• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Clear the specified ranges to zero through either the pagecache or DAX.
52  * Holes and unwritten extents will be left as-is as they already are zeroed.
53  */
54 int
xfs_zero_range(struct xfs_inode * ip,xfs_off_t pos,xfs_off_t count,bool * did_zero)55 xfs_zero_range(
56 	struct xfs_inode	*ip,
57 	xfs_off_t		pos,
58 	xfs_off_t		count,
59 	bool			*did_zero)
60 {
61 	return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
62 }
63 
64 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)65 xfs_update_prealloc_flags(
66 	struct xfs_inode	*ip,
67 	enum xfs_prealloc_flags	flags)
68 {
69 	struct xfs_trans	*tp;
70 	int			error;
71 
72 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 			0, 0, 0, &tp);
74 	if (error)
75 		return error;
76 
77 	xfs_ilock(ip, XFS_ILOCK_EXCL);
78 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79 
80 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 		VFS_I(ip)->i_mode &= ~S_ISUID;
82 		if (VFS_I(ip)->i_mode & S_IXGRP)
83 			VFS_I(ip)->i_mode &= ~S_ISGID;
84 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 	}
86 
87 	if (flags & XFS_PREALLOC_SET)
88 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 	if (flags & XFS_PREALLOC_CLEAR)
90 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91 
92 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 	if (flags & XFS_PREALLOC_SYNC)
94 		xfs_trans_set_sync(tp);
95 	return xfs_trans_commit(tp);
96 }
97 
98 /*
99  * Fsync operations on directories are much simpler than on regular files,
100  * as there is no file data to flush, and thus also no need for explicit
101  * cache flush operations, and there are no non-transaction metadata updates
102  * on directories either.
103  */
104 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)105 xfs_dir_fsync(
106 	struct file		*file,
107 	loff_t			start,
108 	loff_t			end,
109 	int			datasync)
110 {
111 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
112 	struct xfs_mount	*mp = ip->i_mount;
113 	xfs_lsn_t		lsn = 0;
114 
115 	trace_xfs_dir_fsync(ip);
116 
117 	xfs_ilock(ip, XFS_ILOCK_SHARED);
118 	if (xfs_ipincount(ip))
119 		lsn = ip->i_itemp->ili_last_lsn;
120 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 
122 	if (!lsn)
123 		return 0;
124 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126 
127 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)128 xfs_file_fsync(
129 	struct file		*file,
130 	loff_t			start,
131 	loff_t			end,
132 	int			datasync)
133 {
134 	struct inode		*inode = file->f_mapping->host;
135 	struct xfs_inode	*ip = XFS_I(inode);
136 	struct xfs_mount	*mp = ip->i_mount;
137 	int			error = 0;
138 	int			log_flushed = 0;
139 	xfs_lsn_t		lsn = 0;
140 
141 	trace_xfs_file_fsync(ip);
142 
143 	error = file_write_and_wait_range(file, start, end);
144 	if (error)
145 		return error;
146 
147 	if (XFS_FORCED_SHUTDOWN(mp))
148 		return -EIO;
149 
150 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
151 
152 	/*
153 	 * If we have an RT and/or log subvolume we need to make sure to flush
154 	 * the write cache the device used for file data first.  This is to
155 	 * ensure newly written file data make it to disk before logging the new
156 	 * inode size in case of an extending write.
157 	 */
158 	if (XFS_IS_REALTIME_INODE(ip))
159 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
162 
163 	/*
164 	 * All metadata updates are logged, which means that we just have to
165 	 * flush the log up to the latest LSN that touched the inode. If we have
166 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 	 * log force before we clear the ili_fsync_fields field. This ensures
168 	 * that we don't get a racing sync operation that does not wait for the
169 	 * metadata to hit the journal before returning. If we race with
170 	 * clearing the ili_fsync_fields, then all that will happen is the log
171 	 * force will do nothing as the lsn will already be on disk. We can't
172 	 * race with setting ili_fsync_fields because that is done under
173 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 	 * until after the ili_fsync_fields is cleared.
175 	 */
176 	xfs_ilock(ip, XFS_ILOCK_SHARED);
177 	if (xfs_ipincount(ip)) {
178 		if (!datasync ||
179 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 			lsn = ip->i_itemp->ili_last_lsn;
181 	}
182 
183 	if (lsn) {
184 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 		ip->i_itemp->ili_fsync_fields = 0;
186 	}
187 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
188 
189 	/*
190 	 * If we only have a single device, and the log force about was
191 	 * a no-op we might have to flush the data device cache here.
192 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 	 * an already allocated file and thus do not have any metadata to
194 	 * commit.
195 	 */
196 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 	    mp->m_logdev_targp == mp->m_ddev_targp)
198 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 
200 	return error;
201 }
202 
203 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)204 xfs_file_dio_aio_read(
205 	struct kiocb		*iocb,
206 	struct iov_iter		*to)
207 {
208 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
209 	size_t			count = iov_iter_count(to);
210 	ssize_t			ret;
211 
212 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213 
214 	if (!count)
215 		return 0; /* skip atime */
216 
217 	file_accessed(iocb->ki_filp);
218 
219 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222 
223 	return ret;
224 }
225 
226 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)227 xfs_file_dax_read(
228 	struct kiocb		*iocb,
229 	struct iov_iter		*to)
230 {
231 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 	size_t			count = iov_iter_count(to);
233 	ssize_t			ret = 0;
234 
235 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236 
237 	if (!count)
238 		return 0; /* skip atime */
239 
240 	if (iocb->ki_flags & IOCB_NOWAIT) {
241 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
242 			return -EAGAIN;
243 	} else {
244 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
245 	}
246 
247 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
248 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
249 
250 	file_accessed(iocb->ki_filp);
251 	return ret;
252 }
253 
254 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)255 xfs_file_buffered_aio_read(
256 	struct kiocb		*iocb,
257 	struct iov_iter		*to)
258 {
259 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
260 	ssize_t			ret;
261 
262 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
263 
264 	if (iocb->ki_flags & IOCB_NOWAIT) {
265 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
266 			return -EAGAIN;
267 	} else {
268 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
269 	}
270 	ret = generic_file_read_iter(iocb, to);
271 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272 
273 	return ret;
274 }
275 
276 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)277 xfs_file_read_iter(
278 	struct kiocb		*iocb,
279 	struct iov_iter		*to)
280 {
281 	struct inode		*inode = file_inode(iocb->ki_filp);
282 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
283 	ssize_t			ret = 0;
284 
285 	XFS_STATS_INC(mp, xs_read_calls);
286 
287 	if (XFS_FORCED_SHUTDOWN(mp))
288 		return -EIO;
289 
290 	if (IS_DAX(inode))
291 		ret = xfs_file_dax_read(iocb, to);
292 	else if (iocb->ki_flags & IOCB_DIRECT)
293 		ret = xfs_file_dio_aio_read(iocb, to);
294 	else
295 		ret = xfs_file_buffered_aio_read(iocb, to);
296 
297 	if (ret > 0)
298 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
299 	return ret;
300 }
301 
302 /*
303  * Zero any on disk space between the current EOF and the new, larger EOF.
304  *
305  * This handles the normal case of zeroing the remainder of the last block in
306  * the file and the unusual case of zeroing blocks out beyond the size of the
307  * file.  This second case only happens with fixed size extents and when the
308  * system crashes before the inode size was updated but after blocks were
309  * allocated.
310  *
311  * Expects the iolock to be held exclusive, and will take the ilock internally.
312  */
313 int					/* error (positive) */
xfs_zero_eof(struct xfs_inode * ip,xfs_off_t offset,xfs_fsize_t isize,bool * did_zeroing)314 xfs_zero_eof(
315 	struct xfs_inode	*ip,
316 	xfs_off_t		offset,		/* starting I/O offset */
317 	xfs_fsize_t		isize,		/* current inode size */
318 	bool			*did_zeroing)
319 {
320 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
321 	ASSERT(offset > isize);
322 
323 	trace_xfs_zero_eof(ip, isize, offset - isize);
324 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
325 }
326 
327 /*
328  * Common pre-write limit and setup checks.
329  *
330  * Called with the iolocked held either shared and exclusive according to
331  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
332  * if called for a direct write beyond i_size.
333  */
334 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)335 xfs_file_aio_write_checks(
336 	struct kiocb		*iocb,
337 	struct iov_iter		*from,
338 	int			*iolock)
339 {
340 	struct file		*file = iocb->ki_filp;
341 	struct inode		*inode = file->f_mapping->host;
342 	struct xfs_inode	*ip = XFS_I(inode);
343 	ssize_t			error = 0;
344 	size_t			count = iov_iter_count(from);
345 	bool			drained_dio = false;
346 
347 restart:
348 	error = generic_write_checks(iocb, from);
349 	if (error <= 0)
350 		return error;
351 
352 	error = xfs_break_layouts(inode, iolock);
353 	if (error)
354 		return error;
355 
356 	/*
357 	 * For changing security info in file_remove_privs() we need i_rwsem
358 	 * exclusively.
359 	 */
360 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
361 		xfs_iunlock(ip, *iolock);
362 		*iolock = XFS_IOLOCK_EXCL;
363 		xfs_ilock(ip, *iolock);
364 		goto restart;
365 	}
366 	/*
367 	 * If the offset is beyond the size of the file, we need to zero any
368 	 * blocks that fall between the existing EOF and the start of this
369 	 * write.  If zeroing is needed and we are currently holding the
370 	 * iolock shared, we need to update it to exclusive which implies
371 	 * having to redo all checks before.
372 	 *
373 	 * We need to serialise against EOF updates that occur in IO
374 	 * completions here. We want to make sure that nobody is changing the
375 	 * size while we do this check until we have placed an IO barrier (i.e.
376 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
377 	 * The spinlock effectively forms a memory barrier once we have the
378 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
379 	 * and hence be able to correctly determine if we need to run zeroing.
380 	 */
381 	spin_lock(&ip->i_flags_lock);
382 	if (iocb->ki_pos > i_size_read(inode)) {
383 		spin_unlock(&ip->i_flags_lock);
384 		if (!drained_dio) {
385 			if (*iolock == XFS_IOLOCK_SHARED) {
386 				xfs_iunlock(ip, *iolock);
387 				*iolock = XFS_IOLOCK_EXCL;
388 				xfs_ilock(ip, *iolock);
389 				iov_iter_reexpand(from, count);
390 			}
391 			/*
392 			 * We now have an IO submission barrier in place, but
393 			 * AIO can do EOF updates during IO completion and hence
394 			 * we now need to wait for all of them to drain. Non-AIO
395 			 * DIO will have drained before we are given the
396 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
397 			 * no-op.
398 			 */
399 			inode_dio_wait(inode);
400 			drained_dio = true;
401 			goto restart;
402 		}
403 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
404 		if (error)
405 			return error;
406 	} else
407 		spin_unlock(&ip->i_flags_lock);
408 
409 	/*
410 	 * Updating the timestamps will grab the ilock again from
411 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
412 	 * lock above.  Eventually we should look into a way to avoid
413 	 * the pointless lock roundtrip.
414 	 */
415 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
416 		error = file_update_time(file);
417 		if (error)
418 			return error;
419 	}
420 
421 	/*
422 	 * If we're writing the file then make sure to clear the setuid and
423 	 * setgid bits if the process is not being run by root.  This keeps
424 	 * people from modifying setuid and setgid binaries.
425 	 */
426 	if (!IS_NOSEC(inode))
427 		return file_remove_privs(file);
428 	return 0;
429 }
430 
431 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,unsigned flags)432 xfs_dio_write_end_io(
433 	struct kiocb		*iocb,
434 	ssize_t			size,
435 	unsigned		flags)
436 {
437 	struct inode		*inode = file_inode(iocb->ki_filp);
438 	struct xfs_inode	*ip = XFS_I(inode);
439 	loff_t			offset = iocb->ki_pos;
440 	int			error = 0;
441 
442 	trace_xfs_end_io_direct_write(ip, offset, size);
443 
444 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
445 		return -EIO;
446 
447 	if (size <= 0)
448 		return size;
449 
450 	if (flags & IOMAP_DIO_COW) {
451 		error = xfs_reflink_end_cow(ip, offset, size);
452 		if (error)
453 			return error;
454 	}
455 
456 	/*
457 	 * Unwritten conversion updates the in-core isize after extent
458 	 * conversion but before updating the on-disk size. Updating isize any
459 	 * earlier allows a racing dio read to find unwritten extents before
460 	 * they are converted.
461 	 */
462 	if (flags & IOMAP_DIO_UNWRITTEN)
463 		return xfs_iomap_write_unwritten(ip, offset, size, true);
464 
465 	/*
466 	 * We need to update the in-core inode size here so that we don't end up
467 	 * with the on-disk inode size being outside the in-core inode size. We
468 	 * have no other method of updating EOF for AIO, so always do it here
469 	 * if necessary.
470 	 *
471 	 * We need to lock the test/set EOF update as we can be racing with
472 	 * other IO completions here to update the EOF. Failing to serialise
473 	 * here can result in EOF moving backwards and Bad Things Happen when
474 	 * that occurs.
475 	 */
476 	spin_lock(&ip->i_flags_lock);
477 	if (offset + size > i_size_read(inode)) {
478 		i_size_write(inode, offset + size);
479 		spin_unlock(&ip->i_flags_lock);
480 		error = xfs_setfilesize(ip, offset, size);
481 	} else {
482 		spin_unlock(&ip->i_flags_lock);
483 	}
484 
485 	return error;
486 }
487 
488 /*
489  * xfs_file_dio_aio_write - handle direct IO writes
490  *
491  * Lock the inode appropriately to prepare for and issue a direct IO write.
492  * By separating it from the buffered write path we remove all the tricky to
493  * follow locking changes and looping.
494  *
495  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
496  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
497  * pages are flushed out.
498  *
499  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
500  * allowing them to be done in parallel with reads and other direct IO writes.
501  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
502  * needs to do sub-block zeroing and that requires serialisation against other
503  * direct IOs to the same block. In this case we need to serialise the
504  * submission of the unaligned IOs so that we don't get racing block zeroing in
505  * the dio layer.  To avoid the problem with aio, we also need to wait for
506  * outstanding IOs to complete so that unwritten extent conversion is completed
507  * before we try to map the overlapping block. This is currently implemented by
508  * hitting it with a big hammer (i.e. inode_dio_wait()).
509  *
510  * Returns with locks held indicated by @iolock and errors indicated by
511  * negative return values.
512  */
513 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)514 xfs_file_dio_aio_write(
515 	struct kiocb		*iocb,
516 	struct iov_iter		*from)
517 {
518 	struct file		*file = iocb->ki_filp;
519 	struct address_space	*mapping = file->f_mapping;
520 	struct inode		*inode = mapping->host;
521 	struct xfs_inode	*ip = XFS_I(inode);
522 	struct xfs_mount	*mp = ip->i_mount;
523 	ssize_t			ret = 0;
524 	int			unaligned_io = 0;
525 	int			iolock;
526 	size_t			count = iov_iter_count(from);
527 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
528 					mp->m_rtdev_targp : mp->m_ddev_targp;
529 
530 	/* DIO must be aligned to device logical sector size */
531 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
532 		return -EINVAL;
533 
534 	/*
535 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
536 	 * the file system block size.  We don't need to consider the EOF
537 	 * extension case here because xfs_file_aio_write_checks() will relock
538 	 * the inode as necessary for EOF zeroing cases and fill out the new
539 	 * inode size as appropriate.
540 	 */
541 	if ((iocb->ki_pos & mp->m_blockmask) ||
542 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
543 		unaligned_io = 1;
544 
545 		/*
546 		 * We can't properly handle unaligned direct I/O to reflink
547 		 * files yet, as we can't unshare a partial block.
548 		 */
549 		if (xfs_is_reflink_inode(ip)) {
550 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
551 			return -EREMCHG;
552 		}
553 		iolock = XFS_IOLOCK_EXCL;
554 	} else {
555 		iolock = XFS_IOLOCK_SHARED;
556 	}
557 
558 	if (iocb->ki_flags & IOCB_NOWAIT) {
559 		if (!xfs_ilock_nowait(ip, iolock))
560 			return -EAGAIN;
561 	} else {
562 		xfs_ilock(ip, iolock);
563 	}
564 
565 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
566 	if (ret)
567 		goto out;
568 	count = iov_iter_count(from);
569 
570 	/*
571 	 * If we are doing unaligned IO, wait for all other IO to drain,
572 	 * otherwise demote the lock if we had to take the exclusive lock
573 	 * for other reasons in xfs_file_aio_write_checks.
574 	 */
575 	if (unaligned_io) {
576 		/* If we are going to wait for other DIO to finish, bail */
577 		if (iocb->ki_flags & IOCB_NOWAIT) {
578 			if (atomic_read(&inode->i_dio_count))
579 				return -EAGAIN;
580 		} else {
581 			inode_dio_wait(inode);
582 		}
583 	} else if (iolock == XFS_IOLOCK_EXCL) {
584 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
585 		iolock = XFS_IOLOCK_SHARED;
586 	}
587 
588 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
589 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
590 out:
591 	xfs_iunlock(ip, iolock);
592 
593 	/*
594 	 * No fallback to buffered IO on errors for XFS, direct IO will either
595 	 * complete fully or fail.
596 	 */
597 	ASSERT(ret < 0 || ret == count);
598 	return ret;
599 }
600 
601 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)602 xfs_file_dax_write(
603 	struct kiocb		*iocb,
604 	struct iov_iter		*from)
605 {
606 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
607 	struct xfs_inode	*ip = XFS_I(inode);
608 	int			iolock = XFS_IOLOCK_EXCL;
609 	ssize_t			ret, error = 0;
610 	size_t			count;
611 	loff_t			pos;
612 
613 	if (iocb->ki_flags & IOCB_NOWAIT) {
614 		if (!xfs_ilock_nowait(ip, iolock))
615 			return -EAGAIN;
616 	} else {
617 		xfs_ilock(ip, iolock);
618 	}
619 
620 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
621 	if (ret)
622 		goto out;
623 
624 	pos = iocb->ki_pos;
625 	count = iov_iter_count(from);
626 
627 	trace_xfs_file_dax_write(ip, count, pos);
628 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
629 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
630 		i_size_write(inode, iocb->ki_pos);
631 		error = xfs_setfilesize(ip, pos, ret);
632 	}
633 out:
634 	xfs_iunlock(ip, iolock);
635 	return error ? error : ret;
636 }
637 
638 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)639 xfs_file_buffered_aio_write(
640 	struct kiocb		*iocb,
641 	struct iov_iter		*from)
642 {
643 	struct file		*file = iocb->ki_filp;
644 	struct address_space	*mapping = file->f_mapping;
645 	struct inode		*inode = mapping->host;
646 	struct xfs_inode	*ip = XFS_I(inode);
647 	ssize_t			ret;
648 	int			enospc = 0;
649 	int			iolock;
650 
651 	if (iocb->ki_flags & IOCB_NOWAIT)
652 		return -EOPNOTSUPP;
653 
654 write_retry:
655 	iolock = XFS_IOLOCK_EXCL;
656 	xfs_ilock(ip, iolock);
657 
658 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
659 	if (ret)
660 		goto out;
661 
662 	/* We can write back this queue in page reclaim */
663 	current->backing_dev_info = inode_to_bdi(inode);
664 
665 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
666 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
667 	if (likely(ret >= 0))
668 		iocb->ki_pos += ret;
669 
670 	/*
671 	 * If we hit a space limit, try to free up some lingering preallocated
672 	 * space before returning an error. In the case of ENOSPC, first try to
673 	 * write back all dirty inodes to free up some of the excess reserved
674 	 * metadata space. This reduces the chances that the eofblocks scan
675 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
676 	 * also behaves as a filter to prevent too many eofblocks scans from
677 	 * running at the same time.
678 	 */
679 	if (ret == -EDQUOT && !enospc) {
680 		xfs_iunlock(ip, iolock);
681 		enospc = xfs_inode_free_quota_eofblocks(ip);
682 		if (enospc)
683 			goto write_retry;
684 		enospc = xfs_inode_free_quota_cowblocks(ip);
685 		if (enospc)
686 			goto write_retry;
687 		iolock = 0;
688 	} else if (ret == -ENOSPC && !enospc) {
689 		struct xfs_eofblocks eofb = {0};
690 
691 		enospc = 1;
692 		xfs_flush_inodes(ip->i_mount);
693 
694 		xfs_iunlock(ip, iolock);
695 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
696 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
697 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
698 		goto write_retry;
699 	}
700 
701 	current->backing_dev_info = NULL;
702 out:
703 	if (iolock)
704 		xfs_iunlock(ip, iolock);
705 	return ret;
706 }
707 
708 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)709 xfs_file_write_iter(
710 	struct kiocb		*iocb,
711 	struct iov_iter		*from)
712 {
713 	struct file		*file = iocb->ki_filp;
714 	struct address_space	*mapping = file->f_mapping;
715 	struct inode		*inode = mapping->host;
716 	struct xfs_inode	*ip = XFS_I(inode);
717 	ssize_t			ret;
718 	size_t			ocount = iov_iter_count(from);
719 
720 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
721 
722 	if (ocount == 0)
723 		return 0;
724 
725 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
726 		return -EIO;
727 
728 	if (IS_DAX(inode))
729 		ret = xfs_file_dax_write(iocb, from);
730 	else if (iocb->ki_flags & IOCB_DIRECT) {
731 		/*
732 		 * Allow a directio write to fall back to a buffered
733 		 * write *only* in the case that we're doing a reflink
734 		 * CoW.  In all other directio scenarios we do not
735 		 * allow an operation to fall back to buffered mode.
736 		 */
737 		ret = xfs_file_dio_aio_write(iocb, from);
738 		if (ret == -EREMCHG)
739 			goto buffered;
740 	} else {
741 buffered:
742 		ret = xfs_file_buffered_aio_write(iocb, from);
743 	}
744 
745 	if (ret > 0) {
746 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
747 
748 		/* Handle various SYNC-type writes */
749 		ret = generic_write_sync(iocb, ret);
750 	}
751 	return ret;
752 }
753 
754 #define	XFS_FALLOC_FL_SUPPORTED						\
755 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
756 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
757 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
758 
759 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)760 xfs_file_fallocate(
761 	struct file		*file,
762 	int			mode,
763 	loff_t			offset,
764 	loff_t			len)
765 {
766 	struct inode		*inode = file_inode(file);
767 	struct xfs_inode	*ip = XFS_I(inode);
768 	long			error;
769 	enum xfs_prealloc_flags	flags = 0;
770 	uint			iolock = XFS_IOLOCK_EXCL;
771 	loff_t			new_size = 0;
772 	bool			do_file_insert = false;
773 
774 	if (!S_ISREG(inode->i_mode))
775 		return -EINVAL;
776 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
777 		return -EOPNOTSUPP;
778 
779 	xfs_ilock(ip, iolock);
780 	error = xfs_break_layouts(inode, &iolock);
781 	if (error)
782 		goto out_unlock;
783 
784 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
785 	iolock |= XFS_MMAPLOCK_EXCL;
786 
787 	if (mode & FALLOC_FL_PUNCH_HOLE) {
788 		error = xfs_free_file_space(ip, offset, len);
789 		if (error)
790 			goto out_unlock;
791 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
792 		unsigned int blksize_mask = i_blocksize(inode) - 1;
793 
794 		if (offset & blksize_mask || len & blksize_mask) {
795 			error = -EINVAL;
796 			goto out_unlock;
797 		}
798 
799 		/*
800 		 * There is no need to overlap collapse range with EOF,
801 		 * in which case it is effectively a truncate operation
802 		 */
803 		if (offset + len >= i_size_read(inode)) {
804 			error = -EINVAL;
805 			goto out_unlock;
806 		}
807 
808 		new_size = i_size_read(inode) - len;
809 
810 		error = xfs_collapse_file_space(ip, offset, len);
811 		if (error)
812 			goto out_unlock;
813 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
814 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
815 		loff_t		isize = i_size_read(inode);
816 
817 		if (offset & blksize_mask || len & blksize_mask) {
818 			error = -EINVAL;
819 			goto out_unlock;
820 		}
821 
822 		/*
823 		 * New inode size must not exceed ->s_maxbytes, accounting for
824 		 * possible signed overflow.
825 		 */
826 		if (inode->i_sb->s_maxbytes - isize < len) {
827 			error = -EFBIG;
828 			goto out_unlock;
829 		}
830 		new_size = isize + len;
831 
832 		/* Offset should be less than i_size */
833 		if (offset >= isize) {
834 			error = -EINVAL;
835 			goto out_unlock;
836 		}
837 		do_file_insert = true;
838 	} else {
839 		flags |= XFS_PREALLOC_SET;
840 
841 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
842 		    offset + len > i_size_read(inode)) {
843 			new_size = offset + len;
844 			error = inode_newsize_ok(inode, new_size);
845 			if (error)
846 				goto out_unlock;
847 		}
848 
849 		if (mode & FALLOC_FL_ZERO_RANGE)
850 			error = xfs_zero_file_space(ip, offset, len);
851 		else {
852 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
853 				error = xfs_reflink_unshare(ip, offset, len);
854 				if (error)
855 					goto out_unlock;
856 			}
857 			error = xfs_alloc_file_space(ip, offset, len,
858 						     XFS_BMAPI_PREALLOC);
859 		}
860 		if (error)
861 			goto out_unlock;
862 	}
863 
864 	if (file->f_flags & O_DSYNC)
865 		flags |= XFS_PREALLOC_SYNC;
866 
867 	error = xfs_update_prealloc_flags(ip, flags);
868 	if (error)
869 		goto out_unlock;
870 
871 	/* Change file size if needed */
872 	if (new_size) {
873 		struct iattr iattr;
874 
875 		iattr.ia_valid = ATTR_SIZE;
876 		iattr.ia_size = new_size;
877 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
878 		if (error)
879 			goto out_unlock;
880 	}
881 
882 	/*
883 	 * Perform hole insertion now that the file size has been
884 	 * updated so that if we crash during the operation we don't
885 	 * leave shifted extents past EOF and hence losing access to
886 	 * the data that is contained within them.
887 	 */
888 	if (do_file_insert)
889 		error = xfs_insert_file_space(ip, offset, len);
890 
891 out_unlock:
892 	xfs_iunlock(ip, iolock);
893 	return error;
894 }
895 
896 STATIC int
xfs_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)897 xfs_file_clone_range(
898 	struct file	*file_in,
899 	loff_t		pos_in,
900 	struct file	*file_out,
901 	loff_t		pos_out,
902 	u64		len)
903 {
904 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
905 				     len, false);
906 }
907 
908 STATIC ssize_t
xfs_file_dedupe_range(struct file * src_file,u64 loff,u64 len,struct file * dst_file,u64 dst_loff)909 xfs_file_dedupe_range(
910 	struct file	*src_file,
911 	u64		loff,
912 	u64		len,
913 	struct file	*dst_file,
914 	u64		dst_loff)
915 {
916 	int		error;
917 
918 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
919 				     len, true);
920 	if (error)
921 		return error;
922 	return len;
923 }
924 
925 STATIC int
xfs_file_open(struct inode * inode,struct file * file)926 xfs_file_open(
927 	struct inode	*inode,
928 	struct file	*file)
929 {
930 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
931 		return -EFBIG;
932 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
933 		return -EIO;
934 	file->f_mode |= FMODE_NOWAIT;
935 	return 0;
936 }
937 
938 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)939 xfs_dir_open(
940 	struct inode	*inode,
941 	struct file	*file)
942 {
943 	struct xfs_inode *ip = XFS_I(inode);
944 	int		mode;
945 	int		error;
946 
947 	error = xfs_file_open(inode, file);
948 	if (error)
949 		return error;
950 
951 	/*
952 	 * If there are any blocks, read-ahead block 0 as we're almost
953 	 * certain to have the next operation be a read there.
954 	 */
955 	mode = xfs_ilock_data_map_shared(ip);
956 	if (ip->i_d.di_nextents > 0)
957 		error = xfs_dir3_data_readahead(ip, 0, -1);
958 	xfs_iunlock(ip, mode);
959 	return error;
960 }
961 
962 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)963 xfs_file_release(
964 	struct inode	*inode,
965 	struct file	*filp)
966 {
967 	return xfs_release(XFS_I(inode));
968 }
969 
970 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)971 xfs_file_readdir(
972 	struct file	*file,
973 	struct dir_context *ctx)
974 {
975 	struct inode	*inode = file_inode(file);
976 	xfs_inode_t	*ip = XFS_I(inode);
977 	size_t		bufsize;
978 
979 	/*
980 	 * The Linux API doesn't pass down the total size of the buffer
981 	 * we read into down to the filesystem.  With the filldir concept
982 	 * it's not needed for correct information, but the XFS dir2 leaf
983 	 * code wants an estimate of the buffer size to calculate it's
984 	 * readahead window and size the buffers used for mapping to
985 	 * physical blocks.
986 	 *
987 	 * Try to give it an estimate that's good enough, maybe at some
988 	 * point we can change the ->readdir prototype to include the
989 	 * buffer size.  For now we use the current glibc buffer size.
990 	 */
991 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
992 
993 	return xfs_readdir(NULL, ip, ctx, bufsize);
994 }
995 
996 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)997 xfs_file_llseek(
998 	struct file	*file,
999 	loff_t		offset,
1000 	int		whence)
1001 {
1002 	struct inode		*inode = file->f_mapping->host;
1003 
1004 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1005 		return -EIO;
1006 
1007 	switch (whence) {
1008 	default:
1009 		return generic_file_llseek(file, offset, whence);
1010 	case SEEK_HOLE:
1011 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1012 		break;
1013 	case SEEK_DATA:
1014 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1015 		break;
1016 	}
1017 
1018 	if (offset < 0)
1019 		return offset;
1020 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1021 }
1022 
1023 /*
1024  * Locking for serialisation of IO during page faults. This results in a lock
1025  * ordering of:
1026  *
1027  * mmap_sem (MM)
1028  *   sb_start_pagefault(vfs, freeze)
1029  *     i_mmaplock (XFS - truncate serialisation)
1030  *       page_lock (MM)
1031  *         i_lock (XFS - extent map serialisation)
1032  */
1033 static int
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1034 __xfs_filemap_fault(
1035 	struct vm_fault		*vmf,
1036 	enum page_entry_size	pe_size,
1037 	bool			write_fault)
1038 {
1039 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1040 	struct xfs_inode	*ip = XFS_I(inode);
1041 	int			ret;
1042 
1043 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1044 
1045 	if (write_fault) {
1046 		sb_start_pagefault(inode->i_sb);
1047 		file_update_time(vmf->vma->vm_file);
1048 	}
1049 
1050 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1051 	if (IS_DAX(inode)) {
1052 		ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1053 	} else {
1054 		if (write_fault)
1055 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1056 		else
1057 			ret = filemap_fault(vmf);
1058 	}
1059 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1060 
1061 	if (write_fault)
1062 		sb_end_pagefault(inode->i_sb);
1063 	return ret;
1064 }
1065 
1066 static int
xfs_filemap_fault(struct vm_fault * vmf)1067 xfs_filemap_fault(
1068 	struct vm_fault		*vmf)
1069 {
1070 	/* DAX can shortcut the normal fault path on write faults! */
1071 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1072 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1073 			(vmf->flags & FAULT_FLAG_WRITE));
1074 }
1075 
1076 static int
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1077 xfs_filemap_huge_fault(
1078 	struct vm_fault		*vmf,
1079 	enum page_entry_size	pe_size)
1080 {
1081 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1082 		return VM_FAULT_FALLBACK;
1083 
1084 	/* DAX can shortcut the normal fault path on write faults! */
1085 	return __xfs_filemap_fault(vmf, pe_size,
1086 			(vmf->flags & FAULT_FLAG_WRITE));
1087 }
1088 
1089 static int
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1090 xfs_filemap_page_mkwrite(
1091 	struct vm_fault		*vmf)
1092 {
1093 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1094 }
1095 
1096 /*
1097  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1098  * updates on write faults. In reality, it's need to serialise against
1099  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1100  * to ensure we serialise the fault barrier in place.
1101  */
1102 static int
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1103 xfs_filemap_pfn_mkwrite(
1104 	struct vm_fault		*vmf)
1105 {
1106 
1107 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1108 	struct xfs_inode	*ip = XFS_I(inode);
1109 	int			ret = VM_FAULT_NOPAGE;
1110 	loff_t			size;
1111 
1112 	trace_xfs_filemap_pfn_mkwrite(ip);
1113 
1114 	sb_start_pagefault(inode->i_sb);
1115 	file_update_time(vmf->vma->vm_file);
1116 
1117 	/* check if the faulting page hasn't raced with truncate */
1118 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1119 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1120 	if (vmf->pgoff >= size)
1121 		ret = VM_FAULT_SIGBUS;
1122 	else if (IS_DAX(inode))
1123 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1124 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1125 	sb_end_pagefault(inode->i_sb);
1126 	return ret;
1127 
1128 }
1129 
1130 static const struct vm_operations_struct xfs_file_vm_ops = {
1131 	.fault		= xfs_filemap_fault,
1132 	.huge_fault	= xfs_filemap_huge_fault,
1133 	.map_pages	= filemap_map_pages,
1134 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1135 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1136 };
1137 
1138 STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1139 xfs_file_mmap(
1140 	struct file	*filp,
1141 	struct vm_area_struct *vma)
1142 {
1143 	file_accessed(filp);
1144 	vma->vm_ops = &xfs_file_vm_ops;
1145 	if (IS_DAX(file_inode(filp)))
1146 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1147 	return 0;
1148 }
1149 
1150 const struct file_operations xfs_file_operations = {
1151 	.llseek		= xfs_file_llseek,
1152 	.read_iter	= xfs_file_read_iter,
1153 	.write_iter	= xfs_file_write_iter,
1154 	.splice_read	= generic_file_splice_read,
1155 	.splice_write	= iter_file_splice_write,
1156 	.unlocked_ioctl	= xfs_file_ioctl,
1157 #ifdef CONFIG_COMPAT
1158 	.compat_ioctl	= xfs_file_compat_ioctl,
1159 #endif
1160 	.mmap		= xfs_file_mmap,
1161 	.open		= xfs_file_open,
1162 	.release	= xfs_file_release,
1163 	.fsync		= xfs_file_fsync,
1164 	.get_unmapped_area = thp_get_unmapped_area,
1165 	.fallocate	= xfs_file_fallocate,
1166 	.clone_file_range = xfs_file_clone_range,
1167 	.dedupe_file_range = xfs_file_dedupe_range,
1168 };
1169 
1170 const struct file_operations xfs_dir_file_operations = {
1171 	.open		= xfs_dir_open,
1172 	.read		= generic_read_dir,
1173 	.iterate_shared	= xfs_file_readdir,
1174 	.llseek		= generic_file_llseek,
1175 	.unlocked_ioctl	= xfs_file_ioctl,
1176 #ifdef CONFIG_COMPAT
1177 	.compat_ioctl	= xfs_file_compat_ioctl,
1178 #endif
1179 	.fsync		= xfs_dir_fsync,
1180 };
1181