• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the TCP_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  *
86  * - sk->sk_state uses the TCP state constants because they are widely used by
87  * other address families and exposed to userspace tools like ss(8):
88  *
89  *   TCP_CLOSE - unconnected
90  *   TCP_SYN_SENT - connecting
91  *   TCP_ESTABLISHED - connected
92  *   TCP_CLOSING - disconnecting
93  *   TCP_LISTEN - listening
94  */
95 
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
120 
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124 
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127 	.name = "AF_VSOCK",
128 	.owner = THIS_MODULE,
129 	.obj_size = sizeof(struct vsock_sock),
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
139 
140 /**** EXPORTS ****/
141 
142 /* Get the ID of the local context.  This is transport dependent. */
143 
vm_sockets_get_local_cid(void)144 int vm_sockets_get_local_cid(void)
145 {
146 	return transport->get_local_cid();
147 }
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149 
150 /**** UTILS ****/
151 
152 /* Each bound VSocket is stored in the bind hash table and each connected
153  * VSocket is stored in the connected hash table.
154  *
155  * Unbound sockets are all put on the same list attached to the end of the hash
156  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158  * represents the list that addr hashes to).
159  *
160  * Specifically, we initialize the vsock_bind_table array to a size of
161  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164  * mods with VSOCK_HASH_SIZE to ensure this.
165  */
166 #define VSOCK_HASH_SIZE         251
167 #define MAX_PORT_RETRIES        24
168 
169 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
172 
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst)				\
175 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst)		\
177 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk)				\
179 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 
181 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 static DEFINE_SPINLOCK(vsock_table_lock);
184 
185 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)186 static int vsock_auto_bind(struct vsock_sock *vsk)
187 {
188 	struct sock *sk = sk_vsock(vsk);
189 	struct sockaddr_vm local_addr;
190 
191 	if (vsock_addr_bound(&vsk->local_addr))
192 		return 0;
193 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
194 	return __vsock_bind(sk, &local_addr);
195 }
196 
vsock_init_tables(void)197 static void vsock_init_tables(void)
198 {
199 	int i;
200 
201 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
202 		INIT_LIST_HEAD(&vsock_bind_table[i]);
203 
204 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
205 		INIT_LIST_HEAD(&vsock_connected_table[i]);
206 }
207 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)208 static void __vsock_insert_bound(struct list_head *list,
209 				 struct vsock_sock *vsk)
210 {
211 	sock_hold(&vsk->sk);
212 	list_add(&vsk->bound_table, list);
213 }
214 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)215 static void __vsock_insert_connected(struct list_head *list,
216 				     struct vsock_sock *vsk)
217 {
218 	sock_hold(&vsk->sk);
219 	list_add(&vsk->connected_table, list);
220 }
221 
__vsock_remove_bound(struct vsock_sock * vsk)222 static void __vsock_remove_bound(struct vsock_sock *vsk)
223 {
224 	list_del_init(&vsk->bound_table);
225 	sock_put(&vsk->sk);
226 }
227 
__vsock_remove_connected(struct vsock_sock * vsk)228 static void __vsock_remove_connected(struct vsock_sock *vsk)
229 {
230 	list_del_init(&vsk->connected_table);
231 	sock_put(&vsk->sk);
232 }
233 
__vsock_find_bound_socket(struct sockaddr_vm * addr)234 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
235 {
236 	struct vsock_sock *vsk;
237 
238 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
239 		if (addr->svm_port == vsk->local_addr.svm_port)
240 			return sk_vsock(vsk);
241 
242 	return NULL;
243 }
244 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)245 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
246 						  struct sockaddr_vm *dst)
247 {
248 	struct vsock_sock *vsk;
249 
250 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
251 			    connected_table) {
252 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
253 		    dst->svm_port == vsk->local_addr.svm_port) {
254 			return sk_vsock(vsk);
255 		}
256 	}
257 
258 	return NULL;
259 }
260 
__vsock_in_bound_table(struct vsock_sock * vsk)261 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
262 {
263 	return !list_empty(&vsk->bound_table);
264 }
265 
__vsock_in_connected_table(struct vsock_sock * vsk)266 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
267 {
268 	return !list_empty(&vsk->connected_table);
269 }
270 
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	vsock_remove_bound(vsk);
341 	vsock_remove_connected(vsk);
342 }
343 EXPORT_SYMBOL_GPL(vsock_remove_sock);
344 
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))345 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
346 {
347 	int i;
348 
349 	spin_lock_bh(&vsock_table_lock);
350 
351 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 		struct vsock_sock *vsk;
353 		list_for_each_entry(vsk, &vsock_connected_table[i],
354 				    connected_table)
355 			fn(sk_vsock(vsk));
356 	}
357 
358 	spin_unlock_bh(&vsock_table_lock);
359 }
360 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
361 
vsock_add_pending(struct sock * listener,struct sock * pending)362 void vsock_add_pending(struct sock *listener, struct sock *pending)
363 {
364 	struct vsock_sock *vlistener;
365 	struct vsock_sock *vpending;
366 
367 	vlistener = vsock_sk(listener);
368 	vpending = vsock_sk(pending);
369 
370 	sock_hold(pending);
371 	sock_hold(listener);
372 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
373 }
374 EXPORT_SYMBOL_GPL(vsock_add_pending);
375 
vsock_remove_pending(struct sock * listener,struct sock * pending)376 void vsock_remove_pending(struct sock *listener, struct sock *pending)
377 {
378 	struct vsock_sock *vpending = vsock_sk(pending);
379 
380 	list_del_init(&vpending->pending_links);
381 	sock_put(listener);
382 	sock_put(pending);
383 }
384 EXPORT_SYMBOL_GPL(vsock_remove_pending);
385 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)386 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
387 {
388 	struct vsock_sock *vlistener;
389 	struct vsock_sock *vconnected;
390 
391 	vlistener = vsock_sk(listener);
392 	vconnected = vsock_sk(connected);
393 
394 	sock_hold(connected);
395 	sock_hold(listener);
396 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
397 }
398 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
399 
vsock_dequeue_accept(struct sock * listener)400 static struct sock *vsock_dequeue_accept(struct sock *listener)
401 {
402 	struct vsock_sock *vlistener;
403 	struct vsock_sock *vconnected;
404 
405 	vlistener = vsock_sk(listener);
406 
407 	if (list_empty(&vlistener->accept_queue))
408 		return NULL;
409 
410 	vconnected = list_entry(vlistener->accept_queue.next,
411 				struct vsock_sock, accept_queue);
412 
413 	list_del_init(&vconnected->accept_queue);
414 	sock_put(listener);
415 	/* The caller will need a reference on the connected socket so we let
416 	 * it call sock_put().
417 	 */
418 
419 	return sk_vsock(vconnected);
420 }
421 
vsock_is_accept_queue_empty(struct sock * sk)422 static bool vsock_is_accept_queue_empty(struct sock *sk)
423 {
424 	struct vsock_sock *vsk = vsock_sk(sk);
425 	return list_empty(&vsk->accept_queue);
426 }
427 
vsock_is_pending(struct sock * sk)428 static bool vsock_is_pending(struct sock *sk)
429 {
430 	struct vsock_sock *vsk = vsock_sk(sk);
431 	return !list_empty(&vsk->pending_links);
432 }
433 
vsock_send_shutdown(struct sock * sk,int mode)434 static int vsock_send_shutdown(struct sock *sk, int mode)
435 {
436 	return transport->shutdown(vsock_sk(sk), mode);
437 }
438 
vsock_pending_work(struct work_struct * work)439 static void vsock_pending_work(struct work_struct *work)
440 {
441 	struct sock *sk;
442 	struct sock *listener;
443 	struct vsock_sock *vsk;
444 	bool cleanup;
445 
446 	vsk = container_of(work, struct vsock_sock, pending_work.work);
447 	sk = sk_vsock(vsk);
448 	listener = vsk->listener;
449 	cleanup = true;
450 
451 	lock_sock(listener);
452 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
453 
454 	if (vsock_is_pending(sk)) {
455 		vsock_remove_pending(listener, sk);
456 
457 		listener->sk_ack_backlog--;
458 	} else if (!vsk->rejected) {
459 		/* We are not on the pending list and accept() did not reject
460 		 * us, so we must have been accepted by our user process.  We
461 		 * just need to drop our references to the sockets and be on
462 		 * our way.
463 		 */
464 		cleanup = false;
465 		goto out;
466 	}
467 
468 	/* We need to remove ourself from the global connected sockets list so
469 	 * incoming packets can't find this socket, and to reduce the reference
470 	 * count.
471 	 */
472 	vsock_remove_connected(vsk);
473 
474 	sk->sk_state = TCP_CLOSE;
475 
476 out:
477 	release_sock(sk);
478 	release_sock(listener);
479 	if (cleanup)
480 		sock_put(sk);
481 
482 	sock_put(sk);
483 	sock_put(listener);
484 }
485 
486 /**** SOCKET OPERATIONS ****/
487 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)488 static int __vsock_bind_stream(struct vsock_sock *vsk,
489 			       struct sockaddr_vm *addr)
490 {
491 	static u32 port = 0;
492 	struct sockaddr_vm new_addr;
493 
494 	if (!port)
495 		port = LAST_RESERVED_PORT + 1 +
496 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
497 
498 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
499 
500 	if (addr->svm_port == VMADDR_PORT_ANY) {
501 		bool found = false;
502 		unsigned int i;
503 
504 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
505 			if (port <= LAST_RESERVED_PORT)
506 				port = LAST_RESERVED_PORT + 1;
507 
508 			new_addr.svm_port = port++;
509 
510 			if (!__vsock_find_bound_socket(&new_addr)) {
511 				found = true;
512 				break;
513 			}
514 		}
515 
516 		if (!found)
517 			return -EADDRNOTAVAIL;
518 	} else {
519 		/* If port is in reserved range, ensure caller
520 		 * has necessary privileges.
521 		 */
522 		if (addr->svm_port <= LAST_RESERVED_PORT &&
523 		    !capable(CAP_NET_BIND_SERVICE)) {
524 			return -EACCES;
525 		}
526 
527 		if (__vsock_find_bound_socket(&new_addr))
528 			return -EADDRINUSE;
529 	}
530 
531 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
532 
533 	/* Remove stream sockets from the unbound list and add them to the hash
534 	 * table for easy lookup by its address.  The unbound list is simply an
535 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
536 	 */
537 	__vsock_remove_bound(vsk);
538 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
539 
540 	return 0;
541 }
542 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)543 static int __vsock_bind_dgram(struct vsock_sock *vsk,
544 			      struct sockaddr_vm *addr)
545 {
546 	return transport->dgram_bind(vsk, addr);
547 }
548 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)549 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
550 {
551 	struct vsock_sock *vsk = vsock_sk(sk);
552 	u32 cid;
553 	int retval;
554 
555 	/* First ensure this socket isn't already bound. */
556 	if (vsock_addr_bound(&vsk->local_addr))
557 		return -EINVAL;
558 
559 	/* Now bind to the provided address or select appropriate values if
560 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
561 	 * like AF_INET prevents binding to a non-local IP address (in most
562 	 * cases), we only allow binding to the local CID.
563 	 */
564 	cid = transport->get_local_cid();
565 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
566 		return -EADDRNOTAVAIL;
567 
568 	switch (sk->sk_socket->type) {
569 	case SOCK_STREAM:
570 		spin_lock_bh(&vsock_table_lock);
571 		retval = __vsock_bind_stream(vsk, addr);
572 		spin_unlock_bh(&vsock_table_lock);
573 		break;
574 
575 	case SOCK_DGRAM:
576 		retval = __vsock_bind_dgram(vsk, addr);
577 		break;
578 
579 	default:
580 		retval = -EINVAL;
581 		break;
582 	}
583 
584 	return retval;
585 }
586 
587 static void vsock_connect_timeout(struct work_struct *work);
588 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)589 struct sock *__vsock_create(struct net *net,
590 			    struct socket *sock,
591 			    struct sock *parent,
592 			    gfp_t priority,
593 			    unsigned short type,
594 			    int kern)
595 {
596 	struct sock *sk;
597 	struct vsock_sock *psk;
598 	struct vsock_sock *vsk;
599 
600 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
601 	if (!sk)
602 		return NULL;
603 
604 	sock_init_data(sock, sk);
605 
606 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
607 	 * non-NULL. We make sure that our sockets always have a type by
608 	 * setting it here if needed.
609 	 */
610 	if (!sock)
611 		sk->sk_type = type;
612 
613 	vsk = vsock_sk(sk);
614 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
615 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
616 
617 	sk->sk_destruct = vsock_sk_destruct;
618 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
619 	sock_reset_flag(sk, SOCK_DONE);
620 
621 	INIT_LIST_HEAD(&vsk->bound_table);
622 	INIT_LIST_HEAD(&vsk->connected_table);
623 	vsk->listener = NULL;
624 	INIT_LIST_HEAD(&vsk->pending_links);
625 	INIT_LIST_HEAD(&vsk->accept_queue);
626 	vsk->rejected = false;
627 	vsk->sent_request = false;
628 	vsk->ignore_connecting_rst = false;
629 	vsk->peer_shutdown = 0;
630 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
631 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
632 
633 	psk = parent ? vsock_sk(parent) : NULL;
634 	if (parent) {
635 		vsk->trusted = psk->trusted;
636 		vsk->owner = get_cred(psk->owner);
637 		vsk->connect_timeout = psk->connect_timeout;
638 	} else {
639 		vsk->trusted = capable(CAP_NET_ADMIN);
640 		vsk->owner = get_current_cred();
641 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
642 	}
643 
644 	if (transport->init(vsk, psk) < 0) {
645 		sk_free(sk);
646 		return NULL;
647 	}
648 
649 	if (sock)
650 		vsock_insert_unbound(vsk);
651 
652 	return sk;
653 }
654 EXPORT_SYMBOL_GPL(__vsock_create);
655 
__vsock_release(struct sock * sk,int level)656 static void __vsock_release(struct sock *sk, int level)
657 {
658 	if (sk) {
659 		struct sk_buff *skb;
660 		struct sock *pending;
661 		struct vsock_sock *vsk;
662 
663 		vsk = vsock_sk(sk);
664 		pending = NULL;	/* Compiler warning. */
665 
666 		/* The release call is supposed to use lock_sock_nested()
667 		 * rather than lock_sock(), if a sock lock should be acquired.
668 		 */
669 		transport->release(vsk);
670 
671 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
672 		 * version to avoid the warning "possible recursive locking
673 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
674 		 * is the same as lock_sock(sk).
675 		 */
676 		lock_sock_nested(sk, level);
677 		sock_orphan(sk);
678 		sk->sk_shutdown = SHUTDOWN_MASK;
679 
680 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681 			kfree_skb(skb);
682 
683 		/* Clean up any sockets that never were accepted. */
684 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
686 			sock_put(pending);
687 		}
688 
689 		release_sock(sk);
690 		sock_put(sk);
691 	}
692 }
693 
vsock_sk_destruct(struct sock * sk)694 static void vsock_sk_destruct(struct sock *sk)
695 {
696 	struct vsock_sock *vsk = vsock_sk(sk);
697 
698 	transport->destruct(vsk);
699 
700 	/* When clearing these addresses, there's no need to set the family and
701 	 * possibly register the address family with the kernel.
702 	 */
703 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 
706 	put_cred(vsk->owner);
707 }
708 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 {
711 	int err;
712 
713 	err = sock_queue_rcv_skb(sk, skb);
714 	if (err)
715 		kfree_skb(skb);
716 
717 	return err;
718 }
719 
vsock_stream_has_data(struct vsock_sock * vsk)720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 {
722 	return transport->stream_has_data(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725 
vsock_stream_has_space(struct vsock_sock * vsk)726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 {
728 	return transport->stream_has_space(vsk);
729 }
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731 
vsock_release(struct socket * sock)732 static int vsock_release(struct socket *sock)
733 {
734 	__vsock_release(sock->sk, 0);
735 	sock->sk = NULL;
736 	sock->state = SS_FREE;
737 
738 	return 0;
739 }
740 
741 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 {
744 	int err;
745 	struct sock *sk;
746 	struct sockaddr_vm *vm_addr;
747 
748 	sk = sock->sk;
749 
750 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751 		return -EINVAL;
752 
753 	lock_sock(sk);
754 	err = __vsock_bind(sk, vm_addr);
755 	release_sock(sk);
756 
757 	return err;
758 }
759 
vsock_getname(struct socket * sock,struct sockaddr * addr,int * addr_len,int peer)760 static int vsock_getname(struct socket *sock,
761 			 struct sockaddr *addr, int *addr_len, int peer)
762 {
763 	int err;
764 	struct sock *sk;
765 	struct vsock_sock *vsk;
766 	struct sockaddr_vm *vm_addr;
767 
768 	sk = sock->sk;
769 	vsk = vsock_sk(sk);
770 	err = 0;
771 
772 	lock_sock(sk);
773 
774 	if (peer) {
775 		if (sock->state != SS_CONNECTED) {
776 			err = -ENOTCONN;
777 			goto out;
778 		}
779 		vm_addr = &vsk->remote_addr;
780 	} else {
781 		vm_addr = &vsk->local_addr;
782 	}
783 
784 	if (!vm_addr) {
785 		err = -EINVAL;
786 		goto out;
787 	}
788 
789 	/* sys_getsockname() and sys_getpeername() pass us a
790 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
791 	 * that macro is defined in socket.c instead of .h, so we hardcode its
792 	 * value here.
793 	 */
794 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795 	memcpy(addr, vm_addr, sizeof(*vm_addr));
796 	*addr_len = sizeof(*vm_addr);
797 
798 out:
799 	release_sock(sk);
800 	return err;
801 }
802 
vsock_shutdown(struct socket * sock,int mode)803 static int vsock_shutdown(struct socket *sock, int mode)
804 {
805 	int err;
806 	struct sock *sk;
807 
808 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 	 * here like the other address families do.  Note also that the
811 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 	 * which is what we want.
813 	 */
814 	mode++;
815 
816 	if ((mode & ~SHUTDOWN_MASK) || !mode)
817 		return -EINVAL;
818 
819 	/* If this is a STREAM socket and it is not connected then bail out
820 	 * immediately.  If it is a DGRAM socket then we must first kick the
821 	 * socket so that it wakes up from any sleeping calls, for example
822 	 * recv(), and then afterwards return the error.
823 	 */
824 
825 	sk = sock->sk;
826 	if (sock->state == SS_UNCONNECTED) {
827 		err = -ENOTCONN;
828 		if (sk->sk_type == SOCK_STREAM)
829 			return err;
830 	} else {
831 		sock->state = SS_DISCONNECTING;
832 		err = 0;
833 	}
834 
835 	/* Receive and send shutdowns are treated alike. */
836 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837 	if (mode) {
838 		lock_sock(sk);
839 		sk->sk_shutdown |= mode;
840 		sk->sk_state_change(sk);
841 		release_sock(sk);
842 
843 		if (sk->sk_type == SOCK_STREAM) {
844 			sock_reset_flag(sk, SOCK_DONE);
845 			vsock_send_shutdown(sk, mode);
846 		}
847 	}
848 
849 	return err;
850 }
851 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853 			       poll_table *wait)
854 {
855 	struct sock *sk;
856 	unsigned int mask;
857 	struct vsock_sock *vsk;
858 
859 	sk = sock->sk;
860 	vsk = vsock_sk(sk);
861 
862 	poll_wait(file, sk_sleep(sk), wait);
863 	mask = 0;
864 
865 	if (sk->sk_err)
866 		/* Signify that there has been an error on this socket. */
867 		mask |= POLLERR;
868 
869 	/* INET sockets treat local write shutdown and peer write shutdown as a
870 	 * case of POLLHUP set.
871 	 */
872 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875 		mask |= POLLHUP;
876 	}
877 
878 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
879 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
880 		mask |= POLLRDHUP;
881 	}
882 
883 	if (sock->type == SOCK_DGRAM) {
884 		/* For datagram sockets we can read if there is something in
885 		 * the queue and write as long as the socket isn't shutdown for
886 		 * sending.
887 		 */
888 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
889 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
890 			mask |= POLLIN | POLLRDNORM;
891 		}
892 
893 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895 
896 	} else if (sock->type == SOCK_STREAM) {
897 		lock_sock(sk);
898 
899 		/* Listening sockets that have connections in their accept
900 		 * queue can be read.
901 		 */
902 		if (sk->sk_state == TCP_LISTEN
903 		    && !vsock_is_accept_queue_empty(sk))
904 			mask |= POLLIN | POLLRDNORM;
905 
906 		/* If there is something in the queue then we can read. */
907 		if (transport->stream_is_active(vsk) &&
908 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909 			bool data_ready_now = false;
910 			int ret = transport->notify_poll_in(
911 					vsk, 1, &data_ready_now);
912 			if (ret < 0) {
913 				mask |= POLLERR;
914 			} else {
915 				if (data_ready_now)
916 					mask |= POLLIN | POLLRDNORM;
917 
918 			}
919 		}
920 
921 		/* Sockets whose connections have been closed, reset, or
922 		 * terminated should also be considered read, and we check the
923 		 * shutdown flag for that.
924 		 */
925 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
926 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
927 			mask |= POLLIN | POLLRDNORM;
928 		}
929 
930 		/* Connected sockets that can produce data can be written. */
931 		if (sk->sk_state == TCP_ESTABLISHED) {
932 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933 				bool space_avail_now = false;
934 				int ret = transport->notify_poll_out(
935 						vsk, 1, &space_avail_now);
936 				if (ret < 0) {
937 					mask |= POLLERR;
938 				} else {
939 					if (space_avail_now)
940 						/* Remove POLLWRBAND since INET
941 						 * sockets are not setting it.
942 						 */
943 						mask |= POLLOUT | POLLWRNORM;
944 
945 				}
946 			}
947 		}
948 
949 		/* Simulate INET socket poll behaviors, which sets
950 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 		 * but local send is not shutdown.
952 		 */
953 		if (sk->sk_state == TCP_CLOSE) {
954 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955 				mask |= POLLOUT | POLLWRNORM;
956 
957 		}
958 
959 		release_sock(sk);
960 	}
961 
962 	return mask;
963 }
964 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966 			       size_t len)
967 {
968 	int err;
969 	struct sock *sk;
970 	struct vsock_sock *vsk;
971 	struct sockaddr_vm *remote_addr;
972 
973 	if (msg->msg_flags & MSG_OOB)
974 		return -EOPNOTSUPP;
975 
976 	/* For now, MSG_DONTWAIT is always assumed... */
977 	err = 0;
978 	sk = sock->sk;
979 	vsk = vsock_sk(sk);
980 
981 	lock_sock(sk);
982 
983 	err = vsock_auto_bind(vsk);
984 	if (err)
985 		goto out;
986 
987 
988 	/* If the provided message contains an address, use that.  Otherwise
989 	 * fall back on the socket's remote handle (if it has been connected).
990 	 */
991 	if (msg->msg_name &&
992 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993 			    &remote_addr) == 0) {
994 		/* Ensure this address is of the right type and is a valid
995 		 * destination.
996 		 */
997 
998 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
999 			remote_addr->svm_cid = transport->get_local_cid();
1000 
1001 		if (!vsock_addr_bound(remote_addr)) {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 	} else if (sock->state == SS_CONNECTED) {
1006 		remote_addr = &vsk->remote_addr;
1007 
1008 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009 			remote_addr->svm_cid = transport->get_local_cid();
1010 
1011 		/* XXX Should connect() or this function ensure remote_addr is
1012 		 * bound?
1013 		 */
1014 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1015 			err = -EINVAL;
1016 			goto out;
1017 		}
1018 	} else {
1019 		err = -EINVAL;
1020 		goto out;
1021 	}
1022 
1023 	if (!transport->dgram_allow(remote_addr->svm_cid,
1024 				    remote_addr->svm_port)) {
1025 		err = -EINVAL;
1026 		goto out;
1027 	}
1028 
1029 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030 
1031 out:
1032 	release_sock(sk);
1033 	return err;
1034 }
1035 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1036 static int vsock_dgram_connect(struct socket *sock,
1037 			       struct sockaddr *addr, int addr_len, int flags)
1038 {
1039 	int err;
1040 	struct sock *sk;
1041 	struct vsock_sock *vsk;
1042 	struct sockaddr_vm *remote_addr;
1043 
1044 	sk = sock->sk;
1045 	vsk = vsock_sk(sk);
1046 
1047 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049 		lock_sock(sk);
1050 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051 				VMADDR_PORT_ANY);
1052 		sock->state = SS_UNCONNECTED;
1053 		release_sock(sk);
1054 		return 0;
1055 	} else if (err != 0)
1056 		return -EINVAL;
1057 
1058 	lock_sock(sk);
1059 
1060 	err = vsock_auto_bind(vsk);
1061 	if (err)
1062 		goto out;
1063 
1064 	if (!transport->dgram_allow(remote_addr->svm_cid,
1065 				    remote_addr->svm_port)) {
1066 		err = -EINVAL;
1067 		goto out;
1068 	}
1069 
1070 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071 	sock->state = SS_CONNECTED;
1072 
1073 out:
1074 	release_sock(sk);
1075 	return err;
1076 }
1077 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079 			       size_t len, int flags)
1080 {
1081 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1082 }
1083 
1084 static const struct proto_ops vsock_dgram_ops = {
1085 	.family = PF_VSOCK,
1086 	.owner = THIS_MODULE,
1087 	.release = vsock_release,
1088 	.bind = vsock_bind,
1089 	.connect = vsock_dgram_connect,
1090 	.socketpair = sock_no_socketpair,
1091 	.accept = sock_no_accept,
1092 	.getname = vsock_getname,
1093 	.poll = vsock_poll,
1094 	.ioctl = sock_no_ioctl,
1095 	.listen = sock_no_listen,
1096 	.shutdown = vsock_shutdown,
1097 	.setsockopt = sock_no_setsockopt,
1098 	.getsockopt = sock_no_getsockopt,
1099 	.sendmsg = vsock_dgram_sendmsg,
1100 	.recvmsg = vsock_dgram_recvmsg,
1101 	.mmap = sock_no_mmap,
1102 	.sendpage = sock_no_sendpage,
1103 };
1104 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1106 {
1107 	if (!transport->cancel_pkt)
1108 		return -EOPNOTSUPP;
1109 
1110 	return transport->cancel_pkt(vsk);
1111 }
1112 
vsock_connect_timeout(struct work_struct * work)1113 static void vsock_connect_timeout(struct work_struct *work)
1114 {
1115 	struct sock *sk;
1116 	struct vsock_sock *vsk;
1117 	int cancel = 0;
1118 
1119 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1120 	sk = sk_vsock(vsk);
1121 
1122 	lock_sock(sk);
1123 	if (sk->sk_state == TCP_SYN_SENT &&
1124 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1125 		sk->sk_state = TCP_CLOSE;
1126 		sk->sk_err = ETIMEDOUT;
1127 		sk->sk_error_report(sk);
1128 		cancel = 1;
1129 	}
1130 	release_sock(sk);
1131 	if (cancel)
1132 		vsock_transport_cancel_pkt(vsk);
1133 
1134 	sock_put(sk);
1135 }
1136 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1138 				int addr_len, int flags)
1139 {
1140 	int err;
1141 	struct sock *sk;
1142 	struct vsock_sock *vsk;
1143 	struct sockaddr_vm *remote_addr;
1144 	long timeout;
1145 	DEFINE_WAIT(wait);
1146 
1147 	err = 0;
1148 	sk = sock->sk;
1149 	vsk = vsock_sk(sk);
1150 
1151 	lock_sock(sk);
1152 
1153 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 	switch (sock->state) {
1155 	case SS_CONNECTED:
1156 		err = -EISCONN;
1157 		goto out;
1158 	case SS_DISCONNECTING:
1159 		err = -EINVAL;
1160 		goto out;
1161 	case SS_CONNECTING:
1162 		/* This continues on so we can move sock into the SS_CONNECTED
1163 		 * state once the connection has completed (at which point err
1164 		 * will be set to zero also).  Otherwise, we will either wait
1165 		 * for the connection or return -EALREADY should this be a
1166 		 * non-blocking call.
1167 		 */
1168 		err = -EALREADY;
1169 		break;
1170 	default:
1171 		if ((sk->sk_state == TCP_LISTEN) ||
1172 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1173 			err = -EINVAL;
1174 			goto out;
1175 		}
1176 
1177 		/* The hypervisor and well-known contexts do not have socket
1178 		 * endpoints.
1179 		 */
1180 		if (!transport->stream_allow(remote_addr->svm_cid,
1181 					     remote_addr->svm_port)) {
1182 			err = -ENETUNREACH;
1183 			goto out;
1184 		}
1185 
1186 		/* Set the remote address that we are connecting to. */
1187 		memcpy(&vsk->remote_addr, remote_addr,
1188 		       sizeof(vsk->remote_addr));
1189 
1190 		err = vsock_auto_bind(vsk);
1191 		if (err)
1192 			goto out;
1193 
1194 		sk->sk_state = TCP_SYN_SENT;
1195 
1196 		err = transport->connect(vsk);
1197 		if (err < 0)
1198 			goto out;
1199 
1200 		/* Mark sock as connecting and set the error code to in
1201 		 * progress in case this is a non-blocking connect.
1202 		 */
1203 		sock->state = SS_CONNECTING;
1204 		err = -EINPROGRESS;
1205 	}
1206 
1207 	/* The receive path will handle all communication until we are able to
1208 	 * enter the connected state.  Here we wait for the connection to be
1209 	 * completed or a notification of an error.
1210 	 */
1211 	timeout = vsk->connect_timeout;
1212 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1213 
1214 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1215 		if (flags & O_NONBLOCK) {
1216 			/* If we're not going to block, we schedule a timeout
1217 			 * function to generate a timeout on the connection
1218 			 * attempt, in case the peer doesn't respond in a
1219 			 * timely manner. We hold on to the socket until the
1220 			 * timeout fires.
1221 			 */
1222 			sock_hold(sk);
1223 			schedule_delayed_work(&vsk->connect_work, timeout);
1224 
1225 			/* Skip ahead to preserve error code set above. */
1226 			goto out_wait;
1227 		}
1228 
1229 		release_sock(sk);
1230 		timeout = schedule_timeout(timeout);
1231 		lock_sock(sk);
1232 
1233 		if (signal_pending(current)) {
1234 			err = sock_intr_errno(timeout);
1235 			sk->sk_state = TCP_CLOSE;
1236 			sock->state = SS_UNCONNECTED;
1237 			vsock_transport_cancel_pkt(vsk);
1238 			goto out_wait;
1239 		} else if (timeout == 0) {
1240 			err = -ETIMEDOUT;
1241 			sk->sk_state = TCP_CLOSE;
1242 			sock->state = SS_UNCONNECTED;
1243 			vsock_transport_cancel_pkt(vsk);
1244 			goto out_wait;
1245 		}
1246 
1247 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1248 	}
1249 
1250 	if (sk->sk_err) {
1251 		err = -sk->sk_err;
1252 		sk->sk_state = TCP_CLOSE;
1253 		sock->state = SS_UNCONNECTED;
1254 	} else {
1255 		err = 0;
1256 	}
1257 
1258 out_wait:
1259 	finish_wait(sk_sleep(sk), &wait);
1260 out:
1261 	release_sock(sk);
1262 	return err;
1263 }
1264 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1265 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1266 			bool kern)
1267 {
1268 	struct sock *listener;
1269 	int err;
1270 	struct sock *connected;
1271 	struct vsock_sock *vconnected;
1272 	long timeout;
1273 	DEFINE_WAIT(wait);
1274 
1275 	err = 0;
1276 	listener = sock->sk;
1277 
1278 	lock_sock(listener);
1279 
1280 	if (sock->type != SOCK_STREAM) {
1281 		err = -EOPNOTSUPP;
1282 		goto out;
1283 	}
1284 
1285 	if (listener->sk_state != TCP_LISTEN) {
1286 		err = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	/* Wait for children sockets to appear; these are the new sockets
1291 	 * created upon connection establishment.
1292 	 */
1293 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1294 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1295 
1296 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1297 	       listener->sk_err == 0) {
1298 		release_sock(listener);
1299 		timeout = schedule_timeout(timeout);
1300 		finish_wait(sk_sleep(listener), &wait);
1301 		lock_sock(listener);
1302 
1303 		if (signal_pending(current)) {
1304 			err = sock_intr_errno(timeout);
1305 			goto out;
1306 		} else if (timeout == 0) {
1307 			err = -EAGAIN;
1308 			goto out;
1309 		}
1310 
1311 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1312 	}
1313 	finish_wait(sk_sleep(listener), &wait);
1314 
1315 	if (listener->sk_err)
1316 		err = -listener->sk_err;
1317 
1318 	if (connected) {
1319 		listener->sk_ack_backlog--;
1320 
1321 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1322 		vconnected = vsock_sk(connected);
1323 
1324 		/* If the listener socket has received an error, then we should
1325 		 * reject this socket and return.  Note that we simply mark the
1326 		 * socket rejected, drop our reference, and let the cleanup
1327 		 * function handle the cleanup; the fact that we found it in
1328 		 * the listener's accept queue guarantees that the cleanup
1329 		 * function hasn't run yet.
1330 		 */
1331 		if (err) {
1332 			vconnected->rejected = true;
1333 		} else {
1334 			newsock->state = SS_CONNECTED;
1335 			sock_graft(connected, newsock);
1336 		}
1337 
1338 		release_sock(connected);
1339 		sock_put(connected);
1340 	}
1341 
1342 out:
1343 	release_sock(listener);
1344 	return err;
1345 }
1346 
vsock_listen(struct socket * sock,int backlog)1347 static int vsock_listen(struct socket *sock, int backlog)
1348 {
1349 	int err;
1350 	struct sock *sk;
1351 	struct vsock_sock *vsk;
1352 
1353 	sk = sock->sk;
1354 
1355 	lock_sock(sk);
1356 
1357 	if (sock->type != SOCK_STREAM) {
1358 		err = -EOPNOTSUPP;
1359 		goto out;
1360 	}
1361 
1362 	if (sock->state != SS_UNCONNECTED) {
1363 		err = -EINVAL;
1364 		goto out;
1365 	}
1366 
1367 	vsk = vsock_sk(sk);
1368 
1369 	if (!vsock_addr_bound(&vsk->local_addr)) {
1370 		err = -EINVAL;
1371 		goto out;
1372 	}
1373 
1374 	sk->sk_max_ack_backlog = backlog;
1375 	sk->sk_state = TCP_LISTEN;
1376 
1377 	err = 0;
1378 
1379 out:
1380 	release_sock(sk);
1381 	return err;
1382 }
1383 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1384 static int vsock_stream_setsockopt(struct socket *sock,
1385 				   int level,
1386 				   int optname,
1387 				   char __user *optval,
1388 				   unsigned int optlen)
1389 {
1390 	int err;
1391 	struct sock *sk;
1392 	struct vsock_sock *vsk;
1393 	u64 val;
1394 
1395 	if (level != AF_VSOCK)
1396 		return -ENOPROTOOPT;
1397 
1398 #define COPY_IN(_v)                                       \
1399 	do {						  \
1400 		if (optlen < sizeof(_v)) {		  \
1401 			err = -EINVAL;			  \
1402 			goto exit;			  \
1403 		}					  \
1404 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1405 			err = -EFAULT;					\
1406 			goto exit;					\
1407 		}							\
1408 	} while (0)
1409 
1410 	err = 0;
1411 	sk = sock->sk;
1412 	vsk = vsock_sk(sk);
1413 
1414 	lock_sock(sk);
1415 
1416 	switch (optname) {
1417 	case SO_VM_SOCKETS_BUFFER_SIZE:
1418 		COPY_IN(val);
1419 		transport->set_buffer_size(vsk, val);
1420 		break;
1421 
1422 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1423 		COPY_IN(val);
1424 		transport->set_max_buffer_size(vsk, val);
1425 		break;
1426 
1427 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1428 		COPY_IN(val);
1429 		transport->set_min_buffer_size(vsk, val);
1430 		break;
1431 
1432 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1433 		struct timeval tv;
1434 		COPY_IN(tv);
1435 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1436 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1437 			vsk->connect_timeout = tv.tv_sec * HZ +
1438 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1439 			if (vsk->connect_timeout == 0)
1440 				vsk->connect_timeout =
1441 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1442 
1443 		} else {
1444 			err = -ERANGE;
1445 		}
1446 		break;
1447 	}
1448 
1449 	default:
1450 		err = -ENOPROTOOPT;
1451 		break;
1452 	}
1453 
1454 #undef COPY_IN
1455 
1456 exit:
1457 	release_sock(sk);
1458 	return err;
1459 }
1460 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1461 static int vsock_stream_getsockopt(struct socket *sock,
1462 				   int level, int optname,
1463 				   char __user *optval,
1464 				   int __user *optlen)
1465 {
1466 	int err;
1467 	int len;
1468 	struct sock *sk;
1469 	struct vsock_sock *vsk;
1470 	u64 val;
1471 
1472 	if (level != AF_VSOCK)
1473 		return -ENOPROTOOPT;
1474 
1475 	err = get_user(len, optlen);
1476 	if (err != 0)
1477 		return err;
1478 
1479 #define COPY_OUT(_v)                            \
1480 	do {					\
1481 		if (len < sizeof(_v))		\
1482 			return -EINVAL;		\
1483 						\
1484 		len = sizeof(_v);		\
1485 		if (copy_to_user(optval, &_v, len) != 0)	\
1486 			return -EFAULT;				\
1487 								\
1488 	} while (0)
1489 
1490 	err = 0;
1491 	sk = sock->sk;
1492 	vsk = vsock_sk(sk);
1493 
1494 	switch (optname) {
1495 	case SO_VM_SOCKETS_BUFFER_SIZE:
1496 		val = transport->get_buffer_size(vsk);
1497 		COPY_OUT(val);
1498 		break;
1499 
1500 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1501 		val = transport->get_max_buffer_size(vsk);
1502 		COPY_OUT(val);
1503 		break;
1504 
1505 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1506 		val = transport->get_min_buffer_size(vsk);
1507 		COPY_OUT(val);
1508 		break;
1509 
1510 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1511 		struct timeval tv;
1512 		tv.tv_sec = vsk->connect_timeout / HZ;
1513 		tv.tv_usec =
1514 		    (vsk->connect_timeout -
1515 		     tv.tv_sec * HZ) * (1000000 / HZ);
1516 		COPY_OUT(tv);
1517 		break;
1518 	}
1519 	default:
1520 		return -ENOPROTOOPT;
1521 	}
1522 
1523 	err = put_user(len, optlen);
1524 	if (err != 0)
1525 		return -EFAULT;
1526 
1527 #undef COPY_OUT
1528 
1529 	return 0;
1530 }
1531 
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1532 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1533 				size_t len)
1534 {
1535 	struct sock *sk;
1536 	struct vsock_sock *vsk;
1537 	ssize_t total_written;
1538 	long timeout;
1539 	int err;
1540 	struct vsock_transport_send_notify_data send_data;
1541 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1542 
1543 	sk = sock->sk;
1544 	vsk = vsock_sk(sk);
1545 	total_written = 0;
1546 	err = 0;
1547 
1548 	if (msg->msg_flags & MSG_OOB)
1549 		return -EOPNOTSUPP;
1550 
1551 	lock_sock(sk);
1552 
1553 	/* Callers should not provide a destination with stream sockets. */
1554 	if (msg->msg_namelen) {
1555 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1556 		goto out;
1557 	}
1558 
1559 	/* Send data only if both sides are not shutdown in the direction. */
1560 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1561 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1562 		err = -EPIPE;
1563 		goto out;
1564 	}
1565 
1566 	if (sk->sk_state != TCP_ESTABLISHED ||
1567 	    !vsock_addr_bound(&vsk->local_addr)) {
1568 		err = -ENOTCONN;
1569 		goto out;
1570 	}
1571 
1572 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1573 		err = -EDESTADDRREQ;
1574 		goto out;
1575 	}
1576 
1577 	/* Wait for room in the produce queue to enqueue our user's data. */
1578 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1579 
1580 	err = transport->notify_send_init(vsk, &send_data);
1581 	if (err < 0)
1582 		goto out;
1583 
1584 	while (total_written < len) {
1585 		ssize_t written;
1586 
1587 		add_wait_queue(sk_sleep(sk), &wait);
1588 		while (vsock_stream_has_space(vsk) == 0 &&
1589 		       sk->sk_err == 0 &&
1590 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1591 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1592 
1593 			/* Don't wait for non-blocking sockets. */
1594 			if (timeout == 0) {
1595 				err = -EAGAIN;
1596 				remove_wait_queue(sk_sleep(sk), &wait);
1597 				goto out_err;
1598 			}
1599 
1600 			err = transport->notify_send_pre_block(vsk, &send_data);
1601 			if (err < 0) {
1602 				remove_wait_queue(sk_sleep(sk), &wait);
1603 				goto out_err;
1604 			}
1605 
1606 			release_sock(sk);
1607 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1608 			lock_sock(sk);
1609 			if (signal_pending(current)) {
1610 				err = sock_intr_errno(timeout);
1611 				remove_wait_queue(sk_sleep(sk), &wait);
1612 				goto out_err;
1613 			} else if (timeout == 0) {
1614 				err = -EAGAIN;
1615 				remove_wait_queue(sk_sleep(sk), &wait);
1616 				goto out_err;
1617 			}
1618 		}
1619 		remove_wait_queue(sk_sleep(sk), &wait);
1620 
1621 		/* These checks occur both as part of and after the loop
1622 		 * conditional since we need to check before and after
1623 		 * sleeping.
1624 		 */
1625 		if (sk->sk_err) {
1626 			err = -sk->sk_err;
1627 			goto out_err;
1628 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1629 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1630 			err = -EPIPE;
1631 			goto out_err;
1632 		}
1633 
1634 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1635 		if (err < 0)
1636 			goto out_err;
1637 
1638 		/* Note that enqueue will only write as many bytes as are free
1639 		 * in the produce queue, so we don't need to ensure len is
1640 		 * smaller than the queue size.  It is the caller's
1641 		 * responsibility to check how many bytes we were able to send.
1642 		 */
1643 
1644 		written = transport->stream_enqueue(
1645 				vsk, msg,
1646 				len - total_written);
1647 		if (written < 0) {
1648 			err = -ENOMEM;
1649 			goto out_err;
1650 		}
1651 
1652 		total_written += written;
1653 
1654 		err = transport->notify_send_post_enqueue(
1655 				vsk, written, &send_data);
1656 		if (err < 0)
1657 			goto out_err;
1658 
1659 	}
1660 
1661 out_err:
1662 	if (total_written > 0)
1663 		err = total_written;
1664 out:
1665 	release_sock(sk);
1666 	return err;
1667 }
1668 
1669 
1670 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1671 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1672 		     int flags)
1673 {
1674 	struct sock *sk;
1675 	struct vsock_sock *vsk;
1676 	int err;
1677 	size_t target;
1678 	ssize_t copied;
1679 	long timeout;
1680 	struct vsock_transport_recv_notify_data recv_data;
1681 
1682 	DEFINE_WAIT(wait);
1683 
1684 	sk = sock->sk;
1685 	vsk = vsock_sk(sk);
1686 	err = 0;
1687 
1688 	lock_sock(sk);
1689 
1690 	if (sk->sk_state != TCP_ESTABLISHED) {
1691 		/* Recvmsg is supposed to return 0 if a peer performs an
1692 		 * orderly shutdown. Differentiate between that case and when a
1693 		 * peer has not connected or a local shutdown occured with the
1694 		 * SOCK_DONE flag.
1695 		 */
1696 		if (sock_flag(sk, SOCK_DONE))
1697 			err = 0;
1698 		else
1699 			err = -ENOTCONN;
1700 
1701 		goto out;
1702 	}
1703 
1704 	if (flags & MSG_OOB) {
1705 		err = -EOPNOTSUPP;
1706 		goto out;
1707 	}
1708 
1709 	/* We don't check peer_shutdown flag here since peer may actually shut
1710 	 * down, but there can be data in the queue that a local socket can
1711 	 * receive.
1712 	 */
1713 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1714 		err = 0;
1715 		goto out;
1716 	}
1717 
1718 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1719 	 * is not an error.  We may as well bail out now.
1720 	 */
1721 	if (!len) {
1722 		err = 0;
1723 		goto out;
1724 	}
1725 
1726 	/* We must not copy less than target bytes into the user's buffer
1727 	 * before returning successfully, so we wait for the consume queue to
1728 	 * have that much data to consume before dequeueing.  Note that this
1729 	 * makes it impossible to handle cases where target is greater than the
1730 	 * queue size.
1731 	 */
1732 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1733 	if (target >= transport->stream_rcvhiwat(vsk)) {
1734 		err = -ENOMEM;
1735 		goto out;
1736 	}
1737 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1738 	copied = 0;
1739 
1740 	err = transport->notify_recv_init(vsk, target, &recv_data);
1741 	if (err < 0)
1742 		goto out;
1743 
1744 
1745 	while (1) {
1746 		s64 ready;
1747 
1748 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1749 		ready = vsock_stream_has_data(vsk);
1750 
1751 		if (ready == 0) {
1752 			if (sk->sk_err != 0 ||
1753 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1754 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1755 				finish_wait(sk_sleep(sk), &wait);
1756 				break;
1757 			}
1758 			/* Don't wait for non-blocking sockets. */
1759 			if (timeout == 0) {
1760 				err = -EAGAIN;
1761 				finish_wait(sk_sleep(sk), &wait);
1762 				break;
1763 			}
1764 
1765 			err = transport->notify_recv_pre_block(
1766 					vsk, target, &recv_data);
1767 			if (err < 0) {
1768 				finish_wait(sk_sleep(sk), &wait);
1769 				break;
1770 			}
1771 			release_sock(sk);
1772 			timeout = schedule_timeout(timeout);
1773 			lock_sock(sk);
1774 
1775 			if (signal_pending(current)) {
1776 				err = sock_intr_errno(timeout);
1777 				finish_wait(sk_sleep(sk), &wait);
1778 				break;
1779 			} else if (timeout == 0) {
1780 				err = -EAGAIN;
1781 				finish_wait(sk_sleep(sk), &wait);
1782 				break;
1783 			}
1784 		} else {
1785 			ssize_t read;
1786 
1787 			finish_wait(sk_sleep(sk), &wait);
1788 
1789 			if (ready < 0) {
1790 				/* Invalid queue pair content. XXX This should
1791 				* be changed to a connection reset in a later
1792 				* change.
1793 				*/
1794 
1795 				err = -ENOMEM;
1796 				goto out;
1797 			}
1798 
1799 			err = transport->notify_recv_pre_dequeue(
1800 					vsk, target, &recv_data);
1801 			if (err < 0)
1802 				break;
1803 
1804 			read = transport->stream_dequeue(
1805 					vsk, msg,
1806 					len - copied, flags);
1807 			if (read < 0) {
1808 				err = -ENOMEM;
1809 				break;
1810 			}
1811 
1812 			copied += read;
1813 
1814 			err = transport->notify_recv_post_dequeue(
1815 					vsk, target, read,
1816 					!(flags & MSG_PEEK), &recv_data);
1817 			if (err < 0)
1818 				goto out;
1819 
1820 			if (read >= target || flags & MSG_PEEK)
1821 				break;
1822 
1823 			target -= read;
1824 		}
1825 	}
1826 
1827 	if (sk->sk_err)
1828 		err = -sk->sk_err;
1829 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1830 		err = 0;
1831 
1832 	if (copied > 0)
1833 		err = copied;
1834 
1835 out:
1836 	release_sock(sk);
1837 	return err;
1838 }
1839 
1840 static const struct proto_ops vsock_stream_ops = {
1841 	.family = PF_VSOCK,
1842 	.owner = THIS_MODULE,
1843 	.release = vsock_release,
1844 	.bind = vsock_bind,
1845 	.connect = vsock_stream_connect,
1846 	.socketpair = sock_no_socketpair,
1847 	.accept = vsock_accept,
1848 	.getname = vsock_getname,
1849 	.poll = vsock_poll,
1850 	.ioctl = sock_no_ioctl,
1851 	.listen = vsock_listen,
1852 	.shutdown = vsock_shutdown,
1853 	.setsockopt = vsock_stream_setsockopt,
1854 	.getsockopt = vsock_stream_getsockopt,
1855 	.sendmsg = vsock_stream_sendmsg,
1856 	.recvmsg = vsock_stream_recvmsg,
1857 	.mmap = sock_no_mmap,
1858 	.sendpage = sock_no_sendpage,
1859 };
1860 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1861 static int vsock_create(struct net *net, struct socket *sock,
1862 			int protocol, int kern)
1863 {
1864 	if (!sock)
1865 		return -EINVAL;
1866 
1867 	if (protocol && protocol != PF_VSOCK)
1868 		return -EPROTONOSUPPORT;
1869 
1870 	switch (sock->type) {
1871 	case SOCK_DGRAM:
1872 		sock->ops = &vsock_dgram_ops;
1873 		break;
1874 	case SOCK_STREAM:
1875 		sock->ops = &vsock_stream_ops;
1876 		break;
1877 	default:
1878 		return -ESOCKTNOSUPPORT;
1879 	}
1880 
1881 	sock->state = SS_UNCONNECTED;
1882 
1883 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1884 }
1885 
1886 static const struct net_proto_family vsock_family_ops = {
1887 	.family = AF_VSOCK,
1888 	.create = vsock_create,
1889 	.owner = THIS_MODULE,
1890 };
1891 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1892 static long vsock_dev_do_ioctl(struct file *filp,
1893 			       unsigned int cmd, void __user *ptr)
1894 {
1895 	u32 __user *p = ptr;
1896 	int retval = 0;
1897 
1898 	switch (cmd) {
1899 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1900 		if (put_user(transport->get_local_cid(), p) != 0)
1901 			retval = -EFAULT;
1902 		break;
1903 
1904 	default:
1905 		pr_err("Unknown ioctl %d\n", cmd);
1906 		retval = -EINVAL;
1907 	}
1908 
1909 	return retval;
1910 }
1911 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1912 static long vsock_dev_ioctl(struct file *filp,
1913 			    unsigned int cmd, unsigned long arg)
1914 {
1915 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1916 }
1917 
1918 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1919 static long vsock_dev_compat_ioctl(struct file *filp,
1920 				   unsigned int cmd, unsigned long arg)
1921 {
1922 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1923 }
1924 #endif
1925 
1926 static const struct file_operations vsock_device_ops = {
1927 	.owner		= THIS_MODULE,
1928 	.unlocked_ioctl	= vsock_dev_ioctl,
1929 #ifdef CONFIG_COMPAT
1930 	.compat_ioctl	= vsock_dev_compat_ioctl,
1931 #endif
1932 	.open		= nonseekable_open,
1933 };
1934 
1935 static struct miscdevice vsock_device = {
1936 	.name		= "vsock",
1937 	.fops		= &vsock_device_ops,
1938 };
1939 
__vsock_core_init(const struct vsock_transport * t,struct module * owner)1940 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1941 {
1942 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1943 
1944 	if (err)
1945 		return err;
1946 
1947 	if (transport) {
1948 		err = -EBUSY;
1949 		goto err_busy;
1950 	}
1951 
1952 	/* Transport must be the owner of the protocol so that it can't
1953 	 * unload while there are open sockets.
1954 	 */
1955 	vsock_proto.owner = owner;
1956 	transport = t;
1957 
1958 	vsock_init_tables();
1959 
1960 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1961 	err = misc_register(&vsock_device);
1962 	if (err) {
1963 		pr_err("Failed to register misc device\n");
1964 		goto err_reset_transport;
1965 	}
1966 
1967 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1968 	if (err) {
1969 		pr_err("Cannot register vsock protocol\n");
1970 		goto err_deregister_misc;
1971 	}
1972 
1973 	err = sock_register(&vsock_family_ops);
1974 	if (err) {
1975 		pr_err("could not register af_vsock (%d) address family: %d\n",
1976 		       AF_VSOCK, err);
1977 		goto err_unregister_proto;
1978 	}
1979 
1980 	mutex_unlock(&vsock_register_mutex);
1981 	return 0;
1982 
1983 err_unregister_proto:
1984 	proto_unregister(&vsock_proto);
1985 err_deregister_misc:
1986 	misc_deregister(&vsock_device);
1987 err_reset_transport:
1988 	transport = NULL;
1989 err_busy:
1990 	mutex_unlock(&vsock_register_mutex);
1991 	return err;
1992 }
1993 EXPORT_SYMBOL_GPL(__vsock_core_init);
1994 
vsock_core_exit(void)1995 void vsock_core_exit(void)
1996 {
1997 	mutex_lock(&vsock_register_mutex);
1998 
1999 	misc_deregister(&vsock_device);
2000 	sock_unregister(AF_VSOCK);
2001 	proto_unregister(&vsock_proto);
2002 
2003 	/* We do not want the assignment below re-ordered. */
2004 	mb();
2005 	transport = NULL;
2006 
2007 	mutex_unlock(&vsock_register_mutex);
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_exit);
2010 
vsock_core_get_transport(void)2011 const struct vsock_transport *vsock_core_get_transport(void)
2012 {
2013 	/* vsock_register_mutex not taken since only the transport uses this
2014 	 * function and only while registered.
2015 	 */
2016 	return transport;
2017 }
2018 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2019 
2020 MODULE_AUTHOR("VMware, Inc.");
2021 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2022 MODULE_VERSION("1.0.2.0-k");
2023 MODULE_LICENSE("GPL v2");
2024