1 /*
2 * Copyright (c) 2014 Red Hat, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
32 #include "xfs_rmap.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_error.h"
37 #include "xfs_extent_busy.h"
38 #include "xfs_ag_resv.h"
39
40 /*
41 * Reverse map btree.
42 *
43 * This is a per-ag tree used to track the owner(s) of a given extent. With
44 * reflink it is possible for there to be multiple owners, which is a departure
45 * from classic XFS. Owner records for data extents are inserted when the
46 * extent is mapped and removed when an extent is unmapped. Owner records for
47 * all other block types (i.e. metadata) are inserted when an extent is
48 * allocated and removed when an extent is freed. There can only be one owner
49 * of a metadata extent, usually an inode or some other metadata structure like
50 * an AG btree.
51 *
52 * The rmap btree is part of the free space management, so blocks for the tree
53 * are sourced from the agfl. Hence we need transaction reservation support for
54 * this tree so that the freelist is always large enough. This also impacts on
55 * the minimum space we need to leave free in the AG.
56 *
57 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
58 * but it is the only way to enforce unique keys when a block can be owned by
59 * multiple files at any offset. There's no need to order/search by extent
60 * size for online updating/management of the tree. It is intended that most
61 * reverse lookups will be to find the owner(s) of a particular block, or to
62 * try to recover tree and file data from corrupt primary metadata.
63 */
64
65 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)66 xfs_rmapbt_dup_cursor(
67 struct xfs_btree_cur *cur)
68 {
69 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
70 cur->bc_private.a.agbp, cur->bc_private.a.agno);
71 }
72
73 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int inc)74 xfs_rmapbt_set_root(
75 struct xfs_btree_cur *cur,
76 union xfs_btree_ptr *ptr,
77 int inc)
78 {
79 struct xfs_buf *agbp = cur->bc_private.a.agbp;
80 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
81 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
82 int btnum = cur->bc_btnum;
83 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
84
85 ASSERT(ptr->s != 0);
86
87 agf->agf_roots[btnum] = ptr->s;
88 be32_add_cpu(&agf->agf_levels[btnum], inc);
89 pag->pagf_levels[btnum] += inc;
90 xfs_perag_put(pag);
91
92 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
93 }
94
95 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)96 xfs_rmapbt_alloc_block(
97 struct xfs_btree_cur *cur,
98 union xfs_btree_ptr *start,
99 union xfs_btree_ptr *new,
100 int *stat)
101 {
102 struct xfs_buf *agbp = cur->bc_private.a.agbp;
103 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
104 int error;
105 xfs_agblock_t bno;
106
107 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
108
109 /* Allocate the new block from the freelist. If we can't, give up. */
110 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
111 &bno, 1);
112 if (error) {
113 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
114 return error;
115 }
116
117 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
118 bno, 1);
119 if (bno == NULLAGBLOCK) {
120 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
121 *stat = 0;
122 return 0;
123 }
124
125 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
126 false);
127
128 xfs_trans_agbtree_delta(cur->bc_tp, 1);
129 new->s = cpu_to_be32(bno);
130 be32_add_cpu(&agf->agf_rmap_blocks, 1);
131 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132
133 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
134 *stat = 1;
135 return 0;
136 }
137
138 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)139 xfs_rmapbt_free_block(
140 struct xfs_btree_cur *cur,
141 struct xfs_buf *bp)
142 {
143 struct xfs_buf *agbp = cur->bc_private.a.agbp;
144 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
145 xfs_agblock_t bno;
146 int error;
147
148 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
149 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
150 bno, 1);
151 be32_add_cpu(&agf->agf_rmap_blocks, -1);
152 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
153 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
154 if (error)
155 return error;
156
157 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
158 XFS_EXTENT_BUSY_SKIP_DISCARD);
159 xfs_trans_agbtree_delta(cur->bc_tp, -1);
160
161 return 0;
162 }
163
164 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)165 xfs_rmapbt_get_minrecs(
166 struct xfs_btree_cur *cur,
167 int level)
168 {
169 return cur->bc_mp->m_rmap_mnr[level != 0];
170 }
171
172 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)173 xfs_rmapbt_get_maxrecs(
174 struct xfs_btree_cur *cur,
175 int level)
176 {
177 return cur->bc_mp->m_rmap_mxr[level != 0];
178 }
179
180 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)181 xfs_rmapbt_init_key_from_rec(
182 union xfs_btree_key *key,
183 union xfs_btree_rec *rec)
184 {
185 key->rmap.rm_startblock = rec->rmap.rm_startblock;
186 key->rmap.rm_owner = rec->rmap.rm_owner;
187 key->rmap.rm_offset = rec->rmap.rm_offset;
188 }
189
190 /*
191 * The high key for a reverse mapping record can be computed by shifting
192 * the startblock and offset to the highest value that would still map
193 * to that record. In practice this means that we add blockcount-1 to
194 * the startblock for all records, and if the record is for a data/attr
195 * fork mapping, we add blockcount-1 to the offset too.
196 */
197 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)198 xfs_rmapbt_init_high_key_from_rec(
199 union xfs_btree_key *key,
200 union xfs_btree_rec *rec)
201 {
202 uint64_t off;
203 int adj;
204
205 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
206
207 key->rmap.rm_startblock = rec->rmap.rm_startblock;
208 be32_add_cpu(&key->rmap.rm_startblock, adj);
209 key->rmap.rm_owner = rec->rmap.rm_owner;
210 key->rmap.rm_offset = rec->rmap.rm_offset;
211 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
212 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
213 return;
214 off = be64_to_cpu(key->rmap.rm_offset);
215 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
216 key->rmap.rm_offset = cpu_to_be64(off);
217 }
218
219 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)220 xfs_rmapbt_init_rec_from_cur(
221 struct xfs_btree_cur *cur,
222 union xfs_btree_rec *rec)
223 {
224 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
225 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
226 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
227 rec->rmap.rm_offset = cpu_to_be64(
228 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
229 }
230
231 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)232 xfs_rmapbt_init_ptr_from_cur(
233 struct xfs_btree_cur *cur,
234 union xfs_btree_ptr *ptr)
235 {
236 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
237
238 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
239 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
240
241 ptr->s = agf->agf_roots[cur->bc_btnum];
242 }
243
244 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)245 xfs_rmapbt_key_diff(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_key *key)
248 {
249 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
250 struct xfs_rmap_key *kp = &key->rmap;
251 __u64 x, y;
252 int64_t d;
253
254 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
255 if (d)
256 return d;
257
258 x = be64_to_cpu(kp->rm_owner);
259 y = rec->rm_owner;
260 if (x > y)
261 return 1;
262 else if (y > x)
263 return -1;
264
265 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
266 y = rec->rm_offset;
267 if (x > y)
268 return 1;
269 else if (y > x)
270 return -1;
271 return 0;
272 }
273
274 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)275 xfs_rmapbt_diff_two_keys(
276 struct xfs_btree_cur *cur,
277 union xfs_btree_key *k1,
278 union xfs_btree_key *k2)
279 {
280 struct xfs_rmap_key *kp1 = &k1->rmap;
281 struct xfs_rmap_key *kp2 = &k2->rmap;
282 int64_t d;
283 __u64 x, y;
284
285 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
286 be32_to_cpu(kp2->rm_startblock);
287 if (d)
288 return d;
289
290 x = be64_to_cpu(kp1->rm_owner);
291 y = be64_to_cpu(kp2->rm_owner);
292 if (x > y)
293 return 1;
294 else if (y > x)
295 return -1;
296
297 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
298 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
299 if (x > y)
300 return 1;
301 else if (y > x)
302 return -1;
303 return 0;
304 }
305
306 static bool
xfs_rmapbt_verify(struct xfs_buf * bp)307 xfs_rmapbt_verify(
308 struct xfs_buf *bp)
309 {
310 struct xfs_mount *mp = bp->b_target->bt_mount;
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_perag *pag = bp->b_pag;
313 unsigned int level;
314
315 /*
316 * magic number and level verification
317 *
318 * During growfs operations, we can't verify the exact level or owner as
319 * the perag is not fully initialised and hence not attached to the
320 * buffer. In this case, check against the maximum tree depth.
321 *
322 * Similarly, during log recovery we will have a perag structure
323 * attached, but the agf information will not yet have been initialised
324 * from the on disk AGF. Again, we can only check against maximum limits
325 * in this case.
326 */
327 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
328 return false;
329
330 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
331 return false;
332 if (!xfs_btree_sblock_v5hdr_verify(bp))
333 return false;
334
335 level = be16_to_cpu(block->bb_level);
336 if (pag && pag->pagf_init) {
337 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
338 return false;
339 } else if (level >= mp->m_rmap_maxlevels)
340 return false;
341
342 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
343 }
344
345 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)346 xfs_rmapbt_read_verify(
347 struct xfs_buf *bp)
348 {
349 if (!xfs_btree_sblock_verify_crc(bp))
350 xfs_buf_ioerror(bp, -EFSBADCRC);
351 else if (!xfs_rmapbt_verify(bp))
352 xfs_buf_ioerror(bp, -EFSCORRUPTED);
353
354 if (bp->b_error) {
355 trace_xfs_btree_corrupt(bp, _RET_IP_);
356 xfs_verifier_error(bp);
357 }
358 }
359
360 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)361 xfs_rmapbt_write_verify(
362 struct xfs_buf *bp)
363 {
364 if (!xfs_rmapbt_verify(bp)) {
365 trace_xfs_btree_corrupt(bp, _RET_IP_);
366 xfs_buf_ioerror(bp, -EFSCORRUPTED);
367 xfs_verifier_error(bp);
368 return;
369 }
370 xfs_btree_sblock_calc_crc(bp);
371
372 }
373
374 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
375 .name = "xfs_rmapbt",
376 .verify_read = xfs_rmapbt_read_verify,
377 .verify_write = xfs_rmapbt_write_verify,
378 };
379
380 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)381 xfs_rmapbt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 union xfs_btree_key *k1,
384 union xfs_btree_key *k2)
385 {
386 uint32_t x;
387 uint32_t y;
388 uint64_t a;
389 uint64_t b;
390
391 x = be32_to_cpu(k1->rmap.rm_startblock);
392 y = be32_to_cpu(k2->rmap.rm_startblock);
393 if (x < y)
394 return 1;
395 else if (x > y)
396 return 0;
397 a = be64_to_cpu(k1->rmap.rm_owner);
398 b = be64_to_cpu(k2->rmap.rm_owner);
399 if (a < b)
400 return 1;
401 else if (a > b)
402 return 0;
403 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
404 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
405 if (a <= b)
406 return 1;
407 return 0;
408 }
409
410 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)411 xfs_rmapbt_recs_inorder(
412 struct xfs_btree_cur *cur,
413 union xfs_btree_rec *r1,
414 union xfs_btree_rec *r2)
415 {
416 uint32_t x;
417 uint32_t y;
418 uint64_t a;
419 uint64_t b;
420
421 x = be32_to_cpu(r1->rmap.rm_startblock);
422 y = be32_to_cpu(r2->rmap.rm_startblock);
423 if (x < y)
424 return 1;
425 else if (x > y)
426 return 0;
427 a = be64_to_cpu(r1->rmap.rm_owner);
428 b = be64_to_cpu(r2->rmap.rm_owner);
429 if (a < b)
430 return 1;
431 else if (a > b)
432 return 0;
433 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
434 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
435 if (a <= b)
436 return 1;
437 return 0;
438 }
439
440 static const struct xfs_btree_ops xfs_rmapbt_ops = {
441 .rec_len = sizeof(struct xfs_rmap_rec),
442 .key_len = 2 * sizeof(struct xfs_rmap_key),
443
444 .dup_cursor = xfs_rmapbt_dup_cursor,
445 .set_root = xfs_rmapbt_set_root,
446 .alloc_block = xfs_rmapbt_alloc_block,
447 .free_block = xfs_rmapbt_free_block,
448 .get_minrecs = xfs_rmapbt_get_minrecs,
449 .get_maxrecs = xfs_rmapbt_get_maxrecs,
450 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
451 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
452 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
453 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
454 .key_diff = xfs_rmapbt_key_diff,
455 .buf_ops = &xfs_rmapbt_buf_ops,
456 .diff_two_keys = xfs_rmapbt_diff_two_keys,
457 .keys_inorder = xfs_rmapbt_keys_inorder,
458 .recs_inorder = xfs_rmapbt_recs_inorder,
459 };
460
461 /*
462 * Allocate a new allocation btree cursor.
463 */
464 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno)465 xfs_rmapbt_init_cursor(
466 struct xfs_mount *mp,
467 struct xfs_trans *tp,
468 struct xfs_buf *agbp,
469 xfs_agnumber_t agno)
470 {
471 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
472 struct xfs_btree_cur *cur;
473
474 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
475 cur->bc_tp = tp;
476 cur->bc_mp = mp;
477 /* Overlapping btree; 2 keys per pointer. */
478 cur->bc_btnum = XFS_BTNUM_RMAP;
479 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
480 cur->bc_blocklog = mp->m_sb.sb_blocklog;
481 cur->bc_ops = &xfs_rmapbt_ops;
482 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
483 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
484
485 cur->bc_private.a.agbp = agbp;
486 cur->bc_private.a.agno = agno;
487
488 return cur;
489 }
490
491 /*
492 * Calculate number of records in an rmap btree block.
493 */
494 int
xfs_rmapbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)495 xfs_rmapbt_maxrecs(
496 struct xfs_mount *mp,
497 int blocklen,
498 int leaf)
499 {
500 blocklen -= XFS_RMAP_BLOCK_LEN;
501
502 if (leaf)
503 return blocklen / sizeof(struct xfs_rmap_rec);
504 return blocklen /
505 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
506 }
507
508 /* Compute the maximum height of an rmap btree. */
509 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)510 xfs_rmapbt_compute_maxlevels(
511 struct xfs_mount *mp)
512 {
513 /*
514 * On a non-reflink filesystem, the maximum number of rmap
515 * records is the number of blocks in the AG, hence the max
516 * rmapbt height is log_$maxrecs($agblocks). However, with
517 * reflink each AG block can have up to 2^32 (per the refcount
518 * record format) owners, which means that theoretically we
519 * could face up to 2^64 rmap records.
520 *
521 * That effectively means that the max rmapbt height must be
522 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
523 * blocks to feed the rmapbt long before the rmapbt reaches
524 * maximum height. The reflink code uses ag_resv_critical to
525 * disallow reflinking when less than 10% of the per-AG metadata
526 * block reservation since the fallback is a regular file copy.
527 */
528 if (xfs_sb_version_hasreflink(&mp->m_sb))
529 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
530 else
531 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
532 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
533 }
534
535 /* Calculate the refcount btree size for some records. */
536 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)537 xfs_rmapbt_calc_size(
538 struct xfs_mount *mp,
539 unsigned long long len)
540 {
541 return xfs_btree_calc_size(mp, mp->m_rmap_mnr, len);
542 }
543
544 /*
545 * Calculate the maximum refcount btree size.
546 */
547 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)548 xfs_rmapbt_max_size(
549 struct xfs_mount *mp,
550 xfs_agblock_t agblocks)
551 {
552 /* Bail out if we're uninitialized, which can happen in mkfs. */
553 if (mp->m_rmap_mxr[0] == 0)
554 return 0;
555
556 return xfs_rmapbt_calc_size(mp, agblocks);
557 }
558
559 /*
560 * Figure out how many blocks to reserve and how many are used by this btree.
561 */
562 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_extlen_t * ask,xfs_extlen_t * used)563 xfs_rmapbt_calc_reserves(
564 struct xfs_mount *mp,
565 xfs_agnumber_t agno,
566 xfs_extlen_t *ask,
567 xfs_extlen_t *used)
568 {
569 struct xfs_buf *agbp;
570 struct xfs_agf *agf;
571 xfs_agblock_t agblocks;
572 xfs_extlen_t tree_len;
573 int error;
574
575 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
576 return 0;
577
578 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
579 if (error)
580 return error;
581
582 agf = XFS_BUF_TO_AGF(agbp);
583 agblocks = be32_to_cpu(agf->agf_length);
584 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
585 xfs_buf_relse(agbp);
586
587 /* Reserve 1% of the AG or enough for 1 block per record. */
588 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
589 *used += tree_len;
590
591 return error;
592 }
593