• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #include "internal.h"
56 
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)	(0)
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71 
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74 
75 static void unmap_region(struct mm_struct *mm,
76 		struct vm_area_struct *vma, struct vm_area_struct *prev,
77 		unsigned long start, unsigned long end);
78 
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type	prot
84  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
85  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
86  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
87  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
88  *
89  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  */
93 pgprot_t protection_map[16] __ro_after_init = {
94 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97 
vm_get_page_prot(unsigned long vm_flags)98 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 {
100 	return __pgprot(pgprot_val(protection_map[vm_flags &
101 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 }
104 EXPORT_SYMBOL(vm_get_page_prot);
105 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)106 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 {
108 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
109 }
110 
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)112 void vma_set_page_prot(struct vm_area_struct *vma)
113 {
114 	unsigned long vm_flags = vma->vm_flags;
115 	pgprot_t vm_page_prot;
116 
117 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118 	if (vma_wants_writenotify(vma, vm_page_prot)) {
119 		vm_flags &= ~VM_SHARED;
120 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
121 	}
122 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
124 }
125 
126 /*
127  * Requires inode->i_mapping->i_mmap_rwsem
128  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)129 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130 		struct file *file, struct address_space *mapping)
131 {
132 	if (vma->vm_flags & VM_DENYWRITE)
133 		atomic_inc(&file_inode(file)->i_writecount);
134 	if (vma->vm_flags & VM_SHARED)
135 		mapping_unmap_writable(mapping);
136 
137 	flush_dcache_mmap_lock(mapping);
138 	vma_interval_tree_remove(vma, &mapping->i_mmap);
139 	flush_dcache_mmap_unlock(mapping);
140 }
141 
142 /*
143  * Unlink a file-based vm structure from its interval tree, to hide
144  * vma from rmap and vmtruncate before freeing its page tables.
145  */
unlink_file_vma(struct vm_area_struct * vma)146 void unlink_file_vma(struct vm_area_struct *vma)
147 {
148 	struct file *file = vma->vm_file;
149 
150 	if (file) {
151 		struct address_space *mapping = file->f_mapping;
152 		i_mmap_lock_write(mapping);
153 		__remove_shared_vm_struct(vma, file, mapping);
154 		i_mmap_unlock_write(mapping);
155 	}
156 }
157 
158 /*
159  * Close a vm structure and free it, returning the next.
160  */
remove_vma(struct vm_area_struct * vma)161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
162 {
163 	struct vm_area_struct *next = vma->vm_next;
164 
165 	might_sleep();
166 	if (vma->vm_ops && vma->vm_ops->close)
167 		vma->vm_ops->close(vma);
168 	if (vma->vm_file)
169 		fput(vma->vm_file);
170 	mpol_put(vma_policy(vma));
171 	kmem_cache_free(vm_area_cachep, vma);
172 	return next;
173 }
174 
175 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
176 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)177 SYSCALL_DEFINE1(brk, unsigned long, brk)
178 {
179 	unsigned long retval;
180 	unsigned long newbrk, oldbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *next;
183 	unsigned long min_brk;
184 	bool populate;
185 	LIST_HEAD(uf);
186 
187 	if (down_write_killable(&mm->mmap_sem))
188 		return -EINTR;
189 
190 #ifdef CONFIG_COMPAT_BRK
191 	/*
192 	 * CONFIG_COMPAT_BRK can still be overridden by setting
193 	 * randomize_va_space to 2, which will still cause mm->start_brk
194 	 * to be arbitrarily shifted
195 	 */
196 	if (current->brk_randomized)
197 		min_brk = mm->start_brk;
198 	else
199 		min_brk = mm->end_data;
200 #else
201 	min_brk = mm->start_brk;
202 #endif
203 	if (brk < min_brk)
204 		goto out;
205 
206 	/*
207 	 * Check against rlimit here. If this check is done later after the test
208 	 * of oldbrk with newbrk then it can escape the test and let the data
209 	 * segment grow beyond its set limit the in case where the limit is
210 	 * not page aligned -Ram Gupta
211 	 */
212 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213 			      mm->end_data, mm->start_data))
214 		goto out;
215 
216 	newbrk = PAGE_ALIGN(brk);
217 	oldbrk = PAGE_ALIGN(mm->brk);
218 	if (oldbrk == newbrk)
219 		goto set_brk;
220 
221 	/* Always allow shrinking brk. */
222 	if (brk <= mm->brk) {
223 		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
224 			goto set_brk;
225 		goto out;
226 	}
227 
228 	/* Check against existing mmap mappings. */
229 	next = find_vma(mm, oldbrk);
230 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
231 		goto out;
232 
233 	/* Ok, looks good - let it rip. */
234 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
235 		goto out;
236 
237 set_brk:
238 	mm->brk = brk;
239 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
240 	up_write(&mm->mmap_sem);
241 	userfaultfd_unmap_complete(mm, &uf);
242 	if (populate)
243 		mm_populate(oldbrk, newbrk - oldbrk);
244 	return brk;
245 
246 out:
247 	retval = mm->brk;
248 	up_write(&mm->mmap_sem);
249 	return retval;
250 }
251 
vma_compute_subtree_gap(struct vm_area_struct * vma)252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254 	unsigned long max, prev_end, subtree_gap;
255 
256 	/*
257 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258 	 * allow two stack_guard_gaps between them here, and when choosing
259 	 * an unmapped area; whereas when expanding we only require one.
260 	 * That's a little inconsistent, but keeps the code here simpler.
261 	 */
262 	max = vm_start_gap(vma);
263 	if (vma->vm_prev) {
264 		prev_end = vm_end_gap(vma->vm_prev);
265 		if (max > prev_end)
266 			max -= prev_end;
267 		else
268 			max = 0;
269 	}
270 	if (vma->vm_rb.rb_left) {
271 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
272 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
273 		if (subtree_gap > max)
274 			max = subtree_gap;
275 	}
276 	if (vma->vm_rb.rb_right) {
277 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
278 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
279 		if (subtree_gap > max)
280 			max = subtree_gap;
281 	}
282 	return max;
283 }
284 
285 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct mm_struct * mm)286 static int browse_rb(struct mm_struct *mm)
287 {
288 	struct rb_root *root = &mm->mm_rb;
289 	int i = 0, j, bug = 0;
290 	struct rb_node *nd, *pn = NULL;
291 	unsigned long prev = 0, pend = 0;
292 
293 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294 		struct vm_area_struct *vma;
295 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296 		if (vma->vm_start < prev) {
297 			pr_emerg("vm_start %lx < prev %lx\n",
298 				  vma->vm_start, prev);
299 			bug = 1;
300 		}
301 		if (vma->vm_start < pend) {
302 			pr_emerg("vm_start %lx < pend %lx\n",
303 				  vma->vm_start, pend);
304 			bug = 1;
305 		}
306 		if (vma->vm_start > vma->vm_end) {
307 			pr_emerg("vm_start %lx > vm_end %lx\n",
308 				  vma->vm_start, vma->vm_end);
309 			bug = 1;
310 		}
311 		spin_lock(&mm->page_table_lock);
312 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
313 			pr_emerg("free gap %lx, correct %lx\n",
314 			       vma->rb_subtree_gap,
315 			       vma_compute_subtree_gap(vma));
316 			bug = 1;
317 		}
318 		spin_unlock(&mm->page_table_lock);
319 		i++;
320 		pn = nd;
321 		prev = vma->vm_start;
322 		pend = vma->vm_end;
323 	}
324 	j = 0;
325 	for (nd = pn; nd; nd = rb_prev(nd))
326 		j++;
327 	if (i != j) {
328 		pr_emerg("backwards %d, forwards %d\n", j, i);
329 		bug = 1;
330 	}
331 	return bug ? -1 : i;
332 }
333 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)334 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
335 {
336 	struct rb_node *nd;
337 
338 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 		struct vm_area_struct *vma;
340 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 		VM_BUG_ON_VMA(vma != ignore &&
342 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
343 			vma);
344 	}
345 }
346 
validate_mm(struct mm_struct * mm)347 static void validate_mm(struct mm_struct *mm)
348 {
349 	int bug = 0;
350 	int i = 0;
351 	unsigned long highest_address = 0;
352 	struct vm_area_struct *vma = mm->mmap;
353 
354 	while (vma) {
355 		struct anon_vma *anon_vma = vma->anon_vma;
356 		struct anon_vma_chain *avc;
357 
358 		if (anon_vma) {
359 			anon_vma_lock_read(anon_vma);
360 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 				anon_vma_interval_tree_verify(avc);
362 			anon_vma_unlock_read(anon_vma);
363 		}
364 
365 		highest_address = vm_end_gap(vma);
366 		vma = vma->vm_next;
367 		i++;
368 	}
369 	if (i != mm->map_count) {
370 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
371 		bug = 1;
372 	}
373 	if (highest_address != mm->highest_vm_end) {
374 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375 			  mm->highest_vm_end, highest_address);
376 		bug = 1;
377 	}
378 	i = browse_rb(mm);
379 	if (i != mm->map_count) {
380 		if (i != -1)
381 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
382 		bug = 1;
383 	}
384 	VM_BUG_ON_MM(bug, mm);
385 }
386 #else
387 #define validate_mm_rb(root, ignore) do { } while (0)
388 #define validate_mm(mm) do { } while (0)
389 #endif
390 
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)391 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
392 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
393 
394 /*
395  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396  * vma->vm_prev->vm_end values changed, without modifying the vma's position
397  * in the rbtree.
398  */
399 static void vma_gap_update(struct vm_area_struct *vma)
400 {
401 	/*
402 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403 	 * function that does exacltly what we want.
404 	 */
405 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
406 }
407 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)408 static inline void vma_rb_insert(struct vm_area_struct *vma,
409 				 struct rb_root *root)
410 {
411 	/* All rb_subtree_gap values must be consistent prior to insertion */
412 	validate_mm_rb(root, NULL);
413 
414 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)417 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
418 {
419 	/*
420 	 * Note rb_erase_augmented is a fairly large inline function,
421 	 * so make sure we instantiate it only once with our desired
422 	 * augmented rbtree callbacks.
423 	 */
424 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
425 }
426 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)427 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
428 						struct rb_root *root,
429 						struct vm_area_struct *ignore)
430 {
431 	/*
432 	 * All rb_subtree_gap values must be consistent prior to erase,
433 	 * with the possible exception of the "next" vma being erased if
434 	 * next->vm_start was reduced.
435 	 */
436 	validate_mm_rb(root, ignore);
437 
438 	__vma_rb_erase(vma, root);
439 }
440 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)441 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
442 					 struct rb_root *root)
443 {
444 	/*
445 	 * All rb_subtree_gap values must be consistent prior to erase,
446 	 * with the possible exception of the vma being erased.
447 	 */
448 	validate_mm_rb(root, vma);
449 
450 	__vma_rb_erase(vma, root);
451 }
452 
453 /*
454  * vma has some anon_vma assigned, and is already inserted on that
455  * anon_vma's interval trees.
456  *
457  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458  * vma must be removed from the anon_vma's interval trees using
459  * anon_vma_interval_tree_pre_update_vma().
460  *
461  * After the update, the vma will be reinserted using
462  * anon_vma_interval_tree_post_update_vma().
463  *
464  * The entire update must be protected by exclusive mmap_sem and by
465  * the root anon_vma's mutex.
466  */
467 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)468 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
469 {
470 	struct anon_vma_chain *avc;
471 
472 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
473 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
474 }
475 
476 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)477 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
478 {
479 	struct anon_vma_chain *avc;
480 
481 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
483 }
484 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)485 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
486 		unsigned long end, struct vm_area_struct **pprev,
487 		struct rb_node ***rb_link, struct rb_node **rb_parent)
488 {
489 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
490 
491 	__rb_link = &mm->mm_rb.rb_node;
492 	rb_prev = __rb_parent = NULL;
493 
494 	while (*__rb_link) {
495 		struct vm_area_struct *vma_tmp;
496 
497 		__rb_parent = *__rb_link;
498 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
499 
500 		if (vma_tmp->vm_end > addr) {
501 			/* Fail if an existing vma overlaps the area */
502 			if (vma_tmp->vm_start < end)
503 				return -ENOMEM;
504 			__rb_link = &__rb_parent->rb_left;
505 		} else {
506 			rb_prev = __rb_parent;
507 			__rb_link = &__rb_parent->rb_right;
508 		}
509 	}
510 
511 	*pprev = NULL;
512 	if (rb_prev)
513 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
514 	*rb_link = __rb_link;
515 	*rb_parent = __rb_parent;
516 	return 0;
517 }
518 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)519 static unsigned long count_vma_pages_range(struct mm_struct *mm,
520 		unsigned long addr, unsigned long end)
521 {
522 	unsigned long nr_pages = 0;
523 	struct vm_area_struct *vma;
524 
525 	/* Find first overlaping mapping */
526 	vma = find_vma_intersection(mm, addr, end);
527 	if (!vma)
528 		return 0;
529 
530 	nr_pages = (min(end, vma->vm_end) -
531 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
532 
533 	/* Iterate over the rest of the overlaps */
534 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
535 		unsigned long overlap_len;
536 
537 		if (vma->vm_start > end)
538 			break;
539 
540 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
541 		nr_pages += overlap_len >> PAGE_SHIFT;
542 	}
543 
544 	return nr_pages;
545 }
546 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)547 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
548 		struct rb_node **rb_link, struct rb_node *rb_parent)
549 {
550 	/* Update tracking information for the gap following the new vma. */
551 	if (vma->vm_next)
552 		vma_gap_update(vma->vm_next);
553 	else
554 		mm->highest_vm_end = vm_end_gap(vma);
555 
556 	/*
557 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
558 	 * correct insertion point for that vma. As a result, we could not
559 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
560 	 * So, we first insert the vma with a zero rb_subtree_gap value
561 	 * (to be consistent with what we did on the way down), and then
562 	 * immediately update the gap to the correct value. Finally we
563 	 * rebalance the rbtree after all augmented values have been set.
564 	 */
565 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
566 	vma->rb_subtree_gap = 0;
567 	vma_gap_update(vma);
568 	vma_rb_insert(vma, &mm->mm_rb);
569 }
570 
__vma_link_file(struct vm_area_struct * vma)571 static void __vma_link_file(struct vm_area_struct *vma)
572 {
573 	struct file *file;
574 
575 	file = vma->vm_file;
576 	if (file) {
577 		struct address_space *mapping = file->f_mapping;
578 
579 		if (vma->vm_flags & VM_DENYWRITE)
580 			atomic_dec(&file_inode(file)->i_writecount);
581 		if (vma->vm_flags & VM_SHARED)
582 			atomic_inc(&mapping->i_mmap_writable);
583 
584 		flush_dcache_mmap_lock(mapping);
585 		vma_interval_tree_insert(vma, &mapping->i_mmap);
586 		flush_dcache_mmap_unlock(mapping);
587 	}
588 }
589 
590 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)591 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
592 	struct vm_area_struct *prev, struct rb_node **rb_link,
593 	struct rb_node *rb_parent)
594 {
595 	__vma_link_list(mm, vma, prev, rb_parent);
596 	__vma_link_rb(mm, vma, rb_link, rb_parent);
597 }
598 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)599 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
600 			struct vm_area_struct *prev, struct rb_node **rb_link,
601 			struct rb_node *rb_parent)
602 {
603 	struct address_space *mapping = NULL;
604 
605 	if (vma->vm_file) {
606 		mapping = vma->vm_file->f_mapping;
607 		i_mmap_lock_write(mapping);
608 	}
609 
610 	__vma_link(mm, vma, prev, rb_link, rb_parent);
611 	__vma_link_file(vma);
612 
613 	if (mapping)
614 		i_mmap_unlock_write(mapping);
615 
616 	mm->map_count++;
617 	validate_mm(mm);
618 }
619 
620 /*
621  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622  * mm's list and rbtree.  It has already been inserted into the interval tree.
623  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)624 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
625 {
626 	struct vm_area_struct *prev;
627 	struct rb_node **rb_link, *rb_parent;
628 
629 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
630 			   &prev, &rb_link, &rb_parent))
631 		BUG();
632 	__vma_link(mm, vma, prev, rb_link, rb_parent);
633 	mm->map_count++;
634 }
635 
__vma_unlink_common(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,bool has_prev,struct vm_area_struct * ignore)636 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
637 						struct vm_area_struct *vma,
638 						struct vm_area_struct *prev,
639 						bool has_prev,
640 						struct vm_area_struct *ignore)
641 {
642 	struct vm_area_struct *next;
643 
644 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
645 	next = vma->vm_next;
646 	if (has_prev)
647 		prev->vm_next = next;
648 	else {
649 		prev = vma->vm_prev;
650 		if (prev)
651 			prev->vm_next = next;
652 		else
653 			mm->mmap = next;
654 	}
655 	if (next)
656 		next->vm_prev = prev;
657 
658 	/* Kill the cache */
659 	vmacache_invalidate(mm);
660 }
661 
__vma_unlink_prev(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)662 static inline void __vma_unlink_prev(struct mm_struct *mm,
663 				     struct vm_area_struct *vma,
664 				     struct vm_area_struct *prev)
665 {
666 	__vma_unlink_common(mm, vma, prev, true, vma);
667 }
668 
669 /*
670  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671  * is already present in an i_mmap tree without adjusting the tree.
672  * The following helper function should be used when such adjustments
673  * are necessary.  The "insert" vma (if any) is to be inserted
674  * before we drop the necessary locks.
675  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)676 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
677 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
678 	struct vm_area_struct *expand)
679 {
680 	struct mm_struct *mm = vma->vm_mm;
681 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
682 	struct address_space *mapping = NULL;
683 	struct rb_root_cached *root = NULL;
684 	struct anon_vma *anon_vma = NULL;
685 	struct file *file = vma->vm_file;
686 	bool start_changed = false, end_changed = false;
687 	long adjust_next = 0;
688 	int remove_next = 0;
689 
690 	if (next && !insert) {
691 		struct vm_area_struct *exporter = NULL, *importer = NULL;
692 
693 		if (end >= next->vm_end) {
694 			/*
695 			 * vma expands, overlapping all the next, and
696 			 * perhaps the one after too (mprotect case 6).
697 			 * The only other cases that gets here are
698 			 * case 1, case 7 and case 8.
699 			 */
700 			if (next == expand) {
701 				/*
702 				 * The only case where we don't expand "vma"
703 				 * and we expand "next" instead is case 8.
704 				 */
705 				VM_WARN_ON(end != next->vm_end);
706 				/*
707 				 * remove_next == 3 means we're
708 				 * removing "vma" and that to do so we
709 				 * swapped "vma" and "next".
710 				 */
711 				remove_next = 3;
712 				VM_WARN_ON(file != next->vm_file);
713 				swap(vma, next);
714 			} else {
715 				VM_WARN_ON(expand != vma);
716 				/*
717 				 * case 1, 6, 7, remove_next == 2 is case 6,
718 				 * remove_next == 1 is case 1 or 7.
719 				 */
720 				remove_next = 1 + (end > next->vm_end);
721 				VM_WARN_ON(remove_next == 2 &&
722 					   end != next->vm_next->vm_end);
723 				VM_WARN_ON(remove_next == 1 &&
724 					   end != next->vm_end);
725 				/* trim end to next, for case 6 first pass */
726 				end = next->vm_end;
727 			}
728 
729 			exporter = next;
730 			importer = vma;
731 
732 			/*
733 			 * If next doesn't have anon_vma, import from vma after
734 			 * next, if the vma overlaps with it.
735 			 */
736 			if (remove_next == 2 && !next->anon_vma)
737 				exporter = next->vm_next;
738 
739 		} else if (end > next->vm_start) {
740 			/*
741 			 * vma expands, overlapping part of the next:
742 			 * mprotect case 5 shifting the boundary up.
743 			 */
744 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745 			exporter = next;
746 			importer = vma;
747 			VM_WARN_ON(expand != importer);
748 		} else if (end < vma->vm_end) {
749 			/*
750 			 * vma shrinks, and !insert tells it's not
751 			 * split_vma inserting another: so it must be
752 			 * mprotect case 4 shifting the boundary down.
753 			 */
754 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
755 			exporter = vma;
756 			importer = next;
757 			VM_WARN_ON(expand != importer);
758 		}
759 
760 		/*
761 		 * Easily overlooked: when mprotect shifts the boundary,
762 		 * make sure the expanding vma has anon_vma set if the
763 		 * shrinking vma had, to cover any anon pages imported.
764 		 */
765 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
766 			int error;
767 
768 			importer->anon_vma = exporter->anon_vma;
769 			error = anon_vma_clone(importer, exporter);
770 			if (error)
771 				return error;
772 		}
773 	}
774 again:
775 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
776 
777 	if (file) {
778 		mapping = file->f_mapping;
779 		root = &mapping->i_mmap;
780 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
781 
782 		if (adjust_next)
783 			uprobe_munmap(next, next->vm_start, next->vm_end);
784 
785 		i_mmap_lock_write(mapping);
786 		if (insert) {
787 			/*
788 			 * Put into interval tree now, so instantiated pages
789 			 * are visible to arm/parisc __flush_dcache_page
790 			 * throughout; but we cannot insert into address
791 			 * space until vma start or end is updated.
792 			 */
793 			__vma_link_file(insert);
794 		}
795 	}
796 
797 	anon_vma = vma->anon_vma;
798 	if (!anon_vma && adjust_next)
799 		anon_vma = next->anon_vma;
800 	if (anon_vma) {
801 		VM_WARN_ON(adjust_next && next->anon_vma &&
802 			   anon_vma != next->anon_vma);
803 		anon_vma_lock_write(anon_vma);
804 		anon_vma_interval_tree_pre_update_vma(vma);
805 		if (adjust_next)
806 			anon_vma_interval_tree_pre_update_vma(next);
807 	}
808 
809 	if (root) {
810 		flush_dcache_mmap_lock(mapping);
811 		vma_interval_tree_remove(vma, root);
812 		if (adjust_next)
813 			vma_interval_tree_remove(next, root);
814 	}
815 
816 	if (start != vma->vm_start) {
817 		vma->vm_start = start;
818 		start_changed = true;
819 	}
820 	if (end != vma->vm_end) {
821 		vma->vm_end = end;
822 		end_changed = true;
823 	}
824 	vma->vm_pgoff = pgoff;
825 	if (adjust_next) {
826 		next->vm_start += adjust_next << PAGE_SHIFT;
827 		next->vm_pgoff += adjust_next;
828 	}
829 
830 	if (root) {
831 		if (adjust_next)
832 			vma_interval_tree_insert(next, root);
833 		vma_interval_tree_insert(vma, root);
834 		flush_dcache_mmap_unlock(mapping);
835 	}
836 
837 	if (remove_next) {
838 		/*
839 		 * vma_merge has merged next into vma, and needs
840 		 * us to remove next before dropping the locks.
841 		 */
842 		if (remove_next != 3)
843 			__vma_unlink_prev(mm, next, vma);
844 		else
845 			/*
846 			 * vma is not before next if they've been
847 			 * swapped.
848 			 *
849 			 * pre-swap() next->vm_start was reduced so
850 			 * tell validate_mm_rb to ignore pre-swap()
851 			 * "next" (which is stored in post-swap()
852 			 * "vma").
853 			 */
854 			__vma_unlink_common(mm, next, NULL, false, vma);
855 		if (file)
856 			__remove_shared_vm_struct(next, file, mapping);
857 	} else if (insert) {
858 		/*
859 		 * split_vma has split insert from vma, and needs
860 		 * us to insert it before dropping the locks
861 		 * (it may either follow vma or precede it).
862 		 */
863 		__insert_vm_struct(mm, insert);
864 	} else {
865 		if (start_changed)
866 			vma_gap_update(vma);
867 		if (end_changed) {
868 			if (!next)
869 				mm->highest_vm_end = vm_end_gap(vma);
870 			else if (!adjust_next)
871 				vma_gap_update(next);
872 		}
873 	}
874 
875 	if (anon_vma) {
876 		anon_vma_interval_tree_post_update_vma(vma);
877 		if (adjust_next)
878 			anon_vma_interval_tree_post_update_vma(next);
879 		anon_vma_unlock_write(anon_vma);
880 	}
881 	if (mapping)
882 		i_mmap_unlock_write(mapping);
883 
884 	if (root) {
885 		uprobe_mmap(vma);
886 
887 		if (adjust_next)
888 			uprobe_mmap(next);
889 	}
890 
891 	if (remove_next) {
892 		if (file) {
893 			uprobe_munmap(next, next->vm_start, next->vm_end);
894 			fput(file);
895 		}
896 		if (next->anon_vma)
897 			anon_vma_merge(vma, next);
898 		mm->map_count--;
899 		mpol_put(vma_policy(next));
900 		kmem_cache_free(vm_area_cachep, next);
901 		/*
902 		 * In mprotect's case 6 (see comments on vma_merge),
903 		 * we must remove another next too. It would clutter
904 		 * up the code too much to do both in one go.
905 		 */
906 		if (remove_next != 3) {
907 			/*
908 			 * If "next" was removed and vma->vm_end was
909 			 * expanded (up) over it, in turn
910 			 * "next->vm_prev->vm_end" changed and the
911 			 * "vma->vm_next" gap must be updated.
912 			 */
913 			next = vma->vm_next;
914 		} else {
915 			/*
916 			 * For the scope of the comment "next" and
917 			 * "vma" considered pre-swap(): if "vma" was
918 			 * removed, next->vm_start was expanded (down)
919 			 * over it and the "next" gap must be updated.
920 			 * Because of the swap() the post-swap() "vma"
921 			 * actually points to pre-swap() "next"
922 			 * (post-swap() "next" as opposed is now a
923 			 * dangling pointer).
924 			 */
925 			next = vma;
926 		}
927 		if (remove_next == 2) {
928 			remove_next = 1;
929 			end = next->vm_end;
930 			goto again;
931 		}
932 		else if (next)
933 			vma_gap_update(next);
934 		else {
935 			/*
936 			 * If remove_next == 2 we obviously can't
937 			 * reach this path.
938 			 *
939 			 * If remove_next == 3 we can't reach this
940 			 * path because pre-swap() next is always not
941 			 * NULL. pre-swap() "next" is not being
942 			 * removed and its next->vm_end is not altered
943 			 * (and furthermore "end" already matches
944 			 * next->vm_end in remove_next == 3).
945 			 *
946 			 * We reach this only in the remove_next == 1
947 			 * case if the "next" vma that was removed was
948 			 * the highest vma of the mm. However in such
949 			 * case next->vm_end == "end" and the extended
950 			 * "vma" has vma->vm_end == next->vm_end so
951 			 * mm->highest_vm_end doesn't need any update
952 			 * in remove_next == 1 case.
953 			 */
954 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
955 		}
956 	}
957 	if (insert && file)
958 		uprobe_mmap(insert);
959 
960 	validate_mm(mm);
961 
962 	return 0;
963 }
964 
965 /*
966  * If the vma has a ->close operation then the driver probably needs to release
967  * per-vma resources, so we don't attempt to merge those.
968  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)969 static inline int is_mergeable_vma(struct vm_area_struct *vma,
970 				struct file *file, unsigned long vm_flags,
971 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
972 				const char __user *anon_name)
973 {
974 	/*
975 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
976 	 * match the flags but dirty bit -- the caller should mark
977 	 * merged VMA as dirty. If dirty bit won't be excluded from
978 	 * comparison, we increase pressue on the memory system forcing
979 	 * the kernel to generate new VMAs when old one could be
980 	 * extended instead.
981 	 */
982 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
983 		return 0;
984 	if (vma->vm_file != file)
985 		return 0;
986 	if (vma->vm_ops && vma->vm_ops->close)
987 		return 0;
988 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
989 		return 0;
990 	if (vma_get_anon_name(vma) != anon_name)
991 		return 0;
992 	return 1;
993 }
994 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)995 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
996 					struct anon_vma *anon_vma2,
997 					struct vm_area_struct *vma)
998 {
999 	/*
1000 	 * The list_is_singular() test is to avoid merging VMA cloned from
1001 	 * parents. This can improve scalability caused by anon_vma lock.
1002 	 */
1003 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1004 		list_is_singular(&vma->anon_vma_chain)))
1005 		return 1;
1006 	return anon_vma1 == anon_vma2;
1007 }
1008 
1009 /*
1010  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1011  * in front of (at a lower virtual address and file offset than) the vma.
1012  *
1013  * We cannot merge two vmas if they have differently assigned (non-NULL)
1014  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1015  *
1016  * We don't check here for the merged mmap wrapping around the end of pagecache
1017  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1018  * wrap, nor mmaps which cover the final page at index -1UL.
1019  */
1020 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1021 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1022 		     struct anon_vma *anon_vma, struct file *file,
1023 		     pgoff_t vm_pgoff,
1024 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1025 		     const char __user *anon_name)
1026 {
1027 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1028 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1029 		if (vma->vm_pgoff == vm_pgoff)
1030 			return 1;
1031 	}
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1037  * beyond (at a higher virtual address and file offset than) the vma.
1038  *
1039  * We cannot merge two vmas if they have differently assigned (non-NULL)
1040  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1041  */
1042 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1043 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1044 		    struct anon_vma *anon_vma, struct file *file,
1045 		    pgoff_t vm_pgoff,
1046 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1047 		    const char __user *anon_name)
1048 {
1049 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1050 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1051 		pgoff_t vm_pglen;
1052 		vm_pglen = vma_pages(vma);
1053 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1054 			return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1061  * figure out whether that can be merged with its predecessor or its
1062  * successor.  Or both (it neatly fills a hole).
1063  *
1064  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1065  * certain not to be mapped by the time vma_merge is called; but when
1066  * called for mprotect, it is certain to be already mapped (either at
1067  * an offset within prev, or at the start of next), and the flags of
1068  * this area are about to be changed to vm_flags - and the no-change
1069  * case has already been eliminated.
1070  *
1071  * The following mprotect cases have to be considered, where AAAA is
1072  * the area passed down from mprotect_fixup, never extending beyond one
1073  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074  *
1075  *     AAAA             AAAA                AAAA          AAAA
1076  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1077  *    cannot merge    might become    might become    might become
1078  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1079  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1080  *    mremap move:                                    PPPPXXXXXXXX 8
1081  *        AAAA
1082  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1083  *    might become    case 1 below    case 2 below    case 3 below
1084  *
1085  * It is important for case 8 that the the vma NNNN overlapping the
1086  * region AAAA is never going to extended over XXXX. Instead XXXX must
1087  * be extended in region AAAA and NNNN must be removed. This way in
1088  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1089  * rmap_locks, the properties of the merged vma will be already
1090  * correct for the whole merged range. Some of those properties like
1091  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1092  * be correct for the whole merged range immediately after the
1093  * rmap_locks are released. Otherwise if XXXX would be removed and
1094  * NNNN would be extended over the XXXX range, remove_migration_ptes
1095  * or other rmap walkers (if working on addresses beyond the "end"
1096  * parameter) may establish ptes with the wrong permissions of NNNN
1097  * instead of the right permissions of XXXX.
1098  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1099 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1100 			struct vm_area_struct *prev, unsigned long addr,
1101 			unsigned long end, unsigned long vm_flags,
1102 			struct anon_vma *anon_vma, struct file *file,
1103 			pgoff_t pgoff, struct mempolicy *policy,
1104 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1105 			const char __user *anon_name)
1106 {
1107 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1108 	struct vm_area_struct *area, *next;
1109 	int err;
1110 
1111 	/*
1112 	 * We later require that vma->vm_flags == vm_flags,
1113 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1114 	 */
1115 	if (vm_flags & VM_SPECIAL)
1116 		return NULL;
1117 
1118 	if (prev)
1119 		next = prev->vm_next;
1120 	else
1121 		next = mm->mmap;
1122 	area = next;
1123 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1124 		next = next->vm_next;
1125 
1126 	/* verify some invariant that must be enforced by the caller */
1127 	VM_WARN_ON(prev && addr <= prev->vm_start);
1128 	VM_WARN_ON(area && end > area->vm_end);
1129 	VM_WARN_ON(addr >= end);
1130 
1131 	/*
1132 	 * Can it merge with the predecessor?
1133 	 */
1134 	if (prev && prev->vm_end == addr &&
1135 			mpol_equal(vma_policy(prev), policy) &&
1136 			can_vma_merge_after(prev, vm_flags,
1137 					    anon_vma, file, pgoff,
1138 					    vm_userfaultfd_ctx,
1139 					    anon_name)) {
1140 		/*
1141 		 * OK, it can.  Can we now merge in the successor as well?
1142 		 */
1143 		if (next && end == next->vm_start &&
1144 				mpol_equal(policy, vma_policy(next)) &&
1145 				can_vma_merge_before(next, vm_flags,
1146 						     anon_vma, file,
1147 						     pgoff+pglen,
1148 						     vm_userfaultfd_ctx,
1149 						     anon_name) &&
1150 				is_mergeable_anon_vma(prev->anon_vma,
1151 						      next->anon_vma, NULL)) {
1152 							/* cases 1, 6 */
1153 			err = __vma_adjust(prev, prev->vm_start,
1154 					 next->vm_end, prev->vm_pgoff, NULL,
1155 					 prev);
1156 		} else					/* cases 2, 5, 7 */
1157 			err = __vma_adjust(prev, prev->vm_start,
1158 					 end, prev->vm_pgoff, NULL, prev);
1159 		if (err)
1160 			return NULL;
1161 		khugepaged_enter_vma_merge(prev, vm_flags);
1162 		return prev;
1163 	}
1164 
1165 	/*
1166 	 * Can this new request be merged in front of next?
1167 	 */
1168 	if (next && end == next->vm_start &&
1169 			mpol_equal(policy, vma_policy(next)) &&
1170 			can_vma_merge_before(next, vm_flags,
1171 					     anon_vma, file, pgoff+pglen,
1172 					     vm_userfaultfd_ctx,
1173 					     anon_name)) {
1174 		if (prev && addr < prev->vm_end)	/* case 4 */
1175 			err = __vma_adjust(prev, prev->vm_start,
1176 					 addr, prev->vm_pgoff, NULL, next);
1177 		else {					/* cases 3, 8 */
1178 			err = __vma_adjust(area, addr, next->vm_end,
1179 					 next->vm_pgoff - pglen, NULL, next);
1180 			/*
1181 			 * In case 3 area is already equal to next and
1182 			 * this is a noop, but in case 8 "area" has
1183 			 * been removed and next was expanded over it.
1184 			 */
1185 			area = next;
1186 		}
1187 		if (err)
1188 			return NULL;
1189 		khugepaged_enter_vma_merge(area, vm_flags);
1190 		return area;
1191 	}
1192 
1193 	return NULL;
1194 }
1195 
1196 /*
1197  * Rough compatbility check to quickly see if it's even worth looking
1198  * at sharing an anon_vma.
1199  *
1200  * They need to have the same vm_file, and the flags can only differ
1201  * in things that mprotect may change.
1202  *
1203  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204  * we can merge the two vma's. For example, we refuse to merge a vma if
1205  * there is a vm_ops->close() function, because that indicates that the
1206  * driver is doing some kind of reference counting. But that doesn't
1207  * really matter for the anon_vma sharing case.
1208  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210 {
1211 	return a->vm_end == b->vm_start &&
1212 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 		a->vm_file == b->vm_file &&
1214 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 }
1217 
1218 /*
1219  * Do some basic sanity checking to see if we can re-use the anon_vma
1220  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221  * the same as 'old', the other will be the new one that is trying
1222  * to share the anon_vma.
1223  *
1224  * NOTE! This runs with mm_sem held for reading, so it is possible that
1225  * the anon_vma of 'old' is concurrently in the process of being set up
1226  * by another page fault trying to merge _that_. But that's ok: if it
1227  * is being set up, that automatically means that it will be a singleton
1228  * acceptable for merging, so we can do all of this optimistically. But
1229  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230  *
1231  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233  * is to return an anon_vma that is "complex" due to having gone through
1234  * a fork).
1235  *
1236  * We also make sure that the two vma's are compatible (adjacent,
1237  * and with the same memory policies). That's all stable, even with just
1238  * a read lock on the mm_sem.
1239  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242 	if (anon_vma_compatible(a, b)) {
1243 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244 
1245 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246 			return anon_vma;
1247 	}
1248 	return NULL;
1249 }
1250 
1251 /*
1252  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253  * neighbouring vmas for a suitable anon_vma, before it goes off
1254  * to allocate a new anon_vma.  It checks because a repetitive
1255  * sequence of mprotects and faults may otherwise lead to distinct
1256  * anon_vmas being allocated, preventing vma merge in subsequent
1257  * mprotect.
1258  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260 {
1261 	struct anon_vma *anon_vma;
1262 	struct vm_area_struct *near;
1263 
1264 	near = vma->vm_next;
1265 	if (!near)
1266 		goto try_prev;
1267 
1268 	anon_vma = reusable_anon_vma(near, vma, near);
1269 	if (anon_vma)
1270 		return anon_vma;
1271 try_prev:
1272 	near = vma->vm_prev;
1273 	if (!near)
1274 		goto none;
1275 
1276 	anon_vma = reusable_anon_vma(near, near, vma);
1277 	if (anon_vma)
1278 		return anon_vma;
1279 none:
1280 	/*
1281 	 * There's no absolute need to look only at touching neighbours:
1282 	 * we could search further afield for "compatible" anon_vmas.
1283 	 * But it would probably just be a waste of time searching,
1284 	 * or lead to too many vmas hanging off the same anon_vma.
1285 	 * We're trying to allow mprotect remerging later on,
1286 	 * not trying to minimize memory used for anon_vmas.
1287 	 */
1288 	return NULL;
1289 }
1290 
1291 /*
1292  * If a hint addr is less than mmap_min_addr change hint to be as
1293  * low as possible but still greater than mmap_min_addr
1294  */
round_hint_to_min(unsigned long hint)1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1296 {
1297 	hint &= PAGE_MASK;
1298 	if (((void *)hint != NULL) &&
1299 	    (hint < mmap_min_addr))
1300 		return PAGE_ALIGN(mmap_min_addr);
1301 	return hint;
1302 }
1303 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1304 static inline int mlock_future_check(struct mm_struct *mm,
1305 				     unsigned long flags,
1306 				     unsigned long len)
1307 {
1308 	unsigned long locked, lock_limit;
1309 
1310 	/*  mlock MCL_FUTURE? */
1311 	if (flags & VM_LOCKED) {
1312 		locked = len >> PAGE_SHIFT;
1313 		locked += mm->locked_vm;
1314 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 		lock_limit >>= PAGE_SHIFT;
1316 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317 			return -EAGAIN;
1318 	}
1319 	return 0;
1320 }
1321 
file_mmap_size_max(struct file * file,struct inode * inode)1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323 {
1324 	if (S_ISREG(inode->i_mode))
1325 		return MAX_LFS_FILESIZE;
1326 
1327 	if (S_ISBLK(inode->i_mode))
1328 		return MAX_LFS_FILESIZE;
1329 
1330 	/* Special "we do even unsigned file positions" case */
1331 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332 		return 0;
1333 
1334 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335 	return ULONG_MAX;
1336 }
1337 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 				unsigned long pgoff, unsigned long len)
1340 {
1341 	u64 maxsize = file_mmap_size_max(file, inode);
1342 
1343 	if (maxsize && len > maxsize)
1344 		return false;
1345 	maxsize -= len;
1346 	if (pgoff > maxsize >> PAGE_SHIFT)
1347 		return false;
1348 	return true;
1349 }
1350 
1351 /*
1352  * The caller must hold down_write(&current->mm->mmap_sem).
1353  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355 			unsigned long len, unsigned long prot,
1356 			unsigned long flags, vm_flags_t vm_flags,
1357 			unsigned long pgoff, unsigned long *populate,
1358 			struct list_head *uf)
1359 {
1360 	struct mm_struct *mm = current->mm;
1361 	int pkey = 0;
1362 
1363 	*populate = 0;
1364 
1365 	if (!len)
1366 		return -EINVAL;
1367 
1368 	/*
1369 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1370 	 *
1371 	 * (the exception is when the underlying filesystem is noexec
1372 	 *  mounted, in which case we dont add PROT_EXEC.)
1373 	 */
1374 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 		if (!(file && path_noexec(&file->f_path)))
1376 			prot |= PROT_EXEC;
1377 
1378 	if (!(flags & MAP_FIXED))
1379 		addr = round_hint_to_min(addr);
1380 
1381 	/* Careful about overflows.. */
1382 	len = PAGE_ALIGN(len);
1383 	if (!len)
1384 		return -ENOMEM;
1385 
1386 	/* offset overflow? */
1387 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1388 		return -EOVERFLOW;
1389 
1390 	/* Too many mappings? */
1391 	if (mm->map_count > sysctl_max_map_count)
1392 		return -ENOMEM;
1393 
1394 	/* Obtain the address to map to. we verify (or select) it and ensure
1395 	 * that it represents a valid section of the address space.
1396 	 */
1397 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1398 	if (offset_in_page(addr))
1399 		return addr;
1400 
1401 	if (prot == PROT_EXEC) {
1402 		pkey = execute_only_pkey(mm);
1403 		if (pkey < 0)
1404 			pkey = 0;
1405 	}
1406 
1407 	/* Do simple checking here so the lower-level routines won't have
1408 	 * to. we assume access permissions have been handled by the open
1409 	 * of the memory object, so we don't do any here.
1410 	 */
1411 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1412 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1413 
1414 	if (flags & MAP_LOCKED)
1415 		if (!can_do_mlock())
1416 			return -EPERM;
1417 
1418 	if (mlock_future_check(mm, vm_flags, len))
1419 		return -EAGAIN;
1420 
1421 	if (file) {
1422 		struct inode *inode = file_inode(file);
1423 
1424 		if (!file_mmap_ok(file, inode, pgoff, len))
1425 			return -EOVERFLOW;
1426 
1427 		switch (flags & MAP_TYPE) {
1428 		case MAP_SHARED:
1429 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1430 				return -EACCES;
1431 
1432 			/*
1433 			 * Make sure we don't allow writing to an append-only
1434 			 * file..
1435 			 */
1436 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1437 				return -EACCES;
1438 
1439 			/*
1440 			 * Make sure there are no mandatory locks on the file.
1441 			 */
1442 			if (locks_verify_locked(file))
1443 				return -EAGAIN;
1444 
1445 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1446 			if (!(file->f_mode & FMODE_WRITE))
1447 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1448 
1449 			/* fall through */
1450 		case MAP_PRIVATE:
1451 			if (!(file->f_mode & FMODE_READ))
1452 				return -EACCES;
1453 			if (path_noexec(&file->f_path)) {
1454 				if (vm_flags & VM_EXEC)
1455 					return -EPERM;
1456 				vm_flags &= ~VM_MAYEXEC;
1457 			}
1458 
1459 			if (!file->f_op->mmap)
1460 				return -ENODEV;
1461 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1462 				return -EINVAL;
1463 			break;
1464 
1465 		default:
1466 			return -EINVAL;
1467 		}
1468 	} else {
1469 		switch (flags & MAP_TYPE) {
1470 		case MAP_SHARED:
1471 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1472 				return -EINVAL;
1473 			/*
1474 			 * Ignore pgoff.
1475 			 */
1476 			pgoff = 0;
1477 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1478 			break;
1479 		case MAP_PRIVATE:
1480 			/*
1481 			 * Set pgoff according to addr for anon_vma.
1482 			 */
1483 			pgoff = addr >> PAGE_SHIFT;
1484 			break;
1485 		default:
1486 			return -EINVAL;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Set 'VM_NORESERVE' if we should not account for the
1492 	 * memory use of this mapping.
1493 	 */
1494 	if (flags & MAP_NORESERVE) {
1495 		/* We honor MAP_NORESERVE if allowed to overcommit */
1496 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1497 			vm_flags |= VM_NORESERVE;
1498 
1499 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1500 		if (file && is_file_hugepages(file))
1501 			vm_flags |= VM_NORESERVE;
1502 	}
1503 
1504 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1505 	if (!IS_ERR_VALUE(addr) &&
1506 	    ((vm_flags & VM_LOCKED) ||
1507 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1508 		*populate = len;
1509 	return addr;
1510 }
1511 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1512 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1513 		unsigned long, prot, unsigned long, flags,
1514 		unsigned long, fd, unsigned long, pgoff)
1515 {
1516 	struct file *file = NULL;
1517 	unsigned long retval;
1518 
1519 	if (!(flags & MAP_ANONYMOUS)) {
1520 		audit_mmap_fd(fd, flags);
1521 		file = fget(fd);
1522 		if (!file)
1523 			return -EBADF;
1524 		if (is_file_hugepages(file))
1525 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1526 		retval = -EINVAL;
1527 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1528 			goto out_fput;
1529 	} else if (flags & MAP_HUGETLB) {
1530 		struct user_struct *user = NULL;
1531 		struct hstate *hs;
1532 
1533 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1534 		if (!hs)
1535 			return -EINVAL;
1536 
1537 		len = ALIGN(len, huge_page_size(hs));
1538 		/*
1539 		 * VM_NORESERVE is used because the reservations will be
1540 		 * taken when vm_ops->mmap() is called
1541 		 * A dummy user value is used because we are not locking
1542 		 * memory so no accounting is necessary
1543 		 */
1544 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1545 				VM_NORESERVE,
1546 				&user, HUGETLB_ANONHUGE_INODE,
1547 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1548 		if (IS_ERR(file))
1549 			return PTR_ERR(file);
1550 	}
1551 
1552 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1553 
1554 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1555 out_fput:
1556 	if (file)
1557 		fput(file);
1558 	return retval;
1559 }
1560 
1561 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1562 struct mmap_arg_struct {
1563 	unsigned long addr;
1564 	unsigned long len;
1565 	unsigned long prot;
1566 	unsigned long flags;
1567 	unsigned long fd;
1568 	unsigned long offset;
1569 };
1570 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1571 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1572 {
1573 	struct mmap_arg_struct a;
1574 
1575 	if (copy_from_user(&a, arg, sizeof(a)))
1576 		return -EFAULT;
1577 	if (offset_in_page(a.offset))
1578 		return -EINVAL;
1579 
1580 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1581 			      a.offset >> PAGE_SHIFT);
1582 }
1583 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1584 
1585 /*
1586  * Some shared mappigns will want the pages marked read-only
1587  * to track write events. If so, we'll downgrade vm_page_prot
1588  * to the private version (using protection_map[] without the
1589  * VM_SHARED bit).
1590  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1591 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1592 {
1593 	vm_flags_t vm_flags = vma->vm_flags;
1594 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1595 
1596 	/* If it was private or non-writable, the write bit is already clear */
1597 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1598 		return 0;
1599 
1600 	/* The backer wishes to know when pages are first written to? */
1601 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1602 		return 1;
1603 
1604 	/* The open routine did something to the protections that pgprot_modify
1605 	 * won't preserve? */
1606 	if (pgprot_val(vm_page_prot) !=
1607 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1608 		return 0;
1609 
1610 	/* Do we need to track softdirty? */
1611 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1612 		return 1;
1613 
1614 	/* Specialty mapping? */
1615 	if (vm_flags & VM_PFNMAP)
1616 		return 0;
1617 
1618 	/* Can the mapping track the dirty pages? */
1619 	return vma->vm_file && vma->vm_file->f_mapping &&
1620 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1621 }
1622 
1623 /*
1624  * We account for memory if it's a private writeable mapping,
1625  * not hugepages and VM_NORESERVE wasn't set.
1626  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1627 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1628 {
1629 	/*
1630 	 * hugetlb has its own accounting separate from the core VM
1631 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1632 	 */
1633 	if (file && is_file_hugepages(file))
1634 		return 0;
1635 
1636 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1637 }
1638 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1639 unsigned long mmap_region(struct file *file, unsigned long addr,
1640 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1641 		struct list_head *uf)
1642 {
1643 	struct mm_struct *mm = current->mm;
1644 	struct vm_area_struct *vma, *prev;
1645 	int error;
1646 	struct rb_node **rb_link, *rb_parent;
1647 	unsigned long charged = 0;
1648 
1649 	/* Check against address space limit. */
1650 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1651 		unsigned long nr_pages;
1652 
1653 		/*
1654 		 * MAP_FIXED may remove pages of mappings that intersects with
1655 		 * requested mapping. Account for the pages it would unmap.
1656 		 */
1657 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1658 
1659 		if (!may_expand_vm(mm, vm_flags,
1660 					(len >> PAGE_SHIFT) - nr_pages))
1661 			return -ENOMEM;
1662 	}
1663 
1664 	/* Clear old maps */
1665 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1666 			      &rb_parent)) {
1667 		if (do_munmap(mm, addr, len, uf))
1668 			return -ENOMEM;
1669 	}
1670 
1671 	/*
1672 	 * Private writable mapping: check memory availability
1673 	 */
1674 	if (accountable_mapping(file, vm_flags)) {
1675 		charged = len >> PAGE_SHIFT;
1676 		if (security_vm_enough_memory_mm(mm, charged))
1677 			return -ENOMEM;
1678 		vm_flags |= VM_ACCOUNT;
1679 	}
1680 
1681 	/*
1682 	 * Can we just expand an old mapping?
1683 	 */
1684 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1685 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1686 	if (vma)
1687 		goto out;
1688 
1689 	/*
1690 	 * Determine the object being mapped and call the appropriate
1691 	 * specific mapper. the address has already been validated, but
1692 	 * not unmapped, but the maps are removed from the list.
1693 	 */
1694 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1695 	if (!vma) {
1696 		error = -ENOMEM;
1697 		goto unacct_error;
1698 	}
1699 
1700 	vma->vm_mm = mm;
1701 	vma->vm_start = addr;
1702 	vma->vm_end = addr + len;
1703 	vma->vm_flags = vm_flags;
1704 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1705 	vma->vm_pgoff = pgoff;
1706 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1707 
1708 	if (file) {
1709 		if (vm_flags & VM_DENYWRITE) {
1710 			error = deny_write_access(file);
1711 			if (error)
1712 				goto free_vma;
1713 		}
1714 		if (vm_flags & VM_SHARED) {
1715 			error = mapping_map_writable(file->f_mapping);
1716 			if (error)
1717 				goto allow_write_and_free_vma;
1718 		}
1719 
1720 		/* ->mmap() can change vma->vm_file, but must guarantee that
1721 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1722 		 * and map writably if VM_SHARED is set. This usually means the
1723 		 * new file must not have been exposed to user-space, yet.
1724 		 */
1725 		vma->vm_file = get_file(file);
1726 		error = call_mmap(file, vma);
1727 		if (error)
1728 			goto unmap_and_free_vma;
1729 
1730 		/* Can addr have changed??
1731 		 *
1732 		 * Answer: Yes, several device drivers can do it in their
1733 		 *         f_op->mmap method. -DaveM
1734 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1735 		 *      be updated for vma_link()
1736 		 */
1737 		WARN_ON_ONCE(addr != vma->vm_start);
1738 
1739 		addr = vma->vm_start;
1740 		vm_flags = vma->vm_flags;
1741 	} else if (vm_flags & VM_SHARED) {
1742 		error = shmem_zero_setup(vma);
1743 		if (error)
1744 			goto free_vma;
1745 	}
1746 
1747 	vma_link(mm, vma, prev, rb_link, rb_parent);
1748 	/* Once vma denies write, undo our temporary denial count */
1749 	if (file) {
1750 		if (vm_flags & VM_SHARED)
1751 			mapping_unmap_writable(file->f_mapping);
1752 		if (vm_flags & VM_DENYWRITE)
1753 			allow_write_access(file);
1754 	}
1755 	file = vma->vm_file;
1756 out:
1757 	perf_event_mmap(vma);
1758 
1759 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1760 	if (vm_flags & VM_LOCKED) {
1761 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1762 					vma == get_gate_vma(current->mm)))
1763 			mm->locked_vm += (len >> PAGE_SHIFT);
1764 		else
1765 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1766 	}
1767 
1768 	if (file)
1769 		uprobe_mmap(vma);
1770 
1771 	/*
1772 	 * New (or expanded) vma always get soft dirty status.
1773 	 * Otherwise user-space soft-dirty page tracker won't
1774 	 * be able to distinguish situation when vma area unmapped,
1775 	 * then new mapped in-place (which must be aimed as
1776 	 * a completely new data area).
1777 	 */
1778 	vma->vm_flags |= VM_SOFTDIRTY;
1779 
1780 	vma_set_page_prot(vma);
1781 
1782 	return addr;
1783 
1784 unmap_and_free_vma:
1785 	vma->vm_file = NULL;
1786 	fput(file);
1787 
1788 	/* Undo any partial mapping done by a device driver. */
1789 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1790 	charged = 0;
1791 	if (vm_flags & VM_SHARED)
1792 		mapping_unmap_writable(file->f_mapping);
1793 allow_write_and_free_vma:
1794 	if (vm_flags & VM_DENYWRITE)
1795 		allow_write_access(file);
1796 free_vma:
1797 	kmem_cache_free(vm_area_cachep, vma);
1798 unacct_error:
1799 	if (charged)
1800 		vm_unacct_memory(charged);
1801 	return error;
1802 }
1803 
unmapped_area(struct vm_unmapped_area_info * info)1804 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1805 {
1806 	/*
1807 	 * We implement the search by looking for an rbtree node that
1808 	 * immediately follows a suitable gap. That is,
1809 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1810 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1811 	 * - gap_end - gap_start >= length
1812 	 */
1813 
1814 	struct mm_struct *mm = current->mm;
1815 	struct vm_area_struct *vma;
1816 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1817 
1818 	/* Adjust search length to account for worst case alignment overhead */
1819 	length = info->length + info->align_mask;
1820 	if (length < info->length)
1821 		return -ENOMEM;
1822 
1823 	/* Adjust search limits by the desired length */
1824 	if (info->high_limit < length)
1825 		return -ENOMEM;
1826 	high_limit = info->high_limit - length;
1827 
1828 	if (info->low_limit > high_limit)
1829 		return -ENOMEM;
1830 	low_limit = info->low_limit + length;
1831 
1832 	/* Check if rbtree root looks promising */
1833 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1834 		goto check_highest;
1835 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1836 	if (vma->rb_subtree_gap < length)
1837 		goto check_highest;
1838 
1839 	while (true) {
1840 		/* Visit left subtree if it looks promising */
1841 		gap_end = vm_start_gap(vma);
1842 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1843 			struct vm_area_struct *left =
1844 				rb_entry(vma->vm_rb.rb_left,
1845 					 struct vm_area_struct, vm_rb);
1846 			if (left->rb_subtree_gap >= length) {
1847 				vma = left;
1848 				continue;
1849 			}
1850 		}
1851 
1852 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1853 check_current:
1854 		/* Check if current node has a suitable gap */
1855 		if (gap_start > high_limit)
1856 			return -ENOMEM;
1857 		if (gap_end >= low_limit &&
1858 		    gap_end > gap_start && gap_end - gap_start >= length)
1859 			goto found;
1860 
1861 		/* Visit right subtree if it looks promising */
1862 		if (vma->vm_rb.rb_right) {
1863 			struct vm_area_struct *right =
1864 				rb_entry(vma->vm_rb.rb_right,
1865 					 struct vm_area_struct, vm_rb);
1866 			if (right->rb_subtree_gap >= length) {
1867 				vma = right;
1868 				continue;
1869 			}
1870 		}
1871 
1872 		/* Go back up the rbtree to find next candidate node */
1873 		while (true) {
1874 			struct rb_node *prev = &vma->vm_rb;
1875 			if (!rb_parent(prev))
1876 				goto check_highest;
1877 			vma = rb_entry(rb_parent(prev),
1878 				       struct vm_area_struct, vm_rb);
1879 			if (prev == vma->vm_rb.rb_left) {
1880 				gap_start = vm_end_gap(vma->vm_prev);
1881 				gap_end = vm_start_gap(vma);
1882 				goto check_current;
1883 			}
1884 		}
1885 	}
1886 
1887 check_highest:
1888 	/* Check highest gap, which does not precede any rbtree node */
1889 	gap_start = mm->highest_vm_end;
1890 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1891 	if (gap_start > high_limit)
1892 		return -ENOMEM;
1893 
1894 found:
1895 	/* We found a suitable gap. Clip it with the original low_limit. */
1896 	if (gap_start < info->low_limit)
1897 		gap_start = info->low_limit;
1898 
1899 	/* Adjust gap address to the desired alignment */
1900 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1901 
1902 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1903 	VM_BUG_ON(gap_start + info->length > gap_end);
1904 	return gap_start;
1905 }
1906 
unmapped_area_topdown(struct vm_unmapped_area_info * info)1907 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1908 {
1909 	struct mm_struct *mm = current->mm;
1910 	struct vm_area_struct *vma;
1911 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1912 
1913 	/* Adjust search length to account for worst case alignment overhead */
1914 	length = info->length + info->align_mask;
1915 	if (length < info->length)
1916 		return -ENOMEM;
1917 
1918 	/*
1919 	 * Adjust search limits by the desired length.
1920 	 * See implementation comment at top of unmapped_area().
1921 	 */
1922 	gap_end = info->high_limit;
1923 	if (gap_end < length)
1924 		return -ENOMEM;
1925 	high_limit = gap_end - length;
1926 
1927 	if (info->low_limit > high_limit)
1928 		return -ENOMEM;
1929 	low_limit = info->low_limit + length;
1930 
1931 	/* Check highest gap, which does not precede any rbtree node */
1932 	gap_start = mm->highest_vm_end;
1933 	if (gap_start <= high_limit)
1934 		goto found_highest;
1935 
1936 	/* Check if rbtree root looks promising */
1937 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1938 		return -ENOMEM;
1939 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1940 	if (vma->rb_subtree_gap < length)
1941 		return -ENOMEM;
1942 
1943 	while (true) {
1944 		/* Visit right subtree if it looks promising */
1945 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1946 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1947 			struct vm_area_struct *right =
1948 				rb_entry(vma->vm_rb.rb_right,
1949 					 struct vm_area_struct, vm_rb);
1950 			if (right->rb_subtree_gap >= length) {
1951 				vma = right;
1952 				continue;
1953 			}
1954 		}
1955 
1956 check_current:
1957 		/* Check if current node has a suitable gap */
1958 		gap_end = vm_start_gap(vma);
1959 		if (gap_end < low_limit)
1960 			return -ENOMEM;
1961 		if (gap_start <= high_limit &&
1962 		    gap_end > gap_start && gap_end - gap_start >= length)
1963 			goto found;
1964 
1965 		/* Visit left subtree if it looks promising */
1966 		if (vma->vm_rb.rb_left) {
1967 			struct vm_area_struct *left =
1968 				rb_entry(vma->vm_rb.rb_left,
1969 					 struct vm_area_struct, vm_rb);
1970 			if (left->rb_subtree_gap >= length) {
1971 				vma = left;
1972 				continue;
1973 			}
1974 		}
1975 
1976 		/* Go back up the rbtree to find next candidate node */
1977 		while (true) {
1978 			struct rb_node *prev = &vma->vm_rb;
1979 			if (!rb_parent(prev))
1980 				return -ENOMEM;
1981 			vma = rb_entry(rb_parent(prev),
1982 				       struct vm_area_struct, vm_rb);
1983 			if (prev == vma->vm_rb.rb_right) {
1984 				gap_start = vma->vm_prev ?
1985 					vm_end_gap(vma->vm_prev) : 0;
1986 				goto check_current;
1987 			}
1988 		}
1989 	}
1990 
1991 found:
1992 	/* We found a suitable gap. Clip it with the original high_limit. */
1993 	if (gap_end > info->high_limit)
1994 		gap_end = info->high_limit;
1995 
1996 found_highest:
1997 	/* Compute highest gap address at the desired alignment */
1998 	gap_end -= info->length;
1999 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2000 
2001 	VM_BUG_ON(gap_end < info->low_limit);
2002 	VM_BUG_ON(gap_end < gap_start);
2003 	return gap_end;
2004 }
2005 
2006 /* Get an address range which is currently unmapped.
2007  * For shmat() with addr=0.
2008  *
2009  * Ugly calling convention alert:
2010  * Return value with the low bits set means error value,
2011  * ie
2012  *	if (ret & ~PAGE_MASK)
2013  *		error = ret;
2014  *
2015  * This function "knows" that -ENOMEM has the bits set.
2016  */
2017 #ifndef HAVE_ARCH_UNMAPPED_AREA
2018 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2019 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2020 		unsigned long len, unsigned long pgoff, unsigned long flags)
2021 {
2022 	struct mm_struct *mm = current->mm;
2023 	struct vm_area_struct *vma, *prev;
2024 	struct vm_unmapped_area_info info;
2025 
2026 	if (len > TASK_SIZE - mmap_min_addr)
2027 		return -ENOMEM;
2028 
2029 	if (flags & MAP_FIXED)
2030 		return addr;
2031 
2032 	if (addr) {
2033 		addr = PAGE_ALIGN(addr);
2034 		vma = find_vma_prev(mm, addr, &prev);
2035 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2036 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2037 		    (!prev || addr >= vm_end_gap(prev)))
2038 			return addr;
2039 	}
2040 
2041 	info.flags = 0;
2042 	info.length = len;
2043 	info.low_limit = mm->mmap_base;
2044 	info.high_limit = TASK_SIZE;
2045 	info.align_mask = 0;
2046 	return vm_unmapped_area(&info);
2047 }
2048 #endif
2049 
2050 /*
2051  * This mmap-allocator allocates new areas top-down from below the
2052  * stack's low limit (the base):
2053  */
2054 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2055 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)2056 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2057 			  const unsigned long len, const unsigned long pgoff,
2058 			  const unsigned long flags)
2059 {
2060 	struct vm_area_struct *vma, *prev;
2061 	struct mm_struct *mm = current->mm;
2062 	unsigned long addr = addr0;
2063 	struct vm_unmapped_area_info info;
2064 
2065 	/* requested length too big for entire address space */
2066 	if (len > TASK_SIZE - mmap_min_addr)
2067 		return -ENOMEM;
2068 
2069 	if (flags & MAP_FIXED)
2070 		return addr;
2071 
2072 	/* requesting a specific address */
2073 	if (addr) {
2074 		addr = PAGE_ALIGN(addr);
2075 		vma = find_vma_prev(mm, addr, &prev);
2076 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2077 				(!vma || addr + len <= vm_start_gap(vma)) &&
2078 				(!prev || addr >= vm_end_gap(prev)))
2079 			return addr;
2080 	}
2081 
2082 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2083 	info.length = len;
2084 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2085 	info.high_limit = mm->mmap_base;
2086 	info.align_mask = 0;
2087 	addr = vm_unmapped_area(&info);
2088 
2089 	/*
2090 	 * A failed mmap() very likely causes application failure,
2091 	 * so fall back to the bottom-up function here. This scenario
2092 	 * can happen with large stack limits and large mmap()
2093 	 * allocations.
2094 	 */
2095 	if (offset_in_page(addr)) {
2096 		VM_BUG_ON(addr != -ENOMEM);
2097 		info.flags = 0;
2098 		info.low_limit = TASK_UNMAPPED_BASE;
2099 		info.high_limit = TASK_SIZE;
2100 		addr = vm_unmapped_area(&info);
2101 	}
2102 
2103 	return addr;
2104 }
2105 #endif
2106 
2107 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2108 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2109 		unsigned long pgoff, unsigned long flags)
2110 {
2111 	unsigned long (*get_area)(struct file *, unsigned long,
2112 				  unsigned long, unsigned long, unsigned long);
2113 
2114 	unsigned long error = arch_mmap_check(addr, len, flags);
2115 	if (error)
2116 		return error;
2117 
2118 	/* Careful about overflows.. */
2119 	if (len > TASK_SIZE)
2120 		return -ENOMEM;
2121 
2122 	get_area = current->mm->get_unmapped_area;
2123 	if (file) {
2124 		if (file->f_op->get_unmapped_area)
2125 			get_area = file->f_op->get_unmapped_area;
2126 	} else if (flags & MAP_SHARED) {
2127 		/*
2128 		 * mmap_region() will call shmem_zero_setup() to create a file,
2129 		 * so use shmem's get_unmapped_area in case it can be huge.
2130 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2131 		 */
2132 		pgoff = 0;
2133 		get_area = shmem_get_unmapped_area;
2134 	}
2135 
2136 	addr = get_area(file, addr, len, pgoff, flags);
2137 	if (IS_ERR_VALUE(addr))
2138 		return addr;
2139 
2140 	if (addr > TASK_SIZE - len)
2141 		return -ENOMEM;
2142 	if (offset_in_page(addr))
2143 		return -EINVAL;
2144 
2145 	error = security_mmap_addr(addr);
2146 	return error ? error : addr;
2147 }
2148 
2149 EXPORT_SYMBOL(get_unmapped_area);
2150 
2151 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2152 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2153 {
2154 	struct rb_node *rb_node;
2155 	struct vm_area_struct *vma;
2156 
2157 	/* Check the cache first. */
2158 	vma = vmacache_find(mm, addr);
2159 	if (likely(vma))
2160 		return vma;
2161 
2162 	rb_node = mm->mm_rb.rb_node;
2163 
2164 	while (rb_node) {
2165 		struct vm_area_struct *tmp;
2166 
2167 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2168 
2169 		if (tmp->vm_end > addr) {
2170 			vma = tmp;
2171 			if (tmp->vm_start <= addr)
2172 				break;
2173 			rb_node = rb_node->rb_left;
2174 		} else
2175 			rb_node = rb_node->rb_right;
2176 	}
2177 
2178 	if (vma)
2179 		vmacache_update(addr, vma);
2180 	return vma;
2181 }
2182 
2183 EXPORT_SYMBOL(find_vma);
2184 
2185 /*
2186  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2187  */
2188 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2189 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2190 			struct vm_area_struct **pprev)
2191 {
2192 	struct vm_area_struct *vma;
2193 
2194 	vma = find_vma(mm, addr);
2195 	if (vma) {
2196 		*pprev = vma->vm_prev;
2197 	} else {
2198 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2199 		*pprev = NULL;
2200 		while (rb_node) {
2201 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2202 			rb_node = rb_node->rb_right;
2203 		}
2204 	}
2205 	return vma;
2206 }
2207 
2208 /*
2209  * Verify that the stack growth is acceptable and
2210  * update accounting. This is shared with both the
2211  * grow-up and grow-down cases.
2212  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2213 static int acct_stack_growth(struct vm_area_struct *vma,
2214 			     unsigned long size, unsigned long grow)
2215 {
2216 	struct mm_struct *mm = vma->vm_mm;
2217 	unsigned long new_start;
2218 
2219 	/* address space limit tests */
2220 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2221 		return -ENOMEM;
2222 
2223 	/* Stack limit test */
2224 	if (size > rlimit(RLIMIT_STACK))
2225 		return -ENOMEM;
2226 
2227 	/* mlock limit tests */
2228 	if (vma->vm_flags & VM_LOCKED) {
2229 		unsigned long locked;
2230 		unsigned long limit;
2231 		locked = mm->locked_vm + grow;
2232 		limit = rlimit(RLIMIT_MEMLOCK);
2233 		limit >>= PAGE_SHIFT;
2234 		if (locked > limit && !capable(CAP_IPC_LOCK))
2235 			return -ENOMEM;
2236 	}
2237 
2238 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2239 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2240 			vma->vm_end - size;
2241 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2242 		return -EFAULT;
2243 
2244 	/*
2245 	 * Overcommit..  This must be the final test, as it will
2246 	 * update security statistics.
2247 	 */
2248 	if (security_vm_enough_memory_mm(mm, grow))
2249 		return -ENOMEM;
2250 
2251 	return 0;
2252 }
2253 
2254 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2255 /*
2256  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2257  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2258  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2259 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2260 {
2261 	struct mm_struct *mm = vma->vm_mm;
2262 	struct vm_area_struct *next;
2263 	unsigned long gap_addr;
2264 	int error = 0;
2265 
2266 	if (!(vma->vm_flags & VM_GROWSUP))
2267 		return -EFAULT;
2268 
2269 	/* Guard against exceeding limits of the address space. */
2270 	address &= PAGE_MASK;
2271 	if (address >= (TASK_SIZE & PAGE_MASK))
2272 		return -ENOMEM;
2273 	address += PAGE_SIZE;
2274 
2275 	/* Enforce stack_guard_gap */
2276 	gap_addr = address + stack_guard_gap;
2277 
2278 	/* Guard against overflow */
2279 	if (gap_addr < address || gap_addr > TASK_SIZE)
2280 		gap_addr = TASK_SIZE;
2281 
2282 	next = vma->vm_next;
2283 	if (next && next->vm_start < gap_addr &&
2284 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2285 		if (!(next->vm_flags & VM_GROWSUP))
2286 			return -ENOMEM;
2287 		/* Check that both stack segments have the same anon_vma? */
2288 	}
2289 
2290 	/* We must make sure the anon_vma is allocated. */
2291 	if (unlikely(anon_vma_prepare(vma)))
2292 		return -ENOMEM;
2293 
2294 	/*
2295 	 * vma->vm_start/vm_end cannot change under us because the caller
2296 	 * is required to hold the mmap_sem in read mode.  We need the
2297 	 * anon_vma lock to serialize against concurrent expand_stacks.
2298 	 */
2299 	anon_vma_lock_write(vma->anon_vma);
2300 
2301 	/* Somebody else might have raced and expanded it already */
2302 	if (address > vma->vm_end) {
2303 		unsigned long size, grow;
2304 
2305 		size = address - vma->vm_start;
2306 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2307 
2308 		error = -ENOMEM;
2309 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2310 			error = acct_stack_growth(vma, size, grow);
2311 			if (!error) {
2312 				/*
2313 				 * vma_gap_update() doesn't support concurrent
2314 				 * updates, but we only hold a shared mmap_sem
2315 				 * lock here, so we need to protect against
2316 				 * concurrent vma expansions.
2317 				 * anon_vma_lock_write() doesn't help here, as
2318 				 * we don't guarantee that all growable vmas
2319 				 * in a mm share the same root anon vma.
2320 				 * So, we reuse mm->page_table_lock to guard
2321 				 * against concurrent vma expansions.
2322 				 */
2323 				spin_lock(&mm->page_table_lock);
2324 				if (vma->vm_flags & VM_LOCKED)
2325 					mm->locked_vm += grow;
2326 				vm_stat_account(mm, vma->vm_flags, grow);
2327 				anon_vma_interval_tree_pre_update_vma(vma);
2328 				vma->vm_end = address;
2329 				anon_vma_interval_tree_post_update_vma(vma);
2330 				if (vma->vm_next)
2331 					vma_gap_update(vma->vm_next);
2332 				else
2333 					mm->highest_vm_end = vm_end_gap(vma);
2334 				spin_unlock(&mm->page_table_lock);
2335 
2336 				perf_event_mmap(vma);
2337 			}
2338 		}
2339 	}
2340 	anon_vma_unlock_write(vma->anon_vma);
2341 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2342 	validate_mm(mm);
2343 	return error;
2344 }
2345 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2346 
2347 /*
2348  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2349  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2350 int expand_downwards(struct vm_area_struct *vma,
2351 				   unsigned long address)
2352 {
2353 	struct mm_struct *mm = vma->vm_mm;
2354 	struct vm_area_struct *prev;
2355 	int error = 0;
2356 
2357 	address &= PAGE_MASK;
2358 	if (address < mmap_min_addr)
2359 		return -EPERM;
2360 
2361 	/* Enforce stack_guard_gap */
2362 	prev = vma->vm_prev;
2363 	/* Check that both stack segments have the same anon_vma? */
2364 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2365 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2366 		if (address - prev->vm_end < stack_guard_gap)
2367 			return -ENOMEM;
2368 	}
2369 
2370 	/* We must make sure the anon_vma is allocated. */
2371 	if (unlikely(anon_vma_prepare(vma)))
2372 		return -ENOMEM;
2373 
2374 	/*
2375 	 * vma->vm_start/vm_end cannot change under us because the caller
2376 	 * is required to hold the mmap_sem in read mode.  We need the
2377 	 * anon_vma lock to serialize against concurrent expand_stacks.
2378 	 */
2379 	anon_vma_lock_write(vma->anon_vma);
2380 
2381 	/* Somebody else might have raced and expanded it already */
2382 	if (address < vma->vm_start) {
2383 		unsigned long size, grow;
2384 
2385 		size = vma->vm_end - address;
2386 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2387 
2388 		error = -ENOMEM;
2389 		if (grow <= vma->vm_pgoff) {
2390 			error = acct_stack_growth(vma, size, grow);
2391 			if (!error) {
2392 				/*
2393 				 * vma_gap_update() doesn't support concurrent
2394 				 * updates, but we only hold a shared mmap_sem
2395 				 * lock here, so we need to protect against
2396 				 * concurrent vma expansions.
2397 				 * anon_vma_lock_write() doesn't help here, as
2398 				 * we don't guarantee that all growable vmas
2399 				 * in a mm share the same root anon vma.
2400 				 * So, we reuse mm->page_table_lock to guard
2401 				 * against concurrent vma expansions.
2402 				 */
2403 				spin_lock(&mm->page_table_lock);
2404 				if (vma->vm_flags & VM_LOCKED)
2405 					mm->locked_vm += grow;
2406 				vm_stat_account(mm, vma->vm_flags, grow);
2407 				anon_vma_interval_tree_pre_update_vma(vma);
2408 				vma->vm_start = address;
2409 				vma->vm_pgoff -= grow;
2410 				anon_vma_interval_tree_post_update_vma(vma);
2411 				vma_gap_update(vma);
2412 				spin_unlock(&mm->page_table_lock);
2413 
2414 				perf_event_mmap(vma);
2415 			}
2416 		}
2417 	}
2418 	anon_vma_unlock_write(vma->anon_vma);
2419 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2420 	validate_mm(mm);
2421 	return error;
2422 }
2423 
2424 /* enforced gap between the expanding stack and other mappings. */
2425 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2426 
cmdline_parse_stack_guard_gap(char * p)2427 static int __init cmdline_parse_stack_guard_gap(char *p)
2428 {
2429 	unsigned long val;
2430 	char *endptr;
2431 
2432 	val = simple_strtoul(p, &endptr, 10);
2433 	if (!*endptr)
2434 		stack_guard_gap = val << PAGE_SHIFT;
2435 
2436 	return 0;
2437 }
2438 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2439 
2440 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2441 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2442 {
2443 	return expand_upwards(vma, address);
2444 }
2445 
2446 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2447 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2448 {
2449 	struct vm_area_struct *vma, *prev;
2450 
2451 	addr &= PAGE_MASK;
2452 	vma = find_vma_prev(mm, addr, &prev);
2453 	if (vma && (vma->vm_start <= addr))
2454 		return vma;
2455 	/* don't alter vm_end if the coredump is running */
2456 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2457 		return NULL;
2458 	if (prev->vm_flags & VM_LOCKED)
2459 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2460 	return prev;
2461 }
2462 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2463 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2464 {
2465 	return expand_downwards(vma, address);
2466 }
2467 
2468 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2469 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2470 {
2471 	struct vm_area_struct *vma;
2472 	unsigned long start;
2473 
2474 	addr &= PAGE_MASK;
2475 	vma = find_vma(mm, addr);
2476 	if (!vma)
2477 		return NULL;
2478 	if (vma->vm_start <= addr)
2479 		return vma;
2480 	if (!(vma->vm_flags & VM_GROWSDOWN))
2481 		return NULL;
2482 	/* don't alter vm_start if the coredump is running */
2483 	if (!mmget_still_valid(mm))
2484 		return NULL;
2485 	start = vma->vm_start;
2486 	if (expand_stack(vma, addr))
2487 		return NULL;
2488 	if (vma->vm_flags & VM_LOCKED)
2489 		populate_vma_page_range(vma, addr, start, NULL);
2490 	return vma;
2491 }
2492 #endif
2493 
2494 EXPORT_SYMBOL_GPL(find_extend_vma);
2495 
2496 /*
2497  * Ok - we have the memory areas we should free on the vma list,
2498  * so release them, and do the vma updates.
2499  *
2500  * Called with the mm semaphore held.
2501  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2502 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2503 {
2504 	unsigned long nr_accounted = 0;
2505 
2506 	/* Update high watermark before we lower total_vm */
2507 	update_hiwater_vm(mm);
2508 	do {
2509 		long nrpages = vma_pages(vma);
2510 
2511 		if (vma->vm_flags & VM_ACCOUNT)
2512 			nr_accounted += nrpages;
2513 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2514 		vma = remove_vma(vma);
2515 	} while (vma);
2516 	vm_unacct_memory(nr_accounted);
2517 	validate_mm(mm);
2518 }
2519 
2520 /*
2521  * Get rid of page table information in the indicated region.
2522  *
2523  * Called with the mm semaphore held.
2524  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2525 static void unmap_region(struct mm_struct *mm,
2526 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2527 		unsigned long start, unsigned long end)
2528 {
2529 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2530 	struct mmu_gather tlb;
2531 
2532 	lru_add_drain();
2533 	tlb_gather_mmu(&tlb, mm, start, end);
2534 	update_hiwater_rss(mm);
2535 	unmap_vmas(&tlb, vma, start, end);
2536 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2537 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2538 	tlb_finish_mmu(&tlb, start, end);
2539 }
2540 
2541 /*
2542  * Create a list of vma's touched by the unmap, removing them from the mm's
2543  * vma list as we go..
2544  */
2545 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2546 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2547 	struct vm_area_struct *prev, unsigned long end)
2548 {
2549 	struct vm_area_struct **insertion_point;
2550 	struct vm_area_struct *tail_vma = NULL;
2551 
2552 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2553 	vma->vm_prev = NULL;
2554 	do {
2555 		vma_rb_erase(vma, &mm->mm_rb);
2556 		mm->map_count--;
2557 		tail_vma = vma;
2558 		vma = vma->vm_next;
2559 	} while (vma && vma->vm_start < end);
2560 	*insertion_point = vma;
2561 	if (vma) {
2562 		vma->vm_prev = prev;
2563 		vma_gap_update(vma);
2564 	} else
2565 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2566 	tail_vma->vm_next = NULL;
2567 
2568 	/* Kill the cache */
2569 	vmacache_invalidate(mm);
2570 }
2571 
2572 /*
2573  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2574  * has already been checked or doesn't make sense to fail.
2575  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2576 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2577 		unsigned long addr, int new_below)
2578 {
2579 	struct vm_area_struct *new;
2580 	int err;
2581 
2582 	if (vma->vm_ops && vma->vm_ops->split) {
2583 		err = vma->vm_ops->split(vma, addr);
2584 		if (err)
2585 			return err;
2586 	}
2587 
2588 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2589 	if (!new)
2590 		return -ENOMEM;
2591 
2592 	/* most fields are the same, copy all, and then fixup */
2593 	*new = *vma;
2594 
2595 	INIT_LIST_HEAD(&new->anon_vma_chain);
2596 
2597 	if (new_below)
2598 		new->vm_end = addr;
2599 	else {
2600 		new->vm_start = addr;
2601 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2602 	}
2603 
2604 	err = vma_dup_policy(vma, new);
2605 	if (err)
2606 		goto out_free_vma;
2607 
2608 	err = anon_vma_clone(new, vma);
2609 	if (err)
2610 		goto out_free_mpol;
2611 
2612 	if (new->vm_file)
2613 		get_file(new->vm_file);
2614 
2615 	if (new->vm_ops && new->vm_ops->open)
2616 		new->vm_ops->open(new);
2617 
2618 	if (new_below)
2619 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2620 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2621 	else
2622 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2623 
2624 	/* Success. */
2625 	if (!err)
2626 		return 0;
2627 
2628 	/* Clean everything up if vma_adjust failed. */
2629 	if (new->vm_ops && new->vm_ops->close)
2630 		new->vm_ops->close(new);
2631 	if (new->vm_file)
2632 		fput(new->vm_file);
2633 	unlink_anon_vmas(new);
2634  out_free_mpol:
2635 	mpol_put(vma_policy(new));
2636  out_free_vma:
2637 	kmem_cache_free(vm_area_cachep, new);
2638 	return err;
2639 }
2640 
2641 /*
2642  * Split a vma into two pieces at address 'addr', a new vma is allocated
2643  * either for the first part or the tail.
2644  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2645 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2646 	      unsigned long addr, int new_below)
2647 {
2648 	if (mm->map_count >= sysctl_max_map_count)
2649 		return -ENOMEM;
2650 
2651 	return __split_vma(mm, vma, addr, new_below);
2652 }
2653 
2654 /* Munmap is split into 2 main parts -- this part which finds
2655  * what needs doing, and the areas themselves, which do the
2656  * work.  This now handles partial unmappings.
2657  * Jeremy Fitzhardinge <jeremy@goop.org>
2658  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2659 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2660 	      struct list_head *uf)
2661 {
2662 	unsigned long end;
2663 	struct vm_area_struct *vma, *prev, *last;
2664 
2665 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2666 		return -EINVAL;
2667 
2668 	len = PAGE_ALIGN(len);
2669 	if (len == 0)
2670 		return -EINVAL;
2671 
2672 	/* Find the first overlapping VMA */
2673 	vma = find_vma(mm, start);
2674 	if (!vma)
2675 		return 0;
2676 	prev = vma->vm_prev;
2677 	/* we have  start < vma->vm_end  */
2678 
2679 	/* if it doesn't overlap, we have nothing.. */
2680 	end = start + len;
2681 	if (vma->vm_start >= end)
2682 		return 0;
2683 
2684 	/*
2685 	 * If we need to split any vma, do it now to save pain later.
2686 	 *
2687 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2688 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2689 	 * places tmp vma above, and higher split_vma places tmp vma below.
2690 	 */
2691 	if (start > vma->vm_start) {
2692 		int error;
2693 
2694 		/*
2695 		 * Make sure that map_count on return from munmap() will
2696 		 * not exceed its limit; but let map_count go just above
2697 		 * its limit temporarily, to help free resources as expected.
2698 		 */
2699 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2700 			return -ENOMEM;
2701 
2702 		error = __split_vma(mm, vma, start, 0);
2703 		if (error)
2704 			return error;
2705 		prev = vma;
2706 	}
2707 
2708 	/* Does it split the last one? */
2709 	last = find_vma(mm, end);
2710 	if (last && end > last->vm_start) {
2711 		int error = __split_vma(mm, last, end, 1);
2712 		if (error)
2713 			return error;
2714 	}
2715 	vma = prev ? prev->vm_next : mm->mmap;
2716 
2717 	if (unlikely(uf)) {
2718 		/*
2719 		 * If userfaultfd_unmap_prep returns an error the vmas
2720 		 * will remain splitted, but userland will get a
2721 		 * highly unexpected error anyway. This is no
2722 		 * different than the case where the first of the two
2723 		 * __split_vma fails, but we don't undo the first
2724 		 * split, despite we could. This is unlikely enough
2725 		 * failure that it's not worth optimizing it for.
2726 		 */
2727 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2728 		if (error)
2729 			return error;
2730 	}
2731 
2732 	/*
2733 	 * unlock any mlock()ed ranges before detaching vmas
2734 	 */
2735 	if (mm->locked_vm) {
2736 		struct vm_area_struct *tmp = vma;
2737 		while (tmp && tmp->vm_start < end) {
2738 			if (tmp->vm_flags & VM_LOCKED) {
2739 				mm->locked_vm -= vma_pages(tmp);
2740 				munlock_vma_pages_all(tmp);
2741 			}
2742 			tmp = tmp->vm_next;
2743 		}
2744 	}
2745 
2746 	/*
2747 	 * Remove the vma's, and unmap the actual pages
2748 	 */
2749 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2750 	unmap_region(mm, vma, prev, start, end);
2751 
2752 	arch_unmap(mm, vma, start, end);
2753 
2754 	/* Fix up all other VM information */
2755 	remove_vma_list(mm, vma);
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL(do_munmap);
2760 
vm_munmap(unsigned long start,size_t len)2761 int vm_munmap(unsigned long start, size_t len)
2762 {
2763 	int ret;
2764 	struct mm_struct *mm = current->mm;
2765 	LIST_HEAD(uf);
2766 
2767 	if (down_write_killable(&mm->mmap_sem))
2768 		return -EINTR;
2769 
2770 	ret = do_munmap(mm, start, len, &uf);
2771 	up_write(&mm->mmap_sem);
2772 	userfaultfd_unmap_complete(mm, &uf);
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL(vm_munmap);
2776 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2777 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2778 {
2779 	profile_munmap(addr);
2780 	return vm_munmap(addr, len);
2781 }
2782 
2783 
2784 /*
2785  * Emulation of deprecated remap_file_pages() syscall.
2786  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2787 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2788 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2789 {
2790 
2791 	struct mm_struct *mm = current->mm;
2792 	struct vm_area_struct *vma;
2793 	unsigned long populate = 0;
2794 	unsigned long ret = -EINVAL;
2795 	struct file *file;
2796 
2797 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2798 		     current->comm, current->pid);
2799 
2800 	if (prot)
2801 		return ret;
2802 	start = start & PAGE_MASK;
2803 	size = size & PAGE_MASK;
2804 
2805 	if (start + size <= start)
2806 		return ret;
2807 
2808 	/* Does pgoff wrap? */
2809 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2810 		return ret;
2811 
2812 	if (down_write_killable(&mm->mmap_sem))
2813 		return -EINTR;
2814 
2815 	vma = find_vma(mm, start);
2816 
2817 	if (!vma || !(vma->vm_flags & VM_SHARED))
2818 		goto out;
2819 
2820 	if (start < vma->vm_start)
2821 		goto out;
2822 
2823 	if (start + size > vma->vm_end) {
2824 		struct vm_area_struct *next;
2825 
2826 		for (next = vma->vm_next; next; next = next->vm_next) {
2827 			/* hole between vmas ? */
2828 			if (next->vm_start != next->vm_prev->vm_end)
2829 				goto out;
2830 
2831 			if (next->vm_file != vma->vm_file)
2832 				goto out;
2833 
2834 			if (next->vm_flags != vma->vm_flags)
2835 				goto out;
2836 
2837 			if (start + size <= next->vm_end)
2838 				break;
2839 		}
2840 
2841 		if (!next)
2842 			goto out;
2843 	}
2844 
2845 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2846 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2847 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2848 
2849 	flags &= MAP_NONBLOCK;
2850 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2851 	if (vma->vm_flags & VM_LOCKED) {
2852 		struct vm_area_struct *tmp;
2853 		flags |= MAP_LOCKED;
2854 
2855 		/* drop PG_Mlocked flag for over-mapped range */
2856 		for (tmp = vma; tmp->vm_start >= start + size;
2857 				tmp = tmp->vm_next) {
2858 			/*
2859 			 * Split pmd and munlock page on the border
2860 			 * of the range.
2861 			 */
2862 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2863 
2864 			munlock_vma_pages_range(tmp,
2865 					max(tmp->vm_start, start),
2866 					min(tmp->vm_end, start + size));
2867 		}
2868 	}
2869 
2870 	file = get_file(vma->vm_file);
2871 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2872 			prot, flags, pgoff, &populate, NULL);
2873 	fput(file);
2874 out:
2875 	up_write(&mm->mmap_sem);
2876 	if (populate)
2877 		mm_populate(ret, populate);
2878 	if (!IS_ERR_VALUE(ret))
2879 		ret = 0;
2880 	return ret;
2881 }
2882 
verify_mm_writelocked(struct mm_struct * mm)2883 static inline void verify_mm_writelocked(struct mm_struct *mm)
2884 {
2885 #ifdef CONFIG_DEBUG_VM
2886 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2887 		WARN_ON(1);
2888 		up_read(&mm->mmap_sem);
2889 	}
2890 #endif
2891 }
2892 
2893 /*
2894  *  this is really a simplified "do_mmap".  it only handles
2895  *  anonymous maps.  eventually we may be able to do some
2896  *  brk-specific accounting here.
2897  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)2898 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2899 {
2900 	struct mm_struct *mm = current->mm;
2901 	struct vm_area_struct *vma, *prev;
2902 	struct rb_node **rb_link, *rb_parent;
2903 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2904 	int error;
2905 
2906 	/* Until we need other flags, refuse anything except VM_EXEC. */
2907 	if ((flags & (~VM_EXEC)) != 0)
2908 		return -EINVAL;
2909 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2910 
2911 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2912 	if (offset_in_page(error))
2913 		return error;
2914 
2915 	error = mlock_future_check(mm, mm->def_flags, len);
2916 	if (error)
2917 		return error;
2918 
2919 	/*
2920 	 * mm->mmap_sem is required to protect against another thread
2921 	 * changing the mappings in case we sleep.
2922 	 */
2923 	verify_mm_writelocked(mm);
2924 
2925 	/*
2926 	 * Clear old maps.  this also does some error checking for us
2927 	 */
2928 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2929 			      &rb_parent)) {
2930 		if (do_munmap(mm, addr, len, uf))
2931 			return -ENOMEM;
2932 	}
2933 
2934 	/* Check against address space limits *after* clearing old maps... */
2935 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2936 		return -ENOMEM;
2937 
2938 	if (mm->map_count > sysctl_max_map_count)
2939 		return -ENOMEM;
2940 
2941 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2942 		return -ENOMEM;
2943 
2944 	/* Can we just expand an old private anonymous mapping? */
2945 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2946 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2947 	if (vma)
2948 		goto out;
2949 
2950 	/*
2951 	 * create a vma struct for an anonymous mapping
2952 	 */
2953 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2954 	if (!vma) {
2955 		vm_unacct_memory(len >> PAGE_SHIFT);
2956 		return -ENOMEM;
2957 	}
2958 
2959 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2960 	vma->vm_mm = mm;
2961 	vma->vm_start = addr;
2962 	vma->vm_end = addr + len;
2963 	vma->vm_pgoff = pgoff;
2964 	vma->vm_flags = flags;
2965 	vma->vm_page_prot = vm_get_page_prot(flags);
2966 	vma_link(mm, vma, prev, rb_link, rb_parent);
2967 out:
2968 	perf_event_mmap(vma);
2969 	mm->total_vm += len >> PAGE_SHIFT;
2970 	mm->data_vm += len >> PAGE_SHIFT;
2971 	if (flags & VM_LOCKED)
2972 		mm->locked_vm += (len >> PAGE_SHIFT);
2973 	vma->vm_flags |= VM_SOFTDIRTY;
2974 	return 0;
2975 }
2976 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)2977 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2978 {
2979 	struct mm_struct *mm = current->mm;
2980 	unsigned long len;
2981 	int ret;
2982 	bool populate;
2983 	LIST_HEAD(uf);
2984 
2985 	len = PAGE_ALIGN(request);
2986 	if (len < request)
2987 		return -ENOMEM;
2988 	if (!len)
2989 		return 0;
2990 
2991 	if (down_write_killable(&mm->mmap_sem))
2992 		return -EINTR;
2993 
2994 	ret = do_brk_flags(addr, len, flags, &uf);
2995 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2996 	up_write(&mm->mmap_sem);
2997 	userfaultfd_unmap_complete(mm, &uf);
2998 	if (populate && !ret)
2999 		mm_populate(addr, len);
3000 	return ret;
3001 }
3002 EXPORT_SYMBOL(vm_brk_flags);
3003 
vm_brk(unsigned long addr,unsigned long len)3004 int vm_brk(unsigned long addr, unsigned long len)
3005 {
3006 	return vm_brk_flags(addr, len, 0);
3007 }
3008 EXPORT_SYMBOL(vm_brk);
3009 
3010 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3011 void exit_mmap(struct mm_struct *mm)
3012 {
3013 	struct mmu_gather tlb;
3014 	struct vm_area_struct *vma;
3015 	unsigned long nr_accounted = 0;
3016 
3017 	/* mm's last user has gone, and its about to be pulled down */
3018 	mmu_notifier_release(mm);
3019 
3020 	if (unlikely(mm_is_oom_victim(mm))) {
3021 		/*
3022 		 * Manually reap the mm to free as much memory as possible.
3023 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3024 		 * this mm from further consideration.  Taking mm->mmap_sem for
3025 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3026 		 * reaper will not run on this mm again after mmap_sem is
3027 		 * dropped.
3028 		 *
3029 		 * Nothing can be holding mm->mmap_sem here and the above call
3030 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3031 		 * __oom_reap_task_mm() will not block.
3032 		 *
3033 		 * This needs to be done before calling munlock_vma_pages_all(),
3034 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3035 		 * reliably test it.
3036 		 */
3037 		mutex_lock(&oom_lock);
3038 		__oom_reap_task_mm(mm);
3039 		mutex_unlock(&oom_lock);
3040 
3041 		set_bit(MMF_OOM_SKIP, &mm->flags);
3042 		down_write(&mm->mmap_sem);
3043 		up_write(&mm->mmap_sem);
3044 	}
3045 
3046 	if (mm->locked_vm) {
3047 		vma = mm->mmap;
3048 		while (vma) {
3049 			if (vma->vm_flags & VM_LOCKED)
3050 				munlock_vma_pages_all(vma);
3051 			vma = vma->vm_next;
3052 		}
3053 	}
3054 
3055 	arch_exit_mmap(mm);
3056 
3057 	vma = mm->mmap;
3058 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3059 		return;
3060 
3061 	lru_add_drain();
3062 	flush_cache_mm(mm);
3063 	tlb_gather_mmu(&tlb, mm, 0, -1);
3064 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3065 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3066 	unmap_vmas(&tlb, vma, 0, -1);
3067 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3068 	tlb_finish_mmu(&tlb, 0, -1);
3069 
3070 	/*
3071 	 * Walk the list again, actually closing and freeing it,
3072 	 * with preemption enabled, without holding any MM locks.
3073 	 */
3074 	while (vma) {
3075 		if (vma->vm_flags & VM_ACCOUNT)
3076 			nr_accounted += vma_pages(vma);
3077 		vma = remove_vma(vma);
3078 	}
3079 	vm_unacct_memory(nr_accounted);
3080 }
3081 
3082 /* Insert vm structure into process list sorted by address
3083  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3084  * then i_mmap_rwsem is taken here.
3085  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3086 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3087 {
3088 	struct vm_area_struct *prev;
3089 	struct rb_node **rb_link, *rb_parent;
3090 
3091 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3092 			   &prev, &rb_link, &rb_parent))
3093 		return -ENOMEM;
3094 	if ((vma->vm_flags & VM_ACCOUNT) &&
3095 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3096 		return -ENOMEM;
3097 
3098 	/*
3099 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3100 	 * until its first write fault, when page's anon_vma and index
3101 	 * are set.  But now set the vm_pgoff it will almost certainly
3102 	 * end up with (unless mremap moves it elsewhere before that
3103 	 * first wfault), so /proc/pid/maps tells a consistent story.
3104 	 *
3105 	 * By setting it to reflect the virtual start address of the
3106 	 * vma, merges and splits can happen in a seamless way, just
3107 	 * using the existing file pgoff checks and manipulations.
3108 	 * Similarly in do_mmap_pgoff and in do_brk.
3109 	 */
3110 	if (vma_is_anonymous(vma)) {
3111 		BUG_ON(vma->anon_vma);
3112 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3113 	}
3114 
3115 	vma_link(mm, vma, prev, rb_link, rb_parent);
3116 	return 0;
3117 }
3118 
3119 /*
3120  * Copy the vma structure to a new location in the same mm,
3121  * prior to moving page table entries, to effect an mremap move.
3122  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3123 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3124 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3125 	bool *need_rmap_locks)
3126 {
3127 	struct vm_area_struct *vma = *vmap;
3128 	unsigned long vma_start = vma->vm_start;
3129 	struct mm_struct *mm = vma->vm_mm;
3130 	struct vm_area_struct *new_vma, *prev;
3131 	struct rb_node **rb_link, *rb_parent;
3132 	bool faulted_in_anon_vma = true;
3133 
3134 	/*
3135 	 * If anonymous vma has not yet been faulted, update new pgoff
3136 	 * to match new location, to increase its chance of merging.
3137 	 */
3138 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3139 		pgoff = addr >> PAGE_SHIFT;
3140 		faulted_in_anon_vma = false;
3141 	}
3142 
3143 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3144 		return NULL;	/* should never get here */
3145 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3146 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3147 			    vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3148 	if (new_vma) {
3149 		/*
3150 		 * Source vma may have been merged into new_vma
3151 		 */
3152 		if (unlikely(vma_start >= new_vma->vm_start &&
3153 			     vma_start < new_vma->vm_end)) {
3154 			/*
3155 			 * The only way we can get a vma_merge with
3156 			 * self during an mremap is if the vma hasn't
3157 			 * been faulted in yet and we were allowed to
3158 			 * reset the dst vma->vm_pgoff to the
3159 			 * destination address of the mremap to allow
3160 			 * the merge to happen. mremap must change the
3161 			 * vm_pgoff linearity between src and dst vmas
3162 			 * (in turn preventing a vma_merge) to be
3163 			 * safe. It is only safe to keep the vm_pgoff
3164 			 * linear if there are no pages mapped yet.
3165 			 */
3166 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3167 			*vmap = vma = new_vma;
3168 		}
3169 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3170 	} else {
3171 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3172 		if (!new_vma)
3173 			goto out;
3174 		*new_vma = *vma;
3175 		new_vma->vm_start = addr;
3176 		new_vma->vm_end = addr + len;
3177 		new_vma->vm_pgoff = pgoff;
3178 		if (vma_dup_policy(vma, new_vma))
3179 			goto out_free_vma;
3180 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3181 		if (anon_vma_clone(new_vma, vma))
3182 			goto out_free_mempol;
3183 		if (new_vma->vm_file)
3184 			get_file(new_vma->vm_file);
3185 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3186 			new_vma->vm_ops->open(new_vma);
3187 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3188 		*need_rmap_locks = false;
3189 	}
3190 	return new_vma;
3191 
3192 out_free_mempol:
3193 	mpol_put(vma_policy(new_vma));
3194 out_free_vma:
3195 	kmem_cache_free(vm_area_cachep, new_vma);
3196 out:
3197 	return NULL;
3198 }
3199 
3200 /*
3201  * Return true if the calling process may expand its vm space by the passed
3202  * number of pages
3203  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3204 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3205 {
3206 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3207 		return false;
3208 
3209 	if (is_data_mapping(flags) &&
3210 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3211 		/* Workaround for Valgrind */
3212 		if (rlimit(RLIMIT_DATA) == 0 &&
3213 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3214 			return true;
3215 		if (!ignore_rlimit_data) {
3216 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3217 				     current->comm, current->pid,
3218 				     (mm->data_vm + npages) << PAGE_SHIFT,
3219 				     rlimit(RLIMIT_DATA));
3220 			return false;
3221 		}
3222 	}
3223 
3224 	return true;
3225 }
3226 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3227 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3228 {
3229 	mm->total_vm += npages;
3230 
3231 	if (is_exec_mapping(flags))
3232 		mm->exec_vm += npages;
3233 	else if (is_stack_mapping(flags))
3234 		mm->stack_vm += npages;
3235 	else if (is_data_mapping(flags))
3236 		mm->data_vm += npages;
3237 }
3238 
3239 static int special_mapping_fault(struct vm_fault *vmf);
3240 
3241 /*
3242  * Having a close hook prevents vma merging regardless of flags.
3243  */
special_mapping_close(struct vm_area_struct * vma)3244 static void special_mapping_close(struct vm_area_struct *vma)
3245 {
3246 }
3247 
special_mapping_name(struct vm_area_struct * vma)3248 static const char *special_mapping_name(struct vm_area_struct *vma)
3249 {
3250 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3251 }
3252 
special_mapping_mremap(struct vm_area_struct * new_vma)3253 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3254 {
3255 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3256 
3257 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3258 		return -EFAULT;
3259 
3260 	if (sm->mremap)
3261 		return sm->mremap(sm, new_vma);
3262 
3263 	return 0;
3264 }
3265 
3266 static const struct vm_operations_struct special_mapping_vmops = {
3267 	.close = special_mapping_close,
3268 	.fault = special_mapping_fault,
3269 	.mremap = special_mapping_mremap,
3270 	.name = special_mapping_name,
3271 };
3272 
3273 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3274 	.close = special_mapping_close,
3275 	.fault = special_mapping_fault,
3276 };
3277 
special_mapping_fault(struct vm_fault * vmf)3278 static int special_mapping_fault(struct vm_fault *vmf)
3279 {
3280 	struct vm_area_struct *vma = vmf->vma;
3281 	pgoff_t pgoff;
3282 	struct page **pages;
3283 
3284 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3285 		pages = vma->vm_private_data;
3286 	} else {
3287 		struct vm_special_mapping *sm = vma->vm_private_data;
3288 
3289 		if (sm->fault)
3290 			return sm->fault(sm, vmf->vma, vmf);
3291 
3292 		pages = sm->pages;
3293 	}
3294 
3295 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3296 		pgoff--;
3297 
3298 	if (*pages) {
3299 		struct page *page = *pages;
3300 		get_page(page);
3301 		vmf->page = page;
3302 		return 0;
3303 	}
3304 
3305 	return VM_FAULT_SIGBUS;
3306 }
3307 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3308 static struct vm_area_struct *__install_special_mapping(
3309 	struct mm_struct *mm,
3310 	unsigned long addr, unsigned long len,
3311 	unsigned long vm_flags, void *priv,
3312 	const struct vm_operations_struct *ops)
3313 {
3314 	int ret;
3315 	struct vm_area_struct *vma;
3316 
3317 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3318 	if (unlikely(vma == NULL))
3319 		return ERR_PTR(-ENOMEM);
3320 
3321 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3322 	vma->vm_mm = mm;
3323 	vma->vm_start = addr;
3324 	vma->vm_end = addr + len;
3325 
3326 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3327 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3328 
3329 	vma->vm_ops = ops;
3330 	vma->vm_private_data = priv;
3331 
3332 	ret = insert_vm_struct(mm, vma);
3333 	if (ret)
3334 		goto out;
3335 
3336 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3337 
3338 	perf_event_mmap(vma);
3339 
3340 	return vma;
3341 
3342 out:
3343 	kmem_cache_free(vm_area_cachep, vma);
3344 	return ERR_PTR(ret);
3345 }
3346 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3347 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3348 	const struct vm_special_mapping *sm)
3349 {
3350 	return vma->vm_private_data == sm &&
3351 		(vma->vm_ops == &special_mapping_vmops ||
3352 		 vma->vm_ops == &legacy_special_mapping_vmops);
3353 }
3354 
3355 /*
3356  * Called with mm->mmap_sem held for writing.
3357  * Insert a new vma covering the given region, with the given flags.
3358  * Its pages are supplied by the given array of struct page *.
3359  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3360  * The region past the last page supplied will always produce SIGBUS.
3361  * The array pointer and the pages it points to are assumed to stay alive
3362  * for as long as this mapping might exist.
3363  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3364 struct vm_area_struct *_install_special_mapping(
3365 	struct mm_struct *mm,
3366 	unsigned long addr, unsigned long len,
3367 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3368 {
3369 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3370 					&special_mapping_vmops);
3371 }
3372 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3373 int install_special_mapping(struct mm_struct *mm,
3374 			    unsigned long addr, unsigned long len,
3375 			    unsigned long vm_flags, struct page **pages)
3376 {
3377 	struct vm_area_struct *vma = __install_special_mapping(
3378 		mm, addr, len, vm_flags, (void *)pages,
3379 		&legacy_special_mapping_vmops);
3380 
3381 	return PTR_ERR_OR_ZERO(vma);
3382 }
3383 
3384 static DEFINE_MUTEX(mm_all_locks_mutex);
3385 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3386 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3387 {
3388 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3389 		/*
3390 		 * The LSB of head.next can't change from under us
3391 		 * because we hold the mm_all_locks_mutex.
3392 		 */
3393 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3394 		/*
3395 		 * We can safely modify head.next after taking the
3396 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3397 		 * the same anon_vma we won't take it again.
3398 		 *
3399 		 * No need of atomic instructions here, head.next
3400 		 * can't change from under us thanks to the
3401 		 * anon_vma->root->rwsem.
3402 		 */
3403 		if (__test_and_set_bit(0, (unsigned long *)
3404 				       &anon_vma->root->rb_root.rb_root.rb_node))
3405 			BUG();
3406 	}
3407 }
3408 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3409 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3410 {
3411 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3412 		/*
3413 		 * AS_MM_ALL_LOCKS can't change from under us because
3414 		 * we hold the mm_all_locks_mutex.
3415 		 *
3416 		 * Operations on ->flags have to be atomic because
3417 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3418 		 * mm_all_locks_mutex, there may be other cpus
3419 		 * changing other bitflags in parallel to us.
3420 		 */
3421 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3422 			BUG();
3423 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3424 	}
3425 }
3426 
3427 /*
3428  * This operation locks against the VM for all pte/vma/mm related
3429  * operations that could ever happen on a certain mm. This includes
3430  * vmtruncate, try_to_unmap, and all page faults.
3431  *
3432  * The caller must take the mmap_sem in write mode before calling
3433  * mm_take_all_locks(). The caller isn't allowed to release the
3434  * mmap_sem until mm_drop_all_locks() returns.
3435  *
3436  * mmap_sem in write mode is required in order to block all operations
3437  * that could modify pagetables and free pages without need of
3438  * altering the vma layout. It's also needed in write mode to avoid new
3439  * anon_vmas to be associated with existing vmas.
3440  *
3441  * A single task can't take more than one mm_take_all_locks() in a row
3442  * or it would deadlock.
3443  *
3444  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3445  * mapping->flags avoid to take the same lock twice, if more than one
3446  * vma in this mm is backed by the same anon_vma or address_space.
3447  *
3448  * We take locks in following order, accordingly to comment at beginning
3449  * of mm/rmap.c:
3450  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3451  *     hugetlb mapping);
3452  *   - all i_mmap_rwsem locks;
3453  *   - all anon_vma->rwseml
3454  *
3455  * We can take all locks within these types randomly because the VM code
3456  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3457  * mm_all_locks_mutex.
3458  *
3459  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3460  * that may have to take thousand of locks.
3461  *
3462  * mm_take_all_locks() can fail if it's interrupted by signals.
3463  */
mm_take_all_locks(struct mm_struct * mm)3464 int mm_take_all_locks(struct mm_struct *mm)
3465 {
3466 	struct vm_area_struct *vma;
3467 	struct anon_vma_chain *avc;
3468 
3469 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3470 
3471 	mutex_lock(&mm_all_locks_mutex);
3472 
3473 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3474 		if (signal_pending(current))
3475 			goto out_unlock;
3476 		if (vma->vm_file && vma->vm_file->f_mapping &&
3477 				is_vm_hugetlb_page(vma))
3478 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3479 	}
3480 
3481 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3482 		if (signal_pending(current))
3483 			goto out_unlock;
3484 		if (vma->vm_file && vma->vm_file->f_mapping &&
3485 				!is_vm_hugetlb_page(vma))
3486 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3487 	}
3488 
3489 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3490 		if (signal_pending(current))
3491 			goto out_unlock;
3492 		if (vma->anon_vma)
3493 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3494 				vm_lock_anon_vma(mm, avc->anon_vma);
3495 	}
3496 
3497 	return 0;
3498 
3499 out_unlock:
3500 	mm_drop_all_locks(mm);
3501 	return -EINTR;
3502 }
3503 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3504 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3505 {
3506 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3507 		/*
3508 		 * The LSB of head.next can't change to 0 from under
3509 		 * us because we hold the mm_all_locks_mutex.
3510 		 *
3511 		 * We must however clear the bitflag before unlocking
3512 		 * the vma so the users using the anon_vma->rb_root will
3513 		 * never see our bitflag.
3514 		 *
3515 		 * No need of atomic instructions here, head.next
3516 		 * can't change from under us until we release the
3517 		 * anon_vma->root->rwsem.
3518 		 */
3519 		if (!__test_and_clear_bit(0, (unsigned long *)
3520 					  &anon_vma->root->rb_root.rb_root.rb_node))
3521 			BUG();
3522 		anon_vma_unlock_write(anon_vma);
3523 	}
3524 }
3525 
vm_unlock_mapping(struct address_space * mapping)3526 static void vm_unlock_mapping(struct address_space *mapping)
3527 {
3528 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3529 		/*
3530 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3531 		 * because we hold the mm_all_locks_mutex.
3532 		 */
3533 		i_mmap_unlock_write(mapping);
3534 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3535 					&mapping->flags))
3536 			BUG();
3537 	}
3538 }
3539 
3540 /*
3541  * The mmap_sem cannot be released by the caller until
3542  * mm_drop_all_locks() returns.
3543  */
mm_drop_all_locks(struct mm_struct * mm)3544 void mm_drop_all_locks(struct mm_struct *mm)
3545 {
3546 	struct vm_area_struct *vma;
3547 	struct anon_vma_chain *avc;
3548 
3549 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3550 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3551 
3552 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3553 		if (vma->anon_vma)
3554 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3555 				vm_unlock_anon_vma(avc->anon_vma);
3556 		if (vma->vm_file && vma->vm_file->f_mapping)
3557 			vm_unlock_mapping(vma->vm_file->f_mapping);
3558 	}
3559 
3560 	mutex_unlock(&mm_all_locks_mutex);
3561 }
3562 
3563 /*
3564  * initialise the percpu counter for VM
3565  */
mmap_init(void)3566 void __init mmap_init(void)
3567 {
3568 	int ret;
3569 
3570 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3571 	VM_BUG_ON(ret);
3572 }
3573 
3574 /*
3575  * Initialise sysctl_user_reserve_kbytes.
3576  *
3577  * This is intended to prevent a user from starting a single memory hogging
3578  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3579  * mode.
3580  *
3581  * The default value is min(3% of free memory, 128MB)
3582  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3583  */
init_user_reserve(void)3584 static int init_user_reserve(void)
3585 {
3586 	unsigned long free_kbytes;
3587 
3588 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3589 
3590 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3591 	return 0;
3592 }
3593 subsys_initcall(init_user_reserve);
3594 
3595 /*
3596  * Initialise sysctl_admin_reserve_kbytes.
3597  *
3598  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3599  * to log in and kill a memory hogging process.
3600  *
3601  * Systems with more than 256MB will reserve 8MB, enough to recover
3602  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3603  * only reserve 3% of free pages by default.
3604  */
init_admin_reserve(void)3605 static int init_admin_reserve(void)
3606 {
3607 	unsigned long free_kbytes;
3608 
3609 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3610 
3611 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3612 	return 0;
3613 }
3614 subsys_initcall(init_admin_reserve);
3615 
3616 /*
3617  * Reinititalise user and admin reserves if memory is added or removed.
3618  *
3619  * The default user reserve max is 128MB, and the default max for the
3620  * admin reserve is 8MB. These are usually, but not always, enough to
3621  * enable recovery from a memory hogging process using login/sshd, a shell,
3622  * and tools like top. It may make sense to increase or even disable the
3623  * reserve depending on the existence of swap or variations in the recovery
3624  * tools. So, the admin may have changed them.
3625  *
3626  * If memory is added and the reserves have been eliminated or increased above
3627  * the default max, then we'll trust the admin.
3628  *
3629  * If memory is removed and there isn't enough free memory, then we
3630  * need to reset the reserves.
3631  *
3632  * Otherwise keep the reserve set by the admin.
3633  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3634 static int reserve_mem_notifier(struct notifier_block *nb,
3635 			     unsigned long action, void *data)
3636 {
3637 	unsigned long tmp, free_kbytes;
3638 
3639 	switch (action) {
3640 	case MEM_ONLINE:
3641 		/* Default max is 128MB. Leave alone if modified by operator. */
3642 		tmp = sysctl_user_reserve_kbytes;
3643 		if (0 < tmp && tmp < (1UL << 17))
3644 			init_user_reserve();
3645 
3646 		/* Default max is 8MB.  Leave alone if modified by operator. */
3647 		tmp = sysctl_admin_reserve_kbytes;
3648 		if (0 < tmp && tmp < (1UL << 13))
3649 			init_admin_reserve();
3650 
3651 		break;
3652 	case MEM_OFFLINE:
3653 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3654 
3655 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3656 			init_user_reserve();
3657 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3658 				sysctl_user_reserve_kbytes);
3659 		}
3660 
3661 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3662 			init_admin_reserve();
3663 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3664 				sysctl_admin_reserve_kbytes);
3665 		}
3666 		break;
3667 	default:
3668 		break;
3669 	}
3670 	return NOTIFY_OK;
3671 }
3672 
3673 static struct notifier_block reserve_mem_nb = {
3674 	.notifier_call = reserve_mem_notifier,
3675 };
3676 
init_reserve_notifier(void)3677 static int __meminit init_reserve_notifier(void)
3678 {
3679 	if (register_hotmemory_notifier(&reserve_mem_nb))
3680 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3681 
3682 	return 0;
3683 }
3684 subsys_initcall(init_reserve_notifier);
3685