1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 uint8_t client,
438 bool permanent)
439 {
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
449
450 XFS_STATS_INC(mp, xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
457
458 *ticp = tic;
459
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
462
463 trace_xfs_log_reserve(log, tic);
464
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
469
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
475
476 out_error:
477 /*
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
481 */
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
485 }
486
487
488 /*
489 * NOTES:
490 *
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
493 */
494
495 /*
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
508 */
509 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
515 {
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
518
519 if (XLOG_FORCED_SHUTDOWN(log) ||
520 /*
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
523 */
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
528 }
529
530
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
533
534 /*
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
537 */
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
541
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
546 */
547 ticket->t_flags |= XLOG_TIC_INITED;
548 }
549
550 xfs_log_ticket_put(ticket);
551 return lsn;
552 }
553
554 /*
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
559 */
560 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)561 xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
565 {
566 int abortflg;
567
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
576 }
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
579 }
580
581 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)582 xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
585 {
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
589 }
590
591 return 0;
592 }
593
594 /*
595 * Mount a log filesystem
596 *
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
601 *
602 * Return error or zero.
603 */
604 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)605 xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
610 {
611 int error = 0;
612 int min_logfsbs;
613
614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 xfs_notice(mp, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp->m_sb));
617 } else {
618 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 }
623
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = PTR_ERR(mp->m_log);
627 goto out;
628 }
629
630 /*
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
634 *
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
639 *
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
643 */
644 min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646 if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 xfs_warn(mp,
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp->m_sb.sb_logblocks, min_logfsbs);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 xfs_warn(mp,
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 error = -EINVAL;
656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 xfs_warn(mp,
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 XFS_MAX_LOG_BYTES);
661 error = -EINVAL;
662 }
663 if (error) {
664 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723 out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725 out_free_log:
726 xlog_dealloc_log(mp->m_log);
727 out:
728 return error;
729 }
730
731 /*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741 int
xfs_log_mount_finish(struct xfs_mount * mp)742 xfs_log_mount_finish(
743 struct xfs_mount *mp)
744 {
745 int error = 0;
746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747
748 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
749 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 return 0;
751 } else if (readonly) {
752 /* Allow unlinked processing to proceed */
753 mp->m_flags &= ~XFS_MOUNT_RDONLY;
754 }
755
756 /*
757 * During the second phase of log recovery, we need iget and
758 * iput to behave like they do for an active filesystem.
759 * xfs_fs_drop_inode needs to be able to prevent the deletion
760 * of inodes before we're done replaying log items on those
761 * inodes. Turn it off immediately after recovery finishes
762 * so that we don't leak the quota inodes if subsequent mount
763 * activities fail.
764 *
765 * We let all inodes involved in redo item processing end up on
766 * the LRU instead of being evicted immediately so that if we do
767 * something to an unlinked inode, the irele won't cause
768 * premature truncation and freeing of the inode, which results
769 * in log recovery failure. We have to evict the unreferenced
770 * lru inodes after clearing MS_ACTIVE because we don't
771 * otherwise clean up the lru if there's a subsequent failure in
772 * xfs_mountfs, which leads to us leaking the inodes if nothing
773 * else (e.g. quotacheck) references the inodes before the
774 * mount failure occurs.
775 */
776 mp->m_super->s_flags |= MS_ACTIVE;
777 error = xlog_recover_finish(mp->m_log);
778 if (!error)
779 xfs_log_work_queue(mp);
780 mp->m_super->s_flags &= ~MS_ACTIVE;
781 evict_inodes(mp->m_super);
782
783 if (readonly)
784 mp->m_flags |= XFS_MOUNT_RDONLY;
785
786 return error;
787 }
788
789 /*
790 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
791 * the log.
792 */
793 int
xfs_log_mount_cancel(struct xfs_mount * mp)794 xfs_log_mount_cancel(
795 struct xfs_mount *mp)
796 {
797 int error;
798
799 error = xlog_recover_cancel(mp->m_log);
800 xfs_log_unmount(mp);
801
802 return error;
803 }
804
805 /*
806 * Final log writes as part of unmount.
807 *
808 * Mark the filesystem clean as unmount happens. Note that during relocation
809 * this routine needs to be executed as part of source-bag while the
810 * deallocation must not be done until source-end.
811 */
812
813 /*
814 * Unmount record used to have a string "Unmount filesystem--" in the
815 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816 * We just write the magic number now since that particular field isn't
817 * currently architecture converted and "Unmount" is a bit foo.
818 * As far as I know, there weren't any dependencies on the old behaviour.
819 */
820
821 static int
xfs_log_unmount_write(xfs_mount_t * mp)822 xfs_log_unmount_write(xfs_mount_t *mp)
823 {
824 struct xlog *log = mp->m_log;
825 xlog_in_core_t *iclog;
826 #ifdef DEBUG
827 xlog_in_core_t *first_iclog;
828 #endif
829 xlog_ticket_t *tic = NULL;
830 xfs_lsn_t lsn;
831 int error;
832
833 /*
834 * Don't write out unmount record on norecovery mounts or ro devices.
835 * Or, if we are doing a forced umount (typically because of IO errors).
836 */
837 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
838 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
839 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
840 return 0;
841 }
842
843 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
844 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
845
846 #ifdef DEBUG
847 first_iclog = iclog = log->l_iclog;
848 do {
849 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
850 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
851 ASSERT(iclog->ic_offset == 0);
852 }
853 iclog = iclog->ic_next;
854 } while (iclog != first_iclog);
855 #endif
856 if (! (XLOG_FORCED_SHUTDOWN(log))) {
857 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
858 if (!error) {
859 /* the data section must be 32 bit size aligned */
860 struct {
861 uint16_t magic;
862 uint16_t pad1;
863 uint32_t pad2; /* may as well make it 64 bits */
864 } magic = {
865 .magic = XLOG_UNMOUNT_TYPE,
866 };
867 struct xfs_log_iovec reg = {
868 .i_addr = &magic,
869 .i_len = sizeof(magic),
870 .i_type = XLOG_REG_TYPE_UNMOUNT,
871 };
872 struct xfs_log_vec vec = {
873 .lv_niovecs = 1,
874 .lv_iovecp = ®,
875 };
876
877 /* remove inited flag, and account for space used */
878 tic->t_flags = 0;
879 tic->t_curr_res -= sizeof(magic);
880 error = xlog_write(log, &vec, tic, &lsn,
881 NULL, XLOG_UNMOUNT_TRANS);
882 /*
883 * At this point, we're umounting anyway,
884 * so there's no point in transitioning log state
885 * to IOERROR. Just continue...
886 */
887 }
888
889 if (error)
890 xfs_alert(mp, "%s: unmount record failed", __func__);
891
892
893 spin_lock(&log->l_icloglock);
894 iclog = log->l_iclog;
895 atomic_inc(&iclog->ic_refcnt);
896 xlog_state_want_sync(log, iclog);
897 spin_unlock(&log->l_icloglock);
898 error = xlog_state_release_iclog(log, iclog);
899
900 spin_lock(&log->l_icloglock);
901 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
902 iclog->ic_state == XLOG_STATE_DIRTY)) {
903 if (!XLOG_FORCED_SHUTDOWN(log)) {
904 xlog_wait(&iclog->ic_force_wait,
905 &log->l_icloglock);
906 } else {
907 spin_unlock(&log->l_icloglock);
908 }
909 } else {
910 spin_unlock(&log->l_icloglock);
911 }
912 if (tic) {
913 trace_xfs_log_umount_write(log, tic);
914 xlog_ungrant_log_space(log, tic);
915 xfs_log_ticket_put(tic);
916 }
917 } else {
918 /*
919 * We're already in forced_shutdown mode, couldn't
920 * even attempt to write out the unmount transaction.
921 *
922 * Go through the motions of sync'ing and releasing
923 * the iclog, even though no I/O will actually happen,
924 * we need to wait for other log I/Os that may already
925 * be in progress. Do this as a separate section of
926 * code so we'll know if we ever get stuck here that
927 * we're in this odd situation of trying to unmount
928 * a file system that went into forced_shutdown as
929 * the result of an unmount..
930 */
931 spin_lock(&log->l_icloglock);
932 iclog = log->l_iclog;
933 atomic_inc(&iclog->ic_refcnt);
934
935 xlog_state_want_sync(log, iclog);
936 spin_unlock(&log->l_icloglock);
937 error = xlog_state_release_iclog(log, iclog);
938
939 spin_lock(&log->l_icloglock);
940
941 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
942 || iclog->ic_state == XLOG_STATE_DIRTY
943 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
944
945 xlog_wait(&iclog->ic_force_wait,
946 &log->l_icloglock);
947 } else {
948 spin_unlock(&log->l_icloglock);
949 }
950 }
951
952 return error;
953 } /* xfs_log_unmount_write */
954
955 /*
956 * Empty the log for unmount/freeze.
957 *
958 * To do this, we first need to shut down the background log work so it is not
959 * trying to cover the log as we clean up. We then need to unpin all objects in
960 * the log so we can then flush them out. Once they have completed their IO and
961 * run the callbacks removing themselves from the AIL, we can write the unmount
962 * record.
963 */
964 void
xfs_log_quiesce(struct xfs_mount * mp)965 xfs_log_quiesce(
966 struct xfs_mount *mp)
967 {
968 cancel_delayed_work_sync(&mp->m_log->l_work);
969 xfs_log_force(mp, XFS_LOG_SYNC);
970
971 /*
972 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973 * will push it, xfs_wait_buftarg() will not wait for it. Further,
974 * xfs_buf_iowait() cannot be used because it was pushed with the
975 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976 * the IO to complete.
977 */
978 xfs_ail_push_all_sync(mp->m_ail);
979 xfs_wait_buftarg(mp->m_ddev_targp);
980 xfs_buf_lock(mp->m_sb_bp);
981 xfs_buf_unlock(mp->m_sb_bp);
982
983 xfs_log_unmount_write(mp);
984 }
985
986 /*
987 * Shut down and release the AIL and Log.
988 *
989 * During unmount, we need to ensure we flush all the dirty metadata objects
990 * from the AIL so that the log is empty before we write the unmount record to
991 * the log. Once this is done, we can tear down the AIL and the log.
992 */
993 void
xfs_log_unmount(struct xfs_mount * mp)994 xfs_log_unmount(
995 struct xfs_mount *mp)
996 {
997 xfs_log_quiesce(mp);
998
999 xfs_trans_ail_destroy(mp);
1000
1001 xfs_sysfs_del(&mp->m_log->l_kobj);
1002
1003 xlog_dealloc_log(mp->m_log);
1004 }
1005
1006 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1007 xfs_log_item_init(
1008 struct xfs_mount *mp,
1009 struct xfs_log_item *item,
1010 int type,
1011 const struct xfs_item_ops *ops)
1012 {
1013 item->li_mountp = mp;
1014 item->li_ailp = mp->m_ail;
1015 item->li_type = type;
1016 item->li_ops = ops;
1017 item->li_lv = NULL;
1018
1019 INIT_LIST_HEAD(&item->li_ail);
1020 INIT_LIST_HEAD(&item->li_cil);
1021 }
1022
1023 /*
1024 * Wake up processes waiting for log space after we have moved the log tail.
1025 */
1026 void
xfs_log_space_wake(struct xfs_mount * mp)1027 xfs_log_space_wake(
1028 struct xfs_mount *mp)
1029 {
1030 struct xlog *log = mp->m_log;
1031 int free_bytes;
1032
1033 if (XLOG_FORCED_SHUTDOWN(log))
1034 return;
1035
1036 if (!list_empty_careful(&log->l_write_head.waiters)) {
1037 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1038
1039 spin_lock(&log->l_write_head.lock);
1040 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1041 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1042 spin_unlock(&log->l_write_head.lock);
1043 }
1044
1045 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1046 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1047
1048 spin_lock(&log->l_reserve_head.lock);
1049 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1050 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1051 spin_unlock(&log->l_reserve_head.lock);
1052 }
1053 }
1054
1055 /*
1056 * Determine if we have a transaction that has gone to disk that needs to be
1057 * covered. To begin the transition to the idle state firstly the log needs to
1058 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059 * we start attempting to cover the log.
1060 *
1061 * Only if we are then in a state where covering is needed, the caller is
1062 * informed that dummy transactions are required to move the log into the idle
1063 * state.
1064 *
1065 * If there are any items in the AIl or CIL, then we do not want to attempt to
1066 * cover the log as we may be in a situation where there isn't log space
1067 * available to run a dummy transaction and this can lead to deadlocks when the
1068 * tail of the log is pinned by an item that is modified in the CIL. Hence
1069 * there's no point in running a dummy transaction at this point because we
1070 * can't start trying to idle the log until both the CIL and AIL are empty.
1071 */
1072 static int
xfs_log_need_covered(xfs_mount_t * mp)1073 xfs_log_need_covered(xfs_mount_t *mp)
1074 {
1075 struct xlog *log = mp->m_log;
1076 int needed = 0;
1077
1078 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1079 return 0;
1080
1081 if (!xlog_cil_empty(log))
1082 return 0;
1083
1084 spin_lock(&log->l_icloglock);
1085 switch (log->l_covered_state) {
1086 case XLOG_STATE_COVER_DONE:
1087 case XLOG_STATE_COVER_DONE2:
1088 case XLOG_STATE_COVER_IDLE:
1089 break;
1090 case XLOG_STATE_COVER_NEED:
1091 case XLOG_STATE_COVER_NEED2:
1092 if (xfs_ail_min_lsn(log->l_ailp))
1093 break;
1094 if (!xlog_iclogs_empty(log))
1095 break;
1096
1097 needed = 1;
1098 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1099 log->l_covered_state = XLOG_STATE_COVER_DONE;
1100 else
1101 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1102 break;
1103 default:
1104 needed = 1;
1105 break;
1106 }
1107 spin_unlock(&log->l_icloglock);
1108 return needed;
1109 }
1110
1111 /*
1112 * We may be holding the log iclog lock upon entering this routine.
1113 */
1114 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1115 xlog_assign_tail_lsn_locked(
1116 struct xfs_mount *mp)
1117 {
1118 struct xlog *log = mp->m_log;
1119 struct xfs_log_item *lip;
1120 xfs_lsn_t tail_lsn;
1121
1122 assert_spin_locked(&mp->m_ail->xa_lock);
1123
1124 /*
1125 * To make sure we always have a valid LSN for the log tail we keep
1126 * track of the last LSN which was committed in log->l_last_sync_lsn,
1127 * and use that when the AIL was empty.
1128 */
1129 lip = xfs_ail_min(mp->m_ail);
1130 if (lip)
1131 tail_lsn = lip->li_lsn;
1132 else
1133 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1134 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1135 atomic64_set(&log->l_tail_lsn, tail_lsn);
1136 return tail_lsn;
1137 }
1138
1139 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1140 xlog_assign_tail_lsn(
1141 struct xfs_mount *mp)
1142 {
1143 xfs_lsn_t tail_lsn;
1144
1145 spin_lock(&mp->m_ail->xa_lock);
1146 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1147 spin_unlock(&mp->m_ail->xa_lock);
1148
1149 return tail_lsn;
1150 }
1151
1152 /*
1153 * Return the space in the log between the tail and the head. The head
1154 * is passed in the cycle/bytes formal parms. In the special case where
1155 * the reserve head has wrapped passed the tail, this calculation is no
1156 * longer valid. In this case, just return 0 which means there is no space
1157 * in the log. This works for all places where this function is called
1158 * with the reserve head. Of course, if the write head were to ever
1159 * wrap the tail, we should blow up. Rather than catch this case here,
1160 * we depend on other ASSERTions in other parts of the code. XXXmiken
1161 *
1162 * This code also handles the case where the reservation head is behind
1163 * the tail. The details of this case are described below, but the end
1164 * result is that we return the size of the log as the amount of space left.
1165 */
1166 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1167 xlog_space_left(
1168 struct xlog *log,
1169 atomic64_t *head)
1170 {
1171 int free_bytes;
1172 int tail_bytes;
1173 int tail_cycle;
1174 int head_cycle;
1175 int head_bytes;
1176
1177 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1178 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1179 tail_bytes = BBTOB(tail_bytes);
1180 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1181 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1182 else if (tail_cycle + 1 < head_cycle)
1183 return 0;
1184 else if (tail_cycle < head_cycle) {
1185 ASSERT(tail_cycle == (head_cycle - 1));
1186 free_bytes = tail_bytes - head_bytes;
1187 } else {
1188 /*
1189 * The reservation head is behind the tail.
1190 * In this case we just want to return the size of the
1191 * log as the amount of space left.
1192 */
1193 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1194 xfs_alert(log->l_mp,
1195 " tail_cycle = %d, tail_bytes = %d",
1196 tail_cycle, tail_bytes);
1197 xfs_alert(log->l_mp,
1198 " GH cycle = %d, GH bytes = %d",
1199 head_cycle, head_bytes);
1200 ASSERT(0);
1201 free_bytes = log->l_logsize;
1202 }
1203 return free_bytes;
1204 }
1205
1206
1207 /*
1208 * Log function which is called when an io completes.
1209 *
1210 * The log manager needs its own routine, in order to control what
1211 * happens with the buffer after the write completes.
1212 */
1213 static void
xlog_iodone(xfs_buf_t * bp)1214 xlog_iodone(xfs_buf_t *bp)
1215 {
1216 struct xlog_in_core *iclog = bp->b_fspriv;
1217 struct xlog *l = iclog->ic_log;
1218 int aborted = 0;
1219
1220 /*
1221 * Race to shutdown the filesystem if we see an error or the iclog is in
1222 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223 * CRC errors into log recovery.
1224 */
1225 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1226 iclog->ic_state & XLOG_STATE_IOABORT) {
1227 if (iclog->ic_state & XLOG_STATE_IOABORT)
1228 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1229
1230 xfs_buf_ioerror_alert(bp, __func__);
1231 xfs_buf_stale(bp);
1232 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1233 /*
1234 * This flag will be propagated to the trans-committed
1235 * callback routines to let them know that the log-commit
1236 * didn't succeed.
1237 */
1238 aborted = XFS_LI_ABORTED;
1239 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1240 aborted = XFS_LI_ABORTED;
1241 }
1242
1243 /* log I/O is always issued ASYNC */
1244 ASSERT(bp->b_flags & XBF_ASYNC);
1245 xlog_state_done_syncing(iclog, aborted);
1246
1247 /*
1248 * drop the buffer lock now that we are done. Nothing references
1249 * the buffer after this, so an unmount waiting on this lock can now
1250 * tear it down safely. As such, it is unsafe to reference the buffer
1251 * (bp) after the unlock as we could race with it being freed.
1252 */
1253 xfs_buf_unlock(bp);
1254 }
1255
1256 /*
1257 * Return size of each in-core log record buffer.
1258 *
1259 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1260 *
1261 * If the filesystem blocksize is too large, we may need to choose a
1262 * larger size since the directory code currently logs entire blocks.
1263 */
1264
1265 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1266 xlog_get_iclog_buffer_size(
1267 struct xfs_mount *mp,
1268 struct xlog *log)
1269 {
1270 int size;
1271 int xhdrs;
1272
1273 if (mp->m_logbufs <= 0)
1274 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1275 else
1276 log->l_iclog_bufs = mp->m_logbufs;
1277
1278 /*
1279 * Buffer size passed in from mount system call.
1280 */
1281 if (mp->m_logbsize > 0) {
1282 size = log->l_iclog_size = mp->m_logbsize;
1283 log->l_iclog_size_log = 0;
1284 while (size != 1) {
1285 log->l_iclog_size_log++;
1286 size >>= 1;
1287 }
1288
1289 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1290 /* # headers = size / 32k
1291 * one header holds cycles from 32k of data
1292 */
1293
1294 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1295 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1296 xhdrs++;
1297 log->l_iclog_hsize = xhdrs << BBSHIFT;
1298 log->l_iclog_heads = xhdrs;
1299 } else {
1300 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1301 log->l_iclog_hsize = BBSIZE;
1302 log->l_iclog_heads = 1;
1303 }
1304 goto done;
1305 }
1306
1307 /* All machines use 32kB buffers by default. */
1308 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1309 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1310
1311 /* the default log size is 16k or 32k which is one header sector */
1312 log->l_iclog_hsize = BBSIZE;
1313 log->l_iclog_heads = 1;
1314
1315 done:
1316 /* are we being asked to make the sizes selected above visible? */
1317 if (mp->m_logbufs == 0)
1318 mp->m_logbufs = log->l_iclog_bufs;
1319 if (mp->m_logbsize == 0)
1320 mp->m_logbsize = log->l_iclog_size;
1321 } /* xlog_get_iclog_buffer_size */
1322
1323
1324 void
xfs_log_work_queue(struct xfs_mount * mp)1325 xfs_log_work_queue(
1326 struct xfs_mount *mp)
1327 {
1328 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1329 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1330 }
1331
1332 /*
1333 * Every sync period we need to unpin all items in the AIL and push them to
1334 * disk. If there is nothing dirty, then we might need to cover the log to
1335 * indicate that the filesystem is idle.
1336 */
1337 static void
xfs_log_worker(struct work_struct * work)1338 xfs_log_worker(
1339 struct work_struct *work)
1340 {
1341 struct xlog *log = container_of(to_delayed_work(work),
1342 struct xlog, l_work);
1343 struct xfs_mount *mp = log->l_mp;
1344
1345 /* dgc: errors ignored - not fatal and nowhere to report them */
1346 if (xfs_log_need_covered(mp)) {
1347 /*
1348 * Dump a transaction into the log that contains no real change.
1349 * This is needed to stamp the current tail LSN into the log
1350 * during the covering operation.
1351 *
1352 * We cannot use an inode here for this - that will push dirty
1353 * state back up into the VFS and then periodic inode flushing
1354 * will prevent log covering from making progress. Hence we
1355 * synchronously log the superblock instead to ensure the
1356 * superblock is immediately unpinned and can be written back.
1357 */
1358 xfs_sync_sb(mp, true);
1359 } else
1360 xfs_log_force(mp, 0);
1361
1362 /* start pushing all the metadata that is currently dirty */
1363 xfs_ail_push_all(mp->m_ail);
1364
1365 /* queue us up again */
1366 xfs_log_work_queue(mp);
1367 }
1368
1369 /*
1370 * This routine initializes some of the log structure for a given mount point.
1371 * Its primary purpose is to fill in enough, so recovery can occur. However,
1372 * some other stuff may be filled in too.
1373 */
1374 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1375 xlog_alloc_log(
1376 struct xfs_mount *mp,
1377 struct xfs_buftarg *log_target,
1378 xfs_daddr_t blk_offset,
1379 int num_bblks)
1380 {
1381 struct xlog *log;
1382 xlog_rec_header_t *head;
1383 xlog_in_core_t **iclogp;
1384 xlog_in_core_t *iclog, *prev_iclog=NULL;
1385 xfs_buf_t *bp;
1386 int i;
1387 int error = -ENOMEM;
1388 uint log2_size = 0;
1389
1390 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1391 if (!log) {
1392 xfs_warn(mp, "Log allocation failed: No memory!");
1393 goto out;
1394 }
1395
1396 log->l_mp = mp;
1397 log->l_targ = log_target;
1398 log->l_logsize = BBTOB(num_bblks);
1399 log->l_logBBstart = blk_offset;
1400 log->l_logBBsize = num_bblks;
1401 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1402 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1403 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1404
1405 log->l_prev_block = -1;
1406 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1407 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1408 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1409 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1410
1411 xlog_grant_head_init(&log->l_reserve_head);
1412 xlog_grant_head_init(&log->l_write_head);
1413
1414 error = -EFSCORRUPTED;
1415 if (xfs_sb_version_hassector(&mp->m_sb)) {
1416 log2_size = mp->m_sb.sb_logsectlog;
1417 if (log2_size < BBSHIFT) {
1418 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1419 log2_size, BBSHIFT);
1420 goto out_free_log;
1421 }
1422
1423 log2_size -= BBSHIFT;
1424 if (log2_size > mp->m_sectbb_log) {
1425 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1426 log2_size, mp->m_sectbb_log);
1427 goto out_free_log;
1428 }
1429
1430 /* for larger sector sizes, must have v2 or external log */
1431 if (log2_size && log->l_logBBstart > 0 &&
1432 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1433 xfs_warn(mp,
1434 "log sector size (0x%x) invalid for configuration.",
1435 log2_size);
1436 goto out_free_log;
1437 }
1438 }
1439 log->l_sectBBsize = 1 << log2_size;
1440
1441 xlog_get_iclog_buffer_size(mp, log);
1442
1443 /*
1444 * Use a NULL block for the extra log buffer used during splits so that
1445 * it will trigger errors if we ever try to do IO on it without first
1446 * having set it up properly.
1447 */
1448 error = -ENOMEM;
1449 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1450 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1451 if (!bp)
1452 goto out_free_log;
1453
1454 /*
1455 * The iclogbuf buffer locks are held over IO but we are not going to do
1456 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1457 * when appropriately.
1458 */
1459 ASSERT(xfs_buf_islocked(bp));
1460 xfs_buf_unlock(bp);
1461
1462 /* use high priority wq for log I/O completion */
1463 bp->b_ioend_wq = mp->m_log_workqueue;
1464 bp->b_iodone = xlog_iodone;
1465 log->l_xbuf = bp;
1466
1467 spin_lock_init(&log->l_icloglock);
1468 init_waitqueue_head(&log->l_flush_wait);
1469
1470 iclogp = &log->l_iclog;
1471 /*
1472 * The amount of memory to allocate for the iclog structure is
1473 * rather funky due to the way the structure is defined. It is
1474 * done this way so that we can use different sizes for machines
1475 * with different amounts of memory. See the definition of
1476 * xlog_in_core_t in xfs_log_priv.h for details.
1477 */
1478 ASSERT(log->l_iclog_size >= 4096);
1479 for (i=0; i < log->l_iclog_bufs; i++) {
1480 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1481 if (!*iclogp)
1482 goto out_free_iclog;
1483
1484 iclog = *iclogp;
1485 iclog->ic_prev = prev_iclog;
1486 prev_iclog = iclog;
1487
1488 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1489 BTOBB(log->l_iclog_size),
1490 XBF_NO_IOACCT);
1491 if (!bp)
1492 goto out_free_iclog;
1493
1494 ASSERT(xfs_buf_islocked(bp));
1495 xfs_buf_unlock(bp);
1496
1497 /* use high priority wq for log I/O completion */
1498 bp->b_ioend_wq = mp->m_log_workqueue;
1499 bp->b_iodone = xlog_iodone;
1500 iclog->ic_bp = bp;
1501 iclog->ic_data = bp->b_addr;
1502 #ifdef DEBUG
1503 log->l_iclog_bak[i] = &iclog->ic_header;
1504 #endif
1505 head = &iclog->ic_header;
1506 memset(head, 0, sizeof(xlog_rec_header_t));
1507 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1508 head->h_version = cpu_to_be32(
1509 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1510 head->h_size = cpu_to_be32(log->l_iclog_size);
1511 /* new fields */
1512 head->h_fmt = cpu_to_be32(XLOG_FMT);
1513 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1514
1515 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1516 iclog->ic_state = XLOG_STATE_ACTIVE;
1517 iclog->ic_log = log;
1518 atomic_set(&iclog->ic_refcnt, 0);
1519 spin_lock_init(&iclog->ic_callback_lock);
1520 iclog->ic_callback_tail = &(iclog->ic_callback);
1521 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1522
1523 init_waitqueue_head(&iclog->ic_force_wait);
1524 init_waitqueue_head(&iclog->ic_write_wait);
1525
1526 iclogp = &iclog->ic_next;
1527 }
1528 *iclogp = log->l_iclog; /* complete ring */
1529 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1530
1531 error = xlog_cil_init(log);
1532 if (error)
1533 goto out_free_iclog;
1534 return log;
1535
1536 out_free_iclog:
1537 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1538 prev_iclog = iclog->ic_next;
1539 if (iclog->ic_bp)
1540 xfs_buf_free(iclog->ic_bp);
1541 kmem_free(iclog);
1542 if (prev_iclog == log->l_iclog)
1543 break;
1544 }
1545 spinlock_destroy(&log->l_icloglock);
1546 xfs_buf_free(log->l_xbuf);
1547 out_free_log:
1548 kmem_free(log);
1549 out:
1550 return ERR_PTR(error);
1551 } /* xlog_alloc_log */
1552
1553
1554 /*
1555 * Write out the commit record of a transaction associated with the given
1556 * ticket. Return the lsn of the commit record.
1557 */
1558 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1559 xlog_commit_record(
1560 struct xlog *log,
1561 struct xlog_ticket *ticket,
1562 struct xlog_in_core **iclog,
1563 xfs_lsn_t *commitlsnp)
1564 {
1565 struct xfs_mount *mp = log->l_mp;
1566 int error;
1567 struct xfs_log_iovec reg = {
1568 .i_addr = NULL,
1569 .i_len = 0,
1570 .i_type = XLOG_REG_TYPE_COMMIT,
1571 };
1572 struct xfs_log_vec vec = {
1573 .lv_niovecs = 1,
1574 .lv_iovecp = ®,
1575 };
1576
1577 ASSERT_ALWAYS(iclog);
1578 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1579 XLOG_COMMIT_TRANS);
1580 if (error)
1581 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1582 return error;
1583 }
1584
1585 /*
1586 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1587 * log space. This code pushes on the lsn which would supposedly free up
1588 * the 25% which we want to leave free. We may need to adopt a policy which
1589 * pushes on an lsn which is further along in the log once we reach the high
1590 * water mark. In this manner, we would be creating a low water mark.
1591 */
1592 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1593 xlog_grant_push_ail(
1594 struct xlog *log,
1595 int need_bytes)
1596 {
1597 xfs_lsn_t threshold_lsn = 0;
1598 xfs_lsn_t last_sync_lsn;
1599 int free_blocks;
1600 int free_bytes;
1601 int threshold_block;
1602 int threshold_cycle;
1603 int free_threshold;
1604
1605 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1606
1607 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1608 free_blocks = BTOBBT(free_bytes);
1609
1610 /*
1611 * Set the threshold for the minimum number of free blocks in the
1612 * log to the maximum of what the caller needs, one quarter of the
1613 * log, and 256 blocks.
1614 */
1615 free_threshold = BTOBB(need_bytes);
1616 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1617 free_threshold = MAX(free_threshold, 256);
1618 if (free_blocks >= free_threshold)
1619 return;
1620
1621 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1622 &threshold_block);
1623 threshold_block += free_threshold;
1624 if (threshold_block >= log->l_logBBsize) {
1625 threshold_block -= log->l_logBBsize;
1626 threshold_cycle += 1;
1627 }
1628 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1629 threshold_block);
1630 /*
1631 * Don't pass in an lsn greater than the lsn of the last
1632 * log record known to be on disk. Use a snapshot of the last sync lsn
1633 * so that it doesn't change between the compare and the set.
1634 */
1635 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1636 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1637 threshold_lsn = last_sync_lsn;
1638
1639 /*
1640 * Get the transaction layer to kick the dirty buffers out to
1641 * disk asynchronously. No point in trying to do this if
1642 * the filesystem is shutting down.
1643 */
1644 if (!XLOG_FORCED_SHUTDOWN(log))
1645 xfs_ail_push(log->l_ailp, threshold_lsn);
1646 }
1647
1648 /*
1649 * Stamp cycle number in every block
1650 */
1651 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1652 xlog_pack_data(
1653 struct xlog *log,
1654 struct xlog_in_core *iclog,
1655 int roundoff)
1656 {
1657 int i, j, k;
1658 int size = iclog->ic_offset + roundoff;
1659 __be32 cycle_lsn;
1660 char *dp;
1661
1662 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1663
1664 dp = iclog->ic_datap;
1665 for (i = 0; i < BTOBB(size); i++) {
1666 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1667 break;
1668 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1669 *(__be32 *)dp = cycle_lsn;
1670 dp += BBSIZE;
1671 }
1672
1673 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1674 xlog_in_core_2_t *xhdr = iclog->ic_data;
1675
1676 for ( ; i < BTOBB(size); i++) {
1677 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1678 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1680 *(__be32 *)dp = cycle_lsn;
1681 dp += BBSIZE;
1682 }
1683
1684 for (i = 1; i < log->l_iclog_heads; i++)
1685 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1686 }
1687 }
1688
1689 /*
1690 * Calculate the checksum for a log buffer.
1691 *
1692 * This is a little more complicated than it should be because the various
1693 * headers and the actual data are non-contiguous.
1694 */
1695 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1696 xlog_cksum(
1697 struct xlog *log,
1698 struct xlog_rec_header *rhead,
1699 char *dp,
1700 int size)
1701 {
1702 uint32_t crc;
1703
1704 /* first generate the crc for the record header ... */
1705 crc = xfs_start_cksum_update((char *)rhead,
1706 sizeof(struct xlog_rec_header),
1707 offsetof(struct xlog_rec_header, h_crc));
1708
1709 /* ... then for additional cycle data for v2 logs ... */
1710 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1711 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1712 int i;
1713 int xheads;
1714
1715 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1716 if (size % XLOG_HEADER_CYCLE_SIZE)
1717 xheads++;
1718
1719 for (i = 1; i < xheads; i++) {
1720 crc = crc32c(crc, &xhdr[i].hic_xheader,
1721 sizeof(struct xlog_rec_ext_header));
1722 }
1723 }
1724
1725 /* ... and finally for the payload */
1726 crc = crc32c(crc, dp, size);
1727
1728 return xfs_end_cksum(crc);
1729 }
1730
1731 /*
1732 * The bdstrat callback function for log bufs. This gives us a central
1733 * place to trap bufs in case we get hit by a log I/O error and need to
1734 * shutdown. Actually, in practice, even when we didn't get a log error,
1735 * we transition the iclogs to IOERROR state *after* flushing all existing
1736 * iclogs to disk. This is because we don't want anymore new transactions to be
1737 * started or completed afterwards.
1738 *
1739 * We lock the iclogbufs here so that we can serialise against IO completion
1740 * during unmount. We might be processing a shutdown triggered during unmount,
1741 * and that can occur asynchronously to the unmount thread, and hence we need to
1742 * ensure that completes before tearing down the iclogbufs. Hence we need to
1743 * hold the buffer lock across the log IO to acheive that.
1744 */
1745 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1746 xlog_bdstrat(
1747 struct xfs_buf *bp)
1748 {
1749 struct xlog_in_core *iclog = bp->b_fspriv;
1750
1751 xfs_buf_lock(bp);
1752 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1753 xfs_buf_ioerror(bp, -EIO);
1754 xfs_buf_stale(bp);
1755 xfs_buf_ioend(bp);
1756 /*
1757 * It would seem logical to return EIO here, but we rely on
1758 * the log state machine to propagate I/O errors instead of
1759 * doing it here. Similarly, IO completion will unlock the
1760 * buffer, so we don't do it here.
1761 */
1762 return 0;
1763 }
1764
1765 xfs_buf_submit(bp);
1766 return 0;
1767 }
1768
1769 /*
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion. Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog. This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header. We replace
1776 * it with the current cycle count. Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once. In other words,
1779 * we can't have part of a 512 byte block written and part not written. By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1782 *
1783 * This routine is single threaded on the iclog. No other thread can be in
1784 * this routine with the same iclog. Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock. Updating the global
1786 * log will require grabbing the lock though.
1787 *
1788 * The entire log manager uses a logical block numbering scheme. Only
1789 * log_sync (and then only bwrite()) know about the fact that the log may
1790 * not start with block zero on a given device. The log block start offset
1791 * is added immediately before calling bwrite().
1792 */
1793
1794 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1795 xlog_sync(
1796 struct xlog *log,
1797 struct xlog_in_core *iclog)
1798 {
1799 xfs_buf_t *bp;
1800 int i;
1801 uint count; /* byte count of bwrite */
1802 uint count_init; /* initial count before roundup */
1803 int roundoff; /* roundoff to BB or stripe */
1804 int split = 0; /* split write into two regions */
1805 int error;
1806 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1807 int size;
1808
1809 XFS_STATS_INC(log->l_mp, xs_log_writes);
1810 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1811
1812 /* Add for LR header */
1813 count_init = log->l_iclog_hsize + iclog->ic_offset;
1814
1815 /* Round out the log write size */
1816 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1817 /* we have a v2 stripe unit to use */
1818 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1819 } else {
1820 count = BBTOB(BTOBB(count_init));
1821 }
1822 roundoff = count - count_init;
1823 ASSERT(roundoff >= 0);
1824 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1825 roundoff < log->l_mp->m_sb.sb_logsunit)
1826 ||
1827 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1828 roundoff < BBTOB(1)));
1829
1830 /* move grant heads by roundoff in sync */
1831 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1832 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1833
1834 /* put cycle number in every block */
1835 xlog_pack_data(log, iclog, roundoff);
1836
1837 /* real byte length */
1838 size = iclog->ic_offset;
1839 if (v2)
1840 size += roundoff;
1841 iclog->ic_header.h_len = cpu_to_be32(size);
1842
1843 bp = iclog->ic_bp;
1844 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1845
1846 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1847
1848 /* Do we need to split this write into 2 parts? */
1849 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1850 char *dptr;
1851
1852 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1853 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1854 iclog->ic_bwritecnt = 2;
1855
1856 /*
1857 * Bump the cycle numbers at the start of each block in the
1858 * part of the iclog that ends up in the buffer that gets
1859 * written to the start of the log.
1860 *
1861 * Watch out for the header magic number case, though.
1862 */
1863 dptr = (char *)&iclog->ic_header + count;
1864 for (i = 0; i < split; i += BBSIZE) {
1865 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1866 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1867 cycle++;
1868 *(__be32 *)dptr = cpu_to_be32(cycle);
1869
1870 dptr += BBSIZE;
1871 }
1872 } else {
1873 iclog->ic_bwritecnt = 1;
1874 }
1875
1876 /* calculcate the checksum */
1877 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1878 iclog->ic_datap, size);
1879 /*
1880 * Intentionally corrupt the log record CRC based on the error injection
1881 * frequency, if defined. This facilitates testing log recovery in the
1882 * event of torn writes. Hence, set the IOABORT state to abort the log
1883 * write on I/O completion and shutdown the fs. The subsequent mount
1884 * detects the bad CRC and attempts to recover.
1885 */
1886 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1887 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1888 iclog->ic_state |= XLOG_STATE_IOABORT;
1889 xfs_warn(log->l_mp,
1890 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1891 be64_to_cpu(iclog->ic_header.h_lsn));
1892 }
1893
1894 bp->b_io_length = BTOBB(count);
1895 bp->b_fspriv = iclog;
1896 bp->b_flags &= ~XBF_FLUSH;
1897 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1898
1899 /*
1900 * Flush the data device before flushing the log to make sure all meta
1901 * data written back from the AIL actually made it to disk before
1902 * stamping the new log tail LSN into the log buffer. For an external
1903 * log we need to issue the flush explicitly, and unfortunately
1904 * synchronously here; for an internal log we can simply use the block
1905 * layer state machine for preflushes.
1906 */
1907 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1908 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1909 else
1910 bp->b_flags |= XBF_FLUSH;
1911
1912 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1913 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1914
1915 xlog_verify_iclog(log, iclog, count, true);
1916
1917 /* account for log which doesn't start at block #0 */
1918 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919
1920 /*
1921 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1922 * is shutting down.
1923 */
1924 error = xlog_bdstrat(bp);
1925 if (error) {
1926 xfs_buf_ioerror_alert(bp, "xlog_sync");
1927 return error;
1928 }
1929 if (split) {
1930 bp = iclog->ic_log->l_xbuf;
1931 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1932 xfs_buf_associate_memory(bp,
1933 (char *)&iclog->ic_header + count, split);
1934 bp->b_fspriv = iclog;
1935 bp->b_flags &= ~XBF_FLUSH;
1936 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1937
1938 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1939 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1940
1941 /* account for internal log which doesn't start at block #0 */
1942 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1943 error = xlog_bdstrat(bp);
1944 if (error) {
1945 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1946 return error;
1947 }
1948 }
1949 return 0;
1950 } /* xlog_sync */
1951
1952 /*
1953 * Deallocate a log structure
1954 */
1955 STATIC void
xlog_dealloc_log(struct xlog * log)1956 xlog_dealloc_log(
1957 struct xlog *log)
1958 {
1959 xlog_in_core_t *iclog, *next_iclog;
1960 int i;
1961
1962 xlog_cil_destroy(log);
1963
1964 /*
1965 * Cycle all the iclogbuf locks to make sure all log IO completion
1966 * is done before we tear down these buffers.
1967 */
1968 iclog = log->l_iclog;
1969 for (i = 0; i < log->l_iclog_bufs; i++) {
1970 xfs_buf_lock(iclog->ic_bp);
1971 xfs_buf_unlock(iclog->ic_bp);
1972 iclog = iclog->ic_next;
1973 }
1974
1975 /*
1976 * Always need to ensure that the extra buffer does not point to memory
1977 * owned by another log buffer before we free it. Also, cycle the lock
1978 * first to ensure we've completed IO on it.
1979 */
1980 xfs_buf_lock(log->l_xbuf);
1981 xfs_buf_unlock(log->l_xbuf);
1982 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1983 xfs_buf_free(log->l_xbuf);
1984
1985 iclog = log->l_iclog;
1986 for (i = 0; i < log->l_iclog_bufs; i++) {
1987 xfs_buf_free(iclog->ic_bp);
1988 next_iclog = iclog->ic_next;
1989 kmem_free(iclog);
1990 iclog = next_iclog;
1991 }
1992 spinlock_destroy(&log->l_icloglock);
1993
1994 log->l_mp->m_log = NULL;
1995 kmem_free(log);
1996 } /* xlog_dealloc_log */
1997
1998 /*
1999 * Update counters atomically now that memcpy is done.
2000 */
2001 /* ARGSUSED */
2002 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2003 xlog_state_finish_copy(
2004 struct xlog *log,
2005 struct xlog_in_core *iclog,
2006 int record_cnt,
2007 int copy_bytes)
2008 {
2009 spin_lock(&log->l_icloglock);
2010
2011 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2012 iclog->ic_offset += copy_bytes;
2013
2014 spin_unlock(&log->l_icloglock);
2015 } /* xlog_state_finish_copy */
2016
2017
2018
2019
2020 /*
2021 * print out info relating to regions written which consume
2022 * the reservation
2023 */
2024 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2025 xlog_print_tic_res(
2026 struct xfs_mount *mp,
2027 struct xlog_ticket *ticket)
2028 {
2029 uint i;
2030 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2031
2032 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2033 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2034 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2035 REG_TYPE_STR(BFORMAT, "bformat"),
2036 REG_TYPE_STR(BCHUNK, "bchunk"),
2037 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2038 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2039 REG_TYPE_STR(IFORMAT, "iformat"),
2040 REG_TYPE_STR(ICORE, "icore"),
2041 REG_TYPE_STR(IEXT, "iext"),
2042 REG_TYPE_STR(IBROOT, "ibroot"),
2043 REG_TYPE_STR(ILOCAL, "ilocal"),
2044 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2045 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2046 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2047 REG_TYPE_STR(QFORMAT, "qformat"),
2048 REG_TYPE_STR(DQUOT, "dquot"),
2049 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2050 REG_TYPE_STR(LRHEADER, "LR header"),
2051 REG_TYPE_STR(UNMOUNT, "unmount"),
2052 REG_TYPE_STR(COMMIT, "commit"),
2053 REG_TYPE_STR(TRANSHDR, "trans header"),
2054 REG_TYPE_STR(ICREATE, "inode create")
2055 };
2056 #undef REG_TYPE_STR
2057
2058 xfs_warn(mp, "ticket reservation summary:");
2059 xfs_warn(mp, " unit res = %d bytes",
2060 ticket->t_unit_res);
2061 xfs_warn(mp, " current res = %d bytes",
2062 ticket->t_curr_res);
2063 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2064 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2065 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2066 ticket->t_res_num_ophdrs, ophdr_spc);
2067 xfs_warn(mp, " ophdr + reg = %u bytes",
2068 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2069 xfs_warn(mp, " num regions = %u",
2070 ticket->t_res_num);
2071
2072 for (i = 0; i < ticket->t_res_num; i++) {
2073 uint r_type = ticket->t_res_arr[i].r_type;
2074 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2075 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2076 "bad-rtype" : res_type_str[r_type]),
2077 ticket->t_res_arr[i].r_len);
2078 }
2079 }
2080
2081 /*
2082 * Print a summary of the transaction.
2083 */
2084 void
xlog_print_trans(struct xfs_trans * tp)2085 xlog_print_trans(
2086 struct xfs_trans *tp)
2087 {
2088 struct xfs_mount *mp = tp->t_mountp;
2089 struct xfs_log_item_desc *lidp;
2090
2091 /* dump core transaction and ticket info */
2092 xfs_warn(mp, "transaction summary:");
2093 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2094
2095 xlog_print_tic_res(mp, tp->t_ticket);
2096
2097 /* dump each log item */
2098 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2099 struct xfs_log_item *lip = lidp->lid_item;
2100 struct xfs_log_vec *lv = lip->li_lv;
2101 struct xfs_log_iovec *vec;
2102 int i;
2103
2104 xfs_warn(mp, "log item: ");
2105 xfs_warn(mp, " type = 0x%x", lip->li_type);
2106 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2107 if (!lv)
2108 continue;
2109 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2110 xfs_warn(mp, " size = %d", lv->lv_size);
2111 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2112 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2113
2114 /* dump each iovec for the log item */
2115 vec = lv->lv_iovecp;
2116 for (i = 0; i < lv->lv_niovecs; i++) {
2117 int dumplen = min(vec->i_len, 32);
2118
2119 xfs_warn(mp, " iovec[%d]", i);
2120 xfs_warn(mp, " type = 0x%x", vec->i_type);
2121 xfs_warn(mp, " len = %d", vec->i_len);
2122 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2123 xfs_hex_dump(vec->i_addr, dumplen);
2124
2125 vec++;
2126 }
2127 }
2128 }
2129
2130 /*
2131 * Calculate the potential space needed by the log vector. Each region gets
2132 * its own xlog_op_header_t and may need to be double word aligned.
2133 */
2134 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2135 xlog_write_calc_vec_length(
2136 struct xlog_ticket *ticket,
2137 struct xfs_log_vec *log_vector)
2138 {
2139 struct xfs_log_vec *lv;
2140 int headers = 0;
2141 int len = 0;
2142 int i;
2143
2144 /* acct for start rec of xact */
2145 if (ticket->t_flags & XLOG_TIC_INITED)
2146 headers++;
2147
2148 for (lv = log_vector; lv; lv = lv->lv_next) {
2149 /* we don't write ordered log vectors */
2150 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2151 continue;
2152
2153 headers += lv->lv_niovecs;
2154
2155 for (i = 0; i < lv->lv_niovecs; i++) {
2156 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2157
2158 len += vecp->i_len;
2159 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2160 }
2161 }
2162
2163 ticket->t_res_num_ophdrs += headers;
2164 len += headers * sizeof(struct xlog_op_header);
2165
2166 return len;
2167 }
2168
2169 /*
2170 * If first write for transaction, insert start record We can't be trying to
2171 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2172 */
2173 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2174 xlog_write_start_rec(
2175 struct xlog_op_header *ophdr,
2176 struct xlog_ticket *ticket)
2177 {
2178 if (!(ticket->t_flags & XLOG_TIC_INITED))
2179 return 0;
2180
2181 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2182 ophdr->oh_clientid = ticket->t_clientid;
2183 ophdr->oh_len = 0;
2184 ophdr->oh_flags = XLOG_START_TRANS;
2185 ophdr->oh_res2 = 0;
2186
2187 ticket->t_flags &= ~XLOG_TIC_INITED;
2188
2189 return sizeof(struct xlog_op_header);
2190 }
2191
2192 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2193 xlog_write_setup_ophdr(
2194 struct xlog *log,
2195 struct xlog_op_header *ophdr,
2196 struct xlog_ticket *ticket,
2197 uint flags)
2198 {
2199 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2200 ophdr->oh_clientid = ticket->t_clientid;
2201 ophdr->oh_res2 = 0;
2202
2203 /* are we copying a commit or unmount record? */
2204 ophdr->oh_flags = flags;
2205
2206 /*
2207 * We've seen logs corrupted with bad transaction client ids. This
2208 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2209 * and shut down the filesystem.
2210 */
2211 switch (ophdr->oh_clientid) {
2212 case XFS_TRANSACTION:
2213 case XFS_VOLUME:
2214 case XFS_LOG:
2215 break;
2216 default:
2217 xfs_warn(log->l_mp,
2218 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2219 ophdr->oh_clientid, ticket);
2220 return NULL;
2221 }
2222
2223 return ophdr;
2224 }
2225
2226 /*
2227 * Set up the parameters of the region copy into the log. This has
2228 * to handle region write split across multiple log buffers - this
2229 * state is kept external to this function so that this code can
2230 * be written in an obvious, self documenting manner.
2231 */
2232 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2233 xlog_write_setup_copy(
2234 struct xlog_ticket *ticket,
2235 struct xlog_op_header *ophdr,
2236 int space_available,
2237 int space_required,
2238 int *copy_off,
2239 int *copy_len,
2240 int *last_was_partial_copy,
2241 int *bytes_consumed)
2242 {
2243 int still_to_copy;
2244
2245 still_to_copy = space_required - *bytes_consumed;
2246 *copy_off = *bytes_consumed;
2247
2248 if (still_to_copy <= space_available) {
2249 /* write of region completes here */
2250 *copy_len = still_to_copy;
2251 ophdr->oh_len = cpu_to_be32(*copy_len);
2252 if (*last_was_partial_copy)
2253 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2254 *last_was_partial_copy = 0;
2255 *bytes_consumed = 0;
2256 return 0;
2257 }
2258
2259 /* partial write of region, needs extra log op header reservation */
2260 *copy_len = space_available;
2261 ophdr->oh_len = cpu_to_be32(*copy_len);
2262 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2263 if (*last_was_partial_copy)
2264 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2265 *bytes_consumed += *copy_len;
2266 (*last_was_partial_copy)++;
2267
2268 /* account for new log op header */
2269 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2270 ticket->t_res_num_ophdrs++;
2271
2272 return sizeof(struct xlog_op_header);
2273 }
2274
2275 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2276 xlog_write_copy_finish(
2277 struct xlog *log,
2278 struct xlog_in_core *iclog,
2279 uint flags,
2280 int *record_cnt,
2281 int *data_cnt,
2282 int *partial_copy,
2283 int *partial_copy_len,
2284 int log_offset,
2285 struct xlog_in_core **commit_iclog)
2286 {
2287 if (*partial_copy) {
2288 /*
2289 * This iclog has already been marked WANT_SYNC by
2290 * xlog_state_get_iclog_space.
2291 */
2292 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2293 *record_cnt = 0;
2294 *data_cnt = 0;
2295 return xlog_state_release_iclog(log, iclog);
2296 }
2297
2298 *partial_copy = 0;
2299 *partial_copy_len = 0;
2300
2301 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2302 /* no more space in this iclog - push it. */
2303 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2304 *record_cnt = 0;
2305 *data_cnt = 0;
2306
2307 spin_lock(&log->l_icloglock);
2308 xlog_state_want_sync(log, iclog);
2309 spin_unlock(&log->l_icloglock);
2310
2311 if (!commit_iclog)
2312 return xlog_state_release_iclog(log, iclog);
2313 ASSERT(flags & XLOG_COMMIT_TRANS);
2314 *commit_iclog = iclog;
2315 }
2316
2317 return 0;
2318 }
2319
2320 /*
2321 * Write some region out to in-core log
2322 *
2323 * This will be called when writing externally provided regions or when
2324 * writing out a commit record for a given transaction.
2325 *
2326 * General algorithm:
2327 * 1. Find total length of this write. This may include adding to the
2328 * lengths passed in.
2329 * 2. Check whether we violate the tickets reservation.
2330 * 3. While writing to this iclog
2331 * A. Reserve as much space in this iclog as can get
2332 * B. If this is first write, save away start lsn
2333 * C. While writing this region:
2334 * 1. If first write of transaction, write start record
2335 * 2. Write log operation header (header per region)
2336 * 3. Find out if we can fit entire region into this iclog
2337 * 4. Potentially, verify destination memcpy ptr
2338 * 5. Memcpy (partial) region
2339 * 6. If partial copy, release iclog; otherwise, continue
2340 * copying more regions into current iclog
2341 * 4. Mark want sync bit (in simulation mode)
2342 * 5. Release iclog for potential flush to on-disk log.
2343 *
2344 * ERRORS:
2345 * 1. Panic if reservation is overrun. This should never happen since
2346 * reservation amounts are generated internal to the filesystem.
2347 * NOTES:
2348 * 1. Tickets are single threaded data structures.
2349 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2350 * syncing routine. When a single log_write region needs to span
2351 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2352 * on all log operation writes which don't contain the end of the
2353 * region. The XLOG_END_TRANS bit is used for the in-core log
2354 * operation which contains the end of the continued log_write region.
2355 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2356 * we don't really know exactly how much space will be used. As a result,
2357 * we don't update ic_offset until the end when we know exactly how many
2358 * bytes have been written out.
2359 */
2360 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2361 xlog_write(
2362 struct xlog *log,
2363 struct xfs_log_vec *log_vector,
2364 struct xlog_ticket *ticket,
2365 xfs_lsn_t *start_lsn,
2366 struct xlog_in_core **commit_iclog,
2367 uint flags)
2368 {
2369 struct xlog_in_core *iclog = NULL;
2370 struct xfs_log_iovec *vecp;
2371 struct xfs_log_vec *lv;
2372 int len;
2373 int index;
2374 int partial_copy = 0;
2375 int partial_copy_len = 0;
2376 int contwr = 0;
2377 int record_cnt = 0;
2378 int data_cnt = 0;
2379 int error;
2380
2381 *start_lsn = 0;
2382
2383 len = xlog_write_calc_vec_length(ticket, log_vector);
2384
2385 /*
2386 * Region headers and bytes are already accounted for.
2387 * We only need to take into account start records and
2388 * split regions in this function.
2389 */
2390 if (ticket->t_flags & XLOG_TIC_INITED)
2391 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2392
2393 /*
2394 * Commit record headers need to be accounted for. These
2395 * come in as separate writes so are easy to detect.
2396 */
2397 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2398 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2399
2400 if (ticket->t_curr_res < 0) {
2401 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2402 "ctx ticket reservation ran out. Need to up reservation");
2403 xlog_print_tic_res(log->l_mp, ticket);
2404 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2405 }
2406
2407 index = 0;
2408 lv = log_vector;
2409 vecp = lv->lv_iovecp;
2410 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2411 void *ptr;
2412 int log_offset;
2413
2414 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2415 &contwr, &log_offset);
2416 if (error)
2417 return error;
2418
2419 ASSERT(log_offset <= iclog->ic_size - 1);
2420 ptr = iclog->ic_datap + log_offset;
2421
2422 /* start_lsn is the first lsn written to. That's all we need. */
2423 if (!*start_lsn)
2424 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2425
2426 /*
2427 * This loop writes out as many regions as can fit in the amount
2428 * of space which was allocated by xlog_state_get_iclog_space().
2429 */
2430 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2431 struct xfs_log_iovec *reg;
2432 struct xlog_op_header *ophdr;
2433 int start_rec_copy;
2434 int copy_len;
2435 int copy_off;
2436 bool ordered = false;
2437
2438 /* ordered log vectors have no regions to write */
2439 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2440 ASSERT(lv->lv_niovecs == 0);
2441 ordered = true;
2442 goto next_lv;
2443 }
2444
2445 reg = &vecp[index];
2446 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2447 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2448
2449 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2450 if (start_rec_copy) {
2451 record_cnt++;
2452 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2453 start_rec_copy);
2454 }
2455
2456 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2457 if (!ophdr)
2458 return -EIO;
2459
2460 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2461 sizeof(struct xlog_op_header));
2462
2463 len += xlog_write_setup_copy(ticket, ophdr,
2464 iclog->ic_size-log_offset,
2465 reg->i_len,
2466 ©_off, ©_len,
2467 &partial_copy,
2468 &partial_copy_len);
2469 xlog_verify_dest_ptr(log, ptr);
2470
2471 /*
2472 * Copy region.
2473 *
2474 * Unmount records just log an opheader, so can have
2475 * empty payloads with no data region to copy. Hence we
2476 * only copy the payload if the vector says it has data
2477 * to copy.
2478 */
2479 ASSERT(copy_len >= 0);
2480 if (copy_len > 0) {
2481 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2482 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2483 copy_len);
2484 }
2485 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2486 record_cnt++;
2487 data_cnt += contwr ? copy_len : 0;
2488
2489 error = xlog_write_copy_finish(log, iclog, flags,
2490 &record_cnt, &data_cnt,
2491 &partial_copy,
2492 &partial_copy_len,
2493 log_offset,
2494 commit_iclog);
2495 if (error)
2496 return error;
2497
2498 /*
2499 * if we had a partial copy, we need to get more iclog
2500 * space but we don't want to increment the region
2501 * index because there is still more is this region to
2502 * write.
2503 *
2504 * If we completed writing this region, and we flushed
2505 * the iclog (indicated by resetting of the record
2506 * count), then we also need to get more log space. If
2507 * this was the last record, though, we are done and
2508 * can just return.
2509 */
2510 if (partial_copy)
2511 break;
2512
2513 if (++index == lv->lv_niovecs) {
2514 next_lv:
2515 lv = lv->lv_next;
2516 index = 0;
2517 if (lv)
2518 vecp = lv->lv_iovecp;
2519 }
2520 if (record_cnt == 0 && !ordered) {
2521 if (!lv)
2522 return 0;
2523 break;
2524 }
2525 }
2526 }
2527
2528 ASSERT(len == 0);
2529
2530 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2531 if (!commit_iclog)
2532 return xlog_state_release_iclog(log, iclog);
2533
2534 ASSERT(flags & XLOG_COMMIT_TRANS);
2535 *commit_iclog = iclog;
2536 return 0;
2537 }
2538
2539
2540 /*****************************************************************************
2541 *
2542 * State Machine functions
2543 *
2544 *****************************************************************************
2545 */
2546
2547 /* Clean iclogs starting from the head. This ordering must be
2548 * maintained, so an iclog doesn't become ACTIVE beyond one that
2549 * is SYNCING. This is also required to maintain the notion that we use
2550 * a ordered wait queue to hold off would be writers to the log when every
2551 * iclog is trying to sync to disk.
2552 *
2553 * State Change: DIRTY -> ACTIVE
2554 */
2555 STATIC void
xlog_state_clean_log(struct xlog * log)2556 xlog_state_clean_log(
2557 struct xlog *log)
2558 {
2559 xlog_in_core_t *iclog;
2560 int changed = 0;
2561
2562 iclog = log->l_iclog;
2563 do {
2564 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2565 iclog->ic_state = XLOG_STATE_ACTIVE;
2566 iclog->ic_offset = 0;
2567 ASSERT(iclog->ic_callback == NULL);
2568 /*
2569 * If the number of ops in this iclog indicate it just
2570 * contains the dummy transaction, we can
2571 * change state into IDLE (the second time around).
2572 * Otherwise we should change the state into
2573 * NEED a dummy.
2574 * We don't need to cover the dummy.
2575 */
2576 if (!changed &&
2577 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2578 XLOG_COVER_OPS)) {
2579 changed = 1;
2580 } else {
2581 /*
2582 * We have two dirty iclogs so start over
2583 * This could also be num of ops indicates
2584 * this is not the dummy going out.
2585 */
2586 changed = 2;
2587 }
2588 iclog->ic_header.h_num_logops = 0;
2589 memset(iclog->ic_header.h_cycle_data, 0,
2590 sizeof(iclog->ic_header.h_cycle_data));
2591 iclog->ic_header.h_lsn = 0;
2592 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2593 /* do nothing */;
2594 else
2595 break; /* stop cleaning */
2596 iclog = iclog->ic_next;
2597 } while (iclog != log->l_iclog);
2598
2599 /* log is locked when we are called */
2600 /*
2601 * Change state for the dummy log recording.
2602 * We usually go to NEED. But we go to NEED2 if the changed indicates
2603 * we are done writing the dummy record.
2604 * If we are done with the second dummy recored (DONE2), then
2605 * we go to IDLE.
2606 */
2607 if (changed) {
2608 switch (log->l_covered_state) {
2609 case XLOG_STATE_COVER_IDLE:
2610 case XLOG_STATE_COVER_NEED:
2611 case XLOG_STATE_COVER_NEED2:
2612 log->l_covered_state = XLOG_STATE_COVER_NEED;
2613 break;
2614
2615 case XLOG_STATE_COVER_DONE:
2616 if (changed == 1)
2617 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2618 else
2619 log->l_covered_state = XLOG_STATE_COVER_NEED;
2620 break;
2621
2622 case XLOG_STATE_COVER_DONE2:
2623 if (changed == 1)
2624 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2625 else
2626 log->l_covered_state = XLOG_STATE_COVER_NEED;
2627 break;
2628
2629 default:
2630 ASSERT(0);
2631 }
2632 }
2633 } /* xlog_state_clean_log */
2634
2635 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2636 xlog_get_lowest_lsn(
2637 struct xlog *log)
2638 {
2639 xlog_in_core_t *lsn_log;
2640 xfs_lsn_t lowest_lsn, lsn;
2641
2642 lsn_log = log->l_iclog;
2643 lowest_lsn = 0;
2644 do {
2645 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2646 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2647 if ((lsn && !lowest_lsn) ||
2648 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2649 lowest_lsn = lsn;
2650 }
2651 }
2652 lsn_log = lsn_log->ic_next;
2653 } while (lsn_log != log->l_iclog);
2654 return lowest_lsn;
2655 }
2656
2657
2658 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2659 xlog_state_do_callback(
2660 struct xlog *log,
2661 int aborted,
2662 struct xlog_in_core *ciclog)
2663 {
2664 xlog_in_core_t *iclog;
2665 xlog_in_core_t *first_iclog; /* used to know when we've
2666 * processed all iclogs once */
2667 xfs_log_callback_t *cb, *cb_next;
2668 int flushcnt = 0;
2669 xfs_lsn_t lowest_lsn;
2670 int ioerrors; /* counter: iclogs with errors */
2671 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2672 int funcdidcallbacks; /* flag: function did callbacks */
2673 int repeats; /* for issuing console warnings if
2674 * looping too many times */
2675 int wake = 0;
2676
2677 spin_lock(&log->l_icloglock);
2678 first_iclog = iclog = log->l_iclog;
2679 ioerrors = 0;
2680 funcdidcallbacks = 0;
2681 repeats = 0;
2682
2683 do {
2684 /*
2685 * Scan all iclogs starting with the one pointed to by the
2686 * log. Reset this starting point each time the log is
2687 * unlocked (during callbacks).
2688 *
2689 * Keep looping through iclogs until one full pass is made
2690 * without running any callbacks.
2691 */
2692 first_iclog = log->l_iclog;
2693 iclog = log->l_iclog;
2694 loopdidcallbacks = 0;
2695 repeats++;
2696
2697 do {
2698
2699 /* skip all iclogs in the ACTIVE & DIRTY states */
2700 if (iclog->ic_state &
2701 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2702 iclog = iclog->ic_next;
2703 continue;
2704 }
2705
2706 /*
2707 * Between marking a filesystem SHUTDOWN and stopping
2708 * the log, we do flush all iclogs to disk (if there
2709 * wasn't a log I/O error). So, we do want things to
2710 * go smoothly in case of just a SHUTDOWN w/o a
2711 * LOG_IO_ERROR.
2712 */
2713 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2714 /*
2715 * Can only perform callbacks in order. Since
2716 * this iclog is not in the DONE_SYNC/
2717 * DO_CALLBACK state, we skip the rest and
2718 * just try to clean up. If we set our iclog
2719 * to DO_CALLBACK, we will not process it when
2720 * we retry since a previous iclog is in the
2721 * CALLBACK and the state cannot change since
2722 * we are holding the l_icloglock.
2723 */
2724 if (!(iclog->ic_state &
2725 (XLOG_STATE_DONE_SYNC |
2726 XLOG_STATE_DO_CALLBACK))) {
2727 if (ciclog && (ciclog->ic_state ==
2728 XLOG_STATE_DONE_SYNC)) {
2729 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2730 }
2731 break;
2732 }
2733 /*
2734 * We now have an iclog that is in either the
2735 * DO_CALLBACK or DONE_SYNC states. The other
2736 * states (WANT_SYNC, SYNCING, or CALLBACK were
2737 * caught by the above if and are going to
2738 * clean (i.e. we aren't doing their callbacks)
2739 * see the above if.
2740 */
2741
2742 /*
2743 * We will do one more check here to see if we
2744 * have chased our tail around.
2745 */
2746
2747 lowest_lsn = xlog_get_lowest_lsn(log);
2748 if (lowest_lsn &&
2749 XFS_LSN_CMP(lowest_lsn,
2750 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2751 iclog = iclog->ic_next;
2752 continue; /* Leave this iclog for
2753 * another thread */
2754 }
2755
2756 iclog->ic_state = XLOG_STATE_CALLBACK;
2757
2758
2759 /*
2760 * Completion of a iclog IO does not imply that
2761 * a transaction has completed, as transactions
2762 * can be large enough to span many iclogs. We
2763 * cannot change the tail of the log half way
2764 * through a transaction as this may be the only
2765 * transaction in the log and moving th etail to
2766 * point to the middle of it will prevent
2767 * recovery from finding the start of the
2768 * transaction. Hence we should only update the
2769 * last_sync_lsn if this iclog contains
2770 * transaction completion callbacks on it.
2771 *
2772 * We have to do this before we drop the
2773 * icloglock to ensure we are the only one that
2774 * can update it.
2775 */
2776 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2777 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2778 if (iclog->ic_callback)
2779 atomic64_set(&log->l_last_sync_lsn,
2780 be64_to_cpu(iclog->ic_header.h_lsn));
2781
2782 } else
2783 ioerrors++;
2784
2785 spin_unlock(&log->l_icloglock);
2786
2787 /*
2788 * Keep processing entries in the callback list until
2789 * we come around and it is empty. We need to
2790 * atomically see that the list is empty and change the
2791 * state to DIRTY so that we don't miss any more
2792 * callbacks being added.
2793 */
2794 spin_lock(&iclog->ic_callback_lock);
2795 cb = iclog->ic_callback;
2796 while (cb) {
2797 iclog->ic_callback_tail = &(iclog->ic_callback);
2798 iclog->ic_callback = NULL;
2799 spin_unlock(&iclog->ic_callback_lock);
2800
2801 /* perform callbacks in the order given */
2802 for (; cb; cb = cb_next) {
2803 cb_next = cb->cb_next;
2804 cb->cb_func(cb->cb_arg, aborted);
2805 }
2806 spin_lock(&iclog->ic_callback_lock);
2807 cb = iclog->ic_callback;
2808 }
2809
2810 loopdidcallbacks++;
2811 funcdidcallbacks++;
2812
2813 spin_lock(&log->l_icloglock);
2814 ASSERT(iclog->ic_callback == NULL);
2815 spin_unlock(&iclog->ic_callback_lock);
2816 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2817 iclog->ic_state = XLOG_STATE_DIRTY;
2818
2819 /*
2820 * Transition from DIRTY to ACTIVE if applicable.
2821 * NOP if STATE_IOERROR.
2822 */
2823 xlog_state_clean_log(log);
2824
2825 /* wake up threads waiting in xfs_log_force() */
2826 wake_up_all(&iclog->ic_force_wait);
2827
2828 iclog = iclog->ic_next;
2829 } while (first_iclog != iclog);
2830
2831 if (repeats > 5000) {
2832 flushcnt += repeats;
2833 repeats = 0;
2834 xfs_warn(log->l_mp,
2835 "%s: possible infinite loop (%d iterations)",
2836 __func__, flushcnt);
2837 }
2838 } while (!ioerrors && loopdidcallbacks);
2839
2840 #ifdef DEBUG
2841 /*
2842 * Make one last gasp attempt to see if iclogs are being left in limbo.
2843 * If the above loop finds an iclog earlier than the current iclog and
2844 * in one of the syncing states, the current iclog is put into
2845 * DO_CALLBACK and the callbacks are deferred to the completion of the
2846 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2847 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2848 * states.
2849 *
2850 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2851 * for ic_state == SYNCING.
2852 */
2853 if (funcdidcallbacks) {
2854 first_iclog = iclog = log->l_iclog;
2855 do {
2856 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2857 /*
2858 * Terminate the loop if iclogs are found in states
2859 * which will cause other threads to clean up iclogs.
2860 *
2861 * SYNCING - i/o completion will go through logs
2862 * DONE_SYNC - interrupt thread should be waiting for
2863 * l_icloglock
2864 * IOERROR - give up hope all ye who enter here
2865 */
2866 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2867 iclog->ic_state & XLOG_STATE_SYNCING ||
2868 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2869 iclog->ic_state == XLOG_STATE_IOERROR )
2870 break;
2871 iclog = iclog->ic_next;
2872 } while (first_iclog != iclog);
2873 }
2874 #endif
2875
2876 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2877 wake = 1;
2878 spin_unlock(&log->l_icloglock);
2879
2880 if (wake)
2881 wake_up_all(&log->l_flush_wait);
2882 }
2883
2884
2885 /*
2886 * Finish transitioning this iclog to the dirty state.
2887 *
2888 * Make sure that we completely execute this routine only when this is
2889 * the last call to the iclog. There is a good chance that iclog flushes,
2890 * when we reach the end of the physical log, get turned into 2 separate
2891 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2892 * routine. By using the reference count bwritecnt, we guarantee that only
2893 * the second completion goes through.
2894 *
2895 * Callbacks could take time, so they are done outside the scope of the
2896 * global state machine log lock.
2897 */
2898 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2899 xlog_state_done_syncing(
2900 xlog_in_core_t *iclog,
2901 int aborted)
2902 {
2903 struct xlog *log = iclog->ic_log;
2904
2905 spin_lock(&log->l_icloglock);
2906
2907 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2908 iclog->ic_state == XLOG_STATE_IOERROR);
2909 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2910 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2911
2912
2913 /*
2914 * If we got an error, either on the first buffer, or in the case of
2915 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2916 * and none should ever be attempted to be written to disk
2917 * again.
2918 */
2919 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2920 if (--iclog->ic_bwritecnt == 1) {
2921 spin_unlock(&log->l_icloglock);
2922 return;
2923 }
2924 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2925 }
2926
2927 /*
2928 * Someone could be sleeping prior to writing out the next
2929 * iclog buffer, we wake them all, one will get to do the
2930 * I/O, the others get to wait for the result.
2931 */
2932 wake_up_all(&iclog->ic_write_wait);
2933 spin_unlock(&log->l_icloglock);
2934 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2935 } /* xlog_state_done_syncing */
2936
2937
2938 /*
2939 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2940 * sleep. We wait on the flush queue on the head iclog as that should be
2941 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2942 * we will wait here and all new writes will sleep until a sync completes.
2943 *
2944 * The in-core logs are used in a circular fashion. They are not used
2945 * out-of-order even when an iclog past the head is free.
2946 *
2947 * return:
2948 * * log_offset where xlog_write() can start writing into the in-core
2949 * log's data space.
2950 * * in-core log pointer to which xlog_write() should write.
2951 * * boolean indicating this is a continued write to an in-core log.
2952 * If this is the last write, then the in-core log's offset field
2953 * needs to be incremented, depending on the amount of data which
2954 * is copied.
2955 */
2956 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2957 xlog_state_get_iclog_space(
2958 struct xlog *log,
2959 int len,
2960 struct xlog_in_core **iclogp,
2961 struct xlog_ticket *ticket,
2962 int *continued_write,
2963 int *logoffsetp)
2964 {
2965 int log_offset;
2966 xlog_rec_header_t *head;
2967 xlog_in_core_t *iclog;
2968 int error;
2969
2970 restart:
2971 spin_lock(&log->l_icloglock);
2972 if (XLOG_FORCED_SHUTDOWN(log)) {
2973 spin_unlock(&log->l_icloglock);
2974 return -EIO;
2975 }
2976
2977 iclog = log->l_iclog;
2978 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2979 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2980
2981 /* Wait for log writes to have flushed */
2982 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2983 goto restart;
2984 }
2985
2986 head = &iclog->ic_header;
2987
2988 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2989 log_offset = iclog->ic_offset;
2990
2991 /* On the 1st write to an iclog, figure out lsn. This works
2992 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2993 * committing to. If the offset is set, that's how many blocks
2994 * must be written.
2995 */
2996 if (log_offset == 0) {
2997 ticket->t_curr_res -= log->l_iclog_hsize;
2998 xlog_tic_add_region(ticket,
2999 log->l_iclog_hsize,
3000 XLOG_REG_TYPE_LRHEADER);
3001 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3002 head->h_lsn = cpu_to_be64(
3003 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3004 ASSERT(log->l_curr_block >= 0);
3005 }
3006
3007 /* If there is enough room to write everything, then do it. Otherwise,
3008 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3009 * bit is on, so this will get flushed out. Don't update ic_offset
3010 * until you know exactly how many bytes get copied. Therefore, wait
3011 * until later to update ic_offset.
3012 *
3013 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3014 * can fit into remaining data section.
3015 */
3016 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3017 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3018
3019 /*
3020 * If I'm the only one writing to this iclog, sync it to disk.
3021 * We need to do an atomic compare and decrement here to avoid
3022 * racing with concurrent atomic_dec_and_lock() calls in
3023 * xlog_state_release_iclog() when there is more than one
3024 * reference to the iclog.
3025 */
3026 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3027 /* we are the only one */
3028 spin_unlock(&log->l_icloglock);
3029 error = xlog_state_release_iclog(log, iclog);
3030 if (error)
3031 return error;
3032 } else {
3033 spin_unlock(&log->l_icloglock);
3034 }
3035 goto restart;
3036 }
3037
3038 /* Do we have enough room to write the full amount in the remainder
3039 * of this iclog? Or must we continue a write on the next iclog and
3040 * mark this iclog as completely taken? In the case where we switch
3041 * iclogs (to mark it taken), this particular iclog will release/sync
3042 * to disk in xlog_write().
3043 */
3044 if (len <= iclog->ic_size - iclog->ic_offset) {
3045 *continued_write = 0;
3046 iclog->ic_offset += len;
3047 } else {
3048 *continued_write = 1;
3049 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3050 }
3051 *iclogp = iclog;
3052
3053 ASSERT(iclog->ic_offset <= iclog->ic_size);
3054 spin_unlock(&log->l_icloglock);
3055
3056 *logoffsetp = log_offset;
3057 return 0;
3058 } /* xlog_state_get_iclog_space */
3059
3060 /* The first cnt-1 times through here we don't need to
3061 * move the grant write head because the permanent
3062 * reservation has reserved cnt times the unit amount.
3063 * Release part of current permanent unit reservation and
3064 * reset current reservation to be one units worth. Also
3065 * move grant reservation head forward.
3066 */
3067 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3068 xlog_regrant_reserve_log_space(
3069 struct xlog *log,
3070 struct xlog_ticket *ticket)
3071 {
3072 trace_xfs_log_regrant_reserve_enter(log, ticket);
3073
3074 if (ticket->t_cnt > 0)
3075 ticket->t_cnt--;
3076
3077 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3078 ticket->t_curr_res);
3079 xlog_grant_sub_space(log, &log->l_write_head.grant,
3080 ticket->t_curr_res);
3081 ticket->t_curr_res = ticket->t_unit_res;
3082 xlog_tic_reset_res(ticket);
3083
3084 trace_xfs_log_regrant_reserve_sub(log, ticket);
3085
3086 /* just return if we still have some of the pre-reserved space */
3087 if (ticket->t_cnt > 0)
3088 return;
3089
3090 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3091 ticket->t_unit_res);
3092
3093 trace_xfs_log_regrant_reserve_exit(log, ticket);
3094
3095 ticket->t_curr_res = ticket->t_unit_res;
3096 xlog_tic_reset_res(ticket);
3097 } /* xlog_regrant_reserve_log_space */
3098
3099
3100 /*
3101 * Give back the space left from a reservation.
3102 *
3103 * All the information we need to make a correct determination of space left
3104 * is present. For non-permanent reservations, things are quite easy. The
3105 * count should have been decremented to zero. We only need to deal with the
3106 * space remaining in the current reservation part of the ticket. If the
3107 * ticket contains a permanent reservation, there may be left over space which
3108 * needs to be released. A count of N means that N-1 refills of the current
3109 * reservation can be done before we need to ask for more space. The first
3110 * one goes to fill up the first current reservation. Once we run out of
3111 * space, the count will stay at zero and the only space remaining will be
3112 * in the current reservation field.
3113 */
3114 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3115 xlog_ungrant_log_space(
3116 struct xlog *log,
3117 struct xlog_ticket *ticket)
3118 {
3119 int bytes;
3120
3121 if (ticket->t_cnt > 0)
3122 ticket->t_cnt--;
3123
3124 trace_xfs_log_ungrant_enter(log, ticket);
3125 trace_xfs_log_ungrant_sub(log, ticket);
3126
3127 /*
3128 * If this is a permanent reservation ticket, we may be able to free
3129 * up more space based on the remaining count.
3130 */
3131 bytes = ticket->t_curr_res;
3132 if (ticket->t_cnt > 0) {
3133 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3134 bytes += ticket->t_unit_res*ticket->t_cnt;
3135 }
3136
3137 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3138 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3139
3140 trace_xfs_log_ungrant_exit(log, ticket);
3141
3142 xfs_log_space_wake(log->l_mp);
3143 }
3144
3145 /*
3146 * Flush iclog to disk if this is the last reference to the given iclog and
3147 * the WANT_SYNC bit is set.
3148 *
3149 * When this function is entered, the iclog is not necessarily in the
3150 * WANT_SYNC state. It may be sitting around waiting to get filled.
3151 *
3152 *
3153 */
3154 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3155 xlog_state_release_iclog(
3156 struct xlog *log,
3157 struct xlog_in_core *iclog)
3158 {
3159 int sync = 0; /* do we sync? */
3160
3161 if (iclog->ic_state & XLOG_STATE_IOERROR)
3162 return -EIO;
3163
3164 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3165 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3166 return 0;
3167
3168 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3169 spin_unlock(&log->l_icloglock);
3170 return -EIO;
3171 }
3172 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3173 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3174
3175 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3176 /* update tail before writing to iclog */
3177 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3178 sync++;
3179 iclog->ic_state = XLOG_STATE_SYNCING;
3180 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3181 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3182 /* cycle incremented when incrementing curr_block */
3183 }
3184 spin_unlock(&log->l_icloglock);
3185
3186 /*
3187 * We let the log lock go, so it's possible that we hit a log I/O
3188 * error or some other SHUTDOWN condition that marks the iclog
3189 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3190 * this iclog has consistent data, so we ignore IOERROR
3191 * flags after this point.
3192 */
3193 if (sync)
3194 return xlog_sync(log, iclog);
3195 return 0;
3196 } /* xlog_state_release_iclog */
3197
3198
3199 /*
3200 * This routine will mark the current iclog in the ring as WANT_SYNC
3201 * and move the current iclog pointer to the next iclog in the ring.
3202 * When this routine is called from xlog_state_get_iclog_space(), the
3203 * exact size of the iclog has not yet been determined. All we know is
3204 * that every data block. We have run out of space in this log record.
3205 */
3206 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3207 xlog_state_switch_iclogs(
3208 struct xlog *log,
3209 struct xlog_in_core *iclog,
3210 int eventual_size)
3211 {
3212 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3213 if (!eventual_size)
3214 eventual_size = iclog->ic_offset;
3215 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3216 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3217 log->l_prev_block = log->l_curr_block;
3218 log->l_prev_cycle = log->l_curr_cycle;
3219
3220 /* roll log?: ic_offset changed later */
3221 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3222
3223 /* Round up to next log-sunit */
3224 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3225 log->l_mp->m_sb.sb_logsunit > 1) {
3226 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3227 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3228 }
3229
3230 if (log->l_curr_block >= log->l_logBBsize) {
3231 /*
3232 * Rewind the current block before the cycle is bumped to make
3233 * sure that the combined LSN never transiently moves forward
3234 * when the log wraps to the next cycle. This is to support the
3235 * unlocked sample of these fields from xlog_valid_lsn(). Most
3236 * other cases should acquire l_icloglock.
3237 */
3238 log->l_curr_block -= log->l_logBBsize;
3239 ASSERT(log->l_curr_block >= 0);
3240 smp_wmb();
3241 log->l_curr_cycle++;
3242 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3243 log->l_curr_cycle++;
3244 }
3245 ASSERT(iclog == log->l_iclog);
3246 log->l_iclog = iclog->ic_next;
3247 } /* xlog_state_switch_iclogs */
3248
3249 /*
3250 * Write out all data in the in-core log as of this exact moment in time.
3251 *
3252 * Data may be written to the in-core log during this call. However,
3253 * we don't guarantee this data will be written out. A change from past
3254 * implementation means this routine will *not* write out zero length LRs.
3255 *
3256 * Basically, we try and perform an intelligent scan of the in-core logs.
3257 * If we determine there is no flushable data, we just return. There is no
3258 * flushable data if:
3259 *
3260 * 1. the current iclog is active and has no data; the previous iclog
3261 * is in the active or dirty state.
3262 * 2. the current iclog is drity, and the previous iclog is in the
3263 * active or dirty state.
3264 *
3265 * We may sleep if:
3266 *
3267 * 1. the current iclog is not in the active nor dirty state.
3268 * 2. the current iclog dirty, and the previous iclog is not in the
3269 * active nor dirty state.
3270 * 3. the current iclog is active, and there is another thread writing
3271 * to this particular iclog.
3272 * 4. a) the current iclog is active and has no other writers
3273 * b) when we return from flushing out this iclog, it is still
3274 * not in the active nor dirty state.
3275 */
3276 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3277 _xfs_log_force(
3278 struct xfs_mount *mp,
3279 uint flags,
3280 int *log_flushed)
3281 {
3282 struct xlog *log = mp->m_log;
3283 struct xlog_in_core *iclog;
3284 xfs_lsn_t lsn;
3285
3286 XFS_STATS_INC(mp, xs_log_force);
3287
3288 xlog_cil_force(log);
3289
3290 spin_lock(&log->l_icloglock);
3291
3292 iclog = log->l_iclog;
3293 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3294 spin_unlock(&log->l_icloglock);
3295 return -EIO;
3296 }
3297
3298 /* If the head iclog is not active nor dirty, we just attach
3299 * ourselves to the head and go to sleep.
3300 */
3301 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3302 iclog->ic_state == XLOG_STATE_DIRTY) {
3303 /*
3304 * If the head is dirty or (active and empty), then
3305 * we need to look at the previous iclog. If the previous
3306 * iclog is active or dirty we are done. There is nothing
3307 * to sync out. Otherwise, we attach ourselves to the
3308 * previous iclog and go to sleep.
3309 */
3310 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3311 (atomic_read(&iclog->ic_refcnt) == 0
3312 && iclog->ic_offset == 0)) {
3313 iclog = iclog->ic_prev;
3314 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3315 iclog->ic_state == XLOG_STATE_DIRTY)
3316 goto no_sleep;
3317 else
3318 goto maybe_sleep;
3319 } else {
3320 if (atomic_read(&iclog->ic_refcnt) == 0) {
3321 /* We are the only one with access to this
3322 * iclog. Flush it out now. There should
3323 * be a roundoff of zero to show that someone
3324 * has already taken care of the roundoff from
3325 * the previous sync.
3326 */
3327 atomic_inc(&iclog->ic_refcnt);
3328 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3329 xlog_state_switch_iclogs(log, iclog, 0);
3330 spin_unlock(&log->l_icloglock);
3331
3332 if (xlog_state_release_iclog(log, iclog))
3333 return -EIO;
3334
3335 if (log_flushed)
3336 *log_flushed = 1;
3337 spin_lock(&log->l_icloglock);
3338 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3339 iclog->ic_state != XLOG_STATE_DIRTY)
3340 goto maybe_sleep;
3341 else
3342 goto no_sleep;
3343 } else {
3344 /* Someone else is writing to this iclog.
3345 * Use its call to flush out the data. However,
3346 * the other thread may not force out this LR,
3347 * so we mark it WANT_SYNC.
3348 */
3349 xlog_state_switch_iclogs(log, iclog, 0);
3350 goto maybe_sleep;
3351 }
3352 }
3353 }
3354
3355 /* By the time we come around again, the iclog could've been filled
3356 * which would give it another lsn. If we have a new lsn, just
3357 * return because the relevant data has been flushed.
3358 */
3359 maybe_sleep:
3360 if (flags & XFS_LOG_SYNC) {
3361 /*
3362 * We must check if we're shutting down here, before
3363 * we wait, while we're holding the l_icloglock.
3364 * Then we check again after waking up, in case our
3365 * sleep was disturbed by a bad news.
3366 */
3367 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3368 spin_unlock(&log->l_icloglock);
3369 return -EIO;
3370 }
3371 XFS_STATS_INC(mp, xs_log_force_sleep);
3372 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373 /*
3374 * No need to grab the log lock here since we're
3375 * only deciding whether or not to return EIO
3376 * and the memory read should be atomic.
3377 */
3378 if (iclog->ic_state & XLOG_STATE_IOERROR)
3379 return -EIO;
3380 } else {
3381
3382 no_sleep:
3383 spin_unlock(&log->l_icloglock);
3384 }
3385 return 0;
3386 }
3387
3388 /*
3389 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3390 * about errors or whether the log was flushed or not. This is the normal
3391 * interface to use when trying to unpin items or move the log forward.
3392 */
3393 void
xfs_log_force(xfs_mount_t * mp,uint flags)3394 xfs_log_force(
3395 xfs_mount_t *mp,
3396 uint flags)
3397 {
3398 trace_xfs_log_force(mp, 0, _RET_IP_);
3399 _xfs_log_force(mp, flags, NULL);
3400 }
3401
3402 /*
3403 * Force the in-core log to disk for a specific LSN.
3404 *
3405 * Find in-core log with lsn.
3406 * If it is in the DIRTY state, just return.
3407 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3408 * state and go to sleep or return.
3409 * If it is in any other state, go to sleep or return.
3410 *
3411 * Synchronous forces are implemented with a signal variable. All callers
3412 * to force a given lsn to disk will wait on a the sv attached to the
3413 * specific in-core log. When given in-core log finally completes its
3414 * write to disk, that thread will wake up all threads waiting on the
3415 * sv.
3416 */
3417 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3418 _xfs_log_force_lsn(
3419 struct xfs_mount *mp,
3420 xfs_lsn_t lsn,
3421 uint flags,
3422 int *log_flushed)
3423 {
3424 struct xlog *log = mp->m_log;
3425 struct xlog_in_core *iclog;
3426 int already_slept = 0;
3427
3428 ASSERT(lsn != 0);
3429
3430 XFS_STATS_INC(mp, xs_log_force);
3431
3432 lsn = xlog_cil_force_lsn(log, lsn);
3433 if (lsn == NULLCOMMITLSN)
3434 return 0;
3435
3436 try_again:
3437 spin_lock(&log->l_icloglock);
3438 iclog = log->l_iclog;
3439 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3440 spin_unlock(&log->l_icloglock);
3441 return -EIO;
3442 }
3443
3444 do {
3445 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3446 iclog = iclog->ic_next;
3447 continue;
3448 }
3449
3450 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3451 spin_unlock(&log->l_icloglock);
3452 return 0;
3453 }
3454
3455 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3456 /*
3457 * We sleep here if we haven't already slept (e.g.
3458 * this is the first time we've looked at the correct
3459 * iclog buf) and the buffer before us is going to
3460 * be sync'ed. The reason for this is that if we
3461 * are doing sync transactions here, by waiting for
3462 * the previous I/O to complete, we can allow a few
3463 * more transactions into this iclog before we close
3464 * it down.
3465 *
3466 * Otherwise, we mark the buffer WANT_SYNC, and bump
3467 * up the refcnt so we can release the log (which
3468 * drops the ref count). The state switch keeps new
3469 * transaction commits from using this buffer. When
3470 * the current commits finish writing into the buffer,
3471 * the refcount will drop to zero and the buffer will
3472 * go out then.
3473 */
3474 if (!already_slept &&
3475 (iclog->ic_prev->ic_state &
3476 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3477 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3478
3479 XFS_STATS_INC(mp, xs_log_force_sleep);
3480
3481 xlog_wait(&iclog->ic_prev->ic_write_wait,
3482 &log->l_icloglock);
3483 already_slept = 1;
3484 goto try_again;
3485 }
3486 atomic_inc(&iclog->ic_refcnt);
3487 xlog_state_switch_iclogs(log, iclog, 0);
3488 spin_unlock(&log->l_icloglock);
3489 if (xlog_state_release_iclog(log, iclog))
3490 return -EIO;
3491 if (log_flushed)
3492 *log_flushed = 1;
3493 spin_lock(&log->l_icloglock);
3494 }
3495
3496 if ((flags & XFS_LOG_SYNC) && /* sleep */
3497 !(iclog->ic_state &
3498 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3499 /*
3500 * Don't wait on completion if we know that we've
3501 * gotten a log write error.
3502 */
3503 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3504 spin_unlock(&log->l_icloglock);
3505 return -EIO;
3506 }
3507 XFS_STATS_INC(mp, xs_log_force_sleep);
3508 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3509 /*
3510 * No need to grab the log lock here since we're
3511 * only deciding whether or not to return EIO
3512 * and the memory read should be atomic.
3513 */
3514 if (iclog->ic_state & XLOG_STATE_IOERROR)
3515 return -EIO;
3516 } else { /* just return */
3517 spin_unlock(&log->l_icloglock);
3518 }
3519
3520 return 0;
3521 } while (iclog != log->l_iclog);
3522
3523 spin_unlock(&log->l_icloglock);
3524 return 0;
3525 }
3526
3527 /*
3528 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3529 * about errors or whether the log was flushed or not. This is the normal
3530 * interface to use when trying to unpin items or move the log forward.
3531 */
3532 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3533 xfs_log_force_lsn(
3534 xfs_mount_t *mp,
3535 xfs_lsn_t lsn,
3536 uint flags)
3537 {
3538 trace_xfs_log_force(mp, lsn, _RET_IP_);
3539 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3540 }
3541
3542 /*
3543 * Called when we want to mark the current iclog as being ready to sync to
3544 * disk.
3545 */
3546 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3547 xlog_state_want_sync(
3548 struct xlog *log,
3549 struct xlog_in_core *iclog)
3550 {
3551 assert_spin_locked(&log->l_icloglock);
3552
3553 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3554 xlog_state_switch_iclogs(log, iclog, 0);
3555 } else {
3556 ASSERT(iclog->ic_state &
3557 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3558 }
3559 }
3560
3561
3562 /*****************************************************************************
3563 *
3564 * TICKET functions
3565 *
3566 *****************************************************************************
3567 */
3568
3569 /*
3570 * Free a used ticket when its refcount falls to zero.
3571 */
3572 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3573 xfs_log_ticket_put(
3574 xlog_ticket_t *ticket)
3575 {
3576 ASSERT(atomic_read(&ticket->t_ref) > 0);
3577 if (atomic_dec_and_test(&ticket->t_ref))
3578 kmem_zone_free(xfs_log_ticket_zone, ticket);
3579 }
3580
3581 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3582 xfs_log_ticket_get(
3583 xlog_ticket_t *ticket)
3584 {
3585 ASSERT(atomic_read(&ticket->t_ref) > 0);
3586 atomic_inc(&ticket->t_ref);
3587 return ticket;
3588 }
3589
3590 /*
3591 * Figure out the total log space unit (in bytes) that would be
3592 * required for a log ticket.
3593 */
3594 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3595 xfs_log_calc_unit_res(
3596 struct xfs_mount *mp,
3597 int unit_bytes)
3598 {
3599 struct xlog *log = mp->m_log;
3600 int iclog_space;
3601 uint num_headers;
3602
3603 /*
3604 * Permanent reservations have up to 'cnt'-1 active log operations
3605 * in the log. A unit in this case is the amount of space for one
3606 * of these log operations. Normal reservations have a cnt of 1
3607 * and their unit amount is the total amount of space required.
3608 *
3609 * The following lines of code account for non-transaction data
3610 * which occupy space in the on-disk log.
3611 *
3612 * Normal form of a transaction is:
3613 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3614 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3615 *
3616 * We need to account for all the leadup data and trailer data
3617 * around the transaction data.
3618 * And then we need to account for the worst case in terms of using
3619 * more space.
3620 * The worst case will happen if:
3621 * - the placement of the transaction happens to be such that the
3622 * roundoff is at its maximum
3623 * - the transaction data is synced before the commit record is synced
3624 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3625 * Therefore the commit record is in its own Log Record.
3626 * This can happen as the commit record is called with its
3627 * own region to xlog_write().
3628 * This then means that in the worst case, roundoff can happen for
3629 * the commit-rec as well.
3630 * The commit-rec is smaller than padding in this scenario and so it is
3631 * not added separately.
3632 */
3633
3634 /* for trans header */
3635 unit_bytes += sizeof(xlog_op_header_t);
3636 unit_bytes += sizeof(xfs_trans_header_t);
3637
3638 /* for start-rec */
3639 unit_bytes += sizeof(xlog_op_header_t);
3640
3641 /*
3642 * for LR headers - the space for data in an iclog is the size minus
3643 * the space used for the headers. If we use the iclog size, then we
3644 * undercalculate the number of headers required.
3645 *
3646 * Furthermore - the addition of op headers for split-recs might
3647 * increase the space required enough to require more log and op
3648 * headers, so take that into account too.
3649 *
3650 * IMPORTANT: This reservation makes the assumption that if this
3651 * transaction is the first in an iclog and hence has the LR headers
3652 * accounted to it, then the remaining space in the iclog is
3653 * exclusively for this transaction. i.e. if the transaction is larger
3654 * than the iclog, it will be the only thing in that iclog.
3655 * Fundamentally, this means we must pass the entire log vector to
3656 * xlog_write to guarantee this.
3657 */
3658 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3659 num_headers = howmany(unit_bytes, iclog_space);
3660
3661 /* for split-recs - ophdrs added when data split over LRs */
3662 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3663
3664 /* add extra header reservations if we overrun */
3665 while (!num_headers ||
3666 howmany(unit_bytes, iclog_space) > num_headers) {
3667 unit_bytes += sizeof(xlog_op_header_t);
3668 num_headers++;
3669 }
3670 unit_bytes += log->l_iclog_hsize * num_headers;
3671
3672 /* for commit-rec LR header - note: padding will subsume the ophdr */
3673 unit_bytes += log->l_iclog_hsize;
3674
3675 /* for roundoff padding for transaction data and one for commit record */
3676 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3677 /* log su roundoff */
3678 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3679 } else {
3680 /* BB roundoff */
3681 unit_bytes += 2 * BBSIZE;
3682 }
3683
3684 return unit_bytes;
3685 }
3686
3687 /*
3688 * Allocate and initialise a new log ticket.
3689 */
3690 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3691 xlog_ticket_alloc(
3692 struct xlog *log,
3693 int unit_bytes,
3694 int cnt,
3695 char client,
3696 bool permanent,
3697 xfs_km_flags_t alloc_flags)
3698 {
3699 struct xlog_ticket *tic;
3700 int unit_res;
3701
3702 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3703 if (!tic)
3704 return NULL;
3705
3706 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3707
3708 atomic_set(&tic->t_ref, 1);
3709 tic->t_task = current;
3710 INIT_LIST_HEAD(&tic->t_queue);
3711 tic->t_unit_res = unit_res;
3712 tic->t_curr_res = unit_res;
3713 tic->t_cnt = cnt;
3714 tic->t_ocnt = cnt;
3715 tic->t_tid = prandom_u32();
3716 tic->t_clientid = client;
3717 tic->t_flags = XLOG_TIC_INITED;
3718 if (permanent)
3719 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3720
3721 xlog_tic_reset_res(tic);
3722
3723 return tic;
3724 }
3725
3726
3727 /******************************************************************************
3728 *
3729 * Log debug routines
3730 *
3731 ******************************************************************************
3732 */
3733 #if defined(DEBUG)
3734 /*
3735 * Make sure that the destination ptr is within the valid data region of
3736 * one of the iclogs. This uses backup pointers stored in a different
3737 * part of the log in case we trash the log structure.
3738 */
3739 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3740 xlog_verify_dest_ptr(
3741 struct xlog *log,
3742 void *ptr)
3743 {
3744 int i;
3745 int good_ptr = 0;
3746
3747 for (i = 0; i < log->l_iclog_bufs; i++) {
3748 if (ptr >= log->l_iclog_bak[i] &&
3749 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3750 good_ptr++;
3751 }
3752
3753 if (!good_ptr)
3754 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3755 }
3756
3757 /*
3758 * Check to make sure the grant write head didn't just over lap the tail. If
3759 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3760 * the cycles differ by exactly one and check the byte count.
3761 *
3762 * This check is run unlocked, so can give false positives. Rather than assert
3763 * on failures, use a warn-once flag and a panic tag to allow the admin to
3764 * determine if they want to panic the machine when such an error occurs. For
3765 * debug kernels this will have the same effect as using an assert but, unlinke
3766 * an assert, it can be turned off at runtime.
3767 */
3768 STATIC void
xlog_verify_grant_tail(struct xlog * log)3769 xlog_verify_grant_tail(
3770 struct xlog *log)
3771 {
3772 int tail_cycle, tail_blocks;
3773 int cycle, space;
3774
3775 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3776 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3777 if (tail_cycle != cycle) {
3778 if (cycle - 1 != tail_cycle &&
3779 !(log->l_flags & XLOG_TAIL_WARN)) {
3780 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3781 "%s: cycle - 1 != tail_cycle", __func__);
3782 log->l_flags |= XLOG_TAIL_WARN;
3783 }
3784
3785 if (space > BBTOB(tail_blocks) &&
3786 !(log->l_flags & XLOG_TAIL_WARN)) {
3787 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3788 "%s: space > BBTOB(tail_blocks)", __func__);
3789 log->l_flags |= XLOG_TAIL_WARN;
3790 }
3791 }
3792 }
3793
3794 /* check if it will fit */
3795 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3796 xlog_verify_tail_lsn(
3797 struct xlog *log,
3798 struct xlog_in_core *iclog,
3799 xfs_lsn_t tail_lsn)
3800 {
3801 int blocks;
3802
3803 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3804 blocks =
3805 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3806 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3807 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3808 } else {
3809 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3810
3811 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3812 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3813
3814 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3815 if (blocks < BTOBB(iclog->ic_offset) + 1)
3816 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3817 }
3818 } /* xlog_verify_tail_lsn */
3819
3820 /*
3821 * Perform a number of checks on the iclog before writing to disk.
3822 *
3823 * 1. Make sure the iclogs are still circular
3824 * 2. Make sure we have a good magic number
3825 * 3. Make sure we don't have magic numbers in the data
3826 * 4. Check fields of each log operation header for:
3827 * A. Valid client identifier
3828 * B. tid ptr value falls in valid ptr space (user space code)
3829 * C. Length in log record header is correct according to the
3830 * individual operation headers within record.
3831 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3832 * log, check the preceding blocks of the physical log to make sure all
3833 * the cycle numbers agree with the current cycle number.
3834 */
3835 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3836 xlog_verify_iclog(
3837 struct xlog *log,
3838 struct xlog_in_core *iclog,
3839 int count,
3840 bool syncing)
3841 {
3842 xlog_op_header_t *ophead;
3843 xlog_in_core_t *icptr;
3844 xlog_in_core_2_t *xhdr;
3845 void *base_ptr, *ptr, *p;
3846 ptrdiff_t field_offset;
3847 uint8_t clientid;
3848 int len, i, j, k, op_len;
3849 int idx;
3850
3851 /* check validity of iclog pointers */
3852 spin_lock(&log->l_icloglock);
3853 icptr = log->l_iclog;
3854 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3855 ASSERT(icptr);
3856
3857 if (icptr != log->l_iclog)
3858 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3859 spin_unlock(&log->l_icloglock);
3860
3861 /* check log magic numbers */
3862 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3863 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3864
3865 base_ptr = ptr = &iclog->ic_header;
3866 p = &iclog->ic_header;
3867 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3868 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3869 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3870 __func__);
3871 }
3872
3873 /* check fields */
3874 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3875 base_ptr = ptr = iclog->ic_datap;
3876 ophead = ptr;
3877 xhdr = iclog->ic_data;
3878 for (i = 0; i < len; i++) {
3879 ophead = ptr;
3880
3881 /* clientid is only 1 byte */
3882 p = &ophead->oh_clientid;
3883 field_offset = p - base_ptr;
3884 if (!syncing || (field_offset & 0x1ff)) {
3885 clientid = ophead->oh_clientid;
3886 } else {
3887 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3888 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3889 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3891 clientid = xlog_get_client_id(
3892 xhdr[j].hic_xheader.xh_cycle_data[k]);
3893 } else {
3894 clientid = xlog_get_client_id(
3895 iclog->ic_header.h_cycle_data[idx]);
3896 }
3897 }
3898 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3899 xfs_warn(log->l_mp,
3900 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3901 __func__, clientid, ophead,
3902 (unsigned long)field_offset);
3903
3904 /* check length */
3905 p = &ophead->oh_len;
3906 field_offset = p - base_ptr;
3907 if (!syncing || (field_offset & 0x1ff)) {
3908 op_len = be32_to_cpu(ophead->oh_len);
3909 } else {
3910 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3911 (uintptr_t)iclog->ic_datap);
3912 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3913 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3914 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3915 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3916 } else {
3917 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3918 }
3919 }
3920 ptr += sizeof(xlog_op_header_t) + op_len;
3921 }
3922 } /* xlog_verify_iclog */
3923 #endif
3924
3925 /*
3926 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3927 */
3928 STATIC int
xlog_state_ioerror(struct xlog * log)3929 xlog_state_ioerror(
3930 struct xlog *log)
3931 {
3932 xlog_in_core_t *iclog, *ic;
3933
3934 iclog = log->l_iclog;
3935 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3936 /*
3937 * Mark all the incore logs IOERROR.
3938 * From now on, no log flushes will result.
3939 */
3940 ic = iclog;
3941 do {
3942 ic->ic_state = XLOG_STATE_IOERROR;
3943 ic = ic->ic_next;
3944 } while (ic != iclog);
3945 return 0;
3946 }
3947 /*
3948 * Return non-zero, if state transition has already happened.
3949 */
3950 return 1;
3951 }
3952
3953 /*
3954 * This is called from xfs_force_shutdown, when we're forcibly
3955 * shutting down the filesystem, typically because of an IO error.
3956 * Our main objectives here are to make sure that:
3957 * a. if !logerror, flush the logs to disk. Anything modified
3958 * after this is ignored.
3959 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3960 * parties to find out, 'atomically'.
3961 * c. those who're sleeping on log reservations, pinned objects and
3962 * other resources get woken up, and be told the bad news.
3963 * d. nothing new gets queued up after (b) and (c) are done.
3964 *
3965 * Note: for the !logerror case we need to flush the regions held in memory out
3966 * to disk first. This needs to be done before the log is marked as shutdown,
3967 * otherwise the iclog writes will fail.
3968 */
3969 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3970 xfs_log_force_umount(
3971 struct xfs_mount *mp,
3972 int logerror)
3973 {
3974 struct xlog *log;
3975 int retval;
3976
3977 log = mp->m_log;
3978
3979 /*
3980 * If this happens during log recovery, don't worry about
3981 * locking; the log isn't open for business yet.
3982 */
3983 if (!log ||
3984 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3985 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3986 if (mp->m_sb_bp)
3987 mp->m_sb_bp->b_flags |= XBF_DONE;
3988 return 0;
3989 }
3990
3991 /*
3992 * Somebody could've already done the hard work for us.
3993 * No need to get locks for this.
3994 */
3995 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3996 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3997 return 1;
3998 }
3999
4000 /*
4001 * Flush all the completed transactions to disk before marking the log
4002 * being shut down. We need to do it in this order to ensure that
4003 * completed operations are safely on disk before we shut down, and that
4004 * we don't have to issue any buffer IO after the shutdown flags are set
4005 * to guarantee this.
4006 */
4007 if (!logerror)
4008 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4009
4010 /*
4011 * mark the filesystem and the as in a shutdown state and wake
4012 * everybody up to tell them the bad news.
4013 */
4014 spin_lock(&log->l_icloglock);
4015 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4016 if (mp->m_sb_bp)
4017 mp->m_sb_bp->b_flags |= XBF_DONE;
4018
4019 /*
4020 * Mark the log and the iclogs with IO error flags to prevent any
4021 * further log IO from being issued or completed.
4022 */
4023 log->l_flags |= XLOG_IO_ERROR;
4024 retval = xlog_state_ioerror(log);
4025 spin_unlock(&log->l_icloglock);
4026
4027 /*
4028 * We don't want anybody waiting for log reservations after this. That
4029 * means we have to wake up everybody queued up on reserveq as well as
4030 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4031 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4032 * action is protected by the grant locks.
4033 */
4034 xlog_grant_head_wake_all(&log->l_reserve_head);
4035 xlog_grant_head_wake_all(&log->l_write_head);
4036
4037 /*
4038 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4039 * as if the log writes were completed. The abort handling in the log
4040 * item committed callback functions will do this again under lock to
4041 * avoid races.
4042 */
4043 wake_up_all(&log->l_cilp->xc_commit_wait);
4044 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4045
4046 #ifdef XFSERRORDEBUG
4047 {
4048 xlog_in_core_t *iclog;
4049
4050 spin_lock(&log->l_icloglock);
4051 iclog = log->l_iclog;
4052 do {
4053 ASSERT(iclog->ic_callback == 0);
4054 iclog = iclog->ic_next;
4055 } while (iclog != log->l_iclog);
4056 spin_unlock(&log->l_icloglock);
4057 }
4058 #endif
4059 /* return non-zero if log IOERROR transition had already happened */
4060 return retval;
4061 }
4062
4063 STATIC int
xlog_iclogs_empty(struct xlog * log)4064 xlog_iclogs_empty(
4065 struct xlog *log)
4066 {
4067 xlog_in_core_t *iclog;
4068
4069 iclog = log->l_iclog;
4070 do {
4071 /* endianness does not matter here, zero is zero in
4072 * any language.
4073 */
4074 if (iclog->ic_header.h_num_logops)
4075 return 0;
4076 iclog = iclog->ic_next;
4077 } while (iclog != log->l_iclog);
4078 return 1;
4079 }
4080
4081 /*
4082 * Verify that an LSN stamped into a piece of metadata is valid. This is
4083 * intended for use in read verifiers on v5 superblocks.
4084 */
4085 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4086 xfs_log_check_lsn(
4087 struct xfs_mount *mp,
4088 xfs_lsn_t lsn)
4089 {
4090 struct xlog *log = mp->m_log;
4091 bool valid;
4092
4093 /*
4094 * norecovery mode skips mount-time log processing and unconditionally
4095 * resets the in-core LSN. We can't validate in this mode, but
4096 * modifications are not allowed anyways so just return true.
4097 */
4098 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4099 return true;
4100
4101 /*
4102 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4103 * handled by recovery and thus safe to ignore here.
4104 */
4105 if (lsn == NULLCOMMITLSN)
4106 return true;
4107
4108 valid = xlog_valid_lsn(mp->m_log, lsn);
4109
4110 /* warn the user about what's gone wrong before verifier failure */
4111 if (!valid) {
4112 spin_lock(&log->l_icloglock);
4113 xfs_warn(mp,
4114 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4115 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4116 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4117 log->l_curr_cycle, log->l_curr_block);
4118 spin_unlock(&log->l_icloglock);
4119 }
4120
4121 return valid;
4122 }
4123