• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_trace.h"
28 #include "xfs_error.h"
29 #include "xfs_log.h"
30 
31 #ifdef DEBUG
32 /*
33  * Check that the list is sorted as it should be.
34  */
35 STATIC void
xfs_ail_check(struct xfs_ail * ailp,xfs_log_item_t * lip)36 xfs_ail_check(
37 	struct xfs_ail	*ailp,
38 	xfs_log_item_t	*lip)
39 {
40 	xfs_log_item_t	*prev_lip;
41 
42 	if (list_empty(&ailp->xa_ail))
43 		return;
44 
45 	/*
46 	 * Check the next and previous entries are valid.
47 	 */
48 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 	if (&prev_lip->li_ail != &ailp->xa_ail)
51 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52 
53 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 	if (&prev_lip->li_ail != &ailp->xa_ail)
55 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56 
57 
58 }
59 #else /* !DEBUG */
60 #define	xfs_ail_check(a,l)
61 #endif /* DEBUG */
62 
63 /*
64  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
65  * return NULL.
66  */
67 static xfs_log_item_t *
xfs_ail_max(struct xfs_ail * ailp)68 xfs_ail_max(
69 	struct xfs_ail  *ailp)
70 {
71 	if (list_empty(&ailp->xa_ail))
72 		return NULL;
73 
74 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
75 }
76 
77 /*
78  * Return a pointer to the item which follows the given item in the AIL.  If
79  * the given item is the last item in the list, then return NULL.
80  */
81 static xfs_log_item_t *
xfs_ail_next(struct xfs_ail * ailp,xfs_log_item_t * lip)82 xfs_ail_next(
83 	struct xfs_ail  *ailp,
84 	xfs_log_item_t  *lip)
85 {
86 	if (lip->li_ail.next == &ailp->xa_ail)
87 		return NULL;
88 
89 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
90 }
91 
92 /*
93  * This is called by the log manager code to determine the LSN of the tail of
94  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
95  * is empty, then this function returns 0.
96  *
97  * We need the AIL lock in order to get a coherent read of the lsn of the last
98  * item in the AIL.
99  */
100 xfs_lsn_t
xfs_ail_min_lsn(struct xfs_ail * ailp)101 xfs_ail_min_lsn(
102 	struct xfs_ail	*ailp)
103 {
104 	xfs_lsn_t	lsn = 0;
105 	xfs_log_item_t	*lip;
106 
107 	spin_lock(&ailp->xa_lock);
108 	lip = xfs_ail_min(ailp);
109 	if (lip)
110 		lsn = lip->li_lsn;
111 	spin_unlock(&ailp->xa_lock);
112 
113 	return lsn;
114 }
115 
116 /*
117  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
118  */
119 static xfs_lsn_t
xfs_ail_max_lsn(struct xfs_ail * ailp)120 xfs_ail_max_lsn(
121 	struct xfs_ail  *ailp)
122 {
123 	xfs_lsn_t       lsn = 0;
124 	xfs_log_item_t  *lip;
125 
126 	spin_lock(&ailp->xa_lock);
127 	lip = xfs_ail_max(ailp);
128 	if (lip)
129 		lsn = lip->li_lsn;
130 	spin_unlock(&ailp->xa_lock);
131 
132 	return lsn;
133 }
134 
135 /*
136  * The cursor keeps track of where our current traversal is up to by tracking
137  * the next item in the list for us. However, for this to be safe, removing an
138  * object from the AIL needs to invalidate any cursor that points to it. hence
139  * the traversal cursor needs to be linked to the struct xfs_ail so that
140  * deletion can search all the active cursors for invalidation.
141  */
142 STATIC void
xfs_trans_ail_cursor_init(struct xfs_ail * ailp,struct xfs_ail_cursor * cur)143 xfs_trans_ail_cursor_init(
144 	struct xfs_ail		*ailp,
145 	struct xfs_ail_cursor	*cur)
146 {
147 	cur->item = NULL;
148 	list_add_tail(&cur->list, &ailp->xa_cursors);
149 }
150 
151 /*
152  * Get the next item in the traversal and advance the cursor.  If the cursor
153  * was invalidated (indicated by a lip of 1), restart the traversal.
154  */
155 struct xfs_log_item *
xfs_trans_ail_cursor_next(struct xfs_ail * ailp,struct xfs_ail_cursor * cur)156 xfs_trans_ail_cursor_next(
157 	struct xfs_ail		*ailp,
158 	struct xfs_ail_cursor	*cur)
159 {
160 	struct xfs_log_item	*lip = cur->item;
161 
162 	if ((uintptr_t)lip & 1)
163 		lip = xfs_ail_min(ailp);
164 	if (lip)
165 		cur->item = xfs_ail_next(ailp, lip);
166 	return lip;
167 }
168 
169 /*
170  * When the traversal is complete, we need to remove the cursor from the list
171  * of traversing cursors.
172  */
173 void
xfs_trans_ail_cursor_done(struct xfs_ail_cursor * cur)174 xfs_trans_ail_cursor_done(
175 	struct xfs_ail_cursor	*cur)
176 {
177 	cur->item = NULL;
178 	list_del_init(&cur->list);
179 }
180 
181 /*
182  * Invalidate any cursor that is pointing to this item. This is called when an
183  * item is removed from the AIL. Any cursor pointing to this object is now
184  * invalid and the traversal needs to be terminated so it doesn't reference a
185  * freed object. We set the low bit of the cursor item pointer so we can
186  * distinguish between an invalidation and the end of the list when getting the
187  * next item from the cursor.
188  */
189 STATIC void
xfs_trans_ail_cursor_clear(struct xfs_ail * ailp,struct xfs_log_item * lip)190 xfs_trans_ail_cursor_clear(
191 	struct xfs_ail		*ailp,
192 	struct xfs_log_item	*lip)
193 {
194 	struct xfs_ail_cursor	*cur;
195 
196 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
197 		if (cur->item == lip)
198 			cur->item = (struct xfs_log_item *)
199 					((uintptr_t)cur->item | 1);
200 	}
201 }
202 
203 /*
204  * Find the first item in the AIL with the given @lsn by searching in ascending
205  * LSN order and initialise the cursor to point to the next item for a
206  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
207  * first item in the AIL. Returns NULL if the list is empty.
208  */
209 xfs_log_item_t *
xfs_trans_ail_cursor_first(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,xfs_lsn_t lsn)210 xfs_trans_ail_cursor_first(
211 	struct xfs_ail		*ailp,
212 	struct xfs_ail_cursor	*cur,
213 	xfs_lsn_t		lsn)
214 {
215 	xfs_log_item_t		*lip;
216 
217 	xfs_trans_ail_cursor_init(ailp, cur);
218 
219 	if (lsn == 0) {
220 		lip = xfs_ail_min(ailp);
221 		goto out;
222 	}
223 
224 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
225 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
226 			goto out;
227 	}
228 	return NULL;
229 
230 out:
231 	if (lip)
232 		cur->item = xfs_ail_next(ailp, lip);
233 	return lip;
234 }
235 
236 static struct xfs_log_item *
__xfs_trans_ail_cursor_last(struct xfs_ail * ailp,xfs_lsn_t lsn)237 __xfs_trans_ail_cursor_last(
238 	struct xfs_ail		*ailp,
239 	xfs_lsn_t		lsn)
240 {
241 	xfs_log_item_t		*lip;
242 
243 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
244 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
245 			return lip;
246 	}
247 	return NULL;
248 }
249 
250 /*
251  * Find the last item in the AIL with the given @lsn by searching in descending
252  * LSN order and initialise the cursor to point to that item.  If there is no
253  * item with the value of @lsn, then it sets the cursor to the last item with an
254  * LSN lower than @lsn.  Returns NULL if the list is empty.
255  */
256 struct xfs_log_item *
xfs_trans_ail_cursor_last(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,xfs_lsn_t lsn)257 xfs_trans_ail_cursor_last(
258 	struct xfs_ail		*ailp,
259 	struct xfs_ail_cursor	*cur,
260 	xfs_lsn_t		lsn)
261 {
262 	xfs_trans_ail_cursor_init(ailp, cur);
263 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
264 	return cur->item;
265 }
266 
267 /*
268  * Splice the log item list into the AIL at the given LSN. We splice to the
269  * tail of the given LSN to maintain insert order for push traversals. The
270  * cursor is optional, allowing repeated updates to the same LSN to avoid
271  * repeated traversals.  This should not be called with an empty list.
272  */
273 static void
xfs_ail_splice(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct list_head * list,xfs_lsn_t lsn)274 xfs_ail_splice(
275 	struct xfs_ail		*ailp,
276 	struct xfs_ail_cursor	*cur,
277 	struct list_head	*list,
278 	xfs_lsn_t		lsn)
279 {
280 	struct xfs_log_item	*lip;
281 
282 	ASSERT(!list_empty(list));
283 
284 	/*
285 	 * Use the cursor to determine the insertion point if one is
286 	 * provided.  If not, or if the one we got is not valid,
287 	 * find the place in the AIL where the items belong.
288 	 */
289 	lip = cur ? cur->item : NULL;
290 	if (!lip || (uintptr_t)lip & 1)
291 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
292 
293 	/*
294 	 * If a cursor is provided, we know we're processing the AIL
295 	 * in lsn order, and future items to be spliced in will
296 	 * follow the last one being inserted now.  Update the
297 	 * cursor to point to that last item, now while we have a
298 	 * reliable pointer to it.
299 	 */
300 	if (cur)
301 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
302 
303 	/*
304 	 * Finally perform the splice.  Unless the AIL was empty,
305 	 * lip points to the item in the AIL _after_ which the new
306 	 * items should go.  If lip is null the AIL was empty, so
307 	 * the new items go at the head of the AIL.
308 	 */
309 	if (lip)
310 		list_splice(list, &lip->li_ail);
311 	else
312 		list_splice(list, &ailp->xa_ail);
313 }
314 
315 /*
316  * Delete the given item from the AIL.  Return a pointer to the item.
317  */
318 static void
xfs_ail_delete(struct xfs_ail * ailp,xfs_log_item_t * lip)319 xfs_ail_delete(
320 	struct xfs_ail  *ailp,
321 	xfs_log_item_t  *lip)
322 {
323 	xfs_ail_check(ailp, lip);
324 	list_del(&lip->li_ail);
325 	xfs_trans_ail_cursor_clear(ailp, lip);
326 }
327 
328 static inline uint
xfsaild_push_item(struct xfs_ail * ailp,struct xfs_log_item * lip)329 xfsaild_push_item(
330 	struct xfs_ail		*ailp,
331 	struct xfs_log_item	*lip)
332 {
333 	/*
334 	 * If log item pinning is enabled, skip the push and track the item as
335 	 * pinned. This can help induce head-behind-tail conditions.
336 	 */
337 	if (XFS_TEST_ERROR(false, ailp->xa_mount, XFS_ERRTAG_LOG_ITEM_PIN))
338 		return XFS_ITEM_PINNED;
339 
340 	return lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
341 }
342 
343 static long
xfsaild_push(struct xfs_ail * ailp)344 xfsaild_push(
345 	struct xfs_ail		*ailp)
346 {
347 	xfs_mount_t		*mp = ailp->xa_mount;
348 	struct xfs_ail_cursor	cur;
349 	xfs_log_item_t		*lip;
350 	xfs_lsn_t		lsn;
351 	xfs_lsn_t		target;
352 	long			tout;
353 	int			stuck = 0;
354 	int			flushing = 0;
355 	int			count = 0;
356 
357 	/*
358 	 * If we encountered pinned items or did not finish writing out all
359 	 * buffers the last time we ran, force the log first and wait for it
360 	 * before pushing again.
361 	 */
362 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
363 	    (!list_empty_careful(&ailp->xa_buf_list) ||
364 	     xfs_ail_min_lsn(ailp))) {
365 		ailp->xa_log_flush = 0;
366 
367 		XFS_STATS_INC(mp, xs_push_ail_flush);
368 		xfs_log_force(mp, XFS_LOG_SYNC);
369 	}
370 
371 	spin_lock(&ailp->xa_lock);
372 
373 	/* barrier matches the xa_target update in xfs_ail_push() */
374 	smp_rmb();
375 	target = ailp->xa_target;
376 	ailp->xa_target_prev = target;
377 
378 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
379 	if (!lip) {
380 		/*
381 		 * If the AIL is empty or our push has reached the end we are
382 		 * done now.
383 		 */
384 		xfs_trans_ail_cursor_done(&cur);
385 		spin_unlock(&ailp->xa_lock);
386 		goto out_done;
387 	}
388 
389 	XFS_STATS_INC(mp, xs_push_ail);
390 
391 	lsn = lip->li_lsn;
392 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
393 		int	lock_result;
394 
395 		/*
396 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
397 		 * rely on the AIL cursor implementation to be able to deal with
398 		 * the dropped lock.
399 		 */
400 		lock_result = xfsaild_push_item(ailp, lip);
401 		switch (lock_result) {
402 		case XFS_ITEM_SUCCESS:
403 			XFS_STATS_INC(mp, xs_push_ail_success);
404 			trace_xfs_ail_push(lip);
405 
406 			ailp->xa_last_pushed_lsn = lsn;
407 			break;
408 
409 		case XFS_ITEM_FLUSHING:
410 			/*
411 			 * The item or its backing buffer is already beeing
412 			 * flushed.  The typical reason for that is that an
413 			 * inode buffer is locked because we already pushed the
414 			 * updates to it as part of inode clustering.
415 			 *
416 			 * We do not want to to stop flushing just because lots
417 			 * of items are already beeing flushed, but we need to
418 			 * re-try the flushing relatively soon if most of the
419 			 * AIL is beeing flushed.
420 			 */
421 			XFS_STATS_INC(mp, xs_push_ail_flushing);
422 			trace_xfs_ail_flushing(lip);
423 
424 			flushing++;
425 			ailp->xa_last_pushed_lsn = lsn;
426 			break;
427 
428 		case XFS_ITEM_PINNED:
429 			XFS_STATS_INC(mp, xs_push_ail_pinned);
430 			trace_xfs_ail_pinned(lip);
431 
432 			stuck++;
433 			ailp->xa_log_flush++;
434 			break;
435 		case XFS_ITEM_LOCKED:
436 			XFS_STATS_INC(mp, xs_push_ail_locked);
437 			trace_xfs_ail_locked(lip);
438 
439 			stuck++;
440 			break;
441 		default:
442 			ASSERT(0);
443 			break;
444 		}
445 
446 		count++;
447 
448 		/*
449 		 * Are there too many items we can't do anything with?
450 		 *
451 		 * If we we are skipping too many items because we can't flush
452 		 * them or they are already being flushed, we back off and
453 		 * given them time to complete whatever operation is being
454 		 * done. i.e. remove pressure from the AIL while we can't make
455 		 * progress so traversals don't slow down further inserts and
456 		 * removals to/from the AIL.
457 		 *
458 		 * The value of 100 is an arbitrary magic number based on
459 		 * observation.
460 		 */
461 		if (stuck > 100)
462 			break;
463 
464 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
465 		if (lip == NULL)
466 			break;
467 		lsn = lip->li_lsn;
468 	}
469 	xfs_trans_ail_cursor_done(&cur);
470 	spin_unlock(&ailp->xa_lock);
471 
472 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
473 		ailp->xa_log_flush++;
474 
475 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
476 out_done:
477 		/*
478 		 * We reached the target or the AIL is empty, so wait a bit
479 		 * longer for I/O to complete and remove pushed items from the
480 		 * AIL before we start the next scan from the start of the AIL.
481 		 */
482 		tout = 50;
483 		ailp->xa_last_pushed_lsn = 0;
484 	} else if (((stuck + flushing) * 100) / count > 90) {
485 		/*
486 		 * Either there is a lot of contention on the AIL or we are
487 		 * stuck due to operations in progress. "Stuck" in this case
488 		 * is defined as >90% of the items we tried to push were stuck.
489 		 *
490 		 * Backoff a bit more to allow some I/O to complete before
491 		 * restarting from the start of the AIL. This prevents us from
492 		 * spinning on the same items, and if they are pinned will all
493 		 * the restart to issue a log force to unpin the stuck items.
494 		 */
495 		tout = 20;
496 		ailp->xa_last_pushed_lsn = 0;
497 	} else {
498 		/*
499 		 * Assume we have more work to do in a short while.
500 		 */
501 		tout = 10;
502 	}
503 
504 	return tout;
505 }
506 
507 static int
xfsaild(void * data)508 xfsaild(
509 	void		*data)
510 {
511 	struct xfs_ail	*ailp = data;
512 	long		tout = 0;	/* milliseconds */
513 
514 	current->flags |= PF_MEMALLOC;
515 	set_freezable();
516 
517 	while (!kthread_should_stop()) {
518 		if (tout && tout <= 20)
519 			__set_current_state(TASK_KILLABLE);
520 		else
521 			__set_current_state(TASK_INTERRUPTIBLE);
522 
523 		spin_lock(&ailp->xa_lock);
524 
525 		/*
526 		 * Idle if the AIL is empty and we are not racing with a target
527 		 * update. We check the AIL after we set the task to a sleep
528 		 * state to guarantee that we either catch an xa_target update
529 		 * or that a wake_up resets the state to TASK_RUNNING.
530 		 * Otherwise, we run the risk of sleeping indefinitely.
531 		 *
532 		 * The barrier matches the xa_target update in xfs_ail_push().
533 		 */
534 		smp_rmb();
535 		if (!xfs_ail_min(ailp) &&
536 		    ailp->xa_target == ailp->xa_target_prev) {
537 			spin_unlock(&ailp->xa_lock);
538 			freezable_schedule();
539 			tout = 0;
540 			continue;
541 		}
542 		spin_unlock(&ailp->xa_lock);
543 
544 		if (tout)
545 			freezable_schedule_timeout(msecs_to_jiffies(tout));
546 
547 		__set_current_state(TASK_RUNNING);
548 
549 		try_to_freeze();
550 
551 		tout = xfsaild_push(ailp);
552 	}
553 
554 	return 0;
555 }
556 
557 /*
558  * This routine is called to move the tail of the AIL forward.  It does this by
559  * trying to flush items in the AIL whose lsns are below the given
560  * threshold_lsn.
561  *
562  * The push is run asynchronously in a workqueue, which means the caller needs
563  * to handle waiting on the async flush for space to become available.
564  * We don't want to interrupt any push that is in progress, hence we only queue
565  * work if we set the pushing bit approriately.
566  *
567  * We do this unlocked - we only need to know whether there is anything in the
568  * AIL at the time we are called. We don't need to access the contents of
569  * any of the objects, so the lock is not needed.
570  */
571 void
xfs_ail_push(struct xfs_ail * ailp,xfs_lsn_t threshold_lsn)572 xfs_ail_push(
573 	struct xfs_ail	*ailp,
574 	xfs_lsn_t	threshold_lsn)
575 {
576 	xfs_log_item_t	*lip;
577 
578 	lip = xfs_ail_min(ailp);
579 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
580 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
581 		return;
582 
583 	/*
584 	 * Ensure that the new target is noticed in push code before it clears
585 	 * the XFS_AIL_PUSHING_BIT.
586 	 */
587 	smp_wmb();
588 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
589 	smp_wmb();
590 
591 	wake_up_process(ailp->xa_task);
592 }
593 
594 /*
595  * Push out all items in the AIL immediately
596  */
597 void
xfs_ail_push_all(struct xfs_ail * ailp)598 xfs_ail_push_all(
599 	struct xfs_ail  *ailp)
600 {
601 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
602 
603 	if (threshold_lsn)
604 		xfs_ail_push(ailp, threshold_lsn);
605 }
606 
607 /*
608  * Push out all items in the AIL immediately and wait until the AIL is empty.
609  */
610 void
xfs_ail_push_all_sync(struct xfs_ail * ailp)611 xfs_ail_push_all_sync(
612 	struct xfs_ail  *ailp)
613 {
614 	struct xfs_log_item	*lip;
615 	DEFINE_WAIT(wait);
616 
617 	spin_lock(&ailp->xa_lock);
618 	while ((lip = xfs_ail_max(ailp)) != NULL) {
619 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
620 		ailp->xa_target = lip->li_lsn;
621 		wake_up_process(ailp->xa_task);
622 		spin_unlock(&ailp->xa_lock);
623 		schedule();
624 		spin_lock(&ailp->xa_lock);
625 	}
626 	spin_unlock(&ailp->xa_lock);
627 
628 	finish_wait(&ailp->xa_empty, &wait);
629 }
630 
631 /*
632  * xfs_trans_ail_update - bulk AIL insertion operation.
633  *
634  * @xfs_trans_ail_update takes an array of log items that all need to be
635  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
636  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
637  * it to the AIL. If we move the first item in the AIL, update the log tail to
638  * match the new minimum LSN in the AIL.
639  *
640  * This function takes the AIL lock once to execute the update operations on
641  * all the items in the array, and as such should not be called with the AIL
642  * lock held. As a result, once we have the AIL lock, we need to check each log
643  * item LSN to confirm it needs to be moved forward in the AIL.
644  *
645  * To optimise the insert operation, we delete all the items from the AIL in
646  * the first pass, moving them into a temporary list, then splice the temporary
647  * list into the correct position in the AIL. This avoids needing to do an
648  * insert operation on every item.
649  *
650  * This function must be called with the AIL lock held.  The lock is dropped
651  * before returning.
652  */
653 void
xfs_trans_ail_update_bulk(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t lsn)654 xfs_trans_ail_update_bulk(
655 	struct xfs_ail		*ailp,
656 	struct xfs_ail_cursor	*cur,
657 	struct xfs_log_item	**log_items,
658 	int			nr_items,
659 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
660 {
661 	xfs_log_item_t		*mlip;
662 	int			mlip_changed = 0;
663 	int			i;
664 	LIST_HEAD(tmp);
665 
666 	ASSERT(nr_items > 0);		/* Not required, but true. */
667 	mlip = xfs_ail_min(ailp);
668 
669 	for (i = 0; i < nr_items; i++) {
670 		struct xfs_log_item *lip = log_items[i];
671 		if (lip->li_flags & XFS_LI_IN_AIL) {
672 			/* check if we really need to move the item */
673 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
674 				continue;
675 
676 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
677 			xfs_ail_delete(ailp, lip);
678 			if (mlip == lip)
679 				mlip_changed = 1;
680 		} else {
681 			lip->li_flags |= XFS_LI_IN_AIL;
682 			trace_xfs_ail_insert(lip, 0, lsn);
683 		}
684 		lip->li_lsn = lsn;
685 		list_add(&lip->li_ail, &tmp);
686 	}
687 
688 	if (!list_empty(&tmp))
689 		xfs_ail_splice(ailp, cur, &tmp, lsn);
690 
691 	if (mlip_changed) {
692 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
693 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
694 		spin_unlock(&ailp->xa_lock);
695 
696 		xfs_log_space_wake(ailp->xa_mount);
697 	} else {
698 		spin_unlock(&ailp->xa_lock);
699 	}
700 }
701 
702 bool
xfs_ail_delete_one(struct xfs_ail * ailp,struct xfs_log_item * lip)703 xfs_ail_delete_one(
704 	struct xfs_ail		*ailp,
705 	struct xfs_log_item	*lip)
706 {
707 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
708 
709 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
710 	xfs_ail_delete(ailp, lip);
711 	xfs_clear_li_failed(lip);
712 	lip->li_flags &= ~XFS_LI_IN_AIL;
713 	lip->li_lsn = 0;
714 
715 	return mlip == lip;
716 }
717 
718 /**
719  * Remove a log items from the AIL
720  *
721  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
722  * removed from the AIL. The caller is already holding the AIL lock, and done
723  * all the checks necessary to ensure the items passed in via @log_items are
724  * ready for deletion. This includes checking that the items are in the AIL.
725  *
726  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
727  * flag from the item and reset the item's lsn to 0. If we remove the first
728  * item in the AIL, update the log tail to match the new minimum LSN in the
729  * AIL.
730  *
731  * This function will not drop the AIL lock until all items are removed from
732  * the AIL to minimise the amount of lock traffic on the AIL. This does not
733  * greatly increase the AIL hold time, but does significantly reduce the amount
734  * of traffic on the lock, especially during IO completion.
735  *
736  * This function must be called with the AIL lock held.  The lock is dropped
737  * before returning.
738  */
739 void
xfs_trans_ail_delete(struct xfs_ail * ailp,struct xfs_log_item * lip,int shutdown_type)740 xfs_trans_ail_delete(
741 	struct xfs_ail		*ailp,
742 	struct xfs_log_item	*lip,
743 	int			shutdown_type) __releases(ailp->xa_lock)
744 {
745 	struct xfs_mount	*mp = ailp->xa_mount;
746 	bool			mlip_changed;
747 
748 	if (!(lip->li_flags & XFS_LI_IN_AIL)) {
749 		spin_unlock(&ailp->xa_lock);
750 		if (!XFS_FORCED_SHUTDOWN(mp)) {
751 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
752 	"%s: attempting to delete a log item that is not in the AIL",
753 					__func__);
754 			xfs_force_shutdown(mp, shutdown_type);
755 		}
756 		return;
757 	}
758 
759 	mlip_changed = xfs_ail_delete_one(ailp, lip);
760 	if (mlip_changed) {
761 		if (!XFS_FORCED_SHUTDOWN(mp))
762 			xlog_assign_tail_lsn_locked(mp);
763 		if (list_empty(&ailp->xa_ail))
764 			wake_up_all(&ailp->xa_empty);
765 	}
766 
767 	spin_unlock(&ailp->xa_lock);
768 	if (mlip_changed)
769 		xfs_log_space_wake(ailp->xa_mount);
770 }
771 
772 int
xfs_trans_ail_init(xfs_mount_t * mp)773 xfs_trans_ail_init(
774 	xfs_mount_t	*mp)
775 {
776 	struct xfs_ail	*ailp;
777 
778 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
779 	if (!ailp)
780 		return -ENOMEM;
781 
782 	ailp->xa_mount = mp;
783 	INIT_LIST_HEAD(&ailp->xa_ail);
784 	INIT_LIST_HEAD(&ailp->xa_cursors);
785 	spin_lock_init(&ailp->xa_lock);
786 	INIT_LIST_HEAD(&ailp->xa_buf_list);
787 	init_waitqueue_head(&ailp->xa_empty);
788 
789 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
790 			ailp->xa_mount->m_fsname);
791 	if (IS_ERR(ailp->xa_task))
792 		goto out_free_ailp;
793 
794 	mp->m_ail = ailp;
795 	return 0;
796 
797 out_free_ailp:
798 	kmem_free(ailp);
799 	return -ENOMEM;
800 }
801 
802 void
xfs_trans_ail_destroy(xfs_mount_t * mp)803 xfs_trans_ail_destroy(
804 	xfs_mount_t	*mp)
805 {
806 	struct xfs_ail	*ailp = mp->m_ail;
807 
808 	kthread_stop(ailp->xa_task);
809 	kmem_free(ailp);
810 }
811