• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
wb_inode(struct list_head * head)87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
wb_io_lists_populated(struct bdi_writeback * wb)102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
wb_io_lists_depopulated(struct bdi_writeback * wb)115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
wb_wakeup(struct bdi_writeback * wb)168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)176 static void finish_writeback_work(struct bdi_writeback *wb,
177 				  struct wb_writeback_work *work)
178 {
179 	struct wb_completion *done = work->done;
180 
181 	if (work->auto_free)
182 		kfree(work);
183 	if (done && atomic_dec_and_test(&done->cnt))
184 		wake_up_all(&wb->bdi->wb_waitq);
185 }
186 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_bh(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(wb, work);
202 
203 	spin_unlock_bh(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 				   struct wb_completion *done)
219 {
220 	atomic_dec(&done->cnt);		/* put down the initial count */
221 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223 
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242 
__inode_attach_wb(struct inode * inode,struct page * page)243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 	struct backing_dev_info *bdi = inode_to_bdi(inode);
246 	struct bdi_writeback *wb = NULL;
247 
248 	if (inode_cgwb_enabled(inode)) {
249 		struct cgroup_subsys_state *memcg_css;
250 
251 		if (page) {
252 			memcg_css = mem_cgroup_css_from_page(page);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 		} else {
255 			/* must pin memcg_css, see wb_get_create() */
256 			memcg_css = task_get_css(current, memory_cgrp_id);
257 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 			css_put(memcg_css);
259 		}
260 	}
261 
262 	if (!wb)
263 		wb = &bdi->wb;
264 
265 	/*
266 	 * There may be multiple instances of this function racing to
267 	 * update the same inode.  Use cmpxchg() to tell the winner.
268 	 */
269 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 		wb_put(wb);
271 }
272 
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 	__releases(&inode->i_lock)
284 	__acquires(&wb->list_lock)
285 {
286 	while (true) {
287 		struct bdi_writeback *wb = inode_to_wb(inode);
288 
289 		/*
290 		 * inode_to_wb() association is protected by both
291 		 * @inode->i_lock and @wb->list_lock but list_lock nests
292 		 * outside i_lock.  Drop i_lock and verify that the
293 		 * association hasn't changed after acquiring list_lock.
294 		 */
295 		wb_get(wb);
296 		spin_unlock(&inode->i_lock);
297 		spin_lock(&wb->list_lock);
298 
299 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 		if (likely(wb == inode->i_wb)) {
301 			wb_put(wb);	/* @inode already has ref */
302 			return wb;
303 		}
304 
305 		spin_unlock(&wb->list_lock);
306 		wb_put(wb);
307 		cpu_relax();
308 		spin_lock(&inode->i_lock);
309 	}
310 }
311 
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
inode_to_wb_and_lock_list(struct inode * inode)319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 	__acquires(&wb->list_lock)
321 {
322 	spin_lock(&inode->i_lock);
323 	return locked_inode_to_wb_and_lock_list(inode);
324 }
325 
326 struct inode_switch_wbs_context {
327 	struct inode		*inode;
328 	struct bdi_writeback	*new_wb;
329 
330 	struct rcu_head		rcu_head;
331 	struct work_struct	work;
332 };
333 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 	down_write(&bdi->wb_switch_rwsem);
337 }
338 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 	up_write(&bdi->wb_switch_rwsem);
342 }
343 
inode_switch_wbs_work_fn(struct work_struct * work)344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 	struct inode_switch_wbs_context *isw =
347 		container_of(work, struct inode_switch_wbs_context, work);
348 	struct inode *inode = isw->inode;
349 	struct backing_dev_info *bdi = inode_to_bdi(inode);
350 	struct address_space *mapping = inode->i_mapping;
351 	struct bdi_writeback *old_wb = inode->i_wb;
352 	struct bdi_writeback *new_wb = isw->new_wb;
353 	struct radix_tree_iter iter;
354 	bool switched = false;
355 	void **slot;
356 
357 	/*
358 	 * If @inode switches cgwb membership while sync_inodes_sb() is
359 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
360 	 */
361 	down_read(&bdi->wb_switch_rwsem);
362 
363 	/*
364 	 * By the time control reaches here, RCU grace period has passed
365 	 * since I_WB_SWITCH assertion and all wb stat update transactions
366 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 	 * synchronizing against mapping->tree_lock.
368 	 *
369 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 	 * gives us exclusion against all wb related operations on @inode
371 	 * including IO list manipulations and stat updates.
372 	 */
373 	if (old_wb < new_wb) {
374 		spin_lock(&old_wb->list_lock);
375 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 	} else {
377 		spin_lock(&new_wb->list_lock);
378 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 	}
380 	spin_lock(&inode->i_lock);
381 	spin_lock_irq(&mapping->tree_lock);
382 
383 	/*
384 	 * Once I_FREEING is visible under i_lock, the eviction path owns
385 	 * the inode and we shouldn't modify ->i_io_list.
386 	 */
387 	if (unlikely(inode->i_state & I_FREEING))
388 		goto skip_switch;
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under underwriteback.
394 	 */
395 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 				   PAGECACHE_TAG_DIRTY) {
397 		struct page *page = radix_tree_deref_slot_protected(slot,
398 							&mapping->tree_lock);
399 		if (likely(page) && PageDirty(page)) {
400 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 		}
403 	}
404 
405 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 				   PAGECACHE_TAG_WRITEBACK) {
407 		struct page *page = radix_tree_deref_slot_protected(slot,
408 							&mapping->tree_lock);
409 		if (likely(page)) {
410 			WARN_ON_ONCE(!PageWriteback(page));
411 			dec_wb_stat(old_wb, WB_WRITEBACK);
412 			inc_wb_stat(new_wb, WB_WRITEBACK);
413 		}
414 	}
415 
416 	wb_get(new_wb);
417 
418 	/*
419 	 * Transfer to @new_wb's IO list if necessary.  The specific list
420 	 * @inode was on is ignored and the inode is put on ->b_dirty which
421 	 * is always correct including from ->b_dirty_time.  The transfer
422 	 * preserves @inode->dirtied_when ordering.
423 	 */
424 	if (!list_empty(&inode->i_io_list)) {
425 		struct inode *pos;
426 
427 		inode_io_list_del_locked(inode, old_wb);
428 		inode->i_wb = new_wb;
429 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 			if (time_after_eq(inode->dirtied_when,
431 					  pos->dirtied_when))
432 				break;
433 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 	} else {
435 		inode->i_wb = new_wb;
436 	}
437 
438 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 	inode->i_wb_frn_winner = 0;
440 	inode->i_wb_frn_avg_time = 0;
441 	inode->i_wb_frn_history = 0;
442 	switched = true;
443 skip_switch:
444 	/*
445 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 	 */
448 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449 
450 	spin_unlock_irq(&mapping->tree_lock);
451 	spin_unlock(&inode->i_lock);
452 	spin_unlock(&new_wb->list_lock);
453 	spin_unlock(&old_wb->list_lock);
454 
455 	up_read(&bdi->wb_switch_rwsem);
456 
457 	if (switched) {
458 		wb_wakeup(new_wb);
459 		wb_put(old_wb);
460 	}
461 	wb_put(new_wb);
462 
463 	iput(inode);
464 	kfree(isw);
465 
466 	atomic_dec(&isw_nr_in_flight);
467 }
468 
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 				struct inode_switch_wbs_context, rcu_head);
473 
474 	/* needs to grab bh-unsafe locks, bounce to work item */
475 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 	queue_work(isw_wq, &isw->work);
477 }
478 
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
inode_switch_wbs(struct inode * inode,int new_wb_id)487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489 	struct backing_dev_info *bdi = inode_to_bdi(inode);
490 	struct cgroup_subsys_state *memcg_css;
491 	struct inode_switch_wbs_context *isw;
492 
493 	/* noop if seems to be already in progress */
494 	if (inode->i_state & I_WB_SWITCH)
495 		return;
496 
497 	/*
498 	 * Avoid starting new switches while sync_inodes_sb() is in
499 	 * progress.  Otherwise, if the down_write protected issue path
500 	 * blocks heavily, we might end up starting a large number of
501 	 * switches which will block on the rwsem.
502 	 */
503 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 		return;
505 
506 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 	if (!isw)
508 		goto out_unlock;
509 
510 	/* find and pin the new wb */
511 	rcu_read_lock();
512 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 	if (memcg_css)
514 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 	rcu_read_unlock();
516 	if (!isw->new_wb)
517 		goto out_free;
518 
519 	/* while holding I_WB_SWITCH, no one else can update the association */
520 	spin_lock(&inode->i_lock);
521 	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 	    inode_to_wb(inode) == isw->new_wb) {
524 		spin_unlock(&inode->i_lock);
525 		goto out_free;
526 	}
527 	inode->i_state |= I_WB_SWITCH;
528 	__iget(inode);
529 	spin_unlock(&inode->i_lock);
530 
531 	isw->inode = inode;
532 
533 	/*
534 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
535 	 * the RCU protected stat update paths to grab the mapping's
536 	 * tree_lock so that stat transfer can synchronize against them.
537 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 	 */
539 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540 
541 	atomic_inc(&isw_nr_in_flight);
542 
543 	goto out_unlock;
544 
545 out_free:
546 	if (isw->new_wb)
547 		wb_put(isw->new_wb);
548 	kfree(isw);
549 out_unlock:
550 	up_read(&bdi->wb_switch_rwsem);
551 }
552 
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564 				 struct inode *inode)
565 {
566 	if (!inode_cgwb_enabled(inode)) {
567 		spin_unlock(&inode->i_lock);
568 		return;
569 	}
570 
571 	wbc->wb = inode_to_wb(inode);
572 	wbc->inode = inode;
573 
574 	wbc->wb_id = wbc->wb->memcg_css->id;
575 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
576 	wbc->wb_tcand_id = 0;
577 	wbc->wb_bytes = 0;
578 	wbc->wb_lcand_bytes = 0;
579 	wbc->wb_tcand_bytes = 0;
580 
581 	wb_get(wbc->wb);
582 	spin_unlock(&inode->i_lock);
583 
584 	/*
585 	 * A dying wb indicates that either the blkcg associated with the
586 	 * memcg changed or the associated memcg is dying.  In the first
587 	 * case, a replacement wb should already be available and we should
588 	 * refresh the wb immediately.  In the second case, trying to
589 	 * refresh will keep failing.
590 	 */
591 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
592 		inode_switch_wbs(inode, wbc->wb_id);
593 }
594 
595 /**
596  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
597  * @wbc: writeback_control of the just finished writeback
598  *
599  * To be called after a writeback attempt of an inode finishes and undoes
600  * wbc_attach_and_unlock_inode().  Can be called under any context.
601  *
602  * As concurrent write sharing of an inode is expected to be very rare and
603  * memcg only tracks page ownership on first-use basis severely confining
604  * the usefulness of such sharing, cgroup writeback tracks ownership
605  * per-inode.  While the support for concurrent write sharing of an inode
606  * is deemed unnecessary, an inode being written to by different cgroups at
607  * different points in time is a lot more common, and, more importantly,
608  * charging only by first-use can too readily lead to grossly incorrect
609  * behaviors (single foreign page can lead to gigabytes of writeback to be
610  * incorrectly attributed).
611  *
612  * To resolve this issue, cgroup writeback detects the majority dirtier of
613  * an inode and transfers the ownership to it.  To avoid unnnecessary
614  * oscillation, the detection mechanism keeps track of history and gives
615  * out the switch verdict only if the foreign usage pattern is stable over
616  * a certain amount of time and/or writeback attempts.
617  *
618  * On each writeback attempt, @wbc tries to detect the majority writer
619  * using Boyer-Moore majority vote algorithm.  In addition to the byte
620  * count from the majority voting, it also counts the bytes written for the
621  * current wb and the last round's winner wb (max of last round's current
622  * wb, the winner from two rounds ago, and the last round's majority
623  * candidate).  Keeping track of the historical winner helps the algorithm
624  * to semi-reliably detect the most active writer even when it's not the
625  * absolute majority.
626  *
627  * Once the winner of the round is determined, whether the winner is
628  * foreign or not and how much IO time the round consumed is recorded in
629  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
630  * over a certain threshold, the switch verdict is given.
631  */
wbc_detach_inode(struct writeback_control * wbc)632 void wbc_detach_inode(struct writeback_control *wbc)
633 {
634 	struct bdi_writeback *wb = wbc->wb;
635 	struct inode *inode = wbc->inode;
636 	unsigned long avg_time, max_bytes, max_time;
637 	u16 history;
638 	int max_id;
639 
640 	if (!wb)
641 		return;
642 
643 	history = inode->i_wb_frn_history;
644 	avg_time = inode->i_wb_frn_avg_time;
645 
646 	/* pick the winner of this round */
647 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
648 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
649 		max_id = wbc->wb_id;
650 		max_bytes = wbc->wb_bytes;
651 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
652 		max_id = wbc->wb_lcand_id;
653 		max_bytes = wbc->wb_lcand_bytes;
654 	} else {
655 		max_id = wbc->wb_tcand_id;
656 		max_bytes = wbc->wb_tcand_bytes;
657 	}
658 
659 	/*
660 	 * Calculate the amount of IO time the winner consumed and fold it
661 	 * into the running average kept per inode.  If the consumed IO
662 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
663 	 * deciding whether to switch or not.  This is to prevent one-off
664 	 * small dirtiers from skewing the verdict.
665 	 */
666 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
667 				wb->avg_write_bandwidth);
668 	if (avg_time)
669 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
670 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
671 	else
672 		avg_time = max_time;	/* immediate catch up on first run */
673 
674 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
675 		int slots;
676 
677 		/*
678 		 * The switch verdict is reached if foreign wb's consume
679 		 * more than a certain proportion of IO time in a
680 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
681 		 * history mask where each bit represents one sixteenth of
682 		 * the period.  Determine the number of slots to shift into
683 		 * history from @max_time.
684 		 */
685 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
686 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
687 		history <<= slots;
688 		if (wbc->wb_id != max_id)
689 			history |= (1U << slots) - 1;
690 
691 		/*
692 		 * Switch if the current wb isn't the consistent winner.
693 		 * If there are multiple closely competing dirtiers, the
694 		 * inode may switch across them repeatedly over time, which
695 		 * is okay.  The main goal is avoiding keeping an inode on
696 		 * the wrong wb for an extended period of time.
697 		 */
698 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699 			inode_switch_wbs(inode, max_id);
700 	}
701 
702 	/*
703 	 * Multiple instances of this function may race to update the
704 	 * following fields but we don't mind occassional inaccuracies.
705 	 */
706 	inode->i_wb_frn_winner = max_id;
707 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708 	inode->i_wb_frn_history = history;
709 
710 	wb_put(wbc->wb);
711 	wbc->wb = NULL;
712 }
713 
714 /**
715  * wbc_account_io - account IO issued during writeback
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)724 void wbc_account_io(struct writeback_control *wbc, struct page *page,
725 		    size_t bytes)
726 {
727 	struct cgroup_subsys_state *css;
728 	int id;
729 
730 	/*
731 	 * pageout() path doesn't attach @wbc to the inode being written
732 	 * out.  This is intentional as we don't want the function to block
733 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
734 	 * regular writeback instead of writing things out itself.
735 	 */
736 	if (!wbc->wb)
737 		return;
738 
739 	css = mem_cgroup_css_from_page(page);
740 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
741 	if (!(css->flags & CSS_ONLINE))
742 		return;
743 
744 	id = css->id;
745 
746 	if (id == wbc->wb_id) {
747 		wbc->wb_bytes += bytes;
748 		return;
749 	}
750 
751 	if (id == wbc->wb_lcand_id)
752 		wbc->wb_lcand_bytes += bytes;
753 
754 	/* Boyer-Moore majority vote algorithm */
755 	if (!wbc->wb_tcand_bytes)
756 		wbc->wb_tcand_id = id;
757 	if (id == wbc->wb_tcand_id)
758 		wbc->wb_tcand_bytes += bytes;
759 	else
760 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_io);
763 
764 /**
765  * inode_congested - test whether an inode is congested
766  * @inode: inode to test for congestion (may be NULL)
767  * @cong_bits: mask of WB_[a]sync_congested bits to test
768  *
769  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
770  * bits to test and the return value is the mask of set bits.
771  *
772  * If cgroup writeback is enabled for @inode, the congestion state is
773  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774  * associated with @inode is congested; otherwise, the root wb's congestion
775  * state is used.
776  *
777  * @inode is allowed to be NULL as this function is often called on
778  * mapping->host which is NULL for the swapper space.
779  */
inode_congested(struct inode * inode,int cong_bits)780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782 	/*
783 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
784 	 * Start transaction iff ->i_wb is visible.
785 	 */
786 	if (inode && inode_to_wb_is_valid(inode)) {
787 		struct bdi_writeback *wb;
788 		struct wb_lock_cookie lock_cookie = {};
789 		bool congested;
790 
791 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792 		congested = wb_congested(wb, cong_bits);
793 		unlocked_inode_to_wb_end(inode, &lock_cookie);
794 		return congested;
795 	}
796 
797 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800 
801 /**
802  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803  * @wb: target bdi_writeback to split @nr_pages to
804  * @nr_pages: number of pages to write for the whole bdi
805  *
806  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807  * relation to the total write bandwidth of all wb's w/ dirty inodes on
808  * @wb->bdi.
809  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812 	unsigned long this_bw = wb->avg_write_bandwidth;
813 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814 
815 	if (nr_pages == LONG_MAX)
816 		return LONG_MAX;
817 
818 	/*
819 	 * This may be called on clean wb's and proportional distribution
820 	 * may not make sense, just use the original @nr_pages in those
821 	 * cases.  In general, we wanna err on the side of writing more.
822 	 */
823 	if (!tot_bw || this_bw >= tot_bw)
824 		return nr_pages;
825 	else
826 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828 
829 /**
830  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831  * @bdi: target backing_dev_info
832  * @base_work: wb_writeback_work to issue
833  * @skip_if_busy: skip wb's which already have writeback in progress
834  *
835  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
837  * distributed to the busy wbs according to each wb's proportion in the
838  * total active write bandwidth of @bdi.
839  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841 				  struct wb_writeback_work *base_work,
842 				  bool skip_if_busy)
843 {
844 	struct bdi_writeback *last_wb = NULL;
845 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846 					      struct bdi_writeback, bdi_node);
847 
848 	might_sleep();
849 restart:
850 	rcu_read_lock();
851 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
853 		struct wb_writeback_work fallback_work;
854 		struct wb_writeback_work *work;
855 		long nr_pages;
856 
857 		if (last_wb) {
858 			wb_put(last_wb);
859 			last_wb = NULL;
860 		}
861 
862 		/* SYNC_ALL writes out I_DIRTY_TIME too */
863 		if (!wb_has_dirty_io(wb) &&
864 		    (base_work->sync_mode == WB_SYNC_NONE ||
865 		     list_empty(&wb->b_dirty_time)))
866 			continue;
867 		if (skip_if_busy && writeback_in_progress(wb))
868 			continue;
869 
870 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871 
872 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
873 		if (work) {
874 			*work = *base_work;
875 			work->nr_pages = nr_pages;
876 			work->auto_free = 1;
877 			wb_queue_work(wb, work);
878 			continue;
879 		}
880 
881 		/* alloc failed, execute synchronously using on-stack fallback */
882 		work = &fallback_work;
883 		*work = *base_work;
884 		work->nr_pages = nr_pages;
885 		work->auto_free = 0;
886 		work->done = &fallback_work_done;
887 
888 		wb_queue_work(wb, work);
889 
890 		/*
891 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
892 		 * continuing iteration from @wb after dropping and
893 		 * regrabbing rcu read lock.
894 		 */
895 		wb_get(wb);
896 		last_wb = wb;
897 
898 		rcu_read_unlock();
899 		wb_wait_for_completion(bdi, &fallback_work_done);
900 		goto restart;
901 	}
902 	rcu_read_unlock();
903 
904 	if (last_wb)
905 		wb_put(last_wb);
906 }
907 
908 /**
909  * cgroup_writeback_umount - flush inode wb switches for umount
910  *
911  * This function is called when a super_block is about to be destroyed and
912  * flushes in-flight inode wb switches.  An inode wb switch goes through
913  * RCU and then workqueue, so the two need to be flushed in order to ensure
914  * that all previously scheduled switches are finished.  As wb switches are
915  * rare occurrences and synchronize_rcu() can take a while, perform
916  * flushing iff wb switches are in flight.
917  */
cgroup_writeback_umount(void)918 void cgroup_writeback_umount(void)
919 {
920 	if (atomic_read(&isw_nr_in_flight)) {
921 		/*
922 		 * Use rcu_barrier() to wait for all pending callbacks to
923 		 * ensure that all in-flight wb switches are in the workqueue.
924 		 */
925 		rcu_barrier();
926 		flush_workqueue(isw_wq);
927 	}
928 }
929 
cgroup_writeback_init(void)930 static int __init cgroup_writeback_init(void)
931 {
932 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
933 	if (!isw_wq)
934 		return -ENOMEM;
935 	return 0;
936 }
937 fs_initcall(cgroup_writeback_init);
938 
939 #else	/* CONFIG_CGROUP_WRITEBACK */
940 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)941 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)942 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
943 
944 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)945 locked_inode_to_wb_and_lock_list(struct inode *inode)
946 	__releases(&inode->i_lock)
947 	__acquires(&wb->list_lock)
948 {
949 	struct bdi_writeback *wb = inode_to_wb(inode);
950 
951 	spin_unlock(&inode->i_lock);
952 	spin_lock(&wb->list_lock);
953 	return wb;
954 }
955 
inode_to_wb_and_lock_list(struct inode * inode)956 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
957 	__acquires(&wb->list_lock)
958 {
959 	struct bdi_writeback *wb = inode_to_wb(inode);
960 
961 	spin_lock(&wb->list_lock);
962 	return wb;
963 }
964 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)965 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
966 {
967 	return nr_pages;
968 }
969 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971 				  struct wb_writeback_work *base_work,
972 				  bool skip_if_busy)
973 {
974 	might_sleep();
975 
976 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
977 		base_work->auto_free = 0;
978 		wb_queue_work(&bdi->wb, base_work);
979 	}
980 }
981 
982 #endif	/* CONFIG_CGROUP_WRITEBACK */
983 
wb_start_writeback(struct bdi_writeback * wb,long nr_pages,bool range_cyclic,enum wb_reason reason)984 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
985 			bool range_cyclic, enum wb_reason reason)
986 {
987 	struct wb_writeback_work *work;
988 
989 	if (!wb_has_dirty_io(wb))
990 		return;
991 
992 	/*
993 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
994 	 * wakeup the thread for old dirty data writeback
995 	 */
996 	work = kzalloc(sizeof(*work),
997 		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
998 	if (!work) {
999 		trace_writeback_nowork(wb);
1000 		wb_wakeup(wb);
1001 		return;
1002 	}
1003 
1004 	work->sync_mode	= WB_SYNC_NONE;
1005 	work->nr_pages	= nr_pages;
1006 	work->range_cyclic = range_cyclic;
1007 	work->reason	= reason;
1008 	work->auto_free	= 1;
1009 
1010 	wb_queue_work(wb, work);
1011 }
1012 
1013 /**
1014  * wb_start_background_writeback - start background writeback
1015  * @wb: bdi_writback to write from
1016  *
1017  * Description:
1018  *   This makes sure WB_SYNC_NONE background writeback happens. When
1019  *   this function returns, it is only guaranteed that for given wb
1020  *   some IO is happening if we are over background dirty threshold.
1021  *   Caller need not hold sb s_umount semaphore.
1022  */
wb_start_background_writeback(struct bdi_writeback * wb)1023 void wb_start_background_writeback(struct bdi_writeback *wb)
1024 {
1025 	/*
1026 	 * We just wake up the flusher thread. It will perform background
1027 	 * writeback as soon as there is no other work to do.
1028 	 */
1029 	trace_writeback_wake_background(wb);
1030 	wb_wakeup(wb);
1031 }
1032 
1033 /*
1034  * Remove the inode from the writeback list it is on.
1035  */
inode_io_list_del(struct inode * inode)1036 void inode_io_list_del(struct inode *inode)
1037 {
1038 	struct bdi_writeback *wb;
1039 
1040 	wb = inode_to_wb_and_lock_list(inode);
1041 	inode_io_list_del_locked(inode, wb);
1042 	spin_unlock(&wb->list_lock);
1043 }
1044 
1045 /*
1046  * mark an inode as under writeback on the sb
1047  */
sb_mark_inode_writeback(struct inode * inode)1048 void sb_mark_inode_writeback(struct inode *inode)
1049 {
1050 	struct super_block *sb = inode->i_sb;
1051 	unsigned long flags;
1052 
1053 	if (list_empty(&inode->i_wb_list)) {
1054 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055 		if (list_empty(&inode->i_wb_list)) {
1056 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1057 			trace_sb_mark_inode_writeback(inode);
1058 		}
1059 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1060 	}
1061 }
1062 
1063 /*
1064  * clear an inode as under writeback on the sb
1065  */
sb_clear_inode_writeback(struct inode * inode)1066 void sb_clear_inode_writeback(struct inode *inode)
1067 {
1068 	struct super_block *sb = inode->i_sb;
1069 	unsigned long flags;
1070 
1071 	if (!list_empty(&inode->i_wb_list)) {
1072 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1073 		if (!list_empty(&inode->i_wb_list)) {
1074 			list_del_init(&inode->i_wb_list);
1075 			trace_sb_clear_inode_writeback(inode);
1076 		}
1077 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1078 	}
1079 }
1080 
1081 /*
1082  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1083  * furthest end of its superblock's dirty-inode list.
1084  *
1085  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1086  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1087  * the case then the inode must have been redirtied while it was being written
1088  * out and we don't reset its dirtied_when.
1089  */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1090 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1091 {
1092 	if (!list_empty(&wb->b_dirty)) {
1093 		struct inode *tail;
1094 
1095 		tail = wb_inode(wb->b_dirty.next);
1096 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1097 			inode->dirtied_when = jiffies;
1098 	}
1099 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1100 }
1101 
1102 /*
1103  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1104  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1105 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1106 {
1107 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1108 }
1109 
inode_sync_complete(struct inode * inode)1110 static void inode_sync_complete(struct inode *inode)
1111 {
1112 	inode->i_state &= ~I_SYNC;
1113 	/* If inode is clean an unused, put it into LRU now... */
1114 	inode_add_lru(inode);
1115 	/* Waiters must see I_SYNC cleared before being woken up */
1116 	smp_mb();
1117 	wake_up_bit(&inode->i_state, __I_SYNC);
1118 }
1119 
inode_dirtied_after(struct inode * inode,unsigned long t)1120 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1121 {
1122 	bool ret = time_after(inode->dirtied_when, t);
1123 #ifndef CONFIG_64BIT
1124 	/*
1125 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1126 	 * It _appears_ to be in the future, but is actually in distant past.
1127 	 * This test is necessary to prevent such wrapped-around relative times
1128 	 * from permanently stopping the whole bdi writeback.
1129 	 */
1130 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1131 #endif
1132 	return ret;
1133 }
1134 
1135 #define EXPIRE_DIRTY_ATIME 0x0001
1136 
1137 /*
1138  * Move expired (dirtied before work->older_than_this) dirty inodes from
1139  * @delaying_queue to @dispatch_queue.
1140  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,struct wb_writeback_work * work)1141 static int move_expired_inodes(struct list_head *delaying_queue,
1142 			       struct list_head *dispatch_queue,
1143 			       int flags,
1144 			       struct wb_writeback_work *work)
1145 {
1146 	unsigned long *older_than_this = NULL;
1147 	unsigned long expire_time;
1148 	LIST_HEAD(tmp);
1149 	struct list_head *pos, *node;
1150 	struct super_block *sb = NULL;
1151 	struct inode *inode;
1152 	int do_sb_sort = 0;
1153 	int moved = 0;
1154 
1155 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1156 		older_than_this = work->older_than_this;
1157 	else if (!work->for_sync) {
1158 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1159 		older_than_this = &expire_time;
1160 	}
1161 	while (!list_empty(delaying_queue)) {
1162 		inode = wb_inode(delaying_queue->prev);
1163 		if (older_than_this &&
1164 		    inode_dirtied_after(inode, *older_than_this))
1165 			break;
1166 		list_move(&inode->i_io_list, &tmp);
1167 		moved++;
1168 		if (flags & EXPIRE_DIRTY_ATIME)
1169 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1170 		if (sb_is_blkdev_sb(inode->i_sb))
1171 			continue;
1172 		if (sb && sb != inode->i_sb)
1173 			do_sb_sort = 1;
1174 		sb = inode->i_sb;
1175 	}
1176 
1177 	/* just one sb in list, splice to dispatch_queue and we're done */
1178 	if (!do_sb_sort) {
1179 		list_splice(&tmp, dispatch_queue);
1180 		goto out;
1181 	}
1182 
1183 	/* Move inodes from one superblock together */
1184 	while (!list_empty(&tmp)) {
1185 		sb = wb_inode(tmp.prev)->i_sb;
1186 		list_for_each_prev_safe(pos, node, &tmp) {
1187 			inode = wb_inode(pos);
1188 			if (inode->i_sb == sb)
1189 				list_move(&inode->i_io_list, dispatch_queue);
1190 		}
1191 	}
1192 out:
1193 	return moved;
1194 }
1195 
1196 /*
1197  * Queue all expired dirty inodes for io, eldest first.
1198  * Before
1199  *         newly dirtied     b_dirty    b_io    b_more_io
1200  *         =============>    gf         edc     BA
1201  * After
1202  *         newly dirtied     b_dirty    b_io    b_more_io
1203  *         =============>    g          fBAedc
1204  *                                           |
1205  *                                           +--> dequeue for IO
1206  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)1207 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1208 {
1209 	int moved;
1210 
1211 	assert_spin_locked(&wb->list_lock);
1212 	list_splice_init(&wb->b_more_io, &wb->b_io);
1213 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1214 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1215 				     EXPIRE_DIRTY_ATIME, work);
1216 	if (moved)
1217 		wb_io_lists_populated(wb);
1218 	trace_writeback_queue_io(wb, work, moved);
1219 }
1220 
write_inode(struct inode * inode,struct writeback_control * wbc)1221 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1222 {
1223 	int ret;
1224 
1225 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1226 		trace_writeback_write_inode_start(inode, wbc);
1227 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1228 		trace_writeback_write_inode(inode, wbc);
1229 		return ret;
1230 	}
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Wait for writeback on an inode to complete. Called with i_lock held.
1236  * Caller must make sure inode cannot go away when we drop i_lock.
1237  */
__inode_wait_for_writeback(struct inode * inode)1238 static void __inode_wait_for_writeback(struct inode *inode)
1239 	__releases(inode->i_lock)
1240 	__acquires(inode->i_lock)
1241 {
1242 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1243 	wait_queue_head_t *wqh;
1244 
1245 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1246 	while (inode->i_state & I_SYNC) {
1247 		spin_unlock(&inode->i_lock);
1248 		__wait_on_bit(wqh, &wq, bit_wait,
1249 			      TASK_UNINTERRUPTIBLE);
1250 		spin_lock(&inode->i_lock);
1251 	}
1252 }
1253 
1254 /*
1255  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1256  */
inode_wait_for_writeback(struct inode * inode)1257 void inode_wait_for_writeback(struct inode *inode)
1258 {
1259 	spin_lock(&inode->i_lock);
1260 	__inode_wait_for_writeback(inode);
1261 	spin_unlock(&inode->i_lock);
1262 }
1263 
1264 /*
1265  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1266  * held and drops it. It is aimed for callers not holding any inode reference
1267  * so once i_lock is dropped, inode can go away.
1268  */
inode_sleep_on_writeback(struct inode * inode)1269 static void inode_sleep_on_writeback(struct inode *inode)
1270 	__releases(inode->i_lock)
1271 {
1272 	DEFINE_WAIT(wait);
1273 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1274 	int sleep;
1275 
1276 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1277 	sleep = inode->i_state & I_SYNC;
1278 	spin_unlock(&inode->i_lock);
1279 	if (sleep)
1280 		schedule();
1281 	finish_wait(wqh, &wait);
1282 }
1283 
1284 /*
1285  * Find proper writeback list for the inode depending on its current state and
1286  * possibly also change of its state while we were doing writeback.  Here we
1287  * handle things such as livelock prevention or fairness of writeback among
1288  * inodes. This function can be called only by flusher thread - noone else
1289  * processes all inodes in writeback lists and requeueing inodes behind flusher
1290  * thread's back can have unexpected consequences.
1291  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1292 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1293 			  struct writeback_control *wbc)
1294 {
1295 	if (inode->i_state & I_FREEING)
1296 		return;
1297 
1298 	/*
1299 	 * Sync livelock prevention. Each inode is tagged and synced in one
1300 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1301 	 * the dirty time to prevent enqueue and sync it again.
1302 	 */
1303 	if ((inode->i_state & I_DIRTY) &&
1304 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1305 		inode->dirtied_when = jiffies;
1306 
1307 	if (wbc->pages_skipped) {
1308 		/*
1309 		 * writeback is not making progress due to locked
1310 		 * buffers. Skip this inode for now.
1311 		 */
1312 		redirty_tail(inode, wb);
1313 		return;
1314 	}
1315 
1316 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1317 		/*
1318 		 * We didn't write back all the pages.  nfs_writepages()
1319 		 * sometimes bales out without doing anything.
1320 		 */
1321 		if (wbc->nr_to_write <= 0) {
1322 			/* Slice used up. Queue for next turn. */
1323 			requeue_io(inode, wb);
1324 		} else {
1325 			/*
1326 			 * Writeback blocked by something other than
1327 			 * congestion. Delay the inode for some time to
1328 			 * avoid spinning on the CPU (100% iowait)
1329 			 * retrying writeback of the dirty page/inode
1330 			 * that cannot be performed immediately.
1331 			 */
1332 			redirty_tail(inode, wb);
1333 		}
1334 	} else if (inode->i_state & I_DIRTY) {
1335 		/*
1336 		 * Filesystems can dirty the inode during writeback operations,
1337 		 * such as delayed allocation during submission or metadata
1338 		 * updates after data IO completion.
1339 		 */
1340 		redirty_tail(inode, wb);
1341 	} else if (inode->i_state & I_DIRTY_TIME) {
1342 		inode->dirtied_when = jiffies;
1343 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1344 	} else {
1345 		/* The inode is clean. Remove from writeback lists. */
1346 		inode_io_list_del_locked(inode, wb);
1347 	}
1348 }
1349 
1350 /*
1351  * Write out an inode and its dirty pages. Do not update the writeback list
1352  * linkage. That is left to the caller. The caller is also responsible for
1353  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1354  */
1355 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1356 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1357 {
1358 	struct address_space *mapping = inode->i_mapping;
1359 	long nr_to_write = wbc->nr_to_write;
1360 	unsigned dirty;
1361 	int ret;
1362 
1363 	WARN_ON(!(inode->i_state & I_SYNC));
1364 
1365 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1366 
1367 	ret = do_writepages(mapping, wbc);
1368 
1369 	/*
1370 	 * Make sure to wait on the data before writing out the metadata.
1371 	 * This is important for filesystems that modify metadata on data
1372 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1373 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1374 	 * inode metadata is written back correctly.
1375 	 */
1376 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1377 		int err = filemap_fdatawait(mapping);
1378 		if (ret == 0)
1379 			ret = err;
1380 	}
1381 
1382 	/*
1383 	 * Some filesystems may redirty the inode during the writeback
1384 	 * due to delalloc, clear dirty metadata flags right before
1385 	 * write_inode()
1386 	 */
1387 	spin_lock(&inode->i_lock);
1388 
1389 	dirty = inode->i_state & I_DIRTY;
1390 	if (inode->i_state & I_DIRTY_TIME) {
1391 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1392 		    wbc->sync_mode == WB_SYNC_ALL ||
1393 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1394 		    unlikely(time_after(jiffies,
1395 					(inode->dirtied_time_when +
1396 					 dirtytime_expire_interval * HZ)))) {
1397 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1398 			trace_writeback_lazytime(inode);
1399 		}
1400 	} else
1401 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1402 	inode->i_state &= ~dirty;
1403 
1404 	/*
1405 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1406 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1407 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1408 	 * inode.
1409 	 *
1410 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1411 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1412 	 * necessary.  This guarantees that either __mark_inode_dirty()
1413 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1414 	 */
1415 	smp_mb();
1416 
1417 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1418 		inode->i_state |= I_DIRTY_PAGES;
1419 
1420 	spin_unlock(&inode->i_lock);
1421 
1422 	if (dirty & I_DIRTY_TIME)
1423 		mark_inode_dirty_sync(inode);
1424 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1425 	if (dirty & ~I_DIRTY_PAGES) {
1426 		int err = write_inode(inode, wbc);
1427 		if (ret == 0)
1428 			ret = err;
1429 	}
1430 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Write out an inode's dirty pages. Either the caller has an active reference
1436  * on the inode or the inode has I_WILL_FREE set.
1437  *
1438  * This function is designed to be called for writing back one inode which
1439  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1440  * and does more profound writeback list handling in writeback_sb_inodes().
1441  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1442 static int writeback_single_inode(struct inode *inode,
1443 				  struct writeback_control *wbc)
1444 {
1445 	struct bdi_writeback *wb;
1446 	int ret = 0;
1447 
1448 	spin_lock(&inode->i_lock);
1449 	if (!atomic_read(&inode->i_count))
1450 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1451 	else
1452 		WARN_ON(inode->i_state & I_WILL_FREE);
1453 
1454 	if (inode->i_state & I_SYNC) {
1455 		if (wbc->sync_mode != WB_SYNC_ALL)
1456 			goto out;
1457 		/*
1458 		 * It's a data-integrity sync. We must wait. Since callers hold
1459 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1460 		 * away under us.
1461 		 */
1462 		__inode_wait_for_writeback(inode);
1463 	}
1464 	WARN_ON(inode->i_state & I_SYNC);
1465 	/*
1466 	 * Skip inode if it is clean and we have no outstanding writeback in
1467 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1468 	 * function since flusher thread may be doing for example sync in
1469 	 * parallel and if we move the inode, it could get skipped. So here we
1470 	 * make sure inode is on some writeback list and leave it there unless
1471 	 * we have completely cleaned the inode.
1472 	 */
1473 	if (!(inode->i_state & I_DIRTY_ALL) &&
1474 	    (wbc->sync_mode != WB_SYNC_ALL ||
1475 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1476 		goto out;
1477 	inode->i_state |= I_SYNC;
1478 	wbc_attach_and_unlock_inode(wbc, inode);
1479 
1480 	ret = __writeback_single_inode(inode, wbc);
1481 
1482 	wbc_detach_inode(wbc);
1483 
1484 	wb = inode_to_wb_and_lock_list(inode);
1485 	spin_lock(&inode->i_lock);
1486 	/*
1487 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1488 	 * touch it. See comment above for explanation.
1489 	 */
1490 	if (!(inode->i_state & I_DIRTY_ALL))
1491 		inode_io_list_del_locked(inode, wb);
1492 	spin_unlock(&wb->list_lock);
1493 	inode_sync_complete(inode);
1494 out:
1495 	spin_unlock(&inode->i_lock);
1496 	return ret;
1497 }
1498 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1499 static long writeback_chunk_size(struct bdi_writeback *wb,
1500 				 struct wb_writeback_work *work)
1501 {
1502 	long pages;
1503 
1504 	/*
1505 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1506 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1507 	 * here avoids calling into writeback_inodes_wb() more than once.
1508 	 *
1509 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1510 	 *
1511 	 *      wb_writeback()
1512 	 *          writeback_sb_inodes()       <== called only once
1513 	 *              write_cache_pages()     <== called once for each inode
1514 	 *                   (quickly) tag currently dirty pages
1515 	 *                   (maybe slowly) sync all tagged pages
1516 	 */
1517 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1518 		pages = LONG_MAX;
1519 	else {
1520 		pages = min(wb->avg_write_bandwidth / 2,
1521 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1522 		pages = min(pages, work->nr_pages);
1523 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1524 				   MIN_WRITEBACK_PAGES);
1525 	}
1526 
1527 	return pages;
1528 }
1529 
1530 /*
1531  * Write a portion of b_io inodes which belong to @sb.
1532  *
1533  * Return the number of pages and/or inodes written.
1534  *
1535  * NOTE! This is called with wb->list_lock held, and will
1536  * unlock and relock that for each inode it ends up doing
1537  * IO for.
1538  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1539 static long writeback_sb_inodes(struct super_block *sb,
1540 				struct bdi_writeback *wb,
1541 				struct wb_writeback_work *work)
1542 {
1543 	struct writeback_control wbc = {
1544 		.sync_mode		= work->sync_mode,
1545 		.tagged_writepages	= work->tagged_writepages,
1546 		.for_kupdate		= work->for_kupdate,
1547 		.for_background		= work->for_background,
1548 		.for_sync		= work->for_sync,
1549 		.range_cyclic		= work->range_cyclic,
1550 		.range_start		= 0,
1551 		.range_end		= LLONG_MAX,
1552 	};
1553 	unsigned long start_time = jiffies;
1554 	long write_chunk;
1555 	long wrote = 0;  /* count both pages and inodes */
1556 
1557 	while (!list_empty(&wb->b_io)) {
1558 		struct inode *inode = wb_inode(wb->b_io.prev);
1559 		struct bdi_writeback *tmp_wb;
1560 
1561 		if (inode->i_sb != sb) {
1562 			if (work->sb) {
1563 				/*
1564 				 * We only want to write back data for this
1565 				 * superblock, move all inodes not belonging
1566 				 * to it back onto the dirty list.
1567 				 */
1568 				redirty_tail(inode, wb);
1569 				continue;
1570 			}
1571 
1572 			/*
1573 			 * The inode belongs to a different superblock.
1574 			 * Bounce back to the caller to unpin this and
1575 			 * pin the next superblock.
1576 			 */
1577 			break;
1578 		}
1579 
1580 		/*
1581 		 * Don't bother with new inodes or inodes being freed, first
1582 		 * kind does not need periodic writeout yet, and for the latter
1583 		 * kind writeout is handled by the freer.
1584 		 */
1585 		spin_lock(&inode->i_lock);
1586 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1587 			spin_unlock(&inode->i_lock);
1588 			redirty_tail(inode, wb);
1589 			continue;
1590 		}
1591 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1592 			/*
1593 			 * If this inode is locked for writeback and we are not
1594 			 * doing writeback-for-data-integrity, move it to
1595 			 * b_more_io so that writeback can proceed with the
1596 			 * other inodes on s_io.
1597 			 *
1598 			 * We'll have another go at writing back this inode
1599 			 * when we completed a full scan of b_io.
1600 			 */
1601 			spin_unlock(&inode->i_lock);
1602 			requeue_io(inode, wb);
1603 			trace_writeback_sb_inodes_requeue(inode);
1604 			continue;
1605 		}
1606 		spin_unlock(&wb->list_lock);
1607 
1608 		/*
1609 		 * We already requeued the inode if it had I_SYNC set and we
1610 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1611 		 * WB_SYNC_ALL case.
1612 		 */
1613 		if (inode->i_state & I_SYNC) {
1614 			/* Wait for I_SYNC. This function drops i_lock... */
1615 			inode_sleep_on_writeback(inode);
1616 			/* Inode may be gone, start again */
1617 			spin_lock(&wb->list_lock);
1618 			continue;
1619 		}
1620 		inode->i_state |= I_SYNC;
1621 		wbc_attach_and_unlock_inode(&wbc, inode);
1622 
1623 		write_chunk = writeback_chunk_size(wb, work);
1624 		wbc.nr_to_write = write_chunk;
1625 		wbc.pages_skipped = 0;
1626 
1627 		/*
1628 		 * We use I_SYNC to pin the inode in memory. While it is set
1629 		 * evict_inode() will wait so the inode cannot be freed.
1630 		 */
1631 		__writeback_single_inode(inode, &wbc);
1632 
1633 		wbc_detach_inode(&wbc);
1634 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1635 		wrote += write_chunk - wbc.nr_to_write;
1636 
1637 		if (need_resched()) {
1638 			/*
1639 			 * We're trying to balance between building up a nice
1640 			 * long list of IOs to improve our merge rate, and
1641 			 * getting those IOs out quickly for anyone throttling
1642 			 * in balance_dirty_pages().  cond_resched() doesn't
1643 			 * unplug, so get our IOs out the door before we
1644 			 * give up the CPU.
1645 			 */
1646 			blk_flush_plug(current);
1647 			cond_resched();
1648 		}
1649 
1650 		/*
1651 		 * Requeue @inode if still dirty.  Be careful as @inode may
1652 		 * have been switched to another wb in the meantime.
1653 		 */
1654 		tmp_wb = inode_to_wb_and_lock_list(inode);
1655 		spin_lock(&inode->i_lock);
1656 		if (!(inode->i_state & I_DIRTY_ALL))
1657 			wrote++;
1658 		requeue_inode(inode, tmp_wb, &wbc);
1659 		inode_sync_complete(inode);
1660 		spin_unlock(&inode->i_lock);
1661 
1662 		if (unlikely(tmp_wb != wb)) {
1663 			spin_unlock(&tmp_wb->list_lock);
1664 			spin_lock(&wb->list_lock);
1665 		}
1666 
1667 		/*
1668 		 * bail out to wb_writeback() often enough to check
1669 		 * background threshold and other termination conditions.
1670 		 */
1671 		if (wrote) {
1672 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1673 				break;
1674 			if (work->nr_pages <= 0)
1675 				break;
1676 		}
1677 	}
1678 	return wrote;
1679 }
1680 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1681 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1682 				  struct wb_writeback_work *work)
1683 {
1684 	unsigned long start_time = jiffies;
1685 	long wrote = 0;
1686 
1687 	while (!list_empty(&wb->b_io)) {
1688 		struct inode *inode = wb_inode(wb->b_io.prev);
1689 		struct super_block *sb = inode->i_sb;
1690 
1691 		if (!trylock_super(sb)) {
1692 			/*
1693 			 * trylock_super() may fail consistently due to
1694 			 * s_umount being grabbed by someone else. Don't use
1695 			 * requeue_io() to avoid busy retrying the inode/sb.
1696 			 */
1697 			redirty_tail(inode, wb);
1698 			continue;
1699 		}
1700 		wrote += writeback_sb_inodes(sb, wb, work);
1701 		up_read(&sb->s_umount);
1702 
1703 		/* refer to the same tests at the end of writeback_sb_inodes */
1704 		if (wrote) {
1705 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1706 				break;
1707 			if (work->nr_pages <= 0)
1708 				break;
1709 		}
1710 	}
1711 	/* Leave any unwritten inodes on b_io */
1712 	return wrote;
1713 }
1714 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1715 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1716 				enum wb_reason reason)
1717 {
1718 	struct wb_writeback_work work = {
1719 		.nr_pages	= nr_pages,
1720 		.sync_mode	= WB_SYNC_NONE,
1721 		.range_cyclic	= 1,
1722 		.reason		= reason,
1723 	};
1724 	struct blk_plug plug;
1725 
1726 	blk_start_plug(&plug);
1727 	spin_lock(&wb->list_lock);
1728 	if (list_empty(&wb->b_io))
1729 		queue_io(wb, &work);
1730 	__writeback_inodes_wb(wb, &work);
1731 	spin_unlock(&wb->list_lock);
1732 	blk_finish_plug(&plug);
1733 
1734 	return nr_pages - work.nr_pages;
1735 }
1736 
1737 /*
1738  * Explicit flushing or periodic writeback of "old" data.
1739  *
1740  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1741  * dirtying-time in the inode's address_space.  So this periodic writeback code
1742  * just walks the superblock inode list, writing back any inodes which are
1743  * older than a specific point in time.
1744  *
1745  * Try to run once per dirty_writeback_interval.  But if a writeback event
1746  * takes longer than a dirty_writeback_interval interval, then leave a
1747  * one-second gap.
1748  *
1749  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1750  * all dirty pages if they are all attached to "old" mappings.
1751  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1752 static long wb_writeback(struct bdi_writeback *wb,
1753 			 struct wb_writeback_work *work)
1754 {
1755 	unsigned long wb_start = jiffies;
1756 	long nr_pages = work->nr_pages;
1757 	unsigned long oldest_jif;
1758 	struct inode *inode;
1759 	long progress;
1760 	struct blk_plug plug;
1761 
1762 	oldest_jif = jiffies;
1763 	work->older_than_this = &oldest_jif;
1764 
1765 	blk_start_plug(&plug);
1766 	spin_lock(&wb->list_lock);
1767 	for (;;) {
1768 		/*
1769 		 * Stop writeback when nr_pages has been consumed
1770 		 */
1771 		if (work->nr_pages <= 0)
1772 			break;
1773 
1774 		/*
1775 		 * Background writeout and kupdate-style writeback may
1776 		 * run forever. Stop them if there is other work to do
1777 		 * so that e.g. sync can proceed. They'll be restarted
1778 		 * after the other works are all done.
1779 		 */
1780 		if ((work->for_background || work->for_kupdate) &&
1781 		    !list_empty(&wb->work_list))
1782 			break;
1783 
1784 		/*
1785 		 * For background writeout, stop when we are below the
1786 		 * background dirty threshold
1787 		 */
1788 		if (work->for_background && !wb_over_bg_thresh(wb))
1789 			break;
1790 
1791 		/*
1792 		 * Kupdate and background works are special and we want to
1793 		 * include all inodes that need writing. Livelock avoidance is
1794 		 * handled by these works yielding to any other work so we are
1795 		 * safe.
1796 		 */
1797 		if (work->for_kupdate) {
1798 			oldest_jif = jiffies -
1799 				msecs_to_jiffies(dirty_expire_interval * 10);
1800 		} else if (work->for_background)
1801 			oldest_jif = jiffies;
1802 
1803 		trace_writeback_start(wb, work);
1804 		if (list_empty(&wb->b_io))
1805 			queue_io(wb, work);
1806 		if (work->sb)
1807 			progress = writeback_sb_inodes(work->sb, wb, work);
1808 		else
1809 			progress = __writeback_inodes_wb(wb, work);
1810 		trace_writeback_written(wb, work);
1811 
1812 		wb_update_bandwidth(wb, wb_start);
1813 
1814 		/*
1815 		 * Did we write something? Try for more
1816 		 *
1817 		 * Dirty inodes are moved to b_io for writeback in batches.
1818 		 * The completion of the current batch does not necessarily
1819 		 * mean the overall work is done. So we keep looping as long
1820 		 * as made some progress on cleaning pages or inodes.
1821 		 */
1822 		if (progress)
1823 			continue;
1824 		/*
1825 		 * No more inodes for IO, bail
1826 		 */
1827 		if (list_empty(&wb->b_more_io))
1828 			break;
1829 		/*
1830 		 * Nothing written. Wait for some inode to
1831 		 * become available for writeback. Otherwise
1832 		 * we'll just busyloop.
1833 		 */
1834 		trace_writeback_wait(wb, work);
1835 		inode = wb_inode(wb->b_more_io.prev);
1836 		spin_lock(&inode->i_lock);
1837 		spin_unlock(&wb->list_lock);
1838 		/* This function drops i_lock... */
1839 		inode_sleep_on_writeback(inode);
1840 		spin_lock(&wb->list_lock);
1841 	}
1842 	spin_unlock(&wb->list_lock);
1843 	blk_finish_plug(&plug);
1844 
1845 	return nr_pages - work->nr_pages;
1846 }
1847 
1848 /*
1849  * Return the next wb_writeback_work struct that hasn't been processed yet.
1850  */
get_next_work_item(struct bdi_writeback * wb)1851 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1852 {
1853 	struct wb_writeback_work *work = NULL;
1854 
1855 	spin_lock_bh(&wb->work_lock);
1856 	if (!list_empty(&wb->work_list)) {
1857 		work = list_entry(wb->work_list.next,
1858 				  struct wb_writeback_work, list);
1859 		list_del_init(&work->list);
1860 	}
1861 	spin_unlock_bh(&wb->work_lock);
1862 	return work;
1863 }
1864 
1865 /*
1866  * Add in the number of potentially dirty inodes, because each inode
1867  * write can dirty pagecache in the underlying blockdev.
1868  */
get_nr_dirty_pages(void)1869 static unsigned long get_nr_dirty_pages(void)
1870 {
1871 	return global_node_page_state(NR_FILE_DIRTY) +
1872 		global_node_page_state(NR_UNSTABLE_NFS) +
1873 		get_nr_dirty_inodes();
1874 }
1875 
wb_check_background_flush(struct bdi_writeback * wb)1876 static long wb_check_background_flush(struct bdi_writeback *wb)
1877 {
1878 	if (wb_over_bg_thresh(wb)) {
1879 
1880 		struct wb_writeback_work work = {
1881 			.nr_pages	= LONG_MAX,
1882 			.sync_mode	= WB_SYNC_NONE,
1883 			.for_background	= 1,
1884 			.range_cyclic	= 1,
1885 			.reason		= WB_REASON_BACKGROUND,
1886 		};
1887 
1888 		return wb_writeback(wb, &work);
1889 	}
1890 
1891 	return 0;
1892 }
1893 
wb_check_old_data_flush(struct bdi_writeback * wb)1894 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1895 {
1896 	unsigned long expired;
1897 	long nr_pages;
1898 
1899 	/*
1900 	 * When set to zero, disable periodic writeback
1901 	 */
1902 	if (!dirty_writeback_interval)
1903 		return 0;
1904 
1905 	expired = wb->last_old_flush +
1906 			msecs_to_jiffies(dirty_writeback_interval * 10);
1907 	if (time_before(jiffies, expired))
1908 		return 0;
1909 
1910 	wb->last_old_flush = jiffies;
1911 	nr_pages = get_nr_dirty_pages();
1912 
1913 	if (nr_pages) {
1914 		struct wb_writeback_work work = {
1915 			.nr_pages	= nr_pages,
1916 			.sync_mode	= WB_SYNC_NONE,
1917 			.for_kupdate	= 1,
1918 			.range_cyclic	= 1,
1919 			.reason		= WB_REASON_PERIODIC,
1920 		};
1921 
1922 		return wb_writeback(wb, &work);
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Retrieve work items and do the writeback they describe
1930  */
wb_do_writeback(struct bdi_writeback * wb)1931 static long wb_do_writeback(struct bdi_writeback *wb)
1932 {
1933 	struct wb_writeback_work *work;
1934 	long wrote = 0;
1935 
1936 	set_bit(WB_writeback_running, &wb->state);
1937 	while ((work = get_next_work_item(wb)) != NULL) {
1938 		trace_writeback_exec(wb, work);
1939 		wrote += wb_writeback(wb, work);
1940 		finish_writeback_work(wb, work);
1941 	}
1942 
1943 	/*
1944 	 * Check for periodic writeback, kupdated() style
1945 	 */
1946 	wrote += wb_check_old_data_flush(wb);
1947 	wrote += wb_check_background_flush(wb);
1948 	clear_bit(WB_writeback_running, &wb->state);
1949 
1950 	return wrote;
1951 }
1952 
1953 /*
1954  * Handle writeback of dirty data for the device backed by this bdi. Also
1955  * reschedules periodically and does kupdated style flushing.
1956  */
wb_workfn(struct work_struct * work)1957 void wb_workfn(struct work_struct *work)
1958 {
1959 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1960 						struct bdi_writeback, dwork);
1961 	long pages_written;
1962 
1963 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1964 	current->flags |= PF_SWAPWRITE;
1965 
1966 	if (likely(!current_is_workqueue_rescuer() ||
1967 		   !test_bit(WB_registered, &wb->state))) {
1968 		/*
1969 		 * The normal path.  Keep writing back @wb until its
1970 		 * work_list is empty.  Note that this path is also taken
1971 		 * if @wb is shutting down even when we're running off the
1972 		 * rescuer as work_list needs to be drained.
1973 		 */
1974 		do {
1975 			pages_written = wb_do_writeback(wb);
1976 			trace_writeback_pages_written(pages_written);
1977 		} while (!list_empty(&wb->work_list));
1978 	} else {
1979 		/*
1980 		 * bdi_wq can't get enough workers and we're running off
1981 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1982 		 * enough for efficient IO.
1983 		 */
1984 		pages_written = writeback_inodes_wb(wb, 1024,
1985 						    WB_REASON_FORKER_THREAD);
1986 		trace_writeback_pages_written(pages_written);
1987 	}
1988 
1989 	if (!list_empty(&wb->work_list))
1990 		wb_wakeup(wb);
1991 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1992 		wb_wakeup_delayed(wb);
1993 
1994 	current->flags &= ~PF_SWAPWRITE;
1995 }
1996 
1997 /*
1998  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1999  * the whole world.
2000  */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)2001 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
2002 {
2003 	struct backing_dev_info *bdi;
2004 
2005 	/*
2006 	 * If we are expecting writeback progress we must submit plugged IO.
2007 	 */
2008 	if (blk_needs_flush_plug(current))
2009 		blk_schedule_flush_plug(current);
2010 
2011 	if (!nr_pages)
2012 		nr_pages = get_nr_dirty_pages();
2013 
2014 	rcu_read_lock();
2015 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2016 		struct bdi_writeback *wb;
2017 
2018 		if (!bdi_has_dirty_io(bdi))
2019 			continue;
2020 
2021 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2022 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
2023 					   false, reason);
2024 	}
2025 	rcu_read_unlock();
2026 }
2027 
2028 /*
2029  * Wake up bdi's periodically to make sure dirtytime inodes gets
2030  * written back periodically.  We deliberately do *not* check the
2031  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2032  * kernel to be constantly waking up once there are any dirtytime
2033  * inodes on the system.  So instead we define a separate delayed work
2034  * function which gets called much more rarely.  (By default, only
2035  * once every 12 hours.)
2036  *
2037  * If there is any other write activity going on in the file system,
2038  * this function won't be necessary.  But if the only thing that has
2039  * happened on the file system is a dirtytime inode caused by an atime
2040  * update, we need this infrastructure below to make sure that inode
2041  * eventually gets pushed out to disk.
2042  */
2043 static void wakeup_dirtytime_writeback(struct work_struct *w);
2044 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2045 
wakeup_dirtytime_writeback(struct work_struct * w)2046 static void wakeup_dirtytime_writeback(struct work_struct *w)
2047 {
2048 	struct backing_dev_info *bdi;
2049 
2050 	rcu_read_lock();
2051 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2052 		struct bdi_writeback *wb;
2053 
2054 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2055 			if (!list_empty(&wb->b_dirty_time))
2056 				wb_wakeup(wb);
2057 	}
2058 	rcu_read_unlock();
2059 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2060 }
2061 
start_dirtytime_writeback(void)2062 static int __init start_dirtytime_writeback(void)
2063 {
2064 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2065 	return 0;
2066 }
2067 __initcall(start_dirtytime_writeback);
2068 
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2069 int dirtytime_interval_handler(struct ctl_table *table, int write,
2070 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2071 {
2072 	int ret;
2073 
2074 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2075 	if (ret == 0 && write)
2076 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2077 	return ret;
2078 }
2079 
block_dump___mark_inode_dirty(struct inode * inode)2080 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2081 {
2082 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2083 		struct dentry *dentry;
2084 		const char *name = "?";
2085 
2086 		dentry = d_find_alias(inode);
2087 		if (dentry) {
2088 			spin_lock(&dentry->d_lock);
2089 			name = (const char *) dentry->d_name.name;
2090 		}
2091 		printk(KERN_DEBUG
2092 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2093 		       current->comm, task_pid_nr(current), inode->i_ino,
2094 		       name, inode->i_sb->s_id);
2095 		if (dentry) {
2096 			spin_unlock(&dentry->d_lock);
2097 			dput(dentry);
2098 		}
2099 	}
2100 }
2101 
2102 /**
2103  * __mark_inode_dirty -	internal function
2104  *
2105  * @inode: inode to mark
2106  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2107  *
2108  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2109  * mark_inode_dirty_sync.
2110  *
2111  * Put the inode on the super block's dirty list.
2112  *
2113  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2114  * dirty list only if it is hashed or if it refers to a blockdev.
2115  * If it was not hashed, it will never be added to the dirty list
2116  * even if it is later hashed, as it will have been marked dirty already.
2117  *
2118  * In short, make sure you hash any inodes _before_ you start marking
2119  * them dirty.
2120  *
2121  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2122  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2123  * the kernel-internal blockdev inode represents the dirtying time of the
2124  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2125  * page->mapping->host, so the page-dirtying time is recorded in the internal
2126  * blockdev inode.
2127  */
__mark_inode_dirty(struct inode * inode,int flags)2128 void __mark_inode_dirty(struct inode *inode, int flags)
2129 {
2130 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2131 	struct super_block *sb = inode->i_sb;
2132 	int dirtytime;
2133 
2134 	trace_writeback_mark_inode_dirty(inode, flags);
2135 
2136 	/*
2137 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2138 	 * dirty the inode itself
2139 	 */
2140 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2141 		trace_writeback_dirty_inode_start(inode, flags);
2142 
2143 		if (sb->s_op->dirty_inode)
2144 			sb->s_op->dirty_inode(inode, flags);
2145 
2146 		trace_writeback_dirty_inode(inode, flags);
2147 	}
2148 	if (flags & I_DIRTY_INODE)
2149 		flags &= ~I_DIRTY_TIME;
2150 	dirtytime = flags & I_DIRTY_TIME;
2151 
2152 	/*
2153 	 * Paired with smp_mb() in __writeback_single_inode() for the
2154 	 * following lockless i_state test.  See there for details.
2155 	 */
2156 	smp_mb();
2157 
2158 	if (((inode->i_state & flags) == flags) ||
2159 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2160 		return;
2161 
2162 	if (unlikely(block_dump > 1))
2163 		block_dump___mark_inode_dirty(inode);
2164 
2165 	spin_lock(&inode->i_lock);
2166 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2167 		goto out_unlock_inode;
2168 	if ((inode->i_state & flags) != flags) {
2169 		const int was_dirty = inode->i_state & I_DIRTY;
2170 
2171 		inode_attach_wb(inode, NULL);
2172 
2173 		if (flags & I_DIRTY_INODE)
2174 			inode->i_state &= ~I_DIRTY_TIME;
2175 		inode->i_state |= flags;
2176 
2177 		/*
2178 		 * If the inode is being synced, just update its dirty state.
2179 		 * The unlocker will place the inode on the appropriate
2180 		 * superblock list, based upon its state.
2181 		 */
2182 		if (inode->i_state & I_SYNC)
2183 			goto out_unlock_inode;
2184 
2185 		/*
2186 		 * Only add valid (hashed) inodes to the superblock's
2187 		 * dirty list.  Add blockdev inodes as well.
2188 		 */
2189 		if (!S_ISBLK(inode->i_mode)) {
2190 			if (inode_unhashed(inode))
2191 				goto out_unlock_inode;
2192 		}
2193 		if (inode->i_state & I_FREEING)
2194 			goto out_unlock_inode;
2195 
2196 		/*
2197 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2198 		 * reposition it (that would break b_dirty time-ordering).
2199 		 */
2200 		if (!was_dirty) {
2201 			struct bdi_writeback *wb;
2202 			struct list_head *dirty_list;
2203 			bool wakeup_bdi = false;
2204 
2205 			wb = locked_inode_to_wb_and_lock_list(inode);
2206 
2207 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2208 			     !test_bit(WB_registered, &wb->state),
2209 			     "bdi-%s not registered\n", wb->bdi->name);
2210 
2211 			inode->dirtied_when = jiffies;
2212 			if (dirtytime)
2213 				inode->dirtied_time_when = jiffies;
2214 
2215 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2216 				dirty_list = &wb->b_dirty;
2217 			else
2218 				dirty_list = &wb->b_dirty_time;
2219 
2220 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2221 							       dirty_list);
2222 
2223 			spin_unlock(&wb->list_lock);
2224 			trace_writeback_dirty_inode_enqueue(inode);
2225 
2226 			/*
2227 			 * If this is the first dirty inode for this bdi,
2228 			 * we have to wake-up the corresponding bdi thread
2229 			 * to make sure background write-back happens
2230 			 * later.
2231 			 */
2232 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2233 				wb_wakeup_delayed(wb);
2234 			return;
2235 		}
2236 	}
2237 out_unlock_inode:
2238 	spin_unlock(&inode->i_lock);
2239 
2240 #undef I_DIRTY_INODE
2241 }
2242 EXPORT_SYMBOL(__mark_inode_dirty);
2243 
2244 /*
2245  * The @s_sync_lock is used to serialise concurrent sync operations
2246  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2247  * Concurrent callers will block on the s_sync_lock rather than doing contending
2248  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2249  * has been issued up to the time this function is enter is guaranteed to be
2250  * completed by the time we have gained the lock and waited for all IO that is
2251  * in progress regardless of the order callers are granted the lock.
2252  */
wait_sb_inodes(struct super_block * sb)2253 static void wait_sb_inodes(struct super_block *sb)
2254 {
2255 	LIST_HEAD(sync_list);
2256 
2257 	/*
2258 	 * We need to be protected against the filesystem going from
2259 	 * r/o to r/w or vice versa.
2260 	 */
2261 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2262 
2263 	mutex_lock(&sb->s_sync_lock);
2264 
2265 	/*
2266 	 * Splice the writeback list onto a temporary list to avoid waiting on
2267 	 * inodes that have started writeback after this point.
2268 	 *
2269 	 * Use rcu_read_lock() to keep the inodes around until we have a
2270 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2271 	 * the local list because inodes can be dropped from either by writeback
2272 	 * completion.
2273 	 */
2274 	rcu_read_lock();
2275 	spin_lock_irq(&sb->s_inode_wblist_lock);
2276 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2277 
2278 	/*
2279 	 * Data integrity sync. Must wait for all pages under writeback, because
2280 	 * there may have been pages dirtied before our sync call, but which had
2281 	 * writeout started before we write it out.  In which case, the inode
2282 	 * may not be on the dirty list, but we still have to wait for that
2283 	 * writeout.
2284 	 */
2285 	while (!list_empty(&sync_list)) {
2286 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2287 						       i_wb_list);
2288 		struct address_space *mapping = inode->i_mapping;
2289 
2290 		/*
2291 		 * Move each inode back to the wb list before we drop the lock
2292 		 * to preserve consistency between i_wb_list and the mapping
2293 		 * writeback tag. Writeback completion is responsible to remove
2294 		 * the inode from either list once the writeback tag is cleared.
2295 		 */
2296 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2297 
2298 		/*
2299 		 * The mapping can appear untagged while still on-list since we
2300 		 * do not have the mapping lock. Skip it here, wb completion
2301 		 * will remove it.
2302 		 */
2303 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2304 			continue;
2305 
2306 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2307 
2308 		spin_lock(&inode->i_lock);
2309 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2310 			spin_unlock(&inode->i_lock);
2311 
2312 			spin_lock_irq(&sb->s_inode_wblist_lock);
2313 			continue;
2314 		}
2315 		__iget(inode);
2316 		spin_unlock(&inode->i_lock);
2317 		rcu_read_unlock();
2318 
2319 		/*
2320 		 * We keep the error status of individual mapping so that
2321 		 * applications can catch the writeback error using fsync(2).
2322 		 * See filemap_fdatawait_keep_errors() for details.
2323 		 */
2324 		filemap_fdatawait_keep_errors(mapping);
2325 
2326 		cond_resched();
2327 
2328 		iput(inode);
2329 
2330 		rcu_read_lock();
2331 		spin_lock_irq(&sb->s_inode_wblist_lock);
2332 	}
2333 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2334 	rcu_read_unlock();
2335 	mutex_unlock(&sb->s_sync_lock);
2336 }
2337 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2338 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2339 				     enum wb_reason reason, bool skip_if_busy)
2340 {
2341 	DEFINE_WB_COMPLETION_ONSTACK(done);
2342 	struct wb_writeback_work work = {
2343 		.sb			= sb,
2344 		.sync_mode		= WB_SYNC_NONE,
2345 		.tagged_writepages	= 1,
2346 		.done			= &done,
2347 		.nr_pages		= nr,
2348 		.reason			= reason,
2349 	};
2350 	struct backing_dev_info *bdi = sb->s_bdi;
2351 
2352 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2353 		return;
2354 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2355 
2356 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2357 	wb_wait_for_completion(bdi, &done);
2358 }
2359 
2360 /**
2361  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2362  * @sb: the superblock
2363  * @nr: the number of pages to write
2364  * @reason: reason why some writeback work initiated
2365  *
2366  * Start writeback on some inodes on this super_block. No guarantees are made
2367  * on how many (if any) will be written, and this function does not wait
2368  * for IO completion of submitted IO.
2369  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2370 void writeback_inodes_sb_nr(struct super_block *sb,
2371 			    unsigned long nr,
2372 			    enum wb_reason reason)
2373 {
2374 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2375 }
2376 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2377 
2378 /**
2379  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2380  * @sb: the superblock
2381  * @reason: reason why some writeback work was initiated
2382  *
2383  * Start writeback on some inodes on this super_block. No guarantees are made
2384  * on how many (if any) will be written, and this function does not wait
2385  * for IO completion of submitted IO.
2386  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2387 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2388 {
2389 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2390 }
2391 EXPORT_SYMBOL(writeback_inodes_sb);
2392 
2393 /**
2394  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2395  * @sb: the superblock
2396  * @nr: the number of pages to write
2397  * @reason: the reason of writeback
2398  *
2399  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2400  * Returns 1 if writeback was started, 0 if not.
2401  */
try_to_writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2402 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2403 				   enum wb_reason reason)
2404 {
2405 	if (!down_read_trylock(&sb->s_umount))
2406 		return false;
2407 
2408 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2409 	up_read(&sb->s_umount);
2410 	return true;
2411 }
2412 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2413 
2414 /**
2415  * try_to_writeback_inodes_sb - try to start writeback if none underway
2416  * @sb: the superblock
2417  * @reason: reason why some writeback work was initiated
2418  *
2419  * Implement by try_to_writeback_inodes_sb_nr()
2420  * Returns 1 if writeback was started, 0 if not.
2421  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2422 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2423 {
2424 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2425 }
2426 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2427 
2428 /**
2429  * sync_inodes_sb	-	sync sb inode pages
2430  * @sb: the superblock
2431  *
2432  * This function writes and waits on any dirty inode belonging to this
2433  * super_block.
2434  */
sync_inodes_sb(struct super_block * sb)2435 void sync_inodes_sb(struct super_block *sb)
2436 {
2437 	DEFINE_WB_COMPLETION_ONSTACK(done);
2438 	struct wb_writeback_work work = {
2439 		.sb		= sb,
2440 		.sync_mode	= WB_SYNC_ALL,
2441 		.nr_pages	= LONG_MAX,
2442 		.range_cyclic	= 0,
2443 		.done		= &done,
2444 		.reason		= WB_REASON_SYNC,
2445 		.for_sync	= 1,
2446 	};
2447 	struct backing_dev_info *bdi = sb->s_bdi;
2448 
2449 	/*
2450 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2451 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2452 	 * bdi_has_dirty() need to be written out too.
2453 	 */
2454 	if (bdi == &noop_backing_dev_info)
2455 		return;
2456 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2457 
2458 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2459 	bdi_down_write_wb_switch_rwsem(bdi);
2460 	bdi_split_work_to_wbs(bdi, &work, false);
2461 	wb_wait_for_completion(bdi, &done);
2462 	bdi_up_write_wb_switch_rwsem(bdi);
2463 
2464 	wait_sb_inodes(sb);
2465 }
2466 EXPORT_SYMBOL(sync_inodes_sb);
2467 
2468 /**
2469  * write_inode_now	-	write an inode to disk
2470  * @inode: inode to write to disk
2471  * @sync: whether the write should be synchronous or not
2472  *
2473  * This function commits an inode to disk immediately if it is dirty. This is
2474  * primarily needed by knfsd.
2475  *
2476  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2477  */
write_inode_now(struct inode * inode,int sync)2478 int write_inode_now(struct inode *inode, int sync)
2479 {
2480 	struct writeback_control wbc = {
2481 		.nr_to_write = LONG_MAX,
2482 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2483 		.range_start = 0,
2484 		.range_end = LLONG_MAX,
2485 	};
2486 
2487 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2488 		wbc.nr_to_write = 0;
2489 
2490 	might_sleep();
2491 	return writeback_single_inode(inode, &wbc);
2492 }
2493 EXPORT_SYMBOL(write_inode_now);
2494 
2495 /**
2496  * sync_inode - write an inode and its pages to disk.
2497  * @inode: the inode to sync
2498  * @wbc: controls the writeback mode
2499  *
2500  * sync_inode() will write an inode and its pages to disk.  It will also
2501  * correctly update the inode on its superblock's dirty inode lists and will
2502  * update inode->i_state.
2503  *
2504  * The caller must have a ref on the inode.
2505  */
sync_inode(struct inode * inode,struct writeback_control * wbc)2506 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2507 {
2508 	return writeback_single_inode(inode, wbc);
2509 }
2510 EXPORT_SYMBOL(sync_inode);
2511 
2512 /**
2513  * sync_inode_metadata - write an inode to disk
2514  * @inode: the inode to sync
2515  * @wait: wait for I/O to complete.
2516  *
2517  * Write an inode to disk and adjust its dirty state after completion.
2518  *
2519  * Note: only writes the actual inode, no associated data or other metadata.
2520  */
sync_inode_metadata(struct inode * inode,int wait)2521 int sync_inode_metadata(struct inode *inode, int wait)
2522 {
2523 	struct writeback_control wbc = {
2524 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2525 		.nr_to_write = 0, /* metadata-only */
2526 	};
2527 
2528 	return sync_inode(inode, &wbc);
2529 }
2530 EXPORT_SYMBOL(sync_inode_metadata);
2531