1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40
41 #include "fault.h"
42 #include "mm.h"
43 #include "tcm.h"
44
45 /*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51
52 /*
53 * The pmd table for the upper-most set of pages.
54 */
55 pmd_t *top_pmd;
56
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
59 #define CPOLICY_UNCACHED 0
60 #define CPOLICY_BUFFERED 1
61 #define CPOLICY_WRITETHROUGH 2
62 #define CPOLICY_WRITEBACK 3
63 #define CPOLICY_WRITEALLOC 4
64
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69 pgprot_t pgprot_hyp_device;
70 pgprot_t pgprot_s2;
71 pgprot_t pgprot_s2_device;
72
73 EXPORT_SYMBOL(pgprot_user);
74 EXPORT_SYMBOL(pgprot_kernel);
75
76 struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
79 pmdval_t pmd;
80 pteval_t pte;
81 pteval_t pte_s2;
82 };
83
84 #ifdef CONFIG_ARM_LPAE
85 #define s2_policy(policy) policy
86 #else
87 #define s2_policy(policy) 0
88 #endif
89
90 unsigned long kimage_voffset __ro_after_init;
91
92 static struct cachepolicy cache_policies[] __initdata = {
93 {
94 .policy = "uncached",
95 .cr_mask = CR_W|CR_C,
96 .pmd = PMD_SECT_UNCACHED,
97 .pte = L_PTE_MT_UNCACHED,
98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
99 }, {
100 .policy = "buffered",
101 .cr_mask = CR_C,
102 .pmd = PMD_SECT_BUFFERED,
103 .pte = L_PTE_MT_BUFFERABLE,
104 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
105 }, {
106 .policy = "writethrough",
107 .cr_mask = 0,
108 .pmd = PMD_SECT_WT,
109 .pte = L_PTE_MT_WRITETHROUGH,
110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
111 }, {
112 .policy = "writeback",
113 .cr_mask = 0,
114 .pmd = PMD_SECT_WB,
115 .pte = L_PTE_MT_WRITEBACK,
116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
117 }, {
118 .policy = "writealloc",
119 .cr_mask = 0,
120 .pmd = PMD_SECT_WBWA,
121 .pte = L_PTE_MT_WRITEALLOC,
122 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
123 }
124 };
125
126 #ifdef CONFIG_CPU_CP15
127 static unsigned long initial_pmd_value __initdata = 0;
128
129 /*
130 * Initialise the cache_policy variable with the initial state specified
131 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
132 * the C code sets the page tables up with the same policy as the head
133 * assembly code, which avoids an illegal state where the TLBs can get
134 * confused. See comments in early_cachepolicy() for more information.
135 */
init_default_cache_policy(unsigned long pmd)136 void __init init_default_cache_policy(unsigned long pmd)
137 {
138 int i;
139
140 initial_pmd_value = pmd;
141
142 pmd &= PMD_SECT_CACHE_MASK;
143
144 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
145 if (cache_policies[i].pmd == pmd) {
146 cachepolicy = i;
147 break;
148 }
149
150 if (i == ARRAY_SIZE(cache_policies))
151 pr_err("ERROR: could not find cache policy\n");
152 }
153
154 /*
155 * These are useful for identifying cache coherency problems by allowing
156 * the cache or the cache and writebuffer to be turned off. (Note: the
157 * write buffer should not be on and the cache off).
158 */
early_cachepolicy(char * p)159 static int __init early_cachepolicy(char *p)
160 {
161 int i, selected = -1;
162
163 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
164 int len = strlen(cache_policies[i].policy);
165
166 if (memcmp(p, cache_policies[i].policy, len) == 0) {
167 selected = i;
168 break;
169 }
170 }
171
172 if (selected == -1)
173 pr_err("ERROR: unknown or unsupported cache policy\n");
174
175 /*
176 * This restriction is partly to do with the way we boot; it is
177 * unpredictable to have memory mapped using two different sets of
178 * memory attributes (shared, type, and cache attribs). We can not
179 * change these attributes once the initial assembly has setup the
180 * page tables.
181 */
182 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
183 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
184 cache_policies[cachepolicy].policy);
185 return 0;
186 }
187
188 if (selected != cachepolicy) {
189 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
190 cachepolicy = selected;
191 flush_cache_all();
192 set_cr(cr);
193 }
194 return 0;
195 }
196 early_param("cachepolicy", early_cachepolicy);
197
early_nocache(char * __unused)198 static int __init early_nocache(char *__unused)
199 {
200 char *p = "buffered";
201 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
202 early_cachepolicy(p);
203 return 0;
204 }
205 early_param("nocache", early_nocache);
206
early_nowrite(char * __unused)207 static int __init early_nowrite(char *__unused)
208 {
209 char *p = "uncached";
210 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
211 early_cachepolicy(p);
212 return 0;
213 }
214 early_param("nowb", early_nowrite);
215
216 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)217 static int __init early_ecc(char *p)
218 {
219 if (memcmp(p, "on", 2) == 0)
220 ecc_mask = PMD_PROTECTION;
221 else if (memcmp(p, "off", 3) == 0)
222 ecc_mask = 0;
223 return 0;
224 }
225 early_param("ecc", early_ecc);
226 #endif
227
228 #else /* ifdef CONFIG_CPU_CP15 */
229
early_cachepolicy(char * p)230 static int __init early_cachepolicy(char *p)
231 {
232 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
233 }
234 early_param("cachepolicy", early_cachepolicy);
235
noalign_setup(char * __unused)236 static int __init noalign_setup(char *__unused)
237 {
238 pr_warn("noalign kernel parameter not supported without cp15\n");
239 }
240 __setup("noalign", noalign_setup);
241
242 #endif /* ifdef CONFIG_CPU_CP15 / else */
243
244 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
245 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
246 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
247
248 static struct mem_type mem_types[] __ro_after_init = {
249 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
251 L_PTE_SHARED,
252 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
253 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
254 L_PTE_SHARED,
255 .prot_l1 = PMD_TYPE_TABLE,
256 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
257 .domain = DOMAIN_IO,
258 },
259 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
261 .prot_l1 = PMD_TYPE_TABLE,
262 .prot_sect = PROT_SECT_DEVICE,
263 .domain = DOMAIN_IO,
264 },
265 [MT_DEVICE_CACHED] = { /* ioremap_cached */
266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
269 .domain = DOMAIN_IO,
270 },
271 [MT_DEVICE_WC] = { /* ioremap_wc */
272 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .prot_sect = PROT_SECT_DEVICE,
275 .domain = DOMAIN_IO,
276 },
277 [MT_UNCACHED] = {
278 .prot_pte = PROT_PTE_DEVICE,
279 .prot_l1 = PMD_TYPE_TABLE,
280 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
281 .domain = DOMAIN_IO,
282 },
283 [MT_CACHECLEAN] = {
284 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
285 .domain = DOMAIN_KERNEL,
286 },
287 #ifndef CONFIG_ARM_LPAE
288 [MT_MINICLEAN] = {
289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
290 .domain = DOMAIN_KERNEL,
291 },
292 #endif
293 [MT_LOW_VECTORS] = {
294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295 L_PTE_RDONLY,
296 .prot_l1 = PMD_TYPE_TABLE,
297 .domain = DOMAIN_VECTORS,
298 },
299 [MT_HIGH_VECTORS] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_USER | L_PTE_RDONLY,
302 .prot_l1 = PMD_TYPE_TABLE,
303 .domain = DOMAIN_VECTORS,
304 },
305 [MT_MEMORY_RWX] = {
306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
307 .prot_l1 = PMD_TYPE_TABLE,
308 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
309 .domain = DOMAIN_KERNEL,
310 },
311 [MT_MEMORY_RW] = {
312 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
313 L_PTE_XN,
314 .prot_l1 = PMD_TYPE_TABLE,
315 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
316 .domain = DOMAIN_KERNEL,
317 },
318 [MT_ROM] = {
319 .prot_sect = PMD_TYPE_SECT,
320 .domain = DOMAIN_KERNEL,
321 },
322 [MT_MEMORY_RWX_NONCACHED] = {
323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
324 L_PTE_MT_BUFFERABLE,
325 .prot_l1 = PMD_TYPE_TABLE,
326 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
327 .domain = DOMAIN_KERNEL,
328 },
329 [MT_MEMORY_RW_DTCM] = {
330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 L_PTE_XN,
332 .prot_l1 = PMD_TYPE_TABLE,
333 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
334 .domain = DOMAIN_KERNEL,
335 },
336 [MT_MEMORY_RWX_ITCM] = {
337 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
338 .prot_l1 = PMD_TYPE_TABLE,
339 .domain = DOMAIN_KERNEL,
340 },
341 [MT_MEMORY_RW_SO] = {
342 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 L_PTE_MT_UNCACHED | L_PTE_XN,
344 .prot_l1 = PMD_TYPE_TABLE,
345 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
346 PMD_SECT_UNCACHED | PMD_SECT_XN,
347 .domain = DOMAIN_KERNEL,
348 },
349 [MT_MEMORY_DMA_READY] = {
350 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
351 L_PTE_XN,
352 .prot_l1 = PMD_TYPE_TABLE,
353 .domain = DOMAIN_KERNEL,
354 },
355 };
356
get_mem_type(unsigned int type)357 const struct mem_type *get_mem_type(unsigned int type)
358 {
359 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
360 }
361 EXPORT_SYMBOL(get_mem_type);
362
363 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
364
365 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
366 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
367
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)368 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
369 {
370 return &bm_pte[pte_index(addr)];
371 }
372
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)373 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
374 {
375 return pte_offset_kernel(dir, addr);
376 }
377
fixmap_pmd(unsigned long addr)378 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
379 {
380 pgd_t *pgd = pgd_offset_k(addr);
381 pud_t *pud = pud_offset(pgd, addr);
382 pmd_t *pmd = pmd_offset(pud, addr);
383
384 return pmd;
385 }
386
early_fixmap_init(void)387 void __init early_fixmap_init(void)
388 {
389 pmd_t *pmd;
390
391 /*
392 * The early fixmap range spans multiple pmds, for which
393 * we are not prepared:
394 */
395 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
396 != FIXADDR_TOP >> PMD_SHIFT);
397
398 pmd = fixmap_pmd(FIXADDR_TOP);
399 pmd_populate_kernel(&init_mm, pmd, bm_pte);
400
401 pte_offset_fixmap = pte_offset_early_fixmap;
402 }
403
404 /*
405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
406 * As a result, this can only be called with preemption disabled, as under
407 * stop_machine().
408 */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)409 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
410 {
411 unsigned long vaddr = __fix_to_virt(idx);
412 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
413
414 /* Make sure fixmap region does not exceed available allocation. */
415 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
416 FIXADDR_END);
417 BUG_ON(idx >= __end_of_fixed_addresses);
418
419 /* we only support device mappings until pgprot_kernel has been set */
420 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
421 pgprot_val(pgprot_kernel) == 0))
422 return;
423
424 if (pgprot_val(prot))
425 set_pte_at(NULL, vaddr, pte,
426 pfn_pte(phys >> PAGE_SHIFT, prot));
427 else
428 pte_clear(NULL, vaddr, pte);
429 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
430 }
431
432 /*
433 * Adjust the PMD section entries according to the CPU in use.
434 */
build_mem_type_table(void)435 static void __init build_mem_type_table(void)
436 {
437 struct cachepolicy *cp;
438 unsigned int cr = get_cr();
439 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
440 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
441 int cpu_arch = cpu_architecture();
442 int i;
443
444 if (cpu_arch < CPU_ARCH_ARMv6) {
445 #if defined(CONFIG_CPU_DCACHE_DISABLE)
446 if (cachepolicy > CPOLICY_BUFFERED)
447 cachepolicy = CPOLICY_BUFFERED;
448 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
449 if (cachepolicy > CPOLICY_WRITETHROUGH)
450 cachepolicy = CPOLICY_WRITETHROUGH;
451 #endif
452 }
453 if (cpu_arch < CPU_ARCH_ARMv5) {
454 if (cachepolicy >= CPOLICY_WRITEALLOC)
455 cachepolicy = CPOLICY_WRITEBACK;
456 ecc_mask = 0;
457 }
458
459 if (is_smp()) {
460 if (cachepolicy != CPOLICY_WRITEALLOC) {
461 pr_warn("Forcing write-allocate cache policy for SMP\n");
462 cachepolicy = CPOLICY_WRITEALLOC;
463 }
464 if (!(initial_pmd_value & PMD_SECT_S)) {
465 pr_warn("Forcing shared mappings for SMP\n");
466 initial_pmd_value |= PMD_SECT_S;
467 }
468 }
469
470 /*
471 * Strip out features not present on earlier architectures.
472 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
473 * without extended page tables don't have the 'Shared' bit.
474 */
475 if (cpu_arch < CPU_ARCH_ARMv5)
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
478 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
480 mem_types[i].prot_sect &= ~PMD_SECT_S;
481
482 /*
483 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
484 * "update-able on write" bit on ARM610). However, Xscale and
485 * Xscale3 require this bit to be cleared.
486 */
487 if (cpu_is_xscale_family()) {
488 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
489 mem_types[i].prot_sect &= ~PMD_BIT4;
490 mem_types[i].prot_l1 &= ~PMD_BIT4;
491 }
492 } else if (cpu_arch < CPU_ARCH_ARMv6) {
493 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
494 if (mem_types[i].prot_l1)
495 mem_types[i].prot_l1 |= PMD_BIT4;
496 if (mem_types[i].prot_sect)
497 mem_types[i].prot_sect |= PMD_BIT4;
498 }
499 }
500
501 /*
502 * Mark the device areas according to the CPU/architecture.
503 */
504 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
505 if (!cpu_is_xsc3()) {
506 /*
507 * Mark device regions on ARMv6+ as execute-never
508 * to prevent speculative instruction fetches.
509 */
510 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
511 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
512 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
514
515 /* Also setup NX memory mapping */
516 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
517 }
518 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
519 /*
520 * For ARMv7 with TEX remapping,
521 * - shared device is SXCB=1100
522 * - nonshared device is SXCB=0100
523 * - write combine device mem is SXCB=0001
524 * (Uncached Normal memory)
525 */
526 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
527 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
528 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
529 } else if (cpu_is_xsc3()) {
530 /*
531 * For Xscale3,
532 * - shared device is TEXCB=00101
533 * - nonshared device is TEXCB=01000
534 * - write combine device mem is TEXCB=00100
535 * (Inner/Outer Uncacheable in xsc3 parlance)
536 */
537 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
538 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
539 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
540 } else {
541 /*
542 * For ARMv6 and ARMv7 without TEX remapping,
543 * - shared device is TEXCB=00001
544 * - nonshared device is TEXCB=01000
545 * - write combine device mem is TEXCB=00100
546 * (Uncached Normal in ARMv6 parlance).
547 */
548 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
549 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
550 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
551 }
552 } else {
553 /*
554 * On others, write combining is "Uncached/Buffered"
555 */
556 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
557 }
558
559 /*
560 * Now deal with the memory-type mappings
561 */
562 cp = &cache_policies[cachepolicy];
563 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
564 s2_pgprot = cp->pte_s2;
565 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
566 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
567
568 #ifndef CONFIG_ARM_LPAE
569 /*
570 * We don't use domains on ARMv6 (since this causes problems with
571 * v6/v7 kernels), so we must use a separate memory type for user
572 * r/o, kernel r/w to map the vectors page.
573 */
574 if (cpu_arch == CPU_ARCH_ARMv6)
575 vecs_pgprot |= L_PTE_MT_VECTORS;
576
577 /*
578 * Check is it with support for the PXN bit
579 * in the Short-descriptor translation table format descriptors.
580 */
581 if (cpu_arch == CPU_ARCH_ARMv7 &&
582 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
583 user_pmd_table |= PMD_PXNTABLE;
584 }
585 #endif
586
587 /*
588 * ARMv6 and above have extended page tables.
589 */
590 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
591 #ifndef CONFIG_ARM_LPAE
592 /*
593 * Mark cache clean areas and XIP ROM read only
594 * from SVC mode and no access from userspace.
595 */
596 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
597 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
598 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
599 #endif
600
601 /*
602 * If the initial page tables were created with the S bit
603 * set, then we need to do the same here for the same
604 * reasons given in early_cachepolicy().
605 */
606 if (initial_pmd_value & PMD_SECT_S) {
607 user_pgprot |= L_PTE_SHARED;
608 kern_pgprot |= L_PTE_SHARED;
609 vecs_pgprot |= L_PTE_SHARED;
610 s2_pgprot |= L_PTE_SHARED;
611 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
612 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
613 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
614 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
615 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
616 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
617 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
618 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
619 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
620 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
621 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
622 }
623 }
624
625 /*
626 * Non-cacheable Normal - intended for memory areas that must
627 * not cause dirty cache line writebacks when used
628 */
629 if (cpu_arch >= CPU_ARCH_ARMv6) {
630 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
631 /* Non-cacheable Normal is XCB = 001 */
632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
633 PMD_SECT_BUFFERED;
634 } else {
635 /* For both ARMv6 and non-TEX-remapping ARMv7 */
636 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
637 PMD_SECT_TEX(1);
638 }
639 } else {
640 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
641 }
642
643 #ifdef CONFIG_ARM_LPAE
644 /*
645 * Do not generate access flag faults for the kernel mappings.
646 */
647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 mem_types[i].prot_pte |= PTE_EXT_AF;
649 if (mem_types[i].prot_sect)
650 mem_types[i].prot_sect |= PMD_SECT_AF;
651 }
652 kern_pgprot |= PTE_EXT_AF;
653 vecs_pgprot |= PTE_EXT_AF;
654
655 /*
656 * Set PXN for user mappings
657 */
658 user_pgprot |= PTE_EXT_PXN;
659 #endif
660
661 for (i = 0; i < 16; i++) {
662 pteval_t v = pgprot_val(protection_map[i]);
663 protection_map[i] = __pgprot(v | user_pgprot);
664 }
665
666 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
667 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
668
669 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
670 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
671 L_PTE_DIRTY | kern_pgprot);
672 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
673 pgprot_s2_device = __pgprot(s2_device_pgprot);
674 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
675
676 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
677 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
678 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
679 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
680 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
681 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
682 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
683 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
684 mem_types[MT_ROM].prot_sect |= cp->pmd;
685
686 switch (cp->pmd) {
687 case PMD_SECT_WT:
688 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
689 break;
690 case PMD_SECT_WB:
691 case PMD_SECT_WBWA:
692 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
693 break;
694 }
695 pr_info("Memory policy: %sData cache %s\n",
696 ecc_mask ? "ECC enabled, " : "", cp->policy);
697
698 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
699 struct mem_type *t = &mem_types[i];
700 if (t->prot_l1)
701 t->prot_l1 |= PMD_DOMAIN(t->domain);
702 if (t->prot_sect)
703 t->prot_sect |= PMD_DOMAIN(t->domain);
704 }
705 }
706
707 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)708 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
709 unsigned long size, pgprot_t vma_prot)
710 {
711 if (!pfn_valid(pfn))
712 return pgprot_noncached(vma_prot);
713 else if (file->f_flags & O_SYNC)
714 return pgprot_writecombine(vma_prot);
715 return vma_prot;
716 }
717 EXPORT_SYMBOL(phys_mem_access_prot);
718 #endif
719
720 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
721
early_alloc_aligned(unsigned long sz,unsigned long align)722 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
723 {
724 void *ptr = __va(memblock_alloc(sz, align));
725 memset(ptr, 0, sz);
726 return ptr;
727 }
728
early_alloc(unsigned long sz)729 static void __init *early_alloc(unsigned long sz)
730 {
731 return early_alloc_aligned(sz, sz);
732 }
733
late_alloc(unsigned long sz)734 static void *__init late_alloc(unsigned long sz)
735 {
736 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
737
738 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
739 BUG();
740 return ptr;
741 }
742
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))743 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
744 unsigned long prot,
745 void *(*alloc)(unsigned long sz))
746 {
747 if (pmd_none(*pmd)) {
748 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
749 __pmd_populate(pmd, __pa(pte), prot);
750 }
751 BUG_ON(pmd_bad(*pmd));
752 return pte_offset_kernel(pmd, addr);
753 }
754
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)755 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
756 unsigned long prot)
757 {
758 return arm_pte_alloc(pmd, addr, prot, early_alloc);
759 }
760
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)761 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
762 unsigned long end, unsigned long pfn,
763 const struct mem_type *type,
764 void *(*alloc)(unsigned long sz),
765 bool ng)
766 {
767 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
768 do {
769 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
770 ng ? PTE_EXT_NG : 0);
771 pfn++;
772 } while (pte++, addr += PAGE_SIZE, addr != end);
773 }
774
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)775 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
776 unsigned long end, phys_addr_t phys,
777 const struct mem_type *type, bool ng)
778 {
779 pmd_t *p = pmd;
780
781 #ifndef CONFIG_ARM_LPAE
782 /*
783 * In classic MMU format, puds and pmds are folded in to
784 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
785 * group of L1 entries making up one logical pointer to
786 * an L2 table (2MB), where as PMDs refer to the individual
787 * L1 entries (1MB). Hence increment to get the correct
788 * offset for odd 1MB sections.
789 * (See arch/arm/include/asm/pgtable-2level.h)
790 */
791 if (addr & SECTION_SIZE)
792 pmd++;
793 #endif
794 do {
795 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
796 phys += SECTION_SIZE;
797 } while (pmd++, addr += SECTION_SIZE, addr != end);
798
799 flush_pmd_entry(p);
800 }
801
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)802 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
803 unsigned long end, phys_addr_t phys,
804 const struct mem_type *type,
805 void *(*alloc)(unsigned long sz), bool ng)
806 {
807 pmd_t *pmd = pmd_offset(pud, addr);
808 unsigned long next;
809
810 do {
811 /*
812 * With LPAE, we must loop over to map
813 * all the pmds for the given range.
814 */
815 next = pmd_addr_end(addr, end);
816
817 /*
818 * Try a section mapping - addr, next and phys must all be
819 * aligned to a section boundary.
820 */
821 if (type->prot_sect &&
822 ((addr | next | phys) & ~SECTION_MASK) == 0) {
823 __map_init_section(pmd, addr, next, phys, type, ng);
824 } else {
825 alloc_init_pte(pmd, addr, next,
826 __phys_to_pfn(phys), type, alloc, ng);
827 }
828
829 phys += next - addr;
830
831 } while (pmd++, addr = next, addr != end);
832 }
833
alloc_init_pud(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)834 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
835 unsigned long end, phys_addr_t phys,
836 const struct mem_type *type,
837 void *(*alloc)(unsigned long sz), bool ng)
838 {
839 pud_t *pud = pud_offset(pgd, addr);
840 unsigned long next;
841
842 do {
843 next = pud_addr_end(addr, end);
844 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
845 phys += next - addr;
846 } while (pud++, addr = next, addr != end);
847 }
848
849 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)850 static void __init create_36bit_mapping(struct mm_struct *mm,
851 struct map_desc *md,
852 const struct mem_type *type,
853 bool ng)
854 {
855 unsigned long addr, length, end;
856 phys_addr_t phys;
857 pgd_t *pgd;
858
859 addr = md->virtual;
860 phys = __pfn_to_phys(md->pfn);
861 length = PAGE_ALIGN(md->length);
862
863 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
864 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
865 (long long)__pfn_to_phys((u64)md->pfn), addr);
866 return;
867 }
868
869 /* N.B. ARMv6 supersections are only defined to work with domain 0.
870 * Since domain assignments can in fact be arbitrary, the
871 * 'domain == 0' check below is required to insure that ARMv6
872 * supersections are only allocated for domain 0 regardless
873 * of the actual domain assignments in use.
874 */
875 if (type->domain) {
876 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
877 (long long)__pfn_to_phys((u64)md->pfn), addr);
878 return;
879 }
880
881 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
882 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
883 (long long)__pfn_to_phys((u64)md->pfn), addr);
884 return;
885 }
886
887 /*
888 * Shift bits [35:32] of address into bits [23:20] of PMD
889 * (See ARMv6 spec).
890 */
891 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
892
893 pgd = pgd_offset(mm, addr);
894 end = addr + length;
895 do {
896 pud_t *pud = pud_offset(pgd, addr);
897 pmd_t *pmd = pmd_offset(pud, addr);
898 int i;
899
900 for (i = 0; i < 16; i++)
901 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
902 (ng ? PMD_SECT_nG : 0));
903
904 addr += SUPERSECTION_SIZE;
905 phys += SUPERSECTION_SIZE;
906 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
907 } while (addr != end);
908 }
909 #endif /* !CONFIG_ARM_LPAE */
910
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)911 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
912 void *(*alloc)(unsigned long sz),
913 bool ng)
914 {
915 unsigned long addr, length, end;
916 phys_addr_t phys;
917 const struct mem_type *type;
918 pgd_t *pgd;
919
920 type = &mem_types[md->type];
921
922 #ifndef CONFIG_ARM_LPAE
923 /*
924 * Catch 36-bit addresses
925 */
926 if (md->pfn >= 0x100000) {
927 create_36bit_mapping(mm, md, type, ng);
928 return;
929 }
930 #endif
931
932 addr = md->virtual & PAGE_MASK;
933 phys = __pfn_to_phys(md->pfn);
934 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
935
936 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
937 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 (long long)__pfn_to_phys(md->pfn), addr);
939 return;
940 }
941
942 pgd = pgd_offset(mm, addr);
943 end = addr + length;
944 do {
945 unsigned long next = pgd_addr_end(addr, end);
946
947 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
948
949 phys += next - addr;
950 addr = next;
951 } while (pgd++, addr != end);
952 }
953
954 /*
955 * Create the page directory entries and any necessary
956 * page tables for the mapping specified by `md'. We
957 * are able to cope here with varying sizes and address
958 * offsets, and we take full advantage of sections and
959 * supersections.
960 */
create_mapping(struct map_desc * md)961 static void __init create_mapping(struct map_desc *md)
962 {
963 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
964 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
966 return;
967 }
968
969 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
970 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
971 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
972 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
974 }
975
976 __create_mapping(&init_mm, md, early_alloc, false);
977 }
978
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)979 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
980 bool ng)
981 {
982 #ifdef CONFIG_ARM_LPAE
983 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
984 if (WARN_ON(!pud))
985 return;
986 pmd_alloc(mm, pud, 0);
987 #endif
988 __create_mapping(mm, md, late_alloc, ng);
989 }
990
991 /*
992 * Create the architecture specific mappings
993 */
iotable_init(struct map_desc * io_desc,int nr)994 void __init iotable_init(struct map_desc *io_desc, int nr)
995 {
996 struct map_desc *md;
997 struct vm_struct *vm;
998 struct static_vm *svm;
999
1000 if (!nr)
1001 return;
1002
1003 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
1004
1005 for (md = io_desc; nr; md++, nr--) {
1006 create_mapping(md);
1007
1008 vm = &svm->vm;
1009 vm->addr = (void *)(md->virtual & PAGE_MASK);
1010 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1011 vm->phys_addr = __pfn_to_phys(md->pfn);
1012 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1013 vm->flags |= VM_ARM_MTYPE(md->type);
1014 vm->caller = iotable_init;
1015 add_static_vm_early(svm++);
1016 }
1017 }
1018
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1019 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1020 void *caller)
1021 {
1022 struct vm_struct *vm;
1023 struct static_vm *svm;
1024
1025 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1026
1027 vm = &svm->vm;
1028 vm->addr = (void *)addr;
1029 vm->size = size;
1030 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1031 vm->caller = caller;
1032 add_static_vm_early(svm);
1033 }
1034
1035 #ifndef CONFIG_ARM_LPAE
1036
1037 /*
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h). However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings. This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1045 *
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1048 */
1049
pmd_empty_section_gap(unsigned long addr)1050 static void __init pmd_empty_section_gap(unsigned long addr)
1051 {
1052 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1053 }
1054
fill_pmd_gaps(void)1055 static void __init fill_pmd_gaps(void)
1056 {
1057 struct static_vm *svm;
1058 struct vm_struct *vm;
1059 unsigned long addr, next = 0;
1060 pmd_t *pmd;
1061
1062 list_for_each_entry(svm, &static_vmlist, list) {
1063 vm = &svm->vm;
1064 addr = (unsigned long)vm->addr;
1065 if (addr < next)
1066 continue;
1067
1068 /*
1069 * Check if this vm starts on an odd section boundary.
1070 * If so and the first section entry for this PMD is free
1071 * then we block the corresponding virtual address.
1072 */
1073 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1074 pmd = pmd_off_k(addr);
1075 if (pmd_none(*pmd))
1076 pmd_empty_section_gap(addr & PMD_MASK);
1077 }
1078
1079 /*
1080 * Then check if this vm ends on an odd section boundary.
1081 * If so and the second section entry for this PMD is empty
1082 * then we block the corresponding virtual address.
1083 */
1084 addr += vm->size;
1085 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086 pmd = pmd_off_k(addr) + 1;
1087 if (pmd_none(*pmd))
1088 pmd_empty_section_gap(addr);
1089 }
1090
1091 /* no need to look at any vm entry until we hit the next PMD */
1092 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1093 }
1094 }
1095
1096 #else
1097 #define fill_pmd_gaps() do { } while (0)
1098 #endif
1099
1100 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1101 static void __init pci_reserve_io(void)
1102 {
1103 struct static_vm *svm;
1104
1105 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1106 if (svm)
1107 return;
1108
1109 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1110 }
1111 #else
1112 #define pci_reserve_io() do { } while (0)
1113 #endif
1114
1115 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1116 void __init debug_ll_io_init(void)
1117 {
1118 struct map_desc map;
1119
1120 debug_ll_addr(&map.pfn, &map.virtual);
1121 if (!map.pfn || !map.virtual)
1122 return;
1123 map.pfn = __phys_to_pfn(map.pfn);
1124 map.virtual &= PAGE_MASK;
1125 map.length = PAGE_SIZE;
1126 map.type = MT_DEVICE;
1127 iotable_init(&map, 1);
1128 }
1129 #endif
1130
1131 static void * __initdata vmalloc_min =
1132 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1133
1134 /*
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
1137 * area - the default is 240m.
1138 */
early_vmalloc(char * arg)1139 static int __init early_vmalloc(char *arg)
1140 {
1141 unsigned long vmalloc_reserve = memparse(arg, NULL);
1142
1143 if (vmalloc_reserve < SZ_16M) {
1144 vmalloc_reserve = SZ_16M;
1145 pr_warn("vmalloc area too small, limiting to %luMB\n",
1146 vmalloc_reserve >> 20);
1147 }
1148
1149 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1150 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1151 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1152 vmalloc_reserve >> 20);
1153 }
1154
1155 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1156 return 0;
1157 }
1158 early_param("vmalloc", early_vmalloc);
1159
1160 phys_addr_t arm_lowmem_limit __initdata = 0;
1161
adjust_lowmem_bounds(void)1162 void __init adjust_lowmem_bounds(void)
1163 {
1164 phys_addr_t memblock_limit = 0;
1165 u64 vmalloc_limit;
1166 struct memblock_region *reg;
1167 phys_addr_t lowmem_limit = 0;
1168
1169 /*
1170 * Let's use our own (unoptimized) equivalent of __pa() that is
1171 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172 * The result is used as the upper bound on physical memory address
1173 * and may itself be outside the valid range for which phys_addr_t
1174 * and therefore __pa() is defined.
1175 */
1176 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1177
1178 /*
1179 * The first usable region must be PMD aligned. Mark its start
1180 * as MEMBLOCK_NOMAP if it isn't
1181 */
1182 for_each_memblock(memory, reg) {
1183 if (!memblock_is_nomap(reg)) {
1184 if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1185 phys_addr_t len;
1186
1187 len = round_up(reg->base, PMD_SIZE) - reg->base;
1188 memblock_mark_nomap(reg->base, len);
1189 }
1190 break;
1191 }
1192 }
1193
1194 for_each_memblock(memory, reg) {
1195 phys_addr_t block_start = reg->base;
1196 phys_addr_t block_end = reg->base + reg->size;
1197
1198 if (memblock_is_nomap(reg))
1199 continue;
1200
1201 if (reg->base < vmalloc_limit) {
1202 if (block_end > lowmem_limit)
1203 /*
1204 * Compare as u64 to ensure vmalloc_limit does
1205 * not get truncated. block_end should always
1206 * fit in phys_addr_t so there should be no
1207 * issue with assignment.
1208 */
1209 lowmem_limit = min_t(u64,
1210 vmalloc_limit,
1211 block_end);
1212
1213 /*
1214 * Find the first non-pmd-aligned page, and point
1215 * memblock_limit at it. This relies on rounding the
1216 * limit down to be pmd-aligned, which happens at the
1217 * end of this function.
1218 *
1219 * With this algorithm, the start or end of almost any
1220 * bank can be non-pmd-aligned. The only exception is
1221 * that the start of the bank 0 must be section-
1222 * aligned, since otherwise memory would need to be
1223 * allocated when mapping the start of bank 0, which
1224 * occurs before any free memory is mapped.
1225 */
1226 if (!memblock_limit) {
1227 if (!IS_ALIGNED(block_start, PMD_SIZE))
1228 memblock_limit = block_start;
1229 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1230 memblock_limit = lowmem_limit;
1231 }
1232
1233 }
1234 }
1235
1236 arm_lowmem_limit = lowmem_limit;
1237
1238 high_memory = __va(arm_lowmem_limit - 1) + 1;
1239
1240 if (!memblock_limit)
1241 memblock_limit = arm_lowmem_limit;
1242
1243 /*
1244 * Round the memblock limit down to a pmd size. This
1245 * helps to ensure that we will allocate memory from the
1246 * last full pmd, which should be mapped.
1247 */
1248 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1249
1250 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1251 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1252 phys_addr_t end = memblock_end_of_DRAM();
1253
1254 pr_notice("Ignoring RAM at %pa-%pa\n",
1255 &memblock_limit, &end);
1256 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1257
1258 memblock_remove(memblock_limit, end - memblock_limit);
1259 }
1260 }
1261
1262 memblock_set_current_limit(memblock_limit);
1263 }
1264
prepare_page_table(void)1265 static inline void prepare_page_table(void)
1266 {
1267 unsigned long addr;
1268 phys_addr_t end;
1269
1270 /*
1271 * Clear out all the mappings below the kernel image.
1272 */
1273 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1274 pmd_clear(pmd_off_k(addr));
1275
1276 #ifdef CONFIG_XIP_KERNEL
1277 /* The XIP kernel is mapped in the module area -- skip over it */
1278 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1279 #endif
1280 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1281 pmd_clear(pmd_off_k(addr));
1282
1283 /*
1284 * Find the end of the first block of lowmem.
1285 */
1286 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1287 if (end >= arm_lowmem_limit)
1288 end = arm_lowmem_limit;
1289
1290 /*
1291 * Clear out all the kernel space mappings, except for the first
1292 * memory bank, up to the vmalloc region.
1293 */
1294 for (addr = __phys_to_virt(end);
1295 addr < VMALLOC_START; addr += PMD_SIZE)
1296 pmd_clear(pmd_off_k(addr));
1297 }
1298
1299 #ifdef CONFIG_ARM_LPAE
1300 /* the first page is reserved for pgd */
1301 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1302 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1303 #else
1304 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1305 #endif
1306
1307 /*
1308 * Reserve the special regions of memory
1309 */
arm_mm_memblock_reserve(void)1310 void __init arm_mm_memblock_reserve(void)
1311 {
1312 /*
1313 * Reserve the page tables. These are already in use,
1314 * and can only be in node 0.
1315 */
1316 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1317
1318 #ifdef CONFIG_SA1111
1319 /*
1320 * Because of the SA1111 DMA bug, we want to preserve our
1321 * precious DMA-able memory...
1322 */
1323 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1324 #endif
1325 }
1326
1327 /*
1328 * Set up the device mappings. Since we clear out the page tables for all
1329 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1330 * device mappings. This means earlycon can be used to debug this function
1331 * Any other function or debugging method which may touch any device _will_
1332 * crash the kernel.
1333 */
devicemaps_init(const struct machine_desc * mdesc)1334 static void __init devicemaps_init(const struct machine_desc *mdesc)
1335 {
1336 struct map_desc map;
1337 unsigned long addr;
1338 void *vectors;
1339
1340 /*
1341 * Allocate the vector page early.
1342 */
1343 vectors = early_alloc(PAGE_SIZE * 2);
1344
1345 early_trap_init(vectors);
1346
1347 /*
1348 * Clear page table except top pmd used by early fixmaps
1349 */
1350 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1351 pmd_clear(pmd_off_k(addr));
1352
1353 /*
1354 * Map the kernel if it is XIP.
1355 * It is always first in the modulearea.
1356 */
1357 #ifdef CONFIG_XIP_KERNEL
1358 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1359 map.virtual = MODULES_VADDR;
1360 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1361 map.type = MT_ROM;
1362 create_mapping(&map);
1363 #endif
1364
1365 /*
1366 * Map the cache flushing regions.
1367 */
1368 #ifdef FLUSH_BASE
1369 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1370 map.virtual = FLUSH_BASE;
1371 map.length = SZ_1M;
1372 map.type = MT_CACHECLEAN;
1373 create_mapping(&map);
1374 #endif
1375 #ifdef FLUSH_BASE_MINICACHE
1376 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1377 map.virtual = FLUSH_BASE_MINICACHE;
1378 map.length = SZ_1M;
1379 map.type = MT_MINICLEAN;
1380 create_mapping(&map);
1381 #endif
1382
1383 /*
1384 * Create a mapping for the machine vectors at the high-vectors
1385 * location (0xffff0000). If we aren't using high-vectors, also
1386 * create a mapping at the low-vectors virtual address.
1387 */
1388 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1389 map.virtual = 0xffff0000;
1390 map.length = PAGE_SIZE;
1391 #ifdef CONFIG_KUSER_HELPERS
1392 map.type = MT_HIGH_VECTORS;
1393 #else
1394 map.type = MT_LOW_VECTORS;
1395 #endif
1396 create_mapping(&map);
1397
1398 if (!vectors_high()) {
1399 map.virtual = 0;
1400 map.length = PAGE_SIZE * 2;
1401 map.type = MT_LOW_VECTORS;
1402 create_mapping(&map);
1403 }
1404
1405 /* Now create a kernel read-only mapping */
1406 map.pfn += 1;
1407 map.virtual = 0xffff0000 + PAGE_SIZE;
1408 map.length = PAGE_SIZE;
1409 map.type = MT_LOW_VECTORS;
1410 create_mapping(&map);
1411
1412 /*
1413 * Ask the machine support to map in the statically mapped devices.
1414 */
1415 if (mdesc->map_io)
1416 mdesc->map_io();
1417 else
1418 debug_ll_io_init();
1419 fill_pmd_gaps();
1420
1421 /* Reserve fixed i/o space in VMALLOC region */
1422 pci_reserve_io();
1423
1424 /*
1425 * Finally flush the caches and tlb to ensure that we're in a
1426 * consistent state wrt the writebuffer. This also ensures that
1427 * any write-allocated cache lines in the vector page are written
1428 * back. After this point, we can start to touch devices again.
1429 */
1430 local_flush_tlb_all();
1431 flush_cache_all();
1432
1433 /* Enable asynchronous aborts */
1434 early_abt_enable();
1435 }
1436
kmap_init(void)1437 static void __init kmap_init(void)
1438 {
1439 #ifdef CONFIG_HIGHMEM
1440 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1441 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1442 #endif
1443
1444 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1445 _PAGE_KERNEL_TABLE);
1446 }
1447
map_lowmem(void)1448 static void __init map_lowmem(void)
1449 {
1450 struct memblock_region *reg;
1451 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1452 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1453
1454 /* Map all the lowmem memory banks. */
1455 for_each_memblock(memory, reg) {
1456 phys_addr_t start = reg->base;
1457 phys_addr_t end = start + reg->size;
1458 struct map_desc map;
1459
1460 if (memblock_is_nomap(reg))
1461 continue;
1462
1463 if (end > arm_lowmem_limit)
1464 end = arm_lowmem_limit;
1465 if (start >= end)
1466 break;
1467
1468 if (end < kernel_x_start) {
1469 map.pfn = __phys_to_pfn(start);
1470 map.virtual = __phys_to_virt(start);
1471 map.length = end - start;
1472 map.type = MT_MEMORY_RWX;
1473
1474 create_mapping(&map);
1475 } else if (start >= kernel_x_end) {
1476 map.pfn = __phys_to_pfn(start);
1477 map.virtual = __phys_to_virt(start);
1478 map.length = end - start;
1479 map.type = MT_MEMORY_RW;
1480
1481 create_mapping(&map);
1482 } else {
1483 /* This better cover the entire kernel */
1484 if (start < kernel_x_start) {
1485 map.pfn = __phys_to_pfn(start);
1486 map.virtual = __phys_to_virt(start);
1487 map.length = kernel_x_start - start;
1488 map.type = MT_MEMORY_RW;
1489
1490 create_mapping(&map);
1491 }
1492
1493 map.pfn = __phys_to_pfn(kernel_x_start);
1494 map.virtual = __phys_to_virt(kernel_x_start);
1495 map.length = kernel_x_end - kernel_x_start;
1496 map.type = MT_MEMORY_RWX;
1497
1498 create_mapping(&map);
1499
1500 if (kernel_x_end < end) {
1501 map.pfn = __phys_to_pfn(kernel_x_end);
1502 map.virtual = __phys_to_virt(kernel_x_end);
1503 map.length = end - kernel_x_end;
1504 map.type = MT_MEMORY_RW;
1505
1506 create_mapping(&map);
1507 }
1508 }
1509 }
1510 }
1511
1512 #ifdef CONFIG_ARM_PV_FIXUP
1513 extern unsigned long __atags_pointer;
1514 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1515 pgtables_remap lpae_pgtables_remap_asm;
1516
1517 /*
1518 * early_paging_init() recreates boot time page table setup, allowing machines
1519 * to switch over to a high (>4G) address space on LPAE systems
1520 */
early_paging_init(const struct machine_desc * mdesc)1521 static void __init early_paging_init(const struct machine_desc *mdesc)
1522 {
1523 pgtables_remap *lpae_pgtables_remap;
1524 unsigned long pa_pgd;
1525 unsigned int cr, ttbcr;
1526 long long offset;
1527 void *boot_data;
1528
1529 if (!mdesc->pv_fixup)
1530 return;
1531
1532 offset = mdesc->pv_fixup();
1533 if (offset == 0)
1534 return;
1535
1536 /*
1537 * Get the address of the remap function in the 1:1 identity
1538 * mapping setup by the early page table assembly code. We
1539 * must get this prior to the pv update. The following barrier
1540 * ensures that this is complete before we fixup any P:V offsets.
1541 */
1542 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1543 pa_pgd = __pa(swapper_pg_dir);
1544 boot_data = __va(__atags_pointer);
1545 barrier();
1546
1547 pr_info("Switching physical address space to 0x%08llx\n",
1548 (u64)PHYS_OFFSET + offset);
1549
1550 /* Re-set the phys pfn offset, and the pv offset */
1551 __pv_offset += offset;
1552 __pv_phys_pfn_offset += PFN_DOWN(offset);
1553
1554 /* Run the patch stub to update the constants */
1555 fixup_pv_table(&__pv_table_begin,
1556 (&__pv_table_end - &__pv_table_begin) << 2);
1557
1558 /*
1559 * We changing not only the virtual to physical mapping, but also
1560 * the physical addresses used to access memory. We need to flush
1561 * all levels of cache in the system with caching disabled to
1562 * ensure that all data is written back, and nothing is prefetched
1563 * into the caches. We also need to prevent the TLB walkers
1564 * allocating into the caches too. Note that this is ARMv7 LPAE
1565 * specific.
1566 */
1567 cr = get_cr();
1568 set_cr(cr & ~(CR_I | CR_C));
1569 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1570 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1571 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1572 flush_cache_all();
1573
1574 /*
1575 * Fixup the page tables - this must be in the idmap region as
1576 * we need to disable the MMU to do this safely, and hence it
1577 * needs to be assembly. It's fairly simple, as we're using the
1578 * temporary tables setup by the initial assembly code.
1579 */
1580 lpae_pgtables_remap(offset, pa_pgd, boot_data);
1581
1582 /* Re-enable the caches and cacheable TLB walks */
1583 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1584 set_cr(cr);
1585 }
1586
1587 #else
1588
early_paging_init(const struct machine_desc * mdesc)1589 static void __init early_paging_init(const struct machine_desc *mdesc)
1590 {
1591 long long offset;
1592
1593 if (!mdesc->pv_fixup)
1594 return;
1595
1596 offset = mdesc->pv_fixup();
1597 if (offset == 0)
1598 return;
1599
1600 pr_crit("Physical address space modification is only to support Keystone2.\n");
1601 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1602 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1603 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1604 }
1605
1606 #endif
1607
early_fixmap_shutdown(void)1608 static void __init early_fixmap_shutdown(void)
1609 {
1610 int i;
1611 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1612
1613 pte_offset_fixmap = pte_offset_late_fixmap;
1614 pmd_clear(fixmap_pmd(va));
1615 local_flush_tlb_kernel_page(va);
1616
1617 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1618 pte_t *pte;
1619 struct map_desc map;
1620
1621 map.virtual = fix_to_virt(i);
1622 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1623
1624 /* Only i/o device mappings are supported ATM */
1625 if (pte_none(*pte) ||
1626 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1627 continue;
1628
1629 map.pfn = pte_pfn(*pte);
1630 map.type = MT_DEVICE;
1631 map.length = PAGE_SIZE;
1632
1633 create_mapping(&map);
1634 }
1635 }
1636
1637 /*
1638 * paging_init() sets up the page tables, initialises the zone memory
1639 * maps, and sets up the zero page, bad page and bad page tables.
1640 */
paging_init(const struct machine_desc * mdesc)1641 void __init paging_init(const struct machine_desc *mdesc)
1642 {
1643 void *zero_page;
1644
1645 prepare_page_table();
1646 map_lowmem();
1647 memblock_set_current_limit(arm_lowmem_limit);
1648 dma_contiguous_remap();
1649 early_fixmap_shutdown();
1650 devicemaps_init(mdesc);
1651 kmap_init();
1652 tcm_init();
1653
1654 top_pmd = pmd_off_k(0xffff0000);
1655
1656 /* allocate the zero page. */
1657 zero_page = early_alloc(PAGE_SIZE);
1658
1659 bootmem_init();
1660
1661 empty_zero_page = virt_to_page(zero_page);
1662 __flush_dcache_page(NULL, empty_zero_page);
1663
1664 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1665 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1666 }
1667
early_mm_init(const struct machine_desc * mdesc)1668 void __init early_mm_init(const struct machine_desc *mdesc)
1669 {
1670 build_mem_type_table();
1671 early_paging_init(mdesc);
1672 }
1673