• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 
46 static kmem_zone_t *xfs_buf_zone;
47 
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp)	do { } while (0)
54 # define XB_CLEAR_OWNER(bp)	do { } while (0)
55 # define XB_GET_OWNER(bp)	do { } while (0)
56 #endif
57 
58 #define xb_to_gfp(flags) \
59 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
60 
61 /*
62  * Locking orders
63  *
64  * xfs_buf_ioacct_inc:
65  * xfs_buf_ioacct_dec:
66  *	b_sema (caller holds)
67  *	  b_lock
68  *
69  * xfs_buf_stale:
70  *	b_sema (caller holds)
71  *	  b_lock
72  *	    lru_lock
73  *
74  * xfs_buf_rele:
75  *	b_lock
76  *	  pag_buf_lock
77  *	    lru_lock
78  *
79  * xfs_buftarg_wait_rele
80  *	lru_lock
81  *	  b_lock (trylock due to inversion)
82  *
83  * xfs_buftarg_isolate
84  *	lru_lock
85  *	  b_lock (trylock due to inversion)
86  */
87 
88 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)89 xfs_buf_is_vmapped(
90 	struct xfs_buf	*bp)
91 {
92 	/*
93 	 * Return true if the buffer is vmapped.
94 	 *
95 	 * b_addr is null if the buffer is not mapped, but the code is clever
96 	 * enough to know it doesn't have to map a single page, so the check has
97 	 * to be both for b_addr and bp->b_page_count > 1.
98 	 */
99 	return bp->b_addr && bp->b_page_count > 1;
100 }
101 
102 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)103 xfs_buf_vmap_len(
104 	struct xfs_buf	*bp)
105 {
106 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
107 }
108 
109 /*
110  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
111  * this buffer. The count is incremented once per buffer (per hold cycle)
112  * because the corresponding decrement is deferred to buffer release. Buffers
113  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
114  * tracking adds unnecessary overhead. This is used for sychronization purposes
115  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
116  * in-flight buffers.
117  *
118  * Buffers that are never released (e.g., superblock, iclog buffers) must set
119  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
120  * never reaches zero and unmount hangs indefinitely.
121  */
122 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)123 xfs_buf_ioacct_inc(
124 	struct xfs_buf	*bp)
125 {
126 	if (bp->b_flags & XBF_NO_IOACCT)
127 		return;
128 
129 	ASSERT(bp->b_flags & XBF_ASYNC);
130 	spin_lock(&bp->b_lock);
131 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
132 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
133 		percpu_counter_inc(&bp->b_target->bt_io_count);
134 	}
135 	spin_unlock(&bp->b_lock);
136 }
137 
138 /*
139  * Clear the in-flight state on a buffer about to be released to the LRU or
140  * freed and unaccount from the buftarg.
141  */
142 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)143 __xfs_buf_ioacct_dec(
144 	struct xfs_buf	*bp)
145 {
146 	lockdep_assert_held(&bp->b_lock);
147 
148 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
149 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
150 		percpu_counter_dec(&bp->b_target->bt_io_count);
151 	}
152 }
153 
154 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)155 xfs_buf_ioacct_dec(
156 	struct xfs_buf	*bp)
157 {
158 	spin_lock(&bp->b_lock);
159 	__xfs_buf_ioacct_dec(bp);
160 	spin_unlock(&bp->b_lock);
161 }
162 
163 /*
164  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
165  * b_lru_ref count so that the buffer is freed immediately when the buffer
166  * reference count falls to zero. If the buffer is already on the LRU, we need
167  * to remove the reference that LRU holds on the buffer.
168  *
169  * This prevents build-up of stale buffers on the LRU.
170  */
171 void
xfs_buf_stale(struct xfs_buf * bp)172 xfs_buf_stale(
173 	struct xfs_buf	*bp)
174 {
175 	ASSERT(xfs_buf_islocked(bp));
176 
177 	bp->b_flags |= XBF_STALE;
178 
179 	/*
180 	 * Clear the delwri status so that a delwri queue walker will not
181 	 * flush this buffer to disk now that it is stale. The delwri queue has
182 	 * a reference to the buffer, so this is safe to do.
183 	 */
184 	bp->b_flags &= ~_XBF_DELWRI_Q;
185 
186 	/*
187 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
188 	 * could reset b_flags. There is no guarantee that the buffer is
189 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
190 	 * status now to preserve accounting consistency.
191 	 */
192 	spin_lock(&bp->b_lock);
193 	__xfs_buf_ioacct_dec(bp);
194 
195 	atomic_set(&bp->b_lru_ref, 0);
196 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
197 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
198 		atomic_dec(&bp->b_hold);
199 
200 	ASSERT(atomic_read(&bp->b_hold) >= 1);
201 	spin_unlock(&bp->b_lock);
202 }
203 
204 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)205 xfs_buf_get_maps(
206 	struct xfs_buf		*bp,
207 	int			map_count)
208 {
209 	ASSERT(bp->b_maps == NULL);
210 	bp->b_map_count = map_count;
211 
212 	if (map_count == 1) {
213 		bp->b_maps = &bp->__b_map;
214 		return 0;
215 	}
216 
217 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
218 				KM_NOFS);
219 	if (!bp->b_maps)
220 		return -ENOMEM;
221 	return 0;
222 }
223 
224 /*
225  *	Frees b_pages if it was allocated.
226  */
227 static void
xfs_buf_free_maps(struct xfs_buf * bp)228 xfs_buf_free_maps(
229 	struct xfs_buf	*bp)
230 {
231 	if (bp->b_maps != &bp->__b_map) {
232 		kmem_free(bp->b_maps);
233 		bp->b_maps = NULL;
234 	}
235 }
236 
237 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)238 _xfs_buf_alloc(
239 	struct xfs_buftarg	*target,
240 	struct xfs_buf_map	*map,
241 	int			nmaps,
242 	xfs_buf_flags_t		flags)
243 {
244 	struct xfs_buf		*bp;
245 	int			error;
246 	int			i;
247 
248 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
249 	if (unlikely(!bp))
250 		return NULL;
251 
252 	/*
253 	 * We don't want certain flags to appear in b_flags unless they are
254 	 * specifically set by later operations on the buffer.
255 	 */
256 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
257 
258 	atomic_set(&bp->b_hold, 1);
259 	atomic_set(&bp->b_lru_ref, 1);
260 	init_completion(&bp->b_iowait);
261 	INIT_LIST_HEAD(&bp->b_lru);
262 	INIT_LIST_HEAD(&bp->b_list);
263 	sema_init(&bp->b_sema, 0); /* held, no waiters */
264 	spin_lock_init(&bp->b_lock);
265 	XB_SET_OWNER(bp);
266 	bp->b_target = target;
267 	bp->b_flags = flags;
268 
269 	/*
270 	 * Set length and io_length to the same value initially.
271 	 * I/O routines should use io_length, which will be the same in
272 	 * most cases but may be reset (e.g. XFS recovery).
273 	 */
274 	error = xfs_buf_get_maps(bp, nmaps);
275 	if (error)  {
276 		kmem_zone_free(xfs_buf_zone, bp);
277 		return NULL;
278 	}
279 
280 	bp->b_bn = map[0].bm_bn;
281 	bp->b_length = 0;
282 	for (i = 0; i < nmaps; i++) {
283 		bp->b_maps[i].bm_bn = map[i].bm_bn;
284 		bp->b_maps[i].bm_len = map[i].bm_len;
285 		bp->b_length += map[i].bm_len;
286 	}
287 	bp->b_io_length = bp->b_length;
288 
289 	atomic_set(&bp->b_pin_count, 0);
290 	init_waitqueue_head(&bp->b_waiters);
291 
292 	XFS_STATS_INC(target->bt_mount, xb_create);
293 	trace_xfs_buf_init(bp, _RET_IP_);
294 
295 	return bp;
296 }
297 
298 /*
299  *	Allocate a page array capable of holding a specified number
300  *	of pages, and point the page buf at it.
301  */
302 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)303 _xfs_buf_get_pages(
304 	xfs_buf_t		*bp,
305 	int			page_count)
306 {
307 	/* Make sure that we have a page list */
308 	if (bp->b_pages == NULL) {
309 		bp->b_page_count = page_count;
310 		if (page_count <= XB_PAGES) {
311 			bp->b_pages = bp->b_page_array;
312 		} else {
313 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
314 						 page_count, KM_NOFS);
315 			if (bp->b_pages == NULL)
316 				return -ENOMEM;
317 		}
318 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
319 	}
320 	return 0;
321 }
322 
323 /*
324  *	Frees b_pages if it was allocated.
325  */
326 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)327 _xfs_buf_free_pages(
328 	xfs_buf_t	*bp)
329 {
330 	if (bp->b_pages != bp->b_page_array) {
331 		kmem_free(bp->b_pages);
332 		bp->b_pages = NULL;
333 	}
334 }
335 
336 /*
337  *	Releases the specified buffer.
338  *
339  * 	The modification state of any associated pages is left unchanged.
340  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
341  * 	hashed and refcounted buffers
342  */
343 void
xfs_buf_free(xfs_buf_t * bp)344 xfs_buf_free(
345 	xfs_buf_t		*bp)
346 {
347 	trace_xfs_buf_free(bp, _RET_IP_);
348 
349 	ASSERT(list_empty(&bp->b_lru));
350 
351 	if (bp->b_flags & _XBF_PAGES) {
352 		uint		i;
353 
354 		if (xfs_buf_is_vmapped(bp))
355 			vm_unmap_ram(bp->b_addr - bp->b_offset,
356 					bp->b_page_count);
357 
358 		for (i = 0; i < bp->b_page_count; i++) {
359 			struct page	*page = bp->b_pages[i];
360 
361 			__free_page(page);
362 		}
363 	} else if (bp->b_flags & _XBF_KMEM)
364 		kmem_free(bp->b_addr);
365 	_xfs_buf_free_pages(bp);
366 	xfs_buf_free_maps(bp);
367 	kmem_zone_free(xfs_buf_zone, bp);
368 }
369 
370 /*
371  * Allocates all the pages for buffer in question and builds it's page list.
372  */
373 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)374 xfs_buf_allocate_memory(
375 	xfs_buf_t		*bp,
376 	uint			flags)
377 {
378 	size_t			size;
379 	size_t			nbytes, offset;
380 	gfp_t			gfp_mask = xb_to_gfp(flags);
381 	unsigned short		page_count, i;
382 	xfs_off_t		start, end;
383 	int			error;
384 
385 	/*
386 	 * for buffers that are contained within a single page, just allocate
387 	 * the memory from the heap - there's no need for the complexity of
388 	 * page arrays to keep allocation down to order 0.
389 	 */
390 	size = BBTOB(bp->b_length);
391 	if (size < PAGE_SIZE) {
392 		bp->b_addr = kmem_alloc(size, KM_NOFS);
393 		if (!bp->b_addr) {
394 			/* low memory - use alloc_page loop instead */
395 			goto use_alloc_page;
396 		}
397 
398 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
399 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
400 			/* b_addr spans two pages - use alloc_page instead */
401 			kmem_free(bp->b_addr);
402 			bp->b_addr = NULL;
403 			goto use_alloc_page;
404 		}
405 		bp->b_offset = offset_in_page(bp->b_addr);
406 		bp->b_pages = bp->b_page_array;
407 		bp->b_pages[0] = virt_to_page(bp->b_addr);
408 		bp->b_page_count = 1;
409 		bp->b_flags |= _XBF_KMEM;
410 		return 0;
411 	}
412 
413 use_alloc_page:
414 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
415 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
416 								>> PAGE_SHIFT;
417 	page_count = end - start;
418 	error = _xfs_buf_get_pages(bp, page_count);
419 	if (unlikely(error))
420 		return error;
421 
422 	offset = bp->b_offset;
423 	bp->b_flags |= _XBF_PAGES;
424 
425 	for (i = 0; i < bp->b_page_count; i++) {
426 		struct page	*page;
427 		uint		retries = 0;
428 retry:
429 		page = alloc_page(gfp_mask);
430 		if (unlikely(page == NULL)) {
431 			if (flags & XBF_READ_AHEAD) {
432 				bp->b_page_count = i;
433 				error = -ENOMEM;
434 				goto out_free_pages;
435 			}
436 
437 			/*
438 			 * This could deadlock.
439 			 *
440 			 * But until all the XFS lowlevel code is revamped to
441 			 * handle buffer allocation failures we can't do much.
442 			 */
443 			if (!(++retries % 100))
444 				xfs_err(NULL,
445 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
446 					current->comm, current->pid,
447 					__func__, gfp_mask);
448 
449 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
450 			congestion_wait(BLK_RW_ASYNC, HZ/50);
451 			goto retry;
452 		}
453 
454 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
455 
456 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
457 		size -= nbytes;
458 		bp->b_pages[i] = page;
459 		offset = 0;
460 	}
461 	return 0;
462 
463 out_free_pages:
464 	for (i = 0; i < bp->b_page_count; i++)
465 		__free_page(bp->b_pages[i]);
466 	bp->b_flags &= ~_XBF_PAGES;
467 	return error;
468 }
469 
470 /*
471  *	Map buffer into kernel address-space if necessary.
472  */
473 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)474 _xfs_buf_map_pages(
475 	xfs_buf_t		*bp,
476 	uint			flags)
477 {
478 	ASSERT(bp->b_flags & _XBF_PAGES);
479 	if (bp->b_page_count == 1) {
480 		/* A single page buffer is always mappable */
481 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
482 	} else if (flags & XBF_UNMAPPED) {
483 		bp->b_addr = NULL;
484 	} else {
485 		int retried = 0;
486 		unsigned nofs_flag;
487 
488 		/*
489 		 * vm_map_ram() will allocate auxillary structures (e.g.
490 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
491 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
492 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
493 		 * memory reclaim re-entering the filesystem here and
494 		 * potentially deadlocking.
495 		 */
496 		nofs_flag = memalloc_nofs_save();
497 		do {
498 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
499 						-1, PAGE_KERNEL);
500 			if (bp->b_addr)
501 				break;
502 			vm_unmap_aliases();
503 		} while (retried++ <= 1);
504 		memalloc_nofs_restore(nofs_flag);
505 
506 		if (!bp->b_addr)
507 			return -ENOMEM;
508 		bp->b_addr += bp->b_offset;
509 	}
510 
511 	return 0;
512 }
513 
514 /*
515  *	Finding and Reading Buffers
516  */
517 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)518 _xfs_buf_obj_cmp(
519 	struct rhashtable_compare_arg	*arg,
520 	const void			*obj)
521 {
522 	const struct xfs_buf_map	*map = arg->key;
523 	const struct xfs_buf		*bp = obj;
524 
525 	/*
526 	 * The key hashing in the lookup path depends on the key being the
527 	 * first element of the compare_arg, make sure to assert this.
528 	 */
529 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
530 
531 	if (bp->b_bn != map->bm_bn)
532 		return 1;
533 
534 	if (unlikely(bp->b_length != map->bm_len)) {
535 		/*
536 		 * found a block number match. If the range doesn't
537 		 * match, the only way this is allowed is if the buffer
538 		 * in the cache is stale and the transaction that made
539 		 * it stale has not yet committed. i.e. we are
540 		 * reallocating a busy extent. Skip this buffer and
541 		 * continue searching for an exact match.
542 		 */
543 		ASSERT(bp->b_flags & XBF_STALE);
544 		return 1;
545 	}
546 	return 0;
547 }
548 
549 static const struct rhashtable_params xfs_buf_hash_params = {
550 	.min_size		= 32,	/* empty AGs have minimal footprint */
551 	.nelem_hint		= 16,
552 	.key_len		= sizeof(xfs_daddr_t),
553 	.key_offset		= offsetof(struct xfs_buf, b_bn),
554 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
555 	.automatic_shrinking	= true,
556 	.obj_cmpfn		= _xfs_buf_obj_cmp,
557 };
558 
559 int
xfs_buf_hash_init(struct xfs_perag * pag)560 xfs_buf_hash_init(
561 	struct xfs_perag	*pag)
562 {
563 	spin_lock_init(&pag->pag_buf_lock);
564 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
565 }
566 
567 void
xfs_buf_hash_destroy(struct xfs_perag * pag)568 xfs_buf_hash_destroy(
569 	struct xfs_perag	*pag)
570 {
571 	rhashtable_destroy(&pag->pag_buf_hash);
572 }
573 
574 /*
575  *	Look up, and creates if absent, a lockable buffer for
576  *	a given range of an inode.  The buffer is returned
577  *	locked.	No I/O is implied by this call.
578  */
579 xfs_buf_t *
_xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,xfs_buf_t * new_bp)580 _xfs_buf_find(
581 	struct xfs_buftarg	*btp,
582 	struct xfs_buf_map	*map,
583 	int			nmaps,
584 	xfs_buf_flags_t		flags,
585 	xfs_buf_t		*new_bp)
586 {
587 	struct xfs_perag	*pag;
588 	xfs_buf_t		*bp;
589 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
590 	xfs_daddr_t		eofs;
591 	int			i;
592 
593 	for (i = 0; i < nmaps; i++)
594 		cmap.bm_len += map[i].bm_len;
595 
596 	/* Check for IOs smaller than the sector size / not sector aligned */
597 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
598 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
599 
600 	/*
601 	 * Corrupted block numbers can get through to here, unfortunately, so we
602 	 * have to check that the buffer falls within the filesystem bounds.
603 	 */
604 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
605 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
606 		/*
607 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
608 		 * but none of the higher level infrastructure supports
609 		 * returning a specific error on buffer lookup failures.
610 		 */
611 		xfs_alert(btp->bt_mount,
612 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
613 			  __func__, cmap.bm_bn, eofs);
614 		WARN_ON(1);
615 		return NULL;
616 	}
617 
618 	pag = xfs_perag_get(btp->bt_mount,
619 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
620 
621 	spin_lock(&pag->pag_buf_lock);
622 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
623 				    xfs_buf_hash_params);
624 	if (bp) {
625 		atomic_inc(&bp->b_hold);
626 		goto found;
627 	}
628 
629 	/* No match found */
630 	if (new_bp) {
631 		/* the buffer keeps the perag reference until it is freed */
632 		new_bp->b_pag = pag;
633 		rhashtable_insert_fast(&pag->pag_buf_hash,
634 				       &new_bp->b_rhash_head,
635 				       xfs_buf_hash_params);
636 		spin_unlock(&pag->pag_buf_lock);
637 	} else {
638 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
639 		spin_unlock(&pag->pag_buf_lock);
640 		xfs_perag_put(pag);
641 	}
642 	return new_bp;
643 
644 found:
645 	spin_unlock(&pag->pag_buf_lock);
646 	xfs_perag_put(pag);
647 
648 	if (!xfs_buf_trylock(bp)) {
649 		if (flags & XBF_TRYLOCK) {
650 			xfs_buf_rele(bp);
651 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
652 			return NULL;
653 		}
654 		xfs_buf_lock(bp);
655 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
656 	}
657 
658 	/*
659 	 * if the buffer is stale, clear all the external state associated with
660 	 * it. We need to keep flags such as how we allocated the buffer memory
661 	 * intact here.
662 	 */
663 	if (bp->b_flags & XBF_STALE) {
664 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
665 		ASSERT(bp->b_iodone == NULL);
666 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
667 		bp->b_ops = NULL;
668 	}
669 
670 	trace_xfs_buf_find(bp, flags, _RET_IP_);
671 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
672 	return bp;
673 }
674 
675 /*
676  * Assembles a buffer covering the specified range. The code is optimised for
677  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
678  * more hits than misses.
679  */
680 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)681 xfs_buf_get_map(
682 	struct xfs_buftarg	*target,
683 	struct xfs_buf_map	*map,
684 	int			nmaps,
685 	xfs_buf_flags_t		flags)
686 {
687 	struct xfs_buf		*bp;
688 	struct xfs_buf		*new_bp;
689 	int			error = 0;
690 
691 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
692 	if (likely(bp))
693 		goto found;
694 
695 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
696 	if (unlikely(!new_bp))
697 		return NULL;
698 
699 	error = xfs_buf_allocate_memory(new_bp, flags);
700 	if (error) {
701 		xfs_buf_free(new_bp);
702 		return NULL;
703 	}
704 
705 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
706 	if (!bp) {
707 		xfs_buf_free(new_bp);
708 		return NULL;
709 	}
710 
711 	if (bp != new_bp)
712 		xfs_buf_free(new_bp);
713 
714 found:
715 	if (!bp->b_addr) {
716 		error = _xfs_buf_map_pages(bp, flags);
717 		if (unlikely(error)) {
718 			xfs_warn(target->bt_mount,
719 				"%s: failed to map pagesn", __func__);
720 			xfs_buf_relse(bp);
721 			return NULL;
722 		}
723 	}
724 
725 	/*
726 	 * Clear b_error if this is a lookup from a caller that doesn't expect
727 	 * valid data to be found in the buffer.
728 	 */
729 	if (!(flags & XBF_READ))
730 		xfs_buf_ioerror(bp, 0);
731 
732 	XFS_STATS_INC(target->bt_mount, xb_get);
733 	trace_xfs_buf_get(bp, flags, _RET_IP_);
734 	return bp;
735 }
736 
737 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)738 _xfs_buf_read(
739 	xfs_buf_t		*bp,
740 	xfs_buf_flags_t		flags)
741 {
742 	ASSERT(!(flags & XBF_WRITE));
743 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
744 
745 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
746 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
747 
748 	if (flags & XBF_ASYNC) {
749 		xfs_buf_submit(bp);
750 		return 0;
751 	}
752 	return xfs_buf_submit_wait(bp);
753 }
754 
755 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)756 xfs_buf_read_map(
757 	struct xfs_buftarg	*target,
758 	struct xfs_buf_map	*map,
759 	int			nmaps,
760 	xfs_buf_flags_t		flags,
761 	const struct xfs_buf_ops *ops)
762 {
763 	struct xfs_buf		*bp;
764 
765 	flags |= XBF_READ;
766 
767 	bp = xfs_buf_get_map(target, map, nmaps, flags);
768 	if (bp) {
769 		trace_xfs_buf_read(bp, flags, _RET_IP_);
770 
771 		if (!(bp->b_flags & XBF_DONE)) {
772 			XFS_STATS_INC(target->bt_mount, xb_get_read);
773 			bp->b_ops = ops;
774 			_xfs_buf_read(bp, flags);
775 		} else if (flags & XBF_ASYNC) {
776 			/*
777 			 * Read ahead call which is already satisfied,
778 			 * drop the buffer
779 			 */
780 			xfs_buf_relse(bp);
781 			return NULL;
782 		} else {
783 			/* We do not want read in the flags */
784 			bp->b_flags &= ~XBF_READ;
785 		}
786 	}
787 
788 	return bp;
789 }
790 
791 /*
792  *	If we are not low on memory then do the readahead in a deadlock
793  *	safe manner.
794  */
795 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)796 xfs_buf_readahead_map(
797 	struct xfs_buftarg	*target,
798 	struct xfs_buf_map	*map,
799 	int			nmaps,
800 	const struct xfs_buf_ops *ops)
801 {
802 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
803 		return;
804 
805 	xfs_buf_read_map(target, map, nmaps,
806 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
807 }
808 
809 /*
810  * Read an uncached buffer from disk. Allocates and returns a locked
811  * buffer containing the disk contents or nothing.
812  */
813 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)814 xfs_buf_read_uncached(
815 	struct xfs_buftarg	*target,
816 	xfs_daddr_t		daddr,
817 	size_t			numblks,
818 	int			flags,
819 	struct xfs_buf		**bpp,
820 	const struct xfs_buf_ops *ops)
821 {
822 	struct xfs_buf		*bp;
823 
824 	*bpp = NULL;
825 
826 	bp = xfs_buf_get_uncached(target, numblks, flags);
827 	if (!bp)
828 		return -ENOMEM;
829 
830 	/* set up the buffer for a read IO */
831 	ASSERT(bp->b_map_count == 1);
832 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
833 	bp->b_maps[0].bm_bn = daddr;
834 	bp->b_flags |= XBF_READ;
835 	bp->b_ops = ops;
836 
837 	xfs_buf_submit_wait(bp);
838 	if (bp->b_error) {
839 		int	error = bp->b_error;
840 		xfs_buf_relse(bp);
841 		return error;
842 	}
843 
844 	*bpp = bp;
845 	return 0;
846 }
847 
848 /*
849  * Return a buffer allocated as an empty buffer and associated to external
850  * memory via xfs_buf_associate_memory() back to it's empty state.
851  */
852 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)853 xfs_buf_set_empty(
854 	struct xfs_buf		*bp,
855 	size_t			numblks)
856 {
857 	if (bp->b_pages)
858 		_xfs_buf_free_pages(bp);
859 
860 	bp->b_pages = NULL;
861 	bp->b_page_count = 0;
862 	bp->b_addr = NULL;
863 	bp->b_length = numblks;
864 	bp->b_io_length = numblks;
865 
866 	ASSERT(bp->b_map_count == 1);
867 	bp->b_bn = XFS_BUF_DADDR_NULL;
868 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
869 	bp->b_maps[0].bm_len = bp->b_length;
870 }
871 
872 static inline struct page *
mem_to_page(void * addr)873 mem_to_page(
874 	void			*addr)
875 {
876 	if ((!is_vmalloc_addr(addr))) {
877 		return virt_to_page(addr);
878 	} else {
879 		return vmalloc_to_page(addr);
880 	}
881 }
882 
883 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)884 xfs_buf_associate_memory(
885 	xfs_buf_t		*bp,
886 	void			*mem,
887 	size_t			len)
888 {
889 	int			rval;
890 	int			i = 0;
891 	unsigned long		pageaddr;
892 	unsigned long		offset;
893 	size_t			buflen;
894 	int			page_count;
895 
896 	pageaddr = (unsigned long)mem & PAGE_MASK;
897 	offset = (unsigned long)mem - pageaddr;
898 	buflen = PAGE_ALIGN(len + offset);
899 	page_count = buflen >> PAGE_SHIFT;
900 
901 	/* Free any previous set of page pointers */
902 	if (bp->b_pages)
903 		_xfs_buf_free_pages(bp);
904 
905 	bp->b_pages = NULL;
906 	bp->b_addr = mem;
907 
908 	rval = _xfs_buf_get_pages(bp, page_count);
909 	if (rval)
910 		return rval;
911 
912 	bp->b_offset = offset;
913 
914 	for (i = 0; i < bp->b_page_count; i++) {
915 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
916 		pageaddr += PAGE_SIZE;
917 	}
918 
919 	bp->b_io_length = BTOBB(len);
920 	bp->b_length = BTOBB(buflen);
921 
922 	return 0;
923 }
924 
925 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)926 xfs_buf_get_uncached(
927 	struct xfs_buftarg	*target,
928 	size_t			numblks,
929 	int			flags)
930 {
931 	unsigned long		page_count;
932 	int			error, i;
933 	struct xfs_buf		*bp;
934 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
935 
936 	/* flags might contain irrelevant bits, pass only what we care about */
937 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
938 	if (unlikely(bp == NULL))
939 		goto fail;
940 
941 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
942 	error = _xfs_buf_get_pages(bp, page_count);
943 	if (error)
944 		goto fail_free_buf;
945 
946 	for (i = 0; i < page_count; i++) {
947 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
948 		if (!bp->b_pages[i])
949 			goto fail_free_mem;
950 	}
951 	bp->b_flags |= _XBF_PAGES;
952 
953 	error = _xfs_buf_map_pages(bp, 0);
954 	if (unlikely(error)) {
955 		xfs_warn(target->bt_mount,
956 			"%s: failed to map pages", __func__);
957 		goto fail_free_mem;
958 	}
959 
960 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
961 	return bp;
962 
963  fail_free_mem:
964 	while (--i >= 0)
965 		__free_page(bp->b_pages[i]);
966 	_xfs_buf_free_pages(bp);
967  fail_free_buf:
968 	xfs_buf_free_maps(bp);
969 	kmem_zone_free(xfs_buf_zone, bp);
970  fail:
971 	return NULL;
972 }
973 
974 /*
975  *	Increment reference count on buffer, to hold the buffer concurrently
976  *	with another thread which may release (free) the buffer asynchronously.
977  *	Must hold the buffer already to call this function.
978  */
979 void
xfs_buf_hold(xfs_buf_t * bp)980 xfs_buf_hold(
981 	xfs_buf_t		*bp)
982 {
983 	trace_xfs_buf_hold(bp, _RET_IP_);
984 	atomic_inc(&bp->b_hold);
985 }
986 
987 /*
988  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
989  * placed on LRU or freed (depending on b_lru_ref).
990  */
991 void
xfs_buf_rele(xfs_buf_t * bp)992 xfs_buf_rele(
993 	xfs_buf_t		*bp)
994 {
995 	struct xfs_perag	*pag = bp->b_pag;
996 	bool			release;
997 	bool			freebuf = false;
998 
999 	trace_xfs_buf_rele(bp, _RET_IP_);
1000 
1001 	if (!pag) {
1002 		ASSERT(list_empty(&bp->b_lru));
1003 		if (atomic_dec_and_test(&bp->b_hold)) {
1004 			xfs_buf_ioacct_dec(bp);
1005 			xfs_buf_free(bp);
1006 		}
1007 		return;
1008 	}
1009 
1010 	ASSERT(atomic_read(&bp->b_hold) > 0);
1011 
1012 	/*
1013 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1014 	 * calls. The pag_buf_lock being taken on the last reference only
1015 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1016 	 * to last reference we drop here is not serialised against the last
1017 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1018 	 * first, the last "release" reference can win the race to the lock and
1019 	 * free the buffer before the second-to-last reference is processed,
1020 	 * leading to a use-after-free scenario.
1021 	 */
1022 	spin_lock(&bp->b_lock);
1023 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1024 	if (!release) {
1025 		/*
1026 		 * Drop the in-flight state if the buffer is already on the LRU
1027 		 * and it holds the only reference. This is racy because we
1028 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1029 		 * ensures the decrement occurs only once per-buf.
1030 		 */
1031 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1032 			__xfs_buf_ioacct_dec(bp);
1033 		goto out_unlock;
1034 	}
1035 
1036 	/* the last reference has been dropped ... */
1037 	__xfs_buf_ioacct_dec(bp);
1038 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1039 		/*
1040 		 * If the buffer is added to the LRU take a new reference to the
1041 		 * buffer for the LRU and clear the (now stale) dispose list
1042 		 * state flag
1043 		 */
1044 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1045 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1046 			atomic_inc(&bp->b_hold);
1047 		}
1048 		spin_unlock(&pag->pag_buf_lock);
1049 	} else {
1050 		/*
1051 		 * most of the time buffers will already be removed from the
1052 		 * LRU, so optimise that case by checking for the
1053 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1054 		 * was on was the disposal list
1055 		 */
1056 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1057 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1058 		} else {
1059 			ASSERT(list_empty(&bp->b_lru));
1060 		}
1061 
1062 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1063 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1064 				       xfs_buf_hash_params);
1065 		spin_unlock(&pag->pag_buf_lock);
1066 		xfs_perag_put(pag);
1067 		freebuf = true;
1068 	}
1069 
1070 out_unlock:
1071 	spin_unlock(&bp->b_lock);
1072 
1073 	if (freebuf)
1074 		xfs_buf_free(bp);
1075 }
1076 
1077 
1078 /*
1079  *	Lock a buffer object, if it is not already locked.
1080  *
1081  *	If we come across a stale, pinned, locked buffer, we know that we are
1082  *	being asked to lock a buffer that has been reallocated. Because it is
1083  *	pinned, we know that the log has not been pushed to disk and hence it
1084  *	will still be locked.  Rather than continuing to have trylock attempts
1085  *	fail until someone else pushes the log, push it ourselves before
1086  *	returning.  This means that the xfsaild will not get stuck trying
1087  *	to push on stale inode buffers.
1088  */
1089 int
xfs_buf_trylock(struct xfs_buf * bp)1090 xfs_buf_trylock(
1091 	struct xfs_buf		*bp)
1092 {
1093 	int			locked;
1094 
1095 	locked = down_trylock(&bp->b_sema) == 0;
1096 	if (locked) {
1097 		XB_SET_OWNER(bp);
1098 		trace_xfs_buf_trylock(bp, _RET_IP_);
1099 	} else {
1100 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1101 	}
1102 	return locked;
1103 }
1104 
1105 /*
1106  *	Lock a buffer object.
1107  *
1108  *	If we come across a stale, pinned, locked buffer, we know that we
1109  *	are being asked to lock a buffer that has been reallocated. Because
1110  *	it is pinned, we know that the log has not been pushed to disk and
1111  *	hence it will still be locked. Rather than sleeping until someone
1112  *	else pushes the log, push it ourselves before trying to get the lock.
1113  */
1114 void
xfs_buf_lock(struct xfs_buf * bp)1115 xfs_buf_lock(
1116 	struct xfs_buf		*bp)
1117 {
1118 	trace_xfs_buf_lock(bp, _RET_IP_);
1119 
1120 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1121 		xfs_log_force(bp->b_target->bt_mount, 0);
1122 	down(&bp->b_sema);
1123 	XB_SET_OWNER(bp);
1124 
1125 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1126 }
1127 
1128 void
xfs_buf_unlock(struct xfs_buf * bp)1129 xfs_buf_unlock(
1130 	struct xfs_buf		*bp)
1131 {
1132 	ASSERT(xfs_buf_islocked(bp));
1133 
1134 	XB_CLEAR_OWNER(bp);
1135 	up(&bp->b_sema);
1136 
1137 	trace_xfs_buf_unlock(bp, _RET_IP_);
1138 }
1139 
1140 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1141 xfs_buf_wait_unpin(
1142 	xfs_buf_t		*bp)
1143 {
1144 	DECLARE_WAITQUEUE	(wait, current);
1145 
1146 	if (atomic_read(&bp->b_pin_count) == 0)
1147 		return;
1148 
1149 	add_wait_queue(&bp->b_waiters, &wait);
1150 	for (;;) {
1151 		set_current_state(TASK_UNINTERRUPTIBLE);
1152 		if (atomic_read(&bp->b_pin_count) == 0)
1153 			break;
1154 		io_schedule();
1155 	}
1156 	remove_wait_queue(&bp->b_waiters, &wait);
1157 	set_current_state(TASK_RUNNING);
1158 }
1159 
1160 /*
1161  *	Buffer Utility Routines
1162  */
1163 
1164 void
xfs_buf_ioend(struct xfs_buf * bp)1165 xfs_buf_ioend(
1166 	struct xfs_buf	*bp)
1167 {
1168 	bool		read = bp->b_flags & XBF_READ;
1169 
1170 	trace_xfs_buf_iodone(bp, _RET_IP_);
1171 
1172 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1173 
1174 	/*
1175 	 * Pull in IO completion errors now. We are guaranteed to be running
1176 	 * single threaded, so we don't need the lock to read b_io_error.
1177 	 */
1178 	if (!bp->b_error && bp->b_io_error)
1179 		xfs_buf_ioerror(bp, bp->b_io_error);
1180 
1181 	/* Only validate buffers that were read without errors */
1182 	if (read && !bp->b_error && bp->b_ops) {
1183 		ASSERT(!bp->b_iodone);
1184 		bp->b_ops->verify_read(bp);
1185 	}
1186 
1187 	if (!bp->b_error)
1188 		bp->b_flags |= XBF_DONE;
1189 
1190 	if (bp->b_iodone)
1191 		(*(bp->b_iodone))(bp);
1192 	else if (bp->b_flags & XBF_ASYNC)
1193 		xfs_buf_relse(bp);
1194 	else
1195 		complete(&bp->b_iowait);
1196 }
1197 
1198 static void
xfs_buf_ioend_work(struct work_struct * work)1199 xfs_buf_ioend_work(
1200 	struct work_struct	*work)
1201 {
1202 	struct xfs_buf		*bp =
1203 		container_of(work, xfs_buf_t, b_ioend_work);
1204 
1205 	xfs_buf_ioend(bp);
1206 }
1207 
1208 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1209 xfs_buf_ioend_async(
1210 	struct xfs_buf	*bp)
1211 {
1212 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1213 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1214 }
1215 
1216 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1217 xfs_buf_ioerror(
1218 	xfs_buf_t		*bp,
1219 	int			error)
1220 {
1221 	ASSERT(error <= 0 && error >= -1000);
1222 	bp->b_error = error;
1223 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1224 }
1225 
1226 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1227 xfs_buf_ioerror_alert(
1228 	struct xfs_buf		*bp,
1229 	const char		*func)
1230 {
1231 	xfs_alert(bp->b_target->bt_mount,
1232 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1233 		(uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1234 }
1235 
1236 int
xfs_bwrite(struct xfs_buf * bp)1237 xfs_bwrite(
1238 	struct xfs_buf		*bp)
1239 {
1240 	int			error;
1241 
1242 	ASSERT(xfs_buf_islocked(bp));
1243 
1244 	bp->b_flags |= XBF_WRITE;
1245 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1246 			 XBF_WRITE_FAIL | XBF_DONE);
1247 
1248 	error = xfs_buf_submit_wait(bp);
1249 	if (error) {
1250 		xfs_force_shutdown(bp->b_target->bt_mount,
1251 				   SHUTDOWN_META_IO_ERROR);
1252 	}
1253 	return error;
1254 }
1255 
1256 static void
xfs_buf_bio_end_io(struct bio * bio)1257 xfs_buf_bio_end_io(
1258 	struct bio		*bio)
1259 {
1260 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1261 
1262 	/*
1263 	 * don't overwrite existing errors - otherwise we can lose errors on
1264 	 * buffers that require multiple bios to complete.
1265 	 */
1266 	if (bio->bi_status) {
1267 		int error = blk_status_to_errno(bio->bi_status);
1268 
1269 		cmpxchg(&bp->b_io_error, 0, error);
1270 	}
1271 
1272 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1273 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1274 
1275 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1276 		xfs_buf_ioend_async(bp);
1277 	bio_put(bio);
1278 }
1279 
1280 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1281 xfs_buf_ioapply_map(
1282 	struct xfs_buf	*bp,
1283 	int		map,
1284 	int		*buf_offset,
1285 	int		*count,
1286 	int		op,
1287 	int		op_flags)
1288 {
1289 	int		page_index;
1290 	int		total_nr_pages = bp->b_page_count;
1291 	int		nr_pages;
1292 	struct bio	*bio;
1293 	sector_t	sector =  bp->b_maps[map].bm_bn;
1294 	int		size;
1295 	int		offset;
1296 
1297 	/* skip the pages in the buffer before the start offset */
1298 	page_index = 0;
1299 	offset = *buf_offset;
1300 	while (offset >= PAGE_SIZE) {
1301 		page_index++;
1302 		offset -= PAGE_SIZE;
1303 	}
1304 
1305 	/*
1306 	 * Limit the IO size to the length of the current vector, and update the
1307 	 * remaining IO count for the next time around.
1308 	 */
1309 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1310 	*count -= size;
1311 	*buf_offset += size;
1312 
1313 next_chunk:
1314 	atomic_inc(&bp->b_io_remaining);
1315 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1316 
1317 	bio = bio_alloc(GFP_NOIO, nr_pages);
1318 	bio_set_dev(bio, bp->b_target->bt_bdev);
1319 	bio->bi_iter.bi_sector = sector;
1320 	bio->bi_end_io = xfs_buf_bio_end_io;
1321 	bio->bi_private = bp;
1322 	bio_set_op_attrs(bio, op, op_flags);
1323 
1324 	for (; size && nr_pages; nr_pages--, page_index++) {
1325 		int	rbytes, nbytes = PAGE_SIZE - offset;
1326 
1327 		if (nbytes > size)
1328 			nbytes = size;
1329 
1330 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1331 				      offset);
1332 		if (rbytes < nbytes)
1333 			break;
1334 
1335 		offset = 0;
1336 		sector += BTOBB(nbytes);
1337 		size -= nbytes;
1338 		total_nr_pages--;
1339 	}
1340 
1341 	if (likely(bio->bi_iter.bi_size)) {
1342 		if (xfs_buf_is_vmapped(bp)) {
1343 			flush_kernel_vmap_range(bp->b_addr,
1344 						xfs_buf_vmap_len(bp));
1345 		}
1346 		submit_bio(bio);
1347 		if (size)
1348 			goto next_chunk;
1349 	} else {
1350 		/*
1351 		 * This is guaranteed not to be the last io reference count
1352 		 * because the caller (xfs_buf_submit) holds a count itself.
1353 		 */
1354 		atomic_dec(&bp->b_io_remaining);
1355 		xfs_buf_ioerror(bp, -EIO);
1356 		bio_put(bio);
1357 	}
1358 
1359 }
1360 
1361 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1362 _xfs_buf_ioapply(
1363 	struct xfs_buf	*bp)
1364 {
1365 	struct blk_plug	plug;
1366 	int		op;
1367 	int		op_flags = 0;
1368 	int		offset;
1369 	int		size;
1370 	int		i;
1371 
1372 	/*
1373 	 * Make sure we capture only current IO errors rather than stale errors
1374 	 * left over from previous use of the buffer (e.g. failed readahead).
1375 	 */
1376 	bp->b_error = 0;
1377 
1378 	/*
1379 	 * Initialize the I/O completion workqueue if we haven't yet or the
1380 	 * submitter has not opted to specify a custom one.
1381 	 */
1382 	if (!bp->b_ioend_wq)
1383 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1384 
1385 	if (bp->b_flags & XBF_WRITE) {
1386 		op = REQ_OP_WRITE;
1387 		if (bp->b_flags & XBF_SYNCIO)
1388 			op_flags = REQ_SYNC;
1389 		if (bp->b_flags & XBF_FUA)
1390 			op_flags |= REQ_FUA;
1391 		if (bp->b_flags & XBF_FLUSH)
1392 			op_flags |= REQ_PREFLUSH;
1393 
1394 		/*
1395 		 * Run the write verifier callback function if it exists. If
1396 		 * this function fails it will mark the buffer with an error and
1397 		 * the IO should not be dispatched.
1398 		 */
1399 		if (bp->b_ops) {
1400 			bp->b_ops->verify_write(bp);
1401 			if (bp->b_error) {
1402 				xfs_force_shutdown(bp->b_target->bt_mount,
1403 						   SHUTDOWN_CORRUPT_INCORE);
1404 				return;
1405 			}
1406 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1407 			struct xfs_mount *mp = bp->b_target->bt_mount;
1408 
1409 			/*
1410 			 * non-crc filesystems don't attach verifiers during
1411 			 * log recovery, so don't warn for such filesystems.
1412 			 */
1413 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1414 				xfs_warn(mp,
1415 					"%s: no ops on block 0x%llx/0x%x",
1416 					__func__, bp->b_bn, bp->b_length);
1417 				xfs_hex_dump(bp->b_addr, 64);
1418 				dump_stack();
1419 			}
1420 		}
1421 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1422 		op = REQ_OP_READ;
1423 		op_flags = REQ_RAHEAD;
1424 	} else {
1425 		op = REQ_OP_READ;
1426 	}
1427 
1428 	/* we only use the buffer cache for meta-data */
1429 	op_flags |= REQ_META;
1430 
1431 	/*
1432 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1433 	 * into the buffer and the desired IO size before we start -
1434 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1435 	 * subsequent call.
1436 	 */
1437 	offset = bp->b_offset;
1438 	size = BBTOB(bp->b_io_length);
1439 	blk_start_plug(&plug);
1440 	for (i = 0; i < bp->b_map_count; i++) {
1441 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1442 		if (bp->b_error)
1443 			break;
1444 		if (size <= 0)
1445 			break;	/* all done */
1446 	}
1447 	blk_finish_plug(&plug);
1448 }
1449 
1450 /*
1451  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1452  * the current reference to the IO. It is not safe to reference the buffer after
1453  * a call to this function unless the caller holds an additional reference
1454  * itself.
1455  */
1456 void
xfs_buf_submit(struct xfs_buf * bp)1457 xfs_buf_submit(
1458 	struct xfs_buf	*bp)
1459 {
1460 	trace_xfs_buf_submit(bp, _RET_IP_);
1461 
1462 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1463 	ASSERT(bp->b_flags & XBF_ASYNC);
1464 
1465 	/* on shutdown we stale and complete the buffer immediately */
1466 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1467 		xfs_buf_ioerror(bp, -EIO);
1468 		bp->b_flags &= ~XBF_DONE;
1469 		xfs_buf_stale(bp);
1470 		xfs_buf_ioend(bp);
1471 		return;
1472 	}
1473 
1474 	if (bp->b_flags & XBF_WRITE)
1475 		xfs_buf_wait_unpin(bp);
1476 
1477 	/* clear the internal error state to avoid spurious errors */
1478 	bp->b_io_error = 0;
1479 
1480 	/*
1481 	 * The caller's reference is released during I/O completion.
1482 	 * This occurs some time after the last b_io_remaining reference is
1483 	 * released, so after we drop our Io reference we have to have some
1484 	 * other reference to ensure the buffer doesn't go away from underneath
1485 	 * us. Take a direct reference to ensure we have safe access to the
1486 	 * buffer until we are finished with it.
1487 	 */
1488 	xfs_buf_hold(bp);
1489 
1490 	/*
1491 	 * Set the count to 1 initially, this will stop an I/O completion
1492 	 * callout which happens before we have started all the I/O from calling
1493 	 * xfs_buf_ioend too early.
1494 	 */
1495 	atomic_set(&bp->b_io_remaining, 1);
1496 	xfs_buf_ioacct_inc(bp);
1497 	_xfs_buf_ioapply(bp);
1498 
1499 	/*
1500 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1501 	 * reference we took above. If we drop it to zero, run completion so
1502 	 * that we don't return to the caller with completion still pending.
1503 	 */
1504 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1505 		if (bp->b_error)
1506 			xfs_buf_ioend(bp);
1507 		else
1508 			xfs_buf_ioend_async(bp);
1509 	}
1510 
1511 	xfs_buf_rele(bp);
1512 	/* Note: it is not safe to reference bp now we've dropped our ref */
1513 }
1514 
1515 /*
1516  * Synchronous buffer IO submission path, read or write.
1517  */
1518 int
xfs_buf_submit_wait(struct xfs_buf * bp)1519 xfs_buf_submit_wait(
1520 	struct xfs_buf	*bp)
1521 {
1522 	int		error;
1523 
1524 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1525 
1526 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1527 
1528 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1529 		xfs_buf_ioerror(bp, -EIO);
1530 		xfs_buf_stale(bp);
1531 		bp->b_flags &= ~XBF_DONE;
1532 		return -EIO;
1533 	}
1534 
1535 	if (bp->b_flags & XBF_WRITE)
1536 		xfs_buf_wait_unpin(bp);
1537 
1538 	/* clear the internal error state to avoid spurious errors */
1539 	bp->b_io_error = 0;
1540 
1541 	/*
1542 	 * For synchronous IO, the IO does not inherit the submitters reference
1543 	 * count, nor the buffer lock. Hence we cannot release the reference we
1544 	 * are about to take until we've waited for all IO completion to occur,
1545 	 * including any xfs_buf_ioend_async() work that may be pending.
1546 	 */
1547 	xfs_buf_hold(bp);
1548 
1549 	/*
1550 	 * Set the count to 1 initially, this will stop an I/O completion
1551 	 * callout which happens before we have started all the I/O from calling
1552 	 * xfs_buf_ioend too early.
1553 	 */
1554 	atomic_set(&bp->b_io_remaining, 1);
1555 	_xfs_buf_ioapply(bp);
1556 
1557 	/*
1558 	 * make sure we run completion synchronously if it raced with us and is
1559 	 * already complete.
1560 	 */
1561 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1562 		xfs_buf_ioend(bp);
1563 
1564 	/* wait for completion before gathering the error from the buffer */
1565 	trace_xfs_buf_iowait(bp, _RET_IP_);
1566 	wait_for_completion(&bp->b_iowait);
1567 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1568 	error = bp->b_error;
1569 
1570 	/*
1571 	 * all done now, we can release the hold that keeps the buffer
1572 	 * referenced for the entire IO.
1573 	 */
1574 	xfs_buf_rele(bp);
1575 	return error;
1576 }
1577 
1578 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1579 xfs_buf_offset(
1580 	struct xfs_buf		*bp,
1581 	size_t			offset)
1582 {
1583 	struct page		*page;
1584 
1585 	if (bp->b_addr)
1586 		return bp->b_addr + offset;
1587 
1588 	offset += bp->b_offset;
1589 	page = bp->b_pages[offset >> PAGE_SHIFT];
1590 	return page_address(page) + (offset & (PAGE_SIZE-1));
1591 }
1592 
1593 /*
1594  *	Move data into or out of a buffer.
1595  */
1596 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1597 xfs_buf_iomove(
1598 	xfs_buf_t		*bp,	/* buffer to process		*/
1599 	size_t			boff,	/* starting buffer offset	*/
1600 	size_t			bsize,	/* length to copy		*/
1601 	void			*data,	/* data address			*/
1602 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1603 {
1604 	size_t			bend;
1605 
1606 	bend = boff + bsize;
1607 	while (boff < bend) {
1608 		struct page	*page;
1609 		int		page_index, page_offset, csize;
1610 
1611 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1612 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1613 		page = bp->b_pages[page_index];
1614 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1615 				      BBTOB(bp->b_io_length) - boff);
1616 
1617 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1618 
1619 		switch (mode) {
1620 		case XBRW_ZERO:
1621 			memset(page_address(page) + page_offset, 0, csize);
1622 			break;
1623 		case XBRW_READ:
1624 			memcpy(data, page_address(page) + page_offset, csize);
1625 			break;
1626 		case XBRW_WRITE:
1627 			memcpy(page_address(page) + page_offset, data, csize);
1628 		}
1629 
1630 		boff += csize;
1631 		data += csize;
1632 	}
1633 }
1634 
1635 /*
1636  *	Handling of buffer targets (buftargs).
1637  */
1638 
1639 /*
1640  * Wait for any bufs with callbacks that have been submitted but have not yet
1641  * returned. These buffers will have an elevated hold count, so wait on those
1642  * while freeing all the buffers only held by the LRU.
1643  */
1644 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1645 xfs_buftarg_wait_rele(
1646 	struct list_head	*item,
1647 	struct list_lru_one	*lru,
1648 	spinlock_t		*lru_lock,
1649 	void			*arg)
1650 
1651 {
1652 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1653 	struct list_head	*dispose = arg;
1654 
1655 	if (atomic_read(&bp->b_hold) > 1) {
1656 		/* need to wait, so skip it this pass */
1657 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1658 		return LRU_SKIP;
1659 	}
1660 	if (!spin_trylock(&bp->b_lock))
1661 		return LRU_SKIP;
1662 
1663 	/*
1664 	 * clear the LRU reference count so the buffer doesn't get
1665 	 * ignored in xfs_buf_rele().
1666 	 */
1667 	atomic_set(&bp->b_lru_ref, 0);
1668 	bp->b_state |= XFS_BSTATE_DISPOSE;
1669 	list_lru_isolate_move(lru, item, dispose);
1670 	spin_unlock(&bp->b_lock);
1671 	return LRU_REMOVED;
1672 }
1673 
1674 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1675 xfs_wait_buftarg(
1676 	struct xfs_buftarg	*btp)
1677 {
1678 	LIST_HEAD(dispose);
1679 	int loop = 0;
1680 
1681 	/*
1682 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1683 	 * released. This is critical as new buffers do not make the LRU until
1684 	 * they are released.
1685 	 *
1686 	 * Next, flush the buffer workqueue to ensure all completion processing
1687 	 * has finished. Just waiting on buffer locks is not sufficient for
1688 	 * async IO as the reference count held over IO is not released until
1689 	 * after the buffer lock is dropped. Hence we need to ensure here that
1690 	 * all reference counts have been dropped before we start walking the
1691 	 * LRU list.
1692 	 */
1693 	while (percpu_counter_sum(&btp->bt_io_count))
1694 		delay(100);
1695 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1696 
1697 	/* loop until there is nothing left on the lru list. */
1698 	while (list_lru_count(&btp->bt_lru)) {
1699 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1700 			      &dispose, LONG_MAX);
1701 
1702 		while (!list_empty(&dispose)) {
1703 			struct xfs_buf *bp;
1704 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1705 			list_del_init(&bp->b_lru);
1706 			if (bp->b_flags & XBF_WRITE_FAIL) {
1707 				xfs_alert(btp->bt_mount,
1708 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1709 					(long long)bp->b_bn);
1710 				xfs_alert(btp->bt_mount,
1711 "Please run xfs_repair to determine the extent of the problem.");
1712 			}
1713 			xfs_buf_rele(bp);
1714 		}
1715 		if (loop++ != 0)
1716 			delay(100);
1717 	}
1718 }
1719 
1720 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1721 xfs_buftarg_isolate(
1722 	struct list_head	*item,
1723 	struct list_lru_one	*lru,
1724 	spinlock_t		*lru_lock,
1725 	void			*arg)
1726 {
1727 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1728 	struct list_head	*dispose = arg;
1729 
1730 	/*
1731 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1732 	 * If we fail to get the lock, just skip it.
1733 	 */
1734 	if (!spin_trylock(&bp->b_lock))
1735 		return LRU_SKIP;
1736 	/*
1737 	 * Decrement the b_lru_ref count unless the value is already
1738 	 * zero. If the value is already zero, we need to reclaim the
1739 	 * buffer, otherwise it gets another trip through the LRU.
1740 	 */
1741 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1742 		spin_unlock(&bp->b_lock);
1743 		return LRU_ROTATE;
1744 	}
1745 
1746 	bp->b_state |= XFS_BSTATE_DISPOSE;
1747 	list_lru_isolate_move(lru, item, dispose);
1748 	spin_unlock(&bp->b_lock);
1749 	return LRU_REMOVED;
1750 }
1751 
1752 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1753 xfs_buftarg_shrink_scan(
1754 	struct shrinker		*shrink,
1755 	struct shrink_control	*sc)
1756 {
1757 	struct xfs_buftarg	*btp = container_of(shrink,
1758 					struct xfs_buftarg, bt_shrinker);
1759 	LIST_HEAD(dispose);
1760 	unsigned long		freed;
1761 
1762 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1763 				     xfs_buftarg_isolate, &dispose);
1764 
1765 	while (!list_empty(&dispose)) {
1766 		struct xfs_buf *bp;
1767 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1768 		list_del_init(&bp->b_lru);
1769 		xfs_buf_rele(bp);
1770 	}
1771 
1772 	return freed;
1773 }
1774 
1775 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1776 xfs_buftarg_shrink_count(
1777 	struct shrinker		*shrink,
1778 	struct shrink_control	*sc)
1779 {
1780 	struct xfs_buftarg	*btp = container_of(shrink,
1781 					struct xfs_buftarg, bt_shrinker);
1782 	return list_lru_shrink_count(&btp->bt_lru, sc);
1783 }
1784 
1785 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1786 xfs_free_buftarg(
1787 	struct xfs_mount	*mp,
1788 	struct xfs_buftarg	*btp)
1789 {
1790 	unregister_shrinker(&btp->bt_shrinker);
1791 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1792 	percpu_counter_destroy(&btp->bt_io_count);
1793 	list_lru_destroy(&btp->bt_lru);
1794 
1795 	xfs_blkdev_issue_flush(btp);
1796 
1797 	kmem_free(btp);
1798 }
1799 
1800 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1801 xfs_setsize_buftarg(
1802 	xfs_buftarg_t		*btp,
1803 	unsigned int		sectorsize)
1804 {
1805 	/* Set up metadata sector size info */
1806 	btp->bt_meta_sectorsize = sectorsize;
1807 	btp->bt_meta_sectormask = sectorsize - 1;
1808 
1809 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1810 		xfs_warn(btp->bt_mount,
1811 			"Cannot set_blocksize to %u on device %pg",
1812 			sectorsize, btp->bt_bdev);
1813 		return -EINVAL;
1814 	}
1815 
1816 	/* Set up device logical sector size mask */
1817 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1818 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1819 
1820 	return 0;
1821 }
1822 
1823 /*
1824  * When allocating the initial buffer target we have not yet
1825  * read in the superblock, so don't know what sized sectors
1826  * are being used at this early stage.  Play safe.
1827  */
1828 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1829 xfs_setsize_buftarg_early(
1830 	xfs_buftarg_t		*btp,
1831 	struct block_device	*bdev)
1832 {
1833 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1834 }
1835 
1836 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1837 xfs_alloc_buftarg(
1838 	struct xfs_mount	*mp,
1839 	struct block_device	*bdev,
1840 	struct dax_device	*dax_dev)
1841 {
1842 	xfs_buftarg_t		*btp;
1843 
1844 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1845 
1846 	btp->bt_mount = mp;
1847 	btp->bt_dev =  bdev->bd_dev;
1848 	btp->bt_bdev = bdev;
1849 	btp->bt_daxdev = dax_dev;
1850 
1851 	if (xfs_setsize_buftarg_early(btp, bdev))
1852 		goto error_free;
1853 
1854 	if (list_lru_init(&btp->bt_lru))
1855 		goto error_free;
1856 
1857 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1858 		goto error_lru;
1859 
1860 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1861 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1862 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1863 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1864 	if (register_shrinker(&btp->bt_shrinker))
1865 		goto error_pcpu;
1866 	return btp;
1867 
1868 error_pcpu:
1869 	percpu_counter_destroy(&btp->bt_io_count);
1870 error_lru:
1871 	list_lru_destroy(&btp->bt_lru);
1872 error_free:
1873 	kmem_free(btp);
1874 	return NULL;
1875 }
1876 
1877 /*
1878  * Cancel a delayed write list.
1879  *
1880  * Remove each buffer from the list, clear the delwri queue flag and drop the
1881  * associated buffer reference.
1882  */
1883 void
xfs_buf_delwri_cancel(struct list_head * list)1884 xfs_buf_delwri_cancel(
1885 	struct list_head	*list)
1886 {
1887 	struct xfs_buf		*bp;
1888 
1889 	while (!list_empty(list)) {
1890 		bp = list_first_entry(list, struct xfs_buf, b_list);
1891 
1892 		xfs_buf_lock(bp);
1893 		bp->b_flags &= ~_XBF_DELWRI_Q;
1894 		list_del_init(&bp->b_list);
1895 		xfs_buf_relse(bp);
1896 	}
1897 }
1898 
1899 /*
1900  * Add a buffer to the delayed write list.
1901  *
1902  * This queues a buffer for writeout if it hasn't already been.  Note that
1903  * neither this routine nor the buffer list submission functions perform
1904  * any internal synchronization.  It is expected that the lists are thread-local
1905  * to the callers.
1906  *
1907  * Returns true if we queued up the buffer, or false if it already had
1908  * been on the buffer list.
1909  */
1910 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1911 xfs_buf_delwri_queue(
1912 	struct xfs_buf		*bp,
1913 	struct list_head	*list)
1914 {
1915 	ASSERT(xfs_buf_islocked(bp));
1916 	ASSERT(!(bp->b_flags & XBF_READ));
1917 
1918 	/*
1919 	 * If the buffer is already marked delwri it already is queued up
1920 	 * by someone else for imediate writeout.  Just ignore it in that
1921 	 * case.
1922 	 */
1923 	if (bp->b_flags & _XBF_DELWRI_Q) {
1924 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1925 		return false;
1926 	}
1927 
1928 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1929 
1930 	/*
1931 	 * If a buffer gets written out synchronously or marked stale while it
1932 	 * is on a delwri list we lazily remove it. To do this, the other party
1933 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1934 	 * It remains referenced and on the list.  In a rare corner case it
1935 	 * might get readded to a delwri list after the synchronous writeout, in
1936 	 * which case we need just need to re-add the flag here.
1937 	 */
1938 	bp->b_flags |= _XBF_DELWRI_Q;
1939 	if (list_empty(&bp->b_list)) {
1940 		atomic_inc(&bp->b_hold);
1941 		list_add_tail(&bp->b_list, list);
1942 	}
1943 
1944 	return true;
1945 }
1946 
1947 /*
1948  * Compare function is more complex than it needs to be because
1949  * the return value is only 32 bits and we are doing comparisons
1950  * on 64 bit values
1951  */
1952 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1953 xfs_buf_cmp(
1954 	void		*priv,
1955 	struct list_head *a,
1956 	struct list_head *b)
1957 {
1958 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1959 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1960 	xfs_daddr_t		diff;
1961 
1962 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1963 	if (diff < 0)
1964 		return -1;
1965 	if (diff > 0)
1966 		return 1;
1967 	return 0;
1968 }
1969 
1970 /*
1971  * submit buffers for write.
1972  *
1973  * When we have a large buffer list, we do not want to hold all the buffers
1974  * locked while we block on the request queue waiting for IO dispatch. To avoid
1975  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1976  * the lock hold times for lists which may contain thousands of objects.
1977  *
1978  * To do this, we sort the buffer list before we walk the list to lock and
1979  * submit buffers, and we plug and unplug around each group of buffers we
1980  * submit.
1981  */
1982 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1983 xfs_buf_delwri_submit_buffers(
1984 	struct list_head	*buffer_list,
1985 	struct list_head	*wait_list)
1986 {
1987 	struct xfs_buf		*bp, *n;
1988 	LIST_HEAD		(submit_list);
1989 	int			pinned = 0;
1990 	struct blk_plug		plug;
1991 
1992 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1993 
1994 	blk_start_plug(&plug);
1995 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1996 		if (!wait_list) {
1997 			if (xfs_buf_ispinned(bp)) {
1998 				pinned++;
1999 				continue;
2000 			}
2001 			if (!xfs_buf_trylock(bp))
2002 				continue;
2003 		} else {
2004 			xfs_buf_lock(bp);
2005 		}
2006 
2007 		/*
2008 		 * Someone else might have written the buffer synchronously or
2009 		 * marked it stale in the meantime.  In that case only the
2010 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2011 		 * reference and remove it from the list here.
2012 		 */
2013 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2014 			list_del_init(&bp->b_list);
2015 			xfs_buf_relse(bp);
2016 			continue;
2017 		}
2018 
2019 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2020 
2021 		/*
2022 		 * We do all IO submission async. This means if we need
2023 		 * to wait for IO completion we need to take an extra
2024 		 * reference so the buffer is still valid on the other
2025 		 * side. We need to move the buffer onto the io_list
2026 		 * at this point so the caller can still access it.
2027 		 */
2028 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2029 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
2030 		if (wait_list) {
2031 			xfs_buf_hold(bp);
2032 			list_move_tail(&bp->b_list, wait_list);
2033 		} else
2034 			list_del_init(&bp->b_list);
2035 
2036 		xfs_buf_submit(bp);
2037 	}
2038 	blk_finish_plug(&plug);
2039 
2040 	return pinned;
2041 }
2042 
2043 /*
2044  * Write out a buffer list asynchronously.
2045  *
2046  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2047  * out and not wait for I/O completion on any of the buffers.  This interface
2048  * is only safely useable for callers that can track I/O completion by higher
2049  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2050  * function.
2051  */
2052 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2053 xfs_buf_delwri_submit_nowait(
2054 	struct list_head	*buffer_list)
2055 {
2056 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2057 }
2058 
2059 /*
2060  * Write out a buffer list synchronously.
2061  *
2062  * This will take the @buffer_list, write all buffers out and wait for I/O
2063  * completion on all of the buffers. @buffer_list is consumed by the function,
2064  * so callers must have some other way of tracking buffers if they require such
2065  * functionality.
2066  */
2067 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2068 xfs_buf_delwri_submit(
2069 	struct list_head	*buffer_list)
2070 {
2071 	LIST_HEAD		(wait_list);
2072 	int			error = 0, error2;
2073 	struct xfs_buf		*bp;
2074 
2075 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2076 
2077 	/* Wait for IO to complete. */
2078 	while (!list_empty(&wait_list)) {
2079 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2080 
2081 		list_del_init(&bp->b_list);
2082 
2083 		/* locking the buffer will wait for async IO completion. */
2084 		xfs_buf_lock(bp);
2085 		error2 = bp->b_error;
2086 		xfs_buf_relse(bp);
2087 		if (!error)
2088 			error = error2;
2089 	}
2090 
2091 	return error;
2092 }
2093 
2094 /*
2095  * Push a single buffer on a delwri queue.
2096  *
2097  * The purpose of this function is to submit a single buffer of a delwri queue
2098  * and return with the buffer still on the original queue. The waiting delwri
2099  * buffer submission infrastructure guarantees transfer of the delwri queue
2100  * buffer reference to a temporary wait list. We reuse this infrastructure to
2101  * transfer the buffer back to the original queue.
2102  *
2103  * Note the buffer transitions from the queued state, to the submitted and wait
2104  * listed state and back to the queued state during this call. The buffer
2105  * locking and queue management logic between _delwri_pushbuf() and
2106  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2107  * before returning.
2108  */
2109 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2110 xfs_buf_delwri_pushbuf(
2111 	struct xfs_buf		*bp,
2112 	struct list_head	*buffer_list)
2113 {
2114 	LIST_HEAD		(submit_list);
2115 	int			error;
2116 
2117 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2118 
2119 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2120 
2121 	/*
2122 	 * Isolate the buffer to a new local list so we can submit it for I/O
2123 	 * independently from the rest of the original list.
2124 	 */
2125 	xfs_buf_lock(bp);
2126 	list_move(&bp->b_list, &submit_list);
2127 	xfs_buf_unlock(bp);
2128 
2129 	/*
2130 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2131 	 * the buffer on the wait list with an associated reference. Rather than
2132 	 * bounce the buffer from a local wait list back to the original list
2133 	 * after I/O completion, reuse the original list as the wait list.
2134 	 */
2135 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2136 
2137 	/*
2138 	 * The buffer is now under I/O and wait listed as during typical delwri
2139 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2140 	 * remove the buffer from the wait list and release the reference, we
2141 	 * want to return with the buffer queued to the original list. The
2142 	 * buffer already sits on the original list with a wait list reference,
2143 	 * however. If we let the queue inherit that wait list reference, all we
2144 	 * need to do is reset the DELWRI_Q flag.
2145 	 */
2146 	xfs_buf_lock(bp);
2147 	error = bp->b_error;
2148 	bp->b_flags |= _XBF_DELWRI_Q;
2149 	xfs_buf_unlock(bp);
2150 
2151 	return error;
2152 }
2153 
2154 int __init
xfs_buf_init(void)2155 xfs_buf_init(void)
2156 {
2157 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2158 						KM_ZONE_HWALIGN, NULL);
2159 	if (!xfs_buf_zone)
2160 		goto out;
2161 
2162 	return 0;
2163 
2164  out:
2165 	return -ENOMEM;
2166 }
2167 
2168 void
xfs_buf_terminate(void)2169 xfs_buf_terminate(void)
2170 {
2171 	kmem_zone_destroy(xfs_buf_zone);
2172 }
2173