1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 /* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
94 */
95
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
120
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127 .name = "AF_VSOCK",
128 .owner = THIS_MODULE,
129 .obj_size = sizeof(struct vsock_sock),
130 };
131
132 /* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
139
140 /**** EXPORTS ****/
141
142 /* Get the ID of the local context. This is transport dependent. */
143
vm_sockets_get_local_cid(void)144 int vm_sockets_get_local_cid(void)
145 {
146 return transport->get_local_cid();
147 }
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149
150 /**** UTILS ****/
151
152 /* Each bound VSocket is stored in the bind hash table and each connected
153 * VSocket is stored in the connected hash table.
154 *
155 * Unbound sockets are all put on the same list attached to the end of the hash
156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
157 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158 * represents the list that addr hashes to).
159 *
160 * Specifically, we initialize the vsock_bind_table array to a size of
161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
164 * mods with VSOCK_HASH_SIZE to ensure this.
165 */
166 #define VSOCK_HASH_SIZE 251
167 #define MAX_PORT_RETRIES 24
168
169 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
172
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst) \
175 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst) \
177 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk) \
179 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180
181 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 static DEFINE_SPINLOCK(vsock_table_lock);
184
185 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)186 static int vsock_auto_bind(struct vsock_sock *vsk)
187 {
188 struct sock *sk = sk_vsock(vsk);
189 struct sockaddr_vm local_addr;
190
191 if (vsock_addr_bound(&vsk->local_addr))
192 return 0;
193 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
194 return __vsock_bind(sk, &local_addr);
195 }
196
vsock_init_tables(void)197 static void vsock_init_tables(void)
198 {
199 int i;
200
201 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
202 INIT_LIST_HEAD(&vsock_bind_table[i]);
203
204 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
205 INIT_LIST_HEAD(&vsock_connected_table[i]);
206 }
207
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)208 static void __vsock_insert_bound(struct list_head *list,
209 struct vsock_sock *vsk)
210 {
211 sock_hold(&vsk->sk);
212 list_add(&vsk->bound_table, list);
213 }
214
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)215 static void __vsock_insert_connected(struct list_head *list,
216 struct vsock_sock *vsk)
217 {
218 sock_hold(&vsk->sk);
219 list_add(&vsk->connected_table, list);
220 }
221
__vsock_remove_bound(struct vsock_sock * vsk)222 static void __vsock_remove_bound(struct vsock_sock *vsk)
223 {
224 list_del_init(&vsk->bound_table);
225 sock_put(&vsk->sk);
226 }
227
__vsock_remove_connected(struct vsock_sock * vsk)228 static void __vsock_remove_connected(struct vsock_sock *vsk)
229 {
230 list_del_init(&vsk->connected_table);
231 sock_put(&vsk->sk);
232 }
233
__vsock_find_bound_socket(struct sockaddr_vm * addr)234 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
235 {
236 struct vsock_sock *vsk;
237
238 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
239 if (addr->svm_port == vsk->local_addr.svm_port)
240 return sk_vsock(vsk);
241
242 return NULL;
243 }
244
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)245 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
246 struct sockaddr_vm *dst)
247 {
248 struct vsock_sock *vsk;
249
250 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
251 connected_table) {
252 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
253 dst->svm_port == vsk->local_addr.svm_port) {
254 return sk_vsock(vsk);
255 }
256 }
257
258 return NULL;
259 }
260
__vsock_in_bound_table(struct vsock_sock * vsk)261 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
262 {
263 return !list_empty(&vsk->bound_table);
264 }
265
__vsock_in_connected_table(struct vsock_sock * vsk)266 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
267 {
268 return !list_empty(&vsk->connected_table);
269 }
270
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
282
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 struct sock *sk;
310
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
315
316 spin_unlock_bh(&vsock_table_lock);
317
318 return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
324 {
325 struct sock *sk;
326
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
331
332 spin_unlock_bh(&vsock_table_lock);
333
334 return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 vsock_remove_bound(vsk);
341 vsock_remove_connected(vsk);
342 }
343 EXPORT_SYMBOL_GPL(vsock_remove_sock);
344
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))345 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
346 {
347 int i;
348
349 spin_lock_bh(&vsock_table_lock);
350
351 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 struct vsock_sock *vsk;
353 list_for_each_entry(vsk, &vsock_connected_table[i],
354 connected_table)
355 fn(sk_vsock(vsk));
356 }
357
358 spin_unlock_bh(&vsock_table_lock);
359 }
360 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
361
vsock_add_pending(struct sock * listener,struct sock * pending)362 void vsock_add_pending(struct sock *listener, struct sock *pending)
363 {
364 struct vsock_sock *vlistener;
365 struct vsock_sock *vpending;
366
367 vlistener = vsock_sk(listener);
368 vpending = vsock_sk(pending);
369
370 sock_hold(pending);
371 sock_hold(listener);
372 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
373 }
374 EXPORT_SYMBOL_GPL(vsock_add_pending);
375
vsock_remove_pending(struct sock * listener,struct sock * pending)376 void vsock_remove_pending(struct sock *listener, struct sock *pending)
377 {
378 struct vsock_sock *vpending = vsock_sk(pending);
379
380 list_del_init(&vpending->pending_links);
381 sock_put(listener);
382 sock_put(pending);
383 }
384 EXPORT_SYMBOL_GPL(vsock_remove_pending);
385
vsock_enqueue_accept(struct sock * listener,struct sock * connected)386 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
387 {
388 struct vsock_sock *vlistener;
389 struct vsock_sock *vconnected;
390
391 vlistener = vsock_sk(listener);
392 vconnected = vsock_sk(connected);
393
394 sock_hold(connected);
395 sock_hold(listener);
396 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
397 }
398 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
399
vsock_dequeue_accept(struct sock * listener)400 static struct sock *vsock_dequeue_accept(struct sock *listener)
401 {
402 struct vsock_sock *vlistener;
403 struct vsock_sock *vconnected;
404
405 vlistener = vsock_sk(listener);
406
407 if (list_empty(&vlistener->accept_queue))
408 return NULL;
409
410 vconnected = list_entry(vlistener->accept_queue.next,
411 struct vsock_sock, accept_queue);
412
413 list_del_init(&vconnected->accept_queue);
414 sock_put(listener);
415 /* The caller will need a reference on the connected socket so we let
416 * it call sock_put().
417 */
418
419 return sk_vsock(vconnected);
420 }
421
vsock_is_accept_queue_empty(struct sock * sk)422 static bool vsock_is_accept_queue_empty(struct sock *sk)
423 {
424 struct vsock_sock *vsk = vsock_sk(sk);
425 return list_empty(&vsk->accept_queue);
426 }
427
vsock_is_pending(struct sock * sk)428 static bool vsock_is_pending(struct sock *sk)
429 {
430 struct vsock_sock *vsk = vsock_sk(sk);
431 return !list_empty(&vsk->pending_links);
432 }
433
vsock_send_shutdown(struct sock * sk,int mode)434 static int vsock_send_shutdown(struct sock *sk, int mode)
435 {
436 return transport->shutdown(vsock_sk(sk), mode);
437 }
438
vsock_pending_work(struct work_struct * work)439 static void vsock_pending_work(struct work_struct *work)
440 {
441 struct sock *sk;
442 struct sock *listener;
443 struct vsock_sock *vsk;
444 bool cleanup;
445
446 vsk = container_of(work, struct vsock_sock, pending_work.work);
447 sk = sk_vsock(vsk);
448 listener = vsk->listener;
449 cleanup = true;
450
451 lock_sock(listener);
452 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
453
454 if (vsock_is_pending(sk)) {
455 vsock_remove_pending(listener, sk);
456
457 listener->sk_ack_backlog--;
458 } else if (!vsk->rejected) {
459 /* We are not on the pending list and accept() did not reject
460 * us, so we must have been accepted by our user process. We
461 * just need to drop our references to the sockets and be on
462 * our way.
463 */
464 cleanup = false;
465 goto out;
466 }
467
468 /* We need to remove ourself from the global connected sockets list so
469 * incoming packets can't find this socket, and to reduce the reference
470 * count.
471 */
472 vsock_remove_connected(vsk);
473
474 sk->sk_state = TCP_CLOSE;
475
476 out:
477 release_sock(sk);
478 release_sock(listener);
479 if (cleanup)
480 sock_put(sk);
481
482 sock_put(sk);
483 sock_put(listener);
484 }
485
486 /**** SOCKET OPERATIONS ****/
487
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)488 static int __vsock_bind_stream(struct vsock_sock *vsk,
489 struct sockaddr_vm *addr)
490 {
491 static u32 port = 0;
492 struct sockaddr_vm new_addr;
493
494 if (!port)
495 port = LAST_RESERVED_PORT + 1 +
496 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
497
498 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
499
500 if (addr->svm_port == VMADDR_PORT_ANY) {
501 bool found = false;
502 unsigned int i;
503
504 for (i = 0; i < MAX_PORT_RETRIES; i++) {
505 if (port <= LAST_RESERVED_PORT)
506 port = LAST_RESERVED_PORT + 1;
507
508 new_addr.svm_port = port++;
509
510 if (!__vsock_find_bound_socket(&new_addr)) {
511 found = true;
512 break;
513 }
514 }
515
516 if (!found)
517 return -EADDRNOTAVAIL;
518 } else {
519 /* If port is in reserved range, ensure caller
520 * has necessary privileges.
521 */
522 if (addr->svm_port <= LAST_RESERVED_PORT &&
523 !capable(CAP_NET_BIND_SERVICE)) {
524 return -EACCES;
525 }
526
527 if (__vsock_find_bound_socket(&new_addr))
528 return -EADDRINUSE;
529 }
530
531 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
532
533 /* Remove stream sockets from the unbound list and add them to the hash
534 * table for easy lookup by its address. The unbound list is simply an
535 * extra entry at the end of the hash table, a trick used by AF_UNIX.
536 */
537 __vsock_remove_bound(vsk);
538 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
539
540 return 0;
541 }
542
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)543 static int __vsock_bind_dgram(struct vsock_sock *vsk,
544 struct sockaddr_vm *addr)
545 {
546 return transport->dgram_bind(vsk, addr);
547 }
548
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)549 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
550 {
551 struct vsock_sock *vsk = vsock_sk(sk);
552 u32 cid;
553 int retval;
554
555 /* First ensure this socket isn't already bound. */
556 if (vsock_addr_bound(&vsk->local_addr))
557 return -EINVAL;
558
559 /* Now bind to the provided address or select appropriate values if
560 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
561 * like AF_INET prevents binding to a non-local IP address (in most
562 * cases), we only allow binding to the local CID.
563 */
564 cid = transport->get_local_cid();
565 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
566 return -EADDRNOTAVAIL;
567
568 switch (sk->sk_socket->type) {
569 case SOCK_STREAM:
570 spin_lock_bh(&vsock_table_lock);
571 retval = __vsock_bind_stream(vsk, addr);
572 spin_unlock_bh(&vsock_table_lock);
573 break;
574
575 case SOCK_DGRAM:
576 retval = __vsock_bind_dgram(vsk, addr);
577 break;
578
579 default:
580 retval = -EINVAL;
581 break;
582 }
583
584 return retval;
585 }
586
587 static void vsock_connect_timeout(struct work_struct *work);
588
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)589 struct sock *__vsock_create(struct net *net,
590 struct socket *sock,
591 struct sock *parent,
592 gfp_t priority,
593 unsigned short type,
594 int kern)
595 {
596 struct sock *sk;
597 struct vsock_sock *psk;
598 struct vsock_sock *vsk;
599
600 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
601 if (!sk)
602 return NULL;
603
604 sock_init_data(sock, sk);
605
606 /* sk->sk_type is normally set in sock_init_data, but only if sock is
607 * non-NULL. We make sure that our sockets always have a type by
608 * setting it here if needed.
609 */
610 if (!sock)
611 sk->sk_type = type;
612
613 vsk = vsock_sk(sk);
614 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
615 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
616
617 sk->sk_destruct = vsock_sk_destruct;
618 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
619 sock_reset_flag(sk, SOCK_DONE);
620
621 INIT_LIST_HEAD(&vsk->bound_table);
622 INIT_LIST_HEAD(&vsk->connected_table);
623 vsk->listener = NULL;
624 INIT_LIST_HEAD(&vsk->pending_links);
625 INIT_LIST_HEAD(&vsk->accept_queue);
626 vsk->rejected = false;
627 vsk->sent_request = false;
628 vsk->ignore_connecting_rst = false;
629 vsk->peer_shutdown = 0;
630 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
631 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
632
633 psk = parent ? vsock_sk(parent) : NULL;
634 if (parent) {
635 vsk->trusted = psk->trusted;
636 vsk->owner = get_cred(psk->owner);
637 vsk->connect_timeout = psk->connect_timeout;
638 } else {
639 vsk->trusted = capable(CAP_NET_ADMIN);
640 vsk->owner = get_current_cred();
641 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
642 }
643
644 if (transport->init(vsk, psk) < 0) {
645 sk_free(sk);
646 return NULL;
647 }
648
649 if (sock)
650 vsock_insert_unbound(vsk);
651
652 return sk;
653 }
654 EXPORT_SYMBOL_GPL(__vsock_create);
655
__vsock_release(struct sock * sk,int level)656 static void __vsock_release(struct sock *sk, int level)
657 {
658 if (sk) {
659 struct sk_buff *skb;
660 struct sock *pending;
661 struct vsock_sock *vsk;
662
663 vsk = vsock_sk(sk);
664 pending = NULL; /* Compiler warning. */
665
666 /* The release call is supposed to use lock_sock_nested()
667 * rather than lock_sock(), if a sock lock should be acquired.
668 */
669 transport->release(vsk);
670
671 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
672 * version to avoid the warning "possible recursive locking
673 * detected". When "level" is 0, lock_sock_nested(sk, level)
674 * is the same as lock_sock(sk).
675 */
676 lock_sock_nested(sk, level);
677 sock_orphan(sk);
678 sk->sk_shutdown = SHUTDOWN_MASK;
679
680 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681 kfree_skb(skb);
682
683 /* Clean up any sockets that never were accepted. */
684 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685 __vsock_release(pending, SINGLE_DEPTH_NESTING);
686 sock_put(pending);
687 }
688
689 release_sock(sk);
690 sock_put(sk);
691 }
692 }
693
vsock_sk_destruct(struct sock * sk)694 static void vsock_sk_destruct(struct sock *sk)
695 {
696 struct vsock_sock *vsk = vsock_sk(sk);
697
698 transport->destruct(vsk);
699
700 /* When clearing these addresses, there's no need to set the family and
701 * possibly register the address family with the kernel.
702 */
703 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705
706 put_cred(vsk->owner);
707 }
708
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 {
711 int err;
712
713 err = sock_queue_rcv_skb(sk, skb);
714 if (err)
715 kfree_skb(skb);
716
717 return err;
718 }
719
vsock_stream_has_data(struct vsock_sock * vsk)720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 {
722 return transport->stream_has_data(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725
vsock_stream_has_space(struct vsock_sock * vsk)726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 {
728 return transport->stream_has_space(vsk);
729 }
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731
vsock_release(struct socket * sock)732 static int vsock_release(struct socket *sock)
733 {
734 __vsock_release(sock->sk, 0);
735 sock->sk = NULL;
736 sock->state = SS_FREE;
737
738 return 0;
739 }
740
741 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 {
744 int err;
745 struct sock *sk;
746 struct sockaddr_vm *vm_addr;
747
748 sk = sock->sk;
749
750 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751 return -EINVAL;
752
753 lock_sock(sk);
754 err = __vsock_bind(sk, vm_addr);
755 release_sock(sk);
756
757 return err;
758 }
759
vsock_getname(struct socket * sock,struct sockaddr * addr,int * addr_len,int peer)760 static int vsock_getname(struct socket *sock,
761 struct sockaddr *addr, int *addr_len, int peer)
762 {
763 int err;
764 struct sock *sk;
765 struct vsock_sock *vsk;
766 struct sockaddr_vm *vm_addr;
767
768 sk = sock->sk;
769 vsk = vsock_sk(sk);
770 err = 0;
771
772 lock_sock(sk);
773
774 if (peer) {
775 if (sock->state != SS_CONNECTED) {
776 err = -ENOTCONN;
777 goto out;
778 }
779 vm_addr = &vsk->remote_addr;
780 } else {
781 vm_addr = &vsk->local_addr;
782 }
783
784 if (!vm_addr) {
785 err = -EINVAL;
786 goto out;
787 }
788
789 /* sys_getsockname() and sys_getpeername() pass us a
790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
791 * that macro is defined in socket.c instead of .h, so we hardcode its
792 * value here.
793 */
794 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795 memcpy(addr, vm_addr, sizeof(*vm_addr));
796 *addr_len = sizeof(*vm_addr);
797
798 out:
799 release_sock(sk);
800 return err;
801 }
802
vsock_shutdown(struct socket * sock,int mode)803 static int vsock_shutdown(struct socket *sock, int mode)
804 {
805 int err;
806 struct sock *sk;
807
808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 * here like the other address families do. Note also that the
811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 * which is what we want.
813 */
814 mode++;
815
816 if ((mode & ~SHUTDOWN_MASK) || !mode)
817 return -EINVAL;
818
819 /* If this is a STREAM socket and it is not connected then bail out
820 * immediately. If it is a DGRAM socket then we must first kick the
821 * socket so that it wakes up from any sleeping calls, for example
822 * recv(), and then afterwards return the error.
823 */
824
825 sk = sock->sk;
826 if (sock->state == SS_UNCONNECTED) {
827 err = -ENOTCONN;
828 if (sk->sk_type == SOCK_STREAM)
829 return err;
830 } else {
831 sock->state = SS_DISCONNECTING;
832 err = 0;
833 }
834
835 /* Receive and send shutdowns are treated alike. */
836 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837 if (mode) {
838 lock_sock(sk);
839 sk->sk_shutdown |= mode;
840 sk->sk_state_change(sk);
841 release_sock(sk);
842
843 if (sk->sk_type == SOCK_STREAM) {
844 sock_reset_flag(sk, SOCK_DONE);
845 vsock_send_shutdown(sk, mode);
846 }
847 }
848
849 return err;
850 }
851
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853 poll_table *wait)
854 {
855 struct sock *sk;
856 unsigned int mask;
857 struct vsock_sock *vsk;
858
859 sk = sock->sk;
860 vsk = vsock_sk(sk);
861
862 poll_wait(file, sk_sleep(sk), wait);
863 mask = 0;
864
865 if (sk->sk_err)
866 /* Signify that there has been an error on this socket. */
867 mask |= POLLERR;
868
869 /* INET sockets treat local write shutdown and peer write shutdown as a
870 * case of POLLHUP set.
871 */
872 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875 mask |= POLLHUP;
876 }
877
878 if (sk->sk_shutdown & RCV_SHUTDOWN ||
879 vsk->peer_shutdown & SEND_SHUTDOWN) {
880 mask |= POLLRDHUP;
881 }
882
883 if (sock->type == SOCK_DGRAM) {
884 /* For datagram sockets we can read if there is something in
885 * the queue and write as long as the socket isn't shutdown for
886 * sending.
887 */
888 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
889 (sk->sk_shutdown & RCV_SHUTDOWN)) {
890 mask |= POLLIN | POLLRDNORM;
891 }
892
893 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895
896 } else if (sock->type == SOCK_STREAM) {
897 lock_sock(sk);
898
899 /* Listening sockets that have connections in their accept
900 * queue can be read.
901 */
902 if (sk->sk_state == TCP_LISTEN
903 && !vsock_is_accept_queue_empty(sk))
904 mask |= POLLIN | POLLRDNORM;
905
906 /* If there is something in the queue then we can read. */
907 if (transport->stream_is_active(vsk) &&
908 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909 bool data_ready_now = false;
910 int ret = transport->notify_poll_in(
911 vsk, 1, &data_ready_now);
912 if (ret < 0) {
913 mask |= POLLERR;
914 } else {
915 if (data_ready_now)
916 mask |= POLLIN | POLLRDNORM;
917
918 }
919 }
920
921 /* Sockets whose connections have been closed, reset, or
922 * terminated should also be considered read, and we check the
923 * shutdown flag for that.
924 */
925 if (sk->sk_shutdown & RCV_SHUTDOWN ||
926 vsk->peer_shutdown & SEND_SHUTDOWN) {
927 mask |= POLLIN | POLLRDNORM;
928 }
929
930 /* Connected sockets that can produce data can be written. */
931 if (sk->sk_state == TCP_ESTABLISHED) {
932 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933 bool space_avail_now = false;
934 int ret = transport->notify_poll_out(
935 vsk, 1, &space_avail_now);
936 if (ret < 0) {
937 mask |= POLLERR;
938 } else {
939 if (space_avail_now)
940 /* Remove POLLWRBAND since INET
941 * sockets are not setting it.
942 */
943 mask |= POLLOUT | POLLWRNORM;
944
945 }
946 }
947 }
948
949 /* Simulate INET socket poll behaviors, which sets
950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 * but local send is not shutdown.
952 */
953 if (sk->sk_state == TCP_CLOSE) {
954 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955 mask |= POLLOUT | POLLWRNORM;
956
957 }
958
959 release_sock(sk);
960 }
961
962 return mask;
963 }
964
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966 size_t len)
967 {
968 int err;
969 struct sock *sk;
970 struct vsock_sock *vsk;
971 struct sockaddr_vm *remote_addr;
972
973 if (msg->msg_flags & MSG_OOB)
974 return -EOPNOTSUPP;
975
976 /* For now, MSG_DONTWAIT is always assumed... */
977 err = 0;
978 sk = sock->sk;
979 vsk = vsock_sk(sk);
980
981 lock_sock(sk);
982
983 err = vsock_auto_bind(vsk);
984 if (err)
985 goto out;
986
987
988 /* If the provided message contains an address, use that. Otherwise
989 * fall back on the socket's remote handle (if it has been connected).
990 */
991 if (msg->msg_name &&
992 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993 &remote_addr) == 0) {
994 /* Ensure this address is of the right type and is a valid
995 * destination.
996 */
997
998 if (remote_addr->svm_cid == VMADDR_CID_ANY)
999 remote_addr->svm_cid = transport->get_local_cid();
1000
1001 if (!vsock_addr_bound(remote_addr)) {
1002 err = -EINVAL;
1003 goto out;
1004 }
1005 } else if (sock->state == SS_CONNECTED) {
1006 remote_addr = &vsk->remote_addr;
1007
1008 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009 remote_addr->svm_cid = transport->get_local_cid();
1010
1011 /* XXX Should connect() or this function ensure remote_addr is
1012 * bound?
1013 */
1014 if (!vsock_addr_bound(&vsk->remote_addr)) {
1015 err = -EINVAL;
1016 goto out;
1017 }
1018 } else {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022
1023 if (!transport->dgram_allow(remote_addr->svm_cid,
1024 remote_addr->svm_port)) {
1025 err = -EINVAL;
1026 goto out;
1027 }
1028
1029 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030
1031 out:
1032 release_sock(sk);
1033 return err;
1034 }
1035
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1036 static int vsock_dgram_connect(struct socket *sock,
1037 struct sockaddr *addr, int addr_len, int flags)
1038 {
1039 int err;
1040 struct sock *sk;
1041 struct vsock_sock *vsk;
1042 struct sockaddr_vm *remote_addr;
1043
1044 sk = sock->sk;
1045 vsk = vsock_sk(sk);
1046
1047 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049 lock_sock(sk);
1050 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051 VMADDR_PORT_ANY);
1052 sock->state = SS_UNCONNECTED;
1053 release_sock(sk);
1054 return 0;
1055 } else if (err != 0)
1056 return -EINVAL;
1057
1058 lock_sock(sk);
1059
1060 err = vsock_auto_bind(vsk);
1061 if (err)
1062 goto out;
1063
1064 if (!transport->dgram_allow(remote_addr->svm_cid,
1065 remote_addr->svm_port)) {
1066 err = -EINVAL;
1067 goto out;
1068 }
1069
1070 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071 sock->state = SS_CONNECTED;
1072
1073 out:
1074 release_sock(sk);
1075 return err;
1076 }
1077
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079 size_t len, int flags)
1080 {
1081 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1082 }
1083
1084 static const struct proto_ops vsock_dgram_ops = {
1085 .family = PF_VSOCK,
1086 .owner = THIS_MODULE,
1087 .release = vsock_release,
1088 .bind = vsock_bind,
1089 .connect = vsock_dgram_connect,
1090 .socketpair = sock_no_socketpair,
1091 .accept = sock_no_accept,
1092 .getname = vsock_getname,
1093 .poll = vsock_poll,
1094 .ioctl = sock_no_ioctl,
1095 .listen = sock_no_listen,
1096 .shutdown = vsock_shutdown,
1097 .setsockopt = sock_no_setsockopt,
1098 .getsockopt = sock_no_getsockopt,
1099 .sendmsg = vsock_dgram_sendmsg,
1100 .recvmsg = vsock_dgram_recvmsg,
1101 .mmap = sock_no_mmap,
1102 .sendpage = sock_no_sendpage,
1103 };
1104
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1106 {
1107 if (!transport->cancel_pkt)
1108 return -EOPNOTSUPP;
1109
1110 return transport->cancel_pkt(vsk);
1111 }
1112
vsock_connect_timeout(struct work_struct * work)1113 static void vsock_connect_timeout(struct work_struct *work)
1114 {
1115 struct sock *sk;
1116 struct vsock_sock *vsk;
1117 int cancel = 0;
1118
1119 vsk = container_of(work, struct vsock_sock, connect_work.work);
1120 sk = sk_vsock(vsk);
1121
1122 lock_sock(sk);
1123 if (sk->sk_state == TCP_SYN_SENT &&
1124 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1125 sk->sk_state = TCP_CLOSE;
1126 sk->sk_err = ETIMEDOUT;
1127 sk->sk_error_report(sk);
1128 cancel = 1;
1129 }
1130 release_sock(sk);
1131 if (cancel)
1132 vsock_transport_cancel_pkt(vsk);
1133
1134 sock_put(sk);
1135 }
1136
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1138 int addr_len, int flags)
1139 {
1140 int err;
1141 struct sock *sk;
1142 struct vsock_sock *vsk;
1143 struct sockaddr_vm *remote_addr;
1144 long timeout;
1145 DEFINE_WAIT(wait);
1146
1147 err = 0;
1148 sk = sock->sk;
1149 vsk = vsock_sk(sk);
1150
1151 lock_sock(sk);
1152
1153 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 switch (sock->state) {
1155 case SS_CONNECTED:
1156 err = -EISCONN;
1157 goto out;
1158 case SS_DISCONNECTING:
1159 err = -EINVAL;
1160 goto out;
1161 case SS_CONNECTING:
1162 /* This continues on so we can move sock into the SS_CONNECTED
1163 * state once the connection has completed (at which point err
1164 * will be set to zero also). Otherwise, we will either wait
1165 * for the connection or return -EALREADY should this be a
1166 * non-blocking call.
1167 */
1168 err = -EALREADY;
1169 break;
1170 default:
1171 if ((sk->sk_state == TCP_LISTEN) ||
1172 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /* The hypervisor and well-known contexts do not have socket
1178 * endpoints.
1179 */
1180 if (!transport->stream_allow(remote_addr->svm_cid,
1181 remote_addr->svm_port)) {
1182 err = -ENETUNREACH;
1183 goto out;
1184 }
1185
1186 /* Set the remote address that we are connecting to. */
1187 memcpy(&vsk->remote_addr, remote_addr,
1188 sizeof(vsk->remote_addr));
1189
1190 err = vsock_auto_bind(vsk);
1191 if (err)
1192 goto out;
1193
1194 sk->sk_state = TCP_SYN_SENT;
1195
1196 err = transport->connect(vsk);
1197 if (err < 0)
1198 goto out;
1199
1200 /* Mark sock as connecting and set the error code to in
1201 * progress in case this is a non-blocking connect.
1202 */
1203 sock->state = SS_CONNECTING;
1204 err = -EINPROGRESS;
1205 }
1206
1207 /* The receive path will handle all communication until we are able to
1208 * enter the connected state. Here we wait for the connection to be
1209 * completed or a notification of an error.
1210 */
1211 timeout = vsk->connect_timeout;
1212 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1213
1214 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1215 if (flags & O_NONBLOCK) {
1216 /* If we're not going to block, we schedule a timeout
1217 * function to generate a timeout on the connection
1218 * attempt, in case the peer doesn't respond in a
1219 * timely manner. We hold on to the socket until the
1220 * timeout fires.
1221 */
1222 sock_hold(sk);
1223 schedule_delayed_work(&vsk->connect_work, timeout);
1224
1225 /* Skip ahead to preserve error code set above. */
1226 goto out_wait;
1227 }
1228
1229 release_sock(sk);
1230 timeout = schedule_timeout(timeout);
1231 lock_sock(sk);
1232
1233 if (signal_pending(current)) {
1234 err = sock_intr_errno(timeout);
1235 sk->sk_state = TCP_CLOSE;
1236 sock->state = SS_UNCONNECTED;
1237 vsock_transport_cancel_pkt(vsk);
1238 goto out_wait;
1239 } else if (timeout == 0) {
1240 err = -ETIMEDOUT;
1241 sk->sk_state = TCP_CLOSE;
1242 sock->state = SS_UNCONNECTED;
1243 vsock_transport_cancel_pkt(vsk);
1244 goto out_wait;
1245 }
1246
1247 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1248 }
1249
1250 if (sk->sk_err) {
1251 err = -sk->sk_err;
1252 sk->sk_state = TCP_CLOSE;
1253 sock->state = SS_UNCONNECTED;
1254 } else {
1255 err = 0;
1256 }
1257
1258 out_wait:
1259 finish_wait(sk_sleep(sk), &wait);
1260 out:
1261 release_sock(sk);
1262 return err;
1263 }
1264
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1265 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1266 bool kern)
1267 {
1268 struct sock *listener;
1269 int err;
1270 struct sock *connected;
1271 struct vsock_sock *vconnected;
1272 long timeout;
1273 DEFINE_WAIT(wait);
1274
1275 err = 0;
1276 listener = sock->sk;
1277
1278 lock_sock(listener);
1279
1280 if (sock->type != SOCK_STREAM) {
1281 err = -EOPNOTSUPP;
1282 goto out;
1283 }
1284
1285 if (listener->sk_state != TCP_LISTEN) {
1286 err = -EINVAL;
1287 goto out;
1288 }
1289
1290 /* Wait for children sockets to appear; these are the new sockets
1291 * created upon connection establishment.
1292 */
1293 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1294 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1295
1296 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1297 listener->sk_err == 0) {
1298 release_sock(listener);
1299 timeout = schedule_timeout(timeout);
1300 finish_wait(sk_sleep(listener), &wait);
1301 lock_sock(listener);
1302
1303 if (signal_pending(current)) {
1304 err = sock_intr_errno(timeout);
1305 goto out;
1306 } else if (timeout == 0) {
1307 err = -EAGAIN;
1308 goto out;
1309 }
1310
1311 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1312 }
1313 finish_wait(sk_sleep(listener), &wait);
1314
1315 if (listener->sk_err)
1316 err = -listener->sk_err;
1317
1318 if (connected) {
1319 listener->sk_ack_backlog--;
1320
1321 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1322 vconnected = vsock_sk(connected);
1323
1324 /* If the listener socket has received an error, then we should
1325 * reject this socket and return. Note that we simply mark the
1326 * socket rejected, drop our reference, and let the cleanup
1327 * function handle the cleanup; the fact that we found it in
1328 * the listener's accept queue guarantees that the cleanup
1329 * function hasn't run yet.
1330 */
1331 if (err) {
1332 vconnected->rejected = true;
1333 } else {
1334 newsock->state = SS_CONNECTED;
1335 sock_graft(connected, newsock);
1336 }
1337
1338 release_sock(connected);
1339 sock_put(connected);
1340 }
1341
1342 out:
1343 release_sock(listener);
1344 return err;
1345 }
1346
vsock_listen(struct socket * sock,int backlog)1347 static int vsock_listen(struct socket *sock, int backlog)
1348 {
1349 int err;
1350 struct sock *sk;
1351 struct vsock_sock *vsk;
1352
1353 sk = sock->sk;
1354
1355 lock_sock(sk);
1356
1357 if (sock->type != SOCK_STREAM) {
1358 err = -EOPNOTSUPP;
1359 goto out;
1360 }
1361
1362 if (sock->state != SS_UNCONNECTED) {
1363 err = -EINVAL;
1364 goto out;
1365 }
1366
1367 vsk = vsock_sk(sk);
1368
1369 if (!vsock_addr_bound(&vsk->local_addr)) {
1370 err = -EINVAL;
1371 goto out;
1372 }
1373
1374 sk->sk_max_ack_backlog = backlog;
1375 sk->sk_state = TCP_LISTEN;
1376
1377 err = 0;
1378
1379 out:
1380 release_sock(sk);
1381 return err;
1382 }
1383
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1384 static int vsock_stream_setsockopt(struct socket *sock,
1385 int level,
1386 int optname,
1387 char __user *optval,
1388 unsigned int optlen)
1389 {
1390 int err;
1391 struct sock *sk;
1392 struct vsock_sock *vsk;
1393 u64 val;
1394
1395 if (level != AF_VSOCK)
1396 return -ENOPROTOOPT;
1397
1398 #define COPY_IN(_v) \
1399 do { \
1400 if (optlen < sizeof(_v)) { \
1401 err = -EINVAL; \
1402 goto exit; \
1403 } \
1404 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1405 err = -EFAULT; \
1406 goto exit; \
1407 } \
1408 } while (0)
1409
1410 err = 0;
1411 sk = sock->sk;
1412 vsk = vsock_sk(sk);
1413
1414 lock_sock(sk);
1415
1416 switch (optname) {
1417 case SO_VM_SOCKETS_BUFFER_SIZE:
1418 COPY_IN(val);
1419 transport->set_buffer_size(vsk, val);
1420 break;
1421
1422 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1423 COPY_IN(val);
1424 transport->set_max_buffer_size(vsk, val);
1425 break;
1426
1427 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1428 COPY_IN(val);
1429 transport->set_min_buffer_size(vsk, val);
1430 break;
1431
1432 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1433 struct timeval tv;
1434 COPY_IN(tv);
1435 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1436 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1437 vsk->connect_timeout = tv.tv_sec * HZ +
1438 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1439 if (vsk->connect_timeout == 0)
1440 vsk->connect_timeout =
1441 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1442
1443 } else {
1444 err = -ERANGE;
1445 }
1446 break;
1447 }
1448
1449 default:
1450 err = -ENOPROTOOPT;
1451 break;
1452 }
1453
1454 #undef COPY_IN
1455
1456 exit:
1457 release_sock(sk);
1458 return err;
1459 }
1460
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1461 static int vsock_stream_getsockopt(struct socket *sock,
1462 int level, int optname,
1463 char __user *optval,
1464 int __user *optlen)
1465 {
1466 int err;
1467 int len;
1468 struct sock *sk;
1469 struct vsock_sock *vsk;
1470 u64 val;
1471
1472 if (level != AF_VSOCK)
1473 return -ENOPROTOOPT;
1474
1475 err = get_user(len, optlen);
1476 if (err != 0)
1477 return err;
1478
1479 #define COPY_OUT(_v) \
1480 do { \
1481 if (len < sizeof(_v)) \
1482 return -EINVAL; \
1483 \
1484 len = sizeof(_v); \
1485 if (copy_to_user(optval, &_v, len) != 0) \
1486 return -EFAULT; \
1487 \
1488 } while (0)
1489
1490 err = 0;
1491 sk = sock->sk;
1492 vsk = vsock_sk(sk);
1493
1494 switch (optname) {
1495 case SO_VM_SOCKETS_BUFFER_SIZE:
1496 val = transport->get_buffer_size(vsk);
1497 COPY_OUT(val);
1498 break;
1499
1500 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1501 val = transport->get_max_buffer_size(vsk);
1502 COPY_OUT(val);
1503 break;
1504
1505 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1506 val = transport->get_min_buffer_size(vsk);
1507 COPY_OUT(val);
1508 break;
1509
1510 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1511 struct timeval tv;
1512 tv.tv_sec = vsk->connect_timeout / HZ;
1513 tv.tv_usec =
1514 (vsk->connect_timeout -
1515 tv.tv_sec * HZ) * (1000000 / HZ);
1516 COPY_OUT(tv);
1517 break;
1518 }
1519 default:
1520 return -ENOPROTOOPT;
1521 }
1522
1523 err = put_user(len, optlen);
1524 if (err != 0)
1525 return -EFAULT;
1526
1527 #undef COPY_OUT
1528
1529 return 0;
1530 }
1531
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1532 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1533 size_t len)
1534 {
1535 struct sock *sk;
1536 struct vsock_sock *vsk;
1537 ssize_t total_written;
1538 long timeout;
1539 int err;
1540 struct vsock_transport_send_notify_data send_data;
1541 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1542
1543 sk = sock->sk;
1544 vsk = vsock_sk(sk);
1545 total_written = 0;
1546 err = 0;
1547
1548 if (msg->msg_flags & MSG_OOB)
1549 return -EOPNOTSUPP;
1550
1551 lock_sock(sk);
1552
1553 /* Callers should not provide a destination with stream sockets. */
1554 if (msg->msg_namelen) {
1555 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1556 goto out;
1557 }
1558
1559 /* Send data only if both sides are not shutdown in the direction. */
1560 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1561 vsk->peer_shutdown & RCV_SHUTDOWN) {
1562 err = -EPIPE;
1563 goto out;
1564 }
1565
1566 if (sk->sk_state != TCP_ESTABLISHED ||
1567 !vsock_addr_bound(&vsk->local_addr)) {
1568 err = -ENOTCONN;
1569 goto out;
1570 }
1571
1572 if (!vsock_addr_bound(&vsk->remote_addr)) {
1573 err = -EDESTADDRREQ;
1574 goto out;
1575 }
1576
1577 /* Wait for room in the produce queue to enqueue our user's data. */
1578 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1579
1580 err = transport->notify_send_init(vsk, &send_data);
1581 if (err < 0)
1582 goto out;
1583
1584 while (total_written < len) {
1585 ssize_t written;
1586
1587 add_wait_queue(sk_sleep(sk), &wait);
1588 while (vsock_stream_has_space(vsk) == 0 &&
1589 sk->sk_err == 0 &&
1590 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1591 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1592
1593 /* Don't wait for non-blocking sockets. */
1594 if (timeout == 0) {
1595 err = -EAGAIN;
1596 remove_wait_queue(sk_sleep(sk), &wait);
1597 goto out_err;
1598 }
1599
1600 err = transport->notify_send_pre_block(vsk, &send_data);
1601 if (err < 0) {
1602 remove_wait_queue(sk_sleep(sk), &wait);
1603 goto out_err;
1604 }
1605
1606 release_sock(sk);
1607 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1608 lock_sock(sk);
1609 if (signal_pending(current)) {
1610 err = sock_intr_errno(timeout);
1611 remove_wait_queue(sk_sleep(sk), &wait);
1612 goto out_err;
1613 } else if (timeout == 0) {
1614 err = -EAGAIN;
1615 remove_wait_queue(sk_sleep(sk), &wait);
1616 goto out_err;
1617 }
1618 }
1619 remove_wait_queue(sk_sleep(sk), &wait);
1620
1621 /* These checks occur both as part of and after the loop
1622 * conditional since we need to check before and after
1623 * sleeping.
1624 */
1625 if (sk->sk_err) {
1626 err = -sk->sk_err;
1627 goto out_err;
1628 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1629 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1630 err = -EPIPE;
1631 goto out_err;
1632 }
1633
1634 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1635 if (err < 0)
1636 goto out_err;
1637
1638 /* Note that enqueue will only write as many bytes as are free
1639 * in the produce queue, so we don't need to ensure len is
1640 * smaller than the queue size. It is the caller's
1641 * responsibility to check how many bytes we were able to send.
1642 */
1643
1644 written = transport->stream_enqueue(
1645 vsk, msg,
1646 len - total_written);
1647 if (written < 0) {
1648 err = -ENOMEM;
1649 goto out_err;
1650 }
1651
1652 total_written += written;
1653
1654 err = transport->notify_send_post_enqueue(
1655 vsk, written, &send_data);
1656 if (err < 0)
1657 goto out_err;
1658
1659 }
1660
1661 out_err:
1662 if (total_written > 0)
1663 err = total_written;
1664 out:
1665 release_sock(sk);
1666 return err;
1667 }
1668
1669
1670 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1671 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1672 int flags)
1673 {
1674 struct sock *sk;
1675 struct vsock_sock *vsk;
1676 int err;
1677 size_t target;
1678 ssize_t copied;
1679 long timeout;
1680 struct vsock_transport_recv_notify_data recv_data;
1681
1682 DEFINE_WAIT(wait);
1683
1684 sk = sock->sk;
1685 vsk = vsock_sk(sk);
1686 err = 0;
1687
1688 lock_sock(sk);
1689
1690 if (sk->sk_state != TCP_ESTABLISHED) {
1691 /* Recvmsg is supposed to return 0 if a peer performs an
1692 * orderly shutdown. Differentiate between that case and when a
1693 * peer has not connected or a local shutdown occured with the
1694 * SOCK_DONE flag.
1695 */
1696 if (sock_flag(sk, SOCK_DONE))
1697 err = 0;
1698 else
1699 err = -ENOTCONN;
1700
1701 goto out;
1702 }
1703
1704 if (flags & MSG_OOB) {
1705 err = -EOPNOTSUPP;
1706 goto out;
1707 }
1708
1709 /* We don't check peer_shutdown flag here since peer may actually shut
1710 * down, but there can be data in the queue that a local socket can
1711 * receive.
1712 */
1713 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1714 err = 0;
1715 goto out;
1716 }
1717
1718 /* It is valid on Linux to pass in a zero-length receive buffer. This
1719 * is not an error. We may as well bail out now.
1720 */
1721 if (!len) {
1722 err = 0;
1723 goto out;
1724 }
1725
1726 /* We must not copy less than target bytes into the user's buffer
1727 * before returning successfully, so we wait for the consume queue to
1728 * have that much data to consume before dequeueing. Note that this
1729 * makes it impossible to handle cases where target is greater than the
1730 * queue size.
1731 */
1732 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1733 if (target >= transport->stream_rcvhiwat(vsk)) {
1734 err = -ENOMEM;
1735 goto out;
1736 }
1737 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1738 copied = 0;
1739
1740 err = transport->notify_recv_init(vsk, target, &recv_data);
1741 if (err < 0)
1742 goto out;
1743
1744
1745 while (1) {
1746 s64 ready;
1747
1748 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1749 ready = vsock_stream_has_data(vsk);
1750
1751 if (ready == 0) {
1752 if (sk->sk_err != 0 ||
1753 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1754 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1755 finish_wait(sk_sleep(sk), &wait);
1756 break;
1757 }
1758 /* Don't wait for non-blocking sockets. */
1759 if (timeout == 0) {
1760 err = -EAGAIN;
1761 finish_wait(sk_sleep(sk), &wait);
1762 break;
1763 }
1764
1765 err = transport->notify_recv_pre_block(
1766 vsk, target, &recv_data);
1767 if (err < 0) {
1768 finish_wait(sk_sleep(sk), &wait);
1769 break;
1770 }
1771 release_sock(sk);
1772 timeout = schedule_timeout(timeout);
1773 lock_sock(sk);
1774
1775 if (signal_pending(current)) {
1776 err = sock_intr_errno(timeout);
1777 finish_wait(sk_sleep(sk), &wait);
1778 break;
1779 } else if (timeout == 0) {
1780 err = -EAGAIN;
1781 finish_wait(sk_sleep(sk), &wait);
1782 break;
1783 }
1784 } else {
1785 ssize_t read;
1786
1787 finish_wait(sk_sleep(sk), &wait);
1788
1789 if (ready < 0) {
1790 /* Invalid queue pair content. XXX This should
1791 * be changed to a connection reset in a later
1792 * change.
1793 */
1794
1795 err = -ENOMEM;
1796 goto out;
1797 }
1798
1799 err = transport->notify_recv_pre_dequeue(
1800 vsk, target, &recv_data);
1801 if (err < 0)
1802 break;
1803
1804 read = transport->stream_dequeue(
1805 vsk, msg,
1806 len - copied, flags);
1807 if (read < 0) {
1808 err = -ENOMEM;
1809 break;
1810 }
1811
1812 copied += read;
1813
1814 err = transport->notify_recv_post_dequeue(
1815 vsk, target, read,
1816 !(flags & MSG_PEEK), &recv_data);
1817 if (err < 0)
1818 goto out;
1819
1820 if (read >= target || flags & MSG_PEEK)
1821 break;
1822
1823 target -= read;
1824 }
1825 }
1826
1827 if (sk->sk_err)
1828 err = -sk->sk_err;
1829 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1830 err = 0;
1831
1832 if (copied > 0)
1833 err = copied;
1834
1835 out:
1836 release_sock(sk);
1837 return err;
1838 }
1839
1840 static const struct proto_ops vsock_stream_ops = {
1841 .family = PF_VSOCK,
1842 .owner = THIS_MODULE,
1843 .release = vsock_release,
1844 .bind = vsock_bind,
1845 .connect = vsock_stream_connect,
1846 .socketpair = sock_no_socketpair,
1847 .accept = vsock_accept,
1848 .getname = vsock_getname,
1849 .poll = vsock_poll,
1850 .ioctl = sock_no_ioctl,
1851 .listen = vsock_listen,
1852 .shutdown = vsock_shutdown,
1853 .setsockopt = vsock_stream_setsockopt,
1854 .getsockopt = vsock_stream_getsockopt,
1855 .sendmsg = vsock_stream_sendmsg,
1856 .recvmsg = vsock_stream_recvmsg,
1857 .mmap = sock_no_mmap,
1858 .sendpage = sock_no_sendpage,
1859 };
1860
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1861 static int vsock_create(struct net *net, struct socket *sock,
1862 int protocol, int kern)
1863 {
1864 if (!sock)
1865 return -EINVAL;
1866
1867 if (protocol && protocol != PF_VSOCK)
1868 return -EPROTONOSUPPORT;
1869
1870 switch (sock->type) {
1871 case SOCK_DGRAM:
1872 sock->ops = &vsock_dgram_ops;
1873 break;
1874 case SOCK_STREAM:
1875 sock->ops = &vsock_stream_ops;
1876 break;
1877 default:
1878 return -ESOCKTNOSUPPORT;
1879 }
1880
1881 sock->state = SS_UNCONNECTED;
1882
1883 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1884 }
1885
1886 static const struct net_proto_family vsock_family_ops = {
1887 .family = AF_VSOCK,
1888 .create = vsock_create,
1889 .owner = THIS_MODULE,
1890 };
1891
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1892 static long vsock_dev_do_ioctl(struct file *filp,
1893 unsigned int cmd, void __user *ptr)
1894 {
1895 u32 __user *p = ptr;
1896 int retval = 0;
1897
1898 switch (cmd) {
1899 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1900 if (put_user(transport->get_local_cid(), p) != 0)
1901 retval = -EFAULT;
1902 break;
1903
1904 default:
1905 pr_err("Unknown ioctl %d\n", cmd);
1906 retval = -EINVAL;
1907 }
1908
1909 return retval;
1910 }
1911
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1912 static long vsock_dev_ioctl(struct file *filp,
1913 unsigned int cmd, unsigned long arg)
1914 {
1915 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1916 }
1917
1918 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1919 static long vsock_dev_compat_ioctl(struct file *filp,
1920 unsigned int cmd, unsigned long arg)
1921 {
1922 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1923 }
1924 #endif
1925
1926 static const struct file_operations vsock_device_ops = {
1927 .owner = THIS_MODULE,
1928 .unlocked_ioctl = vsock_dev_ioctl,
1929 #ifdef CONFIG_COMPAT
1930 .compat_ioctl = vsock_dev_compat_ioctl,
1931 #endif
1932 .open = nonseekable_open,
1933 };
1934
1935 static struct miscdevice vsock_device = {
1936 .name = "vsock",
1937 .fops = &vsock_device_ops,
1938 };
1939
__vsock_core_init(const struct vsock_transport * t,struct module * owner)1940 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1941 {
1942 int err = mutex_lock_interruptible(&vsock_register_mutex);
1943
1944 if (err)
1945 return err;
1946
1947 if (transport) {
1948 err = -EBUSY;
1949 goto err_busy;
1950 }
1951
1952 /* Transport must be the owner of the protocol so that it can't
1953 * unload while there are open sockets.
1954 */
1955 vsock_proto.owner = owner;
1956 transport = t;
1957
1958 vsock_init_tables();
1959
1960 vsock_device.minor = MISC_DYNAMIC_MINOR;
1961 err = misc_register(&vsock_device);
1962 if (err) {
1963 pr_err("Failed to register misc device\n");
1964 goto err_reset_transport;
1965 }
1966
1967 err = proto_register(&vsock_proto, 1); /* we want our slab */
1968 if (err) {
1969 pr_err("Cannot register vsock protocol\n");
1970 goto err_deregister_misc;
1971 }
1972
1973 err = sock_register(&vsock_family_ops);
1974 if (err) {
1975 pr_err("could not register af_vsock (%d) address family: %d\n",
1976 AF_VSOCK, err);
1977 goto err_unregister_proto;
1978 }
1979
1980 mutex_unlock(&vsock_register_mutex);
1981 return 0;
1982
1983 err_unregister_proto:
1984 proto_unregister(&vsock_proto);
1985 err_deregister_misc:
1986 misc_deregister(&vsock_device);
1987 err_reset_transport:
1988 transport = NULL;
1989 err_busy:
1990 mutex_unlock(&vsock_register_mutex);
1991 return err;
1992 }
1993 EXPORT_SYMBOL_GPL(__vsock_core_init);
1994
vsock_core_exit(void)1995 void vsock_core_exit(void)
1996 {
1997 mutex_lock(&vsock_register_mutex);
1998
1999 misc_deregister(&vsock_device);
2000 sock_unregister(AF_VSOCK);
2001 proto_unregister(&vsock_proto);
2002
2003 /* We do not want the assignment below re-ordered. */
2004 mb();
2005 transport = NULL;
2006
2007 mutex_unlock(&vsock_register_mutex);
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_exit);
2010
vsock_core_get_transport(void)2011 const struct vsock_transport *vsock_core_get_transport(void)
2012 {
2013 /* vsock_register_mutex not taken since only the transport uses this
2014 * function and only while registered.
2015 */
2016 return transport;
2017 }
2018 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2019
2020 MODULE_AUTHOR("VMware, Inc.");
2021 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2022 MODULE_VERSION("1.0.2.0-k");
2023 MODULE_LICENSE("GPL v2");
2024