1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
53 */
54 int
xfs_zero_range(struct xfs_inode * ip,xfs_off_t pos,xfs_off_t count,bool * did_zero)55 xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
60 {
61 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
62 }
63
64 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)65 xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68 {
69 struct xfs_trans *tp;
70 int error;
71
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
96 }
97
98 /*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)105 xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110 {
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126
127 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
133 {
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
140
141 trace_xfs_file_fsync(ip);
142
143 error = file_write_and_wait_range(file, start, end);
144 if (error)
145 return error;
146
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
162
163 /*
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
182
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
188
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199
200 return error;
201 }
202
203 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)204 xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
207 {
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
211
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213
214 if (!count)
215 return 0; /* skip atime */
216
217 file_accessed(iocb->ki_filp);
218
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222
223 return ret;
224 }
225
226 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)227 xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230 {
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
240 if (iocb->ki_flags & IOCB_NOWAIT) {
241 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
242 return -EAGAIN;
243 } else {
244 xfs_ilock(ip, XFS_IOLOCK_SHARED);
245 }
246
247 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
248 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
249
250 file_accessed(iocb->ki_filp);
251 return ret;
252 }
253
254 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)255 xfs_file_buffered_aio_read(
256 struct kiocb *iocb,
257 struct iov_iter *to)
258 {
259 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
260 ssize_t ret;
261
262 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
263
264 if (iocb->ki_flags & IOCB_NOWAIT) {
265 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
266 return -EAGAIN;
267 } else {
268 xfs_ilock(ip, XFS_IOLOCK_SHARED);
269 }
270 ret = generic_file_read_iter(iocb, to);
271 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272
273 return ret;
274 }
275
276 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)277 xfs_file_read_iter(
278 struct kiocb *iocb,
279 struct iov_iter *to)
280 {
281 struct inode *inode = file_inode(iocb->ki_filp);
282 struct xfs_mount *mp = XFS_I(inode)->i_mount;
283 ssize_t ret = 0;
284
285 XFS_STATS_INC(mp, xs_read_calls);
286
287 if (XFS_FORCED_SHUTDOWN(mp))
288 return -EIO;
289
290 if (IS_DAX(inode))
291 ret = xfs_file_dax_read(iocb, to);
292 else if (iocb->ki_flags & IOCB_DIRECT)
293 ret = xfs_file_dio_aio_read(iocb, to);
294 else
295 ret = xfs_file_buffered_aio_read(iocb, to);
296
297 if (ret > 0)
298 XFS_STATS_ADD(mp, xs_read_bytes, ret);
299 return ret;
300 }
301
302 /*
303 * Zero any on disk space between the current EOF and the new, larger EOF.
304 *
305 * This handles the normal case of zeroing the remainder of the last block in
306 * the file and the unusual case of zeroing blocks out beyond the size of the
307 * file. This second case only happens with fixed size extents and when the
308 * system crashes before the inode size was updated but after blocks were
309 * allocated.
310 *
311 * Expects the iolock to be held exclusive, and will take the ilock internally.
312 */
313 int /* error (positive) */
xfs_zero_eof(struct xfs_inode * ip,xfs_off_t offset,xfs_fsize_t isize,bool * did_zeroing)314 xfs_zero_eof(
315 struct xfs_inode *ip,
316 xfs_off_t offset, /* starting I/O offset */
317 xfs_fsize_t isize, /* current inode size */
318 bool *did_zeroing)
319 {
320 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
321 ASSERT(offset > isize);
322
323 trace_xfs_zero_eof(ip, isize, offset - isize);
324 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
325 }
326
327 /*
328 * Common pre-write limit and setup checks.
329 *
330 * Called with the iolocked held either shared and exclusive according to
331 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
332 * if called for a direct write beyond i_size.
333 */
334 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)335 xfs_file_aio_write_checks(
336 struct kiocb *iocb,
337 struct iov_iter *from,
338 int *iolock)
339 {
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = file->f_mapping->host;
342 struct xfs_inode *ip = XFS_I(inode);
343 ssize_t error = 0;
344 size_t count = iov_iter_count(from);
345 bool drained_dio = false;
346
347 restart:
348 error = generic_write_checks(iocb, from);
349 if (error <= 0)
350 return error;
351
352 error = xfs_break_layouts(inode, iolock);
353 if (error)
354 return error;
355
356 /*
357 * For changing security info in file_remove_privs() we need i_rwsem
358 * exclusively.
359 */
360 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
361 xfs_iunlock(ip, *iolock);
362 *iolock = XFS_IOLOCK_EXCL;
363 xfs_ilock(ip, *iolock);
364 goto restart;
365 }
366 /*
367 * If the offset is beyond the size of the file, we need to zero any
368 * blocks that fall between the existing EOF and the start of this
369 * write. If zeroing is needed and we are currently holding the
370 * iolock shared, we need to update it to exclusive which implies
371 * having to redo all checks before.
372 *
373 * We need to serialise against EOF updates that occur in IO
374 * completions here. We want to make sure that nobody is changing the
375 * size while we do this check until we have placed an IO barrier (i.e.
376 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
377 * The spinlock effectively forms a memory barrier once we have the
378 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
379 * and hence be able to correctly determine if we need to run zeroing.
380 */
381 spin_lock(&ip->i_flags_lock);
382 if (iocb->ki_pos > i_size_read(inode)) {
383 spin_unlock(&ip->i_flags_lock);
384 if (!drained_dio) {
385 if (*iolock == XFS_IOLOCK_SHARED) {
386 xfs_iunlock(ip, *iolock);
387 *iolock = XFS_IOLOCK_EXCL;
388 xfs_ilock(ip, *iolock);
389 iov_iter_reexpand(from, count);
390 }
391 /*
392 * We now have an IO submission barrier in place, but
393 * AIO can do EOF updates during IO completion and hence
394 * we now need to wait for all of them to drain. Non-AIO
395 * DIO will have drained before we are given the
396 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
397 * no-op.
398 */
399 inode_dio_wait(inode);
400 drained_dio = true;
401 goto restart;
402 }
403 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
404 if (error)
405 return error;
406 } else
407 spin_unlock(&ip->i_flags_lock);
408
409 /*
410 * Updating the timestamps will grab the ilock again from
411 * xfs_fs_dirty_inode, so we have to call it after dropping the
412 * lock above. Eventually we should look into a way to avoid
413 * the pointless lock roundtrip.
414 */
415 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
416 error = file_update_time(file);
417 if (error)
418 return error;
419 }
420
421 /*
422 * If we're writing the file then make sure to clear the setuid and
423 * setgid bits if the process is not being run by root. This keeps
424 * people from modifying setuid and setgid binaries.
425 */
426 if (!IS_NOSEC(inode))
427 return file_remove_privs(file);
428 return 0;
429 }
430
431 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,unsigned flags)432 xfs_dio_write_end_io(
433 struct kiocb *iocb,
434 ssize_t size,
435 unsigned flags)
436 {
437 struct inode *inode = file_inode(iocb->ki_filp);
438 struct xfs_inode *ip = XFS_I(inode);
439 loff_t offset = iocb->ki_pos;
440 int error = 0;
441
442 trace_xfs_end_io_direct_write(ip, offset, size);
443
444 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
445 return -EIO;
446
447 if (size <= 0)
448 return size;
449
450 if (flags & IOMAP_DIO_COW) {
451 error = xfs_reflink_end_cow(ip, offset, size);
452 if (error)
453 return error;
454 }
455
456 /*
457 * Unwritten conversion updates the in-core isize after extent
458 * conversion but before updating the on-disk size. Updating isize any
459 * earlier allows a racing dio read to find unwritten extents before
460 * they are converted.
461 */
462 if (flags & IOMAP_DIO_UNWRITTEN)
463 return xfs_iomap_write_unwritten(ip, offset, size, true);
464
465 /*
466 * We need to update the in-core inode size here so that we don't end up
467 * with the on-disk inode size being outside the in-core inode size. We
468 * have no other method of updating EOF for AIO, so always do it here
469 * if necessary.
470 *
471 * We need to lock the test/set EOF update as we can be racing with
472 * other IO completions here to update the EOF. Failing to serialise
473 * here can result in EOF moving backwards and Bad Things Happen when
474 * that occurs.
475 */
476 spin_lock(&ip->i_flags_lock);
477 if (offset + size > i_size_read(inode)) {
478 i_size_write(inode, offset + size);
479 spin_unlock(&ip->i_flags_lock);
480 error = xfs_setfilesize(ip, offset, size);
481 } else {
482 spin_unlock(&ip->i_flags_lock);
483 }
484
485 return error;
486 }
487
488 /*
489 * xfs_file_dio_aio_write - handle direct IO writes
490 *
491 * Lock the inode appropriately to prepare for and issue a direct IO write.
492 * By separating it from the buffered write path we remove all the tricky to
493 * follow locking changes and looping.
494 *
495 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
496 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
497 * pages are flushed out.
498 *
499 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
500 * allowing them to be done in parallel with reads and other direct IO writes.
501 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
502 * needs to do sub-block zeroing and that requires serialisation against other
503 * direct IOs to the same block. In this case we need to serialise the
504 * submission of the unaligned IOs so that we don't get racing block zeroing in
505 * the dio layer. To avoid the problem with aio, we also need to wait for
506 * outstanding IOs to complete so that unwritten extent conversion is completed
507 * before we try to map the overlapping block. This is currently implemented by
508 * hitting it with a big hammer (i.e. inode_dio_wait()).
509 *
510 * Returns with locks held indicated by @iolock and errors indicated by
511 * negative return values.
512 */
513 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)514 xfs_file_dio_aio_write(
515 struct kiocb *iocb,
516 struct iov_iter *from)
517 {
518 struct file *file = iocb->ki_filp;
519 struct address_space *mapping = file->f_mapping;
520 struct inode *inode = mapping->host;
521 struct xfs_inode *ip = XFS_I(inode);
522 struct xfs_mount *mp = ip->i_mount;
523 ssize_t ret = 0;
524 int unaligned_io = 0;
525 int iolock;
526 size_t count = iov_iter_count(from);
527 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
528 mp->m_rtdev_targp : mp->m_ddev_targp;
529
530 /* DIO must be aligned to device logical sector size */
531 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
532 return -EINVAL;
533
534 /*
535 * Don't take the exclusive iolock here unless the I/O is unaligned to
536 * the file system block size. We don't need to consider the EOF
537 * extension case here because xfs_file_aio_write_checks() will relock
538 * the inode as necessary for EOF zeroing cases and fill out the new
539 * inode size as appropriate.
540 */
541 if ((iocb->ki_pos & mp->m_blockmask) ||
542 ((iocb->ki_pos + count) & mp->m_blockmask)) {
543 unaligned_io = 1;
544
545 /*
546 * We can't properly handle unaligned direct I/O to reflink
547 * files yet, as we can't unshare a partial block.
548 */
549 if (xfs_is_reflink_inode(ip)) {
550 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
551 return -EREMCHG;
552 }
553 iolock = XFS_IOLOCK_EXCL;
554 } else {
555 iolock = XFS_IOLOCK_SHARED;
556 }
557
558 if (iocb->ki_flags & IOCB_NOWAIT) {
559 if (!xfs_ilock_nowait(ip, iolock))
560 return -EAGAIN;
561 } else {
562 xfs_ilock(ip, iolock);
563 }
564
565 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
566 if (ret)
567 goto out;
568 count = iov_iter_count(from);
569
570 /*
571 * If we are doing unaligned IO, wait for all other IO to drain,
572 * otherwise demote the lock if we had to take the exclusive lock
573 * for other reasons in xfs_file_aio_write_checks.
574 */
575 if (unaligned_io) {
576 /* If we are going to wait for other DIO to finish, bail */
577 if (iocb->ki_flags & IOCB_NOWAIT) {
578 if (atomic_read(&inode->i_dio_count))
579 return -EAGAIN;
580 } else {
581 inode_dio_wait(inode);
582 }
583 } else if (iolock == XFS_IOLOCK_EXCL) {
584 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
585 iolock = XFS_IOLOCK_SHARED;
586 }
587
588 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
589 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
590 out:
591 xfs_iunlock(ip, iolock);
592
593 /*
594 * No fallback to buffered IO on errors for XFS, direct IO will either
595 * complete fully or fail.
596 */
597 ASSERT(ret < 0 || ret == count);
598 return ret;
599 }
600
601 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)602 xfs_file_dax_write(
603 struct kiocb *iocb,
604 struct iov_iter *from)
605 {
606 struct inode *inode = iocb->ki_filp->f_mapping->host;
607 struct xfs_inode *ip = XFS_I(inode);
608 int iolock = XFS_IOLOCK_EXCL;
609 ssize_t ret, error = 0;
610 size_t count;
611 loff_t pos;
612
613 if (iocb->ki_flags & IOCB_NOWAIT) {
614 if (!xfs_ilock_nowait(ip, iolock))
615 return -EAGAIN;
616 } else {
617 xfs_ilock(ip, iolock);
618 }
619
620 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
621 if (ret)
622 goto out;
623
624 pos = iocb->ki_pos;
625 count = iov_iter_count(from);
626
627 trace_xfs_file_dax_write(ip, count, pos);
628 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
629 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
630 i_size_write(inode, iocb->ki_pos);
631 error = xfs_setfilesize(ip, pos, ret);
632 }
633 out:
634 xfs_iunlock(ip, iolock);
635 return error ? error : ret;
636 }
637
638 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)639 xfs_file_buffered_aio_write(
640 struct kiocb *iocb,
641 struct iov_iter *from)
642 {
643 struct file *file = iocb->ki_filp;
644 struct address_space *mapping = file->f_mapping;
645 struct inode *inode = mapping->host;
646 struct xfs_inode *ip = XFS_I(inode);
647 ssize_t ret;
648 int enospc = 0;
649 int iolock;
650
651 if (iocb->ki_flags & IOCB_NOWAIT)
652 return -EOPNOTSUPP;
653
654 write_retry:
655 iolock = XFS_IOLOCK_EXCL;
656 xfs_ilock(ip, iolock);
657
658 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
659 if (ret)
660 goto out;
661
662 /* We can write back this queue in page reclaim */
663 current->backing_dev_info = inode_to_bdi(inode);
664
665 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
666 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
667 if (likely(ret >= 0))
668 iocb->ki_pos += ret;
669
670 /*
671 * If we hit a space limit, try to free up some lingering preallocated
672 * space before returning an error. In the case of ENOSPC, first try to
673 * write back all dirty inodes to free up some of the excess reserved
674 * metadata space. This reduces the chances that the eofblocks scan
675 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
676 * also behaves as a filter to prevent too many eofblocks scans from
677 * running at the same time.
678 */
679 if (ret == -EDQUOT && !enospc) {
680 xfs_iunlock(ip, iolock);
681 enospc = xfs_inode_free_quota_eofblocks(ip);
682 if (enospc)
683 goto write_retry;
684 enospc = xfs_inode_free_quota_cowblocks(ip);
685 if (enospc)
686 goto write_retry;
687 iolock = 0;
688 } else if (ret == -ENOSPC && !enospc) {
689 struct xfs_eofblocks eofb = {0};
690
691 enospc = 1;
692 xfs_flush_inodes(ip->i_mount);
693
694 xfs_iunlock(ip, iolock);
695 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
696 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
697 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
698 goto write_retry;
699 }
700
701 current->backing_dev_info = NULL;
702 out:
703 if (iolock)
704 xfs_iunlock(ip, iolock);
705 return ret;
706 }
707
708 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)709 xfs_file_write_iter(
710 struct kiocb *iocb,
711 struct iov_iter *from)
712 {
713 struct file *file = iocb->ki_filp;
714 struct address_space *mapping = file->f_mapping;
715 struct inode *inode = mapping->host;
716 struct xfs_inode *ip = XFS_I(inode);
717 ssize_t ret;
718 size_t ocount = iov_iter_count(from);
719
720 XFS_STATS_INC(ip->i_mount, xs_write_calls);
721
722 if (ocount == 0)
723 return 0;
724
725 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
726 return -EIO;
727
728 if (IS_DAX(inode))
729 ret = xfs_file_dax_write(iocb, from);
730 else if (iocb->ki_flags & IOCB_DIRECT) {
731 /*
732 * Allow a directio write to fall back to a buffered
733 * write *only* in the case that we're doing a reflink
734 * CoW. In all other directio scenarios we do not
735 * allow an operation to fall back to buffered mode.
736 */
737 ret = xfs_file_dio_aio_write(iocb, from);
738 if (ret == -EREMCHG)
739 goto buffered;
740 } else {
741 buffered:
742 ret = xfs_file_buffered_aio_write(iocb, from);
743 }
744
745 if (ret > 0) {
746 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
747
748 /* Handle various SYNC-type writes */
749 ret = generic_write_sync(iocb, ret);
750 }
751 return ret;
752 }
753
754 #define XFS_FALLOC_FL_SUPPORTED \
755 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
756 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
757 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
758
759 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)760 xfs_file_fallocate(
761 struct file *file,
762 int mode,
763 loff_t offset,
764 loff_t len)
765 {
766 struct inode *inode = file_inode(file);
767 struct xfs_inode *ip = XFS_I(inode);
768 long error;
769 enum xfs_prealloc_flags flags = 0;
770 uint iolock = XFS_IOLOCK_EXCL;
771 loff_t new_size = 0;
772 bool do_file_insert = false;
773
774 if (!S_ISREG(inode->i_mode))
775 return -EINVAL;
776 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
777 return -EOPNOTSUPP;
778
779 xfs_ilock(ip, iolock);
780 error = xfs_break_layouts(inode, &iolock);
781 if (error)
782 goto out_unlock;
783
784 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
785 iolock |= XFS_MMAPLOCK_EXCL;
786
787 if (mode & FALLOC_FL_PUNCH_HOLE) {
788 error = xfs_free_file_space(ip, offset, len);
789 if (error)
790 goto out_unlock;
791 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
792 unsigned int blksize_mask = i_blocksize(inode) - 1;
793
794 if (offset & blksize_mask || len & blksize_mask) {
795 error = -EINVAL;
796 goto out_unlock;
797 }
798
799 /*
800 * There is no need to overlap collapse range with EOF,
801 * in which case it is effectively a truncate operation
802 */
803 if (offset + len >= i_size_read(inode)) {
804 error = -EINVAL;
805 goto out_unlock;
806 }
807
808 new_size = i_size_read(inode) - len;
809
810 error = xfs_collapse_file_space(ip, offset, len);
811 if (error)
812 goto out_unlock;
813 } else if (mode & FALLOC_FL_INSERT_RANGE) {
814 unsigned int blksize_mask = i_blocksize(inode) - 1;
815 loff_t isize = i_size_read(inode);
816
817 if (offset & blksize_mask || len & blksize_mask) {
818 error = -EINVAL;
819 goto out_unlock;
820 }
821
822 /*
823 * New inode size must not exceed ->s_maxbytes, accounting for
824 * possible signed overflow.
825 */
826 if (inode->i_sb->s_maxbytes - isize < len) {
827 error = -EFBIG;
828 goto out_unlock;
829 }
830 new_size = isize + len;
831
832 /* Offset should be less than i_size */
833 if (offset >= isize) {
834 error = -EINVAL;
835 goto out_unlock;
836 }
837 do_file_insert = true;
838 } else {
839 flags |= XFS_PREALLOC_SET;
840
841 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
842 offset + len > i_size_read(inode)) {
843 new_size = offset + len;
844 error = inode_newsize_ok(inode, new_size);
845 if (error)
846 goto out_unlock;
847 }
848
849 if (mode & FALLOC_FL_ZERO_RANGE)
850 error = xfs_zero_file_space(ip, offset, len);
851 else {
852 if (mode & FALLOC_FL_UNSHARE_RANGE) {
853 error = xfs_reflink_unshare(ip, offset, len);
854 if (error)
855 goto out_unlock;
856 }
857 error = xfs_alloc_file_space(ip, offset, len,
858 XFS_BMAPI_PREALLOC);
859 }
860 if (error)
861 goto out_unlock;
862 }
863
864 if (file->f_flags & O_DSYNC)
865 flags |= XFS_PREALLOC_SYNC;
866
867 error = xfs_update_prealloc_flags(ip, flags);
868 if (error)
869 goto out_unlock;
870
871 /* Change file size if needed */
872 if (new_size) {
873 struct iattr iattr;
874
875 iattr.ia_valid = ATTR_SIZE;
876 iattr.ia_size = new_size;
877 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
878 if (error)
879 goto out_unlock;
880 }
881
882 /*
883 * Perform hole insertion now that the file size has been
884 * updated so that if we crash during the operation we don't
885 * leave shifted extents past EOF and hence losing access to
886 * the data that is contained within them.
887 */
888 if (do_file_insert)
889 error = xfs_insert_file_space(ip, offset, len);
890
891 out_unlock:
892 xfs_iunlock(ip, iolock);
893 return error;
894 }
895
896 STATIC int
xfs_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)897 xfs_file_clone_range(
898 struct file *file_in,
899 loff_t pos_in,
900 struct file *file_out,
901 loff_t pos_out,
902 u64 len)
903 {
904 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
905 len, false);
906 }
907
908 STATIC ssize_t
xfs_file_dedupe_range(struct file * src_file,u64 loff,u64 len,struct file * dst_file,u64 dst_loff)909 xfs_file_dedupe_range(
910 struct file *src_file,
911 u64 loff,
912 u64 len,
913 struct file *dst_file,
914 u64 dst_loff)
915 {
916 int error;
917
918 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
919 len, true);
920 if (error)
921 return error;
922 return len;
923 }
924
925 STATIC int
xfs_file_open(struct inode * inode,struct file * file)926 xfs_file_open(
927 struct inode *inode,
928 struct file *file)
929 {
930 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
931 return -EFBIG;
932 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
933 return -EIO;
934 file->f_mode |= FMODE_NOWAIT;
935 return 0;
936 }
937
938 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)939 xfs_dir_open(
940 struct inode *inode,
941 struct file *file)
942 {
943 struct xfs_inode *ip = XFS_I(inode);
944 int mode;
945 int error;
946
947 error = xfs_file_open(inode, file);
948 if (error)
949 return error;
950
951 /*
952 * If there are any blocks, read-ahead block 0 as we're almost
953 * certain to have the next operation be a read there.
954 */
955 mode = xfs_ilock_data_map_shared(ip);
956 if (ip->i_d.di_nextents > 0)
957 error = xfs_dir3_data_readahead(ip, 0, -1);
958 xfs_iunlock(ip, mode);
959 return error;
960 }
961
962 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)963 xfs_file_release(
964 struct inode *inode,
965 struct file *filp)
966 {
967 return xfs_release(XFS_I(inode));
968 }
969
970 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)971 xfs_file_readdir(
972 struct file *file,
973 struct dir_context *ctx)
974 {
975 struct inode *inode = file_inode(file);
976 xfs_inode_t *ip = XFS_I(inode);
977 size_t bufsize;
978
979 /*
980 * The Linux API doesn't pass down the total size of the buffer
981 * we read into down to the filesystem. With the filldir concept
982 * it's not needed for correct information, but the XFS dir2 leaf
983 * code wants an estimate of the buffer size to calculate it's
984 * readahead window and size the buffers used for mapping to
985 * physical blocks.
986 *
987 * Try to give it an estimate that's good enough, maybe at some
988 * point we can change the ->readdir prototype to include the
989 * buffer size. For now we use the current glibc buffer size.
990 */
991 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
992
993 return xfs_readdir(NULL, ip, ctx, bufsize);
994 }
995
996 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)997 xfs_file_llseek(
998 struct file *file,
999 loff_t offset,
1000 int whence)
1001 {
1002 struct inode *inode = file->f_mapping->host;
1003
1004 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1005 return -EIO;
1006
1007 switch (whence) {
1008 default:
1009 return generic_file_llseek(file, offset, whence);
1010 case SEEK_HOLE:
1011 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1012 break;
1013 case SEEK_DATA:
1014 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1015 break;
1016 }
1017
1018 if (offset < 0)
1019 return offset;
1020 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1021 }
1022
1023 /*
1024 * Locking for serialisation of IO during page faults. This results in a lock
1025 * ordering of:
1026 *
1027 * mmap_sem (MM)
1028 * sb_start_pagefault(vfs, freeze)
1029 * i_mmaplock (XFS - truncate serialisation)
1030 * page_lock (MM)
1031 * i_lock (XFS - extent map serialisation)
1032 */
1033 static int
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1034 __xfs_filemap_fault(
1035 struct vm_fault *vmf,
1036 enum page_entry_size pe_size,
1037 bool write_fault)
1038 {
1039 struct inode *inode = file_inode(vmf->vma->vm_file);
1040 struct xfs_inode *ip = XFS_I(inode);
1041 int ret;
1042
1043 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1044
1045 if (write_fault) {
1046 sb_start_pagefault(inode->i_sb);
1047 file_update_time(vmf->vma->vm_file);
1048 }
1049
1050 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1051 if (IS_DAX(inode)) {
1052 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1053 } else {
1054 if (write_fault)
1055 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1056 else
1057 ret = filemap_fault(vmf);
1058 }
1059 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1060
1061 if (write_fault)
1062 sb_end_pagefault(inode->i_sb);
1063 return ret;
1064 }
1065
1066 static int
xfs_filemap_fault(struct vm_fault * vmf)1067 xfs_filemap_fault(
1068 struct vm_fault *vmf)
1069 {
1070 /* DAX can shortcut the normal fault path on write faults! */
1071 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1072 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1073 (vmf->flags & FAULT_FLAG_WRITE));
1074 }
1075
1076 static int
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1077 xfs_filemap_huge_fault(
1078 struct vm_fault *vmf,
1079 enum page_entry_size pe_size)
1080 {
1081 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1082 return VM_FAULT_FALLBACK;
1083
1084 /* DAX can shortcut the normal fault path on write faults! */
1085 return __xfs_filemap_fault(vmf, pe_size,
1086 (vmf->flags & FAULT_FLAG_WRITE));
1087 }
1088
1089 static int
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1090 xfs_filemap_page_mkwrite(
1091 struct vm_fault *vmf)
1092 {
1093 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1094 }
1095
1096 /*
1097 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1098 * updates on write faults. In reality, it's need to serialise against
1099 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1100 * to ensure we serialise the fault barrier in place.
1101 */
1102 static int
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1103 xfs_filemap_pfn_mkwrite(
1104 struct vm_fault *vmf)
1105 {
1106
1107 struct inode *inode = file_inode(vmf->vma->vm_file);
1108 struct xfs_inode *ip = XFS_I(inode);
1109 int ret = VM_FAULT_NOPAGE;
1110 loff_t size;
1111
1112 trace_xfs_filemap_pfn_mkwrite(ip);
1113
1114 sb_start_pagefault(inode->i_sb);
1115 file_update_time(vmf->vma->vm_file);
1116
1117 /* check if the faulting page hasn't raced with truncate */
1118 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1119 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1120 if (vmf->pgoff >= size)
1121 ret = VM_FAULT_SIGBUS;
1122 else if (IS_DAX(inode))
1123 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1124 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1125 sb_end_pagefault(inode->i_sb);
1126 return ret;
1127
1128 }
1129
1130 static const struct vm_operations_struct xfs_file_vm_ops = {
1131 .fault = xfs_filemap_fault,
1132 .huge_fault = xfs_filemap_huge_fault,
1133 .map_pages = filemap_map_pages,
1134 .page_mkwrite = xfs_filemap_page_mkwrite,
1135 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1136 };
1137
1138 STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1139 xfs_file_mmap(
1140 struct file *filp,
1141 struct vm_area_struct *vma)
1142 {
1143 file_accessed(filp);
1144 vma->vm_ops = &xfs_file_vm_ops;
1145 if (IS_DAX(file_inode(filp)))
1146 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1147 return 0;
1148 }
1149
1150 const struct file_operations xfs_file_operations = {
1151 .llseek = xfs_file_llseek,
1152 .read_iter = xfs_file_read_iter,
1153 .write_iter = xfs_file_write_iter,
1154 .splice_read = generic_file_splice_read,
1155 .splice_write = iter_file_splice_write,
1156 .unlocked_ioctl = xfs_file_ioctl,
1157 #ifdef CONFIG_COMPAT
1158 .compat_ioctl = xfs_file_compat_ioctl,
1159 #endif
1160 .mmap = xfs_file_mmap,
1161 .open = xfs_file_open,
1162 .release = xfs_file_release,
1163 .fsync = xfs_file_fsync,
1164 .get_unmapped_area = thp_get_unmapped_area,
1165 .fallocate = xfs_file_fallocate,
1166 .clone_file_range = xfs_file_clone_range,
1167 .dedupe_file_range = xfs_file_dedupe_range,
1168 };
1169
1170 const struct file_operations xfs_dir_file_operations = {
1171 .open = xfs_dir_open,
1172 .read = generic_read_dir,
1173 .iterate_shared = xfs_file_readdir,
1174 .llseek = generic_file_llseek,
1175 .unlocked_ioctl = xfs_file_ioctl,
1176 #ifdef CONFIG_COMPAT
1177 .compat_ioctl = xfs_file_compat_ioctl,
1178 #endif
1179 .fsync = xfs_dir_fsync,
1180 };
1181