1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
54 #endif
55
56 #include <trace/events/xen.h>
57
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
66 #include <asm/page.h>
67 #include <asm/init.h>
68 #include <asm/pat.h>
69 #include <asm/smp.h>
70
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
73
74 #include <xen/xen.h>
75 #include <xen/page.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
81
82 #include "multicalls.h"
83 #include "mmu.h"
84 #include "debugfs.h"
85
86 #ifdef CONFIG_X86_32
87 /*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 #endif
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99
100 /*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118
119 /*
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
122 */
123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124
make_lowmem_page_readonly(void * vaddr)125 void make_lowmem_page_readonly(void *vaddr)
126 {
127 pte_t *pte, ptev;
128 unsigned long address = (unsigned long)vaddr;
129 unsigned int level;
130
131 pte = lookup_address(address, &level);
132 if (pte == NULL)
133 return; /* vaddr missing */
134
135 ptev = pte_wrprotect(*pte);
136
137 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 BUG();
139 }
140
make_lowmem_page_readwrite(void * vaddr)141 void make_lowmem_page_readwrite(void *vaddr)
142 {
143 pte_t *pte, ptev;
144 unsigned long address = (unsigned long)vaddr;
145 unsigned int level;
146
147 pte = lookup_address(address, &level);
148 if (pte == NULL)
149 return; /* vaddr missing */
150
151 ptev = pte_mkwrite(*pte);
152
153 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 BUG();
155 }
156
157
xen_page_pinned(void * ptr)158 static bool xen_page_pinned(void *ptr)
159 {
160 struct page *page = virt_to_page(ptr);
161
162 return PagePinned(page);
163 }
164
xen_extend_mmu_update(const struct mmu_update * update)165 static void xen_extend_mmu_update(const struct mmu_update *update)
166 {
167 struct multicall_space mcs;
168 struct mmu_update *u;
169
170 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
171
172 if (mcs.mc != NULL) {
173 mcs.mc->args[1]++;
174 } else {
175 mcs = __xen_mc_entry(sizeof(*u));
176 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
177 }
178
179 u = mcs.args;
180 *u = *update;
181 }
182
xen_extend_mmuext_op(const struct mmuext_op * op)183 static void xen_extend_mmuext_op(const struct mmuext_op *op)
184 {
185 struct multicall_space mcs;
186 struct mmuext_op *u;
187
188 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
189
190 if (mcs.mc != NULL) {
191 mcs.mc->args[1]++;
192 } else {
193 mcs = __xen_mc_entry(sizeof(*u));
194 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
195 }
196
197 u = mcs.args;
198 *u = *op;
199 }
200
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)201 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
202 {
203 struct mmu_update u;
204
205 preempt_disable();
206
207 xen_mc_batch();
208
209 /* ptr may be ioremapped for 64-bit pagetable setup */
210 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
211 u.val = pmd_val_ma(val);
212 xen_extend_mmu_update(&u);
213
214 xen_mc_issue(PARAVIRT_LAZY_MMU);
215
216 preempt_enable();
217 }
218
xen_set_pmd(pmd_t * ptr,pmd_t val)219 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
220 {
221 trace_xen_mmu_set_pmd(ptr, val);
222
223 /* If page is not pinned, we can just update the entry
224 directly */
225 if (!xen_page_pinned(ptr)) {
226 *ptr = val;
227 return;
228 }
229
230 xen_set_pmd_hyper(ptr, val);
231 }
232
233 /*
234 * Associate a virtual page frame with a given physical page frame
235 * and protection flags for that frame.
236 */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)237 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
238 {
239 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
240 }
241
xen_batched_set_pte(pte_t * ptep,pte_t pteval)242 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
243 {
244 struct mmu_update u;
245
246 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
247 return false;
248
249 xen_mc_batch();
250
251 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
252 u.val = pte_val_ma(pteval);
253 xen_extend_mmu_update(&u);
254
255 xen_mc_issue(PARAVIRT_LAZY_MMU);
256
257 return true;
258 }
259
__xen_set_pte(pte_t * ptep,pte_t pteval)260 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
261 {
262 if (!xen_batched_set_pte(ptep, pteval)) {
263 /*
264 * Could call native_set_pte() here and trap and
265 * emulate the PTE write but with 32-bit guests this
266 * needs two traps (one for each of the two 32-bit
267 * words in the PTE) so do one hypercall directly
268 * instead.
269 */
270 struct mmu_update u;
271
272 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
273 u.val = pte_val_ma(pteval);
274 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
275 }
276 }
277
xen_set_pte(pte_t * ptep,pte_t pteval)278 static void xen_set_pte(pte_t *ptep, pte_t pteval)
279 {
280 trace_xen_mmu_set_pte(ptep, pteval);
281 __xen_set_pte(ptep, pteval);
282 }
283
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)284 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
285 pte_t *ptep, pte_t pteval)
286 {
287 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
288 __xen_set_pte(ptep, pteval);
289 }
290
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)291 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
292 unsigned long addr, pte_t *ptep)
293 {
294 /* Just return the pte as-is. We preserve the bits on commit */
295 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
296 return *ptep;
297 }
298
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)299 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
300 pte_t *ptep, pte_t pte)
301 {
302 struct mmu_update u;
303
304 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
305 xen_mc_batch();
306
307 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
308 u.val = pte_val_ma(pte);
309 xen_extend_mmu_update(&u);
310
311 xen_mc_issue(PARAVIRT_LAZY_MMU);
312 }
313
314 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)315 static pteval_t pte_mfn_to_pfn(pteval_t val)
316 {
317 if (val & _PAGE_PRESENT) {
318 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
319 unsigned long pfn = mfn_to_pfn(mfn);
320
321 pteval_t flags = val & PTE_FLAGS_MASK;
322 if (unlikely(pfn == ~0))
323 val = flags & ~_PAGE_PRESENT;
324 else
325 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
326 }
327
328 return val;
329 }
330
pte_pfn_to_mfn(pteval_t val)331 static pteval_t pte_pfn_to_mfn(pteval_t val)
332 {
333 if (val & _PAGE_PRESENT) {
334 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
335 pteval_t flags = val & PTE_FLAGS_MASK;
336 unsigned long mfn;
337
338 mfn = __pfn_to_mfn(pfn);
339
340 /*
341 * If there's no mfn for the pfn, then just create an
342 * empty non-present pte. Unfortunately this loses
343 * information about the original pfn, so
344 * pte_mfn_to_pfn is asymmetric.
345 */
346 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
347 mfn = 0;
348 flags = 0;
349 } else
350 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
351 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
352 }
353
354 return val;
355 }
356
xen_pte_val(pte_t pte)357 __visible pteval_t xen_pte_val(pte_t pte)
358 {
359 pteval_t pteval = pte.pte;
360
361 return pte_mfn_to_pfn(pteval);
362 }
363 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
364
xen_pgd_val(pgd_t pgd)365 __visible pgdval_t xen_pgd_val(pgd_t pgd)
366 {
367 return pte_mfn_to_pfn(pgd.pgd);
368 }
369 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
370
xen_make_pte(pteval_t pte)371 __visible pte_t xen_make_pte(pteval_t pte)
372 {
373 pte = pte_pfn_to_mfn(pte);
374
375 return native_make_pte(pte);
376 }
377 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
378
xen_make_pgd(pgdval_t pgd)379 __visible pgd_t xen_make_pgd(pgdval_t pgd)
380 {
381 pgd = pte_pfn_to_mfn(pgd);
382 return native_make_pgd(pgd);
383 }
384 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
385
xen_pmd_val(pmd_t pmd)386 __visible pmdval_t xen_pmd_val(pmd_t pmd)
387 {
388 return pte_mfn_to_pfn(pmd.pmd);
389 }
390 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
391
xen_set_pud_hyper(pud_t * ptr,pud_t val)392 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
393 {
394 struct mmu_update u;
395
396 preempt_disable();
397
398 xen_mc_batch();
399
400 /* ptr may be ioremapped for 64-bit pagetable setup */
401 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
402 u.val = pud_val_ma(val);
403 xen_extend_mmu_update(&u);
404
405 xen_mc_issue(PARAVIRT_LAZY_MMU);
406
407 preempt_enable();
408 }
409
xen_set_pud(pud_t * ptr,pud_t val)410 static void xen_set_pud(pud_t *ptr, pud_t val)
411 {
412 trace_xen_mmu_set_pud(ptr, val);
413
414 /* If page is not pinned, we can just update the entry
415 directly */
416 if (!xen_page_pinned(ptr)) {
417 *ptr = val;
418 return;
419 }
420
421 xen_set_pud_hyper(ptr, val);
422 }
423
424 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)425 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
426 {
427 trace_xen_mmu_set_pte_atomic(ptep, pte);
428 __xen_set_pte(ptep, pte);
429 }
430
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)431 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
432 {
433 trace_xen_mmu_pte_clear(mm, addr, ptep);
434 __xen_set_pte(ptep, native_make_pte(0));
435 }
436
xen_pmd_clear(pmd_t * pmdp)437 static void xen_pmd_clear(pmd_t *pmdp)
438 {
439 trace_xen_mmu_pmd_clear(pmdp);
440 set_pmd(pmdp, __pmd(0));
441 }
442 #endif /* CONFIG_X86_PAE */
443
xen_make_pmd(pmdval_t pmd)444 __visible pmd_t xen_make_pmd(pmdval_t pmd)
445 {
446 pmd = pte_pfn_to_mfn(pmd);
447 return native_make_pmd(pmd);
448 }
449 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
450
451 #ifdef CONFIG_X86_64
xen_pud_val(pud_t pud)452 __visible pudval_t xen_pud_val(pud_t pud)
453 {
454 return pte_mfn_to_pfn(pud.pud);
455 }
456 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
457
xen_make_pud(pudval_t pud)458 __visible pud_t xen_make_pud(pudval_t pud)
459 {
460 pud = pte_pfn_to_mfn(pud);
461
462 return native_make_pud(pud);
463 }
464 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
465
xen_get_user_pgd(pgd_t * pgd)466 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
467 {
468 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
469 unsigned offset = pgd - pgd_page;
470 pgd_t *user_ptr = NULL;
471
472 if (offset < pgd_index(USER_LIMIT)) {
473 struct page *page = virt_to_page(pgd_page);
474 user_ptr = (pgd_t *)page->private;
475 if (user_ptr)
476 user_ptr += offset;
477 }
478
479 return user_ptr;
480 }
481
__xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)482 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
483 {
484 struct mmu_update u;
485
486 u.ptr = virt_to_machine(ptr).maddr;
487 u.val = p4d_val_ma(val);
488 xen_extend_mmu_update(&u);
489 }
490
491 /*
492 * Raw hypercall-based set_p4d, intended for in early boot before
493 * there's a page structure. This implies:
494 * 1. The only existing pagetable is the kernel's
495 * 2. It is always pinned
496 * 3. It has no user pagetable attached to it
497 */
xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)498 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
499 {
500 preempt_disable();
501
502 xen_mc_batch();
503
504 __xen_set_p4d_hyper(ptr, val);
505
506 xen_mc_issue(PARAVIRT_LAZY_MMU);
507
508 preempt_enable();
509 }
510
xen_set_p4d(p4d_t * ptr,p4d_t val)511 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
512 {
513 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
514 pgd_t pgd_val;
515
516 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
517
518 /* If page is not pinned, we can just update the entry
519 directly */
520 if (!xen_page_pinned(ptr)) {
521 *ptr = val;
522 if (user_ptr) {
523 WARN_ON(xen_page_pinned(user_ptr));
524 pgd_val.pgd = p4d_val_ma(val);
525 *user_ptr = pgd_val;
526 }
527 return;
528 }
529
530 /* If it's pinned, then we can at least batch the kernel and
531 user updates together. */
532 xen_mc_batch();
533
534 __xen_set_p4d_hyper(ptr, val);
535 if (user_ptr)
536 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
537
538 xen_mc_issue(PARAVIRT_LAZY_MMU);
539 }
540 #endif /* CONFIG_X86_64 */
541
xen_pmd_walk(struct mm_struct * mm,pmd_t * pmd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)542 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
543 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
544 bool last, unsigned long limit)
545 {
546 int i, nr, flush = 0;
547
548 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
549 for (i = 0; i < nr; i++) {
550 if (!pmd_none(pmd[i]))
551 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
552 }
553 return flush;
554 }
555
xen_pud_walk(struct mm_struct * mm,pud_t * pud,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)556 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
557 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
558 bool last, unsigned long limit)
559 {
560 int i, nr, flush = 0;
561
562 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
563 for (i = 0; i < nr; i++) {
564 pmd_t *pmd;
565
566 if (pud_none(pud[i]))
567 continue;
568
569 pmd = pmd_offset(&pud[i], 0);
570 if (PTRS_PER_PMD > 1)
571 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
572 flush |= xen_pmd_walk(mm, pmd, func,
573 last && i == nr - 1, limit);
574 }
575 return flush;
576 }
577
xen_p4d_walk(struct mm_struct * mm,p4d_t * p4d,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)578 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
579 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
580 bool last, unsigned long limit)
581 {
582 int flush = 0;
583 pud_t *pud;
584
585
586 if (p4d_none(*p4d))
587 return flush;
588
589 pud = pud_offset(p4d, 0);
590 if (PTRS_PER_PUD > 1)
591 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
592 flush |= xen_pud_walk(mm, pud, func, last, limit);
593 return flush;
594 }
595
596 /*
597 * (Yet another) pagetable walker. This one is intended for pinning a
598 * pagetable. This means that it walks a pagetable and calls the
599 * callback function on each page it finds making up the page table,
600 * at every level. It walks the entire pagetable, but it only bothers
601 * pinning pte pages which are below limit. In the normal case this
602 * will be STACK_TOP_MAX, but at boot we need to pin up to
603 * FIXADDR_TOP.
604 *
605 * For 32-bit the important bit is that we don't pin beyond there,
606 * because then we start getting into Xen's ptes.
607 *
608 * For 64-bit, we must skip the Xen hole in the middle of the address
609 * space, just after the big x86-64 virtual hole.
610 */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)611 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
612 int (*func)(struct mm_struct *mm, struct page *,
613 enum pt_level),
614 unsigned long limit)
615 {
616 int i, nr, flush = 0;
617 unsigned hole_low = 0, hole_high = 0;
618
619 /* The limit is the last byte to be touched */
620 limit--;
621 BUG_ON(limit >= FIXADDR_TOP);
622
623 #ifdef CONFIG_X86_64
624 /*
625 * 64-bit has a great big hole in the middle of the address
626 * space, which contains the Xen mappings.
627 */
628 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
629 hole_high = pgd_index(GUARD_HOLE_END_ADDR);
630 #endif
631
632 nr = pgd_index(limit) + 1;
633 for (i = 0; i < nr; i++) {
634 p4d_t *p4d;
635
636 if (i >= hole_low && i < hole_high)
637 continue;
638
639 if (pgd_none(pgd[i]))
640 continue;
641
642 p4d = p4d_offset(&pgd[i], 0);
643 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
644 }
645
646 /* Do the top level last, so that the callbacks can use it as
647 a cue to do final things like tlb flushes. */
648 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
649
650 return flush;
651 }
652
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)653 static int xen_pgd_walk(struct mm_struct *mm,
654 int (*func)(struct mm_struct *mm, struct page *,
655 enum pt_level),
656 unsigned long limit)
657 {
658 return __xen_pgd_walk(mm, mm->pgd, func, limit);
659 }
660
661 /* If we're using split pte locks, then take the page's lock and
662 return a pointer to it. Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)663 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
664 {
665 spinlock_t *ptl = NULL;
666
667 #if USE_SPLIT_PTE_PTLOCKS
668 ptl = ptlock_ptr(page);
669 spin_lock_nest_lock(ptl, &mm->page_table_lock);
670 #endif
671
672 return ptl;
673 }
674
xen_pte_unlock(void * v)675 static void xen_pte_unlock(void *v)
676 {
677 spinlock_t *ptl = v;
678 spin_unlock(ptl);
679 }
680
xen_do_pin(unsigned level,unsigned long pfn)681 static void xen_do_pin(unsigned level, unsigned long pfn)
682 {
683 struct mmuext_op op;
684
685 op.cmd = level;
686 op.arg1.mfn = pfn_to_mfn(pfn);
687
688 xen_extend_mmuext_op(&op);
689 }
690
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)691 static int xen_pin_page(struct mm_struct *mm, struct page *page,
692 enum pt_level level)
693 {
694 unsigned pgfl = TestSetPagePinned(page);
695 int flush;
696
697 if (pgfl)
698 flush = 0; /* already pinned */
699 else if (PageHighMem(page))
700 /* kmaps need flushing if we found an unpinned
701 highpage */
702 flush = 1;
703 else {
704 void *pt = lowmem_page_address(page);
705 unsigned long pfn = page_to_pfn(page);
706 struct multicall_space mcs = __xen_mc_entry(0);
707 spinlock_t *ptl;
708
709 flush = 0;
710
711 /*
712 * We need to hold the pagetable lock between the time
713 * we make the pagetable RO and when we actually pin
714 * it. If we don't, then other users may come in and
715 * attempt to update the pagetable by writing it,
716 * which will fail because the memory is RO but not
717 * pinned, so Xen won't do the trap'n'emulate.
718 *
719 * If we're using split pte locks, we can't hold the
720 * entire pagetable's worth of locks during the
721 * traverse, because we may wrap the preempt count (8
722 * bits). The solution is to mark RO and pin each PTE
723 * page while holding the lock. This means the number
724 * of locks we end up holding is never more than a
725 * batch size (~32 entries, at present).
726 *
727 * If we're not using split pte locks, we needn't pin
728 * the PTE pages independently, because we're
729 * protected by the overall pagetable lock.
730 */
731 ptl = NULL;
732 if (level == PT_PTE)
733 ptl = xen_pte_lock(page, mm);
734
735 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
736 pfn_pte(pfn, PAGE_KERNEL_RO),
737 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
738
739 if (ptl) {
740 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
741
742 /* Queue a deferred unlock for when this batch
743 is completed. */
744 xen_mc_callback(xen_pte_unlock, ptl);
745 }
746 }
747
748 return flush;
749 }
750
751 /* This is called just after a mm has been created, but it has not
752 been used yet. We need to make sure that its pagetable is all
753 read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)754 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
755 {
756 trace_xen_mmu_pgd_pin(mm, pgd);
757
758 xen_mc_batch();
759
760 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
761 /* re-enable interrupts for flushing */
762 xen_mc_issue(0);
763
764 kmap_flush_unused();
765
766 xen_mc_batch();
767 }
768
769 #ifdef CONFIG_X86_64
770 {
771 pgd_t *user_pgd = xen_get_user_pgd(pgd);
772
773 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
774
775 if (user_pgd) {
776 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
777 xen_do_pin(MMUEXT_PIN_L4_TABLE,
778 PFN_DOWN(__pa(user_pgd)));
779 }
780 }
781 #else /* CONFIG_X86_32 */
782 #ifdef CONFIG_X86_PAE
783 /* Need to make sure unshared kernel PMD is pinnable */
784 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
785 PT_PMD);
786 #endif
787 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
788 #endif /* CONFIG_X86_64 */
789 xen_mc_issue(0);
790 }
791
xen_pgd_pin(struct mm_struct * mm)792 static void xen_pgd_pin(struct mm_struct *mm)
793 {
794 __xen_pgd_pin(mm, mm->pgd);
795 }
796
797 /*
798 * On save, we need to pin all pagetables to make sure they get their
799 * mfns turned into pfns. Search the list for any unpinned pgds and pin
800 * them (unpinned pgds are not currently in use, probably because the
801 * process is under construction or destruction).
802 *
803 * Expected to be called in stop_machine() ("equivalent to taking
804 * every spinlock in the system"), so the locking doesn't really
805 * matter all that much.
806 */
xen_mm_pin_all(void)807 void xen_mm_pin_all(void)
808 {
809 struct page *page;
810
811 spin_lock(&pgd_lock);
812
813 list_for_each_entry(page, &pgd_list, lru) {
814 if (!PagePinned(page)) {
815 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
816 SetPageSavePinned(page);
817 }
818 }
819
820 spin_unlock(&pgd_lock);
821 }
822
823 /*
824 * The init_mm pagetable is really pinned as soon as its created, but
825 * that's before we have page structures to store the bits. So do all
826 * the book-keeping now.
827 */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)828 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
829 enum pt_level level)
830 {
831 SetPagePinned(page);
832 return 0;
833 }
834
xen_mark_init_mm_pinned(void)835 static void __init xen_mark_init_mm_pinned(void)
836 {
837 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
838 }
839
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)840 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
841 enum pt_level level)
842 {
843 unsigned pgfl = TestClearPagePinned(page);
844
845 if (pgfl && !PageHighMem(page)) {
846 void *pt = lowmem_page_address(page);
847 unsigned long pfn = page_to_pfn(page);
848 spinlock_t *ptl = NULL;
849 struct multicall_space mcs;
850
851 /*
852 * Do the converse to pin_page. If we're using split
853 * pte locks, we must be holding the lock for while
854 * the pte page is unpinned but still RO to prevent
855 * concurrent updates from seeing it in this
856 * partially-pinned state.
857 */
858 if (level == PT_PTE) {
859 ptl = xen_pte_lock(page, mm);
860
861 if (ptl)
862 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
863 }
864
865 mcs = __xen_mc_entry(0);
866
867 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 pfn_pte(pfn, PAGE_KERNEL),
869 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870
871 if (ptl) {
872 /* unlock when batch completed */
873 xen_mc_callback(xen_pte_unlock, ptl);
874 }
875 }
876
877 return 0; /* never need to flush on unpin */
878 }
879
880 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)881 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
882 {
883 trace_xen_mmu_pgd_unpin(mm, pgd);
884
885 xen_mc_batch();
886
887 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
888
889 #ifdef CONFIG_X86_64
890 {
891 pgd_t *user_pgd = xen_get_user_pgd(pgd);
892
893 if (user_pgd) {
894 xen_do_pin(MMUEXT_UNPIN_TABLE,
895 PFN_DOWN(__pa(user_pgd)));
896 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
897 }
898 }
899 #endif
900
901 #ifdef CONFIG_X86_PAE
902 /* Need to make sure unshared kernel PMD is unpinned */
903 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
904 PT_PMD);
905 #endif
906
907 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
908
909 xen_mc_issue(0);
910 }
911
xen_pgd_unpin(struct mm_struct * mm)912 static void xen_pgd_unpin(struct mm_struct *mm)
913 {
914 __xen_pgd_unpin(mm, mm->pgd);
915 }
916
917 /*
918 * On resume, undo any pinning done at save, so that the rest of the
919 * kernel doesn't see any unexpected pinned pagetables.
920 */
xen_mm_unpin_all(void)921 void xen_mm_unpin_all(void)
922 {
923 struct page *page;
924
925 spin_lock(&pgd_lock);
926
927 list_for_each_entry(page, &pgd_list, lru) {
928 if (PageSavePinned(page)) {
929 BUG_ON(!PagePinned(page));
930 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
931 ClearPageSavePinned(page);
932 }
933 }
934
935 spin_unlock(&pgd_lock);
936 }
937
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)938 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
939 {
940 spin_lock(&next->page_table_lock);
941 xen_pgd_pin(next);
942 spin_unlock(&next->page_table_lock);
943 }
944
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)945 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
946 {
947 spin_lock(&mm->page_table_lock);
948 xen_pgd_pin(mm);
949 spin_unlock(&mm->page_table_lock);
950 }
951
drop_mm_ref_this_cpu(void * info)952 static void drop_mm_ref_this_cpu(void *info)
953 {
954 struct mm_struct *mm = info;
955
956 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
957 leave_mm(smp_processor_id());
958
959 /*
960 * If this cpu still has a stale cr3 reference, then make sure
961 * it has been flushed.
962 */
963 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
964 xen_mc_flush();
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969 * Another cpu may still have their %cr3 pointing at the pagetable, so
970 * we need to repoint it somewhere else before we can unpin it.
971 */
xen_drop_mm_ref(struct mm_struct * mm)972 static void xen_drop_mm_ref(struct mm_struct *mm)
973 {
974 cpumask_var_t mask;
975 unsigned cpu;
976
977 drop_mm_ref_this_cpu(mm);
978
979 /* Get the "official" set of cpus referring to our pagetable. */
980 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
981 for_each_online_cpu(cpu) {
982 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
983 continue;
984 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
985 }
986 return;
987 }
988
989 /*
990 * It's possible that a vcpu may have a stale reference to our
991 * cr3, because its in lazy mode, and it hasn't yet flushed
992 * its set of pending hypercalls yet. In this case, we can
993 * look at its actual current cr3 value, and force it to flush
994 * if needed.
995 */
996 cpumask_clear(mask);
997 for_each_online_cpu(cpu) {
998 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
999 cpumask_set_cpu(cpu, mask);
1000 }
1001
1002 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1003 free_cpumask_var(mask);
1004 }
1005 #else
xen_drop_mm_ref(struct mm_struct * mm)1006 static void xen_drop_mm_ref(struct mm_struct *mm)
1007 {
1008 drop_mm_ref_this_cpu(mm);
1009 }
1010 #endif
1011
1012 /*
1013 * While a process runs, Xen pins its pagetables, which means that the
1014 * hypervisor forces it to be read-only, and it controls all updates
1015 * to it. This means that all pagetable updates have to go via the
1016 * hypervisor, which is moderately expensive.
1017 *
1018 * Since we're pulling the pagetable down, we switch to use init_mm,
1019 * unpin old process pagetable and mark it all read-write, which
1020 * allows further operations on it to be simple memory accesses.
1021 *
1022 * The only subtle point is that another CPU may be still using the
1023 * pagetable because of lazy tlb flushing. This means we need need to
1024 * switch all CPUs off this pagetable before we can unpin it.
1025 */
xen_exit_mmap(struct mm_struct * mm)1026 static void xen_exit_mmap(struct mm_struct *mm)
1027 {
1028 get_cpu(); /* make sure we don't move around */
1029 xen_drop_mm_ref(mm);
1030 put_cpu();
1031
1032 spin_lock(&mm->page_table_lock);
1033
1034 /* pgd may not be pinned in the error exit path of execve */
1035 if (xen_page_pinned(mm->pgd))
1036 xen_pgd_unpin(mm);
1037
1038 spin_unlock(&mm->page_table_lock);
1039 }
1040
1041 static void xen_post_allocator_init(void);
1042
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1043 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1044 {
1045 struct mmuext_op op;
1046
1047 op.cmd = cmd;
1048 op.arg1.mfn = pfn_to_mfn(pfn);
1049 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1050 BUG();
1051 }
1052
1053 #ifdef CONFIG_X86_64
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1054 static void __init xen_cleanhighmap(unsigned long vaddr,
1055 unsigned long vaddr_end)
1056 {
1057 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1058 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1059
1060 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1061 * We include the PMD passed in on _both_ boundaries. */
1062 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1063 pmd++, vaddr += PMD_SIZE) {
1064 if (pmd_none(*pmd))
1065 continue;
1066 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1067 set_pmd(pmd, __pmd(0));
1068 }
1069 /* In case we did something silly, we should crash in this function
1070 * instead of somewhere later and be confusing. */
1071 xen_mc_flush();
1072 }
1073
1074 /*
1075 * Make a page range writeable and free it.
1076 */
xen_free_ro_pages(unsigned long paddr,unsigned long size)1077 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1078 {
1079 void *vaddr = __va(paddr);
1080 void *vaddr_end = vaddr + size;
1081
1082 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1083 make_lowmem_page_readwrite(vaddr);
1084
1085 memblock_free(paddr, size);
1086 }
1087
xen_cleanmfnmap_free_pgtbl(void * pgtbl,bool unpin)1088 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1089 {
1090 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1091
1092 if (unpin)
1093 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1094 ClearPagePinned(virt_to_page(__va(pa)));
1095 xen_free_ro_pages(pa, PAGE_SIZE);
1096 }
1097
xen_cleanmfnmap_pmd(pmd_t * pmd,bool unpin)1098 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1099 {
1100 unsigned long pa;
1101 pte_t *pte_tbl;
1102 int i;
1103
1104 if (pmd_large(*pmd)) {
1105 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1106 xen_free_ro_pages(pa, PMD_SIZE);
1107 return;
1108 }
1109
1110 pte_tbl = pte_offset_kernel(pmd, 0);
1111 for (i = 0; i < PTRS_PER_PTE; i++) {
1112 if (pte_none(pte_tbl[i]))
1113 continue;
1114 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1115 xen_free_ro_pages(pa, PAGE_SIZE);
1116 }
1117 set_pmd(pmd, __pmd(0));
1118 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1119 }
1120
xen_cleanmfnmap_pud(pud_t * pud,bool unpin)1121 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1122 {
1123 unsigned long pa;
1124 pmd_t *pmd_tbl;
1125 int i;
1126
1127 if (pud_large(*pud)) {
1128 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1129 xen_free_ro_pages(pa, PUD_SIZE);
1130 return;
1131 }
1132
1133 pmd_tbl = pmd_offset(pud, 0);
1134 for (i = 0; i < PTRS_PER_PMD; i++) {
1135 if (pmd_none(pmd_tbl[i]))
1136 continue;
1137 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1138 }
1139 set_pud(pud, __pud(0));
1140 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1141 }
1142
xen_cleanmfnmap_p4d(p4d_t * p4d,bool unpin)1143 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1144 {
1145 unsigned long pa;
1146 pud_t *pud_tbl;
1147 int i;
1148
1149 if (p4d_large(*p4d)) {
1150 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1151 xen_free_ro_pages(pa, P4D_SIZE);
1152 return;
1153 }
1154
1155 pud_tbl = pud_offset(p4d, 0);
1156 for (i = 0; i < PTRS_PER_PUD; i++) {
1157 if (pud_none(pud_tbl[i]))
1158 continue;
1159 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1160 }
1161 set_p4d(p4d, __p4d(0));
1162 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1163 }
1164
1165 /*
1166 * Since it is well isolated we can (and since it is perhaps large we should)
1167 * also free the page tables mapping the initial P->M table.
1168 */
xen_cleanmfnmap(unsigned long vaddr)1169 static void __init xen_cleanmfnmap(unsigned long vaddr)
1170 {
1171 pgd_t *pgd;
1172 p4d_t *p4d;
1173 bool unpin;
1174
1175 unpin = (vaddr == 2 * PGDIR_SIZE);
1176 vaddr &= PMD_MASK;
1177 pgd = pgd_offset_k(vaddr);
1178 p4d = p4d_offset(pgd, 0);
1179 if (!p4d_none(*p4d))
1180 xen_cleanmfnmap_p4d(p4d, unpin);
1181 }
1182
xen_pagetable_p2m_free(void)1183 static void __init xen_pagetable_p2m_free(void)
1184 {
1185 unsigned long size;
1186 unsigned long addr;
1187
1188 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1189
1190 /* No memory or already called. */
1191 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1192 return;
1193
1194 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1195 memset((void *)xen_start_info->mfn_list, 0xff, size);
1196
1197 addr = xen_start_info->mfn_list;
1198 /*
1199 * We could be in __ka space.
1200 * We roundup to the PMD, which means that if anybody at this stage is
1201 * using the __ka address of xen_start_info or
1202 * xen_start_info->shared_info they are in going to crash. Fortunatly
1203 * we have already revectored in xen_setup_kernel_pagetable and in
1204 * xen_setup_shared_info.
1205 */
1206 size = roundup(size, PMD_SIZE);
1207
1208 if (addr >= __START_KERNEL_map) {
1209 xen_cleanhighmap(addr, addr + size);
1210 size = PAGE_ALIGN(xen_start_info->nr_pages *
1211 sizeof(unsigned long));
1212 memblock_free(__pa(addr), size);
1213 } else {
1214 xen_cleanmfnmap(addr);
1215 }
1216 }
1217
xen_pagetable_cleanhighmap(void)1218 static void __init xen_pagetable_cleanhighmap(void)
1219 {
1220 unsigned long size;
1221 unsigned long addr;
1222
1223 /* At this stage, cleanup_highmap has already cleaned __ka space
1224 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1225 * the ramdisk). We continue on, erasing PMD entries that point to page
1226 * tables - do note that they are accessible at this stage via __va.
1227 * As Xen is aligning the memory end to a 4MB boundary, for good
1228 * measure we also round up to PMD_SIZE * 2 - which means that if
1229 * anybody is using __ka address to the initial boot-stack - and try
1230 * to use it - they are going to crash. The xen_start_info has been
1231 * taken care of already in xen_setup_kernel_pagetable. */
1232 addr = xen_start_info->pt_base;
1233 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1234
1235 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1236 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1237 }
1238 #endif
1239
xen_pagetable_p2m_setup(void)1240 static void __init xen_pagetable_p2m_setup(void)
1241 {
1242 xen_vmalloc_p2m_tree();
1243
1244 #ifdef CONFIG_X86_64
1245 xen_pagetable_p2m_free();
1246
1247 xen_pagetable_cleanhighmap();
1248 #endif
1249 /* And revector! Bye bye old array */
1250 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1251 }
1252
xen_pagetable_init(void)1253 static void __init xen_pagetable_init(void)
1254 {
1255 paging_init();
1256 xen_post_allocator_init();
1257
1258 xen_pagetable_p2m_setup();
1259
1260 /* Allocate and initialize top and mid mfn levels for p2m structure */
1261 xen_build_mfn_list_list();
1262
1263 /* Remap memory freed due to conflicts with E820 map */
1264 xen_remap_memory();
1265
1266 xen_setup_shared_info();
1267 }
xen_write_cr2(unsigned long cr2)1268 static void xen_write_cr2(unsigned long cr2)
1269 {
1270 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1271 }
1272
xen_read_cr2(void)1273 static unsigned long xen_read_cr2(void)
1274 {
1275 return this_cpu_read(xen_vcpu)->arch.cr2;
1276 }
1277
xen_read_cr2_direct(void)1278 unsigned long xen_read_cr2_direct(void)
1279 {
1280 return this_cpu_read(xen_vcpu_info.arch.cr2);
1281 }
1282
xen_flush_tlb(void)1283 static noinline void xen_flush_tlb(void)
1284 {
1285 struct mmuext_op *op;
1286 struct multicall_space mcs;
1287
1288 preempt_disable();
1289
1290 mcs = xen_mc_entry(sizeof(*op));
1291
1292 op = mcs.args;
1293 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1294 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1295
1296 xen_mc_issue(PARAVIRT_LAZY_MMU);
1297
1298 preempt_enable();
1299 }
1300
xen_flush_tlb_one_user(unsigned long addr)1301 static void xen_flush_tlb_one_user(unsigned long addr)
1302 {
1303 struct mmuext_op *op;
1304 struct multicall_space mcs;
1305
1306 trace_xen_mmu_flush_tlb_one_user(addr);
1307
1308 preempt_disable();
1309
1310 mcs = xen_mc_entry(sizeof(*op));
1311 op = mcs.args;
1312 op->cmd = MMUEXT_INVLPG_LOCAL;
1313 op->arg1.linear_addr = addr & PAGE_MASK;
1314 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1315
1316 xen_mc_issue(PARAVIRT_LAZY_MMU);
1317
1318 preempt_enable();
1319 }
1320
xen_flush_tlb_others(const struct cpumask * cpus,const struct flush_tlb_info * info)1321 static void xen_flush_tlb_others(const struct cpumask *cpus,
1322 const struct flush_tlb_info *info)
1323 {
1324 struct {
1325 struct mmuext_op op;
1326 #ifdef CONFIG_SMP
1327 DECLARE_BITMAP(mask, num_processors);
1328 #else
1329 DECLARE_BITMAP(mask, NR_CPUS);
1330 #endif
1331 } *args;
1332 struct multicall_space mcs;
1333
1334 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1335
1336 if (cpumask_empty(cpus))
1337 return; /* nothing to do */
1338
1339 mcs = xen_mc_entry(sizeof(*args));
1340 args = mcs.args;
1341 args->op.arg2.vcpumask = to_cpumask(args->mask);
1342
1343 /* Remove us, and any offline CPUS. */
1344 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1345 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1346
1347 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1348 if (info->end != TLB_FLUSH_ALL &&
1349 (info->end - info->start) <= PAGE_SIZE) {
1350 args->op.cmd = MMUEXT_INVLPG_MULTI;
1351 args->op.arg1.linear_addr = info->start;
1352 }
1353
1354 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1355
1356 xen_mc_issue(PARAVIRT_LAZY_MMU);
1357 }
1358
xen_read_cr3(void)1359 static unsigned long xen_read_cr3(void)
1360 {
1361 return this_cpu_read(xen_cr3);
1362 }
1363
set_current_cr3(void * v)1364 static void set_current_cr3(void *v)
1365 {
1366 this_cpu_write(xen_current_cr3, (unsigned long)v);
1367 }
1368
__xen_write_cr3(bool kernel,unsigned long cr3)1369 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1370 {
1371 struct mmuext_op op;
1372 unsigned long mfn;
1373
1374 trace_xen_mmu_write_cr3(kernel, cr3);
1375
1376 if (cr3)
1377 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1378 else
1379 mfn = 0;
1380
1381 WARN_ON(mfn == 0 && kernel);
1382
1383 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1384 op.arg1.mfn = mfn;
1385
1386 xen_extend_mmuext_op(&op);
1387
1388 if (kernel) {
1389 this_cpu_write(xen_cr3, cr3);
1390
1391 /* Update xen_current_cr3 once the batch has actually
1392 been submitted. */
1393 xen_mc_callback(set_current_cr3, (void *)cr3);
1394 }
1395 }
xen_write_cr3(unsigned long cr3)1396 static void xen_write_cr3(unsigned long cr3)
1397 {
1398 BUG_ON(preemptible());
1399
1400 xen_mc_batch(); /* disables interrupts */
1401
1402 /* Update while interrupts are disabled, so its atomic with
1403 respect to ipis */
1404 this_cpu_write(xen_cr3, cr3);
1405
1406 __xen_write_cr3(true, cr3);
1407
1408 #ifdef CONFIG_X86_64
1409 {
1410 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1411 if (user_pgd)
1412 __xen_write_cr3(false, __pa(user_pgd));
1413 else
1414 __xen_write_cr3(false, 0);
1415 }
1416 #endif
1417
1418 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1419 }
1420
1421 #ifdef CONFIG_X86_64
1422 /*
1423 * At the start of the day - when Xen launches a guest, it has already
1424 * built pagetables for the guest. We diligently look over them
1425 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1426 * init_top_pgt and its friends. Then when we are happy we load
1427 * the new init_top_pgt - and continue on.
1428 *
1429 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1430 * up the rest of the pagetables. When it has completed it loads the cr3.
1431 * N.B. that baremetal would start at 'start_kernel' (and the early
1432 * #PF handler would create bootstrap pagetables) - so we are running
1433 * with the same assumptions as what to do when write_cr3 is executed
1434 * at this point.
1435 *
1436 * Since there are no user-page tables at all, we have two variants
1437 * of xen_write_cr3 - the early bootup (this one), and the late one
1438 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1439 * the Linux kernel and user-space are both in ring 3 while the
1440 * hypervisor is in ring 0.
1441 */
xen_write_cr3_init(unsigned long cr3)1442 static void __init xen_write_cr3_init(unsigned long cr3)
1443 {
1444 BUG_ON(preemptible());
1445
1446 xen_mc_batch(); /* disables interrupts */
1447
1448 /* Update while interrupts are disabled, so its atomic with
1449 respect to ipis */
1450 this_cpu_write(xen_cr3, cr3);
1451
1452 __xen_write_cr3(true, cr3);
1453
1454 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1455 }
1456 #endif
1457
xen_pgd_alloc(struct mm_struct * mm)1458 static int xen_pgd_alloc(struct mm_struct *mm)
1459 {
1460 pgd_t *pgd = mm->pgd;
1461 int ret = 0;
1462
1463 BUG_ON(PagePinned(virt_to_page(pgd)));
1464
1465 #ifdef CONFIG_X86_64
1466 {
1467 struct page *page = virt_to_page(pgd);
1468 pgd_t *user_pgd;
1469
1470 BUG_ON(page->private != 0);
1471
1472 ret = -ENOMEM;
1473
1474 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1475 page->private = (unsigned long)user_pgd;
1476
1477 if (user_pgd != NULL) {
1478 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1479 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1480 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1481 #endif
1482 ret = 0;
1483 }
1484
1485 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1486 }
1487 #endif
1488 return ret;
1489 }
1490
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1491 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1492 {
1493 #ifdef CONFIG_X86_64
1494 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1495
1496 if (user_pgd)
1497 free_page((unsigned long)user_pgd);
1498 #endif
1499 }
1500
1501 /*
1502 * Init-time set_pte while constructing initial pagetables, which
1503 * doesn't allow RO page table pages to be remapped RW.
1504 *
1505 * If there is no MFN for this PFN then this page is initially
1506 * ballooned out so clear the PTE (as in decrease_reservation() in
1507 * drivers/xen/balloon.c).
1508 *
1509 * Many of these PTE updates are done on unpinned and writable pages
1510 * and doing a hypercall for these is unnecessary and expensive. At
1511 * this point it is not possible to tell if a page is pinned or not,
1512 * so always write the PTE directly and rely on Xen trapping and
1513 * emulating any updates as necessary.
1514 */
xen_make_pte_init(pteval_t pte)1515 __visible pte_t xen_make_pte_init(pteval_t pte)
1516 {
1517 #ifdef CONFIG_X86_64
1518 unsigned long pfn;
1519
1520 /*
1521 * Pages belonging to the initial p2m list mapped outside the default
1522 * address range must be mapped read-only. This region contains the
1523 * page tables for mapping the p2m list, too, and page tables MUST be
1524 * mapped read-only.
1525 */
1526 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1527 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1528 pfn >= xen_start_info->first_p2m_pfn &&
1529 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1530 pte &= ~_PAGE_RW;
1531 #endif
1532 pte = pte_pfn_to_mfn(pte);
1533 return native_make_pte(pte);
1534 }
1535 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1536
xen_set_pte_init(pte_t * ptep,pte_t pte)1537 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1538 {
1539 #ifdef CONFIG_X86_32
1540 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1541 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1542 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1543 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1544 pte_val_ma(pte));
1545 #endif
1546 __xen_set_pte(ptep, pte);
1547 }
1548
1549 /* Early in boot, while setting up the initial pagetable, assume
1550 everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1551 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1552 {
1553 #ifdef CONFIG_FLATMEM
1554 BUG_ON(mem_map); /* should only be used early */
1555 #endif
1556 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1557 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1558 }
1559
1560 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1561 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1562 {
1563 #ifdef CONFIG_FLATMEM
1564 BUG_ON(mem_map); /* should only be used early */
1565 #endif
1566 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1567 }
1568
1569 /* Early release_pte assumes that all pts are pinned, since there's
1570 only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1571 static void __init xen_release_pte_init(unsigned long pfn)
1572 {
1573 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1574 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1575 }
1576
xen_release_pmd_init(unsigned long pfn)1577 static void __init xen_release_pmd_init(unsigned long pfn)
1578 {
1579 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1580 }
1581
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1582 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1583 {
1584 struct multicall_space mcs;
1585 struct mmuext_op *op;
1586
1587 mcs = __xen_mc_entry(sizeof(*op));
1588 op = mcs.args;
1589 op->cmd = cmd;
1590 op->arg1.mfn = pfn_to_mfn(pfn);
1591
1592 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1593 }
1594
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1595 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1596 {
1597 struct multicall_space mcs;
1598 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1599
1600 mcs = __xen_mc_entry(0);
1601 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1602 pfn_pte(pfn, prot), 0);
1603 }
1604
1605 /* This needs to make sure the new pte page is pinned iff its being
1606 attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1607 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1608 unsigned level)
1609 {
1610 bool pinned = PagePinned(virt_to_page(mm->pgd));
1611
1612 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1613
1614 if (pinned) {
1615 struct page *page = pfn_to_page(pfn);
1616
1617 SetPagePinned(page);
1618
1619 if (!PageHighMem(page)) {
1620 xen_mc_batch();
1621
1622 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1623
1624 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1625 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1626
1627 xen_mc_issue(PARAVIRT_LAZY_MMU);
1628 } else {
1629 /* make sure there are no stray mappings of
1630 this page */
1631 kmap_flush_unused();
1632 }
1633 }
1634 }
1635
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1636 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1637 {
1638 xen_alloc_ptpage(mm, pfn, PT_PTE);
1639 }
1640
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1641 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1642 {
1643 xen_alloc_ptpage(mm, pfn, PT_PMD);
1644 }
1645
1646 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1647 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1648 {
1649 struct page *page = pfn_to_page(pfn);
1650 bool pinned = PagePinned(page);
1651
1652 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1653
1654 if (pinned) {
1655 if (!PageHighMem(page)) {
1656 xen_mc_batch();
1657
1658 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1659 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1660
1661 __set_pfn_prot(pfn, PAGE_KERNEL);
1662
1663 xen_mc_issue(PARAVIRT_LAZY_MMU);
1664 }
1665 ClearPagePinned(page);
1666 }
1667 }
1668
xen_release_pte(unsigned long pfn)1669 static void xen_release_pte(unsigned long pfn)
1670 {
1671 xen_release_ptpage(pfn, PT_PTE);
1672 }
1673
xen_release_pmd(unsigned long pfn)1674 static void xen_release_pmd(unsigned long pfn)
1675 {
1676 xen_release_ptpage(pfn, PT_PMD);
1677 }
1678
1679 #ifdef CONFIG_X86_64
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1680 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1681 {
1682 xen_alloc_ptpage(mm, pfn, PT_PUD);
1683 }
1684
xen_release_pud(unsigned long pfn)1685 static void xen_release_pud(unsigned long pfn)
1686 {
1687 xen_release_ptpage(pfn, PT_PUD);
1688 }
1689 #endif
1690
xen_reserve_top(void)1691 void __init xen_reserve_top(void)
1692 {
1693 #ifdef CONFIG_X86_32
1694 unsigned long top = HYPERVISOR_VIRT_START;
1695 struct xen_platform_parameters pp;
1696
1697 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1698 top = pp.virt_start;
1699
1700 reserve_top_address(-top);
1701 #endif /* CONFIG_X86_32 */
1702 }
1703
1704 /*
1705 * Like __va(), but returns address in the kernel mapping (which is
1706 * all we have until the physical memory mapping has been set up.
1707 */
__ka(phys_addr_t paddr)1708 static void * __init __ka(phys_addr_t paddr)
1709 {
1710 #ifdef CONFIG_X86_64
1711 return (void *)(paddr + __START_KERNEL_map);
1712 #else
1713 return __va(paddr);
1714 #endif
1715 }
1716
1717 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1718 static unsigned long __init m2p(phys_addr_t maddr)
1719 {
1720 phys_addr_t paddr;
1721
1722 maddr &= PTE_PFN_MASK;
1723 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1724
1725 return paddr;
1726 }
1727
1728 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1729 static void * __init m2v(phys_addr_t maddr)
1730 {
1731 return __ka(m2p(maddr));
1732 }
1733
1734 /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1735 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1736 unsigned long flags)
1737 {
1738 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1739 pte_t pte = pfn_pte(pfn, prot);
1740
1741 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1742 BUG();
1743 }
set_page_prot(void * addr,pgprot_t prot)1744 static void __init set_page_prot(void *addr, pgprot_t prot)
1745 {
1746 return set_page_prot_flags(addr, prot, UVMF_NONE);
1747 }
1748 #ifdef CONFIG_X86_32
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1749 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1750 {
1751 unsigned pmdidx, pteidx;
1752 unsigned ident_pte;
1753 unsigned long pfn;
1754
1755 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1756 PAGE_SIZE);
1757
1758 ident_pte = 0;
1759 pfn = 0;
1760 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1761 pte_t *pte_page;
1762
1763 /* Reuse or allocate a page of ptes */
1764 if (pmd_present(pmd[pmdidx]))
1765 pte_page = m2v(pmd[pmdidx].pmd);
1766 else {
1767 /* Check for free pte pages */
1768 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1769 break;
1770
1771 pte_page = &level1_ident_pgt[ident_pte];
1772 ident_pte += PTRS_PER_PTE;
1773
1774 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1775 }
1776
1777 /* Install mappings */
1778 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1779 pte_t pte;
1780
1781 if (pfn > max_pfn_mapped)
1782 max_pfn_mapped = pfn;
1783
1784 if (!pte_none(pte_page[pteidx]))
1785 continue;
1786
1787 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1788 pte_page[pteidx] = pte;
1789 }
1790 }
1791
1792 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1793 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1794
1795 set_page_prot(pmd, PAGE_KERNEL_RO);
1796 }
1797 #endif
xen_setup_machphys_mapping(void)1798 void __init xen_setup_machphys_mapping(void)
1799 {
1800 struct xen_machphys_mapping mapping;
1801
1802 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1803 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1804 machine_to_phys_nr = mapping.max_mfn + 1;
1805 } else {
1806 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1807 }
1808 #ifdef CONFIG_X86_32
1809 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1810 < machine_to_phys_mapping);
1811 #endif
1812 }
1813
1814 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1815 static void __init convert_pfn_mfn(void *v)
1816 {
1817 pte_t *pte = v;
1818 int i;
1819
1820 /* All levels are converted the same way, so just treat them
1821 as ptes. */
1822 for (i = 0; i < PTRS_PER_PTE; i++)
1823 pte[i] = xen_make_pte(pte[i].pte);
1824 }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1825 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1826 unsigned long addr)
1827 {
1828 if (*pt_base == PFN_DOWN(__pa(addr))) {
1829 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1830 clear_page((void *)addr);
1831 (*pt_base)++;
1832 }
1833 if (*pt_end == PFN_DOWN(__pa(addr))) {
1834 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1835 clear_page((void *)addr);
1836 (*pt_end)--;
1837 }
1838 }
1839 /*
1840 * Set up the initial kernel pagetable.
1841 *
1842 * We can construct this by grafting the Xen provided pagetable into
1843 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1844 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1845 * kernel has a physical mapping to start with - but that's enough to
1846 * get __va working. We need to fill in the rest of the physical
1847 * mapping once some sort of allocator has been set up.
1848 */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1849 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1850 {
1851 pud_t *l3;
1852 pmd_t *l2;
1853 unsigned long addr[3];
1854 unsigned long pt_base, pt_end;
1855 unsigned i;
1856
1857 /* max_pfn_mapped is the last pfn mapped in the initial memory
1858 * mappings. Considering that on Xen after the kernel mappings we
1859 * have the mappings of some pages that don't exist in pfn space, we
1860 * set max_pfn_mapped to the last real pfn mapped. */
1861 if (xen_start_info->mfn_list < __START_KERNEL_map)
1862 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1863 else
1864 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1865
1866 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1867 pt_end = pt_base + xen_start_info->nr_pt_frames;
1868
1869 /* Zap identity mapping */
1870 init_top_pgt[0] = __pgd(0);
1871
1872 /* Pre-constructed entries are in pfn, so convert to mfn */
1873 /* L4[273] -> level3_ident_pgt */
1874 /* L4[511] -> level3_kernel_pgt */
1875 convert_pfn_mfn(init_top_pgt);
1876
1877 /* L3_i[0] -> level2_ident_pgt */
1878 convert_pfn_mfn(level3_ident_pgt);
1879 /* L3_k[510] -> level2_kernel_pgt */
1880 /* L3_k[511] -> level2_fixmap_pgt */
1881 convert_pfn_mfn(level3_kernel_pgt);
1882
1883 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1884 convert_pfn_mfn(level2_fixmap_pgt);
1885
1886 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1887 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1888 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1889
1890 addr[0] = (unsigned long)pgd;
1891 addr[1] = (unsigned long)l3;
1892 addr[2] = (unsigned long)l2;
1893 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1894 * Both L4[273][0] and L4[511][510] have entries that point to the same
1895 * L2 (PMD) tables. Meaning that if you modify it in __va space
1896 * it will be also modified in the __ka space! (But if you just
1897 * modify the PMD table to point to other PTE's or none, then you
1898 * are OK - which is what cleanup_highmap does) */
1899 copy_page(level2_ident_pgt, l2);
1900 /* Graft it onto L4[511][510] */
1901 copy_page(level2_kernel_pgt, l2);
1902
1903 /*
1904 * Zap execute permission from the ident map. Due to the sharing of
1905 * L1 entries we need to do this in the L2.
1906 */
1907 if (__supported_pte_mask & _PAGE_NX) {
1908 for (i = 0; i < PTRS_PER_PMD; ++i) {
1909 if (pmd_none(level2_ident_pgt[i]))
1910 continue;
1911 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1912 }
1913 }
1914
1915 /* Copy the initial P->M table mappings if necessary. */
1916 i = pgd_index(xen_start_info->mfn_list);
1917 if (i && i < pgd_index(__START_KERNEL_map))
1918 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1919
1920 /* Make pagetable pieces RO */
1921 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1922 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1923 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1924 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1925 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1926 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1927 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1928
1929 for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1930 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1931 PAGE_KERNEL_RO);
1932 }
1933
1934 /* Pin down new L4 */
1935 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1936 PFN_DOWN(__pa_symbol(init_top_pgt)));
1937
1938 /* Unpin Xen-provided one */
1939 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1940
1941 /*
1942 * At this stage there can be no user pgd, and no page structure to
1943 * attach it to, so make sure we just set kernel pgd.
1944 */
1945 xen_mc_batch();
1946 __xen_write_cr3(true, __pa(init_top_pgt));
1947 xen_mc_issue(PARAVIRT_LAZY_CPU);
1948
1949 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1950 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1951 * the initial domain. For guests using the toolstack, they are in:
1952 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1953 * rip out the [L4] (pgd), but for guests we shave off three pages.
1954 */
1955 for (i = 0; i < ARRAY_SIZE(addr); i++)
1956 check_pt_base(&pt_base, &pt_end, addr[i]);
1957
1958 /* Our (by three pages) smaller Xen pagetable that we are using */
1959 xen_pt_base = PFN_PHYS(pt_base);
1960 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1961 memblock_reserve(xen_pt_base, xen_pt_size);
1962
1963 /* Revector the xen_start_info */
1964 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1965 }
1966
1967 /*
1968 * Read a value from a physical address.
1969 */
xen_read_phys_ulong(phys_addr_t addr)1970 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1971 {
1972 unsigned long *vaddr;
1973 unsigned long val;
1974
1975 vaddr = early_memremap_ro(addr, sizeof(val));
1976 val = *vaddr;
1977 early_memunmap(vaddr, sizeof(val));
1978 return val;
1979 }
1980
1981 /*
1982 * Translate a virtual address to a physical one without relying on mapped
1983 * page tables. Don't rely on big pages being aligned in (guest) physical
1984 * space!
1985 */
xen_early_virt_to_phys(unsigned long vaddr)1986 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1987 {
1988 phys_addr_t pa;
1989 pgd_t pgd;
1990 pud_t pud;
1991 pmd_t pmd;
1992 pte_t pte;
1993
1994 pa = read_cr3_pa();
1995 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1996 sizeof(pgd)));
1997 if (!pgd_present(pgd))
1998 return 0;
1999
2000 pa = pgd_val(pgd) & PTE_PFN_MASK;
2001 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2002 sizeof(pud)));
2003 if (!pud_present(pud))
2004 return 0;
2005 pa = pud_val(pud) & PTE_PFN_MASK;
2006 if (pud_large(pud))
2007 return pa + (vaddr & ~PUD_MASK);
2008
2009 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2010 sizeof(pmd)));
2011 if (!pmd_present(pmd))
2012 return 0;
2013 pa = pmd_val(pmd) & PTE_PFN_MASK;
2014 if (pmd_large(pmd))
2015 return pa + (vaddr & ~PMD_MASK);
2016
2017 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2018 sizeof(pte)));
2019 if (!pte_present(pte))
2020 return 0;
2021 pa = pte_pfn(pte) << PAGE_SHIFT;
2022
2023 return pa | (vaddr & ~PAGE_MASK);
2024 }
2025
2026 /*
2027 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2028 * this area.
2029 */
xen_relocate_p2m(void)2030 void __init xen_relocate_p2m(void)
2031 {
2032 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2033 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2034 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2035 pte_t *pt;
2036 pmd_t *pmd;
2037 pud_t *pud;
2038 pgd_t *pgd;
2039 unsigned long *new_p2m;
2040 int save_pud;
2041
2042 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2043 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2044 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2045 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2046 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2047 n_frames = n_pte + n_pt + n_pmd + n_pud;
2048
2049 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2050 if (!new_area) {
2051 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2052 BUG();
2053 }
2054
2055 /*
2056 * Setup the page tables for addressing the new p2m list.
2057 * We have asked the hypervisor to map the p2m list at the user address
2058 * PUD_SIZE. It may have done so, or it may have used a kernel space
2059 * address depending on the Xen version.
2060 * To avoid any possible virtual address collision, just use
2061 * 2 * PUD_SIZE for the new area.
2062 */
2063 pud_phys = new_area;
2064 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2065 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2066 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2067
2068 pgd = __va(read_cr3_pa());
2069 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2070 save_pud = n_pud;
2071 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2072 pud = early_memremap(pud_phys, PAGE_SIZE);
2073 clear_page(pud);
2074 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2075 idx_pmd++) {
2076 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2077 clear_page(pmd);
2078 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2079 idx_pt++) {
2080 pt = early_memremap(pt_phys, PAGE_SIZE);
2081 clear_page(pt);
2082 for (idx_pte = 0;
2083 idx_pte < min(n_pte, PTRS_PER_PTE);
2084 idx_pte++) {
2085 pt[idx_pte] = pfn_pte(p2m_pfn,
2086 PAGE_KERNEL);
2087 p2m_pfn++;
2088 }
2089 n_pte -= PTRS_PER_PTE;
2090 early_memunmap(pt, PAGE_SIZE);
2091 make_lowmem_page_readonly(__va(pt_phys));
2092 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2093 PFN_DOWN(pt_phys));
2094 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
2095 pt_phys += PAGE_SIZE;
2096 }
2097 n_pt -= PTRS_PER_PMD;
2098 early_memunmap(pmd, PAGE_SIZE);
2099 make_lowmem_page_readonly(__va(pmd_phys));
2100 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2101 PFN_DOWN(pmd_phys));
2102 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
2103 pmd_phys += PAGE_SIZE;
2104 }
2105 n_pmd -= PTRS_PER_PUD;
2106 early_memunmap(pud, PAGE_SIZE);
2107 make_lowmem_page_readonly(__va(pud_phys));
2108 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2109 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2110 pud_phys += PAGE_SIZE;
2111 }
2112
2113 /* Now copy the old p2m info to the new area. */
2114 memcpy(new_p2m, xen_p2m_addr, size);
2115 xen_p2m_addr = new_p2m;
2116
2117 /* Release the old p2m list and set new list info. */
2118 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2119 BUG_ON(!p2m_pfn);
2120 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2121
2122 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2123 pfn = xen_start_info->first_p2m_pfn;
2124 pfn_end = xen_start_info->first_p2m_pfn +
2125 xen_start_info->nr_p2m_frames;
2126 set_pgd(pgd + 1, __pgd(0));
2127 } else {
2128 pfn = p2m_pfn;
2129 pfn_end = p2m_pfn_end;
2130 }
2131
2132 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2133 while (pfn < pfn_end) {
2134 if (pfn == p2m_pfn) {
2135 pfn = p2m_pfn_end;
2136 continue;
2137 }
2138 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2139 pfn++;
2140 }
2141
2142 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2143 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2144 xen_start_info->nr_p2m_frames = n_frames;
2145 }
2146
2147 #else /* !CONFIG_X86_64 */
2148 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2149 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2150
xen_write_cr3_init(unsigned long cr3)2151 static void __init xen_write_cr3_init(unsigned long cr3)
2152 {
2153 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2154
2155 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2156 BUG_ON(cr3 != __pa(swapper_pg_dir));
2157
2158 /*
2159 * We are switching to swapper_pg_dir for the first time (from
2160 * initial_page_table) and therefore need to mark that page
2161 * read-only and then pin it.
2162 *
2163 * Xen disallows sharing of kernel PMDs for PAE
2164 * guests. Therefore we must copy the kernel PMD from
2165 * initial_page_table into a new kernel PMD to be used in
2166 * swapper_pg_dir.
2167 */
2168 swapper_kernel_pmd =
2169 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2170 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2171 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2172 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2173 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2174
2175 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2176 xen_write_cr3(cr3);
2177 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2178
2179 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2180 PFN_DOWN(__pa(initial_page_table)));
2181 set_page_prot(initial_page_table, PAGE_KERNEL);
2182 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2183
2184 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2185 }
2186
2187 /*
2188 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2189 * not the first page table in the page table pool.
2190 * Iterate through the initial page tables to find the real page table base.
2191 */
xen_find_pt_base(pmd_t * pmd)2192 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2193 {
2194 phys_addr_t pt_base, paddr;
2195 unsigned pmdidx;
2196
2197 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2198
2199 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2200 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2201 paddr = m2p(pmd[pmdidx].pmd);
2202 pt_base = min(pt_base, paddr);
2203 }
2204
2205 return pt_base;
2206 }
2207
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)2208 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2209 {
2210 pmd_t *kernel_pmd;
2211
2212 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2213
2214 xen_pt_base = xen_find_pt_base(kernel_pmd);
2215 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2216
2217 initial_kernel_pmd =
2218 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2219
2220 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2221
2222 copy_page(initial_kernel_pmd, kernel_pmd);
2223
2224 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2225
2226 copy_page(initial_page_table, pgd);
2227 initial_page_table[KERNEL_PGD_BOUNDARY] =
2228 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2229
2230 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2231 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2232 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2233
2234 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2235
2236 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2237 PFN_DOWN(__pa(initial_page_table)));
2238 xen_write_cr3(__pa(initial_page_table));
2239
2240 memblock_reserve(xen_pt_base, xen_pt_size);
2241 }
2242 #endif /* CONFIG_X86_64 */
2243
xen_reserve_special_pages(void)2244 void __init xen_reserve_special_pages(void)
2245 {
2246 phys_addr_t paddr;
2247
2248 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2249 if (xen_start_info->store_mfn) {
2250 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2251 memblock_reserve(paddr, PAGE_SIZE);
2252 }
2253 if (!xen_initial_domain()) {
2254 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2255 memblock_reserve(paddr, PAGE_SIZE);
2256 }
2257 }
2258
xen_pt_check_e820(void)2259 void __init xen_pt_check_e820(void)
2260 {
2261 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2262 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2263 BUG();
2264 }
2265 }
2266
2267 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2268
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2269 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2270 {
2271 pte_t pte;
2272
2273 phys >>= PAGE_SHIFT;
2274
2275 switch (idx) {
2276 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2277 #ifdef CONFIG_X86_32
2278 case FIX_WP_TEST:
2279 # ifdef CONFIG_HIGHMEM
2280 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2281 # endif
2282 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2283 case VSYSCALL_PAGE:
2284 #endif
2285 case FIX_TEXT_POKE0:
2286 case FIX_TEXT_POKE1:
2287 /* All local page mappings */
2288 pte = pfn_pte(phys, prot);
2289 break;
2290
2291 #ifdef CONFIG_X86_LOCAL_APIC
2292 case FIX_APIC_BASE: /* maps dummy local APIC */
2293 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2294 break;
2295 #endif
2296
2297 #ifdef CONFIG_X86_IO_APIC
2298 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2299 /*
2300 * We just don't map the IO APIC - all access is via
2301 * hypercalls. Keep the address in the pte for reference.
2302 */
2303 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2304 break;
2305 #endif
2306
2307 case FIX_PARAVIRT_BOOTMAP:
2308 /* This is an MFN, but it isn't an IO mapping from the
2309 IO domain */
2310 pte = mfn_pte(phys, prot);
2311 break;
2312
2313 default:
2314 /* By default, set_fixmap is used for hardware mappings */
2315 pte = mfn_pte(phys, prot);
2316 break;
2317 }
2318
2319 __native_set_fixmap(idx, pte);
2320
2321 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2322 /* Replicate changes to map the vsyscall page into the user
2323 pagetable vsyscall mapping. */
2324 if (idx == VSYSCALL_PAGE) {
2325 unsigned long vaddr = __fix_to_virt(idx);
2326 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2327 }
2328 #endif
2329 }
2330
xen_post_allocator_init(void)2331 static void __init xen_post_allocator_init(void)
2332 {
2333 pv_mmu_ops.set_pte = xen_set_pte;
2334 pv_mmu_ops.set_pmd = xen_set_pmd;
2335 pv_mmu_ops.set_pud = xen_set_pud;
2336 #ifdef CONFIG_X86_64
2337 pv_mmu_ops.set_p4d = xen_set_p4d;
2338 #endif
2339
2340 /* This will work as long as patching hasn't happened yet
2341 (which it hasn't) */
2342 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2343 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2344 pv_mmu_ops.release_pte = xen_release_pte;
2345 pv_mmu_ops.release_pmd = xen_release_pmd;
2346 #ifdef CONFIG_X86_64
2347 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2348 pv_mmu_ops.release_pud = xen_release_pud;
2349 #endif
2350 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2351
2352 #ifdef CONFIG_X86_64
2353 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2354 SetPagePinned(virt_to_page(level3_user_vsyscall));
2355 #endif
2356 xen_mark_init_mm_pinned();
2357 }
2358
xen_leave_lazy_mmu(void)2359 static void xen_leave_lazy_mmu(void)
2360 {
2361 preempt_disable();
2362 xen_mc_flush();
2363 paravirt_leave_lazy_mmu();
2364 preempt_enable();
2365 }
2366
2367 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2368 .read_cr2 = xen_read_cr2,
2369 .write_cr2 = xen_write_cr2,
2370
2371 .read_cr3 = xen_read_cr3,
2372 .write_cr3 = xen_write_cr3_init,
2373
2374 .flush_tlb_user = xen_flush_tlb,
2375 .flush_tlb_kernel = xen_flush_tlb,
2376 .flush_tlb_one_user = xen_flush_tlb_one_user,
2377 .flush_tlb_others = xen_flush_tlb_others,
2378
2379 .pgd_alloc = xen_pgd_alloc,
2380 .pgd_free = xen_pgd_free,
2381
2382 .alloc_pte = xen_alloc_pte_init,
2383 .release_pte = xen_release_pte_init,
2384 .alloc_pmd = xen_alloc_pmd_init,
2385 .release_pmd = xen_release_pmd_init,
2386
2387 .set_pte = xen_set_pte_init,
2388 .set_pte_at = xen_set_pte_at,
2389 .set_pmd = xen_set_pmd_hyper,
2390
2391 .ptep_modify_prot_start = __ptep_modify_prot_start,
2392 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2393
2394 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2395 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2396
2397 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2398 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2399
2400 #ifdef CONFIG_X86_PAE
2401 .set_pte_atomic = xen_set_pte_atomic,
2402 .pte_clear = xen_pte_clear,
2403 .pmd_clear = xen_pmd_clear,
2404 #endif /* CONFIG_X86_PAE */
2405 .set_pud = xen_set_pud_hyper,
2406
2407 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2408 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2409
2410 #ifdef CONFIG_X86_64
2411 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2412 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2413 .set_p4d = xen_set_p4d_hyper,
2414
2415 .alloc_pud = xen_alloc_pmd_init,
2416 .release_pud = xen_release_pmd_init,
2417 #endif /* CONFIG_X86_64 */
2418
2419 .activate_mm = xen_activate_mm,
2420 .dup_mmap = xen_dup_mmap,
2421 .exit_mmap = xen_exit_mmap,
2422
2423 .lazy_mode = {
2424 .enter = paravirt_enter_lazy_mmu,
2425 .leave = xen_leave_lazy_mmu,
2426 .flush = paravirt_flush_lazy_mmu,
2427 },
2428
2429 .set_fixmap = xen_set_fixmap,
2430 };
2431
xen_init_mmu_ops(void)2432 void __init xen_init_mmu_ops(void)
2433 {
2434 x86_init.paging.pagetable_init = xen_pagetable_init;
2435
2436 pv_mmu_ops = xen_mmu_ops;
2437
2438 memset(dummy_mapping, 0xff, PAGE_SIZE);
2439 }
2440
2441 /* Protected by xen_reservation_lock. */
2442 #define MAX_CONTIG_ORDER 9 /* 2MB */
2443 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2444
2445 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2446 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2447 unsigned long *in_frames,
2448 unsigned long *out_frames)
2449 {
2450 int i;
2451 struct multicall_space mcs;
2452
2453 xen_mc_batch();
2454 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2455 mcs = __xen_mc_entry(0);
2456
2457 if (in_frames)
2458 in_frames[i] = virt_to_mfn(vaddr);
2459
2460 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2461 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2462
2463 if (out_frames)
2464 out_frames[i] = virt_to_pfn(vaddr);
2465 }
2466 xen_mc_issue(0);
2467 }
2468
2469 /*
2470 * Update the pfn-to-mfn mappings for a virtual address range, either to
2471 * point to an array of mfns, or contiguously from a single starting
2472 * mfn.
2473 */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2474 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2475 unsigned long *mfns,
2476 unsigned long first_mfn)
2477 {
2478 unsigned i, limit;
2479 unsigned long mfn;
2480
2481 xen_mc_batch();
2482
2483 limit = 1u << order;
2484 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2485 struct multicall_space mcs;
2486 unsigned flags;
2487
2488 mcs = __xen_mc_entry(0);
2489 if (mfns)
2490 mfn = mfns[i];
2491 else
2492 mfn = first_mfn + i;
2493
2494 if (i < (limit - 1))
2495 flags = 0;
2496 else {
2497 if (order == 0)
2498 flags = UVMF_INVLPG | UVMF_ALL;
2499 else
2500 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2501 }
2502
2503 MULTI_update_va_mapping(mcs.mc, vaddr,
2504 mfn_pte(mfn, PAGE_KERNEL), flags);
2505
2506 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2507 }
2508
2509 xen_mc_issue(0);
2510 }
2511
2512 /*
2513 * Perform the hypercall to exchange a region of our pfns to point to
2514 * memory with the required contiguous alignment. Takes the pfns as
2515 * input, and populates mfns as output.
2516 *
2517 * Returns a success code indicating whether the hypervisor was able to
2518 * satisfy the request or not.
2519 */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2520 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2521 unsigned long *pfns_in,
2522 unsigned long extents_out,
2523 unsigned int order_out,
2524 unsigned long *mfns_out,
2525 unsigned int address_bits)
2526 {
2527 long rc;
2528 int success;
2529
2530 struct xen_memory_exchange exchange = {
2531 .in = {
2532 .nr_extents = extents_in,
2533 .extent_order = order_in,
2534 .extent_start = pfns_in,
2535 .domid = DOMID_SELF
2536 },
2537 .out = {
2538 .nr_extents = extents_out,
2539 .extent_order = order_out,
2540 .extent_start = mfns_out,
2541 .address_bits = address_bits,
2542 .domid = DOMID_SELF
2543 }
2544 };
2545
2546 BUG_ON(extents_in << order_in != extents_out << order_out);
2547
2548 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2549 success = (exchange.nr_exchanged == extents_in);
2550
2551 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2552 BUG_ON(success && (rc != 0));
2553
2554 return success;
2555 }
2556
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2557 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2558 unsigned int address_bits,
2559 dma_addr_t *dma_handle)
2560 {
2561 unsigned long *in_frames = discontig_frames, out_frame;
2562 unsigned long flags;
2563 int success;
2564 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2565
2566 /*
2567 * Currently an auto-translated guest will not perform I/O, nor will
2568 * it require PAE page directories below 4GB. Therefore any calls to
2569 * this function are redundant and can be ignored.
2570 */
2571
2572 if (unlikely(order > MAX_CONTIG_ORDER))
2573 return -ENOMEM;
2574
2575 memset((void *) vstart, 0, PAGE_SIZE << order);
2576
2577 spin_lock_irqsave(&xen_reservation_lock, flags);
2578
2579 /* 1. Zap current PTEs, remembering MFNs. */
2580 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2581
2582 /* 2. Get a new contiguous memory extent. */
2583 out_frame = virt_to_pfn(vstart);
2584 success = xen_exchange_memory(1UL << order, 0, in_frames,
2585 1, order, &out_frame,
2586 address_bits);
2587
2588 /* 3. Map the new extent in place of old pages. */
2589 if (success)
2590 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2591 else
2592 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2593
2594 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2595
2596 *dma_handle = virt_to_machine(vstart).maddr;
2597 return success ? 0 : -ENOMEM;
2598 }
2599 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2600
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2601 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2602 {
2603 unsigned long *out_frames = discontig_frames, in_frame;
2604 unsigned long flags;
2605 int success;
2606 unsigned long vstart;
2607
2608 if (unlikely(order > MAX_CONTIG_ORDER))
2609 return;
2610
2611 vstart = (unsigned long)phys_to_virt(pstart);
2612 memset((void *) vstart, 0, PAGE_SIZE << order);
2613
2614 spin_lock_irqsave(&xen_reservation_lock, flags);
2615
2616 /* 1. Find start MFN of contiguous extent. */
2617 in_frame = virt_to_mfn(vstart);
2618
2619 /* 2. Zap current PTEs. */
2620 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2621
2622 /* 3. Do the exchange for non-contiguous MFNs. */
2623 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2624 0, out_frames, 0);
2625
2626 /* 4. Map new pages in place of old pages. */
2627 if (success)
2628 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2629 else
2630 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2631
2632 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2633 }
2634 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2635
2636 #ifdef CONFIG_KEXEC_CORE
paddr_vmcoreinfo_note(void)2637 phys_addr_t paddr_vmcoreinfo_note(void)
2638 {
2639 if (xen_pv_domain())
2640 return virt_to_machine(vmcoreinfo_note).maddr;
2641 else
2642 return __pa(vmcoreinfo_note);
2643 }
2644 #endif /* CONFIG_KEXEC_CORE */
2645