• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * linux/fs/binfmt_elf.c
3   *
4   * These are the functions used to load ELF format executables as used
5   * on SVr4 machines.  Information on the format may be found in the book
6   * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7   * Tools".
8   *
9   * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10   */
11  
12  #include <linux/module.h>
13  #include <linux/kernel.h>
14  #include <linux/fs.h>
15  #include <linux/mm.h>
16  #include <linux/mman.h>
17  #include <linux/errno.h>
18  #include <linux/signal.h>
19  #include <linux/binfmts.h>
20  #include <linux/string.h>
21  #include <linux/file.h>
22  #include <linux/slab.h>
23  #include <linux/personality.h>
24  #include <linux/elfcore.h>
25  #include <linux/init.h>
26  #include <linux/highuid.h>
27  #include <linux/compiler.h>
28  #include <linux/highmem.h>
29  #include <linux/pagemap.h>
30  #include <linux/vmalloc.h>
31  #include <linux/security.h>
32  #include <linux/random.h>
33  #include <linux/elf.h>
34  #include <linux/elf-randomize.h>
35  #include <linux/utsname.h>
36  #include <linux/coredump.h>
37  #include <linux/sched.h>
38  #include <linux/sched/coredump.h>
39  #include <linux/sched/task_stack.h>
40  #include <linux/sched/cputime.h>
41  #include <linux/cred.h>
42  #include <linux/dax.h>
43  #include <linux/uaccess.h>
44  #include <asm/param.h>
45  #include <asm/page.h>
46  
47  #ifndef user_long_t
48  #define user_long_t long
49  #endif
50  #ifndef user_siginfo_t
51  #define user_siginfo_t siginfo_t
52  #endif
53  
54  static int load_elf_binary(struct linux_binprm *bprm);
55  static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
56  				int, int, unsigned long);
57  
58  #ifdef CONFIG_USELIB
59  static int load_elf_library(struct file *);
60  #else
61  #define load_elf_library NULL
62  #endif
63  
64  /*
65   * If we don't support core dumping, then supply a NULL so we
66   * don't even try.
67   */
68  #ifdef CONFIG_ELF_CORE
69  static int elf_core_dump(struct coredump_params *cprm);
70  #else
71  #define elf_core_dump	NULL
72  #endif
73  
74  #if ELF_EXEC_PAGESIZE > PAGE_SIZE
75  #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
76  #else
77  #define ELF_MIN_ALIGN	PAGE_SIZE
78  #endif
79  
80  #ifndef ELF_CORE_EFLAGS
81  #define ELF_CORE_EFLAGS	0
82  #endif
83  
84  #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
85  #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
86  #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
87  
88  static struct linux_binfmt elf_format = {
89  	.module		= THIS_MODULE,
90  	.load_binary	= load_elf_binary,
91  	.load_shlib	= load_elf_library,
92  	.core_dump	= elf_core_dump,
93  	.min_coredump	= ELF_EXEC_PAGESIZE,
94  };
95  
96  #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
97  
set_brk(unsigned long start,unsigned long end,int prot)98  static int set_brk(unsigned long start, unsigned long end, int prot)
99  {
100  	start = ELF_PAGEALIGN(start);
101  	end = ELF_PAGEALIGN(end);
102  	if (end > start) {
103  		/*
104  		 * Map the last of the bss segment.
105  		 * If the header is requesting these pages to be
106  		 * executable, honour that (ppc32 needs this).
107  		 */
108  		int error = vm_brk_flags(start, end - start,
109  				prot & PROT_EXEC ? VM_EXEC : 0);
110  		if (error)
111  			return error;
112  	}
113  	current->mm->start_brk = current->mm->brk = end;
114  	return 0;
115  }
116  
117  /* We need to explicitly zero any fractional pages
118     after the data section (i.e. bss).  This would
119     contain the junk from the file that should not
120     be in memory
121   */
padzero(unsigned long elf_bss)122  static int padzero(unsigned long elf_bss)
123  {
124  	unsigned long nbyte;
125  
126  	nbyte = ELF_PAGEOFFSET(elf_bss);
127  	if (nbyte) {
128  		nbyte = ELF_MIN_ALIGN - nbyte;
129  		if (clear_user((void __user *) elf_bss, nbyte))
130  			return -EFAULT;
131  	}
132  	return 0;
133  }
134  
135  /* Let's use some macros to make this stack manipulation a little clearer */
136  #ifdef CONFIG_STACK_GROWSUP
137  #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
138  #define STACK_ROUND(sp, items) \
139  	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
140  #define STACK_ALLOC(sp, len) ({ \
141  	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
142  	old_sp; })
143  #else
144  #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
145  #define STACK_ROUND(sp, items) \
146  	(((unsigned long) (sp - items)) &~ 15UL)
147  #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
148  #endif
149  
150  #ifndef ELF_BASE_PLATFORM
151  /*
152   * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
153   * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
154   * will be copied to the user stack in the same manner as AT_PLATFORM.
155   */
156  #define ELF_BASE_PLATFORM NULL
157  #endif
158  
159  static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)160  create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
161  		unsigned long load_addr, unsigned long interp_load_addr)
162  {
163  	unsigned long p = bprm->p;
164  	int argc = bprm->argc;
165  	int envc = bprm->envc;
166  	elf_addr_t __user *sp;
167  	elf_addr_t __user *u_platform;
168  	elf_addr_t __user *u_base_platform;
169  	elf_addr_t __user *u_rand_bytes;
170  	const char *k_platform = ELF_PLATFORM;
171  	const char *k_base_platform = ELF_BASE_PLATFORM;
172  	unsigned char k_rand_bytes[16];
173  	int items;
174  	elf_addr_t *elf_info;
175  	int ei_index = 0;
176  	const struct cred *cred = current_cred();
177  	struct vm_area_struct *vma;
178  
179  	/*
180  	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
181  	 * evictions by the processes running on the same package. One
182  	 * thing we can do is to shuffle the initial stack for them.
183  	 */
184  
185  	p = arch_align_stack(p);
186  
187  	/*
188  	 * If this architecture has a platform capability string, copy it
189  	 * to userspace.  In some cases (Sparc), this info is impossible
190  	 * for userspace to get any other way, in others (i386) it is
191  	 * merely difficult.
192  	 */
193  	u_platform = NULL;
194  	if (k_platform) {
195  		size_t len = strlen(k_platform) + 1;
196  
197  		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
198  		if (__copy_to_user(u_platform, k_platform, len))
199  			return -EFAULT;
200  	}
201  
202  	/*
203  	 * If this architecture has a "base" platform capability
204  	 * string, copy it to userspace.
205  	 */
206  	u_base_platform = NULL;
207  	if (k_base_platform) {
208  		size_t len = strlen(k_base_platform) + 1;
209  
210  		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
211  		if (__copy_to_user(u_base_platform, k_base_platform, len))
212  			return -EFAULT;
213  	}
214  
215  	/*
216  	 * Generate 16 random bytes for userspace PRNG seeding.
217  	 */
218  	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
219  	u_rand_bytes = (elf_addr_t __user *)
220  		       STACK_ALLOC(p, sizeof(k_rand_bytes));
221  	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
222  		return -EFAULT;
223  
224  	/* Create the ELF interpreter info */
225  	elf_info = (elf_addr_t *)current->mm->saved_auxv;
226  	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
227  #define NEW_AUX_ENT(id, val) \
228  	do { \
229  		elf_info[ei_index++] = id; \
230  		elf_info[ei_index++] = val; \
231  	} while (0)
232  
233  #ifdef ARCH_DLINFO
234  	/*
235  	 * ARCH_DLINFO must come first so PPC can do its special alignment of
236  	 * AUXV.
237  	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
238  	 * ARCH_DLINFO changes
239  	 */
240  	ARCH_DLINFO;
241  #endif
242  	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
243  	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
244  	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
245  	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
246  	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
247  	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
248  	NEW_AUX_ENT(AT_BASE, interp_load_addr);
249  	NEW_AUX_ENT(AT_FLAGS, 0);
250  	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
251  	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
252  	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
253  	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
254  	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
255  	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
256  	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
257  #ifdef ELF_HWCAP2
258  	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
259  #endif
260  	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
261  	if (k_platform) {
262  		NEW_AUX_ENT(AT_PLATFORM,
263  			    (elf_addr_t)(unsigned long)u_platform);
264  	}
265  	if (k_base_platform) {
266  		NEW_AUX_ENT(AT_BASE_PLATFORM,
267  			    (elf_addr_t)(unsigned long)u_base_platform);
268  	}
269  	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
270  		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
271  	}
272  #undef NEW_AUX_ENT
273  	/* AT_NULL is zero; clear the rest too */
274  	memset(&elf_info[ei_index], 0,
275  	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
276  
277  	/* And advance past the AT_NULL entry.  */
278  	ei_index += 2;
279  
280  	sp = STACK_ADD(p, ei_index);
281  
282  	items = (argc + 1) + (envc + 1) + 1;
283  	bprm->p = STACK_ROUND(sp, items);
284  
285  	/* Point sp at the lowest address on the stack */
286  #ifdef CONFIG_STACK_GROWSUP
287  	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
288  	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
289  #else
290  	sp = (elf_addr_t __user *)bprm->p;
291  #endif
292  
293  
294  	/*
295  	 * Grow the stack manually; some architectures have a limit on how
296  	 * far ahead a user-space access may be in order to grow the stack.
297  	 */
298  	vma = find_extend_vma(current->mm, bprm->p);
299  	if (!vma)
300  		return -EFAULT;
301  
302  	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
303  	if (__put_user(argc, sp++))
304  		return -EFAULT;
305  
306  	/* Populate list of argv pointers back to argv strings. */
307  	p = current->mm->arg_end = current->mm->arg_start;
308  	while (argc-- > 0) {
309  		size_t len;
310  		if (__put_user((elf_addr_t)p, sp++))
311  			return -EFAULT;
312  		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313  		if (!len || len > MAX_ARG_STRLEN)
314  			return -EINVAL;
315  		p += len;
316  	}
317  	if (__put_user(0, sp++))
318  		return -EFAULT;
319  	current->mm->arg_end = p;
320  
321  	/* Populate list of envp pointers back to envp strings. */
322  	current->mm->env_end = current->mm->env_start = p;
323  	while (envc-- > 0) {
324  		size_t len;
325  		if (__put_user((elf_addr_t)p, sp++))
326  			return -EFAULT;
327  		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
328  		if (!len || len > MAX_ARG_STRLEN)
329  			return -EINVAL;
330  		p += len;
331  	}
332  	if (__put_user(0, sp++))
333  		return -EFAULT;
334  	current->mm->env_end = p;
335  
336  	/* Put the elf_info on the stack in the right place.  */
337  	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
338  		return -EFAULT;
339  	return 0;
340  }
341  
342  #ifndef elf_map
343  
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)344  static unsigned long elf_map(struct file *filep, unsigned long addr,
345  		struct elf_phdr *eppnt, int prot, int type,
346  		unsigned long total_size)
347  {
348  	unsigned long map_addr;
349  	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
350  	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
351  	addr = ELF_PAGESTART(addr);
352  	size = ELF_PAGEALIGN(size);
353  
354  	/* mmap() will return -EINVAL if given a zero size, but a
355  	 * segment with zero filesize is perfectly valid */
356  	if (!size)
357  		return addr;
358  
359  	/*
360  	* total_size is the size of the ELF (interpreter) image.
361  	* The _first_ mmap needs to know the full size, otherwise
362  	* randomization might put this image into an overlapping
363  	* position with the ELF binary image. (since size < total_size)
364  	* So we first map the 'big' image - and unmap the remainder at
365  	* the end. (which unmap is needed for ELF images with holes.)
366  	*/
367  	if (total_size) {
368  		total_size = ELF_PAGEALIGN(total_size);
369  		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
370  		if (!BAD_ADDR(map_addr))
371  			vm_munmap(map_addr+size, total_size-size);
372  	} else
373  		map_addr = vm_mmap(filep, addr, size, prot, type, off);
374  
375  	return(map_addr);
376  }
377  
378  #endif /* !elf_map */
379  
total_mapping_size(struct elf_phdr * cmds,int nr)380  static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
381  {
382  	int i, first_idx = -1, last_idx = -1;
383  
384  	for (i = 0; i < nr; i++) {
385  		if (cmds[i].p_type == PT_LOAD) {
386  			last_idx = i;
387  			if (first_idx == -1)
388  				first_idx = i;
389  		}
390  	}
391  	if (first_idx == -1)
392  		return 0;
393  
394  	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
395  				ELF_PAGESTART(cmds[first_idx].p_vaddr);
396  }
397  
398  /**
399   * load_elf_phdrs() - load ELF program headers
400   * @elf_ex:   ELF header of the binary whose program headers should be loaded
401   * @elf_file: the opened ELF binary file
402   *
403   * Loads ELF program headers from the binary file elf_file, which has the ELF
404   * header pointed to by elf_ex, into a newly allocated array. The caller is
405   * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
406   */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)407  static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
408  				       struct file *elf_file)
409  {
410  	struct elf_phdr *elf_phdata = NULL;
411  	int retval, size, err = -1;
412  	loff_t pos = elf_ex->e_phoff;
413  
414  	/*
415  	 * If the size of this structure has changed, then punt, since
416  	 * we will be doing the wrong thing.
417  	 */
418  	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
419  		goto out;
420  
421  	/* Sanity check the number of program headers... */
422  	if (elf_ex->e_phnum < 1 ||
423  		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
424  		goto out;
425  
426  	/* ...and their total size. */
427  	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
428  	if (size > ELF_MIN_ALIGN)
429  		goto out;
430  
431  	elf_phdata = kmalloc(size, GFP_KERNEL);
432  	if (!elf_phdata)
433  		goto out;
434  
435  	/* Read in the program headers */
436  	retval = kernel_read(elf_file, elf_phdata, size, &pos);
437  	if (retval != size) {
438  		err = (retval < 0) ? retval : -EIO;
439  		goto out;
440  	}
441  
442  	/* Success! */
443  	err = 0;
444  out:
445  	if (err) {
446  		kfree(elf_phdata);
447  		elf_phdata = NULL;
448  	}
449  	return elf_phdata;
450  }
451  
452  #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
453  
454  /**
455   * struct arch_elf_state - arch-specific ELF loading state
456   *
457   * This structure is used to preserve architecture specific data during
458   * the loading of an ELF file, throughout the checking of architecture
459   * specific ELF headers & through to the point where the ELF load is
460   * known to be proceeding (ie. SET_PERSONALITY).
461   *
462   * This implementation is a dummy for architectures which require no
463   * specific state.
464   */
465  struct arch_elf_state {
466  };
467  
468  #define INIT_ARCH_ELF_STATE {}
469  
470  /**
471   * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
472   * @ehdr:	The main ELF header
473   * @phdr:	The program header to check
474   * @elf:	The open ELF file
475   * @is_interp:	True if the phdr is from the interpreter of the ELF being
476   *		loaded, else false.
477   * @state:	Architecture-specific state preserved throughout the process
478   *		of loading the ELF.
479   *
480   * Inspects the program header phdr to validate its correctness and/or
481   * suitability for the system. Called once per ELF program header in the
482   * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
483   * interpreter.
484   *
485   * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
486   *         with that return code.
487   */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)488  static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
489  				   struct elf_phdr *phdr,
490  				   struct file *elf, bool is_interp,
491  				   struct arch_elf_state *state)
492  {
493  	/* Dummy implementation, always proceed */
494  	return 0;
495  }
496  
497  /**
498   * arch_check_elf() - check an ELF executable
499   * @ehdr:	The main ELF header
500   * @has_interp:	True if the ELF has an interpreter, else false.
501   * @interp_ehdr: The interpreter's ELF header
502   * @state:	Architecture-specific state preserved throughout the process
503   *		of loading the ELF.
504   *
505   * Provides a final opportunity for architecture code to reject the loading
506   * of the ELF & cause an exec syscall to return an error. This is called after
507   * all program headers to be checked by arch_elf_pt_proc have been.
508   *
509   * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
510   *         with that return code.
511   */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)512  static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
513  				 struct elfhdr *interp_ehdr,
514  				 struct arch_elf_state *state)
515  {
516  	/* Dummy implementation, always proceed */
517  	return 0;
518  }
519  
520  #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
521  
522  /* This is much more generalized than the library routine read function,
523     so we keep this separate.  Technically the library read function
524     is only provided so that we can read a.out libraries that have
525     an ELF header */
526  
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)527  static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
528  		struct file *interpreter, unsigned long *interp_map_addr,
529  		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
530  {
531  	struct elf_phdr *eppnt;
532  	unsigned long load_addr = 0;
533  	int load_addr_set = 0;
534  	unsigned long last_bss = 0, elf_bss = 0;
535  	int bss_prot = 0;
536  	unsigned long error = ~0UL;
537  	unsigned long total_size;
538  	int i;
539  
540  	/* First of all, some simple consistency checks */
541  	if (interp_elf_ex->e_type != ET_EXEC &&
542  	    interp_elf_ex->e_type != ET_DYN)
543  		goto out;
544  	if (!elf_check_arch(interp_elf_ex))
545  		goto out;
546  	if (!interpreter->f_op->mmap)
547  		goto out;
548  
549  	total_size = total_mapping_size(interp_elf_phdata,
550  					interp_elf_ex->e_phnum);
551  	if (!total_size) {
552  		error = -EINVAL;
553  		goto out;
554  	}
555  
556  	eppnt = interp_elf_phdata;
557  	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
558  		if (eppnt->p_type == PT_LOAD) {
559  			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
560  			int elf_prot = 0;
561  			unsigned long vaddr = 0;
562  			unsigned long k, map_addr;
563  
564  			if (eppnt->p_flags & PF_R)
565  		    		elf_prot = PROT_READ;
566  			if (eppnt->p_flags & PF_W)
567  				elf_prot |= PROT_WRITE;
568  			if (eppnt->p_flags & PF_X)
569  				elf_prot |= PROT_EXEC;
570  			vaddr = eppnt->p_vaddr;
571  			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
572  				elf_type |= MAP_FIXED;
573  			else if (no_base && interp_elf_ex->e_type == ET_DYN)
574  				load_addr = -vaddr;
575  
576  			map_addr = elf_map(interpreter, load_addr + vaddr,
577  					eppnt, elf_prot, elf_type, total_size);
578  			total_size = 0;
579  			if (!*interp_map_addr)
580  				*interp_map_addr = map_addr;
581  			error = map_addr;
582  			if (BAD_ADDR(map_addr))
583  				goto out;
584  
585  			if (!load_addr_set &&
586  			    interp_elf_ex->e_type == ET_DYN) {
587  				load_addr = map_addr - ELF_PAGESTART(vaddr);
588  				load_addr_set = 1;
589  			}
590  
591  			/*
592  			 * Check to see if the section's size will overflow the
593  			 * allowed task size. Note that p_filesz must always be
594  			 * <= p_memsize so it's only necessary to check p_memsz.
595  			 */
596  			k = load_addr + eppnt->p_vaddr;
597  			if (BAD_ADDR(k) ||
598  			    eppnt->p_filesz > eppnt->p_memsz ||
599  			    eppnt->p_memsz > TASK_SIZE ||
600  			    TASK_SIZE - eppnt->p_memsz < k) {
601  				error = -ENOMEM;
602  				goto out;
603  			}
604  
605  			/*
606  			 * Find the end of the file mapping for this phdr, and
607  			 * keep track of the largest address we see for this.
608  			 */
609  			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
610  			if (k > elf_bss)
611  				elf_bss = k;
612  
613  			/*
614  			 * Do the same thing for the memory mapping - between
615  			 * elf_bss and last_bss is the bss section.
616  			 */
617  			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
618  			if (k > last_bss) {
619  				last_bss = k;
620  				bss_prot = elf_prot;
621  			}
622  		}
623  	}
624  
625  	/*
626  	 * Now fill out the bss section: first pad the last page from
627  	 * the file up to the page boundary, and zero it from elf_bss
628  	 * up to the end of the page.
629  	 */
630  	if (padzero(elf_bss)) {
631  		error = -EFAULT;
632  		goto out;
633  	}
634  	/*
635  	 * Next, align both the file and mem bss up to the page size,
636  	 * since this is where elf_bss was just zeroed up to, and where
637  	 * last_bss will end after the vm_brk_flags() below.
638  	 */
639  	elf_bss = ELF_PAGEALIGN(elf_bss);
640  	last_bss = ELF_PAGEALIGN(last_bss);
641  	/* Finally, if there is still more bss to allocate, do it. */
642  	if (last_bss > elf_bss) {
643  		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
644  				bss_prot & PROT_EXEC ? VM_EXEC : 0);
645  		if (error)
646  			goto out;
647  	}
648  
649  	error = load_addr;
650  out:
651  	return error;
652  }
653  
654  /*
655   * These are the functions used to load ELF style executables and shared
656   * libraries.  There is no binary dependent code anywhere else.
657   */
658  
659  #ifndef STACK_RND_MASK
660  #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
661  #endif
662  
randomize_stack_top(unsigned long stack_top)663  static unsigned long randomize_stack_top(unsigned long stack_top)
664  {
665  	unsigned long random_variable = 0;
666  
667  	if (current->flags & PF_RANDOMIZE) {
668  		random_variable = get_random_long();
669  		random_variable &= STACK_RND_MASK;
670  		random_variable <<= PAGE_SHIFT;
671  	}
672  #ifdef CONFIG_STACK_GROWSUP
673  	return PAGE_ALIGN(stack_top) + random_variable;
674  #else
675  	return PAGE_ALIGN(stack_top) - random_variable;
676  #endif
677  }
678  
load_elf_binary(struct linux_binprm * bprm)679  static int load_elf_binary(struct linux_binprm *bprm)
680  {
681  	struct file *interpreter = NULL; /* to shut gcc up */
682   	unsigned long load_addr = 0, load_bias = 0;
683  	int load_addr_set = 0;
684  	char * elf_interpreter = NULL;
685  	unsigned long error;
686  	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
687  	unsigned long elf_bss, elf_brk;
688  	int bss_prot = 0;
689  	int retval, i;
690  	unsigned long elf_entry;
691  	unsigned long interp_load_addr = 0;
692  	unsigned long start_code, end_code, start_data, end_data;
693  	unsigned long reloc_func_desc __maybe_unused = 0;
694  	int executable_stack = EXSTACK_DEFAULT;
695  	struct pt_regs *regs = current_pt_regs();
696  	struct {
697  		struct elfhdr elf_ex;
698  		struct elfhdr interp_elf_ex;
699  	} *loc;
700  	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
701  	loff_t pos;
702  
703  	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
704  	if (!loc) {
705  		retval = -ENOMEM;
706  		goto out_ret;
707  	}
708  
709  	/* Get the exec-header */
710  	loc->elf_ex = *((struct elfhdr *)bprm->buf);
711  
712  	retval = -ENOEXEC;
713  	/* First of all, some simple consistency checks */
714  	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
715  		goto out;
716  
717  	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
718  		goto out;
719  	if (!elf_check_arch(&loc->elf_ex))
720  		goto out;
721  	if (!bprm->file->f_op->mmap)
722  		goto out;
723  
724  	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
725  	if (!elf_phdata)
726  		goto out;
727  
728  	elf_ppnt = elf_phdata;
729  	elf_bss = 0;
730  	elf_brk = 0;
731  
732  	start_code = ~0UL;
733  	end_code = 0;
734  	start_data = 0;
735  	end_data = 0;
736  
737  	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
738  		if (elf_ppnt->p_type == PT_INTERP) {
739  			/* This is the program interpreter used for
740  			 * shared libraries - for now assume that this
741  			 * is an a.out format binary
742  			 */
743  			retval = -ENOEXEC;
744  			if (elf_ppnt->p_filesz > PATH_MAX ||
745  			    elf_ppnt->p_filesz < 2)
746  				goto out_free_ph;
747  
748  			retval = -ENOMEM;
749  			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
750  						  GFP_KERNEL);
751  			if (!elf_interpreter)
752  				goto out_free_ph;
753  
754  			pos = elf_ppnt->p_offset;
755  			retval = kernel_read(bprm->file, elf_interpreter,
756  					     elf_ppnt->p_filesz, &pos);
757  			if (retval != elf_ppnt->p_filesz) {
758  				if (retval >= 0)
759  					retval = -EIO;
760  				goto out_free_interp;
761  			}
762  			/* make sure path is NULL terminated */
763  			retval = -ENOEXEC;
764  			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
765  				goto out_free_interp;
766  
767  			interpreter = open_exec(elf_interpreter);
768  			retval = PTR_ERR(interpreter);
769  			if (IS_ERR(interpreter))
770  				goto out_free_interp;
771  
772  			/*
773  			 * If the binary is not readable then enforce
774  			 * mm->dumpable = 0 regardless of the interpreter's
775  			 * permissions.
776  			 */
777  			would_dump(bprm, interpreter);
778  
779  			/* Get the exec headers */
780  			pos = 0;
781  			retval = kernel_read(interpreter, &loc->interp_elf_ex,
782  					     sizeof(loc->interp_elf_ex), &pos);
783  			if (retval != sizeof(loc->interp_elf_ex)) {
784  				if (retval >= 0)
785  					retval = -EIO;
786  				goto out_free_dentry;
787  			}
788  
789  			break;
790  		}
791  		elf_ppnt++;
792  	}
793  
794  	elf_ppnt = elf_phdata;
795  	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
796  		switch (elf_ppnt->p_type) {
797  		case PT_GNU_STACK:
798  			if (elf_ppnt->p_flags & PF_X)
799  				executable_stack = EXSTACK_ENABLE_X;
800  			else
801  				executable_stack = EXSTACK_DISABLE_X;
802  			break;
803  
804  		case PT_LOPROC ... PT_HIPROC:
805  			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
806  						  bprm->file, false,
807  						  &arch_state);
808  			if (retval)
809  				goto out_free_dentry;
810  			break;
811  		}
812  
813  	/* Some simple consistency checks for the interpreter */
814  	if (elf_interpreter) {
815  		retval = -ELIBBAD;
816  		/* Not an ELF interpreter */
817  		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
818  			goto out_free_dentry;
819  		/* Verify the interpreter has a valid arch */
820  		if (!elf_check_arch(&loc->interp_elf_ex))
821  			goto out_free_dentry;
822  
823  		/* Load the interpreter program headers */
824  		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
825  						   interpreter);
826  		if (!interp_elf_phdata)
827  			goto out_free_dentry;
828  
829  		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
830  		elf_ppnt = interp_elf_phdata;
831  		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
832  			switch (elf_ppnt->p_type) {
833  			case PT_LOPROC ... PT_HIPROC:
834  				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
835  							  elf_ppnt, interpreter,
836  							  true, &arch_state);
837  				if (retval)
838  					goto out_free_dentry;
839  				break;
840  			}
841  	}
842  
843  	/*
844  	 * Allow arch code to reject the ELF at this point, whilst it's
845  	 * still possible to return an error to the code that invoked
846  	 * the exec syscall.
847  	 */
848  	retval = arch_check_elf(&loc->elf_ex,
849  				!!interpreter, &loc->interp_elf_ex,
850  				&arch_state);
851  	if (retval)
852  		goto out_free_dentry;
853  
854  	/* Flush all traces of the currently running executable */
855  	retval = flush_old_exec(bprm);
856  	if (retval)
857  		goto out_free_dentry;
858  
859  	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
860  	   may depend on the personality.  */
861  	SET_PERSONALITY2(loc->elf_ex, &arch_state);
862  	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
863  		current->personality |= READ_IMPLIES_EXEC;
864  
865  	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
866  		current->flags |= PF_RANDOMIZE;
867  
868  	setup_new_exec(bprm);
869  	install_exec_creds(bprm);
870  
871  	/* Do this so that we can load the interpreter, if need be.  We will
872  	   change some of these later */
873  	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
874  				 executable_stack);
875  	if (retval < 0)
876  		goto out_free_dentry;
877  
878  	current->mm->start_stack = bprm->p;
879  
880  	/* Now we do a little grungy work by mmapping the ELF image into
881  	   the correct location in memory. */
882  	for(i = 0, elf_ppnt = elf_phdata;
883  	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
884  		int elf_prot = 0, elf_flags;
885  		unsigned long k, vaddr;
886  		unsigned long total_size = 0;
887  
888  		if (elf_ppnt->p_type != PT_LOAD)
889  			continue;
890  
891  		if (unlikely (elf_brk > elf_bss)) {
892  			unsigned long nbyte;
893  
894  			/* There was a PT_LOAD segment with p_memsz > p_filesz
895  			   before this one. Map anonymous pages, if needed,
896  			   and clear the area.  */
897  			retval = set_brk(elf_bss + load_bias,
898  					 elf_brk + load_bias,
899  					 bss_prot);
900  			if (retval)
901  				goto out_free_dentry;
902  			nbyte = ELF_PAGEOFFSET(elf_bss);
903  			if (nbyte) {
904  				nbyte = ELF_MIN_ALIGN - nbyte;
905  				if (nbyte > elf_brk - elf_bss)
906  					nbyte = elf_brk - elf_bss;
907  				if (clear_user((void __user *)elf_bss +
908  							load_bias, nbyte)) {
909  					/*
910  					 * This bss-zeroing can fail if the ELF
911  					 * file specifies odd protections. So
912  					 * we don't check the return value
913  					 */
914  				}
915  			}
916  		}
917  
918  		if (elf_ppnt->p_flags & PF_R)
919  			elf_prot |= PROT_READ;
920  		if (elf_ppnt->p_flags & PF_W)
921  			elf_prot |= PROT_WRITE;
922  		if (elf_ppnt->p_flags & PF_X)
923  			elf_prot |= PROT_EXEC;
924  
925  		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926  
927  		vaddr = elf_ppnt->p_vaddr;
928  		/*
929  		 * If we are loading ET_EXEC or we have already performed
930  		 * the ET_DYN load_addr calculations, proceed normally.
931  		 */
932  		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933  			elf_flags |= MAP_FIXED;
934  		} else if (loc->elf_ex.e_type == ET_DYN) {
935  			/*
936  			 * This logic is run once for the first LOAD Program
937  			 * Header for ET_DYN binaries to calculate the
938  			 * randomization (load_bias) for all the LOAD
939  			 * Program Headers, and to calculate the entire
940  			 * size of the ELF mapping (total_size). (Note that
941  			 * load_addr_set is set to true later once the
942  			 * initial mapping is performed.)
943  			 *
944  			 * There are effectively two types of ET_DYN
945  			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946  			 * and loaders (ET_DYN without INTERP, since they
947  			 * _are_ the ELF interpreter). The loaders must
948  			 * be loaded away from programs since the program
949  			 * may otherwise collide with the loader (especially
950  			 * for ET_EXEC which does not have a randomized
951  			 * position). For example to handle invocations of
952  			 * "./ld.so someprog" to test out a new version of
953  			 * the loader, the subsequent program that the
954  			 * loader loads must avoid the loader itself, so
955  			 * they cannot share the same load range. Sufficient
956  			 * room for the brk must be allocated with the
957  			 * loader as well, since brk must be available with
958  			 * the loader.
959  			 *
960  			 * Therefore, programs are loaded offset from
961  			 * ELF_ET_DYN_BASE and loaders are loaded into the
962  			 * independently randomized mmap region (0 load_bias
963  			 * without MAP_FIXED).
964  			 */
965  			if (elf_interpreter) {
966  				load_bias = ELF_ET_DYN_BASE;
967  				if (current->flags & PF_RANDOMIZE)
968  					load_bias += arch_mmap_rnd();
969  				elf_flags |= MAP_FIXED;
970  			} else
971  				load_bias = 0;
972  
973  			/*
974  			 * Since load_bias is used for all subsequent loading
975  			 * calculations, we must lower it by the first vaddr
976  			 * so that the remaining calculations based on the
977  			 * ELF vaddrs will be correctly offset. The result
978  			 * is then page aligned.
979  			 */
980  			load_bias = ELF_PAGESTART(load_bias - vaddr);
981  
982  			total_size = total_mapping_size(elf_phdata,
983  							loc->elf_ex.e_phnum);
984  			if (!total_size) {
985  				retval = -EINVAL;
986  				goto out_free_dentry;
987  			}
988  		}
989  
990  		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991  				elf_prot, elf_flags, total_size);
992  		if (BAD_ADDR(error)) {
993  			retval = IS_ERR((void *)error) ?
994  				PTR_ERR((void*)error) : -EINVAL;
995  			goto out_free_dentry;
996  		}
997  
998  		if (!load_addr_set) {
999  			load_addr_set = 1;
1000  			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001  			if (loc->elf_ex.e_type == ET_DYN) {
1002  				load_bias += error -
1003  				             ELF_PAGESTART(load_bias + vaddr);
1004  				load_addr += load_bias;
1005  				reloc_func_desc = load_bias;
1006  			}
1007  		}
1008  		k = elf_ppnt->p_vaddr;
1009  		if (k < start_code)
1010  			start_code = k;
1011  		if (start_data < k)
1012  			start_data = k;
1013  
1014  		/*
1015  		 * Check to see if the section's size will overflow the
1016  		 * allowed task size. Note that p_filesz must always be
1017  		 * <= p_memsz so it is only necessary to check p_memsz.
1018  		 */
1019  		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020  		    elf_ppnt->p_memsz > TASK_SIZE ||
1021  		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1022  			/* set_brk can never work. Avoid overflows. */
1023  			retval = -EINVAL;
1024  			goto out_free_dentry;
1025  		}
1026  
1027  		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028  
1029  		if (k > elf_bss)
1030  			elf_bss = k;
1031  		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032  			end_code = k;
1033  		if (end_data < k)
1034  			end_data = k;
1035  		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036  		if (k > elf_brk) {
1037  			bss_prot = elf_prot;
1038  			elf_brk = k;
1039  		}
1040  	}
1041  
1042  	loc->elf_ex.e_entry += load_bias;
1043  	elf_bss += load_bias;
1044  	elf_brk += load_bias;
1045  	start_code += load_bias;
1046  	end_code += load_bias;
1047  	start_data += load_bias;
1048  	end_data += load_bias;
1049  
1050  	/* Calling set_brk effectively mmaps the pages that we need
1051  	 * for the bss and break sections.  We must do this before
1052  	 * mapping in the interpreter, to make sure it doesn't wind
1053  	 * up getting placed where the bss needs to go.
1054  	 */
1055  	retval = set_brk(elf_bss, elf_brk, bss_prot);
1056  	if (retval)
1057  		goto out_free_dentry;
1058  	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059  		retval = -EFAULT; /* Nobody gets to see this, but.. */
1060  		goto out_free_dentry;
1061  	}
1062  
1063  	if (elf_interpreter) {
1064  		unsigned long interp_map_addr = 0;
1065  
1066  		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067  					    interpreter,
1068  					    &interp_map_addr,
1069  					    load_bias, interp_elf_phdata);
1070  		if (!IS_ERR((void *)elf_entry)) {
1071  			/*
1072  			 * load_elf_interp() returns relocation
1073  			 * adjustment
1074  			 */
1075  			interp_load_addr = elf_entry;
1076  			elf_entry += loc->interp_elf_ex.e_entry;
1077  		}
1078  		if (BAD_ADDR(elf_entry)) {
1079  			retval = IS_ERR((void *)elf_entry) ?
1080  					(int)elf_entry : -EINVAL;
1081  			goto out_free_dentry;
1082  		}
1083  		reloc_func_desc = interp_load_addr;
1084  
1085  		allow_write_access(interpreter);
1086  		fput(interpreter);
1087  		kfree(elf_interpreter);
1088  	} else {
1089  		elf_entry = loc->elf_ex.e_entry;
1090  		if (BAD_ADDR(elf_entry)) {
1091  			retval = -EINVAL;
1092  			goto out_free_dentry;
1093  		}
1094  	}
1095  
1096  	kfree(interp_elf_phdata);
1097  	kfree(elf_phdata);
1098  
1099  	set_binfmt(&elf_format);
1100  
1101  #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1102  	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1103  	if (retval < 0)
1104  		goto out;
1105  #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1106  
1107  	retval = create_elf_tables(bprm, &loc->elf_ex,
1108  			  load_addr, interp_load_addr);
1109  	if (retval < 0)
1110  		goto out;
1111  	/* N.B. passed_fileno might not be initialized? */
1112  	current->mm->end_code = end_code;
1113  	current->mm->start_code = start_code;
1114  	current->mm->start_data = start_data;
1115  	current->mm->end_data = end_data;
1116  	current->mm->start_stack = bprm->p;
1117  
1118  	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1119  		/*
1120  		 * For architectures with ELF randomization, when executing
1121  		 * a loader directly (i.e. no interpreter listed in ELF
1122  		 * headers), move the brk area out of the mmap region
1123  		 * (since it grows up, and may collide early with the stack
1124  		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1125  		 */
1126  		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1127  		    loc->elf_ex.e_type == ET_DYN && !interpreter)
1128  			current->mm->brk = current->mm->start_brk =
1129  				ELF_ET_DYN_BASE;
1130  
1131  		current->mm->brk = current->mm->start_brk =
1132  			arch_randomize_brk(current->mm);
1133  #ifdef compat_brk_randomized
1134  		current->brk_randomized = 1;
1135  #endif
1136  	}
1137  
1138  	if (current->personality & MMAP_PAGE_ZERO) {
1139  		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1140  		   and some applications "depend" upon this behavior.
1141  		   Since we do not have the power to recompile these, we
1142  		   emulate the SVr4 behavior. Sigh. */
1143  		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1144  				MAP_FIXED | MAP_PRIVATE, 0);
1145  	}
1146  
1147  #ifdef ELF_PLAT_INIT
1148  	/*
1149  	 * The ABI may specify that certain registers be set up in special
1150  	 * ways (on i386 %edx is the address of a DT_FINI function, for
1151  	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1152  	 * that the e_entry field is the address of the function descriptor
1153  	 * for the startup routine, rather than the address of the startup
1154  	 * routine itself.  This macro performs whatever initialization to
1155  	 * the regs structure is required as well as any relocations to the
1156  	 * function descriptor entries when executing dynamically links apps.
1157  	 */
1158  	ELF_PLAT_INIT(regs, reloc_func_desc);
1159  #endif
1160  
1161  	start_thread(regs, elf_entry, bprm->p);
1162  	retval = 0;
1163  out:
1164  	kfree(loc);
1165  out_ret:
1166  	return retval;
1167  
1168  	/* error cleanup */
1169  out_free_dentry:
1170  	kfree(interp_elf_phdata);
1171  	allow_write_access(interpreter);
1172  	if (interpreter)
1173  		fput(interpreter);
1174  out_free_interp:
1175  	kfree(elf_interpreter);
1176  out_free_ph:
1177  	kfree(elf_phdata);
1178  	goto out;
1179  }
1180  
1181  #ifdef CONFIG_USELIB
1182  /* This is really simpleminded and specialized - we are loading an
1183     a.out library that is given an ELF header. */
load_elf_library(struct file * file)1184  static int load_elf_library(struct file *file)
1185  {
1186  	struct elf_phdr *elf_phdata;
1187  	struct elf_phdr *eppnt;
1188  	unsigned long elf_bss, bss, len;
1189  	int retval, error, i, j;
1190  	struct elfhdr elf_ex;
1191  	loff_t pos = 0;
1192  
1193  	error = -ENOEXEC;
1194  	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1195  	if (retval != sizeof(elf_ex))
1196  		goto out;
1197  
1198  	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1199  		goto out;
1200  
1201  	/* First of all, some simple consistency checks */
1202  	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1203  	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1204  		goto out;
1205  
1206  	/* Now read in all of the header information */
1207  
1208  	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209  	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210  
1211  	error = -ENOMEM;
1212  	elf_phdata = kmalloc(j, GFP_KERNEL);
1213  	if (!elf_phdata)
1214  		goto out;
1215  
1216  	eppnt = elf_phdata;
1217  	error = -ENOEXEC;
1218  	pos =  elf_ex.e_phoff;
1219  	retval = kernel_read(file, eppnt, j, &pos);
1220  	if (retval != j)
1221  		goto out_free_ph;
1222  
1223  	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224  		if ((eppnt + i)->p_type == PT_LOAD)
1225  			j++;
1226  	if (j != 1)
1227  		goto out_free_ph;
1228  
1229  	while (eppnt->p_type != PT_LOAD)
1230  		eppnt++;
1231  
1232  	/* Now use mmap to map the library into memory. */
1233  	error = vm_mmap(file,
1234  			ELF_PAGESTART(eppnt->p_vaddr),
1235  			(eppnt->p_filesz +
1236  			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237  			PROT_READ | PROT_WRITE | PROT_EXEC,
1238  			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1239  			(eppnt->p_offset -
1240  			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241  	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242  		goto out_free_ph;
1243  
1244  	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245  	if (padzero(elf_bss)) {
1246  		error = -EFAULT;
1247  		goto out_free_ph;
1248  	}
1249  
1250  	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251  	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1252  	if (bss > len) {
1253  		error = vm_brk(len, bss - len);
1254  		if (error)
1255  			goto out_free_ph;
1256  	}
1257  	error = 0;
1258  
1259  out_free_ph:
1260  	kfree(elf_phdata);
1261  out:
1262  	return error;
1263  }
1264  #endif /* #ifdef CONFIG_USELIB */
1265  
1266  #ifdef CONFIG_ELF_CORE
1267  /*
1268   * ELF core dumper
1269   *
1270   * Modelled on fs/exec.c:aout_core_dump()
1271   * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272   */
1273  
1274  /*
1275   * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276   * that are useful for post-mortem analysis are included in every core dump.
1277   * In that way we ensure that the core dump is fully interpretable later
1278   * without matching up the same kernel and hardware config to see what PC values
1279   * meant. These special mappings include - vDSO, vsyscall, and other
1280   * architecture specific mappings
1281   */
always_dump_vma(struct vm_area_struct * vma)1282  static bool always_dump_vma(struct vm_area_struct *vma)
1283  {
1284  	/* Any vsyscall mappings? */
1285  	if (vma == get_gate_vma(vma->vm_mm))
1286  		return true;
1287  
1288  	/*
1289  	 * Assume that all vmas with a .name op should always be dumped.
1290  	 * If this changes, a new vm_ops field can easily be added.
1291  	 */
1292  	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293  		return true;
1294  
1295  	/*
1296  	 * arch_vma_name() returns non-NULL for special architecture mappings,
1297  	 * such as vDSO sections.
1298  	 */
1299  	if (arch_vma_name(vma))
1300  		return true;
1301  
1302  	return false;
1303  }
1304  
1305  /*
1306   * Decide what to dump of a segment, part, all or none.
1307   */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1308  static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309  				   unsigned long mm_flags)
1310  {
1311  #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1312  
1313  	/* always dump the vdso and vsyscall sections */
1314  	if (always_dump_vma(vma))
1315  		goto whole;
1316  
1317  	if (vma->vm_flags & VM_DONTDUMP)
1318  		return 0;
1319  
1320  	/* support for DAX */
1321  	if (vma_is_dax(vma)) {
1322  		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323  			goto whole;
1324  		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325  			goto whole;
1326  		return 0;
1327  	}
1328  
1329  	/* Hugetlb memory check */
1330  	if (vma->vm_flags & VM_HUGETLB) {
1331  		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332  			goto whole;
1333  		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334  			goto whole;
1335  		return 0;
1336  	}
1337  
1338  	/* Do not dump I/O mapped devices or special mappings */
1339  	if (vma->vm_flags & VM_IO)
1340  		return 0;
1341  
1342  	/* By default, dump shared memory if mapped from an anonymous file. */
1343  	if (vma->vm_flags & VM_SHARED) {
1344  		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345  		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346  			goto whole;
1347  		return 0;
1348  	}
1349  
1350  	/* Dump segments that have been written to.  */
1351  	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352  		goto whole;
1353  	if (vma->vm_file == NULL)
1354  		return 0;
1355  
1356  	if (FILTER(MAPPED_PRIVATE))
1357  		goto whole;
1358  
1359  	/*
1360  	 * If this looks like the beginning of a DSO or executable mapping,
1361  	 * check for an ELF header.  If we find one, dump the first page to
1362  	 * aid in determining what was mapped here.
1363  	 */
1364  	if (FILTER(ELF_HEADERS) &&
1365  	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366  		u32 __user *header = (u32 __user *) vma->vm_start;
1367  		u32 word;
1368  		mm_segment_t fs = get_fs();
1369  		/*
1370  		 * Doing it this way gets the constant folded by GCC.
1371  		 */
1372  		union {
1373  			u32 cmp;
1374  			char elfmag[SELFMAG];
1375  		} magic;
1376  		BUILD_BUG_ON(SELFMAG != sizeof word);
1377  		magic.elfmag[EI_MAG0] = ELFMAG0;
1378  		magic.elfmag[EI_MAG1] = ELFMAG1;
1379  		magic.elfmag[EI_MAG2] = ELFMAG2;
1380  		magic.elfmag[EI_MAG3] = ELFMAG3;
1381  		/*
1382  		 * Switch to the user "segment" for get_user(),
1383  		 * then put back what elf_core_dump() had in place.
1384  		 */
1385  		set_fs(USER_DS);
1386  		if (unlikely(get_user(word, header)))
1387  			word = 0;
1388  		set_fs(fs);
1389  		if (word == magic.cmp)
1390  			return PAGE_SIZE;
1391  	}
1392  
1393  #undef	FILTER
1394  
1395  	return 0;
1396  
1397  whole:
1398  	return vma->vm_end - vma->vm_start;
1399  }
1400  
1401  /* An ELF note in memory */
1402  struct memelfnote
1403  {
1404  	const char *name;
1405  	int type;
1406  	unsigned int datasz;
1407  	void *data;
1408  };
1409  
notesize(struct memelfnote * en)1410  static int notesize(struct memelfnote *en)
1411  {
1412  	int sz;
1413  
1414  	sz = sizeof(struct elf_note);
1415  	sz += roundup(strlen(en->name) + 1, 4);
1416  	sz += roundup(en->datasz, 4);
1417  
1418  	return sz;
1419  }
1420  
writenote(struct memelfnote * men,struct coredump_params * cprm)1421  static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422  {
1423  	struct elf_note en;
1424  	en.n_namesz = strlen(men->name) + 1;
1425  	en.n_descsz = men->datasz;
1426  	en.n_type = men->type;
1427  
1428  	return dump_emit(cprm, &en, sizeof(en)) &&
1429  	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430  	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431  }
1432  
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1433  static void fill_elf_header(struct elfhdr *elf, int segs,
1434  			    u16 machine, u32 flags)
1435  {
1436  	memset(elf, 0, sizeof(*elf));
1437  
1438  	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439  	elf->e_ident[EI_CLASS] = ELF_CLASS;
1440  	elf->e_ident[EI_DATA] = ELF_DATA;
1441  	elf->e_ident[EI_VERSION] = EV_CURRENT;
1442  	elf->e_ident[EI_OSABI] = ELF_OSABI;
1443  
1444  	elf->e_type = ET_CORE;
1445  	elf->e_machine = machine;
1446  	elf->e_version = EV_CURRENT;
1447  	elf->e_phoff = sizeof(struct elfhdr);
1448  	elf->e_flags = flags;
1449  	elf->e_ehsize = sizeof(struct elfhdr);
1450  	elf->e_phentsize = sizeof(struct elf_phdr);
1451  	elf->e_phnum = segs;
1452  
1453  	return;
1454  }
1455  
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1456  static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1457  {
1458  	phdr->p_type = PT_NOTE;
1459  	phdr->p_offset = offset;
1460  	phdr->p_vaddr = 0;
1461  	phdr->p_paddr = 0;
1462  	phdr->p_filesz = sz;
1463  	phdr->p_memsz = 0;
1464  	phdr->p_flags = 0;
1465  	phdr->p_align = 0;
1466  	return;
1467  }
1468  
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1469  static void fill_note(struct memelfnote *note, const char *name, int type,
1470  		unsigned int sz, void *data)
1471  {
1472  	note->name = name;
1473  	note->type = type;
1474  	note->datasz = sz;
1475  	note->data = data;
1476  	return;
1477  }
1478  
1479  /*
1480   * fill up all the fields in prstatus from the given task struct, except
1481   * registers which need to be filled up separately.
1482   */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1483  static void fill_prstatus(struct elf_prstatus *prstatus,
1484  		struct task_struct *p, long signr)
1485  {
1486  	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1487  	prstatus->pr_sigpend = p->pending.signal.sig[0];
1488  	prstatus->pr_sighold = p->blocked.sig[0];
1489  	rcu_read_lock();
1490  	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1491  	rcu_read_unlock();
1492  	prstatus->pr_pid = task_pid_vnr(p);
1493  	prstatus->pr_pgrp = task_pgrp_vnr(p);
1494  	prstatus->pr_sid = task_session_vnr(p);
1495  	if (thread_group_leader(p)) {
1496  		struct task_cputime cputime;
1497  
1498  		/*
1499  		 * This is the record for the group leader.  It shows the
1500  		 * group-wide total, not its individual thread total.
1501  		 */
1502  		thread_group_cputime(p, &cputime);
1503  		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1504  		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1505  	} else {
1506  		u64 utime, stime;
1507  
1508  		task_cputime(p, &utime, &stime);
1509  		prstatus->pr_utime = ns_to_timeval(utime);
1510  		prstatus->pr_stime = ns_to_timeval(stime);
1511  	}
1512  
1513  	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1514  	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1515  }
1516  
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1517  static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1518  		       struct mm_struct *mm)
1519  {
1520  	const struct cred *cred;
1521  	unsigned int i, len;
1522  
1523  	/* first copy the parameters from user space */
1524  	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1525  
1526  	len = mm->arg_end - mm->arg_start;
1527  	if (len >= ELF_PRARGSZ)
1528  		len = ELF_PRARGSZ-1;
1529  	if (copy_from_user(&psinfo->pr_psargs,
1530  		           (const char __user *)mm->arg_start, len))
1531  		return -EFAULT;
1532  	for(i = 0; i < len; i++)
1533  		if (psinfo->pr_psargs[i] == 0)
1534  			psinfo->pr_psargs[i] = ' ';
1535  	psinfo->pr_psargs[len] = 0;
1536  
1537  	rcu_read_lock();
1538  	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539  	rcu_read_unlock();
1540  	psinfo->pr_pid = task_pid_vnr(p);
1541  	psinfo->pr_pgrp = task_pgrp_vnr(p);
1542  	psinfo->pr_sid = task_session_vnr(p);
1543  
1544  	i = p->state ? ffz(~p->state) + 1 : 0;
1545  	psinfo->pr_state = i;
1546  	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1547  	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1548  	psinfo->pr_nice = task_nice(p);
1549  	psinfo->pr_flag = p->flags;
1550  	rcu_read_lock();
1551  	cred = __task_cred(p);
1552  	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1553  	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1554  	rcu_read_unlock();
1555  	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1556  
1557  	return 0;
1558  }
1559  
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1560  static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1561  {
1562  	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1563  	int i = 0;
1564  	do
1565  		i += 2;
1566  	while (auxv[i - 2] != AT_NULL);
1567  	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1568  }
1569  
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1570  static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1571  		const siginfo_t *siginfo)
1572  {
1573  	mm_segment_t old_fs = get_fs();
1574  	set_fs(KERNEL_DS);
1575  	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1576  	set_fs(old_fs);
1577  	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1578  }
1579  
1580  #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1581  /*
1582   * Format of NT_FILE note:
1583   *
1584   * long count     -- how many files are mapped
1585   * long page_size -- units for file_ofs
1586   * array of [COUNT] elements of
1587   *   long start
1588   *   long end
1589   *   long file_ofs
1590   * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1591   */
fill_files_note(struct memelfnote * note)1592  static int fill_files_note(struct memelfnote *note)
1593  {
1594  	struct vm_area_struct *vma;
1595  	unsigned count, size, names_ofs, remaining, n;
1596  	user_long_t *data;
1597  	user_long_t *start_end_ofs;
1598  	char *name_base, *name_curpos;
1599  
1600  	/* *Estimated* file count and total data size needed */
1601  	count = current->mm->map_count;
1602  	size = count * 64;
1603  
1604  	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1605   alloc:
1606  	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1607  		return -EINVAL;
1608  	size = round_up(size, PAGE_SIZE);
1609  	data = vmalloc(size);
1610  	if (!data)
1611  		return -ENOMEM;
1612  
1613  	start_end_ofs = data + 2;
1614  	name_base = name_curpos = ((char *)data) + names_ofs;
1615  	remaining = size - names_ofs;
1616  	count = 0;
1617  	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1618  		struct file *file;
1619  		const char *filename;
1620  
1621  		file = vma->vm_file;
1622  		if (!file)
1623  			continue;
1624  		filename = file_path(file, name_curpos, remaining);
1625  		if (IS_ERR(filename)) {
1626  			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1627  				vfree(data);
1628  				size = size * 5 / 4;
1629  				goto alloc;
1630  			}
1631  			continue;
1632  		}
1633  
1634  		/* file_path() fills at the end, move name down */
1635  		/* n = strlen(filename) + 1: */
1636  		n = (name_curpos + remaining) - filename;
1637  		remaining = filename - name_curpos;
1638  		memmove(name_curpos, filename, n);
1639  		name_curpos += n;
1640  
1641  		*start_end_ofs++ = vma->vm_start;
1642  		*start_end_ofs++ = vma->vm_end;
1643  		*start_end_ofs++ = vma->vm_pgoff;
1644  		count++;
1645  	}
1646  
1647  	/* Now we know exact count of files, can store it */
1648  	data[0] = count;
1649  	data[1] = PAGE_SIZE;
1650  	/*
1651  	 * Count usually is less than current->mm->map_count,
1652  	 * we need to move filenames down.
1653  	 */
1654  	n = current->mm->map_count - count;
1655  	if (n != 0) {
1656  		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1657  		memmove(name_base - shift_bytes, name_base,
1658  			name_curpos - name_base);
1659  		name_curpos -= shift_bytes;
1660  	}
1661  
1662  	size = name_curpos - (char *)data;
1663  	fill_note(note, "CORE", NT_FILE, size, data);
1664  	return 0;
1665  }
1666  
1667  #ifdef CORE_DUMP_USE_REGSET
1668  #include <linux/regset.h>
1669  
1670  struct elf_thread_core_info {
1671  	struct elf_thread_core_info *next;
1672  	struct task_struct *task;
1673  	struct elf_prstatus prstatus;
1674  	struct memelfnote notes[0];
1675  };
1676  
1677  struct elf_note_info {
1678  	struct elf_thread_core_info *thread;
1679  	struct memelfnote psinfo;
1680  	struct memelfnote signote;
1681  	struct memelfnote auxv;
1682  	struct memelfnote files;
1683  	user_siginfo_t csigdata;
1684  	size_t size;
1685  	int thread_notes;
1686  };
1687  
1688  /*
1689   * When a regset has a writeback hook, we call it on each thread before
1690   * dumping user memory.  On register window machines, this makes sure the
1691   * user memory backing the register data is up to date before we read it.
1692   */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1693  static void do_thread_regset_writeback(struct task_struct *task,
1694  				       const struct user_regset *regset)
1695  {
1696  	if (regset->writeback)
1697  		regset->writeback(task, regset, 1);
1698  }
1699  
1700  #ifndef PRSTATUS_SIZE
1701  #define PRSTATUS_SIZE(S, R) sizeof(S)
1702  #endif
1703  
1704  #ifndef SET_PR_FPVALID
1705  #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1706  #endif
1707  
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1708  static int fill_thread_core_info(struct elf_thread_core_info *t,
1709  				 const struct user_regset_view *view,
1710  				 long signr, size_t *total)
1711  {
1712  	unsigned int i;
1713  	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1714  
1715  	/*
1716  	 * NT_PRSTATUS is the one special case, because the regset data
1717  	 * goes into the pr_reg field inside the note contents, rather
1718  	 * than being the whole note contents.  We fill the reset in here.
1719  	 * We assume that regset 0 is NT_PRSTATUS.
1720  	 */
1721  	fill_prstatus(&t->prstatus, t->task, signr);
1722  	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1723  				    &t->prstatus.pr_reg, NULL);
1724  
1725  	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1726  		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1727  	*total += notesize(&t->notes[0]);
1728  
1729  	do_thread_regset_writeback(t->task, &view->regsets[0]);
1730  
1731  	/*
1732  	 * Each other regset might generate a note too.  For each regset
1733  	 * that has no core_note_type or is inactive, we leave t->notes[i]
1734  	 * all zero and we'll know to skip writing it later.
1735  	 */
1736  	for (i = 1; i < view->n; ++i) {
1737  		const struct user_regset *regset = &view->regsets[i];
1738  		do_thread_regset_writeback(t->task, regset);
1739  		if (regset->core_note_type && regset->get &&
1740  		    (!regset->active || regset->active(t->task, regset) > 0)) {
1741  			int ret;
1742  			size_t size = regset->n * regset->size;
1743  			void *data = kmalloc(size, GFP_KERNEL);
1744  			if (unlikely(!data))
1745  				return 0;
1746  			ret = regset->get(t->task, regset,
1747  					  0, size, data, NULL);
1748  			if (unlikely(ret))
1749  				kfree(data);
1750  			else {
1751  				if (regset->core_note_type != NT_PRFPREG)
1752  					fill_note(&t->notes[i], "LINUX",
1753  						  regset->core_note_type,
1754  						  size, data);
1755  				else {
1756  					SET_PR_FPVALID(&t->prstatus,
1757  							1, regset_size);
1758  					fill_note(&t->notes[i], "CORE",
1759  						  NT_PRFPREG, size, data);
1760  				}
1761  				*total += notesize(&t->notes[i]);
1762  			}
1763  		}
1764  	}
1765  
1766  	return 1;
1767  }
1768  
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1769  static int fill_note_info(struct elfhdr *elf, int phdrs,
1770  			  struct elf_note_info *info,
1771  			  const siginfo_t *siginfo, struct pt_regs *regs)
1772  {
1773  	struct task_struct *dump_task = current;
1774  	const struct user_regset_view *view = task_user_regset_view(dump_task);
1775  	struct elf_thread_core_info *t;
1776  	struct elf_prpsinfo *psinfo;
1777  	struct core_thread *ct;
1778  	unsigned int i;
1779  
1780  	info->size = 0;
1781  	info->thread = NULL;
1782  
1783  	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1784  	if (psinfo == NULL) {
1785  		info->psinfo.data = NULL; /* So we don't free this wrongly */
1786  		return 0;
1787  	}
1788  
1789  	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1790  
1791  	/*
1792  	 * Figure out how many notes we're going to need for each thread.
1793  	 */
1794  	info->thread_notes = 0;
1795  	for (i = 0; i < view->n; ++i)
1796  		if (view->regsets[i].core_note_type != 0)
1797  			++info->thread_notes;
1798  
1799  	/*
1800  	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1801  	 * since it is our one special case.
1802  	 */
1803  	if (unlikely(info->thread_notes == 0) ||
1804  	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1805  		WARN_ON(1);
1806  		return 0;
1807  	}
1808  
1809  	/*
1810  	 * Initialize the ELF file header.
1811  	 */
1812  	fill_elf_header(elf, phdrs,
1813  			view->e_machine, view->e_flags);
1814  
1815  	/*
1816  	 * Allocate a structure for each thread.
1817  	 */
1818  	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1819  		t = kzalloc(offsetof(struct elf_thread_core_info,
1820  				     notes[info->thread_notes]),
1821  			    GFP_KERNEL);
1822  		if (unlikely(!t))
1823  			return 0;
1824  
1825  		t->task = ct->task;
1826  		if (ct->task == dump_task || !info->thread) {
1827  			t->next = info->thread;
1828  			info->thread = t;
1829  		} else {
1830  			/*
1831  			 * Make sure to keep the original task at
1832  			 * the head of the list.
1833  			 */
1834  			t->next = info->thread->next;
1835  			info->thread->next = t;
1836  		}
1837  	}
1838  
1839  	/*
1840  	 * Now fill in each thread's information.
1841  	 */
1842  	for (t = info->thread; t != NULL; t = t->next)
1843  		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1844  			return 0;
1845  
1846  	/*
1847  	 * Fill in the two process-wide notes.
1848  	 */
1849  	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1850  	info->size += notesize(&info->psinfo);
1851  
1852  	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1853  	info->size += notesize(&info->signote);
1854  
1855  	fill_auxv_note(&info->auxv, current->mm);
1856  	info->size += notesize(&info->auxv);
1857  
1858  	if (fill_files_note(&info->files) == 0)
1859  		info->size += notesize(&info->files);
1860  
1861  	return 1;
1862  }
1863  
get_note_info_size(struct elf_note_info * info)1864  static size_t get_note_info_size(struct elf_note_info *info)
1865  {
1866  	return info->size;
1867  }
1868  
1869  /*
1870   * Write all the notes for each thread.  When writing the first thread, the
1871   * process-wide notes are interleaved after the first thread-specific note.
1872   */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1873  static int write_note_info(struct elf_note_info *info,
1874  			   struct coredump_params *cprm)
1875  {
1876  	bool first = true;
1877  	struct elf_thread_core_info *t = info->thread;
1878  
1879  	do {
1880  		int i;
1881  
1882  		if (!writenote(&t->notes[0], cprm))
1883  			return 0;
1884  
1885  		if (first && !writenote(&info->psinfo, cprm))
1886  			return 0;
1887  		if (first && !writenote(&info->signote, cprm))
1888  			return 0;
1889  		if (first && !writenote(&info->auxv, cprm))
1890  			return 0;
1891  		if (first && info->files.data &&
1892  				!writenote(&info->files, cprm))
1893  			return 0;
1894  
1895  		for (i = 1; i < info->thread_notes; ++i)
1896  			if (t->notes[i].data &&
1897  			    !writenote(&t->notes[i], cprm))
1898  				return 0;
1899  
1900  		first = false;
1901  		t = t->next;
1902  	} while (t);
1903  
1904  	return 1;
1905  }
1906  
free_note_info(struct elf_note_info * info)1907  static void free_note_info(struct elf_note_info *info)
1908  {
1909  	struct elf_thread_core_info *threads = info->thread;
1910  	while (threads) {
1911  		unsigned int i;
1912  		struct elf_thread_core_info *t = threads;
1913  		threads = t->next;
1914  		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1915  		for (i = 1; i < info->thread_notes; ++i)
1916  			kfree(t->notes[i].data);
1917  		kfree(t);
1918  	}
1919  	kfree(info->psinfo.data);
1920  	vfree(info->files.data);
1921  }
1922  
1923  #else
1924  
1925  /* Here is the structure in which status of each thread is captured. */
1926  struct elf_thread_status
1927  {
1928  	struct list_head list;
1929  	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1930  	elf_fpregset_t fpu;		/* NT_PRFPREG */
1931  	struct task_struct *thread;
1932  #ifdef ELF_CORE_COPY_XFPREGS
1933  	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1934  #endif
1935  	struct memelfnote notes[3];
1936  	int num_notes;
1937  };
1938  
1939  /*
1940   * In order to add the specific thread information for the elf file format,
1941   * we need to keep a linked list of every threads pr_status and then create
1942   * a single section for them in the final core file.
1943   */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1944  static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1945  {
1946  	int sz = 0;
1947  	struct task_struct *p = t->thread;
1948  	t->num_notes = 0;
1949  
1950  	fill_prstatus(&t->prstatus, p, signr);
1951  	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1952  
1953  	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1954  		  &(t->prstatus));
1955  	t->num_notes++;
1956  	sz += notesize(&t->notes[0]);
1957  
1958  	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1959  								&t->fpu))) {
1960  		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1961  			  &(t->fpu));
1962  		t->num_notes++;
1963  		sz += notesize(&t->notes[1]);
1964  	}
1965  
1966  #ifdef ELF_CORE_COPY_XFPREGS
1967  	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1968  		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1969  			  sizeof(t->xfpu), &t->xfpu);
1970  		t->num_notes++;
1971  		sz += notesize(&t->notes[2]);
1972  	}
1973  #endif
1974  	return sz;
1975  }
1976  
1977  struct elf_note_info {
1978  	struct memelfnote *notes;
1979  	struct memelfnote *notes_files;
1980  	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1981  	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1982  	struct list_head thread_list;
1983  	elf_fpregset_t *fpu;
1984  #ifdef ELF_CORE_COPY_XFPREGS
1985  	elf_fpxregset_t *xfpu;
1986  #endif
1987  	user_siginfo_t csigdata;
1988  	int thread_status_size;
1989  	int numnote;
1990  };
1991  
elf_note_info_init(struct elf_note_info * info)1992  static int elf_note_info_init(struct elf_note_info *info)
1993  {
1994  	memset(info, 0, sizeof(*info));
1995  	INIT_LIST_HEAD(&info->thread_list);
1996  
1997  	/* Allocate space for ELF notes */
1998  	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1999  	if (!info->notes)
2000  		return 0;
2001  	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2002  	if (!info->psinfo)
2003  		return 0;
2004  	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2005  	if (!info->prstatus)
2006  		return 0;
2007  	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2008  	if (!info->fpu)
2009  		return 0;
2010  #ifdef ELF_CORE_COPY_XFPREGS
2011  	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2012  	if (!info->xfpu)
2013  		return 0;
2014  #endif
2015  	return 1;
2016  }
2017  
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)2018  static int fill_note_info(struct elfhdr *elf, int phdrs,
2019  			  struct elf_note_info *info,
2020  			  const siginfo_t *siginfo, struct pt_regs *regs)
2021  {
2022  	struct list_head *t;
2023  	struct core_thread *ct;
2024  	struct elf_thread_status *ets;
2025  
2026  	if (!elf_note_info_init(info))
2027  		return 0;
2028  
2029  	for (ct = current->mm->core_state->dumper.next;
2030  					ct; ct = ct->next) {
2031  		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2032  		if (!ets)
2033  			return 0;
2034  
2035  		ets->thread = ct->task;
2036  		list_add(&ets->list, &info->thread_list);
2037  	}
2038  
2039  	list_for_each(t, &info->thread_list) {
2040  		int sz;
2041  
2042  		ets = list_entry(t, struct elf_thread_status, list);
2043  		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2044  		info->thread_status_size += sz;
2045  	}
2046  	/* now collect the dump for the current */
2047  	memset(info->prstatus, 0, sizeof(*info->prstatus));
2048  	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2049  	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2050  
2051  	/* Set up header */
2052  	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2053  
2054  	/*
2055  	 * Set up the notes in similar form to SVR4 core dumps made
2056  	 * with info from their /proc.
2057  	 */
2058  
2059  	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2060  		  sizeof(*info->prstatus), info->prstatus);
2061  	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2062  	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2063  		  sizeof(*info->psinfo), info->psinfo);
2064  
2065  	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2066  	fill_auxv_note(info->notes + 3, current->mm);
2067  	info->numnote = 4;
2068  
2069  	if (fill_files_note(info->notes + info->numnote) == 0) {
2070  		info->notes_files = info->notes + info->numnote;
2071  		info->numnote++;
2072  	}
2073  
2074  	/* Try to dump the FPU. */
2075  	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2076  							       info->fpu);
2077  	if (info->prstatus->pr_fpvalid)
2078  		fill_note(info->notes + info->numnote++,
2079  			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2080  #ifdef ELF_CORE_COPY_XFPREGS
2081  	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2082  		fill_note(info->notes + info->numnote++,
2083  			  "LINUX", ELF_CORE_XFPREG_TYPE,
2084  			  sizeof(*info->xfpu), info->xfpu);
2085  #endif
2086  
2087  	return 1;
2088  }
2089  
get_note_info_size(struct elf_note_info * info)2090  static size_t get_note_info_size(struct elf_note_info *info)
2091  {
2092  	int sz = 0;
2093  	int i;
2094  
2095  	for (i = 0; i < info->numnote; i++)
2096  		sz += notesize(info->notes + i);
2097  
2098  	sz += info->thread_status_size;
2099  
2100  	return sz;
2101  }
2102  
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2103  static int write_note_info(struct elf_note_info *info,
2104  			   struct coredump_params *cprm)
2105  {
2106  	int i;
2107  	struct list_head *t;
2108  
2109  	for (i = 0; i < info->numnote; i++)
2110  		if (!writenote(info->notes + i, cprm))
2111  			return 0;
2112  
2113  	/* write out the thread status notes section */
2114  	list_for_each(t, &info->thread_list) {
2115  		struct elf_thread_status *tmp =
2116  				list_entry(t, struct elf_thread_status, list);
2117  
2118  		for (i = 0; i < tmp->num_notes; i++)
2119  			if (!writenote(&tmp->notes[i], cprm))
2120  				return 0;
2121  	}
2122  
2123  	return 1;
2124  }
2125  
free_note_info(struct elf_note_info * info)2126  static void free_note_info(struct elf_note_info *info)
2127  {
2128  	while (!list_empty(&info->thread_list)) {
2129  		struct list_head *tmp = info->thread_list.next;
2130  		list_del(tmp);
2131  		kfree(list_entry(tmp, struct elf_thread_status, list));
2132  	}
2133  
2134  	/* Free data possibly allocated by fill_files_note(): */
2135  	if (info->notes_files)
2136  		vfree(info->notes_files->data);
2137  
2138  	kfree(info->prstatus);
2139  	kfree(info->psinfo);
2140  	kfree(info->notes);
2141  	kfree(info->fpu);
2142  #ifdef ELF_CORE_COPY_XFPREGS
2143  	kfree(info->xfpu);
2144  #endif
2145  }
2146  
2147  #endif
2148  
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2149  static struct vm_area_struct *first_vma(struct task_struct *tsk,
2150  					struct vm_area_struct *gate_vma)
2151  {
2152  	struct vm_area_struct *ret = tsk->mm->mmap;
2153  
2154  	if (ret)
2155  		return ret;
2156  	return gate_vma;
2157  }
2158  /*
2159   * Helper function for iterating across a vma list.  It ensures that the caller
2160   * will visit `gate_vma' prior to terminating the search.
2161   */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2162  static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2163  					struct vm_area_struct *gate_vma)
2164  {
2165  	struct vm_area_struct *ret;
2166  
2167  	ret = this_vma->vm_next;
2168  	if (ret)
2169  		return ret;
2170  	if (this_vma == gate_vma)
2171  		return NULL;
2172  	return gate_vma;
2173  }
2174  
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2175  static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2176  			     elf_addr_t e_shoff, int segs)
2177  {
2178  	elf->e_shoff = e_shoff;
2179  	elf->e_shentsize = sizeof(*shdr4extnum);
2180  	elf->e_shnum = 1;
2181  	elf->e_shstrndx = SHN_UNDEF;
2182  
2183  	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2184  
2185  	shdr4extnum->sh_type = SHT_NULL;
2186  	shdr4extnum->sh_size = elf->e_shnum;
2187  	shdr4extnum->sh_link = elf->e_shstrndx;
2188  	shdr4extnum->sh_info = segs;
2189  }
2190  
2191  /*
2192   * Actual dumper
2193   *
2194   * This is a two-pass process; first we find the offsets of the bits,
2195   * and then they are actually written out.  If we run out of core limit
2196   * we just truncate.
2197   */
elf_core_dump(struct coredump_params * cprm)2198  static int elf_core_dump(struct coredump_params *cprm)
2199  {
2200  	int has_dumped = 0;
2201  	mm_segment_t fs;
2202  	int segs, i;
2203  	size_t vma_data_size = 0;
2204  	struct vm_area_struct *vma, *gate_vma;
2205  	struct elfhdr *elf = NULL;
2206  	loff_t offset = 0, dataoff;
2207  	struct elf_note_info info = { };
2208  	struct elf_phdr *phdr4note = NULL;
2209  	struct elf_shdr *shdr4extnum = NULL;
2210  	Elf_Half e_phnum;
2211  	elf_addr_t e_shoff;
2212  	elf_addr_t *vma_filesz = NULL;
2213  
2214  	/*
2215  	 * We no longer stop all VM operations.
2216  	 *
2217  	 * This is because those proceses that could possibly change map_count
2218  	 * or the mmap / vma pages are now blocked in do_exit on current
2219  	 * finishing this core dump.
2220  	 *
2221  	 * Only ptrace can touch these memory addresses, but it doesn't change
2222  	 * the map_count or the pages allocated. So no possibility of crashing
2223  	 * exists while dumping the mm->vm_next areas to the core file.
2224  	 */
2225  
2226  	/* alloc memory for large data structures: too large to be on stack */
2227  	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2228  	if (!elf)
2229  		goto out;
2230  	/*
2231  	 * The number of segs are recored into ELF header as 16bit value.
2232  	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2233  	 */
2234  	segs = current->mm->map_count;
2235  	segs += elf_core_extra_phdrs();
2236  
2237  	gate_vma = get_gate_vma(current->mm);
2238  	if (gate_vma != NULL)
2239  		segs++;
2240  
2241  	/* for notes section */
2242  	segs++;
2243  
2244  	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2245  	 * this, kernel supports extended numbering. Have a look at
2246  	 * include/linux/elf.h for further information. */
2247  	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2248  
2249  	/*
2250  	 * Collect all the non-memory information about the process for the
2251  	 * notes.  This also sets up the file header.
2252  	 */
2253  	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2254  		goto cleanup;
2255  
2256  	has_dumped = 1;
2257  
2258  	fs = get_fs();
2259  	set_fs(KERNEL_DS);
2260  
2261  	offset += sizeof(*elf);				/* Elf header */
2262  	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2263  
2264  	/* Write notes phdr entry */
2265  	{
2266  		size_t sz = get_note_info_size(&info);
2267  
2268  		sz += elf_coredump_extra_notes_size();
2269  
2270  		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2271  		if (!phdr4note)
2272  			goto end_coredump;
2273  
2274  		fill_elf_note_phdr(phdr4note, sz, offset);
2275  		offset += sz;
2276  	}
2277  
2278  	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2279  
2280  	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2281  		goto end_coredump;
2282  	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2283  	if (!vma_filesz)
2284  		goto end_coredump;
2285  
2286  	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2287  			vma = next_vma(vma, gate_vma)) {
2288  		unsigned long dump_size;
2289  
2290  		dump_size = vma_dump_size(vma, cprm->mm_flags);
2291  		vma_filesz[i++] = dump_size;
2292  		vma_data_size += dump_size;
2293  	}
2294  
2295  	offset += vma_data_size;
2296  	offset += elf_core_extra_data_size();
2297  	e_shoff = offset;
2298  
2299  	if (e_phnum == PN_XNUM) {
2300  		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2301  		if (!shdr4extnum)
2302  			goto end_coredump;
2303  		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2304  	}
2305  
2306  	offset = dataoff;
2307  
2308  	if (!dump_emit(cprm, elf, sizeof(*elf)))
2309  		goto end_coredump;
2310  
2311  	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2312  		goto end_coredump;
2313  
2314  	/* Write program headers for segments dump */
2315  	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2316  			vma = next_vma(vma, gate_vma)) {
2317  		struct elf_phdr phdr;
2318  
2319  		phdr.p_type = PT_LOAD;
2320  		phdr.p_offset = offset;
2321  		phdr.p_vaddr = vma->vm_start;
2322  		phdr.p_paddr = 0;
2323  		phdr.p_filesz = vma_filesz[i++];
2324  		phdr.p_memsz = vma->vm_end - vma->vm_start;
2325  		offset += phdr.p_filesz;
2326  		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2327  		if (vma->vm_flags & VM_WRITE)
2328  			phdr.p_flags |= PF_W;
2329  		if (vma->vm_flags & VM_EXEC)
2330  			phdr.p_flags |= PF_X;
2331  		phdr.p_align = ELF_EXEC_PAGESIZE;
2332  
2333  		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2334  			goto end_coredump;
2335  	}
2336  
2337  	if (!elf_core_write_extra_phdrs(cprm, offset))
2338  		goto end_coredump;
2339  
2340   	/* write out the notes section */
2341  	if (!write_note_info(&info, cprm))
2342  		goto end_coredump;
2343  
2344  	if (elf_coredump_extra_notes_write(cprm))
2345  		goto end_coredump;
2346  
2347  	/* Align to page */
2348  	if (!dump_skip(cprm, dataoff - cprm->pos))
2349  		goto end_coredump;
2350  
2351  	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2352  			vma = next_vma(vma, gate_vma)) {
2353  		unsigned long addr;
2354  		unsigned long end;
2355  
2356  		end = vma->vm_start + vma_filesz[i++];
2357  
2358  		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2359  			struct page *page;
2360  			int stop;
2361  
2362  			page = get_dump_page(addr);
2363  			if (page) {
2364  				void *kaddr = kmap(page);
2365  				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2366  				kunmap(page);
2367  				put_page(page);
2368  			} else
2369  				stop = !dump_skip(cprm, PAGE_SIZE);
2370  			if (stop)
2371  				goto end_coredump;
2372  		}
2373  	}
2374  	dump_truncate(cprm);
2375  
2376  	if (!elf_core_write_extra_data(cprm))
2377  		goto end_coredump;
2378  
2379  	if (e_phnum == PN_XNUM) {
2380  		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2381  			goto end_coredump;
2382  	}
2383  
2384  end_coredump:
2385  	set_fs(fs);
2386  
2387  cleanup:
2388  	free_note_info(&info);
2389  	kfree(shdr4extnum);
2390  	vfree(vma_filesz);
2391  	kfree(phdr4note);
2392  	kfree(elf);
2393  out:
2394  	return has_dumped;
2395  }
2396  
2397  #endif		/* CONFIG_ELF_CORE */
2398  
init_elf_binfmt(void)2399  static int __init init_elf_binfmt(void)
2400  {
2401  	register_binfmt(&elf_format);
2402  	return 0;
2403  }
2404  
exit_elf_binfmt(void)2405  static void __exit exit_elf_binfmt(void)
2406  {
2407  	/* Remove the COFF and ELF loaders. */
2408  	unregister_binfmt(&elf_format);
2409  }
2410  
2411  core_initcall(init_elf_binfmt);
2412  module_exit(exit_elf_binfmt);
2413  MODULE_LICENSE("GPL");
2414