• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	uint8_t		 	client,
438 	bool			permanent)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return -EIO;
449 
450 	XFS_STATS_INC(mp, xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return -ENOMEM;
457 
458 	*ticp = tic;
459 
460 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 					    : tic->t_unit_res);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	bool			regrant)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		regrant = false;
528 	}
529 
530 
531 	if (!regrant) {
532 		trace_xfs_log_done_nonperm(log, ticket);
533 
534 		/*
535 		 * Release ticket if not permanent reservation or a specific
536 		 * request has been made to release a permanent reservation.
537 		 */
538 		xlog_ungrant_log_space(log, ticket);
539 	} else {
540 		trace_xfs_log_done_perm(log, ticket);
541 
542 		xlog_regrant_reserve_log_space(log, ticket);
543 		/* If this ticket was a permanent reservation and we aren't
544 		 * trying to release it, reset the inited flags; so next time
545 		 * we write, a start record will be written out.
546 		 */
547 		ticket->t_flags |= XLOG_TIC_INITED;
548 	}
549 
550 	xfs_log_ticket_put(ticket);
551 	return lsn;
552 }
553 
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)561 xfs_log_notify(
562 	struct xfs_mount	*mp,
563 	struct xlog_in_core	*iclog,
564 	xfs_log_callback_t	*cb)
565 {
566 	int	abortflg;
567 
568 	spin_lock(&iclog->ic_callback_lock);
569 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 	if (!abortflg) {
571 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 		cb->cb_next = NULL;
574 		*(iclog->ic_callback_tail) = cb;
575 		iclog->ic_callback_tail = &(cb->cb_next);
576 	}
577 	spin_unlock(&iclog->ic_callback_lock);
578 	return abortflg;
579 }
580 
581 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)582 xfs_log_release_iclog(
583 	struct xfs_mount	*mp,
584 	struct xlog_in_core	*iclog)
585 {
586 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 		return -EIO;
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * Mount a log filesystem
596  *
597  * mp		- ubiquitous xfs mount point structure
598  * log_target	- buftarg of on-disk log device
599  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks	- Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)605 xfs_log_mount(
606 	xfs_mount_t	*mp,
607 	xfs_buftarg_t	*log_target,
608 	xfs_daddr_t	blk_offset,
609 	int		num_bblks)
610 {
611 	int		error = 0;
612 	int		min_logfsbs;
613 
614 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 		xfs_notice(mp, "Mounting V%d Filesystem",
616 			   XFS_SB_VERSION_NUM(&mp->m_sb));
617 	} else {
618 		xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 			   XFS_SB_VERSION_NUM(&mp->m_sb));
621 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 	}
623 
624 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 	if (IS_ERR(mp->m_log)) {
626 		error = PTR_ERR(mp->m_log);
627 		goto out;
628 	}
629 
630 	/*
631 	 * Validate the given log space and drop a critical message via syslog
632 	 * if the log size is too small that would lead to some unexpected
633 	 * situations in transaction log space reservation stage.
634 	 *
635 	 * Note: we can't just reject the mount if the validation fails.  This
636 	 * would mean that people would have to downgrade their kernel just to
637 	 * remedy the situation as there is no way to grow the log (short of
638 	 * black magic surgery with xfs_db).
639 	 *
640 	 * We can, however, reject mounts for CRC format filesystems, as the
641 	 * mkfs binary being used to make the filesystem should never create a
642 	 * filesystem with a log that is too small.
643 	 */
644 	min_logfsbs = xfs_log_calc_minimum_size(mp);
645 
646 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 		xfs_warn(mp,
648 		"Log size %d blocks too small, minimum size is %d blocks",
649 			 mp->m_sb.sb_logblocks, min_logfsbs);
650 		error = -EINVAL;
651 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too large, maximum size is %lld blocks",
654 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 		error = -EINVAL;
656 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 		xfs_warn(mp,
658 		"log size %lld bytes too large, maximum size is %lld bytes",
659 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 			 XFS_MAX_LOG_BYTES);
661 		error = -EINVAL;
662 	}
663 	if (error) {
664 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 			ASSERT(0);
667 			goto out_free_log;
668 		}
669 		xfs_crit(mp, "Log size out of supported range.");
670 		xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 	}
673 
674 	/*
675 	 * Initialize the AIL now we have a log.
676 	 */
677 	error = xfs_trans_ail_init(mp);
678 	if (error) {
679 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 		goto out_free_log;
681 	}
682 	mp->m_log->l_ailp = mp->m_ail;
683 
684 	/*
685 	 * skip log recovery on a norecovery mount.  pretend it all
686 	 * just worked.
687 	 */
688 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690 
691 		if (readonly)
692 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
693 
694 		error = xlog_recover(mp->m_log);
695 
696 		if (readonly)
697 			mp->m_flags |= XFS_MOUNT_RDONLY;
698 		if (error) {
699 			xfs_warn(mp, "log mount/recovery failed: error %d",
700 				error);
701 			xlog_recover_cancel(mp->m_log);
702 			goto out_destroy_ail;
703 		}
704 	}
705 
706 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 			       "log");
708 	if (error)
709 		goto out_destroy_ail;
710 
711 	/* Normal transactions can now occur */
712 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713 
714 	/*
715 	 * Now the log has been fully initialised and we know were our
716 	 * space grant counters are, we can initialise the permanent ticket
717 	 * needed for delayed logging to work.
718 	 */
719 	xlog_cil_init_post_recovery(mp->m_log);
720 
721 	return 0;
722 
723 out_destroy_ail:
724 	xfs_trans_ail_destroy(mp);
725 out_free_log:
726 	xlog_dealloc_log(mp->m_log);
727 out:
728 	return error;
729 }
730 
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
xfs_log_mount_finish(struct xfs_mount * mp)742 xfs_log_mount_finish(
743 	struct xfs_mount	*mp)
744 {
745 	int	error = 0;
746 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747 
748 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
749 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 		return 0;
751 	} else if (readonly) {
752 		/* Allow unlinked processing to proceed */
753 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
754 	}
755 
756 	/*
757 	 * During the second phase of log recovery, we need iget and
758 	 * iput to behave like they do for an active filesystem.
759 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
760 	 * of inodes before we're done replaying log items on those
761 	 * inodes.  Turn it off immediately after recovery finishes
762 	 * so that we don't leak the quota inodes if subsequent mount
763 	 * activities fail.
764 	 *
765 	 * We let all inodes involved in redo item processing end up on
766 	 * the LRU instead of being evicted immediately so that if we do
767 	 * something to an unlinked inode, the irele won't cause
768 	 * premature truncation and freeing of the inode, which results
769 	 * in log recovery failure.  We have to evict the unreferenced
770 	 * lru inodes after clearing MS_ACTIVE because we don't
771 	 * otherwise clean up the lru if there's a subsequent failure in
772 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
773 	 * else (e.g. quotacheck) references the inodes before the
774 	 * mount failure occurs.
775 	 */
776 	mp->m_super->s_flags |= MS_ACTIVE;
777 	error = xlog_recover_finish(mp->m_log);
778 	if (!error)
779 		xfs_log_work_queue(mp);
780 	mp->m_super->s_flags &= ~MS_ACTIVE;
781 	evict_inodes(mp->m_super);
782 
783 	if (readonly)
784 		mp->m_flags |= XFS_MOUNT_RDONLY;
785 
786 	return error;
787 }
788 
789 /*
790  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
791  * the log.
792  */
793 int
xfs_log_mount_cancel(struct xfs_mount * mp)794 xfs_log_mount_cancel(
795 	struct xfs_mount	*mp)
796 {
797 	int			error;
798 
799 	error = xlog_recover_cancel(mp->m_log);
800 	xfs_log_unmount(mp);
801 
802 	return error;
803 }
804 
805 /*
806  * Final log writes as part of unmount.
807  *
808  * Mark the filesystem clean as unmount happens.  Note that during relocation
809  * this routine needs to be executed as part of source-bag while the
810  * deallocation must not be done until source-end.
811  */
812 
813 /*
814  * Unmount record used to have a string "Unmount filesystem--" in the
815  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816  * We just write the magic number now since that particular field isn't
817  * currently architecture converted and "Unmount" is a bit foo.
818  * As far as I know, there weren't any dependencies on the old behaviour.
819  */
820 
821 static int
xfs_log_unmount_write(xfs_mount_t * mp)822 xfs_log_unmount_write(xfs_mount_t *mp)
823 {
824 	struct xlog	 *log = mp->m_log;
825 	xlog_in_core_t	 *iclog;
826 #ifdef DEBUG
827 	xlog_in_core_t	 *first_iclog;
828 #endif
829 	xlog_ticket_t	*tic = NULL;
830 	xfs_lsn_t	 lsn;
831 	int		 error;
832 
833 	/*
834 	 * Don't write out unmount record on norecovery mounts or ro devices.
835 	 * Or, if we are doing a forced umount (typically because of IO errors).
836 	 */
837 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
838 	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
839 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
840 		return 0;
841 	}
842 
843 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
844 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
845 
846 #ifdef DEBUG
847 	first_iclog = iclog = log->l_iclog;
848 	do {
849 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
850 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
851 			ASSERT(iclog->ic_offset == 0);
852 		}
853 		iclog = iclog->ic_next;
854 	} while (iclog != first_iclog);
855 #endif
856 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
857 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
858 		if (!error) {
859 			/* the data section must be 32 bit size aligned */
860 			struct {
861 			    uint16_t magic;
862 			    uint16_t pad1;
863 			    uint32_t pad2; /* may as well make it 64 bits */
864 			} magic = {
865 				.magic = XLOG_UNMOUNT_TYPE,
866 			};
867 			struct xfs_log_iovec reg = {
868 				.i_addr = &magic,
869 				.i_len = sizeof(magic),
870 				.i_type = XLOG_REG_TYPE_UNMOUNT,
871 			};
872 			struct xfs_log_vec vec = {
873 				.lv_niovecs = 1,
874 				.lv_iovecp = &reg,
875 			};
876 
877 			/* remove inited flag, and account for space used */
878 			tic->t_flags = 0;
879 			tic->t_curr_res -= sizeof(magic);
880 			error = xlog_write(log, &vec, tic, &lsn,
881 					   NULL, XLOG_UNMOUNT_TRANS);
882 			/*
883 			 * At this point, we're umounting anyway,
884 			 * so there's no point in transitioning log state
885 			 * to IOERROR. Just continue...
886 			 */
887 		}
888 
889 		if (error)
890 			xfs_alert(mp, "%s: unmount record failed", __func__);
891 
892 
893 		spin_lock(&log->l_icloglock);
894 		iclog = log->l_iclog;
895 		atomic_inc(&iclog->ic_refcnt);
896 		xlog_state_want_sync(log, iclog);
897 		spin_unlock(&log->l_icloglock);
898 		error = xlog_state_release_iclog(log, iclog);
899 
900 		spin_lock(&log->l_icloglock);
901 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
902 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
903 			if (!XLOG_FORCED_SHUTDOWN(log)) {
904 				xlog_wait(&iclog->ic_force_wait,
905 							&log->l_icloglock);
906 			} else {
907 				spin_unlock(&log->l_icloglock);
908 			}
909 		} else {
910 			spin_unlock(&log->l_icloglock);
911 		}
912 		if (tic) {
913 			trace_xfs_log_umount_write(log, tic);
914 			xlog_ungrant_log_space(log, tic);
915 			xfs_log_ticket_put(tic);
916 		}
917 	} else {
918 		/*
919 		 * We're already in forced_shutdown mode, couldn't
920 		 * even attempt to write out the unmount transaction.
921 		 *
922 		 * Go through the motions of sync'ing and releasing
923 		 * the iclog, even though no I/O will actually happen,
924 		 * we need to wait for other log I/Os that may already
925 		 * be in progress.  Do this as a separate section of
926 		 * code so we'll know if we ever get stuck here that
927 		 * we're in this odd situation of trying to unmount
928 		 * a file system that went into forced_shutdown as
929 		 * the result of an unmount..
930 		 */
931 		spin_lock(&log->l_icloglock);
932 		iclog = log->l_iclog;
933 		atomic_inc(&iclog->ic_refcnt);
934 
935 		xlog_state_want_sync(log, iclog);
936 		spin_unlock(&log->l_icloglock);
937 		error =  xlog_state_release_iclog(log, iclog);
938 
939 		spin_lock(&log->l_icloglock);
940 
941 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
942 			|| iclog->ic_state == XLOG_STATE_DIRTY
943 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
944 
945 				xlog_wait(&iclog->ic_force_wait,
946 							&log->l_icloglock);
947 		} else {
948 			spin_unlock(&log->l_icloglock);
949 		}
950 	}
951 
952 	return error;
953 }	/* xfs_log_unmount_write */
954 
955 /*
956  * Empty the log for unmount/freeze.
957  *
958  * To do this, we first need to shut down the background log work so it is not
959  * trying to cover the log as we clean up. We then need to unpin all objects in
960  * the log so we can then flush them out. Once they have completed their IO and
961  * run the callbacks removing themselves from the AIL, we can write the unmount
962  * record.
963  */
964 void
xfs_log_quiesce(struct xfs_mount * mp)965 xfs_log_quiesce(
966 	struct xfs_mount	*mp)
967 {
968 	cancel_delayed_work_sync(&mp->m_log->l_work);
969 	xfs_log_force(mp, XFS_LOG_SYNC);
970 
971 	/*
972 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
974 	 * xfs_buf_iowait() cannot be used because it was pushed with the
975 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976 	 * the IO to complete.
977 	 */
978 	xfs_ail_push_all_sync(mp->m_ail);
979 	xfs_wait_buftarg(mp->m_ddev_targp);
980 	xfs_buf_lock(mp->m_sb_bp);
981 	xfs_buf_unlock(mp->m_sb_bp);
982 
983 	xfs_log_unmount_write(mp);
984 }
985 
986 /*
987  * Shut down and release the AIL and Log.
988  *
989  * During unmount, we need to ensure we flush all the dirty metadata objects
990  * from the AIL so that the log is empty before we write the unmount record to
991  * the log. Once this is done, we can tear down the AIL and the log.
992  */
993 void
xfs_log_unmount(struct xfs_mount * mp)994 xfs_log_unmount(
995 	struct xfs_mount	*mp)
996 {
997 	xfs_log_quiesce(mp);
998 
999 	xfs_trans_ail_destroy(mp);
1000 
1001 	xfs_sysfs_del(&mp->m_log->l_kobj);
1002 
1003 	xlog_dealloc_log(mp->m_log);
1004 }
1005 
1006 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1007 xfs_log_item_init(
1008 	struct xfs_mount	*mp,
1009 	struct xfs_log_item	*item,
1010 	int			type,
1011 	const struct xfs_item_ops *ops)
1012 {
1013 	item->li_mountp = mp;
1014 	item->li_ailp = mp->m_ail;
1015 	item->li_type = type;
1016 	item->li_ops = ops;
1017 	item->li_lv = NULL;
1018 
1019 	INIT_LIST_HEAD(&item->li_ail);
1020 	INIT_LIST_HEAD(&item->li_cil);
1021 }
1022 
1023 /*
1024  * Wake up processes waiting for log space after we have moved the log tail.
1025  */
1026 void
xfs_log_space_wake(struct xfs_mount * mp)1027 xfs_log_space_wake(
1028 	struct xfs_mount	*mp)
1029 {
1030 	struct xlog		*log = mp->m_log;
1031 	int			free_bytes;
1032 
1033 	if (XLOG_FORCED_SHUTDOWN(log))
1034 		return;
1035 
1036 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1037 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1038 
1039 		spin_lock(&log->l_write_head.lock);
1040 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1041 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1042 		spin_unlock(&log->l_write_head.lock);
1043 	}
1044 
1045 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1046 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1047 
1048 		spin_lock(&log->l_reserve_head.lock);
1049 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1050 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1051 		spin_unlock(&log->l_reserve_head.lock);
1052 	}
1053 }
1054 
1055 /*
1056  * Determine if we have a transaction that has gone to disk that needs to be
1057  * covered. To begin the transition to the idle state firstly the log needs to
1058  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059  * we start attempting to cover the log.
1060  *
1061  * Only if we are then in a state where covering is needed, the caller is
1062  * informed that dummy transactions are required to move the log into the idle
1063  * state.
1064  *
1065  * If there are any items in the AIl or CIL, then we do not want to attempt to
1066  * cover the log as we may be in a situation where there isn't log space
1067  * available to run a dummy transaction and this can lead to deadlocks when the
1068  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1069  * there's no point in running a dummy transaction at this point because we
1070  * can't start trying to idle the log until both the CIL and AIL are empty.
1071  */
1072 static int
xfs_log_need_covered(xfs_mount_t * mp)1073 xfs_log_need_covered(xfs_mount_t *mp)
1074 {
1075 	struct xlog	*log = mp->m_log;
1076 	int		needed = 0;
1077 
1078 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1079 		return 0;
1080 
1081 	if (!xlog_cil_empty(log))
1082 		return 0;
1083 
1084 	spin_lock(&log->l_icloglock);
1085 	switch (log->l_covered_state) {
1086 	case XLOG_STATE_COVER_DONE:
1087 	case XLOG_STATE_COVER_DONE2:
1088 	case XLOG_STATE_COVER_IDLE:
1089 		break;
1090 	case XLOG_STATE_COVER_NEED:
1091 	case XLOG_STATE_COVER_NEED2:
1092 		if (xfs_ail_min_lsn(log->l_ailp))
1093 			break;
1094 		if (!xlog_iclogs_empty(log))
1095 			break;
1096 
1097 		needed = 1;
1098 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1099 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1100 		else
1101 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1102 		break;
1103 	default:
1104 		needed = 1;
1105 		break;
1106 	}
1107 	spin_unlock(&log->l_icloglock);
1108 	return needed;
1109 }
1110 
1111 /*
1112  * We may be holding the log iclog lock upon entering this routine.
1113  */
1114 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1115 xlog_assign_tail_lsn_locked(
1116 	struct xfs_mount	*mp)
1117 {
1118 	struct xlog		*log = mp->m_log;
1119 	struct xfs_log_item	*lip;
1120 	xfs_lsn_t		tail_lsn;
1121 
1122 	assert_spin_locked(&mp->m_ail->xa_lock);
1123 
1124 	/*
1125 	 * To make sure we always have a valid LSN for the log tail we keep
1126 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1127 	 * and use that when the AIL was empty.
1128 	 */
1129 	lip = xfs_ail_min(mp->m_ail);
1130 	if (lip)
1131 		tail_lsn = lip->li_lsn;
1132 	else
1133 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1134 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1135 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1136 	return tail_lsn;
1137 }
1138 
1139 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1140 xlog_assign_tail_lsn(
1141 	struct xfs_mount	*mp)
1142 {
1143 	xfs_lsn_t		tail_lsn;
1144 
1145 	spin_lock(&mp->m_ail->xa_lock);
1146 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1147 	spin_unlock(&mp->m_ail->xa_lock);
1148 
1149 	return tail_lsn;
1150 }
1151 
1152 /*
1153  * Return the space in the log between the tail and the head.  The head
1154  * is passed in the cycle/bytes formal parms.  In the special case where
1155  * the reserve head has wrapped passed the tail, this calculation is no
1156  * longer valid.  In this case, just return 0 which means there is no space
1157  * in the log.  This works for all places where this function is called
1158  * with the reserve head.  Of course, if the write head were to ever
1159  * wrap the tail, we should blow up.  Rather than catch this case here,
1160  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1161  *
1162  * This code also handles the case where the reservation head is behind
1163  * the tail.  The details of this case are described below, but the end
1164  * result is that we return the size of the log as the amount of space left.
1165  */
1166 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1167 xlog_space_left(
1168 	struct xlog	*log,
1169 	atomic64_t	*head)
1170 {
1171 	int		free_bytes;
1172 	int		tail_bytes;
1173 	int		tail_cycle;
1174 	int		head_cycle;
1175 	int		head_bytes;
1176 
1177 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1178 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1179 	tail_bytes = BBTOB(tail_bytes);
1180 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1181 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1182 	else if (tail_cycle + 1 < head_cycle)
1183 		return 0;
1184 	else if (tail_cycle < head_cycle) {
1185 		ASSERT(tail_cycle == (head_cycle - 1));
1186 		free_bytes = tail_bytes - head_bytes;
1187 	} else {
1188 		/*
1189 		 * The reservation head is behind the tail.
1190 		 * In this case we just want to return the size of the
1191 		 * log as the amount of space left.
1192 		 */
1193 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1194 		xfs_alert(log->l_mp,
1195 			  "  tail_cycle = %d, tail_bytes = %d",
1196 			  tail_cycle, tail_bytes);
1197 		xfs_alert(log->l_mp,
1198 			  "  GH   cycle = %d, GH   bytes = %d",
1199 			  head_cycle, head_bytes);
1200 		ASSERT(0);
1201 		free_bytes = log->l_logsize;
1202 	}
1203 	return free_bytes;
1204 }
1205 
1206 
1207 /*
1208  * Log function which is called when an io completes.
1209  *
1210  * The log manager needs its own routine, in order to control what
1211  * happens with the buffer after the write completes.
1212  */
1213 static void
xlog_iodone(xfs_buf_t * bp)1214 xlog_iodone(xfs_buf_t *bp)
1215 {
1216 	struct xlog_in_core	*iclog = bp->b_fspriv;
1217 	struct xlog		*l = iclog->ic_log;
1218 	int			aborted = 0;
1219 
1220 	/*
1221 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1222 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223 	 * CRC errors into log recovery.
1224 	 */
1225 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1226 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1227 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1228 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1229 
1230 		xfs_buf_ioerror_alert(bp, __func__);
1231 		xfs_buf_stale(bp);
1232 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1233 		/*
1234 		 * This flag will be propagated to the trans-committed
1235 		 * callback routines to let them know that the log-commit
1236 		 * didn't succeed.
1237 		 */
1238 		aborted = XFS_LI_ABORTED;
1239 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1240 		aborted = XFS_LI_ABORTED;
1241 	}
1242 
1243 	/* log I/O is always issued ASYNC */
1244 	ASSERT(bp->b_flags & XBF_ASYNC);
1245 	xlog_state_done_syncing(iclog, aborted);
1246 
1247 	/*
1248 	 * drop the buffer lock now that we are done. Nothing references
1249 	 * the buffer after this, so an unmount waiting on this lock can now
1250 	 * tear it down safely. As such, it is unsafe to reference the buffer
1251 	 * (bp) after the unlock as we could race with it being freed.
1252 	 */
1253 	xfs_buf_unlock(bp);
1254 }
1255 
1256 /*
1257  * Return size of each in-core log record buffer.
1258  *
1259  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1260  *
1261  * If the filesystem blocksize is too large, we may need to choose a
1262  * larger size since the directory code currently logs entire blocks.
1263  */
1264 
1265 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1266 xlog_get_iclog_buffer_size(
1267 	struct xfs_mount	*mp,
1268 	struct xlog		*log)
1269 {
1270 	int size;
1271 	int xhdrs;
1272 
1273 	if (mp->m_logbufs <= 0)
1274 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1275 	else
1276 		log->l_iclog_bufs = mp->m_logbufs;
1277 
1278 	/*
1279 	 * Buffer size passed in from mount system call.
1280 	 */
1281 	if (mp->m_logbsize > 0) {
1282 		size = log->l_iclog_size = mp->m_logbsize;
1283 		log->l_iclog_size_log = 0;
1284 		while (size != 1) {
1285 			log->l_iclog_size_log++;
1286 			size >>= 1;
1287 		}
1288 
1289 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1290 			/* # headers = size / 32k
1291 			 * one header holds cycles from 32k of data
1292 			 */
1293 
1294 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1295 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1296 				xhdrs++;
1297 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1298 			log->l_iclog_heads = xhdrs;
1299 		} else {
1300 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1301 			log->l_iclog_hsize = BBSIZE;
1302 			log->l_iclog_heads = 1;
1303 		}
1304 		goto done;
1305 	}
1306 
1307 	/* All machines use 32kB buffers by default. */
1308 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1309 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1310 
1311 	/* the default log size is 16k or 32k which is one header sector */
1312 	log->l_iclog_hsize = BBSIZE;
1313 	log->l_iclog_heads = 1;
1314 
1315 done:
1316 	/* are we being asked to make the sizes selected above visible? */
1317 	if (mp->m_logbufs == 0)
1318 		mp->m_logbufs = log->l_iclog_bufs;
1319 	if (mp->m_logbsize == 0)
1320 		mp->m_logbsize = log->l_iclog_size;
1321 }	/* xlog_get_iclog_buffer_size */
1322 
1323 
1324 void
xfs_log_work_queue(struct xfs_mount * mp)1325 xfs_log_work_queue(
1326 	struct xfs_mount        *mp)
1327 {
1328 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1329 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1330 }
1331 
1332 /*
1333  * Every sync period we need to unpin all items in the AIL and push them to
1334  * disk. If there is nothing dirty, then we might need to cover the log to
1335  * indicate that the filesystem is idle.
1336  */
1337 static void
xfs_log_worker(struct work_struct * work)1338 xfs_log_worker(
1339 	struct work_struct	*work)
1340 {
1341 	struct xlog		*log = container_of(to_delayed_work(work),
1342 						struct xlog, l_work);
1343 	struct xfs_mount	*mp = log->l_mp;
1344 
1345 	/* dgc: errors ignored - not fatal and nowhere to report them */
1346 	if (xfs_log_need_covered(mp)) {
1347 		/*
1348 		 * Dump a transaction into the log that contains no real change.
1349 		 * This is needed to stamp the current tail LSN into the log
1350 		 * during the covering operation.
1351 		 *
1352 		 * We cannot use an inode here for this - that will push dirty
1353 		 * state back up into the VFS and then periodic inode flushing
1354 		 * will prevent log covering from making progress. Hence we
1355 		 * synchronously log the superblock instead to ensure the
1356 		 * superblock is immediately unpinned and can be written back.
1357 		 */
1358 		xfs_sync_sb(mp, true);
1359 	} else
1360 		xfs_log_force(mp, 0);
1361 
1362 	/* start pushing all the metadata that is currently dirty */
1363 	xfs_ail_push_all(mp->m_ail);
1364 
1365 	/* queue us up again */
1366 	xfs_log_work_queue(mp);
1367 }
1368 
1369 /*
1370  * This routine initializes some of the log structure for a given mount point.
1371  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1372  * some other stuff may be filled in too.
1373  */
1374 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1375 xlog_alloc_log(
1376 	struct xfs_mount	*mp,
1377 	struct xfs_buftarg	*log_target,
1378 	xfs_daddr_t		blk_offset,
1379 	int			num_bblks)
1380 {
1381 	struct xlog		*log;
1382 	xlog_rec_header_t	*head;
1383 	xlog_in_core_t		**iclogp;
1384 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1385 	xfs_buf_t		*bp;
1386 	int			i;
1387 	int			error = -ENOMEM;
1388 	uint			log2_size = 0;
1389 
1390 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1391 	if (!log) {
1392 		xfs_warn(mp, "Log allocation failed: No memory!");
1393 		goto out;
1394 	}
1395 
1396 	log->l_mp	   = mp;
1397 	log->l_targ	   = log_target;
1398 	log->l_logsize     = BBTOB(num_bblks);
1399 	log->l_logBBstart  = blk_offset;
1400 	log->l_logBBsize   = num_bblks;
1401 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1402 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1403 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1404 
1405 	log->l_prev_block  = -1;
1406 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1407 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1408 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1409 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1410 
1411 	xlog_grant_head_init(&log->l_reserve_head);
1412 	xlog_grant_head_init(&log->l_write_head);
1413 
1414 	error = -EFSCORRUPTED;
1415 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1416 	        log2_size = mp->m_sb.sb_logsectlog;
1417 		if (log2_size < BBSHIFT) {
1418 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1419 				log2_size, BBSHIFT);
1420 			goto out_free_log;
1421 		}
1422 
1423 	        log2_size -= BBSHIFT;
1424 		if (log2_size > mp->m_sectbb_log) {
1425 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1426 				log2_size, mp->m_sectbb_log);
1427 			goto out_free_log;
1428 		}
1429 
1430 		/* for larger sector sizes, must have v2 or external log */
1431 		if (log2_size && log->l_logBBstart > 0 &&
1432 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1433 			xfs_warn(mp,
1434 		"log sector size (0x%x) invalid for configuration.",
1435 				log2_size);
1436 			goto out_free_log;
1437 		}
1438 	}
1439 	log->l_sectBBsize = 1 << log2_size;
1440 
1441 	xlog_get_iclog_buffer_size(mp, log);
1442 
1443 	/*
1444 	 * Use a NULL block for the extra log buffer used during splits so that
1445 	 * it will trigger errors if we ever try to do IO on it without first
1446 	 * having set it up properly.
1447 	 */
1448 	error = -ENOMEM;
1449 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1450 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1451 	if (!bp)
1452 		goto out_free_log;
1453 
1454 	/*
1455 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1456 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1457 	 * when appropriately.
1458 	 */
1459 	ASSERT(xfs_buf_islocked(bp));
1460 	xfs_buf_unlock(bp);
1461 
1462 	/* use high priority wq for log I/O completion */
1463 	bp->b_ioend_wq = mp->m_log_workqueue;
1464 	bp->b_iodone = xlog_iodone;
1465 	log->l_xbuf = bp;
1466 
1467 	spin_lock_init(&log->l_icloglock);
1468 	init_waitqueue_head(&log->l_flush_wait);
1469 
1470 	iclogp = &log->l_iclog;
1471 	/*
1472 	 * The amount of memory to allocate for the iclog structure is
1473 	 * rather funky due to the way the structure is defined.  It is
1474 	 * done this way so that we can use different sizes for machines
1475 	 * with different amounts of memory.  See the definition of
1476 	 * xlog_in_core_t in xfs_log_priv.h for details.
1477 	 */
1478 	ASSERT(log->l_iclog_size >= 4096);
1479 	for (i=0; i < log->l_iclog_bufs; i++) {
1480 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1481 		if (!*iclogp)
1482 			goto out_free_iclog;
1483 
1484 		iclog = *iclogp;
1485 		iclog->ic_prev = prev_iclog;
1486 		prev_iclog = iclog;
1487 
1488 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1489 					  BTOBB(log->l_iclog_size),
1490 					  XBF_NO_IOACCT);
1491 		if (!bp)
1492 			goto out_free_iclog;
1493 
1494 		ASSERT(xfs_buf_islocked(bp));
1495 		xfs_buf_unlock(bp);
1496 
1497 		/* use high priority wq for log I/O completion */
1498 		bp->b_ioend_wq = mp->m_log_workqueue;
1499 		bp->b_iodone = xlog_iodone;
1500 		iclog->ic_bp = bp;
1501 		iclog->ic_data = bp->b_addr;
1502 #ifdef DEBUG
1503 		log->l_iclog_bak[i] = &iclog->ic_header;
1504 #endif
1505 		head = &iclog->ic_header;
1506 		memset(head, 0, sizeof(xlog_rec_header_t));
1507 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1508 		head->h_version = cpu_to_be32(
1509 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1510 		head->h_size = cpu_to_be32(log->l_iclog_size);
1511 		/* new fields */
1512 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1513 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1514 
1515 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1516 		iclog->ic_state = XLOG_STATE_ACTIVE;
1517 		iclog->ic_log = log;
1518 		atomic_set(&iclog->ic_refcnt, 0);
1519 		spin_lock_init(&iclog->ic_callback_lock);
1520 		iclog->ic_callback_tail = &(iclog->ic_callback);
1521 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1522 
1523 		init_waitqueue_head(&iclog->ic_force_wait);
1524 		init_waitqueue_head(&iclog->ic_write_wait);
1525 
1526 		iclogp = &iclog->ic_next;
1527 	}
1528 	*iclogp = log->l_iclog;			/* complete ring */
1529 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1530 
1531 	error = xlog_cil_init(log);
1532 	if (error)
1533 		goto out_free_iclog;
1534 	return log;
1535 
1536 out_free_iclog:
1537 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1538 		prev_iclog = iclog->ic_next;
1539 		if (iclog->ic_bp)
1540 			xfs_buf_free(iclog->ic_bp);
1541 		kmem_free(iclog);
1542 		if (prev_iclog == log->l_iclog)
1543 			break;
1544 	}
1545 	spinlock_destroy(&log->l_icloglock);
1546 	xfs_buf_free(log->l_xbuf);
1547 out_free_log:
1548 	kmem_free(log);
1549 out:
1550 	return ERR_PTR(error);
1551 }	/* xlog_alloc_log */
1552 
1553 
1554 /*
1555  * Write out the commit record of a transaction associated with the given
1556  * ticket.  Return the lsn of the commit record.
1557  */
1558 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1559 xlog_commit_record(
1560 	struct xlog		*log,
1561 	struct xlog_ticket	*ticket,
1562 	struct xlog_in_core	**iclog,
1563 	xfs_lsn_t		*commitlsnp)
1564 {
1565 	struct xfs_mount *mp = log->l_mp;
1566 	int	error;
1567 	struct xfs_log_iovec reg = {
1568 		.i_addr = NULL,
1569 		.i_len = 0,
1570 		.i_type = XLOG_REG_TYPE_COMMIT,
1571 	};
1572 	struct xfs_log_vec vec = {
1573 		.lv_niovecs = 1,
1574 		.lv_iovecp = &reg,
1575 	};
1576 
1577 	ASSERT_ALWAYS(iclog);
1578 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1579 					XLOG_COMMIT_TRANS);
1580 	if (error)
1581 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1582 	return error;
1583 }
1584 
1585 /*
1586  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1587  * log space.  This code pushes on the lsn which would supposedly free up
1588  * the 25% which we want to leave free.  We may need to adopt a policy which
1589  * pushes on an lsn which is further along in the log once we reach the high
1590  * water mark.  In this manner, we would be creating a low water mark.
1591  */
1592 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1593 xlog_grant_push_ail(
1594 	struct xlog	*log,
1595 	int		need_bytes)
1596 {
1597 	xfs_lsn_t	threshold_lsn = 0;
1598 	xfs_lsn_t	last_sync_lsn;
1599 	int		free_blocks;
1600 	int		free_bytes;
1601 	int		threshold_block;
1602 	int		threshold_cycle;
1603 	int		free_threshold;
1604 
1605 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1606 
1607 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1608 	free_blocks = BTOBBT(free_bytes);
1609 
1610 	/*
1611 	 * Set the threshold for the minimum number of free blocks in the
1612 	 * log to the maximum of what the caller needs, one quarter of the
1613 	 * log, and 256 blocks.
1614 	 */
1615 	free_threshold = BTOBB(need_bytes);
1616 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1617 	free_threshold = MAX(free_threshold, 256);
1618 	if (free_blocks >= free_threshold)
1619 		return;
1620 
1621 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1622 						&threshold_block);
1623 	threshold_block += free_threshold;
1624 	if (threshold_block >= log->l_logBBsize) {
1625 		threshold_block -= log->l_logBBsize;
1626 		threshold_cycle += 1;
1627 	}
1628 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1629 					threshold_block);
1630 	/*
1631 	 * Don't pass in an lsn greater than the lsn of the last
1632 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1633 	 * so that it doesn't change between the compare and the set.
1634 	 */
1635 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1636 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1637 		threshold_lsn = last_sync_lsn;
1638 
1639 	/*
1640 	 * Get the transaction layer to kick the dirty buffers out to
1641 	 * disk asynchronously. No point in trying to do this if
1642 	 * the filesystem is shutting down.
1643 	 */
1644 	if (!XLOG_FORCED_SHUTDOWN(log))
1645 		xfs_ail_push(log->l_ailp, threshold_lsn);
1646 }
1647 
1648 /*
1649  * Stamp cycle number in every block
1650  */
1651 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1652 xlog_pack_data(
1653 	struct xlog		*log,
1654 	struct xlog_in_core	*iclog,
1655 	int			roundoff)
1656 {
1657 	int			i, j, k;
1658 	int			size = iclog->ic_offset + roundoff;
1659 	__be32			cycle_lsn;
1660 	char			*dp;
1661 
1662 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1663 
1664 	dp = iclog->ic_datap;
1665 	for (i = 0; i < BTOBB(size); i++) {
1666 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1667 			break;
1668 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1669 		*(__be32 *)dp = cycle_lsn;
1670 		dp += BBSIZE;
1671 	}
1672 
1673 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1674 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1675 
1676 		for ( ; i < BTOBB(size); i++) {
1677 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1678 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1680 			*(__be32 *)dp = cycle_lsn;
1681 			dp += BBSIZE;
1682 		}
1683 
1684 		for (i = 1; i < log->l_iclog_heads; i++)
1685 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1686 	}
1687 }
1688 
1689 /*
1690  * Calculate the checksum for a log buffer.
1691  *
1692  * This is a little more complicated than it should be because the various
1693  * headers and the actual data are non-contiguous.
1694  */
1695 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1696 xlog_cksum(
1697 	struct xlog		*log,
1698 	struct xlog_rec_header	*rhead,
1699 	char			*dp,
1700 	int			size)
1701 {
1702 	uint32_t		crc;
1703 
1704 	/* first generate the crc for the record header ... */
1705 	crc = xfs_start_cksum_update((char *)rhead,
1706 			      sizeof(struct xlog_rec_header),
1707 			      offsetof(struct xlog_rec_header, h_crc));
1708 
1709 	/* ... then for additional cycle data for v2 logs ... */
1710 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1711 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1712 		int		i;
1713 		int		xheads;
1714 
1715 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1716 		if (size % XLOG_HEADER_CYCLE_SIZE)
1717 			xheads++;
1718 
1719 		for (i = 1; i < xheads; i++) {
1720 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1721 				     sizeof(struct xlog_rec_ext_header));
1722 		}
1723 	}
1724 
1725 	/* ... and finally for the payload */
1726 	crc = crc32c(crc, dp, size);
1727 
1728 	return xfs_end_cksum(crc);
1729 }
1730 
1731 /*
1732  * The bdstrat callback function for log bufs. This gives us a central
1733  * place to trap bufs in case we get hit by a log I/O error and need to
1734  * shutdown. Actually, in practice, even when we didn't get a log error,
1735  * we transition the iclogs to IOERROR state *after* flushing all existing
1736  * iclogs to disk. This is because we don't want anymore new transactions to be
1737  * started or completed afterwards.
1738  *
1739  * We lock the iclogbufs here so that we can serialise against IO completion
1740  * during unmount. We might be processing a shutdown triggered during unmount,
1741  * and that can occur asynchronously to the unmount thread, and hence we need to
1742  * ensure that completes before tearing down the iclogbufs. Hence we need to
1743  * hold the buffer lock across the log IO to acheive that.
1744  */
1745 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1746 xlog_bdstrat(
1747 	struct xfs_buf		*bp)
1748 {
1749 	struct xlog_in_core	*iclog = bp->b_fspriv;
1750 
1751 	xfs_buf_lock(bp);
1752 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1753 		xfs_buf_ioerror(bp, -EIO);
1754 		xfs_buf_stale(bp);
1755 		xfs_buf_ioend(bp);
1756 		/*
1757 		 * It would seem logical to return EIO here, but we rely on
1758 		 * the log state machine to propagate I/O errors instead of
1759 		 * doing it here. Similarly, IO completion will unlock the
1760 		 * buffer, so we don't do it here.
1761 		 */
1762 		return 0;
1763 	}
1764 
1765 	xfs_buf_submit(bp);
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771  * fashion.  Previously, we should have moved the current iclog
1772  * ptr in the log to point to the next available iclog.  This allows further
1773  * write to continue while this code syncs out an iclog ready to go.
1774  * Before an in-core log can be written out, the data section must be scanned
1775  * to save away the 1st word of each BBSIZE block into the header.  We replace
1776  * it with the current cycle count.  Each BBSIZE block is tagged with the
1777  * cycle count because there in an implicit assumption that drives will
1778  * guarantee that entire 512 byte blocks get written at once.  In other words,
1779  * we can't have part of a 512 byte block written and part not written.  By
1780  * tagging each block, we will know which blocks are valid when recovering
1781  * after an unclean shutdown.
1782  *
1783  * This routine is single threaded on the iclog.  No other thread can be in
1784  * this routine with the same iclog.  Changing contents of iclog can there-
1785  * fore be done without grabbing the state machine lock.  Updating the global
1786  * log will require grabbing the lock though.
1787  *
1788  * The entire log manager uses a logical block numbering scheme.  Only
1789  * log_sync (and then only bwrite()) know about the fact that the log may
1790  * not start with block zero on a given device.  The log block start offset
1791  * is added immediately before calling bwrite().
1792  */
1793 
1794 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1795 xlog_sync(
1796 	struct xlog		*log,
1797 	struct xlog_in_core	*iclog)
1798 {
1799 	xfs_buf_t	*bp;
1800 	int		i;
1801 	uint		count;		/* byte count of bwrite */
1802 	uint		count_init;	/* initial count before roundup */
1803 	int		roundoff;       /* roundoff to BB or stripe */
1804 	int		split = 0;	/* split write into two regions */
1805 	int		error;
1806 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1807 	int		size;
1808 
1809 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1810 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1811 
1812 	/* Add for LR header */
1813 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1814 
1815 	/* Round out the log write size */
1816 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1817 		/* we have a v2 stripe unit to use */
1818 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1819 	} else {
1820 		count = BBTOB(BTOBB(count_init));
1821 	}
1822 	roundoff = count - count_init;
1823 	ASSERT(roundoff >= 0);
1824 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1825                 roundoff < log->l_mp->m_sb.sb_logsunit)
1826 		||
1827 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1828 		 roundoff < BBTOB(1)));
1829 
1830 	/* move grant heads by roundoff in sync */
1831 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1832 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1833 
1834 	/* put cycle number in every block */
1835 	xlog_pack_data(log, iclog, roundoff);
1836 
1837 	/* real byte length */
1838 	size = iclog->ic_offset;
1839 	if (v2)
1840 		size += roundoff;
1841 	iclog->ic_header.h_len = cpu_to_be32(size);
1842 
1843 	bp = iclog->ic_bp;
1844 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1845 
1846 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1847 
1848 	/* Do we need to split this write into 2 parts? */
1849 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1850 		char		*dptr;
1851 
1852 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1853 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1854 		iclog->ic_bwritecnt = 2;
1855 
1856 		/*
1857 		 * Bump the cycle numbers at the start of each block in the
1858 		 * part of the iclog that ends up in the buffer that gets
1859 		 * written to the start of the log.
1860 		 *
1861 		 * Watch out for the header magic number case, though.
1862 		 */
1863 		dptr = (char *)&iclog->ic_header + count;
1864 		for (i = 0; i < split; i += BBSIZE) {
1865 			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1866 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1867 				cycle++;
1868 			*(__be32 *)dptr = cpu_to_be32(cycle);
1869 
1870 			dptr += BBSIZE;
1871 		}
1872 	} else {
1873 		iclog->ic_bwritecnt = 1;
1874 	}
1875 
1876 	/* calculcate the checksum */
1877 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1878 					    iclog->ic_datap, size);
1879 	/*
1880 	 * Intentionally corrupt the log record CRC based on the error injection
1881 	 * frequency, if defined. This facilitates testing log recovery in the
1882 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1883 	 * write on I/O completion and shutdown the fs. The subsequent mount
1884 	 * detects the bad CRC and attempts to recover.
1885 	 */
1886 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1887 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1888 		iclog->ic_state |= XLOG_STATE_IOABORT;
1889 		xfs_warn(log->l_mp,
1890 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1891 			 be64_to_cpu(iclog->ic_header.h_lsn));
1892 	}
1893 
1894 	bp->b_io_length = BTOBB(count);
1895 	bp->b_fspriv = iclog;
1896 	bp->b_flags &= ~XBF_FLUSH;
1897 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1898 
1899 	/*
1900 	 * Flush the data device before flushing the log to make sure all meta
1901 	 * data written back from the AIL actually made it to disk before
1902 	 * stamping the new log tail LSN into the log buffer.  For an external
1903 	 * log we need to issue the flush explicitly, and unfortunately
1904 	 * synchronously here; for an internal log we can simply use the block
1905 	 * layer state machine for preflushes.
1906 	 */
1907 	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1908 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1909 	else
1910 		bp->b_flags |= XBF_FLUSH;
1911 
1912 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1913 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1914 
1915 	xlog_verify_iclog(log, iclog, count, true);
1916 
1917 	/* account for log which doesn't start at block #0 */
1918 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919 
1920 	/*
1921 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1922 	 * is shutting down.
1923 	 */
1924 	error = xlog_bdstrat(bp);
1925 	if (error) {
1926 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1927 		return error;
1928 	}
1929 	if (split) {
1930 		bp = iclog->ic_log->l_xbuf;
1931 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1932 		xfs_buf_associate_memory(bp,
1933 				(char *)&iclog->ic_header + count, split);
1934 		bp->b_fspriv = iclog;
1935 		bp->b_flags &= ~XBF_FLUSH;
1936 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1937 
1938 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1939 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1940 
1941 		/* account for internal log which doesn't start at block #0 */
1942 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1943 		error = xlog_bdstrat(bp);
1944 		if (error) {
1945 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1946 			return error;
1947 		}
1948 	}
1949 	return 0;
1950 }	/* xlog_sync */
1951 
1952 /*
1953  * Deallocate a log structure
1954  */
1955 STATIC void
xlog_dealloc_log(struct xlog * log)1956 xlog_dealloc_log(
1957 	struct xlog	*log)
1958 {
1959 	xlog_in_core_t	*iclog, *next_iclog;
1960 	int		i;
1961 
1962 	xlog_cil_destroy(log);
1963 
1964 	/*
1965 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1966 	 * is done before we tear down these buffers.
1967 	 */
1968 	iclog = log->l_iclog;
1969 	for (i = 0; i < log->l_iclog_bufs; i++) {
1970 		xfs_buf_lock(iclog->ic_bp);
1971 		xfs_buf_unlock(iclog->ic_bp);
1972 		iclog = iclog->ic_next;
1973 	}
1974 
1975 	/*
1976 	 * Always need to ensure that the extra buffer does not point to memory
1977 	 * owned by another log buffer before we free it. Also, cycle the lock
1978 	 * first to ensure we've completed IO on it.
1979 	 */
1980 	xfs_buf_lock(log->l_xbuf);
1981 	xfs_buf_unlock(log->l_xbuf);
1982 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1983 	xfs_buf_free(log->l_xbuf);
1984 
1985 	iclog = log->l_iclog;
1986 	for (i = 0; i < log->l_iclog_bufs; i++) {
1987 		xfs_buf_free(iclog->ic_bp);
1988 		next_iclog = iclog->ic_next;
1989 		kmem_free(iclog);
1990 		iclog = next_iclog;
1991 	}
1992 	spinlock_destroy(&log->l_icloglock);
1993 
1994 	log->l_mp->m_log = NULL;
1995 	kmem_free(log);
1996 }	/* xlog_dealloc_log */
1997 
1998 /*
1999  * Update counters atomically now that memcpy is done.
2000  */
2001 /* ARGSUSED */
2002 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2003 xlog_state_finish_copy(
2004 	struct xlog		*log,
2005 	struct xlog_in_core	*iclog,
2006 	int			record_cnt,
2007 	int			copy_bytes)
2008 {
2009 	spin_lock(&log->l_icloglock);
2010 
2011 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2012 	iclog->ic_offset += copy_bytes;
2013 
2014 	spin_unlock(&log->l_icloglock);
2015 }	/* xlog_state_finish_copy */
2016 
2017 
2018 
2019 
2020 /*
2021  * print out info relating to regions written which consume
2022  * the reservation
2023  */
2024 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2025 xlog_print_tic_res(
2026 	struct xfs_mount	*mp,
2027 	struct xlog_ticket	*ticket)
2028 {
2029 	uint i;
2030 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2031 
2032 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2033 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2034 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2035 	    REG_TYPE_STR(BFORMAT, "bformat"),
2036 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2037 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2038 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2039 	    REG_TYPE_STR(IFORMAT, "iformat"),
2040 	    REG_TYPE_STR(ICORE, "icore"),
2041 	    REG_TYPE_STR(IEXT, "iext"),
2042 	    REG_TYPE_STR(IBROOT, "ibroot"),
2043 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2044 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2045 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2046 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2047 	    REG_TYPE_STR(QFORMAT, "qformat"),
2048 	    REG_TYPE_STR(DQUOT, "dquot"),
2049 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2050 	    REG_TYPE_STR(LRHEADER, "LR header"),
2051 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2052 	    REG_TYPE_STR(COMMIT, "commit"),
2053 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2054 	    REG_TYPE_STR(ICREATE, "inode create")
2055 	};
2056 #undef REG_TYPE_STR
2057 
2058 	xfs_warn(mp, "ticket reservation summary:");
2059 	xfs_warn(mp, "  unit res    = %d bytes",
2060 		 ticket->t_unit_res);
2061 	xfs_warn(mp, "  current res = %d bytes",
2062 		 ticket->t_curr_res);
2063 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2064 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2065 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2066 		 ticket->t_res_num_ophdrs, ophdr_spc);
2067 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2068 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2069 	xfs_warn(mp, "  num regions = %u",
2070 		 ticket->t_res_num);
2071 
2072 	for (i = 0; i < ticket->t_res_num; i++) {
2073 		uint r_type = ticket->t_res_arr[i].r_type;
2074 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2075 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2076 			    "bad-rtype" : res_type_str[r_type]),
2077 			    ticket->t_res_arr[i].r_len);
2078 	}
2079 }
2080 
2081 /*
2082  * Print a summary of the transaction.
2083  */
2084 void
xlog_print_trans(struct xfs_trans * tp)2085 xlog_print_trans(
2086 	struct xfs_trans		*tp)
2087 {
2088 	struct xfs_mount		*mp = tp->t_mountp;
2089 	struct xfs_log_item_desc	*lidp;
2090 
2091 	/* dump core transaction and ticket info */
2092 	xfs_warn(mp, "transaction summary:");
2093 	xfs_warn(mp, "  flags	= 0x%x", tp->t_flags);
2094 
2095 	xlog_print_tic_res(mp, tp->t_ticket);
2096 
2097 	/* dump each log item */
2098 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2099 		struct xfs_log_item	*lip = lidp->lid_item;
2100 		struct xfs_log_vec	*lv = lip->li_lv;
2101 		struct xfs_log_iovec	*vec;
2102 		int			i;
2103 
2104 		xfs_warn(mp, "log item: ");
2105 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2106 		xfs_warn(mp, "  flags	= 0x%x", lip->li_flags);
2107 		if (!lv)
2108 			continue;
2109 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2110 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2111 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2112 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2113 
2114 		/* dump each iovec for the log item */
2115 		vec = lv->lv_iovecp;
2116 		for (i = 0; i < lv->lv_niovecs; i++) {
2117 			int dumplen = min(vec->i_len, 32);
2118 
2119 			xfs_warn(mp, "  iovec[%d]", i);
2120 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2121 			xfs_warn(mp, "    len	= %d", vec->i_len);
2122 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2123 			xfs_hex_dump(vec->i_addr, dumplen);
2124 
2125 			vec++;
2126 		}
2127 	}
2128 }
2129 
2130 /*
2131  * Calculate the potential space needed by the log vector.  Each region gets
2132  * its own xlog_op_header_t and may need to be double word aligned.
2133  */
2134 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2135 xlog_write_calc_vec_length(
2136 	struct xlog_ticket	*ticket,
2137 	struct xfs_log_vec	*log_vector)
2138 {
2139 	struct xfs_log_vec	*lv;
2140 	int			headers = 0;
2141 	int			len = 0;
2142 	int			i;
2143 
2144 	/* acct for start rec of xact */
2145 	if (ticket->t_flags & XLOG_TIC_INITED)
2146 		headers++;
2147 
2148 	for (lv = log_vector; lv; lv = lv->lv_next) {
2149 		/* we don't write ordered log vectors */
2150 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2151 			continue;
2152 
2153 		headers += lv->lv_niovecs;
2154 
2155 		for (i = 0; i < lv->lv_niovecs; i++) {
2156 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2157 
2158 			len += vecp->i_len;
2159 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2160 		}
2161 	}
2162 
2163 	ticket->t_res_num_ophdrs += headers;
2164 	len += headers * sizeof(struct xlog_op_header);
2165 
2166 	return len;
2167 }
2168 
2169 /*
2170  * If first write for transaction, insert start record  We can't be trying to
2171  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2172  */
2173 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2174 xlog_write_start_rec(
2175 	struct xlog_op_header	*ophdr,
2176 	struct xlog_ticket	*ticket)
2177 {
2178 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2179 		return 0;
2180 
2181 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2182 	ophdr->oh_clientid = ticket->t_clientid;
2183 	ophdr->oh_len = 0;
2184 	ophdr->oh_flags = XLOG_START_TRANS;
2185 	ophdr->oh_res2 = 0;
2186 
2187 	ticket->t_flags &= ~XLOG_TIC_INITED;
2188 
2189 	return sizeof(struct xlog_op_header);
2190 }
2191 
2192 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2193 xlog_write_setup_ophdr(
2194 	struct xlog		*log,
2195 	struct xlog_op_header	*ophdr,
2196 	struct xlog_ticket	*ticket,
2197 	uint			flags)
2198 {
2199 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2200 	ophdr->oh_clientid = ticket->t_clientid;
2201 	ophdr->oh_res2 = 0;
2202 
2203 	/* are we copying a commit or unmount record? */
2204 	ophdr->oh_flags = flags;
2205 
2206 	/*
2207 	 * We've seen logs corrupted with bad transaction client ids.  This
2208 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2209 	 * and shut down the filesystem.
2210 	 */
2211 	switch (ophdr->oh_clientid)  {
2212 	case XFS_TRANSACTION:
2213 	case XFS_VOLUME:
2214 	case XFS_LOG:
2215 		break;
2216 	default:
2217 		xfs_warn(log->l_mp,
2218 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2219 			ophdr->oh_clientid, ticket);
2220 		return NULL;
2221 	}
2222 
2223 	return ophdr;
2224 }
2225 
2226 /*
2227  * Set up the parameters of the region copy into the log. This has
2228  * to handle region write split across multiple log buffers - this
2229  * state is kept external to this function so that this code can
2230  * be written in an obvious, self documenting manner.
2231  */
2232 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2233 xlog_write_setup_copy(
2234 	struct xlog_ticket	*ticket,
2235 	struct xlog_op_header	*ophdr,
2236 	int			space_available,
2237 	int			space_required,
2238 	int			*copy_off,
2239 	int			*copy_len,
2240 	int			*last_was_partial_copy,
2241 	int			*bytes_consumed)
2242 {
2243 	int			still_to_copy;
2244 
2245 	still_to_copy = space_required - *bytes_consumed;
2246 	*copy_off = *bytes_consumed;
2247 
2248 	if (still_to_copy <= space_available) {
2249 		/* write of region completes here */
2250 		*copy_len = still_to_copy;
2251 		ophdr->oh_len = cpu_to_be32(*copy_len);
2252 		if (*last_was_partial_copy)
2253 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2254 		*last_was_partial_copy = 0;
2255 		*bytes_consumed = 0;
2256 		return 0;
2257 	}
2258 
2259 	/* partial write of region, needs extra log op header reservation */
2260 	*copy_len = space_available;
2261 	ophdr->oh_len = cpu_to_be32(*copy_len);
2262 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2263 	if (*last_was_partial_copy)
2264 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2265 	*bytes_consumed += *copy_len;
2266 	(*last_was_partial_copy)++;
2267 
2268 	/* account for new log op header */
2269 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2270 	ticket->t_res_num_ophdrs++;
2271 
2272 	return sizeof(struct xlog_op_header);
2273 }
2274 
2275 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2276 xlog_write_copy_finish(
2277 	struct xlog		*log,
2278 	struct xlog_in_core	*iclog,
2279 	uint			flags,
2280 	int			*record_cnt,
2281 	int			*data_cnt,
2282 	int			*partial_copy,
2283 	int			*partial_copy_len,
2284 	int			log_offset,
2285 	struct xlog_in_core	**commit_iclog)
2286 {
2287 	if (*partial_copy) {
2288 		/*
2289 		 * This iclog has already been marked WANT_SYNC by
2290 		 * xlog_state_get_iclog_space.
2291 		 */
2292 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2293 		*record_cnt = 0;
2294 		*data_cnt = 0;
2295 		return xlog_state_release_iclog(log, iclog);
2296 	}
2297 
2298 	*partial_copy = 0;
2299 	*partial_copy_len = 0;
2300 
2301 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2302 		/* no more space in this iclog - push it. */
2303 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2304 		*record_cnt = 0;
2305 		*data_cnt = 0;
2306 
2307 		spin_lock(&log->l_icloglock);
2308 		xlog_state_want_sync(log, iclog);
2309 		spin_unlock(&log->l_icloglock);
2310 
2311 		if (!commit_iclog)
2312 			return xlog_state_release_iclog(log, iclog);
2313 		ASSERT(flags & XLOG_COMMIT_TRANS);
2314 		*commit_iclog = iclog;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Write some region out to in-core log
2322  *
2323  * This will be called when writing externally provided regions or when
2324  * writing out a commit record for a given transaction.
2325  *
2326  * General algorithm:
2327  *	1. Find total length of this write.  This may include adding to the
2328  *		lengths passed in.
2329  *	2. Check whether we violate the tickets reservation.
2330  *	3. While writing to this iclog
2331  *	    A. Reserve as much space in this iclog as can get
2332  *	    B. If this is first write, save away start lsn
2333  *	    C. While writing this region:
2334  *		1. If first write of transaction, write start record
2335  *		2. Write log operation header (header per region)
2336  *		3. Find out if we can fit entire region into this iclog
2337  *		4. Potentially, verify destination memcpy ptr
2338  *		5. Memcpy (partial) region
2339  *		6. If partial copy, release iclog; otherwise, continue
2340  *			copying more regions into current iclog
2341  *	4. Mark want sync bit (in simulation mode)
2342  *	5. Release iclog for potential flush to on-disk log.
2343  *
2344  * ERRORS:
2345  * 1.	Panic if reservation is overrun.  This should never happen since
2346  *	reservation amounts are generated internal to the filesystem.
2347  * NOTES:
2348  * 1. Tickets are single threaded data structures.
2349  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2350  *	syncing routine.  When a single log_write region needs to span
2351  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2352  *	on all log operation writes which don't contain the end of the
2353  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2354  *	operation which contains the end of the continued log_write region.
2355  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2356  *	we don't really know exactly how much space will be used.  As a result,
2357  *	we don't update ic_offset until the end when we know exactly how many
2358  *	bytes have been written out.
2359  */
2360 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2361 xlog_write(
2362 	struct xlog		*log,
2363 	struct xfs_log_vec	*log_vector,
2364 	struct xlog_ticket	*ticket,
2365 	xfs_lsn_t		*start_lsn,
2366 	struct xlog_in_core	**commit_iclog,
2367 	uint			flags)
2368 {
2369 	struct xlog_in_core	*iclog = NULL;
2370 	struct xfs_log_iovec	*vecp;
2371 	struct xfs_log_vec	*lv;
2372 	int			len;
2373 	int			index;
2374 	int			partial_copy = 0;
2375 	int			partial_copy_len = 0;
2376 	int			contwr = 0;
2377 	int			record_cnt = 0;
2378 	int			data_cnt = 0;
2379 	int			error;
2380 
2381 	*start_lsn = 0;
2382 
2383 	len = xlog_write_calc_vec_length(ticket, log_vector);
2384 
2385 	/*
2386 	 * Region headers and bytes are already accounted for.
2387 	 * We only need to take into account start records and
2388 	 * split regions in this function.
2389 	 */
2390 	if (ticket->t_flags & XLOG_TIC_INITED)
2391 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2392 
2393 	/*
2394 	 * Commit record headers need to be accounted for. These
2395 	 * come in as separate writes so are easy to detect.
2396 	 */
2397 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2398 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2399 
2400 	if (ticket->t_curr_res < 0) {
2401 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2402 		     "ctx ticket reservation ran out. Need to up reservation");
2403 		xlog_print_tic_res(log->l_mp, ticket);
2404 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2405 	}
2406 
2407 	index = 0;
2408 	lv = log_vector;
2409 	vecp = lv->lv_iovecp;
2410 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2411 		void		*ptr;
2412 		int		log_offset;
2413 
2414 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2415 						   &contwr, &log_offset);
2416 		if (error)
2417 			return error;
2418 
2419 		ASSERT(log_offset <= iclog->ic_size - 1);
2420 		ptr = iclog->ic_datap + log_offset;
2421 
2422 		/* start_lsn is the first lsn written to. That's all we need. */
2423 		if (!*start_lsn)
2424 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2425 
2426 		/*
2427 		 * This loop writes out as many regions as can fit in the amount
2428 		 * of space which was allocated by xlog_state_get_iclog_space().
2429 		 */
2430 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2431 			struct xfs_log_iovec	*reg;
2432 			struct xlog_op_header	*ophdr;
2433 			int			start_rec_copy;
2434 			int			copy_len;
2435 			int			copy_off;
2436 			bool			ordered = false;
2437 
2438 			/* ordered log vectors have no regions to write */
2439 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2440 				ASSERT(lv->lv_niovecs == 0);
2441 				ordered = true;
2442 				goto next_lv;
2443 			}
2444 
2445 			reg = &vecp[index];
2446 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2447 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2448 
2449 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2450 			if (start_rec_copy) {
2451 				record_cnt++;
2452 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2453 						   start_rec_copy);
2454 			}
2455 
2456 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2457 			if (!ophdr)
2458 				return -EIO;
2459 
2460 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2461 					   sizeof(struct xlog_op_header));
2462 
2463 			len += xlog_write_setup_copy(ticket, ophdr,
2464 						     iclog->ic_size-log_offset,
2465 						     reg->i_len,
2466 						     &copy_off, &copy_len,
2467 						     &partial_copy,
2468 						     &partial_copy_len);
2469 			xlog_verify_dest_ptr(log, ptr);
2470 
2471 			/*
2472 			 * Copy region.
2473 			 *
2474 			 * Unmount records just log an opheader, so can have
2475 			 * empty payloads with no data region to copy. Hence we
2476 			 * only copy the payload if the vector says it has data
2477 			 * to copy.
2478 			 */
2479 			ASSERT(copy_len >= 0);
2480 			if (copy_len > 0) {
2481 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2482 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2483 						   copy_len);
2484 			}
2485 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2486 			record_cnt++;
2487 			data_cnt += contwr ? copy_len : 0;
2488 
2489 			error = xlog_write_copy_finish(log, iclog, flags,
2490 						       &record_cnt, &data_cnt,
2491 						       &partial_copy,
2492 						       &partial_copy_len,
2493 						       log_offset,
2494 						       commit_iclog);
2495 			if (error)
2496 				return error;
2497 
2498 			/*
2499 			 * if we had a partial copy, we need to get more iclog
2500 			 * space but we don't want to increment the region
2501 			 * index because there is still more is this region to
2502 			 * write.
2503 			 *
2504 			 * If we completed writing this region, and we flushed
2505 			 * the iclog (indicated by resetting of the record
2506 			 * count), then we also need to get more log space. If
2507 			 * this was the last record, though, we are done and
2508 			 * can just return.
2509 			 */
2510 			if (partial_copy)
2511 				break;
2512 
2513 			if (++index == lv->lv_niovecs) {
2514 next_lv:
2515 				lv = lv->lv_next;
2516 				index = 0;
2517 				if (lv)
2518 					vecp = lv->lv_iovecp;
2519 			}
2520 			if (record_cnt == 0 && !ordered) {
2521 				if (!lv)
2522 					return 0;
2523 				break;
2524 			}
2525 		}
2526 	}
2527 
2528 	ASSERT(len == 0);
2529 
2530 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2531 	if (!commit_iclog)
2532 		return xlog_state_release_iclog(log, iclog);
2533 
2534 	ASSERT(flags & XLOG_COMMIT_TRANS);
2535 	*commit_iclog = iclog;
2536 	return 0;
2537 }
2538 
2539 
2540 /*****************************************************************************
2541  *
2542  *		State Machine functions
2543  *
2544  *****************************************************************************
2545  */
2546 
2547 /* Clean iclogs starting from the head.  This ordering must be
2548  * maintained, so an iclog doesn't become ACTIVE beyond one that
2549  * is SYNCING.  This is also required to maintain the notion that we use
2550  * a ordered wait queue to hold off would be writers to the log when every
2551  * iclog is trying to sync to disk.
2552  *
2553  * State Change: DIRTY -> ACTIVE
2554  */
2555 STATIC void
xlog_state_clean_log(struct xlog * log)2556 xlog_state_clean_log(
2557 	struct xlog *log)
2558 {
2559 	xlog_in_core_t	*iclog;
2560 	int changed = 0;
2561 
2562 	iclog = log->l_iclog;
2563 	do {
2564 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2565 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2566 			iclog->ic_offset       = 0;
2567 			ASSERT(iclog->ic_callback == NULL);
2568 			/*
2569 			 * If the number of ops in this iclog indicate it just
2570 			 * contains the dummy transaction, we can
2571 			 * change state into IDLE (the second time around).
2572 			 * Otherwise we should change the state into
2573 			 * NEED a dummy.
2574 			 * We don't need to cover the dummy.
2575 			 */
2576 			if (!changed &&
2577 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2578 			   		XLOG_COVER_OPS)) {
2579 				changed = 1;
2580 			} else {
2581 				/*
2582 				 * We have two dirty iclogs so start over
2583 				 * This could also be num of ops indicates
2584 				 * this is not the dummy going out.
2585 				 */
2586 				changed = 2;
2587 			}
2588 			iclog->ic_header.h_num_logops = 0;
2589 			memset(iclog->ic_header.h_cycle_data, 0,
2590 			      sizeof(iclog->ic_header.h_cycle_data));
2591 			iclog->ic_header.h_lsn = 0;
2592 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2593 			/* do nothing */;
2594 		else
2595 			break;	/* stop cleaning */
2596 		iclog = iclog->ic_next;
2597 	} while (iclog != log->l_iclog);
2598 
2599 	/* log is locked when we are called */
2600 	/*
2601 	 * Change state for the dummy log recording.
2602 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2603 	 * we are done writing the dummy record.
2604 	 * If we are done with the second dummy recored (DONE2), then
2605 	 * we go to IDLE.
2606 	 */
2607 	if (changed) {
2608 		switch (log->l_covered_state) {
2609 		case XLOG_STATE_COVER_IDLE:
2610 		case XLOG_STATE_COVER_NEED:
2611 		case XLOG_STATE_COVER_NEED2:
2612 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2613 			break;
2614 
2615 		case XLOG_STATE_COVER_DONE:
2616 			if (changed == 1)
2617 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2618 			else
2619 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2620 			break;
2621 
2622 		case XLOG_STATE_COVER_DONE2:
2623 			if (changed == 1)
2624 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2625 			else
2626 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2627 			break;
2628 
2629 		default:
2630 			ASSERT(0);
2631 		}
2632 	}
2633 }	/* xlog_state_clean_log */
2634 
2635 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2636 xlog_get_lowest_lsn(
2637 	struct xlog	*log)
2638 {
2639 	xlog_in_core_t  *lsn_log;
2640 	xfs_lsn_t	lowest_lsn, lsn;
2641 
2642 	lsn_log = log->l_iclog;
2643 	lowest_lsn = 0;
2644 	do {
2645 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2646 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2647 		if ((lsn && !lowest_lsn) ||
2648 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2649 			lowest_lsn = lsn;
2650 		}
2651 	    }
2652 	    lsn_log = lsn_log->ic_next;
2653 	} while (lsn_log != log->l_iclog);
2654 	return lowest_lsn;
2655 }
2656 
2657 
2658 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2659 xlog_state_do_callback(
2660 	struct xlog		*log,
2661 	int			aborted,
2662 	struct xlog_in_core	*ciclog)
2663 {
2664 	xlog_in_core_t	   *iclog;
2665 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2666 						 * processed all iclogs once */
2667 	xfs_log_callback_t *cb, *cb_next;
2668 	int		   flushcnt = 0;
2669 	xfs_lsn_t	   lowest_lsn;
2670 	int		   ioerrors;	/* counter: iclogs with errors */
2671 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2672 	int		   funcdidcallbacks; /* flag: function did callbacks */
2673 	int		   repeats;	/* for issuing console warnings if
2674 					 * looping too many times */
2675 	int		   wake = 0;
2676 
2677 	spin_lock(&log->l_icloglock);
2678 	first_iclog = iclog = log->l_iclog;
2679 	ioerrors = 0;
2680 	funcdidcallbacks = 0;
2681 	repeats = 0;
2682 
2683 	do {
2684 		/*
2685 		 * Scan all iclogs starting with the one pointed to by the
2686 		 * log.  Reset this starting point each time the log is
2687 		 * unlocked (during callbacks).
2688 		 *
2689 		 * Keep looping through iclogs until one full pass is made
2690 		 * without running any callbacks.
2691 		 */
2692 		first_iclog = log->l_iclog;
2693 		iclog = log->l_iclog;
2694 		loopdidcallbacks = 0;
2695 		repeats++;
2696 
2697 		do {
2698 
2699 			/* skip all iclogs in the ACTIVE & DIRTY states */
2700 			if (iclog->ic_state &
2701 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2702 				iclog = iclog->ic_next;
2703 				continue;
2704 			}
2705 
2706 			/*
2707 			 * Between marking a filesystem SHUTDOWN and stopping
2708 			 * the log, we do flush all iclogs to disk (if there
2709 			 * wasn't a log I/O error). So, we do want things to
2710 			 * go smoothly in case of just a SHUTDOWN  w/o a
2711 			 * LOG_IO_ERROR.
2712 			 */
2713 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2714 				/*
2715 				 * Can only perform callbacks in order.  Since
2716 				 * this iclog is not in the DONE_SYNC/
2717 				 * DO_CALLBACK state, we skip the rest and
2718 				 * just try to clean up.  If we set our iclog
2719 				 * to DO_CALLBACK, we will not process it when
2720 				 * we retry since a previous iclog is in the
2721 				 * CALLBACK and the state cannot change since
2722 				 * we are holding the l_icloglock.
2723 				 */
2724 				if (!(iclog->ic_state &
2725 					(XLOG_STATE_DONE_SYNC |
2726 						 XLOG_STATE_DO_CALLBACK))) {
2727 					if (ciclog && (ciclog->ic_state ==
2728 							XLOG_STATE_DONE_SYNC)) {
2729 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2730 					}
2731 					break;
2732 				}
2733 				/*
2734 				 * We now have an iclog that is in either the
2735 				 * DO_CALLBACK or DONE_SYNC states. The other
2736 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2737 				 * caught by the above if and are going to
2738 				 * clean (i.e. we aren't doing their callbacks)
2739 				 * see the above if.
2740 				 */
2741 
2742 				/*
2743 				 * We will do one more check here to see if we
2744 				 * have chased our tail around.
2745 				 */
2746 
2747 				lowest_lsn = xlog_get_lowest_lsn(log);
2748 				if (lowest_lsn &&
2749 				    XFS_LSN_CMP(lowest_lsn,
2750 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2751 					iclog = iclog->ic_next;
2752 					continue; /* Leave this iclog for
2753 						   * another thread */
2754 				}
2755 
2756 				iclog->ic_state = XLOG_STATE_CALLBACK;
2757 
2758 
2759 				/*
2760 				 * Completion of a iclog IO does not imply that
2761 				 * a transaction has completed, as transactions
2762 				 * can be large enough to span many iclogs. We
2763 				 * cannot change the tail of the log half way
2764 				 * through a transaction as this may be the only
2765 				 * transaction in the log and moving th etail to
2766 				 * point to the middle of it will prevent
2767 				 * recovery from finding the start of the
2768 				 * transaction. Hence we should only update the
2769 				 * last_sync_lsn if this iclog contains
2770 				 * transaction completion callbacks on it.
2771 				 *
2772 				 * We have to do this before we drop the
2773 				 * icloglock to ensure we are the only one that
2774 				 * can update it.
2775 				 */
2776 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2777 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2778 				if (iclog->ic_callback)
2779 					atomic64_set(&log->l_last_sync_lsn,
2780 						be64_to_cpu(iclog->ic_header.h_lsn));
2781 
2782 			} else
2783 				ioerrors++;
2784 
2785 			spin_unlock(&log->l_icloglock);
2786 
2787 			/*
2788 			 * Keep processing entries in the callback list until
2789 			 * we come around and it is empty.  We need to
2790 			 * atomically see that the list is empty and change the
2791 			 * state to DIRTY so that we don't miss any more
2792 			 * callbacks being added.
2793 			 */
2794 			spin_lock(&iclog->ic_callback_lock);
2795 			cb = iclog->ic_callback;
2796 			while (cb) {
2797 				iclog->ic_callback_tail = &(iclog->ic_callback);
2798 				iclog->ic_callback = NULL;
2799 				spin_unlock(&iclog->ic_callback_lock);
2800 
2801 				/* perform callbacks in the order given */
2802 				for (; cb; cb = cb_next) {
2803 					cb_next = cb->cb_next;
2804 					cb->cb_func(cb->cb_arg, aborted);
2805 				}
2806 				spin_lock(&iclog->ic_callback_lock);
2807 				cb = iclog->ic_callback;
2808 			}
2809 
2810 			loopdidcallbacks++;
2811 			funcdidcallbacks++;
2812 
2813 			spin_lock(&log->l_icloglock);
2814 			ASSERT(iclog->ic_callback == NULL);
2815 			spin_unlock(&iclog->ic_callback_lock);
2816 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2817 				iclog->ic_state = XLOG_STATE_DIRTY;
2818 
2819 			/*
2820 			 * Transition from DIRTY to ACTIVE if applicable.
2821 			 * NOP if STATE_IOERROR.
2822 			 */
2823 			xlog_state_clean_log(log);
2824 
2825 			/* wake up threads waiting in xfs_log_force() */
2826 			wake_up_all(&iclog->ic_force_wait);
2827 
2828 			iclog = iclog->ic_next;
2829 		} while (first_iclog != iclog);
2830 
2831 		if (repeats > 5000) {
2832 			flushcnt += repeats;
2833 			repeats = 0;
2834 			xfs_warn(log->l_mp,
2835 				"%s: possible infinite loop (%d iterations)",
2836 				__func__, flushcnt);
2837 		}
2838 	} while (!ioerrors && loopdidcallbacks);
2839 
2840 #ifdef DEBUG
2841 	/*
2842 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2843 	 * If the above loop finds an iclog earlier than the current iclog and
2844 	 * in one of the syncing states, the current iclog is put into
2845 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2846 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2847 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2848 	 * states.
2849 	 *
2850 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2851 	 * for ic_state == SYNCING.
2852 	 */
2853 	if (funcdidcallbacks) {
2854 		first_iclog = iclog = log->l_iclog;
2855 		do {
2856 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2857 			/*
2858 			 * Terminate the loop if iclogs are found in states
2859 			 * which will cause other threads to clean up iclogs.
2860 			 *
2861 			 * SYNCING - i/o completion will go through logs
2862 			 * DONE_SYNC - interrupt thread should be waiting for
2863 			 *              l_icloglock
2864 			 * IOERROR - give up hope all ye who enter here
2865 			 */
2866 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2867 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2868 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2869 			    iclog->ic_state == XLOG_STATE_IOERROR )
2870 				break;
2871 			iclog = iclog->ic_next;
2872 		} while (first_iclog != iclog);
2873 	}
2874 #endif
2875 
2876 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2877 		wake = 1;
2878 	spin_unlock(&log->l_icloglock);
2879 
2880 	if (wake)
2881 		wake_up_all(&log->l_flush_wait);
2882 }
2883 
2884 
2885 /*
2886  * Finish transitioning this iclog to the dirty state.
2887  *
2888  * Make sure that we completely execute this routine only when this is
2889  * the last call to the iclog.  There is a good chance that iclog flushes,
2890  * when we reach the end of the physical log, get turned into 2 separate
2891  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2892  * routine.  By using the reference count bwritecnt, we guarantee that only
2893  * the second completion goes through.
2894  *
2895  * Callbacks could take time, so they are done outside the scope of the
2896  * global state machine log lock.
2897  */
2898 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2899 xlog_state_done_syncing(
2900 	xlog_in_core_t	*iclog,
2901 	int		aborted)
2902 {
2903 	struct xlog	   *log = iclog->ic_log;
2904 
2905 	spin_lock(&log->l_icloglock);
2906 
2907 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2908 	       iclog->ic_state == XLOG_STATE_IOERROR);
2909 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2910 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2911 
2912 
2913 	/*
2914 	 * If we got an error, either on the first buffer, or in the case of
2915 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2916 	 * and none should ever be attempted to be written to disk
2917 	 * again.
2918 	 */
2919 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2920 		if (--iclog->ic_bwritecnt == 1) {
2921 			spin_unlock(&log->l_icloglock);
2922 			return;
2923 		}
2924 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2925 	}
2926 
2927 	/*
2928 	 * Someone could be sleeping prior to writing out the next
2929 	 * iclog buffer, we wake them all, one will get to do the
2930 	 * I/O, the others get to wait for the result.
2931 	 */
2932 	wake_up_all(&iclog->ic_write_wait);
2933 	spin_unlock(&log->l_icloglock);
2934 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2935 }	/* xlog_state_done_syncing */
2936 
2937 
2938 /*
2939  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2940  * sleep.  We wait on the flush queue on the head iclog as that should be
2941  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2942  * we will wait here and all new writes will sleep until a sync completes.
2943  *
2944  * The in-core logs are used in a circular fashion. They are not used
2945  * out-of-order even when an iclog past the head is free.
2946  *
2947  * return:
2948  *	* log_offset where xlog_write() can start writing into the in-core
2949  *		log's data space.
2950  *	* in-core log pointer to which xlog_write() should write.
2951  *	* boolean indicating this is a continued write to an in-core log.
2952  *		If this is the last write, then the in-core log's offset field
2953  *		needs to be incremented, depending on the amount of data which
2954  *		is copied.
2955  */
2956 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2957 xlog_state_get_iclog_space(
2958 	struct xlog		*log,
2959 	int			len,
2960 	struct xlog_in_core	**iclogp,
2961 	struct xlog_ticket	*ticket,
2962 	int			*continued_write,
2963 	int			*logoffsetp)
2964 {
2965 	int		  log_offset;
2966 	xlog_rec_header_t *head;
2967 	xlog_in_core_t	  *iclog;
2968 	int		  error;
2969 
2970 restart:
2971 	spin_lock(&log->l_icloglock);
2972 	if (XLOG_FORCED_SHUTDOWN(log)) {
2973 		spin_unlock(&log->l_icloglock);
2974 		return -EIO;
2975 	}
2976 
2977 	iclog = log->l_iclog;
2978 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2979 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2980 
2981 		/* Wait for log writes to have flushed */
2982 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2983 		goto restart;
2984 	}
2985 
2986 	head = &iclog->ic_header;
2987 
2988 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2989 	log_offset = iclog->ic_offset;
2990 
2991 	/* On the 1st write to an iclog, figure out lsn.  This works
2992 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2993 	 * committing to.  If the offset is set, that's how many blocks
2994 	 * must be written.
2995 	 */
2996 	if (log_offset == 0) {
2997 		ticket->t_curr_res -= log->l_iclog_hsize;
2998 		xlog_tic_add_region(ticket,
2999 				    log->l_iclog_hsize,
3000 				    XLOG_REG_TYPE_LRHEADER);
3001 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3002 		head->h_lsn = cpu_to_be64(
3003 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3004 		ASSERT(log->l_curr_block >= 0);
3005 	}
3006 
3007 	/* If there is enough room to write everything, then do it.  Otherwise,
3008 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3009 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3010 	 * until you know exactly how many bytes get copied.  Therefore, wait
3011 	 * until later to update ic_offset.
3012 	 *
3013 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3014 	 * can fit into remaining data section.
3015 	 */
3016 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3017 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3018 
3019 		/*
3020 		 * If I'm the only one writing to this iclog, sync it to disk.
3021 		 * We need to do an atomic compare and decrement here to avoid
3022 		 * racing with concurrent atomic_dec_and_lock() calls in
3023 		 * xlog_state_release_iclog() when there is more than one
3024 		 * reference to the iclog.
3025 		 */
3026 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3027 			/* we are the only one */
3028 			spin_unlock(&log->l_icloglock);
3029 			error = xlog_state_release_iclog(log, iclog);
3030 			if (error)
3031 				return error;
3032 		} else {
3033 			spin_unlock(&log->l_icloglock);
3034 		}
3035 		goto restart;
3036 	}
3037 
3038 	/* Do we have enough room to write the full amount in the remainder
3039 	 * of this iclog?  Or must we continue a write on the next iclog and
3040 	 * mark this iclog as completely taken?  In the case where we switch
3041 	 * iclogs (to mark it taken), this particular iclog will release/sync
3042 	 * to disk in xlog_write().
3043 	 */
3044 	if (len <= iclog->ic_size - iclog->ic_offset) {
3045 		*continued_write = 0;
3046 		iclog->ic_offset += len;
3047 	} else {
3048 		*continued_write = 1;
3049 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3050 	}
3051 	*iclogp = iclog;
3052 
3053 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3054 	spin_unlock(&log->l_icloglock);
3055 
3056 	*logoffsetp = log_offset;
3057 	return 0;
3058 }	/* xlog_state_get_iclog_space */
3059 
3060 /* The first cnt-1 times through here we don't need to
3061  * move the grant write head because the permanent
3062  * reservation has reserved cnt times the unit amount.
3063  * Release part of current permanent unit reservation and
3064  * reset current reservation to be one units worth.  Also
3065  * move grant reservation head forward.
3066  */
3067 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3068 xlog_regrant_reserve_log_space(
3069 	struct xlog		*log,
3070 	struct xlog_ticket	*ticket)
3071 {
3072 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3073 
3074 	if (ticket->t_cnt > 0)
3075 		ticket->t_cnt--;
3076 
3077 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3078 					ticket->t_curr_res);
3079 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3080 					ticket->t_curr_res);
3081 	ticket->t_curr_res = ticket->t_unit_res;
3082 	xlog_tic_reset_res(ticket);
3083 
3084 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3085 
3086 	/* just return if we still have some of the pre-reserved space */
3087 	if (ticket->t_cnt > 0)
3088 		return;
3089 
3090 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3091 					ticket->t_unit_res);
3092 
3093 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3094 
3095 	ticket->t_curr_res = ticket->t_unit_res;
3096 	xlog_tic_reset_res(ticket);
3097 }	/* xlog_regrant_reserve_log_space */
3098 
3099 
3100 /*
3101  * Give back the space left from a reservation.
3102  *
3103  * All the information we need to make a correct determination of space left
3104  * is present.  For non-permanent reservations, things are quite easy.  The
3105  * count should have been decremented to zero.  We only need to deal with the
3106  * space remaining in the current reservation part of the ticket.  If the
3107  * ticket contains a permanent reservation, there may be left over space which
3108  * needs to be released.  A count of N means that N-1 refills of the current
3109  * reservation can be done before we need to ask for more space.  The first
3110  * one goes to fill up the first current reservation.  Once we run out of
3111  * space, the count will stay at zero and the only space remaining will be
3112  * in the current reservation field.
3113  */
3114 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3115 xlog_ungrant_log_space(
3116 	struct xlog		*log,
3117 	struct xlog_ticket	*ticket)
3118 {
3119 	int	bytes;
3120 
3121 	if (ticket->t_cnt > 0)
3122 		ticket->t_cnt--;
3123 
3124 	trace_xfs_log_ungrant_enter(log, ticket);
3125 	trace_xfs_log_ungrant_sub(log, ticket);
3126 
3127 	/*
3128 	 * If this is a permanent reservation ticket, we may be able to free
3129 	 * up more space based on the remaining count.
3130 	 */
3131 	bytes = ticket->t_curr_res;
3132 	if (ticket->t_cnt > 0) {
3133 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3134 		bytes += ticket->t_unit_res*ticket->t_cnt;
3135 	}
3136 
3137 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3138 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3139 
3140 	trace_xfs_log_ungrant_exit(log, ticket);
3141 
3142 	xfs_log_space_wake(log->l_mp);
3143 }
3144 
3145 /*
3146  * Flush iclog to disk if this is the last reference to the given iclog and
3147  * the WANT_SYNC bit is set.
3148  *
3149  * When this function is entered, the iclog is not necessarily in the
3150  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3151  *
3152  *
3153  */
3154 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3155 xlog_state_release_iclog(
3156 	struct xlog		*log,
3157 	struct xlog_in_core	*iclog)
3158 {
3159 	int		sync = 0;	/* do we sync? */
3160 
3161 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3162 		return -EIO;
3163 
3164 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3165 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3166 		return 0;
3167 
3168 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3169 		spin_unlock(&log->l_icloglock);
3170 		return -EIO;
3171 	}
3172 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3173 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3174 
3175 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3176 		/* update tail before writing to iclog */
3177 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3178 		sync++;
3179 		iclog->ic_state = XLOG_STATE_SYNCING;
3180 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3181 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3182 		/* cycle incremented when incrementing curr_block */
3183 	}
3184 	spin_unlock(&log->l_icloglock);
3185 
3186 	/*
3187 	 * We let the log lock go, so it's possible that we hit a log I/O
3188 	 * error or some other SHUTDOWN condition that marks the iclog
3189 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3190 	 * this iclog has consistent data, so we ignore IOERROR
3191 	 * flags after this point.
3192 	 */
3193 	if (sync)
3194 		return xlog_sync(log, iclog);
3195 	return 0;
3196 }	/* xlog_state_release_iclog */
3197 
3198 
3199 /*
3200  * This routine will mark the current iclog in the ring as WANT_SYNC
3201  * and move the current iclog pointer to the next iclog in the ring.
3202  * When this routine is called from xlog_state_get_iclog_space(), the
3203  * exact size of the iclog has not yet been determined.  All we know is
3204  * that every data block.  We have run out of space in this log record.
3205  */
3206 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3207 xlog_state_switch_iclogs(
3208 	struct xlog		*log,
3209 	struct xlog_in_core	*iclog,
3210 	int			eventual_size)
3211 {
3212 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3213 	if (!eventual_size)
3214 		eventual_size = iclog->ic_offset;
3215 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3216 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3217 	log->l_prev_block = log->l_curr_block;
3218 	log->l_prev_cycle = log->l_curr_cycle;
3219 
3220 	/* roll log?: ic_offset changed later */
3221 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3222 
3223 	/* Round up to next log-sunit */
3224 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3225 	    log->l_mp->m_sb.sb_logsunit > 1) {
3226 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3227 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3228 	}
3229 
3230 	if (log->l_curr_block >= log->l_logBBsize) {
3231 		/*
3232 		 * Rewind the current block before the cycle is bumped to make
3233 		 * sure that the combined LSN never transiently moves forward
3234 		 * when the log wraps to the next cycle. This is to support the
3235 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3236 		 * other cases should acquire l_icloglock.
3237 		 */
3238 		log->l_curr_block -= log->l_logBBsize;
3239 		ASSERT(log->l_curr_block >= 0);
3240 		smp_wmb();
3241 		log->l_curr_cycle++;
3242 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3243 			log->l_curr_cycle++;
3244 	}
3245 	ASSERT(iclog == log->l_iclog);
3246 	log->l_iclog = iclog->ic_next;
3247 }	/* xlog_state_switch_iclogs */
3248 
3249 /*
3250  * Write out all data in the in-core log as of this exact moment in time.
3251  *
3252  * Data may be written to the in-core log during this call.  However,
3253  * we don't guarantee this data will be written out.  A change from past
3254  * implementation means this routine will *not* write out zero length LRs.
3255  *
3256  * Basically, we try and perform an intelligent scan of the in-core logs.
3257  * If we determine there is no flushable data, we just return.  There is no
3258  * flushable data if:
3259  *
3260  *	1. the current iclog is active and has no data; the previous iclog
3261  *		is in the active or dirty state.
3262  *	2. the current iclog is drity, and the previous iclog is in the
3263  *		active or dirty state.
3264  *
3265  * We may sleep if:
3266  *
3267  *	1. the current iclog is not in the active nor dirty state.
3268  *	2. the current iclog dirty, and the previous iclog is not in the
3269  *		active nor dirty state.
3270  *	3. the current iclog is active, and there is another thread writing
3271  *		to this particular iclog.
3272  *	4. a) the current iclog is active and has no other writers
3273  *	   b) when we return from flushing out this iclog, it is still
3274  *		not in the active nor dirty state.
3275  */
3276 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3277 _xfs_log_force(
3278 	struct xfs_mount	*mp,
3279 	uint			flags,
3280 	int			*log_flushed)
3281 {
3282 	struct xlog		*log = mp->m_log;
3283 	struct xlog_in_core	*iclog;
3284 	xfs_lsn_t		lsn;
3285 
3286 	XFS_STATS_INC(mp, xs_log_force);
3287 
3288 	xlog_cil_force(log);
3289 
3290 	spin_lock(&log->l_icloglock);
3291 
3292 	iclog = log->l_iclog;
3293 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3294 		spin_unlock(&log->l_icloglock);
3295 		return -EIO;
3296 	}
3297 
3298 	/* If the head iclog is not active nor dirty, we just attach
3299 	 * ourselves to the head and go to sleep.
3300 	 */
3301 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3302 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3303 		/*
3304 		 * If the head is dirty or (active and empty), then
3305 		 * we need to look at the previous iclog.  If the previous
3306 		 * iclog is active or dirty we are done.  There is nothing
3307 		 * to sync out.  Otherwise, we attach ourselves to the
3308 		 * previous iclog and go to sleep.
3309 		 */
3310 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3311 		    (atomic_read(&iclog->ic_refcnt) == 0
3312 		     && iclog->ic_offset == 0)) {
3313 			iclog = iclog->ic_prev;
3314 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3315 			    iclog->ic_state == XLOG_STATE_DIRTY)
3316 				goto no_sleep;
3317 			else
3318 				goto maybe_sleep;
3319 		} else {
3320 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3321 				/* We are the only one with access to this
3322 				 * iclog.  Flush it out now.  There should
3323 				 * be a roundoff of zero to show that someone
3324 				 * has already taken care of the roundoff from
3325 				 * the previous sync.
3326 				 */
3327 				atomic_inc(&iclog->ic_refcnt);
3328 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3329 				xlog_state_switch_iclogs(log, iclog, 0);
3330 				spin_unlock(&log->l_icloglock);
3331 
3332 				if (xlog_state_release_iclog(log, iclog))
3333 					return -EIO;
3334 
3335 				if (log_flushed)
3336 					*log_flushed = 1;
3337 				spin_lock(&log->l_icloglock);
3338 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3339 				    iclog->ic_state != XLOG_STATE_DIRTY)
3340 					goto maybe_sleep;
3341 				else
3342 					goto no_sleep;
3343 			} else {
3344 				/* Someone else is writing to this iclog.
3345 				 * Use its call to flush out the data.  However,
3346 				 * the other thread may not force out this LR,
3347 				 * so we mark it WANT_SYNC.
3348 				 */
3349 				xlog_state_switch_iclogs(log, iclog, 0);
3350 				goto maybe_sleep;
3351 			}
3352 		}
3353 	}
3354 
3355 	/* By the time we come around again, the iclog could've been filled
3356 	 * which would give it another lsn.  If we have a new lsn, just
3357 	 * return because the relevant data has been flushed.
3358 	 */
3359 maybe_sleep:
3360 	if (flags & XFS_LOG_SYNC) {
3361 		/*
3362 		 * We must check if we're shutting down here, before
3363 		 * we wait, while we're holding the l_icloglock.
3364 		 * Then we check again after waking up, in case our
3365 		 * sleep was disturbed by a bad news.
3366 		 */
3367 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3368 			spin_unlock(&log->l_icloglock);
3369 			return -EIO;
3370 		}
3371 		XFS_STATS_INC(mp, xs_log_force_sleep);
3372 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373 		/*
3374 		 * No need to grab the log lock here since we're
3375 		 * only deciding whether or not to return EIO
3376 		 * and the memory read should be atomic.
3377 		 */
3378 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3379 			return -EIO;
3380 	} else {
3381 
3382 no_sleep:
3383 		spin_unlock(&log->l_icloglock);
3384 	}
3385 	return 0;
3386 }
3387 
3388 /*
3389  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3390  * about errors or whether the log was flushed or not. This is the normal
3391  * interface to use when trying to unpin items or move the log forward.
3392  */
3393 void
xfs_log_force(xfs_mount_t * mp,uint flags)3394 xfs_log_force(
3395 	xfs_mount_t	*mp,
3396 	uint		flags)
3397 {
3398 	trace_xfs_log_force(mp, 0, _RET_IP_);
3399 	_xfs_log_force(mp, flags, NULL);
3400 }
3401 
3402 /*
3403  * Force the in-core log to disk for a specific LSN.
3404  *
3405  * Find in-core log with lsn.
3406  *	If it is in the DIRTY state, just return.
3407  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3408  *		state and go to sleep or return.
3409  *	If it is in any other state, go to sleep or return.
3410  *
3411  * Synchronous forces are implemented with a signal variable. All callers
3412  * to force a given lsn to disk will wait on a the sv attached to the
3413  * specific in-core log.  When given in-core log finally completes its
3414  * write to disk, that thread will wake up all threads waiting on the
3415  * sv.
3416  */
3417 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3418 _xfs_log_force_lsn(
3419 	struct xfs_mount	*mp,
3420 	xfs_lsn_t		lsn,
3421 	uint			flags,
3422 	int			*log_flushed)
3423 {
3424 	struct xlog		*log = mp->m_log;
3425 	struct xlog_in_core	*iclog;
3426 	int			already_slept = 0;
3427 
3428 	ASSERT(lsn != 0);
3429 
3430 	XFS_STATS_INC(mp, xs_log_force);
3431 
3432 	lsn = xlog_cil_force_lsn(log, lsn);
3433 	if (lsn == NULLCOMMITLSN)
3434 		return 0;
3435 
3436 try_again:
3437 	spin_lock(&log->l_icloglock);
3438 	iclog = log->l_iclog;
3439 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3440 		spin_unlock(&log->l_icloglock);
3441 		return -EIO;
3442 	}
3443 
3444 	do {
3445 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3446 			iclog = iclog->ic_next;
3447 			continue;
3448 		}
3449 
3450 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3451 			spin_unlock(&log->l_icloglock);
3452 			return 0;
3453 		}
3454 
3455 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3456 			/*
3457 			 * We sleep here if we haven't already slept (e.g.
3458 			 * this is the first time we've looked at the correct
3459 			 * iclog buf) and the buffer before us is going to
3460 			 * be sync'ed. The reason for this is that if we
3461 			 * are doing sync transactions here, by waiting for
3462 			 * the previous I/O to complete, we can allow a few
3463 			 * more transactions into this iclog before we close
3464 			 * it down.
3465 			 *
3466 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3467 			 * up the refcnt so we can release the log (which
3468 			 * drops the ref count).  The state switch keeps new
3469 			 * transaction commits from using this buffer.  When
3470 			 * the current commits finish writing into the buffer,
3471 			 * the refcount will drop to zero and the buffer will
3472 			 * go out then.
3473 			 */
3474 			if (!already_slept &&
3475 			    (iclog->ic_prev->ic_state &
3476 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3477 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3478 
3479 				XFS_STATS_INC(mp, xs_log_force_sleep);
3480 
3481 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3482 							&log->l_icloglock);
3483 				already_slept = 1;
3484 				goto try_again;
3485 			}
3486 			atomic_inc(&iclog->ic_refcnt);
3487 			xlog_state_switch_iclogs(log, iclog, 0);
3488 			spin_unlock(&log->l_icloglock);
3489 			if (xlog_state_release_iclog(log, iclog))
3490 				return -EIO;
3491 			if (log_flushed)
3492 				*log_flushed = 1;
3493 			spin_lock(&log->l_icloglock);
3494 		}
3495 
3496 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3497 		    !(iclog->ic_state &
3498 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3499 			/*
3500 			 * Don't wait on completion if we know that we've
3501 			 * gotten a log write error.
3502 			 */
3503 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3504 				spin_unlock(&log->l_icloglock);
3505 				return -EIO;
3506 			}
3507 			XFS_STATS_INC(mp, xs_log_force_sleep);
3508 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3509 			/*
3510 			 * No need to grab the log lock here since we're
3511 			 * only deciding whether or not to return EIO
3512 			 * and the memory read should be atomic.
3513 			 */
3514 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3515 				return -EIO;
3516 		} else {		/* just return */
3517 			spin_unlock(&log->l_icloglock);
3518 		}
3519 
3520 		return 0;
3521 	} while (iclog != log->l_iclog);
3522 
3523 	spin_unlock(&log->l_icloglock);
3524 	return 0;
3525 }
3526 
3527 /*
3528  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3529  * about errors or whether the log was flushed or not. This is the normal
3530  * interface to use when trying to unpin items or move the log forward.
3531  */
3532 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3533 xfs_log_force_lsn(
3534 	xfs_mount_t	*mp,
3535 	xfs_lsn_t	lsn,
3536 	uint		flags)
3537 {
3538 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3539 	_xfs_log_force_lsn(mp, lsn, flags, NULL);
3540 }
3541 
3542 /*
3543  * Called when we want to mark the current iclog as being ready to sync to
3544  * disk.
3545  */
3546 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3547 xlog_state_want_sync(
3548 	struct xlog		*log,
3549 	struct xlog_in_core	*iclog)
3550 {
3551 	assert_spin_locked(&log->l_icloglock);
3552 
3553 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3554 		xlog_state_switch_iclogs(log, iclog, 0);
3555 	} else {
3556 		ASSERT(iclog->ic_state &
3557 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3558 	}
3559 }
3560 
3561 
3562 /*****************************************************************************
3563  *
3564  *		TICKET functions
3565  *
3566  *****************************************************************************
3567  */
3568 
3569 /*
3570  * Free a used ticket when its refcount falls to zero.
3571  */
3572 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3573 xfs_log_ticket_put(
3574 	xlog_ticket_t	*ticket)
3575 {
3576 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3577 	if (atomic_dec_and_test(&ticket->t_ref))
3578 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3579 }
3580 
3581 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3582 xfs_log_ticket_get(
3583 	xlog_ticket_t	*ticket)
3584 {
3585 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3586 	atomic_inc(&ticket->t_ref);
3587 	return ticket;
3588 }
3589 
3590 /*
3591  * Figure out the total log space unit (in bytes) that would be
3592  * required for a log ticket.
3593  */
3594 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3595 xfs_log_calc_unit_res(
3596 	struct xfs_mount	*mp,
3597 	int			unit_bytes)
3598 {
3599 	struct xlog		*log = mp->m_log;
3600 	int			iclog_space;
3601 	uint			num_headers;
3602 
3603 	/*
3604 	 * Permanent reservations have up to 'cnt'-1 active log operations
3605 	 * in the log.  A unit in this case is the amount of space for one
3606 	 * of these log operations.  Normal reservations have a cnt of 1
3607 	 * and their unit amount is the total amount of space required.
3608 	 *
3609 	 * The following lines of code account for non-transaction data
3610 	 * which occupy space in the on-disk log.
3611 	 *
3612 	 * Normal form of a transaction is:
3613 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3614 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3615 	 *
3616 	 * We need to account for all the leadup data and trailer data
3617 	 * around the transaction data.
3618 	 * And then we need to account for the worst case in terms of using
3619 	 * more space.
3620 	 * The worst case will happen if:
3621 	 * - the placement of the transaction happens to be such that the
3622 	 *   roundoff is at its maximum
3623 	 * - the transaction data is synced before the commit record is synced
3624 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3625 	 *   Therefore the commit record is in its own Log Record.
3626 	 *   This can happen as the commit record is called with its
3627 	 *   own region to xlog_write().
3628 	 *   This then means that in the worst case, roundoff can happen for
3629 	 *   the commit-rec as well.
3630 	 *   The commit-rec is smaller than padding in this scenario and so it is
3631 	 *   not added separately.
3632 	 */
3633 
3634 	/* for trans header */
3635 	unit_bytes += sizeof(xlog_op_header_t);
3636 	unit_bytes += sizeof(xfs_trans_header_t);
3637 
3638 	/* for start-rec */
3639 	unit_bytes += sizeof(xlog_op_header_t);
3640 
3641 	/*
3642 	 * for LR headers - the space for data in an iclog is the size minus
3643 	 * the space used for the headers. If we use the iclog size, then we
3644 	 * undercalculate the number of headers required.
3645 	 *
3646 	 * Furthermore - the addition of op headers for split-recs might
3647 	 * increase the space required enough to require more log and op
3648 	 * headers, so take that into account too.
3649 	 *
3650 	 * IMPORTANT: This reservation makes the assumption that if this
3651 	 * transaction is the first in an iclog and hence has the LR headers
3652 	 * accounted to it, then the remaining space in the iclog is
3653 	 * exclusively for this transaction.  i.e. if the transaction is larger
3654 	 * than the iclog, it will be the only thing in that iclog.
3655 	 * Fundamentally, this means we must pass the entire log vector to
3656 	 * xlog_write to guarantee this.
3657 	 */
3658 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3659 	num_headers = howmany(unit_bytes, iclog_space);
3660 
3661 	/* for split-recs - ophdrs added when data split over LRs */
3662 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3663 
3664 	/* add extra header reservations if we overrun */
3665 	while (!num_headers ||
3666 	       howmany(unit_bytes, iclog_space) > num_headers) {
3667 		unit_bytes += sizeof(xlog_op_header_t);
3668 		num_headers++;
3669 	}
3670 	unit_bytes += log->l_iclog_hsize * num_headers;
3671 
3672 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3673 	unit_bytes += log->l_iclog_hsize;
3674 
3675 	/* for roundoff padding for transaction data and one for commit record */
3676 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3677 		/* log su roundoff */
3678 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3679 	} else {
3680 		/* BB roundoff */
3681 		unit_bytes += 2 * BBSIZE;
3682         }
3683 
3684 	return unit_bytes;
3685 }
3686 
3687 /*
3688  * Allocate and initialise a new log ticket.
3689  */
3690 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3691 xlog_ticket_alloc(
3692 	struct xlog		*log,
3693 	int			unit_bytes,
3694 	int			cnt,
3695 	char			client,
3696 	bool			permanent,
3697 	xfs_km_flags_t		alloc_flags)
3698 {
3699 	struct xlog_ticket	*tic;
3700 	int			unit_res;
3701 
3702 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3703 	if (!tic)
3704 		return NULL;
3705 
3706 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3707 
3708 	atomic_set(&tic->t_ref, 1);
3709 	tic->t_task		= current;
3710 	INIT_LIST_HEAD(&tic->t_queue);
3711 	tic->t_unit_res		= unit_res;
3712 	tic->t_curr_res		= unit_res;
3713 	tic->t_cnt		= cnt;
3714 	tic->t_ocnt		= cnt;
3715 	tic->t_tid		= prandom_u32();
3716 	tic->t_clientid		= client;
3717 	tic->t_flags		= XLOG_TIC_INITED;
3718 	if (permanent)
3719 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3720 
3721 	xlog_tic_reset_res(tic);
3722 
3723 	return tic;
3724 }
3725 
3726 
3727 /******************************************************************************
3728  *
3729  *		Log debug routines
3730  *
3731  ******************************************************************************
3732  */
3733 #if defined(DEBUG)
3734 /*
3735  * Make sure that the destination ptr is within the valid data region of
3736  * one of the iclogs.  This uses backup pointers stored in a different
3737  * part of the log in case we trash the log structure.
3738  */
3739 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3740 xlog_verify_dest_ptr(
3741 	struct xlog	*log,
3742 	void		*ptr)
3743 {
3744 	int i;
3745 	int good_ptr = 0;
3746 
3747 	for (i = 0; i < log->l_iclog_bufs; i++) {
3748 		if (ptr >= log->l_iclog_bak[i] &&
3749 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3750 			good_ptr++;
3751 	}
3752 
3753 	if (!good_ptr)
3754 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3755 }
3756 
3757 /*
3758  * Check to make sure the grant write head didn't just over lap the tail.  If
3759  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3760  * the cycles differ by exactly one and check the byte count.
3761  *
3762  * This check is run unlocked, so can give false positives. Rather than assert
3763  * on failures, use a warn-once flag and a panic tag to allow the admin to
3764  * determine if they want to panic the machine when such an error occurs. For
3765  * debug kernels this will have the same effect as using an assert but, unlinke
3766  * an assert, it can be turned off at runtime.
3767  */
3768 STATIC void
xlog_verify_grant_tail(struct xlog * log)3769 xlog_verify_grant_tail(
3770 	struct xlog	*log)
3771 {
3772 	int		tail_cycle, tail_blocks;
3773 	int		cycle, space;
3774 
3775 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3776 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3777 	if (tail_cycle != cycle) {
3778 		if (cycle - 1 != tail_cycle &&
3779 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3780 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3781 				"%s: cycle - 1 != tail_cycle", __func__);
3782 			log->l_flags |= XLOG_TAIL_WARN;
3783 		}
3784 
3785 		if (space > BBTOB(tail_blocks) &&
3786 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3787 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3788 				"%s: space > BBTOB(tail_blocks)", __func__);
3789 			log->l_flags |= XLOG_TAIL_WARN;
3790 		}
3791 	}
3792 }
3793 
3794 /* check if it will fit */
3795 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3796 xlog_verify_tail_lsn(
3797 	struct xlog		*log,
3798 	struct xlog_in_core	*iclog,
3799 	xfs_lsn_t		tail_lsn)
3800 {
3801     int blocks;
3802 
3803     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3804 	blocks =
3805 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3806 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3807 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3808     } else {
3809 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3810 
3811 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3812 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3813 
3814 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3815 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3816 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3817     }
3818 }	/* xlog_verify_tail_lsn */
3819 
3820 /*
3821  * Perform a number of checks on the iclog before writing to disk.
3822  *
3823  * 1. Make sure the iclogs are still circular
3824  * 2. Make sure we have a good magic number
3825  * 3. Make sure we don't have magic numbers in the data
3826  * 4. Check fields of each log operation header for:
3827  *	A. Valid client identifier
3828  *	B. tid ptr value falls in valid ptr space (user space code)
3829  *	C. Length in log record header is correct according to the
3830  *		individual operation headers within record.
3831  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3832  *	log, check the preceding blocks of the physical log to make sure all
3833  *	the cycle numbers agree with the current cycle number.
3834  */
3835 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3836 xlog_verify_iclog(
3837 	struct xlog		*log,
3838 	struct xlog_in_core	*iclog,
3839 	int			count,
3840 	bool                    syncing)
3841 {
3842 	xlog_op_header_t	*ophead;
3843 	xlog_in_core_t		*icptr;
3844 	xlog_in_core_2_t	*xhdr;
3845 	void			*base_ptr, *ptr, *p;
3846 	ptrdiff_t		field_offset;
3847 	uint8_t			clientid;
3848 	int			len, i, j, k, op_len;
3849 	int			idx;
3850 
3851 	/* check validity of iclog pointers */
3852 	spin_lock(&log->l_icloglock);
3853 	icptr = log->l_iclog;
3854 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3855 		ASSERT(icptr);
3856 
3857 	if (icptr != log->l_iclog)
3858 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3859 	spin_unlock(&log->l_icloglock);
3860 
3861 	/* check log magic numbers */
3862 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3863 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3864 
3865 	base_ptr = ptr = &iclog->ic_header;
3866 	p = &iclog->ic_header;
3867 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3868 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3869 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3870 				__func__);
3871 	}
3872 
3873 	/* check fields */
3874 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3875 	base_ptr = ptr = iclog->ic_datap;
3876 	ophead = ptr;
3877 	xhdr = iclog->ic_data;
3878 	for (i = 0; i < len; i++) {
3879 		ophead = ptr;
3880 
3881 		/* clientid is only 1 byte */
3882 		p = &ophead->oh_clientid;
3883 		field_offset = p - base_ptr;
3884 		if (!syncing || (field_offset & 0x1ff)) {
3885 			clientid = ophead->oh_clientid;
3886 		} else {
3887 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3888 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3889 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3891 				clientid = xlog_get_client_id(
3892 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3893 			} else {
3894 				clientid = xlog_get_client_id(
3895 					iclog->ic_header.h_cycle_data[idx]);
3896 			}
3897 		}
3898 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3899 			xfs_warn(log->l_mp,
3900 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3901 				__func__, clientid, ophead,
3902 				(unsigned long)field_offset);
3903 
3904 		/* check length */
3905 		p = &ophead->oh_len;
3906 		field_offset = p - base_ptr;
3907 		if (!syncing || (field_offset & 0x1ff)) {
3908 			op_len = be32_to_cpu(ophead->oh_len);
3909 		} else {
3910 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3911 				    (uintptr_t)iclog->ic_datap);
3912 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3913 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3914 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3915 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3916 			} else {
3917 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3918 			}
3919 		}
3920 		ptr += sizeof(xlog_op_header_t) + op_len;
3921 	}
3922 }	/* xlog_verify_iclog */
3923 #endif
3924 
3925 /*
3926  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3927  */
3928 STATIC int
xlog_state_ioerror(struct xlog * log)3929 xlog_state_ioerror(
3930 	struct xlog	*log)
3931 {
3932 	xlog_in_core_t	*iclog, *ic;
3933 
3934 	iclog = log->l_iclog;
3935 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3936 		/*
3937 		 * Mark all the incore logs IOERROR.
3938 		 * From now on, no log flushes will result.
3939 		 */
3940 		ic = iclog;
3941 		do {
3942 			ic->ic_state = XLOG_STATE_IOERROR;
3943 			ic = ic->ic_next;
3944 		} while (ic != iclog);
3945 		return 0;
3946 	}
3947 	/*
3948 	 * Return non-zero, if state transition has already happened.
3949 	 */
3950 	return 1;
3951 }
3952 
3953 /*
3954  * This is called from xfs_force_shutdown, when we're forcibly
3955  * shutting down the filesystem, typically because of an IO error.
3956  * Our main objectives here are to make sure that:
3957  *	a. if !logerror, flush the logs to disk. Anything modified
3958  *	   after this is ignored.
3959  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3960  *	   parties to find out, 'atomically'.
3961  *	c. those who're sleeping on log reservations, pinned objects and
3962  *	    other resources get woken up, and be told the bad news.
3963  *	d. nothing new gets queued up after (b) and (c) are done.
3964  *
3965  * Note: for the !logerror case we need to flush the regions held in memory out
3966  * to disk first. This needs to be done before the log is marked as shutdown,
3967  * otherwise the iclog writes will fail.
3968  */
3969 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3970 xfs_log_force_umount(
3971 	struct xfs_mount	*mp,
3972 	int			logerror)
3973 {
3974 	struct xlog	*log;
3975 	int		retval;
3976 
3977 	log = mp->m_log;
3978 
3979 	/*
3980 	 * If this happens during log recovery, don't worry about
3981 	 * locking; the log isn't open for business yet.
3982 	 */
3983 	if (!log ||
3984 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3985 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3986 		if (mp->m_sb_bp)
3987 			mp->m_sb_bp->b_flags |= XBF_DONE;
3988 		return 0;
3989 	}
3990 
3991 	/*
3992 	 * Somebody could've already done the hard work for us.
3993 	 * No need to get locks for this.
3994 	 */
3995 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3996 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3997 		return 1;
3998 	}
3999 
4000 	/*
4001 	 * Flush all the completed transactions to disk before marking the log
4002 	 * being shut down. We need to do it in this order to ensure that
4003 	 * completed operations are safely on disk before we shut down, and that
4004 	 * we don't have to issue any buffer IO after the shutdown flags are set
4005 	 * to guarantee this.
4006 	 */
4007 	if (!logerror)
4008 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4009 
4010 	/*
4011 	 * mark the filesystem and the as in a shutdown state and wake
4012 	 * everybody up to tell them the bad news.
4013 	 */
4014 	spin_lock(&log->l_icloglock);
4015 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4016 	if (mp->m_sb_bp)
4017 		mp->m_sb_bp->b_flags |= XBF_DONE;
4018 
4019 	/*
4020 	 * Mark the log and the iclogs with IO error flags to prevent any
4021 	 * further log IO from being issued or completed.
4022 	 */
4023 	log->l_flags |= XLOG_IO_ERROR;
4024 	retval = xlog_state_ioerror(log);
4025 	spin_unlock(&log->l_icloglock);
4026 
4027 	/*
4028 	 * We don't want anybody waiting for log reservations after this. That
4029 	 * means we have to wake up everybody queued up on reserveq as well as
4030 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4031 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4032 	 * action is protected by the grant locks.
4033 	 */
4034 	xlog_grant_head_wake_all(&log->l_reserve_head);
4035 	xlog_grant_head_wake_all(&log->l_write_head);
4036 
4037 	/*
4038 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4039 	 * as if the log writes were completed. The abort handling in the log
4040 	 * item committed callback functions will do this again under lock to
4041 	 * avoid races.
4042 	 */
4043 	wake_up_all(&log->l_cilp->xc_commit_wait);
4044 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4045 
4046 #ifdef XFSERRORDEBUG
4047 	{
4048 		xlog_in_core_t	*iclog;
4049 
4050 		spin_lock(&log->l_icloglock);
4051 		iclog = log->l_iclog;
4052 		do {
4053 			ASSERT(iclog->ic_callback == 0);
4054 			iclog = iclog->ic_next;
4055 		} while (iclog != log->l_iclog);
4056 		spin_unlock(&log->l_icloglock);
4057 	}
4058 #endif
4059 	/* return non-zero if log IOERROR transition had already happened */
4060 	return retval;
4061 }
4062 
4063 STATIC int
xlog_iclogs_empty(struct xlog * log)4064 xlog_iclogs_empty(
4065 	struct xlog	*log)
4066 {
4067 	xlog_in_core_t	*iclog;
4068 
4069 	iclog = log->l_iclog;
4070 	do {
4071 		/* endianness does not matter here, zero is zero in
4072 		 * any language.
4073 		 */
4074 		if (iclog->ic_header.h_num_logops)
4075 			return 0;
4076 		iclog = iclog->ic_next;
4077 	} while (iclog != log->l_iclog);
4078 	return 1;
4079 }
4080 
4081 /*
4082  * Verify that an LSN stamped into a piece of metadata is valid. This is
4083  * intended for use in read verifiers on v5 superblocks.
4084  */
4085 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4086 xfs_log_check_lsn(
4087 	struct xfs_mount	*mp,
4088 	xfs_lsn_t		lsn)
4089 {
4090 	struct xlog		*log = mp->m_log;
4091 	bool			valid;
4092 
4093 	/*
4094 	 * norecovery mode skips mount-time log processing and unconditionally
4095 	 * resets the in-core LSN. We can't validate in this mode, but
4096 	 * modifications are not allowed anyways so just return true.
4097 	 */
4098 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4099 		return true;
4100 
4101 	/*
4102 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4103 	 * handled by recovery and thus safe to ignore here.
4104 	 */
4105 	if (lsn == NULLCOMMITLSN)
4106 		return true;
4107 
4108 	valid = xlog_valid_lsn(mp->m_log, lsn);
4109 
4110 	/* warn the user about what's gone wrong before verifier failure */
4111 	if (!valid) {
4112 		spin_lock(&log->l_icloglock);
4113 		xfs_warn(mp,
4114 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4115 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4116 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4117 			 log->l_curr_cycle, log->l_curr_block);
4118 		spin_unlock(&log->l_icloglock);
4119 	}
4120 
4121 	return valid;
4122 }
4123