP_NEEDS_POLL)
2626 		mmc_schedule_delayed_work(&host->detect, HZ);
2627 }
2628 
mmc_start_host(struct mmc_host * host)2629 void mmc_start_host(struct mmc_host *host)
2630 {
2631 	host->f_init = max(freqs[0], host->f_min);
2632 	host->rescan_disable = 0;
2633 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2634 
2635 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2636 		mmc_claim_host(host);
2637 		mmc_power_up(host, host->ocr_avail);
2638 		mmc_release_host(host);
2639 	}
2640 
2641 	mmc_gpiod_request_cd_irq(host);
2642 	_mmc_detect_change(host, 0, false);
2643 }
2644 
mmc_stop_host(struct mmc_host * host)2645 void mmc_stop_host(struct mmc_host *host)
2646 {
2647 	if (host->slot.cd_irq >= 0) {
2648 		if (host->slot.cd_wake_enabled)
2649 			disable_irq_wake(host->slot.cd_irq);
2650 		disable_irq(host->slot.cd_irq);
2651 	}
2652 
2653 	host->rescan_disable = 1;
2654 	cancel_delayed_work_sync(&host->detect);
2655 
2656 	/* clear pm flags now and let card drivers set them as needed */
2657 	host->pm_flags = 0;
2658 
2659 	mmc_bus_get(host);
2660 	if (host->bus_ops && !host->bus_dead) {
2661 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2662 		host->bus_ops->remove(host);
2663 		mmc_claim_host(host);
2664 		mmc_detach_bus(host);
2665 		mmc_power_off(host);
2666 		mmc_release_host(host);
2667 		mmc_bus_put(host);
2668 		return;
2669 	}
2670 	mmc_bus_put(host);
2671 
2672 	mmc_claim_host(host);
2673 	mmc_power_off(host);
2674 	mmc_release_host(host);
2675 }
2676 
mmc_power_save_host(struct mmc_host * host)2677 int mmc_power_save_host(struct mmc_host *host)
2678 {
2679 	int ret = 0;
2680 
2681 	pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2682 
2683 	mmc_bus_get(host);
2684 
2685 	if (!host->bus_ops || host->bus_dead) {
2686 		mmc_bus_put(host);
2687 		return -EINVAL;
2688 	}
2689 
2690 	if (host->bus_ops->power_save)
2691 		ret = host->bus_ops->power_save(host);
2692 
2693 	mmc_bus_put(host);
2694 
2695 	mmc_power_off(host);
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL(mmc_power_save_host);
2700 
mmc_power_restore_host(struct mmc_host * host)2701 int mmc_power_restore_host(struct mmc_host *host)
2702 {
2703 	int ret;
2704 
2705 	pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2706 
2707 	mmc_bus_get(host);
2708 
2709 	if (!host->bus_ops || host->bus_dead) {
2710 		mmc_bus_put(host);
2711 		return -EINVAL;
2712 	}
2713 
2714 	mmc_power_up(host, host->card->ocr);
2715 	ret = host->bus_ops->power_restore(host);
2716 
2717 	mmc_bus_put(host);
2718 
2719 	return ret;
2720 }
2721 EXPORT_SYMBOL(mmc_power_restore_host);
2722 
2723 #ifdef CONFIG_PM_SLEEP
2724 /* Do the card removal on suspend if card is assumed removeable
2725  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2726    to sync the card.
2727 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2728 static int mmc_pm_notify(struct notifier_block *notify_block,
2729 			unsigned long mode, void *unused)
2730 {
2731 	struct mmc_host *host = container_of(
2732 		notify_block, struct mmc_host, pm_notify);
2733 	unsigned long flags;
2734 	int err = 0;
2735 
2736 	switch (mode) {
2737 	case PM_HIBERNATION_PREPARE:
2738 	case PM_SUSPEND_PREPARE:
2739 	case PM_RESTORE_PREPARE:
2740 		spin_lock_irqsave(&host->lock, flags);
2741 		host->rescan_disable = 1;
2742 		spin_unlock_irqrestore(&host->lock, flags);
2743 		cancel_delayed_work_sync(&host->detect);
2744 
2745 		if (!host->bus_ops)
2746 			break;
2747 
2748 		/* Validate prerequisites for suspend */
2749 		if (host->bus_ops->pre_suspend)
2750 			err = host->bus_ops->pre_suspend(host);
2751 		if (!err)
2752 			break;
2753 
2754 		if (!mmc_card_is_removable(host)) {
2755 			dev_warn(mmc_dev(host),
2756 				 "pre_suspend failed for non-removable host: "
2757 				 "%d\n", err);
2758 			/* Avoid removing non-removable hosts */
2759 			break;
2760 		}
2761 
2762 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2763 		host->bus_ops->remove(host);
2764 		mmc_claim_host(host);
2765 		mmc_detach_bus(host);
2766 		mmc_power_off(host);
2767 		mmc_release_host(host);
2768 		host->pm_flags = 0;
2769 		break;
2770 
2771 	case PM_POST_SUSPEND:
2772 	case PM_POST_HIBERNATION:
2773 	case PM_POST_RESTORE:
2774 
2775 		spin_lock_irqsave(&host->lock, flags);
2776 		host->rescan_disable = 0;
2777 		spin_unlock_irqrestore(&host->lock, flags);
2778 		_mmc_detect_change(host, 0, false);
2779 
2780 	}
2781 
2782 	return 0;
2783 }
2784 
mmc_register_pm_notifier(struct mmc_host * host)2785 void mmc_register_pm_notifier(struct mmc_host *host)
2786 {
2787 	host->pm_notify.notifier_call = mmc_pm_notify;
2788 	register_pm_notifier(&host->pm_notify);
2789 }
2790 
mmc_unregister_pm_notifier(struct mmc_host * host)2791 void mmc_unregister_pm_notifier(struct mmc_host *host)
2792 {
2793 	unregister_pm_notifier(&host->pm_notify);
2794 }
2795 #endif
2796 
2797 /**
2798  * mmc_init_context_info() - init synchronization context
2799  * @host: mmc host
2800  *
2801  * Init struct context_info needed to implement asynchronous
2802  * request mechanism, used by mmc core, host driver and mmc requests
2803  * supplier.
2804  */
mmc_init_context_info(struct mmc_host * host)2805 void mmc_init_context_info(struct mmc_host *host)
2806 {
2807 	host->context_info.is_new_req = false;
2808 	host->context_info.is_done_rcv = false;
2809 	host->context_info.is_waiting_last_req = false;
2810 	init_waitqueue_head(&host->context_info.wait);
2811 }
2812 
2813 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)2814 void mmc_set_embedded_sdio_data(struct mmc_host *host,
2815 				struct sdio_cis *cis,
2816 				struct sdio_cccr *cccr,
2817 				struct sdio_embedded_func *funcs,
2818 				int num_funcs)
2819 {
2820 	host->embedded_sdio_data.cis = cis;
2821 	host->embedded_sdio_data.cccr = cccr;
2822 	host->embedded_sdio_data.funcs = funcs;
2823 	host->embedded_sdio_data.num_funcs = num_funcs;
2824 }
2825 
2826 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2827 #endif
2828 
mmc_init(void)2829 static int __init mmc_init(void)
2830 {
2831 	int ret;
2832 
2833 	ret = mmc_register_bus();
2834 	if (ret)
2835 		return ret;
2836 
2837 	ret = mmc_register_host_class();
2838 	if (ret)
2839 		goto unregister_bus;
2840 
2841 	ret = sdio_register_bus();
2842 	if (ret)
2843 		goto unregister_host_class;
2844 
2845 	return 0;
2846 
2847 unregister_host_class:
2848 	mmc_unregister_host_class();
2849 unregister_bus:
2850 	mmc_unregister_bus();
2851 	return ret;
2852 }
2853 
mmc_exit(void)2854 static void __exit mmc_exit(void)
2855 {
2856 	sdio_unregister_bus();
2857 	mmc_unregister_host_class();
2858 	mmc_unregister_bus();
2859 }
2860 
2861 subsys_initcall(mmc_init);
2862 module_exit(mmc_exit);
2863 
2864 MODULE_LICENSE("GPL");
2865