• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <linux/kmemleak.h>
23 #include <asm/pgtable.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/setup.h>
27 #include <asm/hugetlb.h>
28 #include <asm/pte-walk.h>
29 
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #define PAGE_SHIFT_64K	16
34 #define PAGE_SHIFT_512K	19
35 #define PAGE_SHIFT_8M	23
36 #define PAGE_SHIFT_16M	24
37 #define PAGE_SHIFT_16G	34
38 
39 unsigned int HPAGE_SHIFT;
40 EXPORT_SYMBOL(HPAGE_SHIFT);
41 
42 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
43 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)44 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
45 {
46 	/*
47 	 * Only called for hugetlbfs pages, hence can ignore THP and the
48 	 * irq disabled walk.
49 	 */
50 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
51 }
52 
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned pdshift,unsigned pshift)53 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
54 			   unsigned long address, unsigned pdshift, unsigned pshift)
55 {
56 	struct kmem_cache *cachep;
57 	pte_t *new;
58 	int i;
59 	int num_hugepd;
60 
61 	if (pshift >= pdshift) {
62 		cachep = hugepte_cache;
63 		num_hugepd = 1 << (pshift - pdshift);
64 	} else {
65 		cachep = PGT_CACHE(pdshift - pshift);
66 		num_hugepd = 1;
67 	}
68 
69 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
70 
71 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
72 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
73 
74 	if (! new)
75 		return -ENOMEM;
76 
77 	/*
78 	 * Make sure other cpus find the hugepd set only after a
79 	 * properly initialized page table is visible to them.
80 	 * For more details look for comment in __pte_alloc().
81 	 */
82 	smp_wmb();
83 
84 	spin_lock(&mm->page_table_lock);
85 
86 	/*
87 	 * We have multiple higher-level entries that point to the same
88 	 * actual pte location.  Fill in each as we go and backtrack on error.
89 	 * We need all of these so the DTLB pgtable walk code can find the
90 	 * right higher-level entry without knowing if it's a hugepage or not.
91 	 */
92 	for (i = 0; i < num_hugepd; i++, hpdp++) {
93 		if (unlikely(!hugepd_none(*hpdp)))
94 			break;
95 		else {
96 #ifdef CONFIG_PPC_BOOK3S_64
97 			*hpdp = __hugepd(__pa(new) |
98 					 (shift_to_mmu_psize(pshift) << 2));
99 #elif defined(CONFIG_PPC_8xx)
100 			*hpdp = __hugepd(__pa(new) |
101 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
102 					  _PMD_PAGE_512K) | _PMD_PRESENT);
103 #else
104 			/* We use the old format for PPC_FSL_BOOK3E */
105 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
106 #endif
107 		}
108 	}
109 	/* If we bailed from the for loop early, an error occurred, clean up */
110 	if (i < num_hugepd) {
111 		for (i = i - 1 ; i >= 0; i--, hpdp--)
112 			*hpdp = __hugepd(0);
113 		kmem_cache_free(cachep, new);
114 	} else {
115 		kmemleak_ignore(new);
116 	}
117 	spin_unlock(&mm->page_table_lock);
118 	return 0;
119 }
120 
121 /*
122  * These macros define how to determine which level of the page table holds
123  * the hpdp.
124  */
125 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
126 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
127 #define HUGEPD_PUD_SHIFT PUD_SHIFT
128 #else
129 #define HUGEPD_PGD_SHIFT PUD_SHIFT
130 #define HUGEPD_PUD_SHIFT PMD_SHIFT
131 #endif
132 
133 /*
134  * At this point we do the placement change only for BOOK3S 64. This would
135  * possibly work on other subarchs.
136  */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)137 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
138 {
139 	pgd_t *pg;
140 	pud_t *pu;
141 	pmd_t *pm;
142 	hugepd_t *hpdp = NULL;
143 	unsigned pshift = __ffs(sz);
144 	unsigned pdshift = PGDIR_SHIFT;
145 
146 	addr &= ~(sz-1);
147 	pg = pgd_offset(mm, addr);
148 
149 #ifdef CONFIG_PPC_BOOK3S_64
150 	if (pshift == PGDIR_SHIFT)
151 		/* 16GB huge page */
152 		return (pte_t *) pg;
153 	else if (pshift > PUD_SHIFT)
154 		/*
155 		 * We need to use hugepd table
156 		 */
157 		hpdp = (hugepd_t *)pg;
158 	else {
159 		pdshift = PUD_SHIFT;
160 		pu = pud_alloc(mm, pg, addr);
161 		if (pshift == PUD_SHIFT)
162 			return (pte_t *)pu;
163 		else if (pshift > PMD_SHIFT)
164 			hpdp = (hugepd_t *)pu;
165 		else {
166 			pdshift = PMD_SHIFT;
167 			pm = pmd_alloc(mm, pu, addr);
168 			if (pshift == PMD_SHIFT)
169 				/* 16MB hugepage */
170 				return (pte_t *)pm;
171 			else
172 				hpdp = (hugepd_t *)pm;
173 		}
174 	}
175 #else
176 	if (pshift >= HUGEPD_PGD_SHIFT) {
177 		hpdp = (hugepd_t *)pg;
178 	} else {
179 		pdshift = PUD_SHIFT;
180 		pu = pud_alloc(mm, pg, addr);
181 		if (pshift >= HUGEPD_PUD_SHIFT) {
182 			hpdp = (hugepd_t *)pu;
183 		} else {
184 			pdshift = PMD_SHIFT;
185 			pm = pmd_alloc(mm, pu, addr);
186 			hpdp = (hugepd_t *)pm;
187 		}
188 	}
189 #endif
190 	if (!hpdp)
191 		return NULL;
192 
193 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
194 
195 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
196 		return NULL;
197 
198 	return hugepte_offset(*hpdp, addr, pdshift);
199 }
200 
201 #ifdef CONFIG_PPC_BOOK3S_64
202 /*
203  * Tracks gpages after the device tree is scanned and before the
204  * huge_boot_pages list is ready on pseries.
205  */
206 #define MAX_NUMBER_GPAGES	1024
207 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
208 __initdata static unsigned nr_gpages;
209 
210 /*
211  * Build list of addresses of gigantic pages.  This function is used in early
212  * boot before the buddy allocator is setup.
213  */
pseries_add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)214 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
215 {
216 	if (!addr)
217 		return;
218 	while (number_of_pages > 0) {
219 		gpage_freearray[nr_gpages] = addr;
220 		nr_gpages++;
221 		number_of_pages--;
222 		addr += page_size;
223 	}
224 }
225 
pseries_alloc_bootmem_huge_page(struct hstate * hstate)226 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
227 {
228 	struct huge_bootmem_page *m;
229 	if (nr_gpages == 0)
230 		return 0;
231 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
232 	gpage_freearray[nr_gpages] = 0;
233 	list_add(&m->list, &huge_boot_pages);
234 	m->hstate = hstate;
235 	return 1;
236 }
237 #endif
238 
239 
alloc_bootmem_huge_page(struct hstate * h)240 int __init alloc_bootmem_huge_page(struct hstate *h)
241 {
242 
243 #ifdef CONFIG_PPC_BOOK3S_64
244 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
245 		return pseries_alloc_bootmem_huge_page(h);
246 #endif
247 	return __alloc_bootmem_huge_page(h);
248 }
249 
250 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
251 #define HUGEPD_FREELIST_SIZE \
252 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
253 
254 struct hugepd_freelist {
255 	struct rcu_head	rcu;
256 	unsigned int index;
257 	void *ptes[0];
258 };
259 
260 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
261 
hugepd_free_rcu_callback(struct rcu_head * head)262 static void hugepd_free_rcu_callback(struct rcu_head *head)
263 {
264 	struct hugepd_freelist *batch =
265 		container_of(head, struct hugepd_freelist, rcu);
266 	unsigned int i;
267 
268 	for (i = 0; i < batch->index; i++)
269 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
270 
271 	free_page((unsigned long)batch);
272 }
273 
hugepd_free(struct mmu_gather * tlb,void * hugepte)274 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
275 {
276 	struct hugepd_freelist **batchp;
277 
278 	batchp = &get_cpu_var(hugepd_freelist_cur);
279 
280 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
281 	    mm_is_thread_local(tlb->mm)) {
282 		kmem_cache_free(hugepte_cache, hugepte);
283 		put_cpu_var(hugepd_freelist_cur);
284 		return;
285 	}
286 
287 	if (*batchp == NULL) {
288 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
289 		(*batchp)->index = 0;
290 	}
291 
292 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
293 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
294 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
295 		*batchp = NULL;
296 	}
297 	put_cpu_var(hugepd_freelist_cur);
298 }
299 #else
hugepd_free(struct mmu_gather * tlb,void * hugepte)300 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
301 #endif
302 
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)303 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
304 			      unsigned long start, unsigned long end,
305 			      unsigned long floor, unsigned long ceiling)
306 {
307 	pte_t *hugepte = hugepd_page(*hpdp);
308 	int i;
309 
310 	unsigned long pdmask = ~((1UL << pdshift) - 1);
311 	unsigned int num_hugepd = 1;
312 	unsigned int shift = hugepd_shift(*hpdp);
313 
314 	/* Note: On fsl the hpdp may be the first of several */
315 	if (shift > pdshift)
316 		num_hugepd = 1 << (shift - pdshift);
317 
318 	start &= pdmask;
319 	if (start < floor)
320 		return;
321 	if (ceiling) {
322 		ceiling &= pdmask;
323 		if (! ceiling)
324 			return;
325 	}
326 	if (end - 1 > ceiling - 1)
327 		return;
328 
329 	for (i = 0; i < num_hugepd; i++, hpdp++)
330 		*hpdp = __hugepd(0);
331 
332 	if (shift >= pdshift)
333 		hugepd_free(tlb, hugepte);
334 	else
335 		pgtable_free_tlb(tlb, hugepte, pdshift - shift);
336 }
337 
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)338 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
339 				   unsigned long addr, unsigned long end,
340 				   unsigned long floor, unsigned long ceiling)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	unsigned long start;
345 
346 	start = addr;
347 	do {
348 		unsigned long more;
349 
350 		pmd = pmd_offset(pud, addr);
351 		next = pmd_addr_end(addr, end);
352 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
353 			/*
354 			 * if it is not hugepd pointer, we should already find
355 			 * it cleared.
356 			 */
357 			WARN_ON(!pmd_none_or_clear_bad(pmd));
358 			continue;
359 		}
360 		/*
361 		 * Increment next by the size of the huge mapping since
362 		 * there may be more than one entry at this level for a
363 		 * single hugepage, but all of them point to
364 		 * the same kmem cache that holds the hugepte.
365 		 */
366 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
367 		if (more > next)
368 			next = more;
369 
370 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
371 				  addr, next, floor, ceiling);
372 	} while (addr = next, addr != end);
373 
374 	start &= PUD_MASK;
375 	if (start < floor)
376 		return;
377 	if (ceiling) {
378 		ceiling &= PUD_MASK;
379 		if (!ceiling)
380 			return;
381 	}
382 	if (end - 1 > ceiling - 1)
383 		return;
384 
385 	pmd = pmd_offset(pud, start);
386 	pud_clear(pud);
387 	pmd_free_tlb(tlb, pmd, start);
388 	mm_dec_nr_pmds(tlb->mm);
389 }
390 
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)391 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
392 				   unsigned long addr, unsigned long end,
393 				   unsigned long floor, unsigned long ceiling)
394 {
395 	pud_t *pud;
396 	unsigned long next;
397 	unsigned long start;
398 
399 	start = addr;
400 	do {
401 		pud = pud_offset(pgd, addr);
402 		next = pud_addr_end(addr, end);
403 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
404 			if (pud_none_or_clear_bad(pud))
405 				continue;
406 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
407 					       ceiling);
408 		} else {
409 			unsigned long more;
410 			/*
411 			 * Increment next by the size of the huge mapping since
412 			 * there may be more than one entry at this level for a
413 			 * single hugepage, but all of them point to
414 			 * the same kmem cache that holds the hugepte.
415 			 */
416 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
417 			if (more > next)
418 				next = more;
419 
420 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
421 					  addr, next, floor, ceiling);
422 		}
423 	} while (addr = next, addr != end);
424 
425 	start &= PGDIR_MASK;
426 	if (start < floor)
427 		return;
428 	if (ceiling) {
429 		ceiling &= PGDIR_MASK;
430 		if (!ceiling)
431 			return;
432 	}
433 	if (end - 1 > ceiling - 1)
434 		return;
435 
436 	pud = pud_offset(pgd, start);
437 	pgd_clear(pgd);
438 	pud_free_tlb(tlb, pud, start);
439 }
440 
441 /*
442  * This function frees user-level page tables of a process.
443  */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)444 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
445 			    unsigned long addr, unsigned long end,
446 			    unsigned long floor, unsigned long ceiling)
447 {
448 	pgd_t *pgd;
449 	unsigned long next;
450 
451 	/*
452 	 * Because there are a number of different possible pagetable
453 	 * layouts for hugepage ranges, we limit knowledge of how
454 	 * things should be laid out to the allocation path
455 	 * (huge_pte_alloc(), above).  Everything else works out the
456 	 * structure as it goes from information in the hugepd
457 	 * pointers.  That means that we can't here use the
458 	 * optimization used in the normal page free_pgd_range(), of
459 	 * checking whether we're actually covering a large enough
460 	 * range to have to do anything at the top level of the walk
461 	 * instead of at the bottom.
462 	 *
463 	 * To make sense of this, you should probably go read the big
464 	 * block comment at the top of the normal free_pgd_range(),
465 	 * too.
466 	 */
467 
468 	do {
469 		next = pgd_addr_end(addr, end);
470 		pgd = pgd_offset(tlb->mm, addr);
471 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
472 			if (pgd_none_or_clear_bad(pgd))
473 				continue;
474 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
475 		} else {
476 			unsigned long more;
477 			/*
478 			 * Increment next by the size of the huge mapping since
479 			 * there may be more than one entry at the pgd level
480 			 * for a single hugepage, but all of them point to the
481 			 * same kmem cache that holds the hugepte.
482 			 */
483 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
484 			if (more > next)
485 				next = more;
486 
487 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
488 					  addr, next, floor, ceiling);
489 		}
490 	} while (addr = next, addr != end);
491 }
492 
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)493 struct page *follow_huge_pd(struct vm_area_struct *vma,
494 			    unsigned long address, hugepd_t hpd,
495 			    int flags, int pdshift)
496 {
497 	pte_t *ptep;
498 	spinlock_t *ptl;
499 	struct page *page = NULL;
500 	unsigned long mask;
501 	int shift = hugepd_shift(hpd);
502 	struct mm_struct *mm = vma->vm_mm;
503 
504 retry:
505 	ptl = &mm->page_table_lock;
506 	spin_lock(ptl);
507 
508 	ptep = hugepte_offset(hpd, address, pdshift);
509 	if (pte_present(*ptep)) {
510 		mask = (1UL << shift) - 1;
511 		page = pte_page(*ptep);
512 		page += ((address & mask) >> PAGE_SHIFT);
513 		if (flags & FOLL_GET)
514 			get_page(page);
515 	} else {
516 		if (is_hugetlb_entry_migration(*ptep)) {
517 			spin_unlock(ptl);
518 			__migration_entry_wait(mm, ptep, ptl);
519 			goto retry;
520 		}
521 	}
522 	spin_unlock(ptl);
523 	return page;
524 }
525 
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)526 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
527 				      unsigned long sz)
528 {
529 	unsigned long __boundary = (addr + sz) & ~(sz-1);
530 	return (__boundary - 1 < end - 1) ? __boundary : end;
531 }
532 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned pdshift,unsigned long end,int write,struct page ** pages,int * nr)533 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
534 		unsigned long end, int write, struct page **pages, int *nr)
535 {
536 	pte_t *ptep;
537 	unsigned long sz = 1UL << hugepd_shift(hugepd);
538 	unsigned long next;
539 
540 	ptep = hugepte_offset(hugepd, addr, pdshift);
541 	do {
542 		next = hugepte_addr_end(addr, end, sz);
543 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
544 			return 0;
545 	} while (ptep++, addr = next, addr != end);
546 
547 	return 1;
548 }
549 
550 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)551 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
552 					unsigned long len, unsigned long pgoff,
553 					unsigned long flags)
554 {
555 	struct hstate *hstate = hstate_file(file);
556 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
557 
558 #ifdef CONFIG_PPC_RADIX_MMU
559 	if (radix_enabled())
560 		return radix__hugetlb_get_unmapped_area(file, addr, len,
561 						       pgoff, flags);
562 #endif
563 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
564 }
565 #endif
566 
vma_mmu_pagesize(struct vm_area_struct * vma)567 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
568 {
569 #ifdef CONFIG_PPC_MM_SLICES
570 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
571 	/* With radix we don't use slice, so derive it from vma*/
572 	if (!radix_enabled())
573 		return 1UL << mmu_psize_to_shift(psize);
574 #endif
575 	if (!is_vm_hugetlb_page(vma))
576 		return PAGE_SIZE;
577 
578 	return huge_page_size(hstate_vma(vma));
579 }
580 
is_power_of_4(unsigned long x)581 static inline bool is_power_of_4(unsigned long x)
582 {
583 	if (is_power_of_2(x))
584 		return (__ilog2(x) % 2) ? false : true;
585 	return false;
586 }
587 
add_huge_page_size(unsigned long long size)588 static int __init add_huge_page_size(unsigned long long size)
589 {
590 	int shift = __ffs(size);
591 	int mmu_psize;
592 
593 	/* Check that it is a page size supported by the hardware and
594 	 * that it fits within pagetable and slice limits. */
595 	if (size <= PAGE_SIZE)
596 		return -EINVAL;
597 #if defined(CONFIG_PPC_FSL_BOOK3E)
598 	if (!is_power_of_4(size))
599 		return -EINVAL;
600 #elif !defined(CONFIG_PPC_8xx)
601 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
602 		return -EINVAL;
603 #endif
604 
605 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
606 		return -EINVAL;
607 
608 #ifdef CONFIG_PPC_BOOK3S_64
609 	/*
610 	 * We need to make sure that for different page sizes reported by
611 	 * firmware we only add hugetlb support for page sizes that can be
612 	 * supported by linux page table layout.
613 	 * For now we have
614 	 * Radix: 2M
615 	 * Hash: 16M and 16G
616 	 */
617 	if (radix_enabled()) {
618 		if (mmu_psize != MMU_PAGE_2M) {
619 			if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
620 			    (mmu_psize != MMU_PAGE_1G))
621 				return -EINVAL;
622 		}
623 	} else {
624 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
625 			return -EINVAL;
626 	}
627 #endif
628 
629 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
630 
631 	/* Return if huge page size has already been setup */
632 	if (size_to_hstate(size))
633 		return 0;
634 
635 	hugetlb_add_hstate(shift - PAGE_SHIFT);
636 
637 	return 0;
638 }
639 
hugepage_setup_sz(char * str)640 static int __init hugepage_setup_sz(char *str)
641 {
642 	unsigned long long size;
643 
644 	size = memparse(str, &str);
645 
646 	if (add_huge_page_size(size) != 0) {
647 		hugetlb_bad_size();
648 		pr_err("Invalid huge page size specified(%llu)\n", size);
649 	}
650 
651 	return 1;
652 }
653 __setup("hugepagesz=", hugepage_setup_sz);
654 
655 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)656 static int __init hugetlbpage_init(void)
657 {
658 	int psize;
659 
660 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
661 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
662 		return -ENODEV;
663 #endif
664 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
665 		unsigned shift;
666 		unsigned pdshift;
667 
668 		if (!mmu_psize_defs[psize].shift)
669 			continue;
670 
671 		shift = mmu_psize_to_shift(psize);
672 
673 		if (add_huge_page_size(1ULL << shift) < 0)
674 			continue;
675 
676 		if (shift < HUGEPD_PUD_SHIFT)
677 			pdshift = PMD_SHIFT;
678 		else if (shift < HUGEPD_PGD_SHIFT)
679 			pdshift = PUD_SHIFT;
680 		else
681 			pdshift = PGDIR_SHIFT;
682 		/*
683 		 * if we have pdshift and shift value same, we don't
684 		 * use pgt cache for hugepd.
685 		 */
686 		if (pdshift > shift)
687 			pgtable_cache_add(pdshift - shift, NULL);
688 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
689 		else if (!hugepte_cache) {
690 			/*
691 			 * Create a kmem cache for hugeptes.  The bottom bits in
692 			 * the pte have size information encoded in them, so
693 			 * align them to allow this
694 			 */
695 			hugepte_cache = kmem_cache_create("hugepte-cache",
696 							  sizeof(pte_t),
697 							  HUGEPD_SHIFT_MASK + 1,
698 							  0, NULL);
699 			if (hugepte_cache == NULL)
700 				panic("%s: Unable to create kmem cache "
701 				      "for hugeptes\n", __func__);
702 
703 		}
704 #endif
705 	}
706 
707 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
708 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
709 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
710 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
711 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
712 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
713 #else
714 	/* Set default large page size. Currently, we pick 16M or 1M
715 	 * depending on what is available
716 	 */
717 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
718 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
719 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
720 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
721 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
722 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
723 #endif
724 	return 0;
725 }
726 
727 arch_initcall(hugetlbpage_init);
728 
flush_dcache_icache_hugepage(struct page * page)729 void flush_dcache_icache_hugepage(struct page *page)
730 {
731 	int i;
732 	void *start;
733 
734 	BUG_ON(!PageCompound(page));
735 
736 	for (i = 0; i < (1UL << compound_order(page)); i++) {
737 		if (!PageHighMem(page)) {
738 			__flush_dcache_icache(page_address(page+i));
739 		} else {
740 			start = kmap_atomic(page+i);
741 			__flush_dcache_icache(start);
742 			kunmap_atomic(start);
743 		}
744 	}
745 }
746 
747 #endif /* CONFIG_HUGETLB_PAGE */
748 
749 /*
750  * We have 4 cases for pgds and pmds:
751  * (1) invalid (all zeroes)
752  * (2) pointer to next table, as normal; bottom 6 bits == 0
753  * (3) leaf pte for huge page _PAGE_PTE set
754  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
755  *
756  * So long as we atomically load page table pointers we are safe against teardown,
757  * we can follow the address down to the the page and take a ref on it.
758  * This function need to be called with interrupts disabled. We use this variant
759  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
760  */
__find_linux_pte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * hpage_shift)761 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
762 			bool *is_thp, unsigned *hpage_shift)
763 {
764 	pgd_t pgd, *pgdp;
765 	pud_t pud, *pudp;
766 	pmd_t pmd, *pmdp;
767 	pte_t *ret_pte;
768 	hugepd_t *hpdp = NULL;
769 	unsigned pdshift = PGDIR_SHIFT;
770 
771 	if (hpage_shift)
772 		*hpage_shift = 0;
773 
774 	if (is_thp)
775 		*is_thp = false;
776 
777 	pgdp = pgdir + pgd_index(ea);
778 	pgd  = READ_ONCE(*pgdp);
779 	/*
780 	 * Always operate on the local stack value. This make sure the
781 	 * value don't get updated by a parallel THP split/collapse,
782 	 * page fault or a page unmap. The return pte_t * is still not
783 	 * stable. So should be checked there for above conditions.
784 	 */
785 	if (pgd_none(pgd))
786 		return NULL;
787 	else if (pgd_huge(pgd)) {
788 		ret_pte = (pte_t *) pgdp;
789 		goto out;
790 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
791 		hpdp = (hugepd_t *)&pgd;
792 	else {
793 		/*
794 		 * Even if we end up with an unmap, the pgtable will not
795 		 * be freed, because we do an rcu free and here we are
796 		 * irq disabled
797 		 */
798 		pdshift = PUD_SHIFT;
799 		pudp = pud_offset(&pgd, ea);
800 		pud  = READ_ONCE(*pudp);
801 
802 		if (pud_none(pud))
803 			return NULL;
804 		else if (pud_huge(pud)) {
805 			ret_pte = (pte_t *) pudp;
806 			goto out;
807 		} else if (is_hugepd(__hugepd(pud_val(pud))))
808 			hpdp = (hugepd_t *)&pud;
809 		else {
810 			pdshift = PMD_SHIFT;
811 			pmdp = pmd_offset(&pud, ea);
812 			pmd  = READ_ONCE(*pmdp);
813 			/*
814 			 * A hugepage collapse is captured by pmd_none, because
815 			 * it mark the pmd none and do a hpte invalidate.
816 			 */
817 			if (pmd_none(pmd))
818 				return NULL;
819 
820 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
821 				if (is_thp)
822 					*is_thp = true;
823 				ret_pte = (pte_t *) pmdp;
824 				goto out;
825 			}
826 
827 			if (pmd_huge(pmd)) {
828 				ret_pte = (pte_t *) pmdp;
829 				goto out;
830 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
831 				hpdp = (hugepd_t *)&pmd;
832 			else
833 				return pte_offset_kernel(&pmd, ea);
834 		}
835 	}
836 	if (!hpdp)
837 		return NULL;
838 
839 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
840 	pdshift = hugepd_shift(*hpdp);
841 out:
842 	if (hpage_shift)
843 		*hpage_shift = pdshift;
844 	return ret_pte;
845 }
846 EXPORT_SYMBOL_GPL(__find_linux_pte);
847 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)848 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
849 		unsigned long end, int write, struct page **pages, int *nr)
850 {
851 	unsigned long pte_end;
852 	struct page *head, *page;
853 	pte_t pte;
854 	int refs;
855 
856 	pte_end = (addr + sz) & ~(sz-1);
857 	if (pte_end < end)
858 		end = pte_end;
859 
860 	pte = READ_ONCE(*ptep);
861 
862 	if (!pte_present(pte) || !pte_read(pte))
863 		return 0;
864 	if (write && !pte_write(pte))
865 		return 0;
866 
867 	/* hugepages are never "special" */
868 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
869 
870 	refs = 0;
871 	head = pte_page(pte);
872 
873 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
874 	do {
875 		VM_BUG_ON(compound_head(page) != head);
876 		pages[*nr] = page;
877 		(*nr)++;
878 		page++;
879 		refs++;
880 	} while (addr += PAGE_SIZE, addr != end);
881 
882 	if (!page_cache_add_speculative(head, refs)) {
883 		*nr -= refs;
884 		return 0;
885 	}
886 
887 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
888 		/* Could be optimized better */
889 		*nr -= refs;
890 		while (refs--)
891 			put_page(head);
892 		return 0;
893 	}
894 
895 	return 1;
896 }
897