1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_inode.h"
33
34
35 kmem_zone_t *xfs_buf_item_zone;
36
BUF_ITEM(struct xfs_log_item * lip)37 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
38 {
39 return container_of(lip, struct xfs_buf_log_item, bli_item);
40 }
41
42 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
43
44 static inline int
xfs_buf_log_format_size(struct xfs_buf_log_format * blfp)45 xfs_buf_log_format_size(
46 struct xfs_buf_log_format *blfp)
47 {
48 return offsetof(struct xfs_buf_log_format, blf_data_map) +
49 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
50 }
51
52 /*
53 * This returns the number of log iovecs needed to log the
54 * given buf log item.
55 *
56 * It calculates this as 1 iovec for the buf log format structure
57 * and 1 for each stretch of non-contiguous chunks to be logged.
58 * Contiguous chunks are logged in a single iovec.
59 *
60 * If the XFS_BLI_STALE flag has been set, then log nothing.
61 */
62 STATIC void
xfs_buf_item_size_segment(struct xfs_buf_log_item * bip,struct xfs_buf_log_format * blfp,int * nvecs,int * nbytes)63 xfs_buf_item_size_segment(
64 struct xfs_buf_log_item *bip,
65 struct xfs_buf_log_format *blfp,
66 int *nvecs,
67 int *nbytes)
68 {
69 struct xfs_buf *bp = bip->bli_buf;
70 int next_bit;
71 int last_bit;
72
73 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
74 if (last_bit == -1)
75 return;
76
77 /*
78 * initial count for a dirty buffer is 2 vectors - the format structure
79 * and the first dirty region.
80 */
81 *nvecs += 2;
82 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
83
84 while (last_bit != -1) {
85 /*
86 * This takes the bit number to start looking from and
87 * returns the next set bit from there. It returns -1
88 * if there are no more bits set or the start bit is
89 * beyond the end of the bitmap.
90 */
91 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
92 last_bit + 1);
93 /*
94 * If we run out of bits, leave the loop,
95 * else if we find a new set of bits bump the number of vecs,
96 * else keep scanning the current set of bits.
97 */
98 if (next_bit == -1) {
99 break;
100 } else if (next_bit != last_bit + 1) {
101 last_bit = next_bit;
102 (*nvecs)++;
103 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
104 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
105 XFS_BLF_CHUNK)) {
106 last_bit = next_bit;
107 (*nvecs)++;
108 } else {
109 last_bit++;
110 }
111 *nbytes += XFS_BLF_CHUNK;
112 }
113 }
114
115 /*
116 * This returns the number of log iovecs needed to log the given buf log item.
117 *
118 * It calculates this as 1 iovec for the buf log format structure and 1 for each
119 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
120 * in a single iovec.
121 *
122 * Discontiguous buffers need a format structure per region that that is being
123 * logged. This makes the changes in the buffer appear to log recovery as though
124 * they came from separate buffers, just like would occur if multiple buffers
125 * were used instead of a single discontiguous buffer. This enables
126 * discontiguous buffers to be in-memory constructs, completely transparent to
127 * what ends up on disk.
128 *
129 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
130 * format structures.
131 */
132 STATIC void
xfs_buf_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)133 xfs_buf_item_size(
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
137 {
138 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
139 int i;
140
141 ASSERT(atomic_read(&bip->bli_refcount) > 0);
142 if (bip->bli_flags & XFS_BLI_STALE) {
143 /*
144 * The buffer is stale, so all we need to log
145 * is the buf log format structure with the
146 * cancel flag in it.
147 */
148 trace_xfs_buf_item_size_stale(bip);
149 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
150 *nvecs += bip->bli_format_count;
151 for (i = 0; i < bip->bli_format_count; i++) {
152 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
153 }
154 return;
155 }
156
157 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
158
159 if (bip->bli_flags & XFS_BLI_ORDERED) {
160 /*
161 * The buffer has been logged just to order it.
162 * It is not being included in the transaction
163 * commit, so no vectors are used at all.
164 */
165 trace_xfs_buf_item_size_ordered(bip);
166 *nvecs = XFS_LOG_VEC_ORDERED;
167 return;
168 }
169
170 /*
171 * the vector count is based on the number of buffer vectors we have
172 * dirty bits in. This will only be greater than one when we have a
173 * compound buffer with more than one segment dirty. Hence for compound
174 * buffers we need to track which segment the dirty bits correspond to,
175 * and when we move from one segment to the next increment the vector
176 * count for the extra buf log format structure that will need to be
177 * written.
178 */
179 for (i = 0; i < bip->bli_format_count; i++) {
180 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
181 nvecs, nbytes);
182 }
183 trace_xfs_buf_item_size(bip);
184 }
185
186 static inline void
xfs_buf_item_copy_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,struct xfs_buf * bp,uint offset,int first_bit,uint nbits)187 xfs_buf_item_copy_iovec(
188 struct xfs_log_vec *lv,
189 struct xfs_log_iovec **vecp,
190 struct xfs_buf *bp,
191 uint offset,
192 int first_bit,
193 uint nbits)
194 {
195 offset += first_bit * XFS_BLF_CHUNK;
196 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
197 xfs_buf_offset(bp, offset),
198 nbits * XFS_BLF_CHUNK);
199 }
200
201 static inline bool
xfs_buf_item_straddle(struct xfs_buf * bp,uint offset,int next_bit,int last_bit)202 xfs_buf_item_straddle(
203 struct xfs_buf *bp,
204 uint offset,
205 int next_bit,
206 int last_bit)
207 {
208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 XFS_BLF_CHUNK);
211 }
212
213 static void
xfs_buf_item_format_segment(struct xfs_buf_log_item * bip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint offset,struct xfs_buf_log_format * blfp)214 xfs_buf_item_format_segment(
215 struct xfs_buf_log_item *bip,
216 struct xfs_log_vec *lv,
217 struct xfs_log_iovec **vecp,
218 uint offset,
219 struct xfs_buf_log_format *blfp)
220 {
221 struct xfs_buf *bp = bip->bli_buf;
222 uint base_size;
223 int first_bit;
224 int last_bit;
225 int next_bit;
226 uint nbits;
227
228 /* copy the flags across from the base format item */
229 blfp->blf_flags = bip->__bli_format.blf_flags;
230
231 /*
232 * Base size is the actual size of the ondisk structure - it reflects
233 * the actual size of the dirty bitmap rather than the size of the in
234 * memory structure.
235 */
236 base_size = xfs_buf_log_format_size(blfp);
237
238 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
239 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
240 /*
241 * If the map is not be dirty in the transaction, mark
242 * the size as zero and do not advance the vector pointer.
243 */
244 return;
245 }
246
247 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
248 blfp->blf_size = 1;
249
250 if (bip->bli_flags & XFS_BLI_STALE) {
251 /*
252 * The buffer is stale, so all we need to log
253 * is the buf log format structure with the
254 * cancel flag in it.
255 */
256 trace_xfs_buf_item_format_stale(bip);
257 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
258 return;
259 }
260
261
262 /*
263 * Fill in an iovec for each set of contiguous chunks.
264 */
265 last_bit = first_bit;
266 nbits = 1;
267 for (;;) {
268 /*
269 * This takes the bit number to start looking from and
270 * returns the next set bit from there. It returns -1
271 * if there are no more bits set or the start bit is
272 * beyond the end of the bitmap.
273 */
274 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
275 (uint)last_bit + 1);
276 /*
277 * If we run out of bits fill in the last iovec and get out of
278 * the loop. Else if we start a new set of bits then fill in
279 * the iovec for the series we were looking at and start
280 * counting the bits in the new one. Else we're still in the
281 * same set of bits so just keep counting and scanning.
282 */
283 if (next_bit == -1) {
284 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
285 first_bit, nbits);
286 blfp->blf_size++;
287 break;
288 } else if (next_bit != last_bit + 1 ||
289 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 first_bit, nbits);
292 blfp->blf_size++;
293 first_bit = next_bit;
294 last_bit = next_bit;
295 nbits = 1;
296 } else {
297 last_bit++;
298 nbits++;
299 }
300 }
301 }
302
303 /*
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
308 */
309 STATIC void
xfs_buf_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)310 xfs_buf_item_format(
311 struct xfs_log_item *lip,
312 struct xfs_log_vec *lv)
313 {
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
316 struct xfs_log_iovec *vecp = NULL;
317 uint offset = 0;
318 int i;
319
320 ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 (bip->bli_flags & XFS_BLI_STALE));
323 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
324 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
325 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
326 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
327 (bip->bli_flags & XFS_BLI_STALE));
328
329
330 /*
331 * If it is an inode buffer, transfer the in-memory state to the
332 * format flags and clear the in-memory state.
333 *
334 * For buffer based inode allocation, we do not transfer
335 * this state if the inode buffer allocation has not yet been committed
336 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
337 * correct replay of the inode allocation.
338 *
339 * For icreate item based inode allocation, the buffers aren't written
340 * to the journal during allocation, and hence we should always tag the
341 * buffer as an inode buffer so that the correct unlinked list replay
342 * occurs during recovery.
343 */
344 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
345 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
346 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
347 xfs_log_item_in_current_chkpt(lip)))
348 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
349 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
350 }
351
352 for (i = 0; i < bip->bli_format_count; i++) {
353 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
354 &bip->bli_formats[i]);
355 offset += BBTOB(bp->b_maps[i].bm_len);
356 }
357
358 /*
359 * Check to make sure everything is consistent.
360 */
361 trace_xfs_buf_item_format(bip);
362 }
363
364 /*
365 * This is called to pin the buffer associated with the buf log item in memory
366 * so it cannot be written out.
367 *
368 * We also always take a reference to the buffer log item here so that the bli
369 * is held while the item is pinned in memory. This means that we can
370 * unconditionally drop the reference count a transaction holds when the
371 * transaction is completed.
372 */
373 STATIC void
xfs_buf_item_pin(struct xfs_log_item * lip)374 xfs_buf_item_pin(
375 struct xfs_log_item *lip)
376 {
377 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
378
379 ASSERT(atomic_read(&bip->bli_refcount) > 0);
380 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
381 (bip->bli_flags & XFS_BLI_ORDERED) ||
382 (bip->bli_flags & XFS_BLI_STALE));
383
384 trace_xfs_buf_item_pin(bip);
385
386 atomic_inc(&bip->bli_refcount);
387 atomic_inc(&bip->bli_buf->b_pin_count);
388 }
389
390 /*
391 * This is called to unpin the buffer associated with the buf log
392 * item which was previously pinned with a call to xfs_buf_item_pin().
393 *
394 * Also drop the reference to the buf item for the current transaction.
395 * If the XFS_BLI_STALE flag is set and we are the last reference,
396 * then free up the buf log item and unlock the buffer.
397 *
398 * If the remove flag is set we are called from uncommit in the
399 * forced-shutdown path. If that is true and the reference count on
400 * the log item is going to drop to zero we need to free the item's
401 * descriptor in the transaction.
402 */
403 STATIC void
xfs_buf_item_unpin(struct xfs_log_item * lip,int remove)404 xfs_buf_item_unpin(
405 struct xfs_log_item *lip,
406 int remove)
407 {
408 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
409 xfs_buf_t *bp = bip->bli_buf;
410 struct xfs_ail *ailp = lip->li_ailp;
411 int stale = bip->bli_flags & XFS_BLI_STALE;
412 int freed;
413
414 ASSERT(bp->b_fspriv == bip);
415 ASSERT(atomic_read(&bip->bli_refcount) > 0);
416
417 trace_xfs_buf_item_unpin(bip);
418
419 freed = atomic_dec_and_test(&bip->bli_refcount);
420
421 if (atomic_dec_and_test(&bp->b_pin_count))
422 wake_up_all(&bp->b_waiters);
423
424 if (freed && stale) {
425 ASSERT(bip->bli_flags & XFS_BLI_STALE);
426 ASSERT(xfs_buf_islocked(bp));
427 ASSERT(bp->b_flags & XBF_STALE);
428 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
429
430 trace_xfs_buf_item_unpin_stale(bip);
431
432 if (remove) {
433 /*
434 * If we are in a transaction context, we have to
435 * remove the log item from the transaction as we are
436 * about to release our reference to the buffer. If we
437 * don't, the unlock that occurs later in
438 * xfs_trans_uncommit() will try to reference the
439 * buffer which we no longer have a hold on.
440 */
441 if (lip->li_desc)
442 xfs_trans_del_item(lip);
443
444 /*
445 * Since the transaction no longer refers to the buffer,
446 * the buffer should no longer refer to the transaction.
447 */
448 bp->b_transp = NULL;
449 }
450
451 /*
452 * If we get called here because of an IO error, we may
453 * or may not have the item on the AIL. xfs_trans_ail_delete()
454 * will take care of that situation.
455 * xfs_trans_ail_delete() drops the AIL lock.
456 */
457 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
458 xfs_buf_do_callbacks(bp);
459 bp->b_fspriv = NULL;
460 bp->b_iodone = NULL;
461 } else {
462 spin_lock(&ailp->xa_lock);
463 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
464 xfs_buf_item_relse(bp);
465 ASSERT(bp->b_fspriv == NULL);
466 }
467 xfs_buf_relse(bp);
468 } else if (freed && remove) {
469 /*
470 * There are currently two references to the buffer - the active
471 * LRU reference and the buf log item. What we are about to do
472 * here - simulate a failed IO completion - requires 3
473 * references.
474 *
475 * The LRU reference is removed by the xfs_buf_stale() call. The
476 * buf item reference is removed by the xfs_buf_iodone()
477 * callback that is run by xfs_buf_do_callbacks() during ioend
478 * processing (via the bp->b_iodone callback), and then finally
479 * the ioend processing will drop the IO reference if the buffer
480 * is marked XBF_ASYNC.
481 *
482 * Hence we need to take an additional reference here so that IO
483 * completion processing doesn't free the buffer prematurely.
484 */
485 xfs_buf_lock(bp);
486 xfs_buf_hold(bp);
487 bp->b_flags |= XBF_ASYNC;
488 xfs_buf_ioerror(bp, -EIO);
489 bp->b_flags &= ~XBF_DONE;
490 xfs_buf_stale(bp);
491 xfs_buf_ioend(bp);
492 }
493 }
494
495 /*
496 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
497 * seconds so as to not spam logs too much on repeated detection of the same
498 * buffer being bad..
499 */
500
501 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
502
503 STATIC uint
xfs_buf_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)504 xfs_buf_item_push(
505 struct xfs_log_item *lip,
506 struct list_head *buffer_list)
507 {
508 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
509 struct xfs_buf *bp = bip->bli_buf;
510 uint rval = XFS_ITEM_SUCCESS;
511
512 if (xfs_buf_ispinned(bp))
513 return XFS_ITEM_PINNED;
514 if (!xfs_buf_trylock(bp)) {
515 /*
516 * If we have just raced with a buffer being pinned and it has
517 * been marked stale, we could end up stalling until someone else
518 * issues a log force to unpin the stale buffer. Check for the
519 * race condition here so xfsaild recognizes the buffer is pinned
520 * and queues a log force to move it along.
521 */
522 if (xfs_buf_ispinned(bp))
523 return XFS_ITEM_PINNED;
524 return XFS_ITEM_LOCKED;
525 }
526
527 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
528
529 trace_xfs_buf_item_push(bip);
530
531 /* has a previous flush failed due to IO errors? */
532 if ((bp->b_flags & XBF_WRITE_FAIL) &&
533 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
534 xfs_warn(bp->b_target->bt_mount,
535 "Failing async write on buffer block 0x%llx. Retrying async write.",
536 (long long)bp->b_bn);
537 }
538
539 if (!xfs_buf_delwri_queue(bp, buffer_list))
540 rval = XFS_ITEM_FLUSHING;
541 xfs_buf_unlock(bp);
542 return rval;
543 }
544
545 /*
546 * Release the buffer associated with the buf log item. If there is no dirty
547 * logged data associated with the buffer recorded in the buf log item, then
548 * free the buf log item and remove the reference to it in the buffer.
549 *
550 * This call ignores the recursion count. It is only called when the buffer
551 * should REALLY be unlocked, regardless of the recursion count.
552 *
553 * We unconditionally drop the transaction's reference to the log item. If the
554 * item was logged, then another reference was taken when it was pinned, so we
555 * can safely drop the transaction reference now. This also allows us to avoid
556 * potential races with the unpin code freeing the bli by not referencing the
557 * bli after we've dropped the reference count.
558 *
559 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
560 * if necessary but do not unlock the buffer. This is for support of
561 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
562 * free the item.
563 */
564 STATIC void
xfs_buf_item_unlock(struct xfs_log_item * lip)565 xfs_buf_item_unlock(
566 struct xfs_log_item *lip)
567 {
568 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
569 struct xfs_buf *bp = bip->bli_buf;
570 bool aborted = !!(lip->li_flags & XFS_LI_ABORTED);
571 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD);
572 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
573 #if defined(DEBUG) || defined(XFS_WARN)
574 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
575 #endif
576
577 /* Clear the buffer's association with this transaction. */
578 bp->b_transp = NULL;
579
580 /*
581 * The per-transaction state has been copied above so clear it from the
582 * bli.
583 */
584 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
585
586 /*
587 * If the buf item is marked stale, then don't do anything. We'll
588 * unlock the buffer and free the buf item when the buffer is unpinned
589 * for the last time.
590 */
591 if (bip->bli_flags & XFS_BLI_STALE) {
592 trace_xfs_buf_item_unlock_stale(bip);
593 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
594 if (!aborted) {
595 atomic_dec(&bip->bli_refcount);
596 return;
597 }
598 }
599
600 trace_xfs_buf_item_unlock(bip);
601
602 /*
603 * If the buf item isn't tracking any data, free it, otherwise drop the
604 * reference we hold to it. If we are aborting the transaction, this may
605 * be the only reference to the buf item, so we free it anyway
606 * regardless of whether it is dirty or not. A dirty abort implies a
607 * shutdown, anyway.
608 *
609 * The bli dirty state should match whether the blf has logged segments
610 * except for ordered buffers, where only the bli should be dirty.
611 */
612 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
613 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
614
615 /*
616 * Clean buffers, by definition, cannot be in the AIL. However, aborted
617 * buffers may be in the AIL regardless of dirty state. An aborted
618 * transaction that invalidates a buffer already in the AIL may have
619 * marked it stale and cleared the dirty state, for example.
620 *
621 * Therefore if we are aborting a buffer and we've just taken the last
622 * reference away, we have to check if it is in the AIL before freeing
623 * it. We need to free it in this case, because an aborted transaction
624 * has already shut the filesystem down and this is the last chance we
625 * will have to do so.
626 */
627 if (atomic_dec_and_test(&bip->bli_refcount)) {
628 if (aborted) {
629 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
630 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
631 xfs_buf_item_relse(bp);
632 } else if (!dirty)
633 xfs_buf_item_relse(bp);
634 }
635
636 if (!hold)
637 xfs_buf_relse(bp);
638 }
639
640 /*
641 * This is called to find out where the oldest active copy of the
642 * buf log item in the on disk log resides now that the last log
643 * write of it completed at the given lsn.
644 * We always re-log all the dirty data in a buffer, so usually the
645 * latest copy in the on disk log is the only one that matters. For
646 * those cases we simply return the given lsn.
647 *
648 * The one exception to this is for buffers full of newly allocated
649 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
650 * flag set, indicating that only the di_next_unlinked fields from the
651 * inodes in the buffers will be replayed during recovery. If the
652 * original newly allocated inode images have not yet been flushed
653 * when the buffer is so relogged, then we need to make sure that we
654 * keep the old images in the 'active' portion of the log. We do this
655 * by returning the original lsn of that transaction here rather than
656 * the current one.
657 */
658 STATIC xfs_lsn_t
xfs_buf_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)659 xfs_buf_item_committed(
660 struct xfs_log_item *lip,
661 xfs_lsn_t lsn)
662 {
663 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
664
665 trace_xfs_buf_item_committed(bip);
666
667 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
668 return lip->li_lsn;
669 return lsn;
670 }
671
672 STATIC void
xfs_buf_item_committing(struct xfs_log_item * lip,xfs_lsn_t commit_lsn)673 xfs_buf_item_committing(
674 struct xfs_log_item *lip,
675 xfs_lsn_t commit_lsn)
676 {
677 }
678
679 /*
680 * This is the ops vector shared by all buf log items.
681 */
682 static const struct xfs_item_ops xfs_buf_item_ops = {
683 .iop_size = xfs_buf_item_size,
684 .iop_format = xfs_buf_item_format,
685 .iop_pin = xfs_buf_item_pin,
686 .iop_unpin = xfs_buf_item_unpin,
687 .iop_unlock = xfs_buf_item_unlock,
688 .iop_committed = xfs_buf_item_committed,
689 .iop_push = xfs_buf_item_push,
690 .iop_committing = xfs_buf_item_committing
691 };
692
693 STATIC int
xfs_buf_item_get_format(struct xfs_buf_log_item * bip,int count)694 xfs_buf_item_get_format(
695 struct xfs_buf_log_item *bip,
696 int count)
697 {
698 ASSERT(bip->bli_formats == NULL);
699 bip->bli_format_count = count;
700
701 if (count == 1) {
702 bip->bli_formats = &bip->__bli_format;
703 return 0;
704 }
705
706 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
707 KM_SLEEP);
708 if (!bip->bli_formats)
709 return -ENOMEM;
710 return 0;
711 }
712
713 STATIC void
xfs_buf_item_free_format(struct xfs_buf_log_item * bip)714 xfs_buf_item_free_format(
715 struct xfs_buf_log_item *bip)
716 {
717 if (bip->bli_formats != &bip->__bli_format) {
718 kmem_free(bip->bli_formats);
719 bip->bli_formats = NULL;
720 }
721 }
722
723 /*
724 * Allocate a new buf log item to go with the given buffer.
725 * Set the buffer's b_fsprivate field to point to the new
726 * buf log item. If there are other item's attached to the
727 * buffer (see xfs_buf_attach_iodone() below), then put the
728 * buf log item at the front.
729 */
730 int
xfs_buf_item_init(struct xfs_buf * bp,struct xfs_mount * mp)731 xfs_buf_item_init(
732 struct xfs_buf *bp,
733 struct xfs_mount *mp)
734 {
735 struct xfs_log_item *lip = bp->b_fspriv;
736 struct xfs_buf_log_item *bip;
737 int chunks;
738 int map_size;
739 int error;
740 int i;
741
742 /*
743 * Check to see if there is already a buf log item for
744 * this buffer. If there is, it is guaranteed to be
745 * the first. If we do already have one, there is
746 * nothing to do here so return.
747 */
748 ASSERT(bp->b_target->bt_mount == mp);
749 if (lip != NULL && lip->li_type == XFS_LI_BUF)
750 return 0;
751
752 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
753 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
754 bip->bli_buf = bp;
755
756 /*
757 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
758 * can be divided into. Make sure not to truncate any pieces.
759 * map_size is the size of the bitmap needed to describe the
760 * chunks of the buffer.
761 *
762 * Discontiguous buffer support follows the layout of the underlying
763 * buffer. This makes the implementation as simple as possible.
764 */
765 error = xfs_buf_item_get_format(bip, bp->b_map_count);
766 ASSERT(error == 0);
767 if (error) { /* to stop gcc throwing set-but-unused warnings */
768 kmem_zone_free(xfs_buf_item_zone, bip);
769 return error;
770 }
771
772
773 for (i = 0; i < bip->bli_format_count; i++) {
774 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
775 XFS_BLF_CHUNK);
776 map_size = DIV_ROUND_UP(chunks, NBWORD);
777
778 bip->bli_formats[i].blf_type = XFS_LI_BUF;
779 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
780 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
781 bip->bli_formats[i].blf_map_size = map_size;
782 }
783
784 /*
785 * Put the buf item into the list of items attached to the
786 * buffer at the front.
787 */
788 if (bp->b_fspriv)
789 bip->bli_item.li_bio_list = bp->b_fspriv;
790 bp->b_fspriv = bip;
791 xfs_buf_hold(bp);
792 return 0;
793 }
794
795
796 /*
797 * Mark bytes first through last inclusive as dirty in the buf
798 * item's bitmap.
799 */
800 static void
xfs_buf_item_log_segment(uint first,uint last,uint * map)801 xfs_buf_item_log_segment(
802 uint first,
803 uint last,
804 uint *map)
805 {
806 uint first_bit;
807 uint last_bit;
808 uint bits_to_set;
809 uint bits_set;
810 uint word_num;
811 uint *wordp;
812 uint bit;
813 uint end_bit;
814 uint mask;
815
816 /*
817 * Convert byte offsets to bit numbers.
818 */
819 first_bit = first >> XFS_BLF_SHIFT;
820 last_bit = last >> XFS_BLF_SHIFT;
821
822 /*
823 * Calculate the total number of bits to be set.
824 */
825 bits_to_set = last_bit - first_bit + 1;
826
827 /*
828 * Get a pointer to the first word in the bitmap
829 * to set a bit in.
830 */
831 word_num = first_bit >> BIT_TO_WORD_SHIFT;
832 wordp = &map[word_num];
833
834 /*
835 * Calculate the starting bit in the first word.
836 */
837 bit = first_bit & (uint)(NBWORD - 1);
838
839 /*
840 * First set any bits in the first word of our range.
841 * If it starts at bit 0 of the word, it will be
842 * set below rather than here. That is what the variable
843 * bit tells us. The variable bits_set tracks the number
844 * of bits that have been set so far. End_bit is the number
845 * of the last bit to be set in this word plus one.
846 */
847 if (bit) {
848 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
849 mask = ((1U << (end_bit - bit)) - 1) << bit;
850 *wordp |= mask;
851 wordp++;
852 bits_set = end_bit - bit;
853 } else {
854 bits_set = 0;
855 }
856
857 /*
858 * Now set bits a whole word at a time that are between
859 * first_bit and last_bit.
860 */
861 while ((bits_to_set - bits_set) >= NBWORD) {
862 *wordp |= 0xffffffff;
863 bits_set += NBWORD;
864 wordp++;
865 }
866
867 /*
868 * Finally, set any bits left to be set in one last partial word.
869 */
870 end_bit = bits_to_set - bits_set;
871 if (end_bit) {
872 mask = (1U << end_bit) - 1;
873 *wordp |= mask;
874 }
875 }
876
877 /*
878 * Mark bytes first through last inclusive as dirty in the buf
879 * item's bitmap.
880 */
881 void
xfs_buf_item_log(xfs_buf_log_item_t * bip,uint first,uint last)882 xfs_buf_item_log(
883 xfs_buf_log_item_t *bip,
884 uint first,
885 uint last)
886 {
887 int i;
888 uint start;
889 uint end;
890 struct xfs_buf *bp = bip->bli_buf;
891
892 /*
893 * walk each buffer segment and mark them dirty appropriately.
894 */
895 start = 0;
896 for (i = 0; i < bip->bli_format_count; i++) {
897 if (start > last)
898 break;
899 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
900
901 /* skip to the map that includes the first byte to log */
902 if (first > end) {
903 start += BBTOB(bp->b_maps[i].bm_len);
904 continue;
905 }
906
907 /*
908 * Trim the range to this segment and mark it in the bitmap.
909 * Note that we must convert buffer offsets to segment relative
910 * offsets (e.g., the first byte of each segment is byte 0 of
911 * that segment).
912 */
913 if (first < start)
914 first = start;
915 if (end > last)
916 end = last;
917 xfs_buf_item_log_segment(first - start, end - start,
918 &bip->bli_formats[i].blf_data_map[0]);
919
920 start += BBTOB(bp->b_maps[i].bm_len);
921 }
922 }
923
924
925 /*
926 * Return true if the buffer has any ranges logged/dirtied by a transaction,
927 * false otherwise.
928 */
929 bool
xfs_buf_item_dirty_format(struct xfs_buf_log_item * bip)930 xfs_buf_item_dirty_format(
931 struct xfs_buf_log_item *bip)
932 {
933 int i;
934
935 for (i = 0; i < bip->bli_format_count; i++) {
936 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
937 bip->bli_formats[i].blf_map_size))
938 return true;
939 }
940
941 return false;
942 }
943
944 STATIC void
xfs_buf_item_free(xfs_buf_log_item_t * bip)945 xfs_buf_item_free(
946 xfs_buf_log_item_t *bip)
947 {
948 xfs_buf_item_free_format(bip);
949 kmem_free(bip->bli_item.li_lv_shadow);
950 kmem_zone_free(xfs_buf_item_zone, bip);
951 }
952
953 /*
954 * This is called when the buf log item is no longer needed. It should
955 * free the buf log item associated with the given buffer and clear
956 * the buffer's pointer to the buf log item. If there are no more
957 * items in the list, clear the b_iodone field of the buffer (see
958 * xfs_buf_attach_iodone() below).
959 */
960 void
xfs_buf_item_relse(xfs_buf_t * bp)961 xfs_buf_item_relse(
962 xfs_buf_t *bp)
963 {
964 xfs_buf_log_item_t *bip = bp->b_fspriv;
965
966 trace_xfs_buf_item_relse(bp, _RET_IP_);
967 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
968
969 bp->b_fspriv = bip->bli_item.li_bio_list;
970 if (bp->b_fspriv == NULL)
971 bp->b_iodone = NULL;
972
973 xfs_buf_rele(bp);
974 xfs_buf_item_free(bip);
975 }
976
977
978 /*
979 * Add the given log item with its callback to the list of callbacks
980 * to be called when the buffer's I/O completes. If it is not set
981 * already, set the buffer's b_iodone() routine to be
982 * xfs_buf_iodone_callbacks() and link the log item into the list of
983 * items rooted at b_fsprivate. Items are always added as the second
984 * entry in the list if there is a first, because the buf item code
985 * assumes that the buf log item is first.
986 */
987 void
xfs_buf_attach_iodone(xfs_buf_t * bp,void (* cb)(xfs_buf_t *,xfs_log_item_t *),xfs_log_item_t * lip)988 xfs_buf_attach_iodone(
989 xfs_buf_t *bp,
990 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
991 xfs_log_item_t *lip)
992 {
993 xfs_log_item_t *head_lip;
994
995 ASSERT(xfs_buf_islocked(bp));
996
997 lip->li_cb = cb;
998 head_lip = bp->b_fspriv;
999 if (head_lip) {
1000 lip->li_bio_list = head_lip->li_bio_list;
1001 head_lip->li_bio_list = lip;
1002 } else {
1003 bp->b_fspriv = lip;
1004 }
1005
1006 ASSERT(bp->b_iodone == NULL ||
1007 bp->b_iodone == xfs_buf_iodone_callbacks);
1008 bp->b_iodone = xfs_buf_iodone_callbacks;
1009 }
1010
1011 /*
1012 * We can have many callbacks on a buffer. Running the callbacks individually
1013 * can cause a lot of contention on the AIL lock, so we allow for a single
1014 * callback to be able to scan the remaining lip->li_bio_list for other items
1015 * of the same type and callback to be processed in the first call.
1016 *
1017 * As a result, the loop walking the callback list below will also modify the
1018 * list. it removes the first item from the list and then runs the callback.
1019 * The loop then restarts from the new head of the list. This allows the
1020 * callback to scan and modify the list attached to the buffer and we don't
1021 * have to care about maintaining a next item pointer.
1022 */
1023 STATIC void
xfs_buf_do_callbacks(struct xfs_buf * bp)1024 xfs_buf_do_callbacks(
1025 struct xfs_buf *bp)
1026 {
1027 struct xfs_log_item *lip;
1028
1029 while ((lip = bp->b_fspriv) != NULL) {
1030 bp->b_fspriv = lip->li_bio_list;
1031 ASSERT(lip->li_cb != NULL);
1032 /*
1033 * Clear the next pointer so we don't have any
1034 * confusion if the item is added to another buf.
1035 * Don't touch the log item after calling its
1036 * callback, because it could have freed itself.
1037 */
1038 lip->li_bio_list = NULL;
1039 lip->li_cb(bp, lip);
1040 }
1041 }
1042
1043 /*
1044 * Invoke the error state callback for each log item affected by the failed I/O.
1045 *
1046 * If a metadata buffer write fails with a non-permanent error, the buffer is
1047 * eventually resubmitted and so the completion callbacks are not run. The error
1048 * state may need to be propagated to the log items attached to the buffer,
1049 * however, so the next AIL push of the item knows hot to handle it correctly.
1050 */
1051 STATIC void
xfs_buf_do_callbacks_fail(struct xfs_buf * bp)1052 xfs_buf_do_callbacks_fail(
1053 struct xfs_buf *bp)
1054 {
1055 struct xfs_log_item *next;
1056 struct xfs_log_item *lip = bp->b_fspriv;
1057 struct xfs_ail *ailp = lip->li_ailp;
1058
1059 spin_lock(&ailp->xa_lock);
1060 for (; lip; lip = next) {
1061 next = lip->li_bio_list;
1062 if (lip->li_ops->iop_error)
1063 lip->li_ops->iop_error(lip, bp);
1064 }
1065 spin_unlock(&ailp->xa_lock);
1066 }
1067
1068 static bool
xfs_buf_iodone_callback_error(struct xfs_buf * bp)1069 xfs_buf_iodone_callback_error(
1070 struct xfs_buf *bp)
1071 {
1072 struct xfs_log_item *lip = bp->b_fspriv;
1073 struct xfs_mount *mp = lip->li_mountp;
1074 static ulong lasttime;
1075 static xfs_buftarg_t *lasttarg;
1076 struct xfs_error_cfg *cfg;
1077
1078 /*
1079 * If we've already decided to shutdown the filesystem because of
1080 * I/O errors, there's no point in giving this a retry.
1081 */
1082 if (XFS_FORCED_SHUTDOWN(mp))
1083 goto out_stale;
1084
1085 if (bp->b_target != lasttarg ||
1086 time_after(jiffies, (lasttime + 5*HZ))) {
1087 lasttime = jiffies;
1088 xfs_buf_ioerror_alert(bp, __func__);
1089 }
1090 lasttarg = bp->b_target;
1091
1092 /* synchronous writes will have callers process the error */
1093 if (!(bp->b_flags & XBF_ASYNC))
1094 goto out_stale;
1095
1096 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1097 ASSERT(bp->b_iodone != NULL);
1098
1099 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1100
1101 /*
1102 * If the write was asynchronous then no one will be looking for the
1103 * error. If this is the first failure of this type, clear the error
1104 * state and write the buffer out again. This means we always retry an
1105 * async write failure at least once, but we also need to set the buffer
1106 * up to behave correctly now for repeated failures.
1107 */
1108 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1109 bp->b_last_error != bp->b_error) {
1110 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1111 bp->b_last_error = bp->b_error;
1112 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1113 !bp->b_first_retry_time)
1114 bp->b_first_retry_time = jiffies;
1115
1116 xfs_buf_ioerror(bp, 0);
1117 xfs_buf_submit(bp);
1118 return true;
1119 }
1120
1121 /*
1122 * Repeated failure on an async write. Take action according to the
1123 * error configuration we have been set up to use.
1124 */
1125
1126 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1127 ++bp->b_retries > cfg->max_retries)
1128 goto permanent_error;
1129 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1130 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1131 goto permanent_error;
1132
1133 /* At unmount we may treat errors differently */
1134 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1135 goto permanent_error;
1136
1137 /*
1138 * Still a transient error, run IO completion failure callbacks and let
1139 * the higher layers retry the buffer.
1140 */
1141 xfs_buf_do_callbacks_fail(bp);
1142 xfs_buf_ioerror(bp, 0);
1143 xfs_buf_relse(bp);
1144 return true;
1145
1146 /*
1147 * Permanent error - we need to trigger a shutdown if we haven't already
1148 * to indicate that inconsistency will result from this action.
1149 */
1150 permanent_error:
1151 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1152 out_stale:
1153 xfs_buf_stale(bp);
1154 bp->b_flags |= XBF_DONE;
1155 trace_xfs_buf_error_relse(bp, _RET_IP_);
1156 return false;
1157 }
1158
1159 /*
1160 * This is the iodone() function for buffers which have had callbacks attached
1161 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1162 * callback list, mark the buffer as having no more callbacks and then push the
1163 * buffer through IO completion processing.
1164 */
1165 void
xfs_buf_iodone_callbacks(struct xfs_buf * bp)1166 xfs_buf_iodone_callbacks(
1167 struct xfs_buf *bp)
1168 {
1169 /*
1170 * If there is an error, process it. Some errors require us
1171 * to run callbacks after failure processing is done so we
1172 * detect that and take appropriate action.
1173 */
1174 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1175 return;
1176
1177 /*
1178 * Successful IO or permanent error. Either way, we can clear the
1179 * retry state here in preparation for the next error that may occur.
1180 */
1181 bp->b_last_error = 0;
1182 bp->b_retries = 0;
1183 bp->b_first_retry_time = 0;
1184
1185 xfs_buf_do_callbacks(bp);
1186 bp->b_fspriv = NULL;
1187 bp->b_iodone = NULL;
1188 xfs_buf_ioend(bp);
1189 }
1190
1191 /*
1192 * This is the iodone() function for buffers which have been
1193 * logged. It is called when they are eventually flushed out.
1194 * It should remove the buf item from the AIL, and free the buf item.
1195 * It is called by xfs_buf_iodone_callbacks() above which will take
1196 * care of cleaning up the buffer itself.
1197 */
1198 void
xfs_buf_iodone(struct xfs_buf * bp,struct xfs_log_item * lip)1199 xfs_buf_iodone(
1200 struct xfs_buf *bp,
1201 struct xfs_log_item *lip)
1202 {
1203 struct xfs_ail *ailp = lip->li_ailp;
1204
1205 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1206
1207 xfs_buf_rele(bp);
1208
1209 /*
1210 * If we are forcibly shutting down, this may well be
1211 * off the AIL already. That's because we simulate the
1212 * log-committed callbacks to unpin these buffers. Or we may never
1213 * have put this item on AIL because of the transaction was
1214 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1215 *
1216 * Either way, AIL is useless if we're forcing a shutdown.
1217 */
1218 spin_lock(&ailp->xa_lock);
1219 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1220 xfs_buf_item_free(BUF_ITEM(lip));
1221 }
1222
1223 /*
1224 * Requeue a failed buffer for writeback
1225 *
1226 * Return true if the buffer has been re-queued properly, false otherwise
1227 */
1228 bool
xfs_buf_resubmit_failed_buffers(struct xfs_buf * bp,struct xfs_log_item * lip,struct list_head * buffer_list)1229 xfs_buf_resubmit_failed_buffers(
1230 struct xfs_buf *bp,
1231 struct xfs_log_item *lip,
1232 struct list_head *buffer_list)
1233 {
1234 struct xfs_log_item *next;
1235
1236 /*
1237 * Clear XFS_LI_FAILED flag from all items before resubmit
1238 *
1239 * XFS_LI_FAILED set/clear is protected by xa_lock, caller this
1240 * function already have it acquired
1241 */
1242 for (; lip; lip = next) {
1243 next = lip->li_bio_list;
1244 xfs_clear_li_failed(lip);
1245 }
1246
1247 /* Add this buffer back to the delayed write list */
1248 return xfs_buf_delwri_queue(bp, buffer_list);
1249 }
1250