• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 /*
42  * Allocate and initialise an xfs_inode.
43  */
44 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)45 xfs_inode_alloc(
46 	struct xfs_mount	*mp,
47 	xfs_ino_t		ino)
48 {
49 	struct xfs_inode	*ip;
50 
51 	/*
52 	 * if this didn't occur in transactions, we could use
53 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 	 * code up to do this anyway.
55 	 */
56 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 	if (!ip)
58 		return NULL;
59 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 		kmem_zone_free(xfs_inode_zone, ip);
61 		return NULL;
62 	}
63 
64 	/* VFS doesn't initialise i_mode! */
65 	VFS_I(ip)->i_mode = 0;
66 
67 	XFS_STATS_INC(mp, vn_active);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!xfs_isiflocked(ip));
70 	ASSERT(ip->i_ino == 0);
71 
72 	/* initialise the xfs inode */
73 	ip->i_ino = ino;
74 	ip->i_mount = mp;
75 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 	ip->i_afp = NULL;
77 	ip->i_cowfp = NULL;
78 	ip->i_cnextents = 0;
79 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 	ip->i_flags = 0;
82 	ip->i_delayed_blks = 0;
83 	memset(&ip->i_d, 0, sizeof(ip->i_d));
84 
85 	return ip;
86 }
87 
88 STATIC void
xfs_inode_free_callback(struct rcu_head * head)89 xfs_inode_free_callback(
90 	struct rcu_head		*head)
91 {
92 	struct inode		*inode = container_of(head, struct inode, i_rcu);
93 	struct xfs_inode	*ip = XFS_I(inode);
94 
95 	switch (VFS_I(ip)->i_mode & S_IFMT) {
96 	case S_IFREG:
97 	case S_IFDIR:
98 	case S_IFLNK:
99 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 		break;
101 	}
102 
103 	if (ip->i_afp)
104 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 	if (ip->i_cowfp)
106 		xfs_idestroy_fork(ip, XFS_COW_FORK);
107 
108 	if (ip->i_itemp) {
109 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 		xfs_inode_item_destroy(ip);
111 		ip->i_itemp = NULL;
112 	}
113 
114 	kmem_zone_free(xfs_inode_zone, ip);
115 }
116 
117 static void
__xfs_inode_free(struct xfs_inode * ip)118 __xfs_inode_free(
119 	struct xfs_inode	*ip)
120 {
121 	/* asserts to verify all state is correct here */
122 	ASSERT(atomic_read(&ip->i_pincount) == 0);
123 	XFS_STATS_DEC(ip->i_mount, vn_active);
124 
125 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127 
128 void
xfs_inode_free(struct xfs_inode * ip)129 xfs_inode_free(
130 	struct xfs_inode	*ip)
131 {
132 	ASSERT(!xfs_isiflocked(ip));
133 
134 	/*
135 	 * Because we use RCU freeing we need to ensure the inode always
136 	 * appears to be reclaimed with an invalid inode number when in the
137 	 * free state. The ip->i_flags_lock provides the barrier against lookup
138 	 * races.
139 	 */
140 	spin_lock(&ip->i_flags_lock);
141 	ip->i_flags = XFS_IRECLAIM;
142 	ip->i_ino = 0;
143 	spin_unlock(&ip->i_flags_lock);
144 
145 	__xfs_inode_free(ip);
146 }
147 
148 /*
149  * Queue a new inode reclaim pass if there are reclaimable inodes and there
150  * isn't a reclaim pass already in progress. By default it runs every 5s based
151  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152  * tunable, but that can be done if this method proves to be ineffective or too
153  * aggressive.
154  */
155 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)156 xfs_reclaim_work_queue(
157 	struct xfs_mount        *mp)
158 {
159 
160 	rcu_read_lock();
161 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 	}
165 	rcu_read_unlock();
166 }
167 
168 /*
169  * This is a fast pass over the inode cache to try to get reclaim moving on as
170  * many inodes as possible in a short period of time. It kicks itself every few
171  * seconds, as well as being kicked by the inode cache shrinker when memory
172  * goes low. It scans as quickly as possible avoiding locked inodes or those
173  * already being flushed, and once done schedules a future pass.
174  */
175 void
xfs_reclaim_worker(struct work_struct * work)176 xfs_reclaim_worker(
177 	struct work_struct *work)
178 {
179 	struct xfs_mount *mp = container_of(to_delayed_work(work),
180 					struct xfs_mount, m_reclaim_work);
181 
182 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 	xfs_reclaim_work_queue(mp);
184 }
185 
186 static void
xfs_perag_set_reclaim_tag(struct xfs_perag * pag)187 xfs_perag_set_reclaim_tag(
188 	struct xfs_perag	*pag)
189 {
190 	struct xfs_mount	*mp = pag->pag_mount;
191 
192 	lockdep_assert_held(&pag->pag_ici_lock);
193 	if (pag->pag_ici_reclaimable++)
194 		return;
195 
196 	/* propagate the reclaim tag up into the perag radix tree */
197 	spin_lock(&mp->m_perag_lock);
198 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 			   XFS_ICI_RECLAIM_TAG);
200 	spin_unlock(&mp->m_perag_lock);
201 
202 	/* schedule periodic background inode reclaim */
203 	xfs_reclaim_work_queue(mp);
204 
205 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207 
208 static void
xfs_perag_clear_reclaim_tag(struct xfs_perag * pag)209 xfs_perag_clear_reclaim_tag(
210 	struct xfs_perag	*pag)
211 {
212 	struct xfs_mount	*mp = pag->pag_mount;
213 
214 	lockdep_assert_held(&pag->pag_ici_lock);
215 	if (--pag->pag_ici_reclaimable)
216 		return;
217 
218 	/* clear the reclaim tag from the perag radix tree */
219 	spin_lock(&mp->m_perag_lock);
220 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 			     XFS_ICI_RECLAIM_TAG);
222 	spin_unlock(&mp->m_perag_lock);
223 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225 
226 
227 /*
228  * We set the inode flag atomically with the radix tree tag.
229  * Once we get tag lookups on the radix tree, this inode flag
230  * can go away.
231  */
232 void
xfs_inode_set_reclaim_tag(struct xfs_inode * ip)233 xfs_inode_set_reclaim_tag(
234 	struct xfs_inode	*ip)
235 {
236 	struct xfs_mount	*mp = ip->i_mount;
237 	struct xfs_perag	*pag;
238 
239 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 	spin_lock(&pag->pag_ici_lock);
241 	spin_lock(&ip->i_flags_lock);
242 
243 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 			   XFS_ICI_RECLAIM_TAG);
245 	xfs_perag_set_reclaim_tag(pag);
246 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247 
248 	spin_unlock(&ip->i_flags_lock);
249 	spin_unlock(&pag->pag_ici_lock);
250 	xfs_perag_put(pag);
251 }
252 
253 STATIC void
xfs_inode_clear_reclaim_tag(struct xfs_perag * pag,xfs_ino_t ino)254 xfs_inode_clear_reclaim_tag(
255 	struct xfs_perag	*pag,
256 	xfs_ino_t		ino)
257 {
258 	radix_tree_tag_clear(&pag->pag_ici_root,
259 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 			     XFS_ICI_RECLAIM_TAG);
261 	xfs_perag_clear_reclaim_tag(pag);
262 }
263 
264 static void
xfs_inew_wait(struct xfs_inode * ip)265 xfs_inew_wait(
266 	struct xfs_inode	*ip)
267 {
268 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270 
271 	do {
272 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 		if (!xfs_iflags_test(ip, XFS_INEW))
274 			break;
275 		schedule();
276 	} while (true);
277 	finish_wait(wq, &wait.wq_entry);
278 }
279 
280 /*
281  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282  * part of the structure. This is made more complex by the fact we store
283  * information about the on-disk values in the VFS inode and so we can't just
284  * overwrite the values unconditionally. Hence we save the parameters we
285  * need to retain across reinitialisation, and rewrite them into the VFS inode
286  * after reinitialisation even if it fails.
287  */
288 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)289 xfs_reinit_inode(
290 	struct xfs_mount	*mp,
291 	struct inode		*inode)
292 {
293 	int		error;
294 	uint32_t	nlink = inode->i_nlink;
295 	uint32_t	generation = inode->i_generation;
296 	uint64_t	version = inode->i_version;
297 	umode_t		mode = inode->i_mode;
298 
299 	error = inode_init_always(mp->m_super, inode);
300 
301 	set_nlink(inode, nlink);
302 	inode->i_generation = generation;
303 	inode->i_version = version;
304 	inode->i_mode = mode;
305 	return error;
306 }
307 
308 /*
309  * If we are allocating a new inode, then check what was returned is
310  * actually a free, empty inode. If we are not allocating an inode,
311  * then check we didn't find a free inode.
312  *
313  * Returns:
314  *	0		if the inode free state matches the lookup context
315  *	-ENOENT		if the inode is free and we are not allocating
316  *	-EFSCORRUPTED	if there is any state mismatch at all
317  */
318 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)319 xfs_iget_check_free_state(
320 	struct xfs_inode	*ip,
321 	int			flags)
322 {
323 	if (flags & XFS_IGET_CREATE) {
324 		/* should be a free inode */
325 		if (VFS_I(ip)->i_mode != 0) {
326 			xfs_warn(ip->i_mount,
327 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
328 				ip->i_ino, VFS_I(ip)->i_mode);
329 			return -EFSCORRUPTED;
330 		}
331 
332 		if (ip->i_d.di_nblocks != 0) {
333 			xfs_warn(ip->i_mount,
334 "Corruption detected! Free inode 0x%llx has blocks allocated!",
335 				ip->i_ino);
336 			return -EFSCORRUPTED;
337 		}
338 		return 0;
339 	}
340 
341 	/* should be an allocated inode */
342 	if (VFS_I(ip)->i_mode == 0)
343 		return -ENOENT;
344 
345 	return 0;
346 }
347 
348 /*
349  * Check the validity of the inode we just found it the cache
350  */
351 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)352 xfs_iget_cache_hit(
353 	struct xfs_perag	*pag,
354 	struct xfs_inode	*ip,
355 	xfs_ino_t		ino,
356 	int			flags,
357 	int			lock_flags) __releases(RCU)
358 {
359 	struct inode		*inode = VFS_I(ip);
360 	struct xfs_mount	*mp = ip->i_mount;
361 	int			error;
362 
363 	/*
364 	 * check for re-use of an inode within an RCU grace period due to the
365 	 * radix tree nodes not being updated yet. We monitor for this by
366 	 * setting the inode number to zero before freeing the inode structure.
367 	 * If the inode has been reallocated and set up, then the inode number
368 	 * will not match, so check for that, too.
369 	 */
370 	spin_lock(&ip->i_flags_lock);
371 	if (ip->i_ino != ino) {
372 		trace_xfs_iget_skip(ip);
373 		XFS_STATS_INC(mp, xs_ig_frecycle);
374 		error = -EAGAIN;
375 		goto out_error;
376 	}
377 
378 
379 	/*
380 	 * If we are racing with another cache hit that is currently
381 	 * instantiating this inode or currently recycling it out of
382 	 * reclaimabe state, wait for the initialisation to complete
383 	 * before continuing.
384 	 *
385 	 * XXX(hch): eventually we should do something equivalent to
386 	 *	     wait_on_inode to wait for these flags to be cleared
387 	 *	     instead of polling for it.
388 	 */
389 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
390 		trace_xfs_iget_skip(ip);
391 		XFS_STATS_INC(mp, xs_ig_frecycle);
392 		error = -EAGAIN;
393 		goto out_error;
394 	}
395 
396 	/*
397 	 * Check the inode free state is valid. This also detects lookup
398 	 * racing with unlinks.
399 	 */
400 	error = xfs_iget_check_free_state(ip, flags);
401 	if (error)
402 		goto out_error;
403 
404 	/*
405 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
406 	 * Need to carefully get it back into useable state.
407 	 */
408 	if (ip->i_flags & XFS_IRECLAIMABLE) {
409 		trace_xfs_iget_reclaim(ip);
410 
411 		if (flags & XFS_IGET_INCORE) {
412 			error = -EAGAIN;
413 			goto out_error;
414 		}
415 
416 		/*
417 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
418 		 * from stomping over us while we recycle the inode.  We can't
419 		 * clear the radix tree reclaimable tag yet as it requires
420 		 * pag_ici_lock to be held exclusive.
421 		 */
422 		ip->i_flags |= XFS_IRECLAIM;
423 
424 		spin_unlock(&ip->i_flags_lock);
425 		rcu_read_unlock();
426 
427 		error = xfs_reinit_inode(mp, inode);
428 		if (error) {
429 			bool wake;
430 			/*
431 			 * Re-initializing the inode failed, and we are in deep
432 			 * trouble.  Try to re-add it to the reclaim list.
433 			 */
434 			rcu_read_lock();
435 			spin_lock(&ip->i_flags_lock);
436 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
437 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
438 			if (wake)
439 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
440 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
441 			trace_xfs_iget_reclaim_fail(ip);
442 			goto out_error;
443 		}
444 
445 		spin_lock(&pag->pag_ici_lock);
446 		spin_lock(&ip->i_flags_lock);
447 
448 		/*
449 		 * Clear the per-lifetime state in the inode as we are now
450 		 * effectively a new inode and need to return to the initial
451 		 * state before reuse occurs.
452 		 */
453 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
454 		ip->i_flags |= XFS_INEW;
455 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
456 		inode->i_state = I_NEW;
457 
458 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
459 		init_rwsem(&inode->i_rwsem);
460 
461 		spin_unlock(&ip->i_flags_lock);
462 		spin_unlock(&pag->pag_ici_lock);
463 	} else {
464 		/* If the VFS inode is being torn down, pause and try again. */
465 		if (!igrab(inode)) {
466 			trace_xfs_iget_skip(ip);
467 			error = -EAGAIN;
468 			goto out_error;
469 		}
470 
471 		/* We've got a live one. */
472 		spin_unlock(&ip->i_flags_lock);
473 		rcu_read_unlock();
474 		trace_xfs_iget_hit(ip);
475 	}
476 
477 	if (lock_flags != 0)
478 		xfs_ilock(ip, lock_flags);
479 
480 	if (!(flags & XFS_IGET_INCORE))
481 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
482 	XFS_STATS_INC(mp, xs_ig_found);
483 
484 	return 0;
485 
486 out_error:
487 	spin_unlock(&ip->i_flags_lock);
488 	rcu_read_unlock();
489 	return error;
490 }
491 
492 
493 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)494 xfs_iget_cache_miss(
495 	struct xfs_mount	*mp,
496 	struct xfs_perag	*pag,
497 	xfs_trans_t		*tp,
498 	xfs_ino_t		ino,
499 	struct xfs_inode	**ipp,
500 	int			flags,
501 	int			lock_flags)
502 {
503 	struct xfs_inode	*ip;
504 	int			error;
505 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
506 	int			iflags;
507 
508 	ip = xfs_inode_alloc(mp, ino);
509 	if (!ip)
510 		return -ENOMEM;
511 
512 	error = xfs_iread(mp, tp, ip, flags);
513 	if (error)
514 		goto out_destroy;
515 
516 	trace_xfs_iget_miss(ip);
517 
518 
519 	/*
520 	 * Check the inode free state is valid. This also detects lookup
521 	 * racing with unlinks.
522 	 */
523 	error = xfs_iget_check_free_state(ip, flags);
524 	if (error)
525 		goto out_destroy;
526 
527 	/*
528 	 * Preload the radix tree so we can insert safely under the
529 	 * write spinlock. Note that we cannot sleep inside the preload
530 	 * region. Since we can be called from transaction context, don't
531 	 * recurse into the file system.
532 	 */
533 	if (radix_tree_preload(GFP_NOFS)) {
534 		error = -EAGAIN;
535 		goto out_destroy;
536 	}
537 
538 	/*
539 	 * Because the inode hasn't been added to the radix-tree yet it can't
540 	 * be found by another thread, so we can do the non-sleeping lock here.
541 	 */
542 	if (lock_flags) {
543 		if (!xfs_ilock_nowait(ip, lock_flags))
544 			BUG();
545 	}
546 
547 	/*
548 	 * These values must be set before inserting the inode into the radix
549 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
550 	 * RCU locking mechanism) can find it and that lookup must see that this
551 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
552 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
553 	 * memory barrier that ensures this detection works correctly at lookup
554 	 * time.
555 	 */
556 	iflags = XFS_INEW;
557 	if (flags & XFS_IGET_DONTCACHE)
558 		iflags |= XFS_IDONTCACHE;
559 	ip->i_udquot = NULL;
560 	ip->i_gdquot = NULL;
561 	ip->i_pdquot = NULL;
562 	xfs_iflags_set(ip, iflags);
563 
564 	/* insert the new inode */
565 	spin_lock(&pag->pag_ici_lock);
566 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
567 	if (unlikely(error)) {
568 		WARN_ON(error != -EEXIST);
569 		XFS_STATS_INC(mp, xs_ig_dup);
570 		error = -EAGAIN;
571 		goto out_preload_end;
572 	}
573 	spin_unlock(&pag->pag_ici_lock);
574 	radix_tree_preload_end();
575 
576 	*ipp = ip;
577 	return 0;
578 
579 out_preload_end:
580 	spin_unlock(&pag->pag_ici_lock);
581 	radix_tree_preload_end();
582 	if (lock_flags)
583 		xfs_iunlock(ip, lock_flags);
584 out_destroy:
585 	__destroy_inode(VFS_I(ip));
586 	xfs_inode_free(ip);
587 	return error;
588 }
589 
590 /*
591  * Look up an inode by number in the given file system.
592  * The inode is looked up in the cache held in each AG.
593  * If the inode is found in the cache, initialise the vfs inode
594  * if necessary.
595  *
596  * If it is not in core, read it in from the file system's device,
597  * add it to the cache and initialise the vfs inode.
598  *
599  * The inode is locked according to the value of the lock_flags parameter.
600  * This flag parameter indicates how and if the inode's IO lock and inode lock
601  * should be taken.
602  *
603  * mp -- the mount point structure for the current file system.  It points
604  *       to the inode hash table.
605  * tp -- a pointer to the current transaction if there is one.  This is
606  *       simply passed through to the xfs_iread() call.
607  * ino -- the number of the inode desired.  This is the unique identifier
608  *        within the file system for the inode being requested.
609  * lock_flags -- flags indicating how to lock the inode.  See the comment
610  *		 for xfs_ilock() for a list of valid values.
611  */
612 int
xfs_iget(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp)613 xfs_iget(
614 	xfs_mount_t	*mp,
615 	xfs_trans_t	*tp,
616 	xfs_ino_t	ino,
617 	uint		flags,
618 	uint		lock_flags,
619 	xfs_inode_t	**ipp)
620 {
621 	xfs_inode_t	*ip;
622 	int		error;
623 	xfs_perag_t	*pag;
624 	xfs_agino_t	agino;
625 
626 	/*
627 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
628 	 * doesn't get freed while it's being referenced during a
629 	 * radix tree traversal here.  It assumes this function
630 	 * aqcuires only the ILOCK (and therefore it has no need to
631 	 * involve the IOLOCK in this synchronization).
632 	 */
633 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
634 
635 	/* reject inode numbers outside existing AGs */
636 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
637 		return -EINVAL;
638 
639 	XFS_STATS_INC(mp, xs_ig_attempts);
640 
641 	/* get the perag structure and ensure that it's inode capable */
642 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
643 	agino = XFS_INO_TO_AGINO(mp, ino);
644 
645 again:
646 	error = 0;
647 	rcu_read_lock();
648 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
649 
650 	if (ip) {
651 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
652 		if (error)
653 			goto out_error_or_again;
654 	} else {
655 		rcu_read_unlock();
656 		if (flags & XFS_IGET_INCORE) {
657 			error = -ENODATA;
658 			goto out_error_or_again;
659 		}
660 		XFS_STATS_INC(mp, xs_ig_missed);
661 
662 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
663 							flags, lock_flags);
664 		if (error)
665 			goto out_error_or_again;
666 	}
667 	xfs_perag_put(pag);
668 
669 	*ipp = ip;
670 
671 	/*
672 	 * If we have a real type for an on-disk inode, we can setup the inode
673 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
674 	 */
675 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
676 		xfs_setup_existing_inode(ip);
677 	return 0;
678 
679 out_error_or_again:
680 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
681 		delay(1);
682 		goto again;
683 	}
684 	xfs_perag_put(pag);
685 	return error;
686 }
687 
688 /*
689  * "Is this a cached inode that's also allocated?"
690  *
691  * Look up an inode by number in the given file system.  If the inode is
692  * in cache and isn't in purgatory, return 1 if the inode is allocated
693  * and 0 if it is not.  For all other cases (not in cache, being torn
694  * down, etc.), return a negative error code.
695  *
696  * The caller has to prevent inode allocation and freeing activity,
697  * presumably by locking the AGI buffer.   This is to ensure that an
698  * inode cannot transition from allocated to freed until the caller is
699  * ready to allow that.  If the inode is in an intermediate state (new,
700  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
701  * inode is not in the cache, -ENOENT will be returned.  The caller must
702  * deal with these scenarios appropriately.
703  *
704  * This is a specialized use case for the online scrubber; if you're
705  * reading this, you probably want xfs_iget.
706  */
707 int
xfs_icache_inode_is_allocated(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,bool * inuse)708 xfs_icache_inode_is_allocated(
709 	struct xfs_mount	*mp,
710 	struct xfs_trans	*tp,
711 	xfs_ino_t		ino,
712 	bool			*inuse)
713 {
714 	struct xfs_inode	*ip;
715 	int			error;
716 
717 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
718 	if (error)
719 		return error;
720 
721 	*inuse = !!(VFS_I(ip)->i_mode);
722 	IRELE(ip);
723 	return 0;
724 }
725 
726 /*
727  * The inode lookup is done in batches to keep the amount of lock traffic and
728  * radix tree lookups to a minimum. The batch size is a trade off between
729  * lookup reduction and stack usage. This is in the reclaim path, so we can't
730  * be too greedy.
731  */
732 #define XFS_LOOKUP_BATCH	32
733 
734 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip,int flags)735 xfs_inode_ag_walk_grab(
736 	struct xfs_inode	*ip,
737 	int			flags)
738 {
739 	struct inode		*inode = VFS_I(ip);
740 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
741 
742 	ASSERT(rcu_read_lock_held());
743 
744 	/*
745 	 * check for stale RCU freed inode
746 	 *
747 	 * If the inode has been reallocated, it doesn't matter if it's not in
748 	 * the AG we are walking - we are walking for writeback, so if it
749 	 * passes all the "valid inode" checks and is dirty, then we'll write
750 	 * it back anyway.  If it has been reallocated and still being
751 	 * initialised, the XFS_INEW check below will catch it.
752 	 */
753 	spin_lock(&ip->i_flags_lock);
754 	if (!ip->i_ino)
755 		goto out_unlock_noent;
756 
757 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
758 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
759 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
760 		goto out_unlock_noent;
761 	spin_unlock(&ip->i_flags_lock);
762 
763 	/* nothing to sync during shutdown */
764 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
765 		return -EFSCORRUPTED;
766 
767 	/* If we can't grab the inode, it must on it's way to reclaim. */
768 	if (!igrab(inode))
769 		return -ENOENT;
770 
771 	/* inode is valid */
772 	return 0;
773 
774 out_unlock_noent:
775 	spin_unlock(&ip->i_flags_lock);
776 	return -ENOENT;
777 }
778 
779 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag,int iter_flags)780 xfs_inode_ag_walk(
781 	struct xfs_mount	*mp,
782 	struct xfs_perag	*pag,
783 	int			(*execute)(struct xfs_inode *ip, int flags,
784 					   void *args),
785 	int			flags,
786 	void			*args,
787 	int			tag,
788 	int			iter_flags)
789 {
790 	uint32_t		first_index;
791 	int			last_error = 0;
792 	int			skipped;
793 	int			done;
794 	int			nr_found;
795 
796 restart:
797 	done = 0;
798 	skipped = 0;
799 	first_index = 0;
800 	nr_found = 0;
801 	do {
802 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
803 		int		error = 0;
804 		int		i;
805 
806 		rcu_read_lock();
807 
808 		if (tag == -1)
809 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
810 					(void **)batch, first_index,
811 					XFS_LOOKUP_BATCH);
812 		else
813 			nr_found = radix_tree_gang_lookup_tag(
814 					&pag->pag_ici_root,
815 					(void **) batch, first_index,
816 					XFS_LOOKUP_BATCH, tag);
817 
818 		if (!nr_found) {
819 			rcu_read_unlock();
820 			break;
821 		}
822 
823 		/*
824 		 * Grab the inodes before we drop the lock. if we found
825 		 * nothing, nr == 0 and the loop will be skipped.
826 		 */
827 		for (i = 0; i < nr_found; i++) {
828 			struct xfs_inode *ip = batch[i];
829 
830 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
831 				batch[i] = NULL;
832 
833 			/*
834 			 * Update the index for the next lookup. Catch
835 			 * overflows into the next AG range which can occur if
836 			 * we have inodes in the last block of the AG and we
837 			 * are currently pointing to the last inode.
838 			 *
839 			 * Because we may see inodes that are from the wrong AG
840 			 * due to RCU freeing and reallocation, only update the
841 			 * index if it lies in this AG. It was a race that lead
842 			 * us to see this inode, so another lookup from the
843 			 * same index will not find it again.
844 			 */
845 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
846 				continue;
847 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
848 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
849 				done = 1;
850 		}
851 
852 		/* unlock now we've grabbed the inodes. */
853 		rcu_read_unlock();
854 
855 		for (i = 0; i < nr_found; i++) {
856 			if (!batch[i])
857 				continue;
858 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
859 			    xfs_iflags_test(batch[i], XFS_INEW))
860 				xfs_inew_wait(batch[i]);
861 			error = execute(batch[i], flags, args);
862 			IRELE(batch[i]);
863 			if (error == -EAGAIN) {
864 				skipped++;
865 				continue;
866 			}
867 			if (error && last_error != -EFSCORRUPTED)
868 				last_error = error;
869 		}
870 
871 		/* bail out if the filesystem is corrupted.  */
872 		if (error == -EFSCORRUPTED)
873 			break;
874 
875 		cond_resched();
876 
877 	} while (nr_found && !done);
878 
879 	if (skipped) {
880 		delay(1);
881 		goto restart;
882 	}
883 	return last_error;
884 }
885 
886 /*
887  * Background scanning to trim post-EOF preallocated space. This is queued
888  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
889  */
890 void
xfs_queue_eofblocks(struct xfs_mount * mp)891 xfs_queue_eofblocks(
892 	struct xfs_mount *mp)
893 {
894 	rcu_read_lock();
895 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
896 		queue_delayed_work(mp->m_eofblocks_workqueue,
897 				   &mp->m_eofblocks_work,
898 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
899 	rcu_read_unlock();
900 }
901 
902 void
xfs_eofblocks_worker(struct work_struct * work)903 xfs_eofblocks_worker(
904 	struct work_struct *work)
905 {
906 	struct xfs_mount *mp = container_of(to_delayed_work(work),
907 				struct xfs_mount, m_eofblocks_work);
908 	xfs_icache_free_eofblocks(mp, NULL);
909 	xfs_queue_eofblocks(mp);
910 }
911 
912 /*
913  * Background scanning to trim preallocated CoW space. This is queued
914  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
915  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
916  */
917 STATIC void
xfs_queue_cowblocks(struct xfs_mount * mp)918 xfs_queue_cowblocks(
919 	struct xfs_mount *mp)
920 {
921 	rcu_read_lock();
922 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
923 		queue_delayed_work(mp->m_eofblocks_workqueue,
924 				   &mp->m_cowblocks_work,
925 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
926 	rcu_read_unlock();
927 }
928 
929 void
xfs_cowblocks_worker(struct work_struct * work)930 xfs_cowblocks_worker(
931 	struct work_struct *work)
932 {
933 	struct xfs_mount *mp = container_of(to_delayed_work(work),
934 				struct xfs_mount, m_cowblocks_work);
935 	xfs_icache_free_cowblocks(mp, NULL);
936 	xfs_queue_cowblocks(mp);
937 }
938 
939 int
xfs_inode_ag_iterator_flags(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int iter_flags)940 xfs_inode_ag_iterator_flags(
941 	struct xfs_mount	*mp,
942 	int			(*execute)(struct xfs_inode *ip, int flags,
943 					   void *args),
944 	int			flags,
945 	void			*args,
946 	int			iter_flags)
947 {
948 	struct xfs_perag	*pag;
949 	int			error = 0;
950 	int			last_error = 0;
951 	xfs_agnumber_t		ag;
952 
953 	ag = 0;
954 	while ((pag = xfs_perag_get(mp, ag))) {
955 		ag = pag->pag_agno + 1;
956 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
957 					  iter_flags);
958 		xfs_perag_put(pag);
959 		if (error) {
960 			last_error = error;
961 			if (error == -EFSCORRUPTED)
962 				break;
963 		}
964 	}
965 	return last_error;
966 }
967 
968 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args)969 xfs_inode_ag_iterator(
970 	struct xfs_mount	*mp,
971 	int			(*execute)(struct xfs_inode *ip, int flags,
972 					   void *args),
973 	int			flags,
974 	void			*args)
975 {
976 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
977 }
978 
979 int
xfs_inode_ag_iterator_tag(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag)980 xfs_inode_ag_iterator_tag(
981 	struct xfs_mount	*mp,
982 	int			(*execute)(struct xfs_inode *ip, int flags,
983 					   void *args),
984 	int			flags,
985 	void			*args,
986 	int			tag)
987 {
988 	struct xfs_perag	*pag;
989 	int			error = 0;
990 	int			last_error = 0;
991 	xfs_agnumber_t		ag;
992 
993 	ag = 0;
994 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
995 		ag = pag->pag_agno + 1;
996 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
997 					  0);
998 		xfs_perag_put(pag);
999 		if (error) {
1000 			last_error = error;
1001 			if (error == -EFSCORRUPTED)
1002 				break;
1003 		}
1004 	}
1005 	return last_error;
1006 }
1007 
1008 /*
1009  * Grab the inode for reclaim exclusively.
1010  * Return 0 if we grabbed it, non-zero otherwise.
1011  */
1012 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)1013 xfs_reclaim_inode_grab(
1014 	struct xfs_inode	*ip,
1015 	int			flags)
1016 {
1017 	ASSERT(rcu_read_lock_held());
1018 
1019 	/* quick check for stale RCU freed inode */
1020 	if (!ip->i_ino)
1021 		return 1;
1022 
1023 	/*
1024 	 * If we are asked for non-blocking operation, do unlocked checks to
1025 	 * see if the inode already is being flushed or in reclaim to avoid
1026 	 * lock traffic.
1027 	 */
1028 	if ((flags & SYNC_TRYLOCK) &&
1029 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1030 		return 1;
1031 
1032 	/*
1033 	 * The radix tree lock here protects a thread in xfs_iget from racing
1034 	 * with us starting reclaim on the inode.  Once we have the
1035 	 * XFS_IRECLAIM flag set it will not touch us.
1036 	 *
1037 	 * Due to RCU lookup, we may find inodes that have been freed and only
1038 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1039 	 * aren't candidates for reclaim at all, so we must check the
1040 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1041 	 */
1042 	spin_lock(&ip->i_flags_lock);
1043 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1044 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1045 		/* not a reclaim candidate. */
1046 		spin_unlock(&ip->i_flags_lock);
1047 		return 1;
1048 	}
1049 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1050 	spin_unlock(&ip->i_flags_lock);
1051 	return 0;
1052 }
1053 
1054 /*
1055  * Inodes in different states need to be treated differently. The following
1056  * table lists the inode states and the reclaim actions necessary:
1057  *
1058  *	inode state	     iflush ret		required action
1059  *      ---------------      ----------         ---------------
1060  *	bad			-		reclaim
1061  *	shutdown		EIO		unpin and reclaim
1062  *	clean, unpinned		0		reclaim
1063  *	stale, unpinned		0		reclaim
1064  *	clean, pinned(*)	0		requeue
1065  *	stale, pinned		EAGAIN		requeue
1066  *	dirty, async		-		requeue
1067  *	dirty, sync		0		reclaim
1068  *
1069  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1070  * handled anyway given the order of checks implemented.
1071  *
1072  * Also, because we get the flush lock first, we know that any inode that has
1073  * been flushed delwri has had the flush completed by the time we check that
1074  * the inode is clean.
1075  *
1076  * Note that because the inode is flushed delayed write by AIL pushing, the
1077  * flush lock may already be held here and waiting on it can result in very
1078  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1079  * the caller should push the AIL first before trying to reclaim inodes to
1080  * minimise the amount of time spent waiting.  For background relaim, we only
1081  * bother to reclaim clean inodes anyway.
1082  *
1083  * Hence the order of actions after gaining the locks should be:
1084  *	bad		=> reclaim
1085  *	shutdown	=> unpin and reclaim
1086  *	pinned, async	=> requeue
1087  *	pinned, sync	=> unpin
1088  *	stale		=> reclaim
1089  *	clean		=> reclaim
1090  *	dirty, async	=> requeue
1091  *	dirty, sync	=> flush, wait and reclaim
1092  */
1093 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)1094 xfs_reclaim_inode(
1095 	struct xfs_inode	*ip,
1096 	struct xfs_perag	*pag,
1097 	int			sync_mode)
1098 {
1099 	struct xfs_buf		*bp = NULL;
1100 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1101 	int			error;
1102 
1103 restart:
1104 	error = 0;
1105 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1106 	if (!xfs_iflock_nowait(ip)) {
1107 		if (!(sync_mode & SYNC_WAIT))
1108 			goto out;
1109 		xfs_iflock(ip);
1110 	}
1111 
1112 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1113 		xfs_iunpin_wait(ip);
1114 		/* xfs_iflush_abort() drops the flush lock */
1115 		xfs_iflush_abort(ip, false);
1116 		goto reclaim;
1117 	}
1118 	if (xfs_ipincount(ip)) {
1119 		if (!(sync_mode & SYNC_WAIT))
1120 			goto out_ifunlock;
1121 		xfs_iunpin_wait(ip);
1122 	}
1123 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1124 		xfs_ifunlock(ip);
1125 		goto reclaim;
1126 	}
1127 
1128 	/*
1129 	 * Never flush out dirty data during non-blocking reclaim, as it would
1130 	 * just contend with AIL pushing trying to do the same job.
1131 	 */
1132 	if (!(sync_mode & SYNC_WAIT))
1133 		goto out_ifunlock;
1134 
1135 	/*
1136 	 * Now we have an inode that needs flushing.
1137 	 *
1138 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1139 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1140 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1141 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1142 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1143 	 *
1144 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1145 	 * cache to mark them stale, if we hit this case we don't actually want
1146 	 * to do IO here - we want the inode marked stale so we can simply
1147 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1148 	 * inode, back off and try again.  Hopefully the next pass through will
1149 	 * see the stale flag set on the inode.
1150 	 */
1151 	error = xfs_iflush(ip, &bp);
1152 	if (error == -EAGAIN) {
1153 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1154 		/* backoff longer than in xfs_ifree_cluster */
1155 		delay(2);
1156 		goto restart;
1157 	}
1158 
1159 	if (!error) {
1160 		error = xfs_bwrite(bp);
1161 		xfs_buf_relse(bp);
1162 	}
1163 
1164 reclaim:
1165 	ASSERT(!xfs_isiflocked(ip));
1166 
1167 	/*
1168 	 * Because we use RCU freeing we need to ensure the inode always appears
1169 	 * to be reclaimed with an invalid inode number when in the free state.
1170 	 * We do this as early as possible under the ILOCK so that
1171 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1172 	 * detect races with us here. By doing this, we guarantee that once
1173 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1174 	 * it will see either a valid inode that will serialise correctly, or it
1175 	 * will see an invalid inode that it can skip.
1176 	 */
1177 	spin_lock(&ip->i_flags_lock);
1178 	ip->i_flags = XFS_IRECLAIM;
1179 	ip->i_ino = 0;
1180 	spin_unlock(&ip->i_flags_lock);
1181 
1182 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1183 
1184 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1185 	/*
1186 	 * Remove the inode from the per-AG radix tree.
1187 	 *
1188 	 * Because radix_tree_delete won't complain even if the item was never
1189 	 * added to the tree assert that it's been there before to catch
1190 	 * problems with the inode life time early on.
1191 	 */
1192 	spin_lock(&pag->pag_ici_lock);
1193 	if (!radix_tree_delete(&pag->pag_ici_root,
1194 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1195 		ASSERT(0);
1196 	xfs_perag_clear_reclaim_tag(pag);
1197 	spin_unlock(&pag->pag_ici_lock);
1198 
1199 	/*
1200 	 * Here we do an (almost) spurious inode lock in order to coordinate
1201 	 * with inode cache radix tree lookups.  This is because the lookup
1202 	 * can reference the inodes in the cache without taking references.
1203 	 *
1204 	 * We make that OK here by ensuring that we wait until the inode is
1205 	 * unlocked after the lookup before we go ahead and free it.
1206 	 */
1207 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1208 	xfs_qm_dqdetach(ip);
1209 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210 
1211 	__xfs_inode_free(ip);
1212 	return error;
1213 
1214 out_ifunlock:
1215 	xfs_ifunlock(ip);
1216 out:
1217 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1218 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1219 	/*
1220 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1221 	 * a short while. However, this just burns CPU time scanning the tree
1222 	 * waiting for IO to complete and the reclaim work never goes back to
1223 	 * the idle state. Instead, return 0 to let the next scheduled
1224 	 * background reclaim attempt to reclaim the inode again.
1225 	 */
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1231  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1232  * then a shut down during filesystem unmount reclaim walk leak all the
1233  * unreclaimed inodes.
1234  */
1235 STATIC int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)1236 xfs_reclaim_inodes_ag(
1237 	struct xfs_mount	*mp,
1238 	int			flags,
1239 	int			*nr_to_scan)
1240 {
1241 	struct xfs_perag	*pag;
1242 	int			error = 0;
1243 	int			last_error = 0;
1244 	xfs_agnumber_t		ag;
1245 	int			trylock = flags & SYNC_TRYLOCK;
1246 	int			skipped;
1247 
1248 restart:
1249 	ag = 0;
1250 	skipped = 0;
1251 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1252 		unsigned long	first_index = 0;
1253 		int		done = 0;
1254 		int		nr_found = 0;
1255 
1256 		ag = pag->pag_agno + 1;
1257 
1258 		if (trylock) {
1259 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1260 				skipped++;
1261 				xfs_perag_put(pag);
1262 				continue;
1263 			}
1264 			first_index = pag->pag_ici_reclaim_cursor;
1265 		} else
1266 			mutex_lock(&pag->pag_ici_reclaim_lock);
1267 
1268 		do {
1269 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1270 			int	i;
1271 
1272 			rcu_read_lock();
1273 			nr_found = radix_tree_gang_lookup_tag(
1274 					&pag->pag_ici_root,
1275 					(void **)batch, first_index,
1276 					XFS_LOOKUP_BATCH,
1277 					XFS_ICI_RECLAIM_TAG);
1278 			if (!nr_found) {
1279 				done = 1;
1280 				rcu_read_unlock();
1281 				break;
1282 			}
1283 
1284 			/*
1285 			 * Grab the inodes before we drop the lock. if we found
1286 			 * nothing, nr == 0 and the loop will be skipped.
1287 			 */
1288 			for (i = 0; i < nr_found; i++) {
1289 				struct xfs_inode *ip = batch[i];
1290 
1291 				if (done || xfs_reclaim_inode_grab(ip, flags))
1292 					batch[i] = NULL;
1293 
1294 				/*
1295 				 * Update the index for the next lookup. Catch
1296 				 * overflows into the next AG range which can
1297 				 * occur if we have inodes in the last block of
1298 				 * the AG and we are currently pointing to the
1299 				 * last inode.
1300 				 *
1301 				 * Because we may see inodes that are from the
1302 				 * wrong AG due to RCU freeing and
1303 				 * reallocation, only update the index if it
1304 				 * lies in this AG. It was a race that lead us
1305 				 * to see this inode, so another lookup from
1306 				 * the same index will not find it again.
1307 				 */
1308 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1309 								pag->pag_agno)
1310 					continue;
1311 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1312 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1313 					done = 1;
1314 			}
1315 
1316 			/* unlock now we've grabbed the inodes. */
1317 			rcu_read_unlock();
1318 
1319 			for (i = 0; i < nr_found; i++) {
1320 				if (!batch[i])
1321 					continue;
1322 				error = xfs_reclaim_inode(batch[i], pag, flags);
1323 				if (error && last_error != -EFSCORRUPTED)
1324 					last_error = error;
1325 			}
1326 
1327 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1328 
1329 			cond_resched();
1330 
1331 		} while (nr_found && !done && *nr_to_scan > 0);
1332 
1333 		if (trylock && !done)
1334 			pag->pag_ici_reclaim_cursor = first_index;
1335 		else
1336 			pag->pag_ici_reclaim_cursor = 0;
1337 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1338 		xfs_perag_put(pag);
1339 	}
1340 
1341 	/*
1342 	 * if we skipped any AG, and we still have scan count remaining, do
1343 	 * another pass this time using blocking reclaim semantics (i.e
1344 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1345 	 * ensure that when we get more reclaimers than AGs we block rather
1346 	 * than spin trying to execute reclaim.
1347 	 */
1348 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1349 		trylock = 0;
1350 		goto restart;
1351 	}
1352 	return last_error;
1353 }
1354 
1355 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1356 xfs_reclaim_inodes(
1357 	xfs_mount_t	*mp,
1358 	int		mode)
1359 {
1360 	int		nr_to_scan = INT_MAX;
1361 
1362 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1363 }
1364 
1365 /*
1366  * Scan a certain number of inodes for reclaim.
1367  *
1368  * When called we make sure that there is a background (fast) inode reclaim in
1369  * progress, while we will throttle the speed of reclaim via doing synchronous
1370  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1371  * them to be cleaned, which we hope will not be very long due to the
1372  * background walker having already kicked the IO off on those dirty inodes.
1373  */
1374 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,int nr_to_scan)1375 xfs_reclaim_inodes_nr(
1376 	struct xfs_mount	*mp,
1377 	int			nr_to_scan)
1378 {
1379 	/* kick background reclaimer and push the AIL */
1380 	xfs_reclaim_work_queue(mp);
1381 	xfs_ail_push_all(mp->m_ail);
1382 
1383 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1384 }
1385 
1386 /*
1387  * Return the number of reclaimable inodes in the filesystem for
1388  * the shrinker to determine how much to reclaim.
1389  */
1390 int
xfs_reclaim_inodes_count(struct xfs_mount * mp)1391 xfs_reclaim_inodes_count(
1392 	struct xfs_mount	*mp)
1393 {
1394 	struct xfs_perag	*pag;
1395 	xfs_agnumber_t		ag = 0;
1396 	int			reclaimable = 0;
1397 
1398 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1399 		ag = pag->pag_agno + 1;
1400 		reclaimable += pag->pag_ici_reclaimable;
1401 		xfs_perag_put(pag);
1402 	}
1403 	return reclaimable;
1404 }
1405 
1406 STATIC int
xfs_inode_match_id(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1407 xfs_inode_match_id(
1408 	struct xfs_inode	*ip,
1409 	struct xfs_eofblocks	*eofb)
1410 {
1411 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1412 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1413 		return 0;
1414 
1415 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1416 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1417 		return 0;
1418 
1419 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1420 	    xfs_get_projid(ip) != eofb->eof_prid)
1421 		return 0;
1422 
1423 	return 1;
1424 }
1425 
1426 /*
1427  * A union-based inode filtering algorithm. Process the inode if any of the
1428  * criteria match. This is for global/internal scans only.
1429  */
1430 STATIC int
xfs_inode_match_id_union(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1431 xfs_inode_match_id_union(
1432 	struct xfs_inode	*ip,
1433 	struct xfs_eofblocks	*eofb)
1434 {
1435 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1436 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1437 		return 1;
1438 
1439 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1440 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1441 		return 1;
1442 
1443 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1444 	    xfs_get_projid(ip) == eofb->eof_prid)
1445 		return 1;
1446 
1447 	return 0;
1448 }
1449 
1450 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,int flags,void * args)1451 xfs_inode_free_eofblocks(
1452 	struct xfs_inode	*ip,
1453 	int			flags,
1454 	void			*args)
1455 {
1456 	int ret = 0;
1457 	struct xfs_eofblocks *eofb = args;
1458 	int match;
1459 
1460 	if (!xfs_can_free_eofblocks(ip, false)) {
1461 		/* inode could be preallocated or append-only */
1462 		trace_xfs_inode_free_eofblocks_invalid(ip);
1463 		xfs_inode_clear_eofblocks_tag(ip);
1464 		return 0;
1465 	}
1466 
1467 	/*
1468 	 * If the mapping is dirty the operation can block and wait for some
1469 	 * time. Unless we are waiting, skip it.
1470 	 */
1471 	if (!(flags & SYNC_WAIT) &&
1472 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1473 		return 0;
1474 
1475 	if (eofb) {
1476 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1477 			match = xfs_inode_match_id_union(ip, eofb);
1478 		else
1479 			match = xfs_inode_match_id(ip, eofb);
1480 		if (!match)
1481 			return 0;
1482 
1483 		/* skip the inode if the file size is too small */
1484 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1485 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1486 			return 0;
1487 	}
1488 
1489 	/*
1490 	 * If the caller is waiting, return -EAGAIN to keep the background
1491 	 * scanner moving and revisit the inode in a subsequent pass.
1492 	 */
1493 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1494 		if (flags & SYNC_WAIT)
1495 			ret = -EAGAIN;
1496 		return ret;
1497 	}
1498 	ret = xfs_free_eofblocks(ip);
1499 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1500 
1501 	return ret;
1502 }
1503 
1504 static int
__xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb,int (* execute)(struct xfs_inode * ip,int flags,void * args),int tag)1505 __xfs_icache_free_eofblocks(
1506 	struct xfs_mount	*mp,
1507 	struct xfs_eofblocks	*eofb,
1508 	int			(*execute)(struct xfs_inode *ip, int flags,
1509 					   void *args),
1510 	int			tag)
1511 {
1512 	int flags = SYNC_TRYLOCK;
1513 
1514 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1515 		flags = SYNC_WAIT;
1516 
1517 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1518 					 eofb, tag);
1519 }
1520 
1521 int
xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1522 xfs_icache_free_eofblocks(
1523 	struct xfs_mount	*mp,
1524 	struct xfs_eofblocks	*eofb)
1525 {
1526 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1527 			XFS_ICI_EOFBLOCKS_TAG);
1528 }
1529 
1530 /*
1531  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1532  * multiple quotas, we don't know exactly which quota caused an allocation
1533  * failure. We make a best effort by including each quota under low free space
1534  * conditions (less than 1% free space) in the scan.
1535  */
1536 static int
__xfs_inode_free_quota_eofblocks(struct xfs_inode * ip,int (* execute)(struct xfs_mount * mp,struct xfs_eofblocks * eofb))1537 __xfs_inode_free_quota_eofblocks(
1538 	struct xfs_inode	*ip,
1539 	int			(*execute)(struct xfs_mount *mp,
1540 					   struct xfs_eofblocks	*eofb))
1541 {
1542 	int scan = 0;
1543 	struct xfs_eofblocks eofb = {0};
1544 	struct xfs_dquot *dq;
1545 
1546 	/*
1547 	 * Run a sync scan to increase effectiveness and use the union filter to
1548 	 * cover all applicable quotas in a single scan.
1549 	 */
1550 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1551 
1552 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1553 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1554 		if (dq && xfs_dquot_lowsp(dq)) {
1555 			eofb.eof_uid = VFS_I(ip)->i_uid;
1556 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1557 			scan = 1;
1558 		}
1559 	}
1560 
1561 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1562 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1563 		if (dq && xfs_dquot_lowsp(dq)) {
1564 			eofb.eof_gid = VFS_I(ip)->i_gid;
1565 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1566 			scan = 1;
1567 		}
1568 	}
1569 
1570 	if (scan)
1571 		execute(ip->i_mount, &eofb);
1572 
1573 	return scan;
1574 }
1575 
1576 int
xfs_inode_free_quota_eofblocks(struct xfs_inode * ip)1577 xfs_inode_free_quota_eofblocks(
1578 	struct xfs_inode *ip)
1579 {
1580 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1581 }
1582 
1583 static void
__xfs_inode_set_eofblocks_tag(xfs_inode_t * ip,void (* execute)(struct xfs_mount * mp),void (* set_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1584 __xfs_inode_set_eofblocks_tag(
1585 	xfs_inode_t	*ip,
1586 	void		(*execute)(struct xfs_mount *mp),
1587 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1588 				  int error, unsigned long caller_ip),
1589 	int		tag)
1590 {
1591 	struct xfs_mount *mp = ip->i_mount;
1592 	struct xfs_perag *pag;
1593 	int tagged;
1594 
1595 	/*
1596 	 * Don't bother locking the AG and looking up in the radix trees
1597 	 * if we already know that we have the tag set.
1598 	 */
1599 	if (ip->i_flags & XFS_IEOFBLOCKS)
1600 		return;
1601 	spin_lock(&ip->i_flags_lock);
1602 	ip->i_flags |= XFS_IEOFBLOCKS;
1603 	spin_unlock(&ip->i_flags_lock);
1604 
1605 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1606 	spin_lock(&pag->pag_ici_lock);
1607 
1608 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1609 	radix_tree_tag_set(&pag->pag_ici_root,
1610 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1611 	if (!tagged) {
1612 		/* propagate the eofblocks tag up into the perag radix tree */
1613 		spin_lock(&ip->i_mount->m_perag_lock);
1614 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1615 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1616 				   tag);
1617 		spin_unlock(&ip->i_mount->m_perag_lock);
1618 
1619 		/* kick off background trimming */
1620 		execute(ip->i_mount);
1621 
1622 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1623 	}
1624 
1625 	spin_unlock(&pag->pag_ici_lock);
1626 	xfs_perag_put(pag);
1627 }
1628 
1629 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1630 xfs_inode_set_eofblocks_tag(
1631 	xfs_inode_t	*ip)
1632 {
1633 	trace_xfs_inode_set_eofblocks_tag(ip);
1634 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1635 			trace_xfs_perag_set_eofblocks,
1636 			XFS_ICI_EOFBLOCKS_TAG);
1637 }
1638 
1639 static void
__xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip,void (* clear_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1640 __xfs_inode_clear_eofblocks_tag(
1641 	xfs_inode_t	*ip,
1642 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1643 				    int error, unsigned long caller_ip),
1644 	int		tag)
1645 {
1646 	struct xfs_mount *mp = ip->i_mount;
1647 	struct xfs_perag *pag;
1648 
1649 	spin_lock(&ip->i_flags_lock);
1650 	ip->i_flags &= ~XFS_IEOFBLOCKS;
1651 	spin_unlock(&ip->i_flags_lock);
1652 
1653 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1654 	spin_lock(&pag->pag_ici_lock);
1655 
1656 	radix_tree_tag_clear(&pag->pag_ici_root,
1657 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1658 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1659 		/* clear the eofblocks tag from the perag radix tree */
1660 		spin_lock(&ip->i_mount->m_perag_lock);
1661 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1662 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1663 				     tag);
1664 		spin_unlock(&ip->i_mount->m_perag_lock);
1665 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1666 	}
1667 
1668 	spin_unlock(&pag->pag_ici_lock);
1669 	xfs_perag_put(pag);
1670 }
1671 
1672 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1673 xfs_inode_clear_eofblocks_tag(
1674 	xfs_inode_t	*ip)
1675 {
1676 	trace_xfs_inode_clear_eofblocks_tag(ip);
1677 	return __xfs_inode_clear_eofblocks_tag(ip,
1678 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1679 }
1680 
1681 /*
1682  * Automatic CoW Reservation Freeing
1683  *
1684  * These functions automatically garbage collect leftover CoW reservations
1685  * that were made on behalf of a cowextsize hint when we start to run out
1686  * of quota or when the reservations sit around for too long.  If the file
1687  * has dirty pages or is undergoing writeback, its CoW reservations will
1688  * be retained.
1689  *
1690  * The actual garbage collection piggybacks off the same code that runs
1691  * the speculative EOF preallocation garbage collector.
1692  */
1693 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,int flags,void * args)1694 xfs_inode_free_cowblocks(
1695 	struct xfs_inode	*ip,
1696 	int			flags,
1697 	void			*args)
1698 {
1699 	int ret;
1700 	struct xfs_eofblocks *eofb = args;
1701 	int match;
1702 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1703 
1704 	/*
1705 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1706 	 * possible the inode was fully unshared since it was originally tagged.
1707 	 */
1708 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1709 		trace_xfs_inode_free_cowblocks_invalid(ip);
1710 		xfs_inode_clear_cowblocks_tag(ip);
1711 		return 0;
1712 	}
1713 
1714 	/*
1715 	 * If the mapping is dirty or under writeback we cannot touch the
1716 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1717 	 */
1718 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1719 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1720 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1721 	    atomic_read(&VFS_I(ip)->i_dio_count))
1722 		return 0;
1723 
1724 	if (eofb) {
1725 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1726 			match = xfs_inode_match_id_union(ip, eofb);
1727 		else
1728 			match = xfs_inode_match_id(ip, eofb);
1729 		if (!match)
1730 			return 0;
1731 
1732 		/* skip the inode if the file size is too small */
1733 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1734 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1735 			return 0;
1736 	}
1737 
1738 	/* Free the CoW blocks */
1739 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1740 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1741 
1742 	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1743 
1744 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1745 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1746 
1747 	return ret;
1748 }
1749 
1750 int
xfs_icache_free_cowblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1751 xfs_icache_free_cowblocks(
1752 	struct xfs_mount	*mp,
1753 	struct xfs_eofblocks	*eofb)
1754 {
1755 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1756 			XFS_ICI_COWBLOCKS_TAG);
1757 }
1758 
1759 int
xfs_inode_free_quota_cowblocks(struct xfs_inode * ip)1760 xfs_inode_free_quota_cowblocks(
1761 	struct xfs_inode *ip)
1762 {
1763 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1764 }
1765 
1766 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1767 xfs_inode_set_cowblocks_tag(
1768 	xfs_inode_t	*ip)
1769 {
1770 	trace_xfs_inode_set_cowblocks_tag(ip);
1771 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1772 			trace_xfs_perag_set_cowblocks,
1773 			XFS_ICI_COWBLOCKS_TAG);
1774 }
1775 
1776 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1777 xfs_inode_clear_cowblocks_tag(
1778 	xfs_inode_t	*ip)
1779 {
1780 	trace_xfs_inode_clear_cowblocks_tag(ip);
1781 	return __xfs_inode_clear_eofblocks_tag(ip,
1782 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1783 }
1784